Sample records for nanoscale physical properties

  1. Probing physical properties at the nanoscale using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ditzler, Lindsay Rachel

    Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating

  2. Atomistic methodologies for material properties of 2D materials at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our

  3. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology.

    PubMed

    Schirhagl, Romana; Chang, Kevin; Loretz, Michael; Degen, Christian L

    2014-01-01

    Crystal defects in diamond have emerged as unique objects for a variety of applications, both because they are very stable and because they have interesting optical properties. Embedded in nanocrystals, they can serve, for example, as robust single-photon sources or as fluorescent biomarkers of unlimited photostability and low cytotoxicity. The most fascinating aspect, however, is the ability of some crystal defects, most prominently the nitrogen-vacancy (NV) center, to locally detect and measure a number of physical quantities, such as magnetic and electric fields. This metrology capacity is based on the quantum mechanical interactions of the defect's spin state. In this review, we introduce the new and rapidly evolving field of nanoscale sensing based on single NV centers in diamond. We give a concise overview of the basic properties of diamond, from synthesis to electronic and magnetic properties of embedded NV centers. We describe in detail how single NV centers can be harnessed for nanoscale sensing, including the physical quantities that may be detected, expected sensitivities, and the most common measurement protocols. We conclude by highlighting a number of the diverse and exciting applications that may be enabled by these novel sensors, ranging from measurements of ion concentrations and membrane potentials to nanoscale thermometry and single-spin nuclear magnetic resonance.

  4. EDITORIAL: Physical behaviour at the nanoscale: a model for fertile research Physical behaviour at the nanoscale: a model for fertile research

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-06-01

    At the nanoscale physics follows familiar principles that lead to unfamiliar and even unlikely responses. The change in the balance of a range of physical features results in behaviour that can differ wildly from the same materials at the macroscale. In this issue Di Ventra and Pershin examine some of the memory effects that have attracted increasing interest in investigations of nanoscale electronic systems [1]. The work builds on the familiar premise that external perturbations cannot have an instantaneous effect on any condensed matter system. As they point out, 'This is even more so in systems of nanoscale dimensions where the dynamics of a few atoms may affect the whole structure dramatically'. In this way they explain that the response of these systems will always have some degree of memory present and that memristive, memcapacitive and meminductive systems are simply examples where this feature is particularly prominent. In the late 1990s investigations into the use of carbon nanotubes and SiC nanorods revealed that the moduli of these structures changes with diameter, highlighting the eccentricities of mechanical properties at the nanoscale. These results prompted Miller at the University of Saskatchewan and Shenoy at the Indian Institute of Technology to study the properties of nanotubes and nanorods in detail [2]. 'In the eyes of an engineer these structures are essentially little beams', they explained, 'Albeit they are "little" to a degree that challenges our traditional notions of continuum mechanics'. In their work they developed one of the first simple models for explaining the behaviour of the Young's modulus of nanostructures, verified by direct atomistic simulation of axial loading of these structures. Since then, consideration of different nanoscale structures and the dissipation of energy under stress and strain have also demystified the extraordinary mechanical properties of natural materials such as collagen [3] and spider's silk [4]. The

  5. When physics and biology meet: the nanoscale case.

    PubMed

    Bueno, Otávio

    2011-06-01

    As an illustration of the complexities involved in connecting physics and molecular biology at the nanoscale, in this paper I discuss two case studies from nanoscience. The first examines the use of a biological structure (DNA) to build nanostructures in a controlled way. The second discusses the attempt to build a single molecular wire, and then decide whether such a wire is indeed conducting. After presenting the central features of each case study, I examine the role played in them by microscopic imaging, the different styles of reasoning involved, and the various theoretical, methodological, and axiological differences. I conclude by arguing that, except for the probe microscopes that are used, there is very little in common between the two cases. At the nanoscale, physics and molecular biology seem to meet in a non-unified way. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics Talk: Understanding Nano-scale Electronic Systems via Large-scale Computation

    NASA Astrophysics Data System (ADS)

    Cao, Chao

    2009-03-01

    Nano-scale physical phenomena and processes, especially those in electronics, have drawn great attention in the past decade. Experiments have shown that electronic and transport properties of functionalized carbon nanotubes are sensitive to adsorption of gas molecules such as H2, NO2, and NH3. Similar measurements have also been performed to study adsorption of proteins on other semiconductor nano-wires. These experiments suggest that nano-scale systems can be useful for making future chemical and biological sensors. Aiming to understand the physical mechanisms underlying and governing property changes at nano-scale, we start off by investigating, via first-principles method, the electronic structure of Pd-CNT before and after hydrogen adsorption, and continue with coherent electronic transport using non-equilibrium Green’s function techniques combined with density functional theory. Once our results are fully analyzed they can be used to interpret and understand experimental data, with a few difficult issues to be addressed. Finally, we discuss a newly developed multi-scale computing architecture, OPAL, that coordinates simultaneous execution of multiple codes. Inspired by the capabilities of this computing framework, we present a scenario of future modeling and simulation of multi-scale, multi-physical processes.

  7. The Properties of Confined Water and Fluid Flow at the Nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwegler, E; Reed, J; Lau, E

    This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membranemore » flow, materials properties in confined media and nanofluidic devices.« less

  8. Computational integration of nanoscale physical biomarkers and cognitive assessments for Alzheimer’s disease diagnosis and prognosis

    PubMed Central

    Yue, Tao; Jia, Xinghua; Petrosino, Jennifer; Sun, Leming; Fan, Zhen; Fine, Jesse; Davis, Rebecca; Galster, Scott; Kuret, Jeff; Scharre, Douglas W.; Zhang, Mingjun

    2017-01-01

    With the increasing prevalence of Alzheimer’s disease (AD), significant efforts have been directed toward developing novel diagnostics and biomarkers that can enhance AD detection and management. AD affects the cognition, behavior, function, and physiology of patients through mechanisms that are still being elucidated. Current AD diagnosis is contingent on evaluating which symptoms and signs a patient does or does not display. Concerns have been raised that AD diagnosis may be affected by how those measurements are analyzed. Unbiased means of diagnosing AD using computational algorithms that integrate multidisciplinary inputs, ranging from nanoscale biomarkers to cognitive assessments, and integrating both biochemical and physical changes may provide solutions to these limitations due to lack of understanding for the dynamic progress of the disease coupled with multiple symptoms in multiscale. We show that nanoscale physical properties of protein aggregates from the cerebral spinal fluid and blood of patients are altered during AD pathogenesis and that these properties can be used as a new class of “physical biomarkers.” Using a computational algorithm, developed to integrate these biomarkers and cognitive assessments, we demonstrate an approach to impartially diagnose AD and predict its progression. Real-time diagnostic updates of progression could be made on the basis of the changes in the physical biomarkers and the cognitive assessment scores of patients over time. Additionally, the Nyquist-Shannon sampling theorem was used to determine the minimum number of necessary patient checkups to effectively predict disease progression. This integrated computational approach can generate patient-specific, personalized signatures for AD diagnosis and prognosis. PMID:28782028

  9. Single molecules and single nanoparticles as windows to the nanoscale

    NASA Astrophysics Data System (ADS)

    Caldarola, Martín; Orrit, Michel

    2018-05-01

    Since the first optical detection of single molecules, they have been used as nanometersized optical sensors to explore the physical properties of materials and light-matter interaction at the nanoscale. Understanding nanoscale properties of materials is fundamental for the development of new technology that requires precise control of atoms and molecules when the quantum nature of matter cannot be ignored. In the following lines, we illustrate this journey into nanoscience with some experiments from our group.

  10. Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers

    NASA Astrophysics Data System (ADS)

    Iskandarova, I. M.; Knizhnik, A. A.; Popkov, A. F.; Potapkin, B. V.; Stainer, Q.; Lombard, L.; Mackay, K.

    2016-09-01

    Ferromagnetic shields are widely used to concentrate magnetic fields in a target region of space. Such shields are also used in spintronic nanodevices such as magnetic random access memory and magnetic logic devices. However, the shielding properties of nanostructured shields can differ considerably from those of macroscopic samples. In this work, we investigate the shielding properties of nanostructured NiFe layers around a current line using a finite element micromagnetic model. We find that thin ferromagnetic layers demonstrate saturation of magnetization under an external magnetic field, which reduces the shielding efficiency. Moreover, we show that the shielding properties of nanoscale ferromagnetic layers strongly depend on the uniformity of the layer thickness. Magnetic anisotropy in ultrathin ferromagnetic layers can also influence their shielding efficiency. In addition, we show that domain walls in nanoscale ferromagnetic shields can induce large increases and decreases in the generated magnetic field. Therefore, ferromagnetic shields for spintronic nanodevices require careful design and precise fabrication.

  11. Nanoscale theranostics for physical stimulus-responsive cancer therapies.

    PubMed

    Chen, Qian; Ke, Hengte; Dai, Zhifei; Liu, Zhuang

    2015-12-01

    Physical stimulus-responsive therapies often employing multifunctional theranostic agents responsive to external physical stimuli such as light, magnetic field, ultra-sound, radiofrequency, X-ray, etc., have been widely explored as novel cancer therapy strategies, showing encouraging results in many pre-clinical animal experiments. Unlike conventional cancer chemotherapy which often accompanies with severe toxic side effects, physical stimulus-responsive agents usually are non-toxic by themselves and would destruct cancer cells only under specific external stimuli, and thus could offer greatly reduced toxicity and enhanced treatment specificity. In addition, physical stimulus-responsive therapies can also be combined with other traditional therapeutics to achieve synergistic anti-tumor effects via a variety of mechanisms. In this review, we will summarize the latest progress in the development of physical stimulus-responsive therapies, and discuss the important roles of nanoscale theranostic agents involved in those non-conventional therapeutic strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Modelling nanoscale objects in order to conduct an empirical research into their properties as part of an engineering system designed

    NASA Astrophysics Data System (ADS)

    Makarov, M.; Shchanikov, S.; Trantina, N.

    2017-01-01

    We have conducted a research into the major, in terms of their future application, properties of nanoscale objects, based on modelling these objects as free-standing physical elements beyond the structure of an engineering system designed for their integration as well as a part of a system that operates under the influence of the external environment. For the empirical research suggested within the scope of this work, we have chosen a nanoscale electronic element intended to be used while designing information processing systems with the parallel architecture - a memristor. The target function of the research was to provide the maximum fault-tolerance index of a memristor-based system when affected by all possible impacts of the internal destabilizing factors and external environment. The research results have enabled us to receive and classify all the factors predetermining the fault-tolerance index of the hardware implementation of a computing system based on the nanoscale electronic element base.

  13. Thermophysical properties study of micro/nanoscale materials

    NASA Astrophysics Data System (ADS)

    Feng, Xuhui

    Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and

  14. On the Use of Analogy to Connect Core Physical and Chemical Concepts to Those at the Nanoscale

    ERIC Educational Resources Information Center

    Muniz, Marc N.; Oliver-Hoyo, Maria T.

    2014-01-01

    Nanoscale science remains at the forefront of modern scientific endeavors. As such, students in chemistry need to be prepared to navigate the physical and chemical concepts that describe the unique phenomena observed at this scale. Current approaches to integrating nanoscale topics into undergraduate chemistry curricula range from the design of…

  15. Attosecond physics at the nanoscale

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Pérez-Hernández, J. A.; Landsman, A. S.; Okell, W. A.; Zherebtsov, S.; Förg, B.; Schötz, J.; Seiffert, L.; Fennel, T.; Shaaran, T.; Zimmermann, T.; Chacón, A.; Guichard, R.; Zaïr, A.; Tisch, J. W. G.; Marangos, J. P.; Witting, T.; Braun, A.; Maier, S. A.; Roso, L.; Krüger, M.; Hommelhoff, P.; Kling, M. F.; Krausz, F.; Lewenstein, M.

    2017-05-01

    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10-18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ˜152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the

  16. Attosecond physics at the nanoscale.

    PubMed

    Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Okell, W A; Zherebtsov, S; Förg, B; Schötz, J; Seiffert, L; Fennel, T; Shaaran, T; Zimmermann, T; Chacón, A; Guichard, R; Zaïr, A; Tisch, J W G; Marangos, J P; Witting, T; Braun, A; Maier, S A; Roso, L; Krüger, M; Hommelhoff, P; Kling, M F; Krausz, F; Lewenstein, M

    2017-05-01

    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10 -18 s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the

  17. Effect of geometric configuration on the electrocaloric properties of nanoscale ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Li, Huiyu; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie

    2018-03-01

    The electrocaloric properties of ferroelectrics are highly dependent on the domain structure in the materials. For nanoscale ferroelectric materials, the domain structure is greatly influenced by the geometric configuration of the system. Using a real-space phase field model based on the Ginzburg-Landau theory, we investigate the effect of geometric configurations on the electrocaloric properties of nanoscale ferroelectric materials. The ferroelectric hysteresis loops under different temperatures are simulated for the ferroelectric nano-metamaterials with square, honeycomb, and triangular Archimedean geometric configurations. The adiabatic temperature changes (ATCs) for three ferroelectric nano-metamaterials under different electric fields are calculated from the Maxwell relationship based on the hysteresis loops. It is found that the honeycomb specimen exhibits the largest ATC of Δ T = 4.3 °C under a field of 391.8 kV/cm among three geometric configurations, whereas the square specimen has the smallest ATC of Δ T = 2.7 °C under the same electric field. The different electrocaloric properties for three geometric configurations stem from the different domain structures. There are more free surfaces perpendicular to the electric field in the square specimen than the other two specimens, which restrict more polarizations perpendicular to the electric field, resulting in a small ATC. Due to the absence of free surfaces perpendicular to the electric field in the honeycomb specimen, the change of polarization with temperature in the direction of the electric field is more easy and thus leads to a large ATC. The present work suggests a novel approach to obtain the tunable electrocaloric properties in nanoscale ferroelectric materials by designing their geometric configurations.

  18. Nanoscale diffusive memristor crossbars as physical unclonable functions.

    PubMed

    Zhang, R; Jiang, H; Wang, Z R; Lin, P; Zhuo, Y; Holcomb, D; Zhang, D H; Yang, J J; Xia, Q

    2018-02-08

    Physical unclonable functions have emerged as promising hardware security primitives for device authentication and key generation in the era of the Internet of Things. Herein, we report novel physical unclonable functions built upon the crossbars of nanoscale diffusive memristors that translate the stochastic distribution of Ag clusters in a SiO 2 matrix into a random binary bitmap that serves as a device fingerprint. The random dispersion of Ag led to an uneven number of clusters at each cross-point, which in turn resulted in a stochastic ability to switch in the Ag:SiO 2 diffusive memristors in an array. The randomness of the dispersion was a barrier to fingerprint cloning and the unique fingerprints of each device were persistent after fabrication. Using an optimized fabrication procedure, we maximized the randomness and achieved an inter-class Hamming distance of 50.68%. We also discovered that the bits were not flipping after over 10 4 s at 400 K, suggesting superior reliability of our physical unclonable functions. In addition, our diffusive memristor-based physical unclonable functions were easy to fabricate and did not require complicated post-processing for digitization and thus, provide new opportunities in hardware security applications.

  19. Plasmonic Nanostructures for Nano-Scale Bio-Sensing

    PubMed Central

    Chung, Taerin; Lee, Seung-Yeol; Song, Eui Young; Chun, Honggu; Lee, Byoungho

    2011-01-01

    The optical properties of various nanostructures have been widely adopted for biological detection, from DNA sequencing to nano-scale single molecule biological function measurements. In particular, by employing localized surface plasmon resonance (LSPR), we can expect distinguished sensing performance with high sensitivity and resolution. This indicates that nano-scale detections can be realized by using the shift of resonance wavelength of LSPR in response to the refractive index change. In this paper, we overview various plasmonic nanostructures as potential sensing components. The qualitative descriptions of plasmonic nanostructures are supported by the physical phenomena such as plasmonic hybridization and Fano resonance. We present guidelines for designing specific nanostructures with regard to wavelength range and target sensing materials. PMID:22346679

  20. Physical controls on directed virus assembly at nanoscale chemical templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, C L; Chung, S; Chatterji, A

    2006-05-10

    Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In-situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, andmore » drove 1D and 2D condensation at subcritical volume fractions. The growth kinetics followed a t{sup 1/2} law controlled by the slow diffusion of viruses. The lateral expansion of virus clusters that initially form on the 1D templates following introduction of polyethylene glycol (PEG) into the solution suggests a significant role for weak interaction.« less

  1. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  2. Nanoscale Morphology, Dimensional Control and Electrical Properties of Oligoanilines

    PubMed Central

    Wang, Yue; Tran, Henry D.; Liao, Lei; Duan, Xiangfeng; Kaner, Richard B.

    2010-01-01

    While nanostructures of organic conductors have generated great interest in recent years, their nanoscale size and shape control remains a significant challenge. Here we report a general method for producing a variety of oligoaniline nanostructures with well-defined morphologies and dimensionalities. 1-D nanowires, 2-D nanoribbons, and 3-D rectangular nanoplates and nanoflowers of tetraaniline are produced by a solvent exchange process in which the dopant acid can be used to tune the oligomer morphology. The process appears to be a general route for producing nanostructures for a variety of other aniline oligomers such as the phenyl-capped tetramer. X-ray diffraction of the tetraniline nanostructures reveals that they possess different packing arrangements, which results in different nanoscale morphologies with different electrical properties for the structures. The conductivity of a single tetraaniline nanostructure is up to two orders of magnitude higher than the highest previously reported value and rivals that of pressed pellets of conventional polyaniline doped with acid. Furthermore, these oligomer nanostructures can be easily processed by a number of methods in order to create thin films composed of aligned nanostructures over a macroscopic area. PMID:20662516

  3. Dynamic structural disorder in supported nanoscale catalysts

    NASA Astrophysics Data System (ADS)

    Rehr, J. J.; Vila, F. D.

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  4. Effects of External Stimuli on Microstructure-Property Relationship at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Wang, Baoming

    The technical contribution of this research is a unique nanofabricated experimental setup that integrates nanoscale specimens with tools for interrogating mechanical (stress-strain, fracture, and fatigue), thermal and electrical (conductivity) properties as function of external stimuli such as strain, temperature, electrical field and radiation. It addresses the shortcomings of the state of the art characterization techniques, which are yet to perform such simultaneous and multi-domain measurements. Our technique has virtually no restriction on specimen material type and thickness, which makes the setup versatile. It is demonstrated with 100 nm thick nickel, aluminum, zirconium; 25 nm thick molybdenum di-sulphide (MoS2), 10 nm hexagonal boron nitride (h-BN) specimens and 100nm carbon nanofiber, all in freestanding thin film form. The technique is compatible with transmission electron microscopy (TEM). In-situ TEM captures microstructural features, (defects, phases, precipitates and interfaces), diffraction patterns and chemical microanalysis in real time. 'Seeing the microstructure while measuring properties' is our unique capability. It helps identifying fundamental mechanisms behind thermo-electro-mechanical coupling and degradation, so that these mechanisms can be used to (i) explain the results obtained for mesoscale specimens of the same materials and experimental conditions and (ii) develop computational models to explain and predict properties at both nano and meso scales. The uniqueness of this contribution is therefore simultaneously quantitative and qualitative probing of length-scale dependent external stimuli effects on microstructures and physical properties of nanoscale materials. The scientific contribution of this research is the experimental validation of the fundamental hypothesis that, if the nanoscale size can cause significant deviation in a certain domain, e.g., mechanical, it can also make that domain more sensitive to external stimuli when

  5. Property Control of (Perfluorinated Ionomer)/(Inorganic Oxide) Composites by Tailoring the Nanoscale Morphology

    DTIC Science & Technology

    1994-06-10

    RPeport PROPERTY CONTROL OF ( PERFLUORINATED IONOMER)/(INORGANIC OXIDE) COMPOSITES BY TAILORING THE NANOSCALE MORPHOLOGY Kenneth A. Mauritz and Robert...Concept ......................................... 45 B. [Si0 2 -TiO2 (mixed)]/Nafion Nanocomposites: Sorption of Pre-Mixed Alkoxides...Nanocomposites: Sorption of Pre- Mixed Alkoxides ......................................... 49 A. Experimental Procedure ............................. 49 B

  6. Synthesis, Microstructure and Properties of Metallic Materials with Nanoscale Growth Twins

    DTIC Science & Technology

    2006-11-01

    2004: Wu et al, 2005) and austenitic stainless steels (Zhang et al, 2004a; Zhang et al, 2005). However, processing routes to produce nanoscale...mechanical properties (hardness, yield strength, tensile strength) of bulk austenitic stainless steel (304, 310, 316 and 330) are quite similar and...model developed for the formation of growth twins in sputter- deposited austenitic stainless steel thin films (Zhang et al, 2004b). The model predicts

  7. Nanoscale Footprints of Self-Running Gallium Droplets on GaAs Surface

    PubMed Central

    Wu, Jiang; Wang, Zhiming M.; Li, Alvason Z.; Benamara, Mourad; Li, Shibin; Salamo, Gregory J.

    2011-01-01

    In this work, the nanoscale footprints of self-driven liquid gallium droplet movement on a GaAs (001) surface will be presented and analyzed. The nanoscale footprints of a primary droplet trail and ordered secondary droplets along primary droplet trails are observed on the GaAs surface. A well ordered nanoterrace from the trail is left behind by a running droplet. In addition, collision events between two running droplets are investigated. The exposed fresh surface after a collision demonstrates a superior evaporation property. Based on the observation of droplet evolution at different stages as well as nanoscale footprints, a schematic diagram of droplet evolution is outlined in an attempt to understand the phenomenon of stick-slip droplet motion on the GaAs surface. The present study adds another piece of work to obtain the physical picture of a stick-slip self-driven mechanism in nanoscale, bridging nano and micro systems. PMID:21673965

  8. Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators

    PubMed Central

    Koumoulis, Dimitrios; Morris, Gerald D.; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D.; Wang, Kang L.; Fiete, Gregory A.; Kanatzidis, Mercouri G.; Bouchard, Louis-S.

    2015-01-01

    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive 8Li+ ions that can provide “one-dimensional imaging” in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the 8Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron–nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. PMID:26124141

  9. Characterizing Nanoscale Transient Communication.

    PubMed

    Chen, Yifan; Anwar, Putri Santi; Huang, Limin; Asvial, Muhamad

    2016-04-01

    We consider the novel paradigm of nanoscale transient communication (NTC), where certain components of the small-scale communication link are physically transient. As such, the transmitter and the receiver may change their properties over a prescribed lifespan due to their time-varying structures. The NTC systems may find important applications in the biomedical, environmental, and military fields, where system degradability allows for benign integration into life and environment. In this paper, we analyze the NTC systems from the channel-modeling and capacity-analysis perspectives and focus on the stochastically meaningful slow transience scenario, where the coherence time of degeneration Td is much longer than the coding delay Tc. We first develop novel and parsimonious models to characterize the NTC channels, where three types of physical layers are considered: electromagnetism-based terahertz (THz) communication, diffusion-based molecular communication (DMC), and nanobots-assisted touchable communication (TouchCom). We then revisit the classical performance measure of ϵ-outage channel capacity and take a fresh look at its formulations in the NTC context. Next, we present the notion of capacity degeneration profile (CDP), which describes the reduction of channel capacity with respect to the degeneration time. Finally, we provide numerical examples to demonstrate the features of CDP. To the best of our knowledge, the current work represents a first attempt to systematically evaluate the quality of nanoscale communication systems deteriorating with time.

  10. Optical Properties of Nanoscale Bismuth Selenide and Its Heterocrystals

    NASA Astrophysics Data System (ADS)

    Vargas, Anthony

    Over the past 12 years since the groundbreaking work on graphene, the field of 2D layered materials has grown by leaps and bounds as more materials are theoretically predicted and experimentically verified. These materials and their unique electronic, optical, and mechanical properties have inspired the scientific community to explore and investigate novel, fundamental physical phenomena as well create and refine technological devices which leverage the host of unique benefits which these materials possess. In the past few years, this burgeoning field has heavily moved towards combining layers of various materials into novel heterostructures. These heterostructures are an exciting area of research because of the plethora of exciting possibilities and results which arise due to the large number of heterostructure combinations and configurations. Particularly, the research into the optical properties of these layered materials and their heterostructures under confinement provides another exciting avenue for developing optoelectric devices. In this dissertation, I present work on the synthesis of Bi2Se 3 nanostructures via chemical vapor deposition (CVD) and the study of the optical properties of these nanostructures and their heterostructures with MoS2. The bulk of the current published work on Bi2Se 3 has focused on the exotic topological properties of its surface states, both interesting fundamental physics purposes as well as for studying avenues for spintronics. In contrast, the work presented here focuses on studying the optical properties of Bi2Se3 nanostructures and how these properties evolve when subjected to confinement. Specifically, the absorbance of singlecrystal Bi2Se3 with sizes tailored down to a few nanometers in diameter and a few quintuple layers (QLs) in thickness. We find a dramatically large bandgap, Eg ≥ 2.5 eV, in the smallest particles which is much higher than that seen in 1QL measurements taken with ARPES. Additionally, utilizing

  11. Nanoscale phase change memory materials.

    PubMed

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  12. Physical adsorption at the nanoscale: Towards controllable scaling of the substrate-adsorbate van der Waals interaction

    NASA Astrophysics Data System (ADS)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi; Tkatchenko, Alexandre

    2017-06-01

    The Lifshitz-Zaremba-Kohn (LZK) theory is commonly considered as the correct large-distance limit for the van der Waals (vdW) interaction of adsorbates (atoms, molecules, or nanoparticles) with solid substrates. In the standard approximate form, implicitly based on local dielectric functions, the LZK approach predicts universal power laws for vdW interactions depending only on the dimensionality of the interacting objects. However, recent experimental findings are challenging the universality of this theoretical approach at finite distances of relevance for nanoscale assembly. Here, we present a combined analytical and numerical many-body study demonstrating that physical adsorption can be significantly enhanced at the nanoscale. Regardless of the band gap or the nature of the adsorbate specie, we find deviations from conventional LZK power laws that extend to separation distances of up to 10-20 nm. Comparison with recent experimental observations of ultra-long-ranged vdW interactions in the delamination of graphene from a silicon substrate reveals qualitative agreement with the present theory. The sensitivity of vdW interactions to the substrate response and to the adsorbate characteristic excitation frequency also suggests that adsorption strength can be effectively tuned in experiments, paving the way to an improved control of physical adsorption at the nanoscale.

  13. Exposure and Health Effects Review of Engineered Nanoscale Cerium and Cerium Dioxide Associated with its Use as a Fuel Additive - NOW IN PRINT IN THE JOURNAL

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels that are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (Ce02) has recently gained a wide range of applications which includes coatin...

  14. EXAFS and XANES analysis of oxides at the nanoscale.

    PubMed

    Kuzmin, Alexei; Chaboy, Jesús

    2014-11-01

    Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.). As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS) analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS) is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs) and iron oxide nanoparticles.

  15. Nanoscale thermal transport: Theoretical method and application

    NASA Astrophysics Data System (ADS)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  16. Nanoscale octahedral molecular sieves: Syntheses, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Liu, Jia

    The major part of this research consists of studies on novel synthesis methods, characterization, and catalytic applications of nanoscale manganese oxide octahedral molecular sieves. The second part involves studies of new applications of bulk porous molecular sieve and layered materials (MSLM), zeolites, and inorganic powder materials for diminishing wound bleeding. Manganese oxide octahedral molecular sieves (OMS) are very important microporous materials. They have been used widely as bulk materials in catalysis, separations, chemical sensors, and batteries, due to their unique tunnel structures and useful properties. Novel methods have been developed to synthesize novel nanoscale octahedral molecular sieve manganese oxides (OMS) and metal-substituted OMS materials in order to modify their physical and chemical properties and to improve their catalytic applications. Different synthetic routes were investigated to find better, faster, and cheaper pathways to produce nanoscale or metal-substituted OMS materials. In the synthetic study of nanosize OMS materials, a combination of sol-gel synthesis and hydrothermal reaction was used to prepare pure crystalline nanofibrous todorokite-type (OMS-1) and cryptomelane-typed (OMS-2) manganese oxides using four alkali cations (Li+, K+, Na +, Rb+) and NH4+ cations. In the synthesis study of nanoscale and metal-substituted OMS materials, a combination of sol-gel synthesis and solid-state reaction was used to prepare transition metal-substituted OMS-2 nanorods, nanoneedles, and nanowires. Preparative parameters of syntheses, such as cation templates, heating temperature and time, were investigated in these syntheses of OMS-1 and OMS-2 materials. The catalytic activities of the novel synthetic nanoscale OMS materials has been evaluated on green oxidation of alcohols and toluene and were found to be much higher than their correspondent bulk materials. New applications of bulk manganese oxide molecular sieve and layered materials

  17. Nanoscale defect architectures and their influence on material properties

    NASA Astrophysics Data System (ADS)

    Campbell, Branton

    2006-10-01

    Diffraction studies of long-range order often permit one to unambiguously determine the atomic structure of a crystalline material. Many interesting material properties, however, are dominated by nanoscale crystal defects that can't be characterized in this way. Fortunately, advances in x-ray detector technology, synchrotron x-ray source brightness, and computational power make it possible to apply new methods to old problems. Our research group uses multi-megapixel x-ray cameras to map out large contiguous volumes of reciprocal space, which can then be visually explored using graphics engines originally developed by the video-game industry. Here, I will highlight a few recent examples that include high-temperature superconductors, colossal magnetoresistors and piezoelectric materials.

  18. Nanoscale Mechanical Properties of Nanoindented Ni48.8Mn27.2Ga24 Ferromagnetic Shape Memory Thin Film

    PubMed Central

    Fu, Xiaofei; Li, Xianli; Lv, Jingwei; Wang, Famei; Wang, Liying

    2017-01-01

    The structure and nanoscale mechanical properties of Ni48.8Mn27.2Ga24 thin film fabricated by DC magnetron sputtering are investigated systematically. The thin film has the austenite state at room temperature with the L21 Hesuler structure. During nanoindentation, stress-induced martensitic transformation occurs on the nanoscale for the film annealed at 823 K for 1 hour and the shape recovery ratio is up to 85.3%. The associated mechanism is discussed. PMID:29109812

  19. Nanoscale effects of silica particle supports on the formation and properties of TiO2 nanocatalysts

    NASA Astrophysics Data System (ADS)

    Li, Aize; Jin, Yuhui; Muggli, Darrin; Pierce, David T.; Aranwela, Hemantha; Marasinghe, Gaya K.; Knutson, Theodore; Brockman, Greg; Zhao, Julia Xiaojun

    2013-06-01

    Small TiO2 crystals in the anatase phase are in high demand as photocatalysts. Stable TiO2 crystals in the anatase phase were obtained using a silica nanoparticle as a support. The focus of this study was to investigate the nanoscale effect of the silica support on the formation and properties of small anatase crystals. The experiments were carried out using powder X-ray diffraction, differential thermal analysis, transmission electron microscopy, and energy dispersion spectroscopy. The results showed that the size of the silica support played a crucial role in crystallization of TiO2 and regulation of TiO2 properties, including phase transition, crystal size, thermodynamic property and catalytic activity. A nanoscale curvature model of the spherical silica support was proposed to explain these size effects. Finally, the developed TiO2 catalysts were applied to the oxidation of methanol using a high-throughput photochemical reactor. The size effect of the silica supports on the TiO2 catalytic efficiency was demonstrated using this system.

  20. Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey

    2008-03-01

    The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.

  1. Nanoscale investigation of the piezoelectric properties of perovskite ferroelectrics and III-nitrides

    NASA Astrophysics Data System (ADS)

    Rodriguez, Brian Joseph

    Nanoscale characterization of the piezoelectric and polarization related properties of III-Nitrides by piezoresponse force microscopy (PFM), electrostatic force microscopy (EFM) and scanning Kelvin probe microscopy (SKPM) resulted in the measurement of piezoelectric constants, surface charge and surface potential. Photo-electron emission microscopy (PEEM) was used to determine the local electronic band structure of a GaN-based lateral polarity heterostructure (GaN-LPH). Nanoscale characterization of the imprint and switching behavior of ferroelectric thin films by PFM resulted in the observation of domain pinning, while nanoscale characterization of the spatial variations in the imprint and switching behavior of integrated (111)-oriented PZT-based ferroelectric random access memory (FRAM) capacitors by PFM have revealed a significant difference in imprint and switching behavior between the inner and outer parts of capacitors. The inner regions of the capacitors are typically negatively imprinted and consequently tend to switch back after being poled by a positive bias, while regions at the edge of the capacitors tend to exhibit more symmetric hysteresis behavior. Evidence was obtained indicating that mechanical stress conditions in the central regions of the capacitors can lead to incomplete switching. A combination of vertical and lateral piezoresponse force microscopy (VPFM and LPFM, respectively) has been used to map the out-of-plane and in-plane polarization distribution, respectively, of integrated (111)-oriented PZT-based capacitors, which revealed poled capacitors are in a polydomain state.

  2. Manufacturing at the Nanoscale. Report of the National Nanotechnology Initiative Workshops, 2002-2004

    DTIC Science & Technology

    2007-01-01

    positioning and assembling? • Do nanoscale properties remain once the nanostructures are integrated up to the microscale? • How do we measure...viii Manufacturing at the Nanoscale 1 1. VISION Employing the novel properties and processes that are associated with the nanoscale—in the...Theory, modeling, and simulation software are being developed to investigate nanoscale material properties and synthesis of macromolecular systems with

  3. Understanding Cooperative Chirality at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, Shangjie; Wang, Pengpeng; Govorov, Alexander; Ouyang, Min

    Controlling chirality of organic and inorganic structures plays a key role in many physical, chemical and biochemical processes, and may offer new opportunity to create technology applications based on chiroptical effect. In this talk, we will present a theoretical model and simulation to demonstrate how to engineer nanoscale chirality in inorganic nanostructures via synergistic control of electromagnetic response of both lattice and geometry, leading to rich tunability of chirality at the nanoscale. Our model has also been applied to understand recent materials advancement of related control with excellent agreement, and can elucidate physical origins of circular dichroism features in the experiment.

  4. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide

    DOE PAGES

    Bao, Wei; Borys, Nicholas J.; Ko, Changhyun; ...

    2015-08-13

    The ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices are two-dimensional monolayer transition metal dichalcogenide semiconductors. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. We use the ‘Campanile’ nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes. Moreover, synthetic monolayer MoS2 is found to be composed of two distinct optoelectronic regions: an interior, locally ordered but mesoscopically heterogeneous two-dimensional quantum well and an unexpected ~300-nm wide, energetically disorderedmore » edge region. Further, grain boundaries are imaged with sufficient resolution to quantify local exciton-quenching phenomena, and complimentary nano-Auger microscopy reveals that the optically defective grain boundary and edge regions are sulfur deficient. In conclusion, the nanoscale structure–property relationships established here are critical for the interpretation of edge- and boundary-related phenomena and the development of next-generation two-dimensional optoelectronic devices.« less

  5. Highly repeatable nanoscale phase coexistence in vanadium dioxide films

    NASA Astrophysics Data System (ADS)

    Huffman, T. J.; Lahneman, D. J.; Wang, S. L.; Slusar, T.; Kim, Bong-Jun; Kim, Hyun-Tak; Qazilbash, M. M.

    2018-02-01

    It is generally believed that in first-order phase transitions in materials with imperfections, the formation of phase domains must be affected to some extent by stochastic (probabilistic) processes. The stochasticity would lead to unreliable performance in nanoscale devices that have the potential to exploit the transformation of physical properties in a phase transition. Here we show that stochasticity at nanometer length scales is completely suppressed in the thermally driven metal-insulator transition (MIT) in sputtered vanadium dioxide (V O2 ) films. The nucleation and growth of domain patterns of metallic and insulating phases occur in a strikingly reproducible way. The completely deterministic nature of domain formation and growth in films with imperfections is a fundamental and unexpected finding about the kinetics of this material. Moreover, it opens the door for realizing reliable nanoscale devices based on the MIT in V O2 and similar phase-change materials.

  6. New directions for nanoscale thermoelectric materials research

    NASA Technical Reports Server (NTRS)

    Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, F.; Fleurial, J. P.; Gogna, P.

    2005-01-01

    Many of the recent advances in enhancing the thermoelectric figure of merit are linked to nanoscale phenomena with both bulk samples containing nanoscale constituents and nanoscale materials exhibiting enhanced thermoelectric performance in their own right. Prior theoretical and experimental proof of principle studies on isolated quantum well and quantum wire samples have now evolved into studies on bulk samples containing nanostructured constituents. In this review, nanostructural composites are shown to exhibit nanostructures and properties that show promise for thermoelectric applications. A review of some of the results obtained to date are presented.

  7. Advances in imaging and quantification of electrical properties at the nanoscale using Scanning Microwave Impedance Microscopy (sMIM)

    NASA Astrophysics Data System (ADS)

    Friedman, Stuart; Stanke, Fred; Yang, Yongliang; Amster, Oskar

    Scanning Microwave Impedance Microscopy (sMIM) is a mode for Atomic Force Microscopy (AFM) enabling imaging of unique contrast mechanisms and measurement of local permittivity and conductivity at the 10's of nm length scale. sMIM has been applied to a variety of systems including nanotubes, nanowires, 2D materials, photovoltaics and semiconductor devices. Early results were largely semi-quantitative. This talk will focus on techniques for extracting quantitative physical parameters such as permittivity, conductivity, doping concentrations and thin film properties from sMIM data. Particular attention will be paid to non-linear materials where sMIM has been used to acquire nano-scale capacitance-voltage curves. These curves can be used to identify the dopant type (n vs p) and doping level in doped semiconductors, both bulk samples and devices. Supported in part by DOE-SBIR DE-SC0009856.

  8. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh M.; Turzhitsky, Vladimir; Subramanian, Hariharan; Roy, Hemant K.; Taflove, Allen; Dravid, Vinayak P.; Backman, Vadim

    2011-04-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed. Originally submitted for the special focus issue on physical oncology.

  9. Optical properties of tetragonal and nanoscale BiFeO3

    NASA Astrophysics Data System (ADS)

    Chen, P.; Xu, X. S.; Musfeldt, J. L.; Santulli, A. C.; Koenigsmann, C.; Wong, S. S.; Podraza, N. J.; Melville, A.; Vlahos, E.; Gopalan, V.; Schlom, D. G.; Ramesh, R.

    2010-03-01

    We measured the optical properties of tetragonal thin film and nanoscale rhombohedral BiFeO3 in the range from near infrared to the near ultraviolet. The absorption spectrum in the tetragonal film is overall blue-shifted compared with that of the rhombohedral BiFeO3 film. It shows an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ˜0.4 eV higher than those of the rhombohedral counterpart. In the nanoparticles, the band gap decreases from 2.7 eV to ˜2.3 eV, and the well-known 3.2 and 4.5 eV charge transfer excitations split into multiplets. We discuss these results in terms of structural strain, surface strain, and local symmetry breaking.

  10. Control of Nanoscale Materials under the Toxic Substances Control Act

    EPA Pesticide Factsheets

    Many nanoscale materials are regarded as chemical substances, but they may have different properties than their larger counterparts. EPA is working to ensure that nanoscale materials are manufactured and used in ways that prevent risk to health.

  11. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Klapetek, P.; Koenders, L.

    2011-09-01

    This special issue of Measurement Science and Technology presents selected contributions from the NanoScale 2010 seminar held in Brno, Czech Republic. It was the 5th Seminar on Nanoscale Calibration Standards and Methods and the 9th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized with the Czech Metrology Institute (CMI) and the Nanometrology Group of the Technical Committee-Length of EURAMET. There were two workshops that were integrated into NanoScale 2010: first a workshop presenting the results obtained in NANOTRACE, a European Metrology Research Project (EMRP) on displacement-measuring optical interferometers, and second a workshop about the European metrology landscape in nanometrology related to thin films, scanning probe microscopy and critical dimension. The aim of this workshop was to bring together developers, applicants and metrologists working in this field of nanometrology and to discuss future needs. For more information see www.co-nanomet.eu. The articles in this special issue of Measurement Science and Technology cover some novel scientific results. This issue can serve also as a representative selection of topics that are currently being investigated in the field of European and world-wide nanometrology. Besides traditional topics of dimensional metrology, like development of novel interferometers or laser stabilization techniques, some novel interesting trends in the field of nanometrology are observed. As metrology generally reflects the needs of scientific and industrial research, many research topics addressed refer to current trends in nanotechnology, too, focusing on traceability and improved measurement accuracy in this field. While historically the most studied standards in nanometrology were related to simple geometric structures like step heights or 1D or 2D gratings, now we are facing tasks to measure 3D structures and many unforeseen questions arising from interesting physical

  12. Nanoscale Insight and Control of Structural and Electronic Properties of Organic Semiconductor / Metal Interfaces

    NASA Astrophysics Data System (ADS)

    Maughan, Bret

    Organic semiconductor interfaces are promising materials for use in next-generation electronic and optoelectronic devices. Current models for metal-organic interfacial electronic structure and dynamics are inadequate for strongly hybridized systems. This work aims to address this issue by identifying the factors most important for understanding chemisorbed interfaces with an eye towards tuning the interfacial properties. Here, I present the results of my research on chemisorbed interfaces formed between thin-films of phthalocyanine molecules grown on monocrystalline Cu(110). Using atomically-resolved nanoscale imaging in combination with surface-sensitive photoemission techniques, I show that single-molecule level interactions control the structural and electronic properties of the interface. I then demonstrate that surface modifications aimed at controlling interfacial interactions are an effective way to tailor the physical and electronic structure of the interface. This dissertation details a systematic investigation of the effect of molecular and surface functionalization on interfacial interactions. To understand the role of molecular structure, two types of phthalocyanine (Pc) molecules are studied: non-planar, dipolar molecules (TiOPc), and planar, non-polar molecules (H2Pc and CuPc). Multiple adsorption configurations for TiOPc lead to configuration-dependent self-assembly, Kondo screening, and electronic energy-level alignment. To understand the role of surface structure, the Cu(110) surface is textured and passivated by oxygen chemisorption prior to molecular deposition, which gives control over thin-film growth and interfacial electronic structure in H2Pc and CuPc films. Overall, the work presented here demonstrates a method for understanding interfacial electronic structure of strongly hybridized interfaces, an important first step towards developing more robust models for metal-organic interfaces, and reliable, predictive tuning of interfacial

  13. Systems engineering at the nanoscale

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason J.; Breidenich, Jennifer L.; Wei, Michael C.; Clatterbaughi, Guy V.; Keng, Pei Yuin; Pyun, Jeffrey

    2012-06-01

    Nanomaterials have provided some of the greatest leaps in technology over the past twenty years, but their relatively early stage of maturity presents challenges for their incorporation into engineered systems. Perhaps even more challenging is the fact that the underlying physics at the nanoscale often run counter to our physical intuition. The current state of nanotechnology today includes nanoscale materials and devices developed to function as components of systems, as well as theoretical visions for "nanosystems," which are systems in which all components are based on nanotechnology. Although examples will be given to show that nanomaterials have indeed matured into applications in medical, space, and military systems, no complete nanosystem has yet been realized. This discussion will therefore focus on systems in which nanotechnology plays a central role. Using self-assembled magnetic artificial cilia as an example, we will discuss how systems engineering concepts apply to nanotechnology.

  14. Divergent effect of electric fields on the mechanical property of water-filled carbon nanotubes with an application as a nanoscale trigger

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hongwu; Chen, Zhen

    2018-01-01

    Polar water molecules exhibit extraordinary phenomena under nanoscale confinement. Through the application of an electric field, a water-filled carbon nanotube (CNT) that has been successfully fabricated in the laboratory is expected to have distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is observed that a longitudinal electric field enhances, but the transverse electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The divergent effect of the electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transverse electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply nonuniform pressure on nanochannels. Based on pre-strained water-filled CNTs, we designed a nanoscale trigger with an evident and rapid height change initiated by switching the direction of the electric field. The reported finding provides a foundation for an electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices.

  15. Divergent effect of electric fields on the mechanical property of water-filled carbon nanotubes with an application as a nanoscale trigger.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hongwu; Chen, Zhen

    2017-12-11

    Polar water molecules exhibit extraordinary phenomena under nanoscale confinement. Through the application of an electric field, a water-filled carbon nanotube (CNT) that has been successfully fabricated in the laboratory is expected to have distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is observed that a longitudinal electric field enhances, but the transverse electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The divergent effect of the electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transverse electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply nonuniform pressure on nanochannels. Based on pre-strained water-filled CNTs, we designed a nanoscale trigger with an evident and rapid height change initiated by switching the direction of the electric field. The reported finding provides a foundation for an electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices.

  16. Double-edged effect of electric field on the mechanical property of water-filled carbon nanotubes with an application to nanoscale trigger.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhou, Lili; Zhao, Junfei; Zhang, Hong Wu; Chen, Zhen

    2017-11-08

    Polar water molecules would exhibit extraordinary phenomena under nanoscale confinement. By means of electric field, the water-filled carbon nanotube (CNT) that has been successfully fabricated in laboratory is expected to make distinct responses to the external electricity. Here, we examine the effect of electric field direction on the mechanical property of water-filled CNTs. It is found that the longitudinal electric field enhances but the transversal electric field reduces the elastic modulus and critical buckling stress of water-filled CNTs. The double-edged effect of electric field is attributed to the competition between the axial and circumferential pressures induced by polar water molecules. Furthermore, it is notable that the transversal electric field could result in an internal pressure with elliptical distribution, which is an effective and convenient approach to apply the nonuniform pressure on nanochannels. Based on a pre-strained water-filled CNTs, we design a nanoscale trigger with the evident and rapid height change started through switching the direction of electric field. The reported finding lays a foundation for the electricity-controlled property of nanochannels filled with polar molecules and provides an insight into the design of nanoscale functional devices. © 2017 IOP Publishing Ltd.

  17. Quantum Materials at the Nanoscale - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Stephen Lance

    The central aim of the Quantum Materials at the Nanoscale (QMN) cluster was to understand and control collective behavior involving the interplay of spins, orbitals, and charges, which governs many scientifically interesting and technologically important phenomena in numerous complex materials. Because these phenomena involve various competing interactions, and influence properties on many different length and energy scales in complex materials, tackling this important area of study motivated a collaborative effort that combined the diverse capabilities of QMN cluster experimentalists, the essential theoretical analysis provided by QMN cluster theorists, and the outstanding facilities and staff of the FSMRL. During the fundingmore » period 2007-2014, the DOE cluster grant for the Quantum Materials at the Nanoscale (QMN) cluster supported, at various times, 15 different faculty members (14 in Physics and 1 in Materials Science and Engineering), 7 postdoctoral research associates, and 57 physics and materials science PhD students. 41 of these PhD students have since graduated and have gone on to a variety of advanced technical positions at universities, industries, and national labs: 25 obtained postdoctoral positions at universities (14), industrial labs (2 at IBM), DOE national facilities (3 at Argonne National Laboratory, 1 at Brookhaven National Lab, 1 at Lawrence Berkeley National Lab, and 1 at Sandia National Lab), and other federal facilities (2 at NIST); 13 took various industrial positions, including positions at Intel (5), Quantum Design (1), Lasque Industries (1), Amazon (1), Bloomberg (1), and J.P. Morgan (1). Thus, the QMN grant provided the essential support for training a large number of technically advanced personnel who have now entered key national facilities, industries, and institutions. Additionally, during the period 2007-2015, the QMN cluster produced 159 publications (see pages 14-23), including 23 papers published in Physical Review Letters

  18. Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale

    NASA Astrophysics Data System (ADS)

    Legleiter, Justin; Park, Matthew; Cusick, Brian; Kowalewski, Tomasz

    2006-03-01

    One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip-sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip-sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by “comb” filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach.

  19. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    systems. In addition, the role of thermodynamic fluctuations on superconducting properties has been extensively studied in the context of nanoparticles and nanowires both experimentally and theoretically. In the past decade, a lot of work has been initiated in the area of interface superconductivity where different techniques have been demonstrated to tune Tc. Although the progress in this field has deepened our understanding of nanoscale superconductors, there are several open and key questions which need to be addressed. Some of these are: (1) can superconductivity be enhanced and Tc increased in nanostructures with respect to the bulk limit and if so, how can it be controlled? (2) What are the theoretical and experimental limits for the enhancement and control of superconductivity? (3) Can the phenomena identified in conventional nanostructures shed light on phenomena in high Tc superconductors and vice versa? (4) How will the new fundamental physics of superconductivity at the nanoscale promote advances in nanotechnology applications and vice versa? The papers in this focus section reflect the advances made in this field, in particular in nanowires and nanofilms, but also attempt to answer some of the key open questions outlined above. The theoretical papers explore unconventional quantum phenomena such as the role of confinement in the dynamics of single Cooper pairs in isolated grains [1] and Fano resonances in superconducting gaps in multi-condensate superconductors near a 2.5 Lifshitz transition [2]. Here a new emerging class of quantum phenomena of fundamental physics appear at the Bose-BCS crossover in multi-condensate superconductors [2]. Nanosize effects can now be manipulated by controlling defects in layered oxides [3]. A new approach is provided by controlling the self-organization of oxygen interstitials in layered copper oxides that show an intrinsic nanoscale phase separation [4]. In this case a non-trivial distribution of superconducting nanograins

  20. Emerging ferroelectric transistors with nanoscale channel materials: the possibilities, the limitations

    NASA Astrophysics Data System (ADS)

    Hong, Xia

    2016-03-01

    Combining the nonvolatile, locally switchable polarization field of a ferroelectric thin film with a nanoscale electronic material in a field effect transistor structure offers the opportunity to examine and control a rich variety of mesoscopic phenomena and interface coupling. It is also possible to introduce new phases and functionalities into these hybrid systems through rational design. This paper reviews two rapidly progressing branches in the field of ferroelectric transistors, which employ two distinct classes of nanoscale electronic materials as the conducting channel, the two-dimensional (2D) electron gas graphene and the strongly correlated transition metal oxide thin films. The topics covered include the basic device physics, novel phenomena emerging in the hybrid systems, critical mechanisms that control the magnitude and stability of the field effect modulation and the mobility of the channel material, potential device applications, and the performance limitations of these devices due to the complex interface interactions and challenges in achieving controlled materials properties. Possible future directions for this field are also outlined, including local ferroelectric gate control via nanoscale domain patterning and incorporating other emergent materials in this device concept, such as the simple binary ferroelectrics, layered 2D transition metal dichalcogenides, and the 4d and 5d heavy metal compounds with strong spin-orbit coupling.

  1. Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes.

    PubMed

    Choi, Bong Gill; Hong, Jinkee; Park, Young Chul; Jung, Doo Hwan; Hong, Won Hi; Hammond, Paula T; Park, Hoseok

    2011-06-28

    The chemistry and structure of ion channels within the polymer electrolytes are of prime importance for studying the transport properties of electrolytes as well as for developing high-performance electrochemical devices. Despite intensive efforts on the synthesis of polymer electrolytes, few studies have demonstrated enhanced target ion conduction while suppressing unfavorable ion or mass transport because the undesirable transport occurs through an identical pathway. Herein, we report an innovative, chemical strategy for the synthesis of polymer electrolytes whose ion-conducting channels are physically and chemically modulated by the ionic (not electronic) conductive, functionalized graphenes and for a fundamental understanding of ion and mass transport occurring in nanoscale ionic clusters. The functionalized graphenes controlled the state of water by means of nanoscale manipulation of the physical geometry and chemical functionality of ionic channels. Furthermore, the confinement of bound water within the reorganized nanochannels of composite membranes was confirmed by the enhanced proton conductivity at high temperature and the low activation energy for ionic conduction through a Grotthus-type mechanism. The selectively facilitated transport behavior of composite membranes such as high proton conductivity and low methanol crossover was attributed to the confined bound water, resulting in high-performance fuel cells.

  2. The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esqueda, I. S., E-mail: isanchez@isi.edu; Fritze, M.; Cress, C. D.

    2015-02-28

    Using the Landauer approach for carrier transport, we analyze the impact of defects induced by ion irradiation on the transport properties of nanoscale conductors that operate in the quasi-ballistic regime. Degradation of conductance results from a reduction of carrier mean free path due to the introduction of defects in the conducting channel. We incorporate scattering mechanisms from radiation-induced defects into calculations of the transmission coefficient and present a technique for extracting modeling parameters from near-equilibrium transport measurements. These parameters are used to describe degradation in the transport properties of nanoscale devices using a formalism that is valid under quasi-ballistic operation.more » The analysis includes the effects of bandstructure and dimensionality on the impact of defect scattering and discusses transport properties of nanoscale devices from the diffusive to the ballistic limit. We compare calculations with recently published measurements of irradiated nanoscale devices such as single-walled carbon nanotubes, graphene, and deep-submicron Si metal-oxide-semiconductor field-effect transistors.« less

  3. Phototoxicity and Dosimetry of Nano-scale Titanium Dioxide in Aquatic Organisms

    EPA Science Inventory

    We have been testing nanoscale TiO2 (primarily Evonik P25) in acute exposures to identify and quantify its phototoxicity under solar simulated radiation (SSR), and to develop dose metrics reflective of both nano-scale properties and the photon component of its potency. Several e...

  4. Nanoscale thermal transport. II. 2003-2012

    NASA Astrophysics Data System (ADS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal

  5. Coherence properties of blackbody radiation and application to energy harvesting and imaging with nanoscale rectennas

    NASA Astrophysics Data System (ADS)

    Lerner, Peter B.; Cutler, Paul H.; Miskovsky, Nicholas M.

    2015-01-01

    Modern technology allows the fabrication of antennas with a characteristic size comparable to the electromagnetic wavelength in the optical region. This has led to the development of new technologies using nanoscale rectifying antennas (rectennas) for solar energy conversion and sensing of terahertz, infrared, and visible radiation. For example, a rectenna array can collect incident radiation from an emitting source and the resulting conversion efficiency and operating characteristics of the device will depend on the spatial and temporal coherence properties of the absorbed radiation. For solar radiation, the intercepted radiation by a micro- or nanoscale array of devices has a relatively narrow spatial and angular distribution. Using the Van Cittert-Zernike theorem, we show that the coherence length (or radius) of solar radiation on an antenna array is, or can be, tens of times larger than the characteristic wavelength of the solar spectrum, i.e., the thermal wavelength, λT=2πℏc/(kBT), which for T=5000 K is about 3 μm. Such an effect is advantageous, making possible the rectification of solar radiation with nanoscale rectenna arrays, whose size is commensurate with the coherence length. Furthermore, we examine the blackbody radiation emitted from an array of antennas at temperature T, which can be quasicoherent and lead to a modified self-image, analogous to the Talbot-Lau self-imaging process but with thermal rather than monochromatic radiation. The self-emitted thermal radiation may be important as a nondestructive means for quality control of the array.

  6. Box 6: Nanoscale Defects

    NASA Astrophysics Data System (ADS)

    Alves, Eduardo; Breese, Mark

    Defects affect virtually all properties of crystalline materials, and their role is magnified in nanoscale structures. In this box we describe the different type of defects with particular emphasis on point and linear defects. Above zero Kelvin all real materials have a defect population within their structure, which affects either their crystalline, electronic or optical properties. It is common to attribute a negative connotation to the presence of defects. However, a perfect silicon crystal or any other defect-free semiconductor would have a limited functionality and might even be useless.

  7. Localized Symmetry Breaking for Tuning Thermal Expansion in ScF 3 Nanoscale Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Lei; Qin, Feiyu; Sanson, Andrea

    The local symmetry, beyond the averaged crystallographic structure, tends to bring unu-sual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve the controllable thermal expansion in ScF3 nano-scale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engi-neered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0×10-8/K up to 675K. This mechanism is investigated by the joint analysis of atomic pair dis-tribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortionmore » presumably plays a critical role in stiffening ScF3 nano-scale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in the rhombohedral ScF3. The present work opens an untraditional chemical modification to achieve controllable thermal expansion by breaking local symmetries of materials.« less

  8. First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique

    NASA Astrophysics Data System (ADS)

    Deepa, Manchala; Sudhakar, Palagiri; Nagamadhuri, Kandula Venkata; Balakrishna Reddy, Kota; Giridhara Krishna, Thimmavajjula; Prasad, Tollamadugu Naga Venkata Krishna Vara

    2015-06-01

    Nanoscale materials, whose size typically falls below 100 nm, exhibit novel chemical, physical and biological properties which are different from their bulk counterparts. In the present investigation, we demonstrated that nanoscale calcium oxide particles (n-CaO) could transport through phloem tissue of groundnut unlike the corresponding bulk materials. n-CaO particles are prepared using sol-gel method. The size of the as prepared n-CaO measured (69.9 nm) using transmission electron microscopic technique (TEM). Results of the hydroponics experiment using solution culture technique revealed that foliar application of n-CaO at different concentrations (10, 50, 100, 500, 1,000 ppm) on groundnut plants confirmed the entry of calcium into leaves and stems through phloem compared to bulk source of calcium sprayed (CaO and CaNO3). After spraying of n-CaO, calcium content in roots, shoots and leaves significantly increased. Based on visual scoring of calcium deficiency correction and calcium content in plant parts, we may establish the fact that nanoscale calcium oxide particles (size 69.9 nm) could move through phloem tissue in groundnut. This is the first report on phloem transport of nanoscale calcium oxide particles in plants and this result points to the use of nanoscale calcium oxide particles as calcium source to the plants through foliar application, agricultural crops in particular, as bulk calcium application through foliar nutrition is restricted due to its non-mobility in phloem.

  9. Nanoscale integration is the next frontier for nanotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picraux, Samuel T

    2009-01-01

    Nanoscale integration of materials and structures is the next critical step to exploit the promise of nanomaterials. Many novel and fascinating properties have been revealed for nanostructured materials. But if nanotechnology is to live up to its promise we must incorporate these nanoscale building blocks into functional systems that connect to the micro- and macroscale world. To do this we will inevitably need to understand and exploit the resulting combined unique properties of these integrated nanosystems. Much science waits to be discovered in the process. Nanoscale integration extends from the synthesis and fabrication of individual nanoscale building blocks, to themore » assembly of these building blocks into composite structures, and finally to the formation of complex functional systems. As illustrated in Figure 1, the building blocks may be homogeneous or heterogeneous, the composite materials may be nanocomposite or patterned structures, and the functional systems will involve additional combinations of materials. Nanoscale integration involves assembling diverse nanoscale materials across length scales to design and achieve new properties and functionality. At each stage size-dependent properties, the influence of surfaces in close proximity, and a multitude of interfaces all come into play. Whether the final system involves coherent electrons in a quantum computing approach, the combined flow of phonons and electrons for a high efficiency thermoelectric micro-generator, or a molecular recognition structure for bio-sensing, the combined effects of size, surface, and interface will be critical. In essence, one wants to combine the novel functions available through nanoscale science to achieve unique multi-functionalities not available in bulk materials. Perhaps the best-known example of integration is that of combining electronic components together into very large scale integrated circuits (VLSI). The integrated circuit has revolutionized electronics

  10. Effects of Solid Solution Treatments on the Microstructure and Mechanical Properties of a Nanoscale Precipitate-Strengthened Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Guo, H.; Xu, S. S.; Mao, M. J.; Chen, L.; Gokhman, O.; Zhang, Z. W.

    2018-05-01

    Solid solution treatment (SST) and age hardening are the two main treatments used to produce nanoscale precipitation-strengthened steels. In this work, solution treatment and aging are employed to develop a nanoscale precipitation-strengthened steel displaying high degrees of strength, ductility, and toughness. The effects of SST on the microstructure and mechanical properties of the produced steel are investigated. The results show that the solution temperature strongly influences the matrix microstructure. Partial austenitization between A_{{{c}1}} and A_{{{c}3}} favors the formation of granular ferrite, while complete austenitization above A_{{{c}3}} leads to the formation of polygonal ferrite. Refined granular ferrite with a low dislocation density can effectively improve the plasticity and low-temperature toughness of steel. Precipitation strengthening is mainly related to the nature of the nano-precipitates, specifically their size and number density, independently of the matrix microstructure.

  11. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.

    PubMed

    Crowe, Jacob D; Zarger, Rachael A; Hodge, David B

    2017-10-04

    Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.

  12. All-Optical Nanoscale Thermometry using Silicon-Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Nguyen, Christian; Evans, Ruffin; Sipahigil, Alp; Bhaskar, Mihir; Sukachev, Denis; Lukin, Mikhail

    2017-04-01

    Accurate thermometry at the nanoscale is a difficult challenge, but building such a thermometer would be a powerful tool for discovering and understanding new processes in biology, chemistry and physics. Applications include cell-selective treatment of disease, engineering of more efficient integrated circuits, or even the development of new chemical and biological reactions. In this work, we study how the bulk properties of the Silicon Vacancy center (SiV) in diamond depend on temperature, and use them to measure temperature with 100mK accuracy. Using SiVs in 200 nm nanodiamonds, we measure the temperature with 100 nm spatial resolution over a 10 μm area.

  13. Fracture behavior of nano-scale rubber-modified epoxies

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Lauren N.

    The primary focus of the first portion of this study is to compare physical and mechanical properties of a model epoxy that has been toughened with one of three different types of rubber-based modifier: a traditional telechelic oligomer (phase separates into micro-size particles), a core-shell latex particle (preformed nano-scale particles) and a triblock copolymer (self-assembles into nano-scale particles). The effect of modifier content on the physical properties of the matrix was determined using several thermal analysis methods, which provided insight into any inherent alterations of the epoxy matrix. Although the primary objective is to study the role of particle size on the fracture toughness, stiffness and strength were also determined since these properties are often reduced in rubber-toughened epoxies. It was found that since the CSR- and SBM-modified epoxies are composed of less rubber, thermal and mechanical properties of the epoxy were better maintained. In order to better understand the fracture behavior and mechanisms of the three types of rubber particles utilized in this study, extensive microscopy analysis was conducted. Scanning transmission electron microscopy (STEM) was used to quantify the volume fraction of particles, transmission optical microscopy (TOM) was used to determine plastic damage zone size, and scanning electron microscopy (SEM) was used to assess void growth in the plastic zone after fracture. By quantifying these characteristics, it was then possible to model the plastic damage zone size as well as the fracture toughness to elucidate the behavior of the rubber-modified epoxies. It was found that localized shear yielding and matrix void growth are the active toughening mechanisms in all rubber-modified epoxies in this study, however, matrix void growth was more prevalent. The second portion of this study investigated the use of three acrylate-based triblocks and four acrylate-based diblocks to modify a model epoxy system. By

  14. Fabrication and nanoscale characterization of magnetic multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Elawayeb, Mohamed

    Magnetic multilayers nanowires are scientifically fascinating and have potential industrial applications in many areas of advanced nanotechnology. These applications arise due to the nanoscale dimensions of nanostructures that lead to unique physical properties. Magnetic multilayer nanowires have been successfully produced by electrodeposition into templates. Anodic Aluminium Oxide (AAO) membranes were used as templates in this process; the templates were fabricated by anodization method in acidic solutions at a fixed voltage. The fabrication method of a range of magnetic multilayer nanowires is described in this study and their structure and dimensions were analyzed using scanning electron microscope (SEM), Transmission electron microscope (TEM) and scanning transmission electron microscopy (STEM). This study is focused on the first growth of NiFe/Pt and NiFe/Fe magnetic multilayer nanowires, which were successfully fabricated by pulse electrodeposition into the channels of porous anodic aluminium oxide (AAO) templates, and characterized at the nanoscale. Individual nanowires have uniform structure and regular periodicity. The magnetic and nonmagnetic layers are polycrystalline, with randomly oriented fcc lattice structure crystallites. Chemical compositions of the individual nanowires were analyzed using TEM equipped with energy-dispersive x-ray analysis (EDX) and electron energy loss spectrometry (EELS). The electrical and magnetoresistance properties of individual magnetic multilayer nanowires have been measured inside a SEM using two sharp tip electrodes attached to in situ nanomanipulators and a new electromagnet technique. The giant magnetoresistance (GMR) effect of individual magnetic multilayer nanowires was measured in the current - perpendicular to the plane (CPP) geometry using a new in situ method at variable magnetic field strength and different orientations..

  15. Mixed electrochemical–ferroelectric states in nanoscale ferroelectrics

    DOE PAGES

    Yang, Sang Mo; Morozovska, Anna N.; Kumar, Rajeev; ...

    2017-05-01

    Ferroelectricity on the nanoscale has been the subject of much fascination in condensed-matter physics for over half a century. In recent years, multiple reports claiming ferroelectricity in ultrathin ferroelectric films based on the formation of remnant polarization states, local electromechanical hysteresis loops, and pressure-induced switching were made. But, similar phenomena were reported for traditionally non-ferroelectric materials, creating a significant level of uncertainty in the field. We show that in nanoscale systems the ferroelectric state is fundamentally inseparable from the electrochemical state of the surface, leading to the emergence of a mixed electrochemical–ferroelectric state. We explore the nature, thermodynamics, and thicknessmore » evolution of such states, and demonstrate the experimental pathway to establish its presence. Our analysis reconciles multiple prior studies, provides guidelines for studies of ferroelectric materials on the nanoscale, and establishes the design paradigm for new generations of ferroelectric-based devices.« less

  16. Computational Study on Atomic Structures, Electronic Properties, and Chemical Reactions at Surfaces and Interfaces and in Biomaterials

    NASA Astrophysics Data System (ADS)

    Takano, Yu; Kobayashi, Nobuhiko; Morikawa, Yoshitada

    2018-06-01

    Through computer simulations using atomistic models, it is becoming possible to calculate the atomic structures of localized defects or dopants in semiconductors, chemically active sites in heterogeneous catalysts, nanoscale structures, and active sites in biological systems precisely. Furthermore, it is also possible to clarify physical and chemical properties possessed by these nanoscale structures such as electronic states, electronic and atomic transport properties, optical properties, and chemical reactivity. It is sometimes quite difficult to clarify these nanoscale structure-function relations experimentally and, therefore, accurate computational studies are indispensable in materials science. In this paper, we review recent studies on the relation between local structures and functions for inorganic, organic, and biological systems by using atomistic computer simulations.

  17. Nanoscale friction properties of graphene and graphene oxide

    DOE PAGES

    Berman, Diana; Erdemir, Ali; Zinovev, Alexander V.; ...

    2015-04-03

    Achieving superlow friction and wear at the micro/nano-scales through the uses of solid and liquid lubricants may allow superior performance and long-lasting operations in a range of micromechanical system including micro-electro mechanical systems (MEMS). Previous studies have indicated that conventional solid lubricants such as highly ordered pyrolitic graphite (HOPG) can only afford low friction in humid environments at micro/macro scales; but, HOPG is not suitable for practical micro-scale applications. Here, we explored the nano-scale frictional properties of multi-layered graphene films as a potential solid lubricant for such applications. Atomic force microscopy (AFM) measurements have revealed that for high-purity multilayered graphenemore » (7–9 layers), the friction force is significantly lower than what can be achieved by the use of HOPG, regardless of the counterpart AFM tip material. We have demonstrated that the quality and purity of multilayered graphene plays an important role in reducing lateral forces, while oxidation of graphene results in dramatically increased friction values. Furthermore, for the first time, we demonstrated the possibility of achieving ultralow friction for CVD grown single layer graphene on silicon dioxide. This confirms that the deposition process insures a stronger adhesion to substrate and hence enables superior tribological performance than the previously reported mechanical exfoliation processes.« less

  18. Common Principles of Molecular Electronics and Nanoscale Electrochemistry.

    PubMed

    Bueno, Paulo Roberto

    2018-05-24

    The merging of nanoscale electronics and electrochemistry can potentially modernize the way electronic devices are currently engineered or constructed. It is well known that the greatest challenges will involve not only miniaturizing and improving the performance of mobile devices, but also manufacturing reliable electrical vehicles, and engineering more efficient solar panels and energy storage systems. These are just a few examples of how technological innovation is dependent on both electrochemical and electronic elements. This paper offers a conceptual discussion of this central topic, with particular focus on the impact that uniting physical and chemical concepts at a nanoscale could have on the future development of electroanalytical devices. The specific example to which this article refers pertains to molecular diagnostics, i.e., devices that employ physical and electrochemical concepts to diagnose diseases.

  19. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla

    2018-05-23

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  20. Nanoscale electrical property studies of individual GeSi quantum rings by conductive scanning probe microscopy.

    PubMed

    Lv, Yi; Cui, Jian; Jiang, Zuimin M; Yang, Xinju

    2012-11-29

    The nanoscale electrical properties of individual self-assembled GeSi quantum rings (QRs) were studied by scanning probe microscopy-based techniques. The surface potential distributions of individual GeSi QRs are obtained by scanning Kelvin microscopy (SKM). Ring-shaped work function distributions are observed, presenting that the QRs' rim has a larger work function than the QRs' central hole. By combining the SKM results with those obtained by conductive atomic force microscopy and scanning capacitance microscopy, the correlations between the surface potential, conductance, and carrier density distributions are revealed, and a possible interpretation for the QRs' conductance distributions is suggested.

  1. Design of surface modifications for nanoscale sensor applications.

    PubMed

    Reimhult, Erik; Höök, Fredrik

    2015-01-14

    Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges.

  2. Nanoscale effects on the thermal and mechanical properties of AlGaAs/GaAs quantum well laser diodes: influence on the catastrophic optical damage

    NASA Astrophysics Data System (ADS)

    Souto, Jorge; Pura, José Luis; Jiménez, Juan

    2017-06-01

    In this work we study the catastrophic optical damage (COD) of graded-index separate confinement heterostructure quantum well (QW) laser diodes based on AlGaAs/GaAs. The emphasis is placed on the impact that the nanoscale physical properties have on the operation and degradation of the active layers of these devices. When these laser diodes run in continuous-wave mode with high internal optical power densities, the QW and guide layers can experiment very intense local heating phenomena that lead to device failure. A thermo-mechanical model has been set up to study the mechanism of degradation. This model has been solved by applying finite element methods. A variety of physical factors related to the materials properties, which play a paramount role in the laser degradation process, have been considered. Among these, the reduced thicknesses of the QW and the guides lead to thermal conductivities smaller than the bulk figures, which are further reduced as extended defects develop in these layers. This results in a progressively deteriorating thermal management in the device. To the best of our knowledge, this model for laser diodes is the first one to have taken into account low scale mechanical effects that result in enhanced strengths in the structural layers. Moreover, the consequences of these conflicting size-dependent properties on the thermo-mechanical behaviour on the route to COD are examined. Subsequently, this approach opens the possibility of taking advantage of these properties in order to design robust diode lasers (or other types of power devices) in a controlled manner.

  3. Physical properties of forest soils

    Treesearch

    Charles H. Perry; Michael C. Amacher

    2007-01-01

    Why Are Physical Properties of the Soil Important? The soil quality indicator, when combined with other data collected by the FIA program, can indicate the current rates of soil erosion, the extent and intensity of soil compaction, and some basic physical properties of the forest floor and the top 20 cm of soil. In this report, two particular physical properties of the...

  4. The pH-dependent elastic properties of nanoscale DNA films and the resultant bending signals for microcantilever biosensors.

    PubMed

    Zhou, Mei-Hong; Meng, Wei-Lie; Zhang, Cheng-Yin; Li, Xiao-Bin; Wu, Jun-Zheng; Zhang, Neng-Hui

    2018-04-25

    The diverse mechanical properties of nanoscale DNA films on solid substrates have a close correlation with complex detection signals of micro-/nano-devices. This paper is devoted to formulating several multiscale models to study the effect of pH-dependent ionic inhomogeneity on the graded elastic properties of nanoscale DNA films and the resultant bending deflections of microcantilever biosensors. First, a modified inverse Debye length is introduced to improve the classical Poisson-Boltzmann equation for the electrical potential of DNA films to consider the inhomogeneous effect of hydrogen ions. Second, the graded characteristics of the particle distribution are taken into consideration for an improvement in Parsegian's mesoscopic potential for both attraction-dominated and repulsion-dominated films. Third, by the improved interchain interaction potential and the thought experiment about the compression of a macroscopic continuum DNA bar, we investigate the diversity of the elastic properties of single-stranded DNA (ssDNA) films due to pH variations. The relevant theoretical predictions quantitatively or qualitatively agree well with the relevant DNA experiments on the electrical potential, film thickness, condensation force, elastic modulus, and microcantilever deflections. The competition between attraction and repulsion among the fixed charges and the free ions endows the DNA film with mechanical properties such as a remarkable size effect and a non-monotonic behavior, and a negative elastic modulus is first revealed in the attraction-dominated ssDNA film. There exists a transition between the pH-sensitive parameter interval and the pH-insensitive one for the bending signals of microcantilevers, which is predominated by the initial stress effect in the DNA film.

  5. Nanoscale hotspots due to nonequilibrium thermal transport.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Sanjiv; Goodson, Kenneth E.

    2004-01-01

    Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of themore » additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal

  6. Tip-Enhanced Raman Scattering Microscopy: A Step toward Nanoscale Control of Intrinsic Molecular Properties

    NASA Astrophysics Data System (ADS)

    Yano, Taka-aki; Hara, Masahiko

    2018-06-01

    Tip-enhanced Raman scattering microscopy, a family of scanning probe microscopy techniques, has been recognized as a powerful surface analytical technique with both single-molecule sensitivity and angstrom-scale spatial resolution. This review covers the current status of tip-enhanced Raman scattering microscopy in surface and material nanosciences, including a brief history, the basic principles, and applications for the nanoscale characterization of a variety of nanomaterials. The focus is on the recent trend of combining tip-enhanced Raman scattering microscopy with various external stimuli such as pressure, voltage, light, and temperature, which enables the local control of the molecular properties and functions and also enables chemical reactions to be induced on a nanometer scale.

  7. The mechanical behavior of nanoscale metallic multilayers: A survey

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Xie, J. Y.; Wang, F.; Huang, P.; Xu, K. W.; Lu, T. J.

    2015-06-01

    The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of microlaminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size-dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plastic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engineers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qualities the interfaces in NMMs display at atomic scale.

  8. Photothermoelastic contrast in nanoscale infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Morozovska, Anna N.; Eliseev, Eugene A.; Borodinov, Nikolay; Ovchinnikova, Olga S.; Morozovsky, Nicholas V.; Kalinin, Sergei V.

    2018-01-01

    The contrast formation mechanism in nanoscale Infrared (IR) Spectroscopy is analyzed. The temperature distribution and elastic displacement across the illuminated T-shape boundary between two materials with different IR-radiation absorption coefficients and thermo-physical and elastic properties located on a rigid substrate are calculated self-consistently for different frequencies f ˜ (1 kHz-1 MHz) of IR-radiation modulation (fully coupled problem). Analytical expressions for the temperature and displacement profiles across the "thermo-elastic step" are derived in the decoupling approximation for f = 0 ("static limit"), and conditions for approximation validity at low frequencies of IR-modulation are established. The step height was found to be thickness-independent for thick layers and proportional to the square of the thickness for very thin films. The theoretical results will be of potential interest for applications in the scanning thermo-ionic and thermal infrared microscopies for relatively long sample thermalization times and possibly for photothermal induced resonance microscopy using optomechanical probes.

  9. Exploring Carbon Nanotubes for Nanoscale Devices

    NASA Technical Reports Server (NTRS)

    Han, Jie; Dai; Anantram; Jaffe; Saini, Subhash (Technical Monitor)

    1998-01-01

    Carbon nanotubes (CNTs) are shown to promise great opportunities in nanoelectronic devices and nanoelectromechanical systems (NEMS) because of their inherent nanoscale sizes, intrinsic electric conductivities, and seamless hexagonal network architectures. I present our collaborative work with Stanford on exploring CNTs for nanodevices in this talk. The electrical property measurements suggest that metallic tubes are quantum wires. Furthermore, two and three terminal CNT junctions have been observed experimentally. We have proposed and studied CNT-based molecular switches and logic devices for future digital electronics. We also have studied CNTs based NEMS inclusing gears, cantilevers, and scanning probe microscopy tips. We investigate both chemistry and physics based aspects of the CNT NEMS. Our results suggest that CNT have ideal stiffness, vibrational frequencies, Q-factors, geometry-dependent electric conductivities, and the highest chemical and mechanical stabilities for the NEMS. The use of CNT SPM tips for nanolithography is presented for demonstration of the advantages of the CNT NEMS.

  10. Nanoscale “fluorescent stone”: Luminescent Calcium Fluoride Nanoparticles as Theranostic Platforms

    PubMed Central

    Li, Zhanjun; Zhang, Yuanwei; Huang, Ling; Yang, Yuchen; Zhao, Yang; El-Banna, Ghida; Han, Gang

    2016-01-01

    Calcium Fluoride (CaF2) based luminescent nanoparticles exhibit unique, outstanding luminescent properties, and represent promising candidates as nanoplatforms for theranostic applications. There is an urgent need to facilitate their further development and applications in diagnostics and therapeutics as a novel class of nanotools. Here, in this critical review, we outlined the recent significant progresses made in CaF2-related nanoparticles: Firstly, their physical chemical properties, synthesis chemistry, and nanostructure fabrication are summarized. Secondly, their applications in deep tissue bio-detection, drug delivery, imaging, cell labeling, and therapy are reviewed. The exploration of CaF2-based luminescent nanoparticles as multifunctional nanoscale carriers for imaging-guided therapy is also presented. Finally, we discuss the challenges and opportunities in the development of such CaF2-based platform for future development in regard to its theranostic applications. PMID:27877242

  11. Design of Surface Modifications for Nanoscale Sensor Applications

    PubMed Central

    Reimhult, Erik; Höök, Fredrik

    2015-01-01

    Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges. PMID:25594599

  12. Internal and external atomic steps in graphite exhibit dramatically different physical and chemical properties.

    PubMed

    Lee, Hyunsoo; Lee, Han-Bo-Ram; Kwon, Sangku; Salmeron, Miquel; Park, Jeong Young

    2015-04-28

    We report on the physical and chemical properties of atomic steps on the surface of highly oriented pyrolytic graphite (HOPG) investigated using atomic force microscopy. Two types of step edges are identified: internal (formed during crystal growth) and external (formed by mechanical cleavage of bulk HOPG). The external steps exhibit higher friction than the internal steps due to the broken bonds of the exposed edge C atoms, while carbon atoms in the internal steps are not exposed. The reactivity of the atomic steps is manifested in a variety of ways, including the preferential attachment of Pt nanoparticles deposited on HOPG when using atomic layer deposition and KOH clusters formed during drop casting from aqueous solutions. These phenomena imply that only external atomic steps can be used for selective electrodeposition for nanoscale electronic devices.

  13. Biosafe Nanoscale Pharmaceutical Adjuvant Materials

    PubMed Central

    Jin, Shubin; Li, Shengliang; Wang, Chongxi; Liu, Juan; Yang, Xiaolong; Wang, Paul C.; Zhang, Xin; Liang, Xing-Jie

    2014-01-01

    Thanks to developments in the field of nanotechnology over the past decades, more and more biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical research. Nanomaterials possess unique properties which could be employed to develop drug carriers with longer circulation time, higher loading capacity, better stability in physiological conditions, controlled drug release, and targeted drug delivery. In this review article, we will review recent progress in the application of representative organic, inorganic and hybrid biosafe nanoscale materials in pharmaceutical research, especially focusing on nanomaterial-based novel drug delivery systems. In addition, we briefly discuss the advantages and notable functions that make these nanomaterials suitable for the design of new medicines; the biosafety of each material discussed in this article is also highlighted to provide a comprehensive understanding of their adjuvant attributes. PMID:25429253

  14. Nanoscale structural and functional mapping of nacre by scanning probe microscopy techniques

    NASA Astrophysics Data System (ADS)

    Zhou, Xilong; Miao, Hongchen; Li, Faxin

    2013-11-01

    Nacre has received great attention due to its nanoscale hierarchical structure and extraordinary mechanical properties. Meanwhile, the nanoscale piezoelectric properties of nacre have also been investigated but the structure-function relationship has never been addressed. In this work, firstly we realized quantitative nanomechanical mapping of nacre of a green abalone using atomic force acoustic microscopy (AFAM). The modulus of the mineral tablets is determined to be ~80 GPa and that of the organic biopolymer no more than 23 GPa, and the organic-inorganic interface width is determined to be about 34 +/- 9 nm. Then, we conducted both AFAM and piezoresponse force microscopy (PFM) mapping in the same scanning area to explore the correlations between the nanomechanical and piezoelectric properties. The PFM testing shows that the organic biopolymer exhibits a significantly stronger piezoresponse than the mineral tablets, and they permeate each other, which is very difficult to reproduce in artificial materials. Finally, the phase hysteresis loops and amplitude butterfly loops were also observed using switching spectroscopy PFM, implying that nacre may also be a bio-ferroelectric material. The obtained nanoscale structural and functional properties of nacre could be very helpful in understanding its deformation mechanism and designing biomimetic materials of extraordinary properties.

  15. A Theoretical Review on Interfacial Thermal Transport at the Nanoscale.

    PubMed

    Zhang, Ping; Yuan, Peng; Jiang, Xiong; Zhai, Siping; Zeng, Jianhua; Xian, Yaoqi; Qin, Hongbo; Yang, Daoguo

    2018-01-01

    With the development of energy science and electronic technology, interfacial thermal transport has become a key issue for nanoelectronics, nanocomposites, energy transmission, and conservation, etc. The application of thermal interfacial materials and other physical methods can reliably improve the contact between joined surfaces and enhance interfacial thermal transport at the macroscale. With the growing importance of thermal management in micro/nanoscale devices, controlling and tuning the interfacial thermal resistance (ITR) at the nanoscale is an urgent task. This Review examines nanoscale interfacial thermal transport mainly from a theoretical perspective. Traditional theoretical models, multiscale models, and atomistic methodologies for predicting ITR are introduced. Based on the analysis and summary of the factors that influence ITR, new methods to control and reduce ITR at the nanoscale are described in detail. Furthermore, the challenges facing interfacial thermal management and the further progress required in this field are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nanoscale characterization of the electrical properties of oxide electrodes at the organic semiconductor-oxide electrode interface in organic solar cells

    NASA Astrophysics Data System (ADS)

    MacDonald, Gordon Alex

    This dissertation focuses on characterizing the nanoscale and surface averaged electrical properties of transparent conducting oxide electrodes such as indium tin oxide (ITO) and transparent metal-oxide (MO) electron selective interlayers (ESLs), such as zinc oxide (ZnO), the ability of these materials to rapidly extract photogenerated charges from organic semiconductors (OSCs) used in organic photovoltaic (OPV) cells, and evaluating their impact on the power conversion efficiency (PCE) of OPV devices. In Chapter 1, we will introduce the fundamental principles, benefits, and the key innovations that have advanced this technology. In Chapter 2 of this dissertation, we demonstrate an innovative application of conductive probe atomic force microscopy (CAFM) to map the nanoscale electrical heterogeneity at the interface between ITO, and a well-studied OSC, copper phthalocyanine (CuPc).(MacDonald et al. (2012) ACS Nano, 6, p. 9623) In this work we collected arrays of current-voltage (J-V) curves, using a CAFM probe as the top contact of CuPc/ITO systems, to map the local J-V responses. By comparing J-V responses to known models for charge transport, we were able to determine if the local rate-limiting-step for charge transport is through the OSC (ohmic) or the CuPc/ITO interface (non-ohmic). Chapter 3 focus on the electrical property characterization of RF-magnetron sputtered ZnO (sp-ZnO) ESL films on ITO substrates. We have shown that the energetic alignment of ESLs and the OSC active materials plays a critical role in determining the PCE of OPV devices and UV light soaking sensitivity. We have used a combination of device testing, modeling, and impedance spectroscopy to characterize the effects that energetic alignment has on the charge carrier transport and distribution within the OPV device. In Chapter 4 we demonstrate that the local properties of sp-ZnO films varies as a function of the underlying ITO crystal face. We show that the local ITO crystal face determines

  17. Size Effects in Nanoscale Structural Phenomena

    NASA Astrophysics Data System (ADS)

    McElhinny, Kyle Matthew

    The creation of nanostructures offers the opportunity to modify and tune properties in ways inaccessible in bulk materials. A key component in this development is the introduction of size effects which reduce the physical size, dimensionality, and increase the contribution of surface effects. The size effects strongly modify the structural dynamics in nanoscale systems and leads to changes in the vibrational, electrical, and optical properties. An increased level of understanding and control of nanoscale structural dynamics will enable more precise control over nanomaterial transport properties. My work has shown that 1D spatial confinement through the creation of semiconducting nanomembranes modifies the phonon population and dispersion. X ray thermal diffuse scattering distributions show an excess in intensity for nanomembranes less than 100 nm in thickness, for phonon modes with wavevectors spanning the entire Brillouin zone. This excess intensity indicates the development of new low energy phonon modes or the softening of elastic constants. Furthermore, an additional anisotropy in the phonon dispersion is observed with a symmetry matching the direction of spatial confinement. This work has also extended x ray thermal diffuse scattering for use in studying nanomaterials. In electro- and photoactive monolayers a structural reconfiguration can be produced by external optical stimuli. I have developed an electro and photoactive molecular monolayers on oxide surfaces. Using x ray reflectivity, I have evaluated the organization and reconfiguration of molecular monolayers deposited by Langmuir Blodgett technique. I have designed and probed the reconfiguration of optically reconfigurable monolayers of azobenzene donor molecules on semiconducting surfaces. These monolayers reconfigure through a cooperative switching process leading to the development of large isomeric domains. This work represents an advancement in the interpretation of x ray reflectivity from molecular

  18. Model Mismatch Paradigm for Probe based Nanoscale Imaging

    NASA Astrophysics Data System (ADS)

    Agarwal, Pranav

    Scanning Probe Microscopes (SPMs) are widely used for investigation of material properties and manipulation of matter at the nanoscale. These instruments are considered critical enablers of nanotechnology by providing the only technique for direct observation of dynamics at the nanoscale and affecting it with sub Angstrom resolution. Current SPMs are limited by low throughput and lack of quantitative measurements of material properties. Various applications like the high density data storage, sub-20 nm lithography, fault detection and functional probing of semiconductor circuits, direct observation of dynamical processes involved in biological samples viz. motor proteins and transport phenomena in various materials demand high throughput operation. Researchers involved in material characterization at nanoscale are interested in getting quantitative measurements of stiffness and dissipative properties of various materials in a least invasive manner. In this thesis, system theoretic concepts are used to address these limitations. The central tenet of the thesis is to model, the known information about the system and then focus on perturbations of these known dynamics or model, to sense the effects due to changes in the environment such as changes in material properties or surface topography. Thus a model mismatch paradigm for probe based nanoscale imaging is developed. The topic is developed by presenting physics based modeling of a particular mode of operation of SPMs called the dynamic mode operation. This mode is modeled as a forced Lure system where a linear time invariant system is in feedback with an unknown static memoryless nonlinearity. Tools from averaging theory are used to tame this complex nonlinear system by approximating it as a linear system with time varying parameters. Material properties are thus transformed from being parameters of unknown nonlinear functions to being unknown coefficients of a linear plant. The first contribution of this thesis

  19. Designing a Double-Pole Nanoscale Relay Based on a Carbon Nanotube: A Theoretical Study

    NASA Astrophysics Data System (ADS)

    Mu, Weihua; Ou-Yang, Zhong-can; Dresselhaus, Mildred S.

    2017-08-01

    We theoretically investigate a novel and powerful double-pole nanoscale relay based on a carbon nanotube, which is one of the nanoelectromechanical switches being able to work under the strong nuclear radiation, and analyze the physical mechanism of the operating stages in the operation, including "pull in," "connection," and "pull back," as well as the key factors influencing the efficiency of the devices. We explicitly provide the analytical expression of the two important operation voltages, Vpull in and Vpull back , therefore clearly showing the dependence of the material properties and geometry of the present devices by the analytical method from basic physics, avoiding complex numerical calculations. Our method is easy to use in preparing the design guide for fabricating the present device and other nanoelectromechanical devices.

  20. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation

    PubMed Central

    Mozhi, Anbu; Zhang, Xu; Zhao, Yuanyuan; Xue, Xiangdong; Hao, Yanli; Zhang, Xiaoning; Wang, Paul C.; Liang, Xing-Jie

    2014-01-01

    The advent of nanotechnology has reignited interest in the field of pharmaceutical science for the development of nanomedicine. Nanomedicinal formulations are nanometer-sized carrier materials designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Nanomedicine is a new approach to deliver the pharmaceuticals through different routes of administration with safer and more effective therapies compared to conventional methods. To date, various kinds of nanomaterials have been developed over the years to make delivery systems more effective for the treatment of various diseases. Even though nanomaterials have significant advantages due to their unique nanoscale properties, there are still significant challenges in the improvement and development of nanoformulations with composites and other materials. Here in this review, we highlight the nanomedicinal formulations aiming to improve the balance between the efficacy and the toxicity of therapeutic interventions through different routes of administration and how to design nanomedicine for safer and more effective ways to improve the treatment quality. We also emphasize the environmental and health prospects of nanomaterials for human health care. PMID:23860639

  1. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Chen, Fei; Mozhi, Anbu; Zhang, Xu; Zhao, Yuanyuan; Xue, Xiangdong; Hao, Yanli; Zhang, Xiaoning; Wang, Paul C.; Liang, Xing-Jie

    2013-08-01

    The advent of nanotechnology has reignited interest in the field of pharmaceutical science for the development of nanomedicine. Nanomedicinal formulations are nanometer-sized carrier materials designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Nanomedicine is a new approach to deliver the pharmaceuticals through different routes of administration with safer and more effective therapies compared to conventional methods. To date, various kinds of nanomaterials have been developed over the years to make delivery systems more effective for the treatment of various diseases. Even though nanomaterials have significant advantages due to their unique nanoscale properties, there are still significant challenges in the improvement and development of nanoformulations with composites and other materials. Here in this review, we highlight the nanomedicinal formulations aiming to improve the balance between the efficacy and the toxicity of therapeutic interventions through different routes of administration and how to design nanomedicine for safer and more effective ways to improve the treatment quality. We also emphasize the environmental and health prospects of nanomaterials for human health care.

  2. Strategies for Controlled Placement of Nanoscale Building Blocks

    PubMed Central

    2007-01-01

    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others. PMID:21794185

  3. Spatial Manipulation of Heat Flow by Surface Boundaries at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Malhotra, Abhinav; Maldovan, Martin

    The precise manipulation of phonon transport properties is central to controlling thermal transport in semiconductor nanostructures. The physical understanding, prediction, and control of thermal phonon heat spectra and thermal conductivity accumulation functions - which establish the proportion of heat transported by phonons with different frequencies and mean-free-paths - has attracted significant attention in recent years. In this talk, we advance the possibilities of manipulating heat by spatially modulating thermal transport in nanostructures. We show that phonon scattering at interfaces impacts the most preferred physical pathway used by heat energy flow in thermal transport in nanostructures. The role of introducing boundaries with different surface conditions on resultant thermal flux is presented and methodologies to enhance these spatial modulations are discussed. This talk aims to advance the fundamental understanding on the nature of heat transport at nanoscale with potential applications in multiple research areas ranging from energy materials to optoelectronics.

  4. Nanoscale analysis of degradation processes of cellulose fibers.

    PubMed

    Teodonio, Lorenzo; Missori, Mauro; Pawcenis, Dominika; Łojewska, Joanna; Valle, Francesco

    2016-12-01

    Mapping the morphological and nano-mechanical properties of cellulose fibers within paper sheets or textile products at the nano-scale level by using atomic force microscopy is a challenging task due to the huge surface level variation of these materials. However this task is fundamental for applications in forensic or cultural heritage sciences and for the industrial characterization of materials. In order to correlate between nano-mechanical properties and local nanometer scale morphology of different layers of cellulose fibers, a new strategy to prepare samples of isolated cellulose fibers was designed. This approach is based on immobilizing isolated fibers onto glass slides chemically pretreated so as to promote cellulose adhesion. The experiments presented here aim at the nano-scale characterization of fibers in paper samples aged under different external agents (relative humidity, temperature) in such a way as to promote hydrolysis and oxidation of polymers. The observed variability of local mechanical properties of paper fibers was related to varying degrees of cellulose polymerization induced by artificial aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. PREFACE: International Conference on Dynamics of Systems on the Nanoscale (DySoN 2012)

    NASA Astrophysics Data System (ADS)

    Solov'yov, Andrey V.

    2013-06-01

    Conference logo The Second International Conference 'Dynamics of Systems on the Nanoscale' (DySoN 2012) took place in Saint Petersburg, Russia between 30 September and 4 October 2012. The venue was the Courtyard by Marriott St Petersburg Vasilievsky Hotel, 2nd line of Vasilievsky Island 61/30A, 199178. The conference was organized by the Frankfurt Institute for Advanced Studies - Goethe University, A F Ioffe Physical-Technical Institute and Saint Petersburg State Polytechnic University. This DySoN conference has been built upon a series of International Symposia 'Atomic Cluster Collisions: structure and dynamics from the nuclear to the biological scale' (ISACC 2003, ISACC 2007, ISACC 2008, ISACC 2009 and ISACC 2011). During these meetings it has become clear that there is a need for an interdisciplinary conference covering a broader range of topics than just atomic cluster collisions, related to the Dynamics of Systems on a Nanoscale. Therefore, in 2010 it was decided to launch a new conference series under the title 'Dynamics of Systems on the Nanoscale'. The first DySoN conference took place at the National Research Council, Rome, Italy in 2010. The DySoN 2012 is the second conference in this series. The DySoN 2012 Conference promoted the growth and exchange of interdisciplinary scientific information on the structure, formation and dynamics of animate and inanimate matter on the nanometer scale. There are many examples of complex many-body systems of micro- and nanometer scale size exhibiting unique features, properties and functions. These systems may have very different nature and origin, e.g. atomic and molecular clusters, nanoobjects, ensembles of nanoparticles, nanostructures, biomolecules, biomolecular and mesoscopic systems. A detailed understanding of the structure and dynamics of these systems on the nanometer scale is an important fundamental task, the solution of which is necessary in numerous applications of nano- and biotechnology, material science

  6. Asteroid Family Physical Properties

    NASA Astrophysics Data System (ADS)

    Masiero, J. R.; DeMeo, F. E.; Kasuga, T.; Parker, A. H.

    An asteroid family is typically formed when a larger parent body undergoes a catastrophic collisional disruption, and as such, family members are expected to show physical properties that closely trace the composition and mineralogical evolution of the parent. Recently a number of new datasets have been released that probe the physical properties of a large number of asteroids, many of which are members of identified families. We review these datasets and the composite properties of asteroid families derived from this plethora of new data. We also discuss the limitations of the current data, as well as the open questions in the field.

  7. Fats, Oils, & Colors of a Nanoscale Material

    ERIC Educational Resources Information Center

    Lisensky, George C.; Horoszewski, Dana; Gentry, Kenneth L.; Zenner, Greta M.; Crone, Wendy C .

    2006-01-01

    Phase changes and intermolecular forces are important physical science concepts but are not always easy to present in an active learning format. This article presents several interactive activities in which students plot the melting points of some fatty acids and explore the effect that the nanoscale size and shape of molecules have on the…

  8. Synthesis, dynamics and photophysics of nanoscale systems

    NASA Astrophysics Data System (ADS)

    Mirkovic, Tihana

    The emerging field of nanotechnology, which spans diverse areas such as nanoelectronics, medicine, chemical and pharmaceutical industries, biotechnology and computation, focuses on the development of devices whose improved performance is based on the utilization of self-assembled nanoscale components exhibiting unique properties owing to their miniaturized dimensions. The first phase in the conception of such multifunctional devices based on integrated technologies requires the study of basic principles behind the functional mechanism of nanoscale components, which could originate from individual nanoobjects or result as a collective behaviour of miniaturized unit structures. The comprehensive studies presented in this thesis encompass the mechanical, dynamical and photophysical aspects of three nanoscale systems. A newly developed europium sulfide nanocrystalline material is introduced. Advances in synthetic methods allowed for shape control of surface-functionalized EuS nanocrystals and the fabrication of multifunctional EuS-CdSe hybrid particles, whose unique structural and optical properties hold promise as useful attributes of integrated materials in developing technologies. A comprehensive study based on a new class of multifunctional nanomaterials, derived from the basic unit of barcoded metal nanorods is presented. Their chemical composition affords them the ability to undergo autonomous motion in the presence of a suitable fuel. The nature of their chemically powered self-propulsion locomotion was investigated, and plausible mechanisms for various motility modes were presented. Furthermore functionalization of striped metallic nanorods has been realized through the incorporation of chemically controlled flexible hinges displaying bendable properties. The structural aspect of the light harvesting machinery of a photosynthetic cryptophyte alga, Rhodomonas CS24, and the mobility of the antenna protein, PE545, in vivo were investigated. Information obtained

  9. Chiral Superstructure Mesophases of Achiral Bent-Shaped Molecules - Hierarchical Chirality Amplification and Physical Properties.

    PubMed

    Le, Khoa V; Takezoe, Hideo; Araoka, Fumito

    2017-07-01

    Chiral mesophases in achiral bent-shaped molecules have attracted particular attention since their discovery in the middle 1990s, not only because of their homochirality and polarity, but also due to their unique physical/physicochemical properties. Here, the most intriguing results in the studies of such symmetry-broken states, mainly helical-nanofilament (HNF) and dark-conglomerate (DC) phases, are reviewed. Firstly, basic information on the typical appearance and optical activity in these phases is introduced. In the following section, the formation of mesoscopic chiral superstructures in the HNF and DC phases is discussed in terms of hierarchical chirality. Nanoscale phase segregation in mixture systems and gelation ability in the HNF phase are also described. In addition, some other related chiral phases of bent-shaped molecules are shown. Recent attempts to control such mesoscopic chiral structure and the alignment/confinement of HNFs are also discussed, along with several examples of their fascinating advanced physical properties, i.e. huge enhancement of circular dichroism, electro- and photo-tunable optical activities, chirality-induced nonlinear optics (second-harmonic-generation circular difference and electrogyration effect), enhanced hydrophobicity through the dual-scale surface morphological modulation, and photoconductivity in the HNF/fullerene binary system. Future prospects from basic science and application viewpoints are also indicated in the concluding section. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nanoscale Device Properties of Tellurium-based Chalcogenide Compounds

    NASA Astrophysics Data System (ADS)

    Dahal, Bishnu R.

    The great progress achieved in miniaturization of microelectronic devices has now reached a distinct bottleneck, as devices are starting to approach the fundamental fabrication and performance limit. Even if a major breakthrough is made in the fabrication process, these scaled down electronic devices will not function properly since the quantum effects can no longer be neglected in the nanoscale regime. Advances in nanotechnology and new materials are driving novel technologies for future device applications. Current microelectronic devices have the smallest feature size, around 10 nm, and the industry is planning to switch away from silicon technology in the near future. The new technology will be fundamentally different. There are several leading technologies based on spintronics, tunneling transistors, and the newly discovered 2-dimensional material systems. All of these technologies are at the research level, and are far from ready for use in making devices in large volumes. This dissertation will focus on a very promising material system, Te-based chalcogenides, which have potential applications in spintronics, thermoelectricity and topological insulators that can lead to low-power-consumption electronics. Very recently it was predicted and experimentally observed that the spin-orbit interaction in certain materials can lead to a new electronic state called topological insulating phase. The topological insulator, like an ordinary insulator, has a bulk energy gap separating the highest occupied electronic band from the lowest empty band. However, the surface states in the case of a three-dimensional or edge states in a two-dimensional topological insulator allow electrons to conduct at the surface, due to the topological character of the bulk wavefunctions. These conducting states are protected by time-reversal symmetry, and cannot be eliminated by defects or chemical passivation. The edge/surface states satisfy Dirac dispersion relations, and hence the physics

  11. Magnetic superlattices and their nanoscale phase transition effects

    PubMed Central

    Cheon, Jinwoo; Park, Jong-Il; Choi, Jin-sil; Jun, Young-wook; Kim, Sehun; Kim, Min Gyu; Kim, Young-Min; Kim, Youn Joong

    2006-01-01

    The systematic assembly of nanoscale constituents into highly ordered superlattices is of significant interest because of the potential of their multifunctionalities and the discovery of new collective properties. However, successful observations of such superlattice-associated nanoscale phenomena are still elusive. Here, we present magnetic superlattices of Co and Fe3O4 nanoparticles with multidimensional symmetry of either AB (NaCl) or AB2 (AlB2). The discovery of significant enhancement (≈25 times) of ferrimagnetism is further revealed by forming previously undescribed superlattices of magnetically soft–hard Fe3O4@CoFe2O4 through the confined geometrical effect of thermally driven intrasuperlattice phase transition between the nanoparticulate components. PMID:16492783

  12. iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties.

    PubMed

    Chen, Nan; Reeja-Jayan, B; Liu, Andong; Lau, Jonathan; Dunn, Bruce; Gleason, Karen K

    2016-03-01

    A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Focused-ion-beam induced interfacial intermixing of magnetic bilayers for nanoscale control of magnetic properties.

    PubMed

    Burn, D M; Hase, T P A; Atkinson, D

    2014-06-11

    Modification of the magnetic properties in a thin-film ferromagnetic/non-magnetic bilayer system by low-dose focused ion-beam (FIB) induced intermixing is demonstrated. The highly localized capability of FIB may be used to locally control magnetic behaviour at the nanoscale. The magnetic, electronic and structural properties of NiFe/Au bilayers were investigated as a function of the interfacial structure that was actively modified using focused Ga(+) ion irradiation. Experimental work used MOKE, SQUID, XMCD as well as magnetoresistance measurements to determine the magnetic behavior and grazing incidence x-ray reflectivity to elucidate the interfacial structure. Interfacial intermixing, induced by low-dose irradiation, is shown to lead to complex changes in the magnetic behavior that are associated with monotonic structural evolution of the interface. This behavior may be explained by changes in the local atomic environment within the interface region resulting in a combination of processes including the loss of moment on Ni and Fe, an induced moment on Au and modifications to the spin-orbit coupling between Au and NiFe.

  14. In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography

    NASA Astrophysics Data System (ADS)

    Weng, Yi-Tse; Wang, Chun-Chieh; Chiang, Cheng-Cheng; Tsai, Heng; Song, Yen-Fang; Huang, Shiuh-Tsuen; Liang, Biqing

    2018-05-01

    An approach for nanoscale 3-D tomography of organic carbon (OC) and associated mineral nanoparticles was developed to illustrate their spatial distribution and boundary interplay, using synchrotron-based transmission X-ray microscopy (TXM). The proposed 3-D tomography technique was first applied to in situ observation of a laboratory-made consortium of black carbon (BC) and nanomineral (TiO2, 15 nm), and its performance was evaluated using dual-scan (absorption contrast and phase contrast) modes. This novel tool was then successfully applied to a natural OC-mineral consortium from mountain soil at a spatial resolution of 60 nm, showing the fine structure and boundary of OC, the distribution of abundant nano-sized minerals, and the 3-D organo-mineral association in situ. The stabilization of 3500-year-old natural OC was mainly attributed to the physical protection of nano-sized iron (Fe)-containing minerals (Fe oxyhydroxides including ferrihydrite, goethite, and lepidocrocite), and the strong organo-mineral complexation. In situ evidence revealed an abundance of mineral nanoparticles, in dense thin layers or nano-aggregates/clusters, instead of crystalline clay-sized minerals on or near OC surfaces. The key working minerals for C stabilization were reactive short-range-order (SRO) mineral nanoparticles and poorly crystalline submicron-sized clay minerals. Spectroscopic analyses demonstrated that the studied OC was not merely in crisscross co-localization with reactive SRO minerals; there could be a significant degree of binding between OC and the minerals. The ubiquity and abundance of mineral nanoparticles on the OC surface, and their heterogeneity in the natural environment may have been severely underestimated by traditional research approaches. Our in situ description of organo-mineral interplay at the nanoscale provides direct evidence to substantiate the importance of mineral physical protection for the long-term stabilization of OC. This high-resolution 3-D

  15. Tunable all-optical plasmonic rectifier in nanoscale metal-insulator-metal waveguides.

    PubMed

    Xu, Yi; Wang, Xiaomeng; Deng, Haidong; Guo, Kangxian

    2014-10-15

    We propose a tunable all-optical plasmonic rectifier based on the nonlinear Fano resonance in a metal-insulator-metal plasmonic waveguide and cavities coupling system. We develop a theoretical model based on the temporal coupled-mode theory to study the device physics of the nanoscale rectifier. We further demonstrate via the finite difference time domain numerical experiment that our idea can be realized in a plasmonic system with an ultracompact size of ~120×800  nm². The tunable plasmonic rectifier could facilitate the all-optical signal processing in nanoscale.

  16. Nanoscale NMR spectroscopy and imaging of multiple nuclear species.

    PubMed

    DeVience, Stephen J; Pham, Linh M; Lovchinsky, Igor; Sushkov, Alexander O; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ∼100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species ((1)H, (19)F, (31)P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (∼20 mT) using two complementary sensor modalities.

  17. Synthesis and characterization of pH-responsive nanoscale hydrogels for oral delivery of hydrophobic therapeutics.

    PubMed

    Puranik, Amey S; Pao, Ludovic P; White, Vanessa M; Peppas, Nicholas A

    2016-11-01

    pH-responsive, polyanionic nanoscale hydrogels were developed for the oral delivery of hydrophobic therapeutics, such as common chemotherapeutic agents. Nanoscale hydrogels were designed to overcome physicochemical and biological barriers associated with oral delivery of hydrophobic therapeutics such as low solubility and poor permeability due to P-glycoprotein related drug efflux. Synthesis of these nanoscale materials was achieved by a robust photoemulsion polymerization method. By varying hydrophobic monomer components, four formulations were synthesized and screened for optimal physicochemical properties and in vitro biocompatibility. All of the responsive nanoscale hydrogels were capable of undergoing a pH-dependent transition in size. Depending on the selection of the hydrophobic monomer, the sizes of the nanoparticles vary widely from 120nm to about 500nm at pH 7.4. Polymer composition was verified using Fourier transform infrared spectroscopy and 1 H-nuclear magnetic resonance spectroscopy. Polymer biocompatibility was assessed in vitro with an intestinal epithelial cell model. All formulations were found to have no appreciable cytotoxicity, defined as greater than 80% viability after polymer incubation. We demonstrate that these nanoscale hydrogels possess desirable physicochemical properties and exhibit agreeable in vitro biocompatibility for oral delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Picotto, G. B.; Koenders, L.; Wilkening, G.

    2009-08-01

    Instrumentation and measurement techniques at the nanoscale play a crucial role not only in extending our knowledge of the properties of matter and processes in nanosciences, but also in addressing new measurement needs in process control and quality assurance in industry. Micro- and nanotechnologies are now facing a growing demand for quantitative measurements to support the reliability, safety and competitiveness of products and services. Quantitative measurements presuppose reliable and stable instruments and measurement procedures as well as suitable calibration artefacts to ensure the quality of measurements and traceability to standards. This special issue of Measurement Science and Technology presents selected contributions from the Nanoscale 2008 seminar held at the Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, in September 2008. This was the 4th Seminar on Nanoscale Calibration Standards and Methods and the 8th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized by the Nanometrology Group within EUROMET (The European Collaboration in Measurement Standards), the German Nanotechnology Competence Centre 'Ultraprecise Surface Figuring' (CC-UPOB), the Physikalisch-Technische Bundesanstalt (PTB) and INRIM. A special event during the seminar was the 'knighting' of Günter Wilkening from PTB, Braunschweig, Germany, as the 1st Knight of Dimensional Nanometrology. Günter Wilkening received the NanoKnight Award for his outstanding work in the field of dimensional nanometrology over the last 20 years. The contributions in this special issue deal with the developments and improvements of instrumentation and measurement methods for scanning force microscopy (SFM), electron and optical microscopy, high-resolution interferometry, calibration of instruments and new standards, new facilities and applications including critical dimension (CD) measurements on small and medium structures and nanoparticle

  19. Nanoscale Heat Conduction in Crystalline Solids

    NASA Astrophysics Data System (ADS)

    Christenson, Joel; Phillips, Ronald

    Heat conduction in crystalline solids occurs through the motion of molecular-scale vibrations, or phonons. In continuum scale problems, there are sufficient phonon-phonon interactions for local equilibrium to be established, and heat conduction is accurately described by Fourier's law. However, at length scales comparable to the phonon mean free path, Fourier's law becomes inaccurate, and more fundamental descriptions of heat transfer are required. We are investigating the viability of the phonon Boltzmann Transport Equation (BTE) to describe heat conduction in nanoscale simulations of the high-explosive material β-HMX. By using a combination of numerical and analytic solutions of the BTE, we demonstrate the existence of physical behavior that is not qualitatively captured by the classical Fourier's law in the nanoscale regime. The results are interpreted in terms of continuum-scale simulations of shock-induced collapse of air-filled pores in β-HMX, which is believed to be a precursory step towards complete detonation of the material.

  20. Complex Nano-Scale Structures for Unprecedented Properties in Steels

    DOE PAGES

    Caballero, Francisca G.; Poplawsky, Jonathan D.; Yen, Hung Wei; ...

    2016-11-01

    Processing bulk nanoscrystalline materials for structural applications still poses a rather large challenge, particularly in achieving an industrially viable process. In this context, recent work has proved that complex nanoscale steel structures can be formed by solid reaction at low temperatures. These nanocrystalline bainitic steels present the highest strength ever recorded, unprecedented ductility, fatigue on par with commercial bearing steels and exceptional rolling-sliding wear performances. In this paper, a description of the characteristics and significance of these remarkable structures in the context of the atomic mechanism of transformation is provided.

  1. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    PubMed

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  2. In-situ observation of switchable nanoscale topography for y-shaped binary brushes in fluids.

    PubMed

    Lin, Yen-Hsi; Teng, Jing; Zubarev, Eugene R; Shulha, Hennady; Tsukruk, Vladimir V

    2005-03-01

    Direct, in-fluid observation of the surface morphology and nanomechanical properties of the mixed brushes composed of Y-shaped binary molecules PS-PAA revealed nanoscale network-like surface topography formed by coexisting stretched soluble PAA arms and collapsed insoluble PS chains in water. Placement of Y-shaped brushes in different fluids resulted in dramatic reorganization ranging from soft repellent layer covered by swollen PS arms in toluene to an adhesive, mixed layer composed of coexisting swollen PAA and collapsed PS arms in water. These binary layers with the overall nanoscale thickness can serve as adaptive nanocoatings with stimuli-responsive properties.

  3. Light Matter Interaction on the Nanoscale

    DTIC Science & Technology

    2016-01-05

    Light-Matter Interaction on the Nanoscale 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-10-1-0022 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Xiaoqin...ORGANIZATION NAME( S ) AND ADDRESS(ES) Physics Department University of Texas-Austin 2515 Speedway, Austin, TX, 78712 8. PERFORMING ORGANIZATION REPORT NUMBER...9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) AFOSR 875 N RANDOLPH ST ARLINGTON VA 22203 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR

  4. Computational modeling and simulation study of electronic and thermal properties in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Paul, Abhijeet

    2011-07-01

    The technological progress in dimensional scaling has not only kept Silicon CMOS industry on Moore's law for the past five decades but has also benefited many other areas such as thermoelectricity, photo-voltaics, and energy storage. Extending CMOS beyond Si (More Moore, MM) and adding functional diversity to CMOS (More Than Moore, MTM) requires a thorough understanding of the basic electron and heat flow in semiconductors. Along with experiments computer modeling and simulation are playing an increasingly vital role in exploring the numerous possibilities in materials, devices and systems. With these aspects in mind the present work applies computational physics modeling and simulations to explore the, (i) electronic, (ii) thermal, and (iii) thermoelectric properties in nano-scale semiconductors. The electronic structure of zinc-blende and lead-chalcogenide nano-materials is calculated using an atomistic Tight-Binding model. The phonon dispersion in zinc-blende materials is obtained using the Modified Valence Force Field model. Electronic and thermal transport at the nano-scale is explored using Green's function method and Landauer's method. Thermoelectric properties of semiconductor nanostructures are calculated using Landauer's method. Using computer modeling and simulations the variation of the three physical properties (i-iii) are explored with varying size, transport orientation, shape, porosity, strain and alloying of nanostructures. The key findings are, (a) III-Vs and Ge with optimized strain and orientation can improve transistors' and thermoelectric performance, (b) porous Si nanowires provide a lucrative idea for enhancing the thermoelectric efficiency at room temperature, and (c) Si/Ge superlattice nanowires can be used for nano-scale tuning of lattice thermal conductivity by period control. The present work led to the development of two new interface trap density extraction methods in ultra-scaled FinFETs and correlation of the phonon shifts in Si

  5. Investigation of the Structural, Electrical, and Optical Properties of the Nano-Scale GZO Thin Films on Glass and Flexible Polyimide Substrates

    PubMed Central

    Wang, Fang-Hsing; Chen, Kun-Neng; Hsu, Chao-Ming; Liu, Min-Chu; Yang, Cheng-Fu

    2016-01-01

    In this study, Ga2O3-doped ZnO (GZO) thin films were deposited on glass and flexible polyimide (PI) substrates at room temperature (300 K), 373 K, and 473 K by the radio frequency (RF) magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002) peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS) was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared. PMID:28335216

  6. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  7. Tissue deposition and toxicological effects of commercially significant rare earth oxide nanomaterials: Material and physical properties.

    PubMed

    Das, Soumen; Reed McDonagh, Philip; Selvan Sakthivel, Tamil; Barkam, Swetha; Killion, Kelsey; Ortiz, Julian; Saraf, Shashank; Kumar, Amit; Gupta, Ankur; Zweit, Jamal; Seal, Sudipta

    2017-03-01

    Rare earth oxide (REO) materials are found naturally in earth's crust and at the nanoscale these REO nanoparticles exhibit unique thermal, electrical, and physicochemical properties. REO nanoparticles are widely used in different industrial sectors for ceramics, glass polishing, metallurgy, lasers, and magnets. Recently, some of these REO nanoparticles have been identified for their potential application in medicine, including therapy, imaging, and diagnostics. Concurrent research into the REO nanomaterials' toxicities has also raised concern for their environmental impacts. The correlation of REO nanoparticles mediated toxicity with their physiochemical properties can help to design nanoparticles with minimal effect on the environment and living organisms. In vitro assay revealed toxicity toward Human squamous epithelial cell line (CCL30) and Human umbilical vascular endothelial cells (HUVEC) at a concentration of 100 µM and higher. In vivo results showed, with the exception of CeO 2 and Gd 2 O 3 , most of the naoparticles did not clear or had minimum clearance (10-20%) from the system. Elevated levels of alanine transferase were seen for animals given each different nanoparticle, however the increases were not significant for CeO 2 and Dy 2 O 3 . Nephrotoxicity was only seen in case of Dy 2 O 3 and Gd 2 O 3 . Lastly, histological examination revealed presence of swollen hepatocytes which further confirms toxicity of the commercial REO nanomaterials. The in vivo toxicity is mainly due to excessive tissue deposition (70-90%) due to the commercial REO nanoparticles' poor physical properties (shape, stability, and extent of agglomeration). Therefore, optimization of nanoparticles physical properties is very important. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 904-917, 2017. © 2016 Wiley Periodicals, Inc.

  8. Nanoscale Surface Modifications of Medical Implants for Cartilage Tissue Repair and Regeneration

    PubMed Central

    Griffin, MF; Szarko, M; Seifailan, A; Butler, PE

    2016-01-01

    Background: Natural cartilage regeneration is limited after trauma or degenerative processes. Due to the clinical challenge of reconstruction of articular cartilage, research into developing biomaterials to support cartilage regeneration have evolved. The structural architecture of composition of the cartilage extracellular matrix (ECM) is vital in guiding cell adhesion, migration and formation of cartilage. Current technologies have tried to mimic the cell’s nanoscale microenvironment to improve implants to improve cartilage tissue repair. Methods: This review evaluates nanoscale techniques used to modify the implant surface for cartilage regeneration. Results: The surface of biomaterial is a vital parameter to guide cell adhesion and consequently allow for the formation of ECM and allow for tissue repair. By providing nanosized cues on the surface in the form of a nanotopography or nanosized molecules, allows for better control of cell behaviour and regeneration of cartilage. Chemical, physical and lithography techniques have all been explored for modifying the nanoscale surface of implants to promote chondrocyte adhesion and ECM formation. Conclusion: Future studies are needed to further establish the optimal nanoscale modification of implants for cartilage tissue regeneration. PMID:28217208

  9. Physical Properties of Gas Hydrates: A Review

    DOE PAGES

    Gabitto, Jorge F.; Tsouris, Costas

    2010-01-01

    Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16   m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less

  10. Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins.

    PubMed

    Stan, Gheorghe; Gates, Richard S; Hu, Qichi; Kjoller, Kevin; Prater, Craig; Jit Singh, Kanwal; Mays, Ebony; King, Sean W

    2017-01-01

    The exploitation of nanoscale size effects to create new nanostructured materials necessitates the development of an understanding of relationships between molecular structure, physical properties and material processing at the nanoscale. Numerous metrologies capable of thermal, mechanical, and electrical characterization at the nanoscale have been demonstrated over the past two decades. However, the ability to perform nanoscale molecular/chemical structure characterization has only been recently demonstrated with the advent of atomic-force-microscopy-based infrared spectroscopy (AFM-IR) and related techniques. Therefore, we have combined measurements of chemical structures with AFM-IR and of mechanical properties with contact resonance AFM (CR-AFM) to investigate the fabrication of 20-500 nm wide fin structures in a nanoporous organosilicate material. We show that by combining these two techniques, one can clearly observe variations of chemical structure and mechanical properties that correlate with the fabrication process and the feature size of the organosilicate fins. Specifically, we have observed an inverse correlation between the concentration of terminal organic groups and the stiffness of nanopatterned organosilicate fins. The selective removal of the organic component during etching results in a stiffness increase and reinsertion via chemical silylation results in a stiffness decrease. Examination of this effect as a function of fin width indicates that the loss of terminal organic groups and stiffness increase occur primarily at the exposed surfaces of the fins over a length scale of 10-20 nm. While the observed structure-property relationships are specific to organosilicates, we believe the combined demonstration of AFM-IR with CR-AFM should pave the way for a similar nanoscale characterization of other materials where the understanding of such relationships is essential.

  11. Dynamic Control over the Optical Transmission of Nanoscale Dielectric Metasurface by Alkali Vapors.

    PubMed

    Bar-David, Jonathan; Stern, Liron; Levy, Uriel

    2017-02-08

    In recent years, dielectric and metallic nanoscale metasurfaces are attracting growing attention and are being used for variety of applications. Resulting from the ability to introduce abrupt changes in optical properties at nanoscale dimensions, metasurfaces enable unprecedented control over light's different degrees of freedom, in an essentially two-dimensional configuration. Yet, the dynamic control over metasurface properties still remains one of the ultimate goals of this field. Here, we demonstrate the optical resonant interaction between a form birefringent dielectric metasurface made of silicon and alkali atomic vapor to control and effectively tune the optical transmission pattern initially generated by the nanoscale dielectric metasurface. By doing so, we present a controllable metasurface system, the output of which may be altered by applying magnetic fields, changing input polarization, or shifting the optical frequency. Furthermore, we also demonstrate the nonlinear behavior of our system taking advantage of the saturation effect of atomic transition. The demonstrated approach paves the way for using metasurfaces in applications where dynamic tunability of the metasurface is in need, for example, for scanning systems, tunable focusing, real time displays, and more.

  12. Investigation of graphene-based nanoscale radiation sensitive materials

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua A.; Wetherington, Maxwell; Hughes, Zachary; LaBella, Michael, III; Bresnehan, Michael

    2012-06-01

    Current state-of-the-art nanotechnology offers multiple benefits for radiation sensing applications. These include the ability to incorporate nano-sized radiation indicators into widely used materials such as paint, corrosion-resistant coatings, and ceramics to create nano-composite materials that can be widely used in everyday life. Additionally, nanotechnology may lead to the development of ultra-low power, flexible detection systems that can be embedded in clothing or other systems. Graphene, a single layer of graphite, exhibits exceptional electronic and structural properties, and is being investigated for high-frequency devices and sensors. Previous work indicates that graphene-oxide (GO) - a derivative of graphene - exhibits luminescent properties that can be tailored based on chemistry; however, exploration of graphene-oxide's ability to provide a sufficient change in luminescent properties when exposed to gamma or neutron radiation has not been carried out. We investigate the mechanisms of radiation-induced chemical modifications and radiation damage induced shifts in luminescence in graphene-oxide materials to provide a fundamental foundation for further development of radiation sensitive detection architectures. Additionally, we investigate the integration of hexagonal boron nitride (hBN) with graphene-based devices to evaluate radiation induced conductivity in nanoscale devices. Importantly, we demonstrate the sensitivity of graphene transport properties to the presence of alpha particles, and discuss the successful integration of hBN with large area graphene electrodes as a means to provide the foundation for large-area nanoscale radiation sensors.

  13. Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating

    PubMed Central

    Tang, Xiaoduan; Xu, Shen; Wang, Xinwei

    2013-01-01

    Micro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (∼100 nm or less) and not immediately accessible for sensing. In this work, we report the first experimental study on nanoscale mapping of particle-induced thermal, stress, and optical fields by using a single laser for both near-field excitation and Raman probing. The mapping results based on Raman intensity variation, wavenumber shift, and linewidth broadening all give consistent conjugated thermal, stress, and near-field focusing effects at a 20 nm resolution (<λ/26, λ = 32 nm). Nanoscale mapping of near-field effects of particles from 1210 down to 160 nm demonstrates the strong capacity of such a technique. By developing a new strategy for physical analysis, we have de-conjugated the effects of temperature, stress, and near-field focusing from the Raman mapping. The temperature rise and stress in the nanoscale heating region is evaluated at different energy levels. High-fidelity electromagnetic and temperature field simulation is conducted to accurately interpret the experimental results. PMID:23555566

  14. Quantification of Nanoscale Density Fluctuations in Biological Cells/Tissues: Inverse Participation Ratio (IPR) Analysis of Transmission Electron Microscopy Images and Implications for Early-Stage Cancer Detection

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh; Taflove, Allen; Roy, Hemant; Dravid, Vinayak; Backman, Vadim

    2010-03-01

    We report a study of the nanoscale mass density fluctuations of biological cells and tissues by quantifying their nanoscale light-localization properties. Transmission electron microscope (TEM) images of human cells and tissues are used to construct corresponding effective disordered optical lattices. Light-localization properties are studied by statistical analysis of the inverse participation ratio (IPR) of the eigenfunctions of these optical lattices at the nanoscales. Our results indicate elevation of the nanoscale disorder strength (e.g., refractive index fluctuations) in early carcinogenesis. Importantly, our results demonstrate that the increase in the nanoscale disorder represents the earliest structural alteration in cells undergoing carcinogenesis known to-date. Potential applications of the technique for early stage cancer detection will be discussed.

  15. International Workshop on Light Emission and Electronic Properties of Nanoscale Silicon

    DTIC Science & Technology

    1994-04-01

    matrix elements, quantum confinement, surface effects ? CHARLOTFE STANDARD R. Tsu Comparison of Luminescence Efficiency ROLE OF NANOSCALE Si-DEVICES...confinement effects in microcrystalline silicon [2,3] may lead to revolutionary advances in speed and dramatically reduced energy consumption of silicon...Formation: A Quantum Wire Effect ," Avpl. Phys. Lett., 58, 856 (1991). 5. R. Tsu, H. Shen, and M. Dutta, "Correlation of Raman and Photoluminescence

  16. Nanoscale thermal imaging of dissipation in quantum systems

    NASA Astrophysics Data System (ADS)

    Halbertal, D.; Cuppens, J.; Shalom, M. Ben; Embon, L.; Shadmi, N.; Anahory, Y.; Naren, H. R.; Sarkar, J.; Uri, A.; Ronen, Y.; Myasoedov, Y.; Levitov, L. S.; Joselevich, E.; Geim, A. K.; Zeldov, E.

    2016-11-01

    Energy dissipation is a fundamental process governing the dynamics of physical, chemical and biological systems. It is also one of the main characteristics that distinguish quantum from classical phenomena. In particular, in condensed matter physics, scattering mechanisms, loss of quantum information or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Yet the microscopic behaviour of a system is usually not formulated in terms of dissipation because energy dissipation is not a readily measurable quantity on the micrometre scale. Although nanoscale thermometry has gained much recent interest, existing thermal imaging methods are not sensitive enough for the study of quantum systems and are also unsuitable for the low-temperature operation that is required. Here we report a nano-thermometer based on a superconducting quantum interference device with a diameter of less than 50 nanometres that resides at the apex of a sharp pipette: it provides scanning cryogenic thermal sensing that is four orders of magnitude more sensitive than previous devices—below 1 μK Hz-1/2. This non-contact, non-invasive thermometry allows thermal imaging of very low intensity, nanoscale energy dissipation down to the fundamental Landauer limit of 40 femtowatts for continuous readout of a single qubit at one gigahertz at 4.2 kelvin. These advances enable the observation of changes in dissipation due to single-electron charging of individual quantum dots in carbon nanotubes. They also reveal a dissipation mechanism attributable to resonant localized states in graphene encapsulated within hexagonal boron nitride, opening the door to direct thermal imaging of nanoscale dissipation processes in quantum matter.

  17. Nanoscale Ionic Liquids

    DTIC Science & Technology

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  18. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation.

    PubMed

    Wang, Jing; Zhu, Junyong; Zhang, Yatao; Liu, Jindun; Van der Bruggen, Bart

    2017-03-02

    The precise and rapid separation of different molecules from aqueous, organic solutions and gas mixtures is critical to many technologies in the context of resource-saving and sustainable development. The strength of membrane-based technologies is well recognized and they are extensively applied as cost-effective, highly efficient separation techniques. Currently, empirical-based approaches, lacking an accurate nanoscale control, are used to prepare the most advanced membranes. In contrast, nanoscale control renders the membrane molecular specificity (sub-2 nm) necessary for efficient and rapid molecular separation. Therefore, as a growing trend in membrane technology, the field of nanoscale tailor-made membranes is highlighted in this review. An in-depth analysis of the latest advances in tailor-made membranes for precise and rapid molecule sieving is given, along with an outlook to future perspectives of such membranes. Special attention is paid to the established processing strategies, as well as the application of molecular dynamics (MD) simulation in nanoporous membrane design. This review will provide useful guidelines for future research in the development of nanoscale tailor-made membranes with a precise and rapid molecular sieve separation property.

  19. Multifunctional, angle dependent antireflection, and hydrophilic properties of SiO2 inspired by nano-scale structures of cicada wings

    NASA Astrophysics Data System (ADS)

    Zada, Imran; Zhang, Wang; Sun, Peng; Imtiaz, Muhammad; Abbas, Waseem; Zhang, Di

    2017-10-01

    Inspired by the multifunctional properties of cicada wings, we have precisely replicated biomorphic SiO2 with antireflective structures (ARSs) using a simple, inexpensive, and highly effective sol-gel ultrasonic method. The biomorphic replica of SiO2 was directly achieved from a cicada template at high calcination. The biomorphic SiO2 not only inherited the ARS effectively but also exhibited the excellent angle dependent antireflective properties over a wide range of incident angles (10°-60°). The change in reflectance spectra (visible wavelength) of biomorphic SiO2 was observed from 0.3% to 3.3% with the increasing incident angles. The smooth surface of the SiO2 crystal without nanostructures showed a high reflection of 9.2% compared to the biomorphic SiO2 with ARS. These excellent antireflective properties of biomorphic SiO2 can be attributed to the nanoscale structures which introduce a gradient in the refractive index between air and the material surface via ARS. In the meantime, biomorphic SiO2 demonstrates high hydrophilic properties due to the existence of nanostructures on its surface. These multifunctional properties of biomorphic SiO2, angle dependent antireflective properties, and hydrophilicity with high thermal stability may have potential applications in solar cells and antifogging optical materials.

  20. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  1. Nanoscale size effect in in situ titanium based composites with cell viability and cytocompatibility studies.

    PubMed

    Miklaszewski, Andrzej; Jurczyk, Mieczysława U; Kaczmarek, Mariusz; Paszel-Jaworska, Anna; Romaniuk, Aleksandra; Lipińska, Natalia; Żurawski, Jakub; Urbaniak, Paulina; Jurczyk, Mieczyslaw

    2017-04-01

    Novel in situ Metal Matrix Nanocomposite (MMNC) materials based on titanium and boron, revealed their new properties in the nanoscale range. In situ nanocomposites, obtained through mechanical alloying and traditional powder metallurgy compaction and sintering, show obvious differences to their microstructural analogue. A unique microstructure connected with good mechanical properties reliant on the processing conditions favour the nanoscale range of results of the Ti-TiB in situ MMNC example. The data summarised in this work, support and extend the knowledge boundaries of the nanoscale size effect that influence not only the mechanical properties but also the studies on the cell viability and cytocompatibility. Prepared in the same bulk, in situ MMNC, based on titanium and boron, could be considered as a possible candidate for dental implants and other medical applications. The observed relations and research conclusions are transferable to the in situ MMNC material group. Aside from all the discussed relations, the increasing share of these composites in the ever-growing material markets, heavily depends on the attractiveness and a possible wider application of these composites as well as their operational simplicity presented in this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    NASA Astrophysics Data System (ADS)

    Jasuja, Kabeer

    2011-12-01

    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs

  3. John H. Dillon Medal Talk: Protein Fibrils, Polymer Physics: Encounter at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Mezzenga, Raffaele

    2011-03-01

    Aggregation of proteins is central to many aspects of daily life, ranging from blood coagulation, to eye cataract formation disease, food processing, or neurodegenerative infections. In particular, the physical mechanisms responsible for amyloidosis, the irreversible fibril formation of various proteins implicated in protein misfolding disorders such as Alzheimer, Creutzfeldt-Jakob or Huntington's diseases, have not yet been fully elucidated. In this talk I will discuss how polymer physics and colloidal science concepts can be used to reveal very useful information on the formation, structure and properties of amyloid protein fibrils. I will discuss their physical properties at various length scales, from their collective liquid crystalline behavior in solution to their structural features at the single molecule length scale and show how polymer science notions can shed a new light on these interesting systems. 1) ``Understanding amyloid aggregation by statistical analysis of atomic force microscopy images'' J. Adamcik, J.-M. Jung, J. Flakowski, P. De Los Rios, G. Dietler and R. Mezzenga, Nature nanotechnology, 5, 423 (2010)

  4. Combinatorial refinement of thin-film microstructure, properties and process conditions: iterative nanoscale search for self-assembled TiAlN nanolamellae.

    PubMed

    Zalesak, J; Todt, J; Pitonak, R; Köpf, A; Weißenbacher, R; Sartory, B; Burghammer, M; Daniel, R; Keckes, J

    2016-12-01

    Because of the tremendous variability of crystallite sizes and shapes in nano-materials, it is challenging to assess the corresponding size-property relationships and to identify microstructures with particular physical properties or even optimized functions. This task is especially difficult for nanomaterials formed by self-organization, where the spontaneous evolution of microstructure and properties is coupled. In this work, two compositionally graded TiAlN films were (i) grown using chemical vapour deposition by applying a varying ratio of reacting gases and (ii) subsequently analysed using cross-sectional synchrotron X-ray nanodiffraction, electron microscopy and nanoindentation in order to evaluate the microstructure and hardness depth gradients. The results indicate the formation of self-organized hexagonal-cubic and cubic-cubic nanolamellae with varying compositions and thicknesses in the range of ∼3-15 nm across the film thicknesses, depending on the actual composition of the reactive gas mixtures. On the basis of the occurrence of the nanolamellae and their correlation with the local film hardness, progressively narrower ranges of the composition and hardness were refined in three steps. The third film was produced using an AlCl 3 /TiCl 4 precursor ratio of ∼1.9, resulting in the formation of an optimized lamellar microstructure with ∼1.3 nm thick cubic Ti(Al)N and ∼12 nm thick cubic Al(Ti)N nanolamellae which exhibits a maximal hardness of ∼36 GPa and an indentation modulus of ∼522 GPa. The presented approach of an iterative nanoscale search based on the application of cross-sectional synchrotron X-ray nanodiffraction and cross-sectional nanoindentation allows one to refine the relationship between (i) varying deposition conditions, (ii) gradients of microstructure and (iii) gradients of mechanical properties in nanostructured materials prepared as thin films. This is done in a combinatorial way in order to screen a wide range of

  5. Cal Poly Pomona NUE Project: Implementing Microscale and Nanoscale Investigations Throughout the Undergraduate Curriculum

    PubMed Central

    Vandervoort, Kurt; Brelles-Mariño, Graciela

    2013-01-01

    NUE funded work at California State Polytechnic University involved development and implementation of nanotechnology modules for physics courses spanning all levels of the undergraduate curriculum, from freshman service courses to senior level laboratories and independent research projects. These modules demonstrate the application of fundamental physics at the nanoscale that complement macroscopic investigations. The introductory level and some of the advanced level modules have been described previously in journal papers and will be outlined briefly here. The main focus of this article, however, is to describe some newer work involving nanoscale experiments that have been developed for senior level laboratories and independent research. These experiments involve applications as diverse as tunneling diodes, gas discharge plasmas for biofilm inactivation, and quantized conductance in gold nanowires. PMID:24163716

  6. Cal Poly Pomona NUE Project: Implementing Microscale and Nanoscale Investigations Throughout the Undergraduate Curriculum.

    PubMed

    Vandervoort, Kurt; Brelles-Mariño, Graciela

    2013-06-01

    NUE funded work at California State Polytechnic University involved development and implementation of nanotechnology modules for physics courses spanning all levels of the undergraduate curriculum, from freshman service courses to senior level laboratories and independent research projects. These modules demonstrate the application of fundamental physics at the nanoscale that complement macroscopic investigations. The introductory level and some of the advanced level modules have been described previously in journal papers and will be outlined briefly here. The main focus of this article, however, is to describe some newer work involving nanoscale experiments that have been developed for senior level laboratories and independent research. These experiments involve applications as diverse as tunneling diodes, gas discharge plasmas for biofilm inactivation, and quantized conductance in gold nanowires.

  7. Physical characterization of neurocatheter performance in a brain phantom gelatin with nanoscale porosity: steady-state and oscillatory flows

    NASA Astrophysics Data System (ADS)

    Bauman, M. A.; Gillies, G. T.; Raghavan, R.; Brady, M. L.; Pedain, C.

    2004-01-01

    An agarose gelatin having nanoscale transport properties similar to those of in vivo mammalian brain was employed as a surrogate for living brain tissue in the evaluation of infusion therapy protocols and neurocatheters to be used in the treatment of brain tumours. The catheters under study were a polyimide tube of 950 µm outer diameter (OD) and 750 µm inner diameter (ID), and a silicone tube of 2.5 mm OD and 1.25 mm ID. From the pressure profiles that were measured during infusions of a solution of Bromphenol Blue dye into this gel, we infer that forces on the order of 0.1 fN were driving the solute molecules through the {\\approx } 200 nm intramatrix voids in the gel at rates of {\\approx } 10\

  8. Nanoscale Silicon as a Catalyst for Graphene Growth: Mechanistic Insight from in Situ Raman Spectroscopy

    DOE PAGES

    Share, Keith; Carter, Rachel E.; Nikolaev, Pavel; ...

    2016-06-08

    Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide formation renders bulk silicon incapable of the precipitation and growth of graphitic structures. In this article, we provide evidence supported by comprehensive in situ Raman experiments that indicates nanoscale grains of silicon in porous silicon (PSi) scaffolds act as catalysts for hydrocarbon decomposition and growth of few-layered graphene at temperatures as low as 700 K. Self-limiting growthmore » kinetics of graphene with activation energies measured between 0.32–0.37 eV elucidates the formation of highly reactive surface-bound Si radicals that aid in the decomposition of hydrocarbons. Nucleation and growth of graphitic layers on PSi exhibits striking similarity to catalytic growth on nickel surfaces, involving temperature dependent surface and subsurface diffusion of carbon. Lastly, this work elucidates how the nanoscale properties of silicon can be exploited to yield catalytic properties distinguished from bulk silicon, opening an important avenue to engineer catalytic interfaces combining the two most technologically important materials for modern applications—silicon and nanoscale carbons.« less

  9. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    NASA Astrophysics Data System (ADS)

    Crowe, Jacob Dillon

    , alkaline hydrogen peroxide and liquid hot water pretreatments were shown to alter structural properties impacting nanoscale porosity in corn stover. Delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity, with subsequent cell wall swelling resulting in increased nanoscale porosity and improved enzymatic hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 A dextran probe within the cell wall was found to be positively correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields. In the third study, the effect of altered xylan content and structure was investigated in irregular xylem (irx) Arabidopsis thaliana mutants to understand the role xylan plays in secondary cell wall development and organization. Higher xylan extractability and lower cellulose crystallinity observed in irx9 and irx15 irx15-L mutants compared to wild type indicated altered xylan integration into the secondary cell wall. Nanoscale cell wall organization observed using multiple microscopy techniques was impacted to some extent in all irx mutants, with disorganized cellulose microfibril layers in sclerenchyma secondary cell walls likely resulting from irregular xylan structure and content. Irregular secondary cell wall microfibril layers showed heterogeneous nanomechanical properties compared to wild type, which translated to mechanical deficiencies observed in stem tensile tests. These results suggest nanoscale defects in cell wall strength can correspond to macroscale phenotypes.

  10. Coherent Manipulation of Phonons at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, Shangjie; Ouyang, Min

    Phonons play a key role in almost every physical process, including for example dephasing phenomena of electronic quantum states, electric and heat transports. Therefore, understanding and even manipulating phonons represent a pre-requisite for tailoring phonons-mediated physical processes. In this talk, we will first present how to employ ultrafast optical spectroscopy to probe acoustic phonon modes in colloidal metallic nanoparticles. Furthermore, we have developed various phonon manipulation schemes that can be achieved by a train of optical pulses in time domain to allow selective control of phonon modes. Our theoretical modeling and simulation demonstrates an excellent agreement with experimental results, thus providing a future guideline on more complex phononic control at the nanoscale.

  11. An evaluation method for nanoscale wrinkle

    NASA Astrophysics Data System (ADS)

    Liu, Y. P.; Wang, C. G.; Zhang, L. M.; Tan, H. F.

    2016-06-01

    In this paper, a spectrum-based wrinkling analysis method via two-dimensional Fourier transformation is proposed aiming to solve the difficulty of nanoscale wrinkle evaluation. It evaluates the wrinkle characteristics including wrinkling wavelength and direction simply using a single wrinkling image. Based on this method, the evaluation results of nanoscale wrinkle characteristics show agreement with the open experimental results within an error of 6%. It is also verified to be appropriate for the macro wrinkle evaluation without scale limitations. The spectrum-based wrinkling analysis is an effective method for nanoscale evaluation, which contributes to reveal the mechanism of nanoscale wrinkling.

  12. Unique Nanoparticle Properties Confound Fluorescent Based Assays Widely Employed in Their In Vitro Toxicity Testing and Ranking

    EPA Science Inventory

    Nanomaterials are a diverse collection of novel materials that exhibit at least one dimension less than 100 nm and display unique chemical and physical properties due to their nanoscale size. An emphasis has been put on developing high throughput screening (HTS) assays to charac...

  13. Endocytosis of Nanoscale Systems for Cancer Treatments.

    PubMed

    Chen, Kai; Li, Xue; Zhu, Hongyan; Gong, Qiyong; Luo, Kui

    2017-04-28

    Advances of nanoscale systems for cancer treatment have been involved in enabling highly regulated site-specific localization to sub cellular organelles hidden beneath cell membranes. Thus far, the cellular entry of these nanoscale systems has been not fully understood. Endocytosisis a form of active transport in which cell transports elected extracellular molecules (such as proteins, viruses, micro-organisms and nanoscale systems) are allowed into cell interiors by engulfing them in an energy-dependent process. This process appears at the plasma membrane surface and contains internalization of the cell membrane as well as the membrane proteins and lipids of cell. There are multiform pathways of endocytosis for nanoscale systems. Further comprehension for the mechanisms of endocytosis is achieved with a combination of efficient genetic manipulations, cell dynamic imaging, and chemical endocytosis inhibitors. This review provides an account of various endocytic pathways, itemizes current methods to study endocytosis of nanoscale systems, discusses some factors associated with cellular uptake for nanoscale systems and introduces the trafficking behavior for nanoscale systems with active targeting. An insight into the endocytosis mechanism is urgent and significant for developing safe and efficient nanoscale systems for cancer diagnosis and therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Modelling of the Thermo-Physical and Physical Properties for Solidification of Al-Alloys

    NASA Astrophysics Data System (ADS)

    Saunders, N.; Li, X.; Miodownik, A. P.; Schillé, J.-P.

    The thermo-physical and physical properties of the liquid and solid phases are critical components in casting simulations. Such properties include the fraction solid transformed, enthalpy release, thermal conductivity, volume and density, all as a function of temperature. Due to the difficulty in experimentally determining such properties at solidification temperatures, little information exists for multi-component alloys. As part of the development of a new computer program for modelling of materials properties (JMatPro) extensive work has been carried out on the development of sound, physically based models for these properties. Wide ranging results will presented for Al-based alloys, which will include more detailed information concerning the density change of the liquid that intrinsically occurs during solidification due to its change in composition.

  15. Tunable charge transfer properties in metal-phthalocyanine heterojunctions.

    PubMed

    Siles, P F; Hahn, T; Salvan, G; Knupfer, M; Zhu, F; Zahn, D R T; Schmidt, O G

    2016-04-28

    Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin.

  16. Nanoscale Surface Modifications of Orthopaedic Implants: State of the Art and Perspectives

    PubMed Central

    Staruch, RMT; Griffin, MF; Butler, PEM

    2016-01-01

    Background: Orthopaedic implants such as the total hip or total knee replacement are examples of surgical interventions with postoperative success rates of over 90% at 10 years. Implant failure is associated with wear particles and pain that requires surgical revision. Improving the implant - bone surface interface is a key area for biomaterial research for future clinical applications. Current implants utilise mechanical, chemical or physical methods for surface modification. Methods: A review of all literature concerning the nanoscale surface modification of orthopaedic implant technology was conducted. Results: The techniques and fabrication methods of nanoscale surface modifications are discussed in detail, including benefits and potential pitfalls. Future directions for nanoscale surface technology are explored. Conclusion: Future understanding of the role of mechanical cues and protein adsorption will enable greater flexibility in surface control. The aim of this review is to investigate and summarise the current concepts and future directions for controlling the implant nanosurface to improve interactions. PMID:28217214

  17. Nanoscale wear as a stress-assisted chemical reaction

    NASA Astrophysics Data System (ADS)

    Jacobs, Tevis D. B.; Carpick, Robert W.

    2013-02-01

    Wear of sliding contacts leads to energy dissipation and device failure, resulting in massive economic and environmental costs. Typically, wear phenomena are described empirically, because physical and chemical interactions at sliding interfaces are not fully understood at any length scale. Fundamental insights from individual nanoscale contacts are crucial for understanding wear at larger length scales, and to enable reliable nanoscale devices, manufacturing and microscopy. Observable nanoscale wear mechanisms include fracture and plastic deformation, but recent experiments and models propose another mechanism: wear via atom-by-atom removal (`atomic attrition'), which can be modelled using stress-assisted chemical reaction kinetics. Experimental evidence for this has so far been inferential. Here, we quantitatively measure the wear of silicon--a material relevant to small-scale devices--using in situ transmission electron microscopy. We resolve worn volumes as small as 25 +/- 5 nm3, a factor of 103 lower than is achievable using alternative techniques. Wear of silicon against diamond is consistent with atomic attrition, and inconsistent with fracture or plastic deformation, as shown using direct imaging. The rate of atom removal depends exponentially on stress in the contact, as predicted by chemical rate kinetics. Measured activation parameters are consistent with an atom-by-atom process. These results, by direct observation, establish atomic attrition as the primary wear mechanism of silicon in vacuum at low loads.

  18. Simulations of Metallic Nanoscale Structures

    NASA Astrophysics Data System (ADS)

    Jacobsen, Karsten W.

    2003-03-01

    Density-functional-theory calculations can be used to understand and predict materials properties based on their nanoscale composition and structure. In combination with efficient search algorithms DFT can furthermore be applied in the nanoscale design of optimized materials. The first part of the talk will focus on two different types of nanostructures with an interesting interplay between chemical activity and conducting states. MoS2 nanoclusters are known for their catalyzing effect in the hydrodesulfurization process which removes sulfur-containing molecules from oil products. MoS2 is a layered material which is insulating. However, DFT calculations indicates the exsistence of metallic states at some of the edges of MoS2 nanoclusters, and the calculations show that the conducting states are not passivated by for example the presence of hydrogen gas. The edge states may play an important role for the chemical activity of MoS_2. Metallic nanocontacts can be formed during the breaking of a piece of metal, and atomically thin structures with conductance of only a single quantum unit may be formed. Such open metallic structures are chemically very active and susceptible to restructuring through interactions with molecular gases. DFT calculations show for example that atomically thin gold wires may incorporate oxygen atoms forming a new type of metallic nanowire. Adsorbates like hydrogen may also affect the conductance. In the last part of the talk I shall discuss the possibilities for designing alloys with optimal mechanical properties based on a combination of DFT calculations with genetic search algorithms. Simulaneous optimization of several parameters (stability, price, compressibility) is addressed through the determination of Pareto optimal alloy compositions within a large database of more than 64000 alloys.

  19. Nano-scale processes behind ion-beam cancer therapy

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  20. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    PubMed

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and

  1. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  2. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...

  3. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...

  4. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...

  5. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...

  6. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...

  7. Nanoscale growth twins in sputtered metal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Amit; Anderoglu, Osman; Hoagland, Richard G

    2008-01-01

    We review recent studies on the mechanical properties of sputtered Cu and 330 stainless steel films with {l_brace}1 1 1{r_brace} nanoscale growth twins preferentially oriented perpendicular to growth direction. The mechanisms of formation of growth twins during sputtering and the deformation mechanisms that enable usually high strengths in nanotwinned structures are highlighted. Growth twins in sputtered films possess good thermal stability at elevated temperature, providing an approach to extend the application of high strength nanostructured metals to higher temperatures.

  8. Physical properties of organic soils. Chapter 5.

    Treesearch

    Elon S. Verry; Don H. Boelter; Juhani Paivanen; Dale S. Nichols; Tom Malterer; Avi Gafni

    2011-01-01

    Compared with research on mineral soils, the study of the physical properties of organic soils in the United States is relatively new. A comprehensive series of studies on peat physical properties were conducted by Don Boelter (1959-1975), first at the Marcell Experimental Forest (MEF) and later throughout the northern Lakes States to investigate how to express bulk...

  9. Nanoscale Correlated Disorder in Out-of-Equilibrium Myelin Ultrastructure.

    PubMed

    Campi, Gaetano; Di Gioacchino, Michael; Poccia, Nicola; Ricci, Alessandro; Burghammer, Manfred; Ciasca, Gabriele; Bianconi, Antonio

    2018-01-23

    Ultrastructural fluctuations at nanoscale are fundamental to assess properties and functionalities of advanced out-of-equilibrium materials. We have taken myelin as a model of supramolecular assembly in out-of-equilibrium living matter. Myelin sheath is a simple stable multilamellar structure of high relevance and impact in biomedicine. Although it is known that myelin has a quasi-crystalline ultrastructure, there is no information on its fluctuations at nanoscale in different states due to limitations of the available standard techniques. To overcome these limitations, we have used scanning micro X-ray diffraction, which is a unique non-invasive probe of both reciprocal and real space to visualize statistical fluctuations of myelin order of the sciatic nerve of Xenopus laevis. The results show that the ultrastructure period of the myelin is stabilized by large anticorrelated fluctuations at nanoscale, between hydrophobic and hydrophilic layers. The ratio between the total thickness of hydrophilic and hydrophobic layers defines the conformational parameter, which describes the different states of myelin. Our key result is that myelin in its out-of-equilibrium functional state fluctuates point-to-point between different conformations showing a correlated disorder described by a Levy distribution. As the system approaches the thermodynamic equilibrium in an aged state, the disorder loses its correlation degree and the structural fluctuation distribution changes to Gaussian. In a denatured state at low pH, it changes to a completely disordered stage. Our results aim to clarify the degradation mechanism in biological systems by associating these states with ultrastructural dynamic fluctuations at nanoscale.

  10. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    NASA Astrophysics Data System (ADS)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is

  11. On the relationship between the dynamic behavior and nanoscale staggered structure of the bone

    NASA Astrophysics Data System (ADS)

    Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei

    2015-05-01

    Bone, a typical load-bearing biological material, composed of ordinary base materials such as organic protein and inorganic mineral arranged in a hierarchical architecture, exhibits extraordinary mechanical properties. Up to now, most of previous studies focused on its mechanical properties under static loading. However, failure of the bone occurs often under dynamic loading. An interesting question is: Are the structural sizes and layouts of the bone related or even adapted to the functionalities demanded by its dynamic performance? In the present work, systematic finite element analysis was performed on the dynamic response of nanoscale bone structures under dynamic loading. It was found that for a fixed mineral volume fraction and unit cell area, there exists a nanoscale staggered structure at some specific feature size and layout which exhibits the fastest attenuation of stress waves. Remarkably, these specific feature sizes and layouts are in excellent agreement with those experimentally observed in the bone at the same scale, indicating that the structural size and layout of the bone at the nanoscale are evolutionarily adapted to its dynamic behavior. The present work points out the importance of dynamic effect on the biological evolution of load-bearing biological materials.

  12. Physical properties of hydrate‐bearing sediments

    USGS Publications Warehouse

    Waite, William F.; Santamarina, J.C.; Cortes, D.D.; Dugan, Brandon; Espinoza, D.N.; Germaine, J.; Jang, J.; Jung, J.W.; Kneafsey, T.J.; Shin, H.; Soga, K.; Winters, William J.; Yun, T.S.

    2009-01-01

    Methane gas hydrates, crystalline inclusion compounds formed from methane and water, are found in marine continental margin and permafrost sediments worldwide. This article reviews the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate‐bearing sediments. Formation phenomena include pore‐scale habit, solubility, spatial variability, and host sediment aggregate properties. Physical properties include thermal properties, permeability, electrical conductivity and permittivity, small‐strain elastic P and S wave velocities, shear strength, and volume changes resulting from hydrate dissociation. The magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrate‐bearing sediments to changes in mechanical, thermal, or chemical boundary conditions. These predictions are vital for mitigating borehole, local, and regional slope stability hazards; optimizing recovery techniques for extracting methane from hydrate‐bearing sediments or sequestering carbon dioxide in gas hydrate; and evaluating the role of gas hydrate in the global carbon cycle.

  13. Facile approach to fabricate waterborne polyaniline nanocomposites with environmental benignity and high physical properties

    NASA Astrophysics Data System (ADS)

    Wang, Haihua; Wen, Huan; Hu, Bin; Fei, Guiqiang; Shen, Yiding; Sun, Liyu; Yang, Dong

    2017-03-01

    Waterborne polyaniline (PANI) dispersion has got extensive attention due to its environmental friendliness and good processability, whereas the storage stability and mechanical property have been the challenge for the waterborne PANI composites. Here we prepare for waterborne PANI dispersion through the chemical graft polymerisation of PANI into epichlorohydrin modified poly (vinyl alcohol) (EPVA). In comparison with waterborne PANI dispersion prepared through physical blend and in situ polymerisation, the storage stability of PANI-g-EPVA dispersion is greatly improved and the dispersion keeps stable for one year. In addition, the as-prepared PANI-g-EPVA film displays more uniform and smooth morphology, as well as enhanced phase compatibility. PANI is homogeneously distributed in the EPVA matrix on the nanoscale. PANI-g-EPVA displays different morphology at different aniline content. The electrical conductivity corresponds to 7.3 S/cm when only 30% PANI is incorporated into the composites, and then increases up to 20.83 S/cm with further increase in the aniline content. Simultaneously, the tensile strength increases from 35 MPa to 64 MPa. The as-prepared PANI-g-EPVA dispersion can be directly used as the conductive ink or coatings for cellulose fibre paper to prepare flexible conductive paper with high conductivity and mechanical property, which is also suitable for large scalable production.

  14. Introduction to physical properties and elasticity models: Chapter 20

    USGS Publications Warehouse

    Dvorkin, Jack; Helgerud, Michael B.; Waite, William F.; Kirby, Stephen H.; Nur, Amos

    2003-01-01

    Estimating the in situ methane hydrate volume from seismic surveys requires knowledge of the rock physics relations between wave speeds and elastic moduli in hydrate/sediment mixtures. The elastic moduli of hydrate/sediment mixtures depend on the elastic properties of the individual sedimentary particles and the manner in which they are arranged. In this chapter, we present some rock physics data currently available from literature. The unreferenced values in Table I were not measured directly, but were derived from other values in Tables I and II using standard relationships between elastic properties for homogeneous, isotropic material. These derivations allow us to extend the list of physical property estimates, but at the expense of introducing uncertainties due to combining property values measured under different physical conditions. This is most apparent in the case of structure II (sII) hydrate for which very few physical properties have been measured under identical conditions.

  15. Modeling of Stiffness and Strength of Bone at Nanoscale.

    PubMed

    Abueidda, Diab W; Sabet, Fereshteh A; Jasiuk, Iwona M

    2017-05-01

    Two distinct geometrical models of bone at the nanoscale (collagen fibril and mineral platelets) are analyzed computationally. In the first model (model I), minerals are periodically distributed in a staggered manner in a collagen matrix while in the second model (model II), minerals form continuous layers outside the collagen fibril. Elastic modulus and strength of bone at the nanoscale, represented by these two models under longitudinal tensile loading, are studied using a finite element (FE) software abaqus. The analysis employs a traction-separation law (cohesive surface modeling) at various interfaces in the models to account for interfacial delaminations. Plane stress, plane strain, and axisymmetric versions of the two models are considered. Model II is found to have a higher stiffness than model I for all cases. For strength, the two models alternate the superiority of performance depending on the inputs and assumptions used. For model II, the axisymmetric case gives higher results than the plane stress and plane strain cases while an opposite trend is observed for model I. For axisymmetric case, model II shows greater strength and stiffness compared to model I. The collagen-mineral arrangement of bone at nanoscale forms a basic building block of bone. Thus, knowledge of its mechanical properties is of high scientific and clinical interests.

  16. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS 2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearlymore » commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS 2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW! NCCDW transition.« less

  17. Nanoscale potentiometry.

    PubMed

    Bakker, Eric; Pretsch, Ernö

    2008-01-01

    Potentiometric sensors share unique characteristics that set them apart from other electrochemical sensors. Potentiometric nanoelectrodes have been reported and successfully used for many decades, and we review these developments. Current research chiefly focuses on nanoscale films at the outer or the inner side of the membrane, with outer layers for increasing biocompatibility, expanding the sensor response, or improving the limit of detection (LOD). Inner layers are mainly used for stabilizing the response and eliminating inner aqueous contacts or undesired nanoscale layers of water. We also discuss the ultimate detectability of ions with such sensors and the power of coupling the ultra-low LODs of ion-selective electrodes with nanoparticle labels to give attractive bioassays that can compete with state-of-the-art electrochemical detection.

  18. Controlling high-throughput manufacturing at the nano-scale

    NASA Astrophysics Data System (ADS)

    Cooper, Khershed P.

    2013-09-01

    Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.

  19. Nanoscale Strontium Titanate Sheets and Crystals

    NASA Astrophysics Data System (ADS)

    Tilka, Jack Andrew

    The physical properties of materials are dominated by their structure and composition. Insight into the structure of complex oxide materials has the potential to improve our understanding and eventually control of their physical properties. This PhD thesis reports the development of characterization and fabrication techniques relevant to improving the scientific understanding of complex oxide materials. The work presented here has two components. I report a way to use ideas that were originally developed in semiconductor processing to control the elastic strain state and crystallization process of the model complex oxide SrTiO3. An additional component is an important series of advances in the analysis of diffraction patterns acquired with focused x-ray nanobeams. The fabrication and characterization of nanoscale SrTiO3 has been experimentally shown to allow the introduction of elastic strain into SrTiO3. The creation of thin SrTiO3 crystals from (001)-oriented SrTiO3 bulk single crystals using focused ion beam milling techniques yields sheets with submicron thickness and arbitrary orientation within the (001) plane. Synchrotron x-ray nanodiffraction experiments show that the SrTiO 3 sheets have rocking curves with angular widths less than 0.02°. These widths are less than a factor of two larger than bulk SrTiO3, which shows that the sheets are suitable substrates for epitaxial thin film growth. A precisely selected elastic strain can be introduced into the SrTiO 3 sheets using a silicon nitride stressor layer. Synchrotron x-ray nanodiffraction studies show that the strain introduced in the SrTiO3 sheets is on the order of 10-4, matching the predictions of an elastic model. This approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect not achievable in heteroepitaxy on rigid substrates. An additional fabrication technique is also evaluated here based on the crystallization of Sr

  20. Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops

    NASA Astrophysics Data System (ADS)

    Murphy, Andrew; Averin, Dmitri V.; Bezryadin, Alexey

    2017-06-01

    The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore’s law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation.

  1. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-03-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future

  2. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.

    PubMed

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-12-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future

  3. Vertical Silicon Nanowire Field Effect Transistors with Nanoscale Gate-All-Around

    NASA Astrophysics Data System (ADS)

    Guerfi, Youssouf; Larrieu, Guilhem

    2016-04-01

    Nanowires are considered building blocks for the ultimate scaling of MOS transistors, capable of pushing devices until the most extreme boundaries of miniaturization thanks to their physical and geometrical properties. In particular, nanowires' suitability for forming a gate-all-around (GAA) configuration confers to the device an optimum electrostatic control of the gate over the conduction channel and then a better immunity against the short channel effects (SCE). In this letter, a large-scale process of GAA vertical silicon nanowire (VNW) MOSFETs is presented. A top-down approach is adopted for the realization of VNWs with an optimum reproducibility followed by thin layer engineering at nanoscale. Good overall electrical performances were obtained, with excellent electrostatic behavior (a subthreshold slope (SS) of 95 mV/dec and a drain induced barrier lowering (DIBL) of 25 mV/V) for a 15-nm gate length. Finally, a first demonstration of dual integration of n-type and p-type VNW transistors for the realization of CMOS inverter is proposed.

  4. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  5. Physical-chemical property based sequence motifs and methods regarding same

    DOEpatents

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  6. Structure and physical properties of silkworm cocoons

    PubMed Central

    Chen, Fujia; Porter, David; Vollrath, Fritz

    2012-01-01

    Silkworm cocoons have evolved a wide range of different structures and combinations of physical and chemical properties in order to cope with different threats and environmental conditions. We present our observations and measurements on 25 diverse types of cocoons in a first attempt to correlate physical properties with the structure and morphology of the cocoons. These two architectural parameters appear to be far more important than the material properties of the silk fibres themselves. We consider tensile and compressive mechanical properties and gas permeation of the cocoon walls, and in each case identify mechanisms or models that relate these properties to cocoon structure, usually based upon non-woven fibre composites. These properties are of relevance also for synthetic non-woven composite materials and our studies will help formulate bio-inspired design principles for new materials. PMID:22552916

  7. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...

  8. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...

  9. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...

  10. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...

  11. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...

  12. Bio-Organic Nanotechnology: Using Proteins and Synthetic Polymers for Nanoscale Devices

    NASA Technical Reports Server (NTRS)

    Molnar, Linda K.; Xu, Ting; Trent, Jonathan D.; Russell, Thomas P.

    2003-01-01

    While the ability of proteins to self-assemble makes them powerful tools in nanotechnology, in biological systems protein-based structures ultimately depend on the context in which they form. We combine the self-assembling properties of synthetic diblock copolymers and proteins to construct intricately ordered, three-dimensional polymer protein structures with the ultimate goal of forming nano-scale devices. This hybrid approach takes advantage of the capabilities of organic polymer chemistry to build ordered structures and the capabilities of genetic engineering to create proteins that are selective for inorganic or organic substrates. Here, microphase-separated block copolymers coupled with genetically engineered heat shock proteins are used to produce nano-scale patterning that maximizes the potential for both increased structural complexity and integrity.

  13. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.

    PubMed

    Efremov, Yuri M; Wang, Wen-Horng; Hardy, Shana D; Geahlen, Robert L; Raman, Arvind

    2017-05-08

    Force-displacement (F-Z) curves are the most commonly used Atomic Force Microscopy (AFM) mode to measure the local, nanoscale elastic properties of soft materials like living cells. Yet a theoretical framework has been lacking that allows the post-processing of F-Z data to extract their viscoelastic constitutive parameters. Here, we propose a new method to extract nanoscale viscoelastic properties of soft samples like living cells and hydrogels directly from conventional AFM F-Z experiments, thereby creating a common platform for the analysis of cell elastic and viscoelastic properties with arbitrary linear constitutive relations. The method based on the elastic-viscoelastic correspondence principle was validated using finite element (FE) simulations and by comparison with the existed AFM techniques on living cells and hydrogels. The method also allows a discrimination of which viscoelastic relaxation model, for example, standard linear solid (SLS) or power-law rheology (PLR), best suits the experimental data. The method was used to extract the viscoelastic properties of benign and cancerous cell lines (NIH 3T3 fibroblasts, NMuMG epithelial, MDA-MB-231 and MCF-7 breast cancer cells). Finally, we studied the changes in viscoelastic properties related to tumorigenesis including TGF-β induced epithelial-to-mesenchymal transition on NMuMG cells and Syk expression induced phenotype changes in MDA-MB-231 cells.

  14. Physical properties of evaporite minerals

    USGS Publications Warehouse

    Robertson, Eugene C.

    1962-01-01

    The data in the following tables were abstracted from measurements of physical properties of evaporite minerals or of equivalent synthetic compounds. The compounds considered are the halide and sulfate salts which supposedly precipitated from evaporating ocean water and which form very extensive and thick "rock salt" beds. These beds are composed almost entirely of NaCl. In places where the beds are deeply buried and where fractures occur in the overlying rocks, the salt is plastically extruded upward as in a pipe to form the "salt domes". Most of the tables are for NaCl, both the natural (halite) and the synthetic salt, polycrystalline and single crystals. These measurements have been collected for use 1) in studies on storage of radioactive wastes in salt domes or beds, 2) in calculations concerned with nuclear tests in salt domes and beds, and 3) in studies of phenomena in salt of geologic interest. Rather than an exhaustive compilation of physical property measurements, there tables represent a summary of data from accessible sources. As limitations of time have presented making a more systematic and comprehensive selection, the data given may seem arbitrarily chosen. Some of the data listed are old, and newer, more accurate data are undoubtedly available. Halite (an synthetic NaCl) has been very thoroughly studied because of its relatively simple and highly symmetrical crystal structure, its easy availability naturally or synthetically, both in single crystals and polycrystalline, its useful and scientifically interesting properties, and its role as a compound of almost purely ionic bonding. The measurements of NaCl in the tables, however, represent only a small part of the total number of observations; discrimination was necessary to keep the size of the tabulations manageable. The physical properties of the evaporite minerals other than halite and sylvite have received only desultory attention of experiementalists, and appear in only a few tables. The

  15. A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures.

    PubMed

    Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge

    2014-03-24

    Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.

  16. A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures

    NASA Astrophysics Data System (ADS)

    Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge

    2014-03-01

    Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.

  17. Electrophoretic Separation of Single Particles Using Nanoscale Thermoplastic Columns.

    PubMed

    Weerakoon-Ratnayake, Kumuditha M; Uba, Franklin I; Oliver-Calixte, Nyoté J; Soper, Steven A

    2016-04-05

    Phenomena associated with microscale electrophoresis separations cannot, in many cases, be applied to the nanoscale. Thus, understanding the electrophoretic characteristics associated with the nanoscale will help formulate relevant strategies that can optimize the performance of separations carried out on columns with at least one dimension below 150 nm. Electric double layer (EDL) overlap, diffusion, and adsorption/desorption properties and/or dielectrophoretic effects giving rise to stick/slip motion are some of the processes that can play a role in determining the efficiency of nanoscale electrophoretic separations. We investigated the performance characteristics of electrophoretic separations carried out in nanoslits fabricated in poly(methyl methacrylate), PMMA, devices. Silver nanoparticles (AgNPs) were used as the model system with tracking of their transport via dark field microscopy and localized surface plasmon resonance. AgNPs capped with citrate groups and the negatively charged PMMA walls (induced by O2 plasma modification of the nanoslit walls) enabled separations that were not apparent when these particles were electrophoresed in microscale columns. The separation of AgNPs based on their size without the need for buffer additives using PMMA nanoslit devices is demonstrated herein. Operational parameters such as the electric field strength, nanoslit dimensions, and buffer composition were evaluated as to their effects on the electrophoretic performance, both in terms of efficiency (plate numbers) and resolution. Electrophoretic separations performed at high electric field strengths (>200 V/cm) resulted in higher plate numbers compared to lower fields due to the absence of stick/slip motion at the higher electric field strengths. Indeed, 60 nm AgNPs could be separated from 100 nm particles in free solution using nanoscale electrophoresis with 100 μm long columns.

  18. Cell-specific STORM superresolution imaging reveals nanoscale organization of cannabinoid signaling

    PubMed Central

    Szabó, Szilárd I.; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G.; Henstridge, Christopher M.; Balla, Gyula Y.; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István

    2014-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell-type-, and subcellular compartment-specific manner. We therefore developed a novel approach combining cell-specific physiological and anatomical characterization with superresolution imaging, and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically-projecting GABAergic interneurons possess increased CB1 receptor number, active-zone complexity, and receptor/effector ratio compared to dendritically-projecting interneurons, in agreement with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ9-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked dramatic CB1-downregulation in a dose-dependent manner. Full receptor recovery required several weeks after cessation of Δ9-tetrahydrocannabinol treatment. These findings demonstrate that cell-type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits, and identify novel molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction. PMID:25485758

  19. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    EPA Science Inventory

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  20. 41 CFR 109-1.5107 - Physical protection of personal property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...

  1. 41 CFR 109-1.5107 - Physical protection of personal property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...

  2. 41 CFR 109-1.5107 - Physical protection of personal property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...

  3. 41 CFR 109-1.5107 - Physical protection of personal property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...

  4. 41 CFR 109-1.5107 - Physical protection of personal property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...

  5. Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence

    PubMed Central

    Ma, Wen-Long; Wolfowicz, Gary; Zhao, Nan; Li, Shu-Shen; Morton, John J.L.; Liu, Ren-Bao

    2014-01-01

    Central spin decoherence caused by nuclear spin baths is often a critical issue in various quantum computing schemes, and it has also been used for sensing single-nuclear spins. Recent theoretical studies suggest that central spin decoherence can act as a probe of many-body physics in spin baths; however, identification and detection of many-body correlations of nuclear spins in nanoscale systems are highly challenging. Here, taking a phosphorus donor electron spin in a 29Si nuclear spin bath as our model system, we discover both theoretically and experimentally that many-body correlations in nanoscale nuclear spin baths produce identifiable signatures in decoherence of the central spin under multiple-pulse dynamical decoupling control. We demonstrate that under control by an odd or even number of pulses, the central spin decoherence is principally caused by second- or fourth-order nuclear spin correlations, respectively. This study marks an important step toward studying many-body physics using spin qubits. PMID:25205440

  6. Tip-enhanced ablation and ionization mass spectrometry for nanoscale chemical analysis

    PubMed Central

    Liang, Zhisen; Zhang, Shudi; Li, Xiaoping; Wang, Tongtong; Huang, Yaping; Hang, Wei; Yang, Zhilin; Li, Jianfeng; Tian, Zhongqun

    2017-01-01

    Spectroscopic methods with nanoscale lateral resolution are becoming essential in the fields of physics, chemistry, geology, biology, and materials science. However, the lateral resolution of laser-based mass spectrometry imaging (MSI) techniques has so far been limited to the microscale. This report presents the development of tip-enhanced ablation and ionization time-of-flight mass spectrometry (TEAI-TOFMS), using a shell-isolated apertureless silver tip. The TEAI-TOFMS results indicate the capability and reproducibility of the system for generating nanosized craters and for acquiring the corresponding mass spectral signals. Multi-elemental analysis of nine inorganic salt residues and MSI of a potassium salt residue pattern at a 50-nm lateral resolution were achieved. These results demonstrate the opportunity for the distribution of chemical compositions at the nanoscale to be visualized. PMID:29226250

  7. Self-Assembled Epitaxial Au–Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials

    DOE PAGES

    Li, Leigang; Sun, Liuyang; Gomez-Diaz, Juan Sebastian; ...

    2016-05-17

    Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal–oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned goldmore » (Au) nanopillars (~20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. In conclusion, our studies suggest that these self-assembled metal–oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales.« less

  8. Dynamics of Bulk vs. Nanoscale WS2: Local Strain and Charging Effects

    NASA Astrophysics Data System (ADS)

    Musfeldt, J. L.; Brown, S.; Luttrell, R. D.; Cao, J.; Rosentsveig, R.; Tenne, R.

    2006-03-01

    We measured the infrared vibrational properties of bulk and nanoparticle WS2 in order to investigate the structure- property relations in these novel materials. In addition to the symmetry-breaking effects of local strain, nanoparticle curvature modifies the local charging environment of the bulk material. Performing a charge analysis on the xy-polarized E1u vibrational mode, we find an approximate 1.5:1 intralayer charge difference between the layered 2H material and inorganic fullerene-like (IF) nanoparticles. This effective charge difference may impact the solid-state lubrication properties of nanoscale metal dichalcogenides.

  9. Anatomy of Nanoscale Propulsion.

    PubMed

    Yadav, Vinita; Duan, Wentao; Butler, Peter J; Sen, Ayusman

    2015-01-01

    Nature supports multifaceted forms of life. Despite the variety and complexity of these forms, motility remains the epicenter of life. The applicable laws of physics change upon going from macroscales to microscales and nanoscales, which are characterized by low Reynolds number (Re). We discuss motion at low Re in natural and synthetic systems, along with various propulsion mechanisms, including electrophoresis, electrolyte diffusiophoresis, and nonelectrolyte diffusiophoresis. We also describe the newly uncovered phenomena of motility in non-ATP-driven self-powered enzymes and the directional movement of these enzymes in response to substrate gradients. These enzymes can also be immobilized to function as fluid pumps in response to the presence of their substrates. Finally, we review emergent collective behavior arising from interacting motile species, and we discuss the possible biomedical applications of the synthetic nanobots and microbots.

  10. Nanoscale chemical mapping of laser-solubilized silk

    NASA Astrophysics Data System (ADS)

    Ryu, Meguya; Kobayashi, Hanae; Balčytis, Armandas; Wang, Xuewen; Vongsvivut, Jitraporn; Li, Jingliang; Urayama, Norio; Mizeikis, Vygantas; Tobin, Mark; Juodkazis, Saulius; Morikawa, Junko

    2017-11-01

    A water soluble amorphous form of silk was made by ultra-short laser pulse irradiation and detected by nanoscale IR mapping. An optical absorption-induced nanoscale surface expansion was probed to yield the spectral response of silk at IR molecular fingerprinting wavelengths with a high  ˜ 20 nm spatial resolution defined by the tip of the probe. Silk microtomed sections of 1-5 μm in thickness were prepared for nanoscale spectroscopy and a laser was used to induce amorphisation. Comparison of silk absorbance measurements carried out by table-top and synchrotron Fourier transform IR spectroscopy proved that chemical imaging obtained at high spatial resolution and specificity (able to discriminate between amorphous and crystalline silk) is reliably achieved by nanoscale IR. Differences in absorbance and spectral line-shapes of the bands are related to the different sensitivity of the applied methods to real and imaginary parts of permittivity. A nanoscale material characterization by combining synchrotron IR radiation and nano-IR is discussed.

  11. Magnetization switching schemes for nanoscale three-terminal spintronics devices

    NASA Astrophysics Data System (ADS)

    Fukami, Shunsuke; Ohno, Hideo

    2017-08-01

    Utilizing spintronics-based nonvolatile memories in integrated circuits offers a promising approach to realize ultralow-power and high-performance electronics. While two-terminal devices with spin-transfer torque switching have been extensively developed nowadays, there has been a growing interest in devices with a three-terminal structure. Of primary importance for applications is the efficient manipulation of magnetization, corresponding to information writing, in nanoscale devices. Here we review the studies of current-induced domain wall motion and spin-orbit torque-induced switching, which can be applied to the write operation of nanoscale three-terminal spintronics devices. For domain wall motion, the size dependence of device properties down to less than 20 nm will be shown and the underlying mechanism behind the results will be discussed. For spin-orbit torque-induced switching, factors governing the threshold current density and strategies to reduce it will be discussed. A proof-of-concept demonstration of artificial intelligence using an analog spin-orbit torque device will also be reviewed.

  12. Continuum Mean-Field Theories for Molecular Fluids, and Their Validity at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Hanna, C. B.; Peyronel, F.; MacDougall, C.; Marangoni, A.; Pink, D. A.; AFMNet-NCE Collaboration

    2011-03-01

    We present a calculation of the physical properties of solid triglyceride particles dispersed in an oil phase, using atomic- scale molecular dynamics. Significant equilibrium density oscillations in the oil appear when the interparticle distance, d , becomes sufficiently small, with a global minimum in the free energy found at d ~ 1.4 nm. We compare the simulation values of the Hamaker coefficient with those of models which assume that the oil is a homogeneous continuum: (i) Lifshitz theory, (ii) the Fractal Model, and (iii) a Lennard-Jones 6-12 potential model. The last-named yields a minimum in the free energy at d ~ 0.26 nm. We conclude that, at the nanoscale, continuum Lifshitz theory and other continuum mean-field theories based on the assumption of homogeneous fluid density can lead to erroneous conclusions. CBH supported by NSF DMR-0906618. DAP supported by NSERC. This work supported by AFMNet-NCE.

  13. Uncovering New Thermal and Elastic Properties of Nanostructured Materials Using Coherent EUV Light

    NASA Astrophysics Data System (ADS)

    Hernandez Charpak, Jorge Nicolas

    Advances in nanofabrication have pushed the characteristic dimensions of nanosystems well below 100nm, where physical properties are often significantly different from their bulk counterparts, and accurate models are lacking. Critical technologies such as thermoelectrics for energy harvesting, nanoparticle-mediated thermal therapy, nano-enhanced photovoltaics, and efficient thermal management in integrated circuits depend on our increased understanding of the nanoscale. However, traditional microscopic characterization tools face fundamental limits at the nanoscale. Theoretical efforts to build a fundamental picture of nanoscale thermal dynamics lack experimental validation and still struggle to account for newly reported behaviors. Moreover, precise characterization of the elastic behavior of nanostructured systems is needed for understanding the unique physics that become apparent in small-scale systems, such as thickness-dependent or fabrication-dependent elastic properties. In essence, our ability to fabricate nanosystems has outstripped our ability to understand and characterize them. In my PhD thesis, I present the development and refinement of coherent extreme ultraviolet (EUV) nanometrology, a novel tool used to probe material properties at the intrinsic time- and length-scales of nanoscale dynamics. By extending ultrafast photoacoustic and thermal metrology techniques to very short probing wavelengths using tabletop coherent EUV beams from high-harmonic upconversion (HHG) of femtosecond lasers, coherent EUV nanometrology allows for a new window into nanoscale physics, previously unavailable with traditional techniques. Using this technique, I was able to probe both thermal and acoustic dynamics in nanostructured systems with characteristic dimensions below 50nm with high temporal (sub-ps) and spatial (<10pm vertical) resolution, including the smallest heat sources probed (20nm) and thinnest film (10.9nm) fully mechanically characterized to date. By probing

  14. Nanoscale electrical characteristics of metal (Au, Pd)-graphene-metal (Cu) contacts

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Meli, G.; Grimaldi, M. G.

    2016-01-01

    Free-standing graphene presents exceptional physical properties (as a high carrier mobility) making it the ideal candidate for the next generation nanoelectronics. However, when graphene layers are inserted in real electronics devices, metal contacting is required. The metal-graphene interaction significantly affects the graphene electrical properties, drastically changing its behavior with respect to the free-standing configuration. So, this work presents an experimental study on the nanoscale electric characteristics of metal/graphene/metal contacts. In particular, starting from single-layer graphene grown on Cu foil we deposited on the graphene surface two different metal films (Au or Pd) and the Au/graphene/Cu and Pd/graphene/Cu current-voltage characteristics are acquired, on the nanometric scale, by the conductive atomic force microscopy. Both systems presented a current voltage rectifying behavior. However, the Au/graphene/Cu system conducts significantly at negative applied bias (graphene behaves as a p-type semiconductor in a meta/semiconductor contact), while in the Pd/graphene/Cu at positive applied bias (graphene behaves as a n-type semiconductor in a metal/semiconductor contact). This difference is discussed on the basis of the band energy diagram at the metal/graphene interface and the modification of the graphene Fermi level due to the Au/graphene or Pd/graphene interaction.

  15. Nanoscale Morphology to Macroscopic Performance in Ultra High Molecular Weight Polyethylene Fibers

    NASA Astrophysics Data System (ADS)

    McDaniel, Preston B.

    Ultra high molecular weight polyethylene (UHMWPE) fibers are increasingly used in high -performance applications where strength, stiffness, and the ability to dissipate energy are of critical importance. Despite their use in a variety of applications, the influence of morphological features at the meso/nanoscale on the macroscopic performance of the fibers has not been well understood. There is particular interest in gaining a better understanding of the nanoscale structure-property relationships in UHMWPE fibers used in ballistics applications. In order to accurately model and predict failure in the fiber, a more complete understanding of the complex load pathways that dictate the ways in which load is transferred through the fiber, across interfaces and length scales is required. The goal of the work discussed herein is to identify key meso/nanostructural features evolved in high performance fibers and determine how these features influence the performance of the fiber through a variety of different loading mechanisms. The important structural features in high-performance UHMWPE fibers are first identified through examination of the meso/nanostructure of a series of fibers with different processing conditions. This is achieved primarily through the use of wide-angle x-ray diffraction (WAXD) and atomic force microscopy (AFM). Analysis of AFM images and WAXD data allows identification and quantifications of important structural features at these length scales. Key meso/nanostructural features are then examined with respect to their influence on the transverse compression behavior of single fibers. Through post-mortem AFM analysis of samples at incremental compressive strains, the evolution of damage is examined and compared with macroscopic fiber mechanical response. It was found that collapse of mesoscale voids, followed by nanoscale fibrillation and reorganization of a fibrillar network has a significant influence on the mechanical response of the fiber. Through

  16. Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications.

    PubMed

    Rosenman, G; Beker, P; Koren, I; Yevnin, M; Bank-Srour, B; Mishina, E; Semin, S

    2011-02-01

    Synthetic peptide monomers can self-assemble into PNM such as nanotubes, nanospheres, hydrogels, etc. which represent a novel class of nanomaterials. Molecular recognition processes lead to the formation of supramolecular PNM ensembles containing crystalline building blocks. Such low-dimensional highly ordered regions create a new physical situation and provide unique physical properties based on electron-hole QC phenomena. In the case of asymmetrical crystalline structure, basic physical phenomena such as linear electro-optic, piezoelectric, and nonlinear optical effects, described by tensors of the odd rank, should be explored. Some of the PNM crystalline structures permit the existence of spontaneous electrical polarization and observation of ferroelectricity. The PNM crystalline arrangement creates highly porous nanotubes when various residues are packed into structural network with specific wettability and electrochemical properties. We report in this review on a wide research of PNM intrinsic physical properties, their electronic and optical properties related to QC effect, unique SHG, piezoelectricity and ferroelectric spontaneous polarization observed in PNT due to their asymmetric structure. We also describe PNM wettability phenomenon based on their nanoporous structure and its influence on electrochemical properties in PNM. The new bottom-up large scale technology of PNT physical vapor deposition and patterning combined with found physical effects at nanoscale, developed by us, opens the avenue for emerging nanotechnology applications of PNM in novel fields of nanophotonics, nanopiezotronics and energy storage devices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.

  17. Enhancement of Local Piezoresponse in Polymer Ferroelectrics via Nanoscale Control of Microstructure

    DOE PAGES

    Choi, Yoon-Young; Sharma, Pankaj; Phatak, Charudatta; ...

    2015-02-01

    Polymer ferroelectrics are flexible and lightweight electromechanical materials that are widely studied due to their potential application as sensors, actuators, and energy harvesters. However, one of the biggest challenges is their low piezoelectric coefficient. Here, we report a mechanical annealing effect based on local pressure induced by a nanoscale tip that enhances the local piezoresponse. This process can control the nanoscale material properties over a microscale area at room temperature. We attribute this improvement to the formation and growth of beta-phase extended chain crystals via sliding diffusion and crystal alignment along the scan axis under high mechanical stress. We believemore » that this technique can be useful for local enhancement of piezoresponse in ferroelectric polymer thin films.« less

  18. On physical property tensors invariant under line groups.

    PubMed

    Litvin, Daniel B

    2014-03-01

    The form of physical property tensors of a quasi-one-dimensional material such as a nanotube or a polymer can be determined from the point group of its symmetry group, one of an infinite number of line groups. Such forms are calculated using a method based on the use of trigonometric summations. With this method, it is shown that materials invariant under infinite subsets of line groups have physical property tensors of the same form. For line group types of a family of line groups characterized by an index n and a physical property tensor of rank m, the form of the tensor for all line group types indexed with n > m is the same, leaving only a finite number of tensor forms to be determined.

  19. Wettability of natural root mucilage studied by atomic force microscopy and contact angle: Links between nanoscale and macroscale surface properties

    NASA Astrophysics Data System (ADS)

    Kaltenbach, Robin; Diehl, Dörte; Schaumann, Gabriele E.

    2017-04-01

    Organic coatings are considered as main cause of soil water repellency (SWR). This phenomenon plays a crucial role in the rhizosphere, at the interface of plant water uptake and soil hydraulics. Still, there is little knowledge about the nanoscale properties of natural soil compounds such as root-mucilage and its mechanistic effect on wettability. In this study, dried films of natural root-mucilage from Sorghum (Sorghum sp., MOENCH) on glass substrates were studied in order to explore experimental and evaluation methods that allow to link between macroscopic wettability and nano-/microscopic surface properties in this model soil system. SWR was assessed by optical contact angle (CA) measurements. The nanostructure of topography and adhesion forces of the mucilage surfaces was revealed by atomic force microscopy (AFM) measurements in ambient air, using PeakForce Quantitative Nanomechanical Mapping (PFQNM). Undiluted mucilage formed hydrophobic films on the substrate with CA > 90° and rather homogeneous nanostructure. Contact angles showed reduced water repellency of surfaces, when concentration of mucilage was decreased by dilution. AFM height and adhesion images displayed incomplete mucilage surface coverage for diluted samples. Hole-like structures in the film frequently exhibited increased adhesion forces. Spatial analysis of the AFM data via variograms enabled a numerical description of such 'adhesion holes'. The use of geostatistical approaches in AFM studies of the complex surface structure of soil compounds was considered meaningful in view of the need of comprehensive analysis of large AFM image data sets that exceed the capability of comparative visual inspection. Furthermore, force curves measured with the AFM showed increased break-free distances and pull-off forces inside the observed 'adhesion holes', indicating enhanced capillary forces due to adsorbed water films at hydrophilic domains for ambient RH (40 ± 2 %). This offers the possibility of

  20. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling.

    PubMed

    Dudok, Barna; Barna, László; Ledri, Marco; Szabó, Szilárd I; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G; Henstridge, Christopher M; Balla, Gyula Y; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István

    2015-01-01

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell type- and subcellular compartment-specific manner. We developed a new approach to this problem by combining cell-specific physiological and anatomical characterization with super-resolution imaging and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically projecting GABAergic interneurons possessed increased CB1 receptor number, active-zone complexity and receptor/effector ratio compared with dendritically projecting interneurons, consistent with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ(9)-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked marked CB1 downregulation in a dose-dependent manner. Full receptor recovery required several weeks after the cessation of Δ(9)-tetrahydrocannabinol treatment. These findings indicate that cell type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits and identify previously unknown molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction.

  1. Azurin/CdSe-ZnS-Based Bio-Nano Hybrid Structure for Nanoscale Resistive Memory Device.

    PubMed

    Yagati, Ajay Kumar; Lee, Taek; Choi, Jeong-Woo

    2017-07-15

    In the present study, we propose a method for bio-nano hybrid formation by coupling a redox metalloprotein, Azurin, with CdSe-ZnS quantum dot for the development of a nanoscale resistive memory device. The covalent interaction between the two nanomaterials enables a strong and effective binding to form an azurin/CdSe-ZnS hybrid, and also enabled better controllability to couple with electrodes to examine the memory function properties. Morphological and optical properties were performed to confirm both hybrid formations and also their individual components. Current-Voltage (I-V) measurements on the hybrid nanostructures exhibited bistable current levels towards the memory function device, that and those characteristics were unnoticeable on individual nanomaterials. The hybrids showed good retention characteristics with high stability and durability, which is a promising feature for future nanoscale memory devices.

  2. Physical properties of five grain dust types.

    PubMed Central

    Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J

    1986-01-01

    Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less than 100 micron of whole dust; bulk density; particle density; and ash content. PMID:3709482

  3. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; Zheng, Lu; Jiang, Zhanzhi; Ganesan, Vishal; Wang, Yayu; Lai, Keji

    2018-04-01

    We report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-field microwave imaging with small distance modulation.

  4. Atomistic Design and Simulations of Nanoscale Machines and Assembly

    NASA Technical Reports Server (NTRS)

    Goddard, William A., III; Cagin, Tahir; Walch, Stephen P.

    2000-01-01

    Over the three years of this project, we made significant progress on critical theoretical and computational issues in nanoscale science and technology, particularly in:(1) Fullerenes and nanotubes, (2) Characterization of surfaces of diamond and silicon for NEMS applications, (3) Nanoscale machine and assemblies, (4) Organic nanostructures and dendrimers, (5) Nanoscale confinement and nanotribology, (6) Dynamic response of nanoscale structures nanowires (metals, tubes, fullerenes), (7) Thermal transport in nanostructures.

  5. Probing the nanoscale interaction forces and elastic properties of organic and inorganic materials using force-distance (F-D) spectroscopy

    NASA Astrophysics Data System (ADS)

    Vincent, Abhilash

    Due to their therapeutic applications such as radical scavenging, MRI contrast imaging, Photoluminescence imaging, drug delivery, etc., nanoparticles (NPs) have a significant importance in bio-nanotechnology. The reason that prevents the utilizing NPs for drug delivery in medical field is mostly due to their biocompatibility issues (incompatibility can lead to toxicity and cell death). Changes in the surface conditions of NPs often lead to NP cytotoxicity. Investigating the role of NP surface properties (surface charges and surface chemistry) on their interactions with biomolecules (Cells, protein and DNA) could enhance the current understanding of NP cytotoxicity. Hence, it is highly beneficial to the nanotechnology community to bring more attention towards the enhancement of surface properties of NPs to make them more biocompatible and less toxic to biological systems. Surface functionalization of NPs using specific ligand biomolecules have shown to enhance the protein adsorption and cellular uptake through more favorable interaction pathways. Cerium oxide NPs (CNPs also known as nanoceria) are potential antioxidants in cell culture models and understanding the nature of interaction between cerium oxide NPs and biological proteins and cells are important due to their therapeutic application (especially in site specific drug delivery systems). The surface charges and surface chemistry of CNPs play a major role in protein adsorption and cellular uptake. Hence, by tuning the surface charges and by selecting proper functional molecules on the surface, CNPs exhibiting strong adhesion to biological materials can be prepared. By probing the nanoscale interaction forces acting between CNPs and protein molecules using Atomic Force Microscopy (AFM) based force-distance (F-D) spectroscopy, the mechanism of CNP-protein adsorption and CNP cellular uptake can be understood more quantitatively. The work presented in this dissertation is based on the application of AFM in

  6. Modelling the physical properties of glasslike carbon foams

    NASA Astrophysics Data System (ADS)

    Letellier, M.; Macutkevic, J.; Bychanok, D.; Kuzhir, P.; Delgado-Sanchez, C.; Naguib, H.; Ghaffari Mosanenzadeh, S.; Fierro, V.; Celzard, A.

    2017-07-01

    In this work, model alveolar materials - carbon cellular and/or carbon reticulated foams - were produced in order to study and to model their physical properties. It was shown that very different morphologies could be obtained whereas the constituting vitreous carbon from which they were made remained exactly the same. Doing so, the physical properties of these foams were expected to depend neither on the composition nor on the carbonaceous texture but only on the porous structure, which could be tuned for the first time for having a constant pore size in a range of porosities, or a range of pore sizes at fixed porosity. The physical properties were then investigated through mechanical, acoustic, thermal and electromagnetic measurements. The results demonstrate the roles played by bulk density and cell size on all physical properties. Whereas some of the latter strongly depend on porosity and/or pore size, others are independent of pore size. It is expected that these results apply to many other kinds of rigid foams used in a broad range of different applications. The present results therefore open the route to their optimisation.

  7. Method and apparatus for determination of mechanical properties of functionally-graded materials

    DOEpatents

    Giannakopoulos, Antonios E.; Suresh, Subra

    1999-01-01

    Techniques for the determination of mechanical properties of homogenous or functionally-graded materials from indentation testing are presented. The technique is applicable to indentation on the nano-scale through the macro-scale including the geological scale. The technique involves creating a predictive load/depth relationship for a sample, providing an experimental load/depth relationship, comparing the experimental data to the predictive data, and determining a physical characteristic from the comparison.

  8. Dynamics of bulk versus nanoscale W S2 : Local strain and charging effects

    NASA Astrophysics Data System (ADS)

    Luttrell, R. D.; Brown, S.; Cao, J.; Musfeldt, J. L.; Rosentsveig, R.; Tenne, R.

    2006-01-01

    We measured the infrared vibrational properties of bulk and nanoparticle WS2 in order to investigate the structure-property relations in these materials. In addition to the symmetry-breaking effects of local strain, nanoparticle curvature modifies the local charging environment of the bulk material. Performing a charge analysis on the xy -polarized E1u vibrational mode, we find an approximate 1.5:1 intralayer charge difference between the layered 2H material and inorganic fullerene-like (IF) nanoparticles. This effective charge difference may impact the solid-state lubrication properties of nanoscale metal dichalcogenides.

  9. Swiss Atlas of PHYsical properties of Rocks (SAPHYR)

    NASA Astrophysics Data System (ADS)

    Zappone, Alba; Kissling, Eduard

    2015-04-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR), is a multi-year project, funded entirely by Swiss Commission for Geophysics (SGPK), with the aim to compile a comprehensive data set in digital form on physical properties of rocks exposed in Switzerland and surrounding regions. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public including industrial, engineering, land and resource planning companies, as well as academic institutions, or simply people interested in geology. Since the early sixties worldwide many scientists, i.e. geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. Particularly in the years in which seismic reflection and refraction crustal scale projects were investigating the deep structures of the Alps, laboratories capable to reproduce the pressure and temperature ranges of the continental crust were collecting measurements of various rock parameters on a wide variety of lithologies, developing in the meantime more and more sophisticated experimental methodologies. In recent years, the increasing interest of European Countries on non-traditional energy supply, (i.e. Deep Geothermal Energy and shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. SAPHYR aims to organize all those laboratory data into a geographically referenced database (GIS). The data refer to density, porosity, permeability, and seismic, magnetic, thermal and electric properties. In the past years, effort has been placed on collecting samples and measuring the physical properties of lithologies that were poorly documented in literature. The phase of laboratory measurements is still in progress. Recently, SAPHYR project focused towards developing

  10. Dynamics of systems on the nanoscale

    NASA Astrophysics Data System (ADS)

    Korol, Andrei V.; Solov'yov, Andrey V.

    2017-12-01

    Various aspects of the structure formation and dynamics of animate and inanimate matter on the nanoscale is a highly interdisciplinary field of rapidly emerging research interest by both experimentalists and theorists. The International Conference on Dynamics of Systems on the Nanoscale (DySoN) is the premier forum to present cutting-edge research in this field. It was established in 2010 and the most recent conference was held in Bad Ems, Germany in October of 2016. This Topical Issue presents original research results from some of the participants, who attended this conference. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  11. SAPHYR: the Swiss Atlas of PHYsical properties of Rocks

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Zappone, A. S.; Kissling, E.

    2015-12-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR) is a multi-year project, aiming to compile a comprehensive data set on physical properties of rocks exposed in Switzerland and surrounding areas. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public, such as industrial, engineering, land and resource planning companies, as well as academic institutions. Since the early sixties worldwide geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. In combination with efforts to investigate deep structure of the continental crust by controlled source seismology, laboratories capable to reproduce pressure and temperature conditions to depth of 50km and more collected measurements of various parameters on a wide variety of rock types. In recent years, the increasing interest on non-traditional energy supply, (deep geothermal energy, shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. The idea to organize those laboratory data into a geographically referenced database (GIS) is supported by the Swiss Commission for Geophysics. The data refer to density and porosity, seismic, magnetic, thermal properties, permeability and electrical properties. An effort has been placed on collecting samples and measuring the physical properties of lithologies that are poorly documented in literature. The phase of laboratory measurements is still in progress. At present SAPHYR focuses towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology, boreholes data and seismic surveys, combined with lab determined pressure and temperature derivatives. An early version of the final product is presented here.

  12. Important physical properties of peat materials

    Treesearch

    D.H. Boelter

    1968-01-01

    Peat materials from 12 bogs in northern Minnesota, U.S.A., showed significant differences in physical properties. It is pointed out that 1) these properties can be related to the hydrology of organic soils only if the soils represent undisturbed field conditions, and 2) volumetric expressions of water content are necessary to correctly evaluate the amount of water in a...

  13. The Influence of Nano-Scale Silicon Nitride Additions on the Physical and Magnetic Properties of Iron Sheathed Magnesium Boride Wires

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Cave, J.

    2006-03-01

    The enhancement of flux line pinning in magnesium boride wires is a critical issue for their future applications in devices and machines. It is well known that small size dopants can significantly influence the current densities of these materials. Here, the influence of nanometric (<30nm) silicon nitride on physical properties and current density is presented. The iron-sheathed powder in tube wires were prepared using pure magnesium and boron powders with silicon nitride additions. The wires were rolled flat and treated at up to 900 degrees C in flowing argon. SEM and XRD were used to identify phases and microstructures. Magnetization critical currents, up to several 100 of thousands A/cm2, at various temperatures and fields (5K - 20K and up to 3 tesla) show that there are competing mechanisms from chemical and flux pinning effects.

  14. Aerosol physical properties from satellite horizon inversion

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.

    1973-01-01

    The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.

  15. Some critical issues in the characterization of nanoscale thermal conductivity by molecular dynamics analysis

    NASA Astrophysics Data System (ADS)

    Ehsan Khaled, Mohammad; Zhang, Liangchi; Liu, Weidong

    2018-07-01

    The nanoscale thermal conductivity of a material can be significantly different from its value at the macroscale. Although a number of studies using the equilibrium molecular dynamics (EMD) with Green–Kubo (GK) formula have been conducted for nano-conductivity predictions, there are many problems in the analysis that have made the EMD results unreliable or misleading. This paper aims to clarify such critical issues through a thorough investigation on the effect and determination of the vital physical variables in the EMD-GK analysis, using the prediction of the nanoscale thermal conductivity of Si as an example. The study concluded that to have a reliable prediction, quantum correction, time step, simulation time, correlation time and system size are all crucial.

  16. Physical properties and moisture relations of wood

    Treesearch

    William Simpson; Anton TenWolde

    1999-01-01

    The versatility of wood is demonstrated by a wide variety of products. This variety is a result of a spectrum of desirable physical characteristics or properties among the many species of wood. In many cases, more than one property of wood is important to the end product. For example, to select a wood species for a product, the value of appearance- type properties,...

  17. [Smart drug delivery systems based on nanoscale ZnO].

    PubMed

    Huang, Xiao; Chen, Chun; Yi, Caixia; Zheng, Xi

    2018-04-01

    In view of the excellent biocompatibility as well as the low cost, nanoscale ZnO shows great potential for drug delivery application. Moreover, The charming character enable nanoscale ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make nanoscale ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on nanoscale ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive nanoscale ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of nanoscale ZnO is also discussed. Moreover, its development prospect is looked forward.

  18. Changes in physical properties of graphene oxide with thermal reduction

    NASA Astrophysics Data System (ADS)

    Pandit, Bhishma; Jo, Chang Hee; Joo, Kwan Seon; Cho, Jaehee

    2017-08-01

    Reduced graphene oxide (rGO) has attracted significant attention as an easily fabricable twodimensional material. Depending on the oxygen-containing functional groups (OFGs) in an rGO specimen, the optical and electrical properties can vary significantly, directly affecting the performance of devices in which rGO is implemented. Here, we investigated the optical and electrical properties of GO treated with various annealing (reduction) temperatures from 350 to 950 °C in H2 ambient. Using diverse characteristic tools, we found that the transmittance, nanoscale domain size, OFGs in GO and rGO, and Schottky barrier height (SBH) measured on n-type GaN are significantly influenced by the annealing temperature. The relative intensity of the defect-induced band in Raman spectroscopy showed a minimum at the annealing temperature of approximately 350 °C, before the OFGs in rGO showed vigorous changes in relative content. When the domain size of rGO reached a minimum at the annealing temperature of 650 °C, the SBH of rGO/GaN showed the maximum value of 1.07 eV.

  19. Intelligent Design of Nano-Scale Molecular Imaging Agents

    PubMed Central

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-01-01

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents. PMID:23235326

  20. Intelligent design of nano-scale molecular imaging agents.

    PubMed

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-12-12

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on-off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  1. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    PubMed Central

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields. PMID:24093494

  2. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    PubMed

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  3. Nanoscale temperature mapping in operating microelectronic devices

    DOE PAGES

    Mecklenburg, Matthew; Hubbard, William A.; White, E. R.; ...

    2015-02-05

    We report that modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit’s glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope (STEM) and electron energy loss spectroscopy (EELS), we quantified the local density via the energy of aluminum’s bulk plasmon. Rescaling density to temperature yields maps with amore » statistical precision of 3 kelvin/hertz ₋1/2, an accuracy of 10%, and nanometer-scale resolution. Lastly, many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers.« less

  4. Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction.

    PubMed

    Hung, Yun-Ting; Huang, Chen-Bin; Huang, Jer-Shing

    2012-08-27

    To enable multiple functions of plasmonic nanocircuits, it is of key importance to control the propagation properties and the modal distribution of the guided optical modes such that their impedance matches to that of nearby quantum systems and desired light-matter interaction can be achieved. Here, we present efficient mode converters for manipulating guided modes on a plasmonic two-wire transmission line. The mode conversion is achieved through varying the path length, wire cross section and the surrounding index of refraction. Instead of pure optical interference, strong near-field coupling of surface plasmons results in great momentum splitting and modal profile variation. We theoretically demonstrate control over nanoantenna radiation and discuss the possibility to enhance nanoscale light-matter interaction. The proposed converter may find applications in surface plasmon amplification, index sensing and enhanced nanoscale spectroscopy.

  5. Study of buckling behavior at the nanoscale through capillary adhesion force

    NASA Astrophysics Data System (ADS)

    Lorenzoni, Matteo; Llobet, Jordi; Perez-Murano, Francesc

    2018-05-01

    This paper presents mechanical actuation experiments performed on ultrathin suspended nanoscale silicon devices presenting Euler buckling. The devices are fabricated by a combination of focused ion beam implantation and selective wet etching. By loading the center of curved nanobeams with an atomic force microscope tip, the beams can be switched from an up-buckled position to the opposite down-buckled configuration. It is possible to describe the entire snap-through process, thanks to the presence of strong capillary forces that act as a physical constraint between the tip and the device. The experiments conducted recall the same behavior of macro- and microscale devices with similar geometry. Curved nanobeams present a bistable behavior, i.e., they are stable in both configurations, up or down-buckled. In addition to that, by the method presented, it is possible to observe the dynamic of a mechanical switch at the nanoscale.

  6. On the physical properties of volcanic rock masses

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Villeneuve, M.; Ball, J. L.; Got, J. L.

    2017-12-01

    The physical properties (e.g., elastic properties, porosity, permeability, cohesion, strength, amongst others) of volcanic rocks are crucial input parameters for modelling volcanic processes. These parameters, however, are often poorly constrained and there is an apparent disconnect between modellers and those who measure/determine rock and rock mass properties. Although it is well known that laboratory measurements are scale dependent, experimentalists, field volcanologists, and modellers should work together to provide the most appropriate model input parameters. Our pluridisciplinary approach consists of (1) discussing with modellers to better understand their needs, (2) using experimental know-how to build an extensive database of volcanic rock properties, and (3) using geotechnical and field-based volcanological know-how to address scaling issues. For instance, increasing the lengthscale of interest from the laboratory-scale to the volcano-scale will reduce the elastic modulus and strength and increase permeability, but to what extent? How variable are the physical properties of volcanic rocks, and is it appropriate to assume constant, isotropic, and/or homogeneous values for volcanoes? How do alteration, depth, and temperature influence rock physical and mechanical properties? Is rock type important, or do rock properties such as porosity exert a greater control on such parameters? How do we upscale these laboratory-measured properties to rock mass properties using the "fracturedness" of a volcano or volcanic outcrop, and how do we quantify fracturedness? We hope to discuss and, where possible, address some of these issues through active discussion between two (or more) scientific communities.

  7. Nanoscale assembly of superconducting vortices with scanning tunnelling microscope tip

    PubMed Central

    Ge, Jun-Yi; Gladilin, Vladimir N.; Tempere, Jacques; Xue, Cun; Devreese, Jozef T.; Van de Vondel, Joris; Zhou, Youhe; Moshchalkov, Victor V.

    2016-01-01

    Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single-vortex level, is of great importance. Among many techniques to study single vortices, scanning tunnelling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution. However, local control of superconductivity as well as the manipulation of individual vortices with the STM tip is still lacking. Here we report a new function of the STM, namely to control the local pinning in a superconductor through the heating effect. Such effect allows us to quench the superconducting state at nanoscale, and leads to the growth of vortex clusters whose size can be controlled by the bias voltage. We also demonstrate the use of an STM tip to assemble single-quantum vortices into desired nanoscale configurations. PMID:27934960

  8. Electrical and structural investigations, and ferroelectric domains in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Alexe, Marin

    2005-03-01

    Generally speaking material properties are expected to change as the characteristic dimension of a system approaches at the nanometer scale. In the case of ferroelectric materials fundamental problems such as the super-paraelectric limit, influence of the free surface and/or of the interface and bulk defects on ferroelectric switching, etc. arise when scaling the systems into the sub-100 nm range. In order to study these size effects, fabrication methods of high quality nanoscale ferroelectric crystals as well as AFM-based investigations methods have been developed in the last few years. The present talk will briefly review self-patterning and self- assembly fabrication methods, including chemical routes, morphological instability of ultrathin films, and self-assembly lift-off, employed up to the date to fabricate ferroelectric nanoscale structures with lateral size in the range of few tens of nanometers. Moreover, in depth structural and electrical investigations of interfaces performed to differentiate between intrinsic and extrinsic size effects will be also presented.

  9. Effects of Concentration of Nanoscale Tin-Doped Indium Oxide on Electrical Breakdown of High-Resistance Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Liang, Bau-Jy; Liu, Don-Gey; Chang, Chih-Yuan; Shie, Wun-Yi

    2011-05-01

    According to our previous study, a high concentration of nanoscale tin-doped indium oxide (ITO) may be beneficial for protecting liquid crystal (LC) against attacks by electrostatic discharge (ESD). In this study, the influence of high-voltage stresses in an ESD test was investigated for cells doped with different concentrations of ITO. It was found that nano-ITO with a concentration of 0.4% in weight ratio deteriorated the physical properties of LC of transparency transition and charge retention. However, our experiment showed that the capability of ESD protection for the doped LC was still improved at the ITO concentration of 0.4 wt %. This finding supports the proposed model in our previous report. The role of ITO in the LC is not always beneficial, as discussed in this paper.

  10. Characterization of NiSi nanowires as field emitters and limitations of Fowler-Nordheim model at the nanoscale

    NASA Astrophysics Data System (ADS)

    Belkadi, Amina B.; Gale, E.; Isakovic, A. F.

    2015-03-01

    Nanoscale field emitters are of technological interest because of the anticipated faster turn-on time, better sustainability and compactness. This report focuses on NiSi nanowires as field emitters for two reasons: (a) possible enhancement of field emission in nanoscale field emitters over bulk, and (b) achieving the same field emission properties as in bulk, but at a lower energy cost. To this end, we have grown, fabricated and characterized NiSi nanowires as field emitters. Depending on the geometry of the NiSi nanowires (aspect ratio, shape etc.), the relevant major field emission parameters, such as (1) the turn-on field, (2) the work function, and (3) the field enhancement factor, can be comparable or even superior to other recently explored nanoscale field emitters, such as CdS and ZnO. We also report on a comparative performance of various nanoscale field emitters and on the difficulties in the performance comparison in the light of relatively poor applicability of the standard Folwer-Nordheim model for field emission analysis for the case of the nanoscale field emitters. Proposed modifications are discussed. This work is supported through SRC-ATIC Grant 2011-KJ-2190. We also acknoweldge BNL-CFN and Cornell CNF facilities and staff.

  11. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-02-01

    The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell's equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density.

  12. An observational study of ballooning in large spiders: Nanoscale multifibers enable large spiders' soaring flight.

    PubMed

    Cho, Moonsung; Neubauer, Peter; Fahrenson, Christoph; Rechenberg, Ingo

    2018-06-01

    The physical mechanism of aerial dispersal of spiders, "ballooning behavior," is still unclear because of the lack of serious scientific observations and experiments. Therefore, as a first step in clarifying the phenomenon, we studied the ballooning behavior of relatively large spiders (heavier than 5 mg) in nature. Additional wind tunnel tests to identify ballooning silks were implemented in the laboratory. From our observation, it seems obvious that spiders actively evaluate the condition of the wind with their front leg (leg I) and wait for the preferable wind condition for their ballooning takeoff. In the wind tunnel tests, as-yet-unknown physical properties of ballooning fibers (length, thickness, and number of fibers) were identified. Large spiders, 16-20 mg Xysticus spp., spun 50-60 nanoscale fibers, with a diameter of 121-323 nm. The length of these threads was 3.22 ± 1.31 m (N = 22). These physical properties of ballooning fibers can explain the ballooning of large spiders with relatively light updrafts, 0.1-0.5 m s-1, which exist in a light breeze of 1.5-3.3 m s-1. Additionally, in line with previous research on turbulence in atmospheric boundary layers and from our wind measurements, it is hypothesized that spiders use the ascending air current for their aerial dispersal, the "ejection" regime, which is induced by hairpin vortices in the atmospheric boundary layer turbulence. This regime is highly correlated with lower wind speeds. This coincides well with the fact that spiders usually balloon when the wind speed is lower than 3 m s-1.

  13. Breaking the GaN material limits with nanoscale vertical polarisation super junction structures: A simulation analysis

    NASA Astrophysics Data System (ADS)

    Unni, Vineet; Sankara Narayanan, E. M.

    2017-04-01

    This is the first report on the numerical analysis of the performance of nanoscale vertical superjunction structures based on impurity doping and an innovative approach that utilizes the polarisation properties inherent in III-V nitride semiconductors. Such nanoscale vertical polarisation super junction structures can be realized by employing a combination of epitaxial growth along the non-polar crystallographic axes of Wurtzite GaN and nanolithography-based processing techniques. Detailed numerical simulations clearly highlight the limitations of a doping based approach and the advantages of the proposed solution for breaking the unipolar one-dimensional material limits of GaN by orders of magnitude.

  14. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiaoyu; Hao, Zhenqi; Wu, Di

    Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less

  15. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy

    DOE PAGES

    Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; ...

    2018-04-01

    Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less

  16. Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale.

    PubMed

    Wang, Mingsong; Zhao, Chenglong; Miao, Xiaoyu; Zhao, Yanhui; Rufo, Joseph; Liu, Yan Jun; Huang, Tony Jun; Zheng, Yuebing

    2015-09-16

    Plasmofluidics is the synergistic integration of plasmonics and micro/nanofluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids and precise manipulation via micro/nanofluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, the most recent advances in plasmofluidics are examined and categorized into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro/nanoscale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. The article is concluded with perspectives on the upcoming challenges, opportunities, and possible future directions of the emerging field of plasmofluidics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Control of nanoscale atomic arrangement in multicomponent thin films by temporally modulated vapour fluxes

    NASA Astrophysics Data System (ADS)

    Sarakinos, Kostas

    2016-09-01

    Synthesis of multicomponent thin films using vapor fluxes with a modulated deposition pattern is a potential route for accessing a wide gamut of atomic arrangements and morphologies for property tuning. In the current study, we present a research concept that allows for understanding the combined effect of flux modulation, kinetics and thermodynamics on the growth of multinary thin films. This concept entails the combined use of thin film synthesis by means of multiatomic vapor fluxes modulated with sub-monolayer resolution, deterministic growth simulations and nanoscale microstructure probes. Using this research concept we study structure formation within the archetype immiscible Ag-Cu binary system showing that atomic arrangement and morphology at different length scales is governed by diffusion of near-surface Ag atoms to encapsulate 3D Cu islands growing on 2D Ag layers. Moreover, we explore the relevance of the mechanism outlined above for morphology evolution and structure formation within the miscible Ag-Au binary system. The knowledge generated and the methodology presented herein provides the scientific foundation for tailoring atomic arrangement and physical properties in a wide range of miscible and immiscible multinary systems.

  18. Stabilizing the body centered cubic crystal in titanium alloys by a nano-scale concentration modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H. L.; Shah, S. A. A.; Hao, Y. L.

    It is well-known that the body centered cubic (bcc) crystal in titanium alloys reaches its stability limit as the electron-to-atom (e/a) ratio of the alloy drops down to ~4.24. This critical value, however, is much higher than that of a multifunctional bcc type alloy (e/a = 4.15). Here we demonstrate that a nano-scale concentration modulation created by spinodal decomposition is what stabilizes the bcc crystal of the alloy. Aided by such a nano-scale concentration heterogeneity, unexpected properties from its chemically homogeneous counterpart are obtained. This provides a new strategy to design functional titanium alloys by tuning the spinodal decomposition.

  19. Nanoscale plasmonic waveguides for filtering and demultiplexing devices

    NASA Astrophysics Data System (ADS)

    Akjouj, A.; Noual, A.; Pennec, Y.; Bjafari-Rouhani, B.

    2010-05-01

    Numerical simulations, based on a FDTD (finite-difference-time-domain) method, of infrared light propagation for add/drop filtering in two-dimensional (2D) Ag-SiO2-Ag resonators are reported to design 2D Y-bent plasmonic waveguides with possible applications in telecommunication WDM (wavelength demultiplexing). First, we study optical transmission and reflection of a nanoscale SiO2 waveguide coupled to a nanocavity of the same insulator located either inside or on the side of a linear waveguide sandwiched between Ag. According to the inside or outside positioning of the nanocavity with respect to the waveguide, the transmission spectrum displays peaks or dips, respectively, which occur at the same central frequency. A fundamental study of the possible cavity modes in the near-infrared frequency band is also given. These filtering properties are then exploited to propose a nanoscale demultiplexer based on a Y-shaped plasmonic waveguide for separation of two different wavelengths, in selection or rejection, from an input broadband signal around 1550 nm. We detail coupling of the 2D add/drop Y connector to two cavities inserted on each of its branches.

  20. Nanoscale elasticity mappings of micro-constituents of abalone shell by band excitation-contact resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Tao; Zeng, Kaiyang

    2014-01-01

    The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified.The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the

  1. Nano-Scale Characterization of Al-Mg Nanocrystalline Alloys

    NASA Astrophysics Data System (ADS)

    Harvey, Evan; Ladani, Leila

    Materials with nano-scale microstructure have become increasingly popular due to their benefit of substantially increased strengths. The increase in strength as a result of decreasing grain size is defined by the Hall-Petch equation. With increased interest in miniaturization of components, methods of mechanical characterization of small volumes of material are necessary because traditional means such as tensile testing becomes increasingly difficult with such small test specimens. This study seeks to characterize elastic-plastic properties of nanocrystalline Al-5083 through nanoindentation and related data analysis techniques. By using nanoindentation, accurate predictions of the elastic modulus and hardness of the alloy were attained. Also, the employed data analysis model provided reasonable estimates of the plastic properties (strain-hardening exponent and yield stress) lending credibility to this procedure as an accurate, full mechanical characterization method.

  2. Nanoscale reference materials for environmental, health and safety measurements: needs, gaps and opportunities.

    PubMed

    Stefaniak, Aleksandr B; Hackley, Vincent A; Roebben, Gert; Ehara, Kensei; Hankin, Steve; Postek, Michael T; Lynch, Iseult; Fu, Wei-En; Linsinger, Thomas P J; Thünemann, Andreas F

    2013-12-01

    The authors critically reviewed published lists of nano-objects and their physico-chemical properties deemed important for risk assessment and discussed metrological challenges associated with the development of nanoscale reference materials (RMs). Five lists were identified that contained 25 (classes of) nano-objects; only four (gold, silicon dioxide, silver, titanium dioxide) appeared on all lists. Twenty-three properties were identified for characterisation; only (specific) surface area appeared on all lists. The key themes that emerged from this review were: 1) various groups have prioritised nano-objects for development as "candidate RMs" with limited consensus; 2) a lack of harmonised terminology hinders accurate description of many nano-object properties; 3) many properties identified for characterisation are ill-defined or qualitative and hence are not metrologically traceable; 4) standardised protocols are critically needed for characterisation of nano-objects as delivered in relevant media and as administered to toxicological models; 5) the measurement processes being used to characterise a nano-object must be understood because instruments may measure a given sample in a different way; 6) appropriate RMs should be used for both accurate instrument calibration and for more general testing purposes (e.g., protocol validation); 7) there is a need to clarify that where RMs are not available, if "(representative) test materials" that lack reference or certified values may be useful for toxicology testing and 8) there is a need for consensus building within the nanotechnology and environmental, health and safety communities to prioritise RM needs and better define the required properties and (physical or chemical) forms of the candidate materials.

  3. Towards Single Biomolecule Imaging via Optical Nanoscale Magnetic Resonance Imaging.

    PubMed

    Boretti, Alberto; Rosa, Lorenzo; Castelletto, Stefania

    2015-09-09

    Nuclear magnetic resonance (NMR) spectroscopy is a physical marvel in which electromagnetic radiation is charged and discharged by nuclei in a magnetic field. In conventional NMR, the specific nuclei resonance frequency depends on the strength of the magnetic field and the magnetic properties of the isotope of the atoms. NMR is routinely utilized in clinical tests by converting nuclear spectroscopy in magnetic resonance imaging (MRI) and providing 3D, noninvasive biological imaging. While this technique has revolutionized biomedical science, measuring the magnetic resonance spectrum of single biomolecules is still an intangible aspiration, due to MRI resolution being limited to tens of micrometers. MRI and NMR have, however, recently greatly advanced, with many breakthroughs in nano-NMR and nano-MRI spurred by using spin sensors based on an atomic impurities in diamond. These techniques rely on magnetic dipole-dipole interactions rather than inductive detection. Here, novel nano-MRI methods based on nitrogen vacancy centers in diamond are highlighted, that provide a solution to the imaging of single biomolecules with nanoscale resolution in-vivo and in ambient conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Creating nanoscale emulsions using condensation.

    PubMed

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  5. Characterization and nultivariate analysis of physical properties of processing peaches

    USDA-ARS?s Scientific Manuscript database

    Characterization of physical properties of fruits represents the first vital step to ensure optimal performance of fruit processing operations and is also a prerequisite in the development of new processing equipment. In this study, physical properties of engineering significance to processing of th...

  6. Effect of composition on physical properties of food powders

    NASA Astrophysics Data System (ADS)

    Szulc, Karolina; Lenart, Andrzej

    2016-04-01

    The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.

  7. Cesium Eluate Physical Property Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baich, M.A.

    2001-02-13

    Two bench-scale process simulations of the proposed cesium eluate evaporation process of concentrating eluate produced in the Hanford Site Waste Treatment Plant were conducted. The primary objective of these experiments was to determine the physical properties and the saturation concentration of the eluate evaporator bottoms while producing condensate approximately 0.50 molar HN03.

  8. Reconciling the Orbital and Physical Properties of the Martian Moons

    NASA Astrophysics Data System (ADS)

    Ronnet, T.; Vernazza, P.; Mousis, O.; Brugger, B.; Beck, P.; Devouard, B.; Witasse, O.; Cipriani, F.

    2016-09-01

    The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) are able to reconcile their orbital and physical properties. Here we investigate the expected mineralogical composition and size of the grains from which the moons once accreted assuming they formed within an impact-generated accretion disk. A comparison of our results with the present-day spectral properties of the moons allows us to conclude that their building blocks cannot originate from a magma phase, thus preventing their formation in the innermost part of the disk. Instead, gas-to-solid condensation of the building blocks in the outer part of an extended gaseous disk is found as a possible formation mechanism as it does allow reproducing both the spectral and physical properties of the moons. Such a scenario may finally reconcile their orbital and physical properties, alleviating the need to invoke an unlikely capture scenario to explain their physical properties.

  9. Nanoscale elastic changes in 2D Ti 3C 2T x (MXene) pseudocapacitive electrodes

    DOE PAGES

    Come, Jeremy; Xie, Yu; Naguib, Michael; ...

    2016-02-01

    Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in-situ characterization of their evolution has never been achieved atmore » the nanoscale. Two dimensional (2D) carbides, known as MXenes, are promising materials for supercapacitors and various kinds of batteries, and understating the coupling between their mechanical and electrochemical properties is therefore necessary. Here we report on in-situ imaging, combined with density functional theory of the elastic changes, of a 2D titanium carbide (Ti 3C 2T x) electrode in direction normal to the basal plane during cation intercalation. The results show a strong correlation between the Li+ ions content and the elastic modulus, whereas little effects of K+ ions are observed. Moreover, this strategy enables identifying the preferential intercalation pathways within a single particle.« less

  10. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Kang, Yu Jin; Chung, Haegeun; Kim, Min-Seop; Kim, Woong

    2015-11-01

    We demonstrate the fabrication of high-integrity flexible supercapacitors using carbon nanotubes (CNTs), polyethylene terephthalate (PET) films, and ion gels. Although both CNTs and PET films are attractive materials for flexible electronics, they have poor adhesion properties. In this work, we significantly improve interfacial adhesion by introducing nanostructures at the interface of the CNT and PET layers. Simple reactive ion etching (RIE) of the PET substrates generates nano-scale roughness on the PET surface. RIE also induces hydrophilicity on the PET surface, which further enhances adhesive strength. The improved adhesion enables high integrity and excellent flexibility of the fabricated supercapacitors, demonstrated over hundreds of bending cycles. Furthermore, the supercapacitors show good cyclability with specific capacitance retention of 87.5% after 10,000 galvanostatic charge-discharge (GCD) cycles. Our demonstration may be important for understanding interfacial adhesion properties in nanoscale and for producing flexible, high-integrity, high-performance energy storage systems.

  11. Phonon scattering in nanoscale systems: lowest order expansion of the current and power expressions

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2006-04-01

    We use the non-equilibrium Green's function method to describe the effects of phonon scattering on the conductance of nano-scale devices. Useful and accurate approximations are developed that both provide (i) computationally simple formulas for large systems and (ii) simple analytical models. In addition, the simple models can be used to fit experimental data and provide physical parameters.

  12. FIB and MIP: understanding nanoscale porosity in molecularly imprinted polymers via 3D FIB/SEM tomography.

    PubMed

    Neusser, G; Eppler, S; Bowen, J; Allender, C J; Walther, P; Mizaikoff, B; Kranz, C

    2017-10-05

    We present combined focused ion beam/scanning electron beam (FIB/SEM) tomography as innovative method for differentiating and visualizing the distribution and connectivity of pores within molecularly imprinted polymers (MIPs) and non-imprinted control polymers (NIPs). FIB/SEM tomography is used in cell biology for elucidating three-dimensional structures such as organelles, but has not yet been extensively applied for visualizing the heterogeneity of nanoscopic pore networks, interconnectivity, and tortuosity in polymers. To our best knowledge, the present study is the first application of this strategy for analyzing the nanoscale porosity of MIPs. MIPs imprinted for propranolol - and the corresponding NIPs - were investigated establishing FIB/SEM tomography as a viable future strategy complementing conventional isotherm studies. For visualizing and understanding the properties of pore networks in detail, polymer particles were stained with osmium tetroxide (OsO 4 ) vapor, and embedded in epoxy resin. Staining with OsO 4 provides excellent contrast during high-resolution SEM imaging. After optimizing the threshold to discriminate between the stained polymer matrix, and pores filled with epoxy resin, a 3D model of the sampled volume may be established for deriving not only the pore volume and pore surface area, but also to visualize the interconnectivity and tortuosity of the pores within the sampled polymer volume. Detailed studies using different types of cross-linkers and the effect of hydrolysis on the resulting polymer properties have been investigated. In comparison of MIP and NIP, it could be unambiguously shown that the interconnectivity of the visualized pores in MIPs is significantly higher vs. the non-imprinted polymer, and that the pore volume and pore area is 34% and approx. 35% higher within the MIP matrix. This confirms that the templating process not only induces selective binding sites, but indeed also affects the physical properties of such

  13. 48 CFR 1852.245-78 - Physical inventory of capital personal property.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Physical inventory of... Provisions and Clauses 1852.245-78 Physical inventory of capital personal property. As prescribed in 1845.107-70(i), insert the following clause. Physical Inventory of Capital Personal Property (JAN 2011) (a) In...

  14. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy

    PubMed Central

    Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun; Chen, Fei; Weins, Astrid; Stancu, Andreea L.; Oh, Eun-Young; DiStasio, Marcello; Torous, Vanda; Glass, Benjamin; Stillman, Isaac E.; Schnitt, Stuart J.; Beck, Andrew H.; Boyden, Edward S.

    2017-01-01

    Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding the specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin (H&E), and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ~70 nm resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes, and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, which previously required electron microscopy (EM), and demonstrate high-fidelity computational discrimination between early breast neoplastic lesions that to date have challenged human judgment. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research. PMID:28714966

  15. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy.

    PubMed

    Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun; Chen, Fei; Weins, Astrid; Stancu, Andreea L; Oh, Eun-Young; DiStasio, Marcello; Torous, Vanda; Glass, Benjamin; Stillman, Isaac E; Schnitt, Stuart J; Beck, Andrew H; Boyden, Edward S

    2017-08-01

    Expansion microscopy (ExM), a method for improving the resolution of light microscopy by physically expanding a specimen, has not been applied to clinical tissue samples. Here we report a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin, and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts clinical samples into an ExM-compatible state, then applies an ExM protocol with protein anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables ∼70-nm-resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-limited microscopes and standard antibody and fluorescent DNA in situ hybridization reagents. We use ExPath for optical diagnosis of kidney minimal-change disease, a process that previously required electron microscopy, and we demonstrate high-fidelity computational discrimination between early breast neoplastic lesions for which pathologists often disagree in classification. ExPath may enable the routine use of nanoscale imaging in pathology and clinical research.

  16. Ferromagnetic domain behavior and phase transition in bilayer manganites investigated at the nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phatak, C.; Petford-Long, A. K.; Zheng, H.

    Understanding the underlying mechanism and phenomenology of colossal magnetoresistance in manganites has largely focused on atomic and nanoscale physics such as double exchange, phase separation, and charge order. Here in this article, we consider a more macroscopic view of manganite materials physics, reporting on the ferromagnetic domain behavior in a bilayer manganite sample with a nominal composition of La 2-2xSr 1+2xMn 2O 7 with x = 0:38, studied using in-situ Lorentz transmission electron microscopy. The role of magnetocrystalline anisotropy on the structure of domain walls was elucidated. On cooling, magnetic domain contrast was seen to appear first at the Curiemore » temperature within the a - b plane. With further reduction in temperature, the change in area fraction of magnetic domains was used to estimate the critical exponent describing the ferromagntic phase transition. Lastly, the ferromagnetic phase transition was accompanied by a distinctive nanoscale granular contrast close to the Curie temperature, which we infer to be related to the presence of ferromagnetic nanoclusters in a paramagnetic matrix, which has not yet been reported in bilayer manganites.« less

  17. Ferromagnetic domain behavior and phase transition in bilayer manganites investigated at the nanoscale

    DOE PAGES

    Phatak, C.; Petford-Long, A. K.; Zheng, H.; ...

    2015-12-14

    Understanding the underlying mechanism and phenomenology of colossal magnetoresistance in manganites has largely focused on atomic and nanoscale physics such as double exchange, phase separation, and charge order. Here in this article, we consider a more macroscopic view of manganite materials physics, reporting on the ferromagnetic domain behavior in a bilayer manganite sample with a nominal composition of La 2-2xSr 1+2xMn 2O 7 with x = 0:38, studied using in-situ Lorentz transmission electron microscopy. The role of magnetocrystalline anisotropy on the structure of domain walls was elucidated. On cooling, magnetic domain contrast was seen to appear first at the Curiemore » temperature within the a - b plane. With further reduction in temperature, the change in area fraction of magnetic domains was used to estimate the critical exponent describing the ferromagntic phase transition. Lastly, the ferromagnetic phase transition was accompanied by a distinctive nanoscale granular contrast close to the Curie temperature, which we infer to be related to the presence of ferromagnetic nanoclusters in a paramagnetic matrix, which has not yet been reported in bilayer manganites.« less

  18. An open-source platform to study uniaxial stress effects on nanoscale devices

    NASA Astrophysics Data System (ADS)

    Signorello, G.; Schraff, M.; Zellekens, P.; Drechsler, U.; Bürge, M.; Steinauer, H. R.; Heller, R.; Tschudy, M.; Riel, H.

    2017-05-01

    We present an automatic measurement platform that enables the characterization of nanodevices by electrical transport and optical spectroscopy as a function of the uniaxial stress. We provide insights into and detailed descriptions of the mechanical device, the substrate design and fabrication, and the instrument control software, which is provided under open-source license. The capability of the platform is demonstrated by characterizing the piezo-resistance of an InAs nanowire device using a combination of electrical transport and Raman spectroscopy. The advantages of this measurement platform are highlighted by comparison with state-of-the-art piezo-resistance measurements in InAs nanowires. We envision that the systematic application of this methodology will provide new insights into the physics of nanoscale devices and novel materials for electronics, and thus contribute to the assessment of the potential of strain as a technology booster for nanoscale electronics.

  19. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  20. Physical properties of PNe: what IFU spectrographs can do?

    NASA Astrophysics Data System (ADS)

    Costa, R.; Lago, P. J. A.; Faes, D., M.

    2014-04-01

    Structure, kinematics and physical parameters of planetary nebulae are related to their progenitor stars. A better understanding of these properties is essential to improve the knowledge of the late stages of evolution of intermediate-mass stars, as well as to better understand the chemical enrichment mechanisms that feed the interstellar medium with the nucleosynthesis yields from such stars. Integral Field Unit (IFU) spectrographs can provide valuable information from these objects, mapping such properties point-to-point over the projected nebulae. In this communication we present the results of a survey of physical properties for southern PNe. We have used IFU spectroscopy in order to derive the angular distribution of electron densities and ionic abundances, and also to map the ionization profiles. The aim is to characterize their physical properties and structures, and results can be used in morpho-kinematical models (such as SHAPE) or in photoionization models (such as CLOUDY) to describe in detail the 3D structure and evolution of these objects.

  1. Nanoscale Properties of Rocks and Subduction Zone Rheology: Inferences for the Mechanisms of Deep Earthquakes

    NASA Astrophysics Data System (ADS)

    Riedel, M. R.

    2007-12-01

    Grain boundaries are the key for the understanding of mineral reaction kinetics. More generally, nanometer scale processes involved in breaking and establishing bonds at reaction sites determine how and at which rate bulk rock properties change in response to external tectonic forcing and possibly feed back into various geodynamic processes. A particular problem is the effects of grain-boundary energy on the kinetics of the olivine-spinel phase transformation in subducting slabs. Slab rheology is affected in many ways by this (metastable) mineral phase change. Sluggish kinetics due to metastable hindrance is likely to cause particular difficulties, because of possible strong non-linear feedback loops between strain-rate and change of creep properties during transformation. In order to get these nanoscale properties included into thermo-mechanical models, reliable kinetic data is required. The measurement of grain-boundary energies is, however, a rather difficult problem. Conventional methods of grain boundary surface tension measurement include (a) equilibrium angles at triple junction (b) rotating ball method (c) thermal groove method, and others (Gottstein & Shvindlerman, 1999). Here I suggest a new method that allows for the derivation of grain-boundary energies for an isochemical phase transformation based on experimental (in-situ) kinetic data in combination with a corresponding dynamic scaling law (Riedel and Karato, 1997). The application of this method to the olivine-spinel phase transformation in subducting slabs provides a solution to the extrapolation problem of measured kinetic data: Any kinetic phase boundary measured at the laboratory time scale can be "scaled" to the correct critical isotherm at subduction zones, under experimentelly "forbidden" conditions (Liou et al., 2000). Consequences for the metastability hypothesis that relates deep seismicity with olivine metastability are derived and discussed. References: Gottstein G, Shvindlerman LS (1999

  2. Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens)

    Treesearch

    H.Q. Yu; Z.H. Jiang; C.Y. Hse; T.F. Shupe

    2008-01-01

    Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens). Selected physical and mechanical properties of 4?6 year old moso bamboo (Phyllostachys pubescens) grown in Zhejiang, China were investigated at different vertical and horizontal positions. Two way analysis of variance and Tukey?s mean comparison...

  3. Conceptual strategies and inter-theory relations: The case of nanoscale cracks

    NASA Astrophysics Data System (ADS)

    Bursten, Julia R.

    2018-05-01

    This paper introduces a new account of inter-theory relations in physics, which I call the conceptual strategies account. Using the example of a multiscale computer simulation model of nanoscale crack propagation in silicon, I illustrate this account and contrast it with existing reductive, emergent, and handshaking approaches. The conceptual strategies account develops the notion that relations among physical theories, and among their models, are constrained but not dictated by limitations from physics, mathematics, and computation, and that conceptual reasoning within those limits is required both to generate and to understand the relations between theories. Conceptual strategies result in a variety of types of relations between theories and models. These relations are themselves epistemic objects, like theories and models, and as such are an under-recognized part of the epistemic landscape of science.

  4. Correlations between physical properties of jawbone and dental implant initial stability.

    PubMed

    Seong, Wook-Jin; Kim, Uk-Kyu; Swift, James Q; Hodges, James S; Ko, Ching-Chang

    2009-05-01

    There is confusion in the literature about how physical properties of bone vary between maxillary and mandibular regions and which physical properties affect initial implant stability. The purpose of this study was to determine correlations between physical properties of bone and initial implant stability, and to determine how physical properties and initial stability vary among regions of jawbone. Four pairs of edentulous maxillae and mandibles were retrieved from fresh human cadavers. Six implants per pair were placed in different anatomical regions (maxillary anterior, right and left maxillary posterior, mandibular anterior, right and left mandibular posterior). Immediately after surgery, initial implant stability was measured with a resonance frequency device and a tapping device. Implant surgeries and initial stability measurements were performed within 72 hours of death. Elastic modulus (EM) and hardness were measured using nano-indentation. Composite apparent density (cAD) was measured using Archimedes' principle. Bone-implant contact percentage and cortical bone thickness were recorded histomorphometrically. Mixed linear models and univariate-correlation analyses were used (alpha=.05). Generally, mandibular bone had higher initial implant stability and physical properties than maxillary bone. Initial implant stability was higher in the anterior region than in the posterior. EM was higher in the posterior region than in the anterior; the reverse was true for cAD. Of the properties evaluated, cAD had the highest correlation with initial implant stability (r=0.82). Both physical properties of bone and initial implant stability differed between regions of jawbone.

  5. Theory of Electron, Phonon and Spin Transport in Nanoscale Quantum Devices.

    PubMed

    Sadeghi, Hatef

    2018-06-21

    At the level of fundamental science, it was recently demonstrated that molecular wires can mediate long-range phase-coherent tunnelling with remarkably low attenuation over a few nanometre even at room temperature. Furthermore, a large mean free path has been observed in graphene and other graphene-like two-dimensional materials. These create the possibility of using quantum and phonon interference to engineer electron and phonon transport for wide range of applications such as molecular switches, sensors, piezoelectricity, thermoelectricity and thermal management. To understand transport properties of such devices, it is crucial to calculate their electronic and phononic transmission coefficients. The aim of this tutorial article is to review the state-of-art theoretical and mathematical techniques to treat electron, phonon and spin transport in nanoscale molecular junctions. This helps not only to explain new phenomenon observed experimentally but also provides a vital design tool to develop novel nanoscale quantum devices. © 2018 IOP Publishing Ltd.

  6. Nanoscale tissue engineering: spatial control over cell-materials interactions

    PubMed Central

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G.; Jabbari, Esmaiel; Khademhosseini, Ali

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness the interactions through nanoscale biomaterials engineering in order to study and direct cellular behaviors. Here, we review the nanoscale tissue engineering technologies for both two- and three-dimensional studies (2- and 3D), and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffolds technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D, however, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and the temporal changes in cellular microenvironment. PMID:21451238

  7. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    USGS Publications Warehouse

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  8. Impacts of doping on thermal and thermoelectric properties of nanomaterials.

    PubMed

    Zhang, Gang; Li, Baowen

    2010-07-01

    Thermal transport in nanoscale structures has attracted an increasing interest in the last two decades. On the one hand, the low dimensional nanostructured materials are platforms for testing novel phonon transport theories. On the other hand, nanomaterials are promising candidates for nanoscale on-chip coolers. This review is focused on the thermal conductance, thermoelectric property, and impacts of doping on these properties.

  9. Tailoring the Spectroscopic Properties of Semiconductor Nanowires via Surface-Plasmon-Based Optical Engineering

    PubMed Central

    2014-01-01

    Semiconductor nanowires, due to their unique electronic, optical, and chemical properties, are firmly placed at the forefront of nanotechnology research. The rich physics of semiconductor nanowire optics arises due to the enhanced light–matter interactions at the nanoscale and coupling of optical modes to electronic resonances. Furthermore, confinement of light can be taken to new extremes via coupling to the surface plasmon modes of metal nanostructures integrated with nanowires, leading to interesting physical phenomena. This Perspective will examine how the optical properties of semiconductor nanowires can be altered via their integration with highly confined plasmonic nanocavities that have resulted in properties such as orders of magnitude faster and more efficient light emission and lasing. The use of plasmonic nanocavities for tailored optical absorption will also be discussed in order to understand and engineer fundamental optical properties of these hybrid systems along with their potential for novel applications, which may not be possible with purely dielectric cavities. PMID:25396030

  10. Treatments that enhance physical properties of wood

    Treesearch

    Roger M. Rowell; Peggy Konkol

    1987-01-01

    This paper was prepared for anyone who wants to know more about enhancing wood’s physical properties, from the amateur wood carver to the president of a forest products company. The authors describe chemical and physical treatments of wood that enhance the strength, stiffness, water repellency, and stability of wood. Five types of treatments are described: 1. water-...

  11. Physical properties of sidewall cores from Decatur, Illinois

    USGS Publications Warehouse

    Morrow, Carolyn A.; Kaven, Joern; Moore, Diane E.; Lockner, David A.

    2017-10-18

    To better assess the reservoir conditions influencing the induced seismicity hazard near a carbon dioxide sequestration demonstration site in Decatur, Ill., core samples from three deep drill holes were tested to determine a suite of physical properties including bulk density, porosity, permeability, Young’s modulus, Poisson’s ratio, and failure strength. Representative samples of the shale cap rock, the sandstone reservoir, and the Precambrian basement were selected for comparison. Physical properties were strongly dependent on lithology. Bulk density was inversely related to porosity, with the cap rock and basement samples being both least porous (

  12. Traceable nanoscale measurement at NML-SIRIM

    NASA Astrophysics Data System (ADS)

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-06-01

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  13. Neuromorphic computing with nanoscale spintronic oscillators.

    PubMed

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie

    2017-07-26

    Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

  14. Physical Properties of Cometary Nucleus Candidates

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Hillman, John (Technical Monitor)

    2003-01-01

    In this proposal we aim to study the physical properties of the Centaurs and the dead comets, these being the precursors to, and the remnants from, the active cometary nuclei. The nuclei themselves are very difficult to study, because of the contaminating effects of near-nucleus coma. Systematic investigation of the nuclei both before they enter the zone of strong sublimation and after they have depleted their near-surface volatiles should neatly bracket the properties of these objects, revealing evolutionary effects.

  15. Single molecule-level study of donor-acceptor interactions and nanoscale environment in blends

    NASA Astrophysics Data System (ADS)

    Quist, Nicole; Grollman, Rebecca; Rath, Jeremy; Robertson, Alex; Haley, Michael; Anthony, John; Ostroverkhova, Oksana

    2017-02-01

    Organic semiconductors have attracted considerable attention due to their applications in low-cost (opto)electronic devices. The most successful organic materials for applications that rely on charge carrier generation, such as solar cells, utilize blends of several types of molecules. In blends, the local environment strongly influences exciton and charge carrier dynamics. However, relationship between nanoscale features and photophysics is difficult to establish due to the lack of necessary spatial resolution. We use functionalized fluorinated pentacene (Pn) molecule as single molecule probes of intermolecular interactions and of the nanoscale environment in blends containing donor and acceptor molecules. Single Pn donor (D) molecules were imaged in PMMA in the presence of acceptor (A) molecules using wide-field fluorescence microscopy. Two sample configurations were realized: (i) a fixed concentration of Pn donor molecules, with increasing concentration of acceptor molecules (functionalized indenflouorene or PCBM) and (ii) a fixed concentration of acceptor molecules with an increased concentration of the Pn donor. The D-A energy transfer and changes in the donor emission due to those in the acceptor- modified polymer morphology were quantified. The increase in the acceptor concentration was accompanied by enhanced photobleaching and blinking of the Pn donor molecules. To better understand the underlying physics of these processes, we modeled photoexcited electron dynamics using Monte Carlo simulations. The simulated blinking dynamics were then compared to our experimental data, and the changes in the transition rates were related to the changes in the nanoscale environment. Our study provides insight into evolution of nanoscale environment during the formation of bulk heterojunctions.

  16. Bench-scale synthesis of nanoscale materials

    NASA Technical Reports Server (NTRS)

    Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.

    1994-01-01

    A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.

  17. PhySIC: a veto supertree method with desirable properties.

    PubMed

    Ranwez, Vincent; Berry, Vincent; Criscuolo, Alexis; Fabre, Pierre-Henri; Guillemot, Sylvain; Scornavacca, Celine; Douzery, Emmanuel J P

    2007-10-01

    This paper focuses on veto supertree methods; i.e., methods that aim at producing a conservative synthesis of the relationships agreed upon by all source trees. We propose desirable properties that a supertree should satisfy in this framework, namely the non-contradiction property (PC) and the induction property (PI). The former requires that the supertree does not contain relationships that contradict one or a combination of the source topologies, whereas the latter requires that all topological information contained in the supertree is present in a source tree or collectively induced by several source trees. We provide simple examples to illustrate their relevance and that allow a comparison with previously advocated properties. We show that these properties can be checked in polynomial time for any given rooted supertree. Moreover, we introduce the PhySIC method (PHYlogenetic Signal with Induction and non-Contradiction). For k input trees spanning a set of n taxa, this method produces a supertree that satisfies the above-mentioned properties in O(kn(3) + n(4)) computing time. The polytomies of the produced supertree are also tagged by labels indicating areas of conflict as well as those with insufficient overlap. As a whole, PhySIC enables the user to quickly summarize consensual information of a set of trees and localize groups of taxa for which the data require consolidation. Lastly, we illustrate the behaviour of PhySIC on primate data sets of various sizes, and propose a supertree covering 95% of all primate extant genera. The PhySIC algorithm is available at http://atgc.lirmm.fr/cgi-bin/PhySIC.

  18. PREFACE: EMAG NANO 2005: Imaging, Analysis and Fabrication on the Nanoscale

    NASA Astrophysics Data System (ADS)

    2006-01-01

    The biennial conference of the Electron Microscopy & Analysis Group (EMAG) was this year co-hosted with the Nanoscale Physics and Technology (NPT) Group of the Institute of Physics and held at The University of Leeds from 31 August to 2 September. The conference attracted 151 delegates from 16 countries. As part of the "Einstein" International Year of Physics, the conference focused on the dominant themes of Imaging, Analysis and Fabrication on the Nanoscale. EMAG and NPT co-organised the scientific programme, allowing three parallel sessions to run along the lines of (1) Microscopy techniques for nanotechnology; (2) Investigating structure-property relationships in advanced materials; and (3) Nanophysics and nanotechnology. Indeed, one of the motivations for running this conference series has been to encourage and develop the next generation of research scientists, to help maintain the UK's international profile in the areas of microscopy, analysis and innovation in micro- and nanotechnology. In this context, EMAG provided bursaries to cover the registration fees for 25 research students to help meet their costs of attending this event. In addition to the 4 plenary lectures, there were 13 invited oral presentations and 77 contributed oral papers that ran in three parallel sessions. Furthermore, 44 posters were presented throughout the three days. These proceedings comprise 90 papers, beginning with a plenary paper, followed by the invited and contributed oral papers ordered chronologically by session as they appeared during the conference. The collated poster papers are then presented. The papers were submitted in advance of the conference, both electronically in Word and .pdf formats, and in hard copy camera ready format. Each paper was reviewed by two referees. We are indebted to the efforts of the many delegates who kindly provided their valuable time to help in this process. Without their efforts it would not have been possible to produce these proceedings so

  19. Physical principles for DNA tile self-assembly.

    PubMed

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  20. An observational study of ballooning in large spiders: Nanoscale multifibers enable large spiders’ soaring flight

    PubMed Central

    Neubauer, Peter; Fahrenson, Christoph; Rechenberg, Ingo

    2018-01-01

    The physical mechanism of aerial dispersal of spiders, “ballooning behavior,” is still unclear because of the lack of serious scientific observations and experiments. Therefore, as a first step in clarifying the phenomenon, we studied the ballooning behavior of relatively large spiders (heavier than 5 mg) in nature. Additional wind tunnel tests to identify ballooning silks were implemented in the laboratory. From our observation, it seems obvious that spiders actively evaluate the condition of the wind with their front leg (leg I) and wait for the preferable wind condition for their ballooning takeoff. In the wind tunnel tests, as-yet-unknown physical properties of ballooning fibers (length, thickness, and number of fibers) were identified. Large spiders, 16–20 mg Xysticus spp., spun 50–60 nanoscale fibers, with a diameter of 121–323 nm. The length of these threads was 3.22 ± 1.31 m (N = 22). These physical properties of ballooning fibers can explain the ballooning of large spiders with relatively light updrafts, 0.1–0.5 m s−1, which exist in a light breeze of 1.5–3.3 m s−1. Additionally, in line with previous research on turbulence in atmospheric boundary layers and from our wind measurements, it is hypothesized that spiders use the ascending air current for their aerial dispersal, the “ejection” regime, which is induced by hairpin vortices in the atmospheric boundary layer turbulence. This regime is highly correlated with lower wind speeds. This coincides well with the fact that spiders usually balloon when the wind speed is lower than 3 m s−1. PMID:29902191

  1. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendra Bordia

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-firedmore » environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  2. Overcoming nanoscale friction barriers in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Cammarata, Antonio; Polcar, Tomas

    2017-08-01

    We study the atomic contributions to the nanoscale friction in layered M X2 (M =Mo , W; X =S , Se, Te) transition metal dichalcogenides by combining ab initio techniques with group-theoretical analysis. Starting from stable atomic configurations, we propose a computational method, named normal-modes transition approximation (NMTA), to individuate possible sliding paths from only the analysis of the phonon modes of the stable geometry. The method provides a way to decompose the atomic displacements realizing the layer sliding in terms of phonon modes of the stable structure, so as to guide the selection and tuning of specific atomic motions promoting M X2 sheets gliding, and to adjust the corresponding energy barrier. The present results show that main contributions to the nanoscale friction are due to few low frequency phonon modes, corresponding to rigid shifts of M X2 layers. We also provide further evidences that a previously reported Ti-doped MoS2 phase is a promising candidate as new material with enhanced tribologic properties. The NMTA approach can be exploited to tune the energetic and the structural features of specific phonon modes, and, thanks to its general formulation, can also be applied to any solid state system, irrespective of the chemical composition and structural topology.

  3. Development of Self-Assembled Nanoscale Templates via Microphase Separation Induced by Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Chu, Elza

    Phase separation in soft matter has been the crucial element in generating hybrid materials, such as polymer blends and mixed polymer brushes. This dissertation discusses two methods of developing self-assembled nanoscale templates via microphase separation induced by polymer brush synthesis. This work introduces a novel soft substrate approach with renewable grafting sites where polyacrylamide is "grafted through" chitosan soft substrates. The mechanism of grafting leads to ordered arrays of filament-like nanostructures spanning the chitosan-air interface. Additionally, the chemical composition of the filaments allows for post-chemical modification to change the physical properties of the filaments, and subsequently tailor surfaces for specific application. Unlike traditional materials, multi-functional or "smart" materials, such as binary polymer brushes (BPB) are capable of spontaneously changing the spatial distribution of functional groups and morphology at the surface upon external stimuli. Although promising in principle, the limited range of available complementary polymers with common non-selective solvents confines the diversity of usable materials and restricts any further advancement in the field. This dissertation also covers the fabrication and characterization of responsive nanoscale polystyrene templates or "mosaic" brushes that are capable of changing interfacial composition upon exposure to varying solvent qualities. Using a "mosaic" brush template is a unique approach that allows the fabrication of strongly immiscible polymer BPB without the need for a common solvent. The synthesis of such BPB is exemplified by two strongly immiscible polymers, i.e. polystyrene (polar) and polyacrylamide (non-polar), where polyacrylamide brush is "graft through" a Si-substrate modified with the polystyrene collapsed "mosaic" brush. The surface exhibits solvent-triggered responses, as well as application potential for anti-biofouling.

  4. Materials used to simulate physical properties of human skin.

    PubMed

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Unraveling the physics of vertical organic field effect transistors through nanoscale engineering of a self-assembled transparent electrode.

    PubMed

    Ben-Sasson, Ariel J; Tessler, Nir

    2012-09-12

    While organic transistors' performances are continually pushed to achieve lower power consumption, higher working frequencies, and higher current densities, a new type of organic transistors characterized by a vertical architecture offers a radically different design approach to outperform its traditional counterparts. Naturally, the distinct vertical architecture gives way to different governing physical ground rules and structural key features such as the need for an embedded transparent electrode. In this paper, we make use of a zero-frequency electric field-transparent patterned electrode produced through block-copolymer self-assembly based lithography to control the performances of the vertical organic field effect transistor (VOFET) and to study its governing physical mechanisms. Unlike other VOFET structures, this design, involving well-defined electrode architecture, is fully tractable, allowing for detailed modeling, analysis, and optimization. We provide for the first time a complete account of the physics underpinning the VOFET operation, considering two complementary mechanisms: the virtual contact formation (Schottky barrier lowering) and the induced potential barrier (solid-state triode-like shielding). We demonstrate how each mechanism, separately, accounts for the link between controllable nanoscale structural modifications in the patterned electrode and the VOFET performances. For example, the ON/OFF current ratio increases by up to 2 orders of magnitude when the perforations aspect ratio (height/width) decreases from ∼0.2 to ∼0.1. The patterned electrode is demonstrated to be not only penetrable to zero-frequency electric fields but also transparent in the visible spectrum, featuring uniformity, spike-free structure, material diversity, amenability with flexible surfaces, low sheet resistance (20-2000 Ω sq(-1)) and high transparency (60-90%). The excellent layer transparency of the patterned electrode and the VOFET's exceptional electrical

  6. Properties of submicron particles in Atmospheric Brown Clouds

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.; Chen, B. B.; Dubovskoi, A. N.; Friedrich, F.; Pernik, L. M.; Popel, S. I.; Weidler, P. G.

    2010-05-01

    be close to those typical for the ABC. We present also the results of the study of morphology and mineralogical composition of the obtained particles as well as their magnetic properties. This study was supported by the Division of Earth Sciences, Russian Academy of Sciences (research program "Nanoscale particles in nature and technogenic products: conditions of existence, physical and chemical properties, and mechanisms of formation") and by ISTC (project No. KR-1522).

  7. A review of microelectromechanical systems for nanoscale mechanical characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Chang, Tzu-Hsuan

    2015-09-01

    A plethora of nanostructures with outstanding properties have emerged over the past decades. Measuring their mechanical properties and understanding their deformation mechanisms is of paramount importance for many of their device applications. To address this need innovative experimental techniques have been developed, among which a promising one is based upon microelectromechanical systems (MEMS). This article reviews the recent advances in MEMS platforms for the mechanical characterization of one-dimensional (1D) nanostructures over the past decade. A large number of MEMS platforms and related nanomechanics studies are presented to demonstrate the unprecedented capabilities of MEMS for nanoscale mechanical characterization. Focusing on key design considerations, this article aims to provide useful guidelines for developing MEMS platforms. Finally, some of the challenges and future directions in the area of MEMS-enabled nanomechanical characterization are discussed.

  8. First principle study of electronic nanoscale structure of In x Ga1- x P with variable size, shape and alloying percentage

    NASA Astrophysics Data System (ADS)

    Hussein, M. T.; Kasim, T.; Abdulsattar, M. A.

    2013-11-01

    In present work, we investigate electronic properties of alloying percentage of In x Ga1- x P compound with different sizes of superlattice large unit cell (LUC) method with 8, 16, 54, and 64 nanocrystals core atoms. The size and type of alloying compound are varied so that it can be tuned to a required application. To determine properties of indium gallium phosphide nanocrystals density functional theory at the generalized-gradient approximation level coupled with LUC method is used to simulate electronic structure of zinc blende indium gallium phosphide nanocrystals that have dimensions around 2-2.8 nm. The calculated properties include lattice constant, energy gap, valence band width, cohesive energy, density of states (DOS) etc. Results show that laws that are applied at microscale alloying percentage are no more applicable at the present nanoscale. Results also show that size, shape and quantum effects are strong. Many properties fluctuate at nanoscale while others converge to definite values. DOS summarizes many of the above quantities.

  9. Treadmill Exercise Improves Fracture Toughness and Indentation Modulus without Altering the Nanoscale Morphology of Collagen in Mice.

    PubMed

    Hammond, Max A; Laine, Tyler J; Berman, Alycia G; Wallace, Joseph M

    The specifics of how the nanoscale properties of collagen (e.g., the crosslinking profile) affect the mechanical integrity of bone at larger length scales is poorly understood despite growing evidence that collagen's nanoscale properties are altered with disease. Additionally, mass independent increases in postyield displacement due to exercise suggest loading-induced improvements in bone quality associated with collagen. To test whether disease-induced reductions in bone quality driven by alterations in collagen can be rescued or prevented via exercise-mediated changes to collagen's nanoscale morphology and mechanical properties, the effects of treadmill exercise and β-aminopropionitrile treatment were investigated. Eight week old female C57BL/6 mice were given a daily subcutaneous injection of either 164 mg/kg β-aminopropionitrile or phosphate buffered saline while experiencing either normal cage activity or 30 min of treadmill exercise for 21 consecutive days. Despite differences in D-spacing distribution (P = 0.003) and increased cortical area (tibial: P = 0.005 and femoral: P = 0.015) due to β-aminopropionitrile treatment, an overt mechanical disease state was not achieved as there were no differences in fracture toughness or 4 point bending due to β-aminopropionitrile treatment. While exercise did not alter (P = 0.058) the D-spacing distribution of collagen or prevent (P < 0.001) the β-aminopropionitrile-induced changes present in the unexercised animals, there were differential effects in the distribution of the reduced elastic modulus due to exercise between control and β-aminopropionitrile-treated animals (P < 0.001). Fracture toughness was increased (P = 0.043) as a main effect of exercise, but no significant differences due to exercise were observed using 4 point bending. Future studies should examine the potential for sex specific differences in the dose of β-aminopropionitrile required to induce mechanical effects in mice and the contributions

  10. Molecular and nanoscale materials and devices in electronics.

    PubMed

    Fu, Lei; Cao, Lingchao; Liu, Yunqi; Zhu, Daoben

    2004-12-13

    Over the past several years, there have been many significant advances toward the realization of electronic computers integrated on the molecular scale and a much greater understanding of the types of materials that will be useful in molecular devices and their properties. It was demonstrated that individual molecules could serve as incomprehensibly tiny switch and wire one million times smaller than those on conventional silicon microchip. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular scale devices. The purpose of this review is to provide a general introduction to molecular and nanoscale materials and devices in electronics.

  11. Effects of physical properties on thermo-fluids cavitating flows

    NASA Astrophysics Data System (ADS)

    Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.

    2015-12-01

    The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.

  12. Strain-Driven Nanoscale Phase Competition near the Antipolar-Nonpolar Phase Boundary in Bi0.7La0.3FeO3 Thin Films.

    PubMed

    Dedon, Liv R; Chen, Zuhuang; Gao, Ran; Qi, Yajun; Arenholz, Elke; Martin, Lane W

    2018-05-02

    Complex-oxide materials tuned to be near phase boundaries via chemistry/composition, temperature, pressure, etc. are known to exhibit large susceptibilities. Here, we observe a strain-driven nanoscale phase competition in epitaxially constrained Bi 0.7 La 0.3 FeO 3 thin films near the antipolar-nonpolar phase boundary and explore the evolution of the structural, dielectric, (anti)ferroelectric, and magnetic properties with strain. We find that compressive and tensile strains can stabilize an antipolar PbZrO 3 -like Pbam phase and a nonpolar Pnma orthorhombic phase, respectively. Heterostructures grown with little to no strain exhibit a self-assembled nanoscale mixture of the two orthorhombic phases, wherein the relative fraction of each phase can be modified with film thickness. Subsequent investigation of the dielectric and (anti)ferroelectric properties reveals an electric-field-driven phase transformation from the nonpolar phase to the antipolar phase. X-ray linear dichroism reveals that the antiferromagnetic-spin axes can be effectively modified by the strain-induced phase transition. This evolution of antiferromagnetic-spin axes can be leveraged in exchange coupling between the antiferromagnetic Bi 0.7 La 0.3 FeO 3 and a ferromagnetic Co 0.9 Fe 0.1 layer to tune the ferromagnetic easy axis of the Co 0.9 Fe 0.1 . These results demonstrate that besides chemical alloying, epitaxial strain is an alternative and effective way to modify subtle phase relations and tune physical properties in rare earth-alloyed BiFeO 3 . Furthermore, the observation of antiferroelectric-antiferromagnetic properties in the Pbam Bi 0.7 La 0.3 FeO 3 phase could be of significant scientific interest and great potential in magnetoelectric devices because of its dual antiferroic nature.

  13. Comparative studies of physical properties of kinesiotapes.

    PubMed

    Gołąb, Agnieszka; Kulesa-Mrowiecka, Małgorzata; Gołąb, Marek

    2017-01-01

    Nowadays we observe growing popularity of kinesiotaping as a supportive method in physiotherapy. In documents available on kinesiotaping we can find that mechanical properties of tapes are similar to the ones of a human skin, but usually there is hardly any numerical data characterizing these properties. Therefore, testing and comparing physical properties of commercially available kinesiotapes seems to be important. Physical properties of five commercially available kinesiotapes were examined. Strain vs. stress data was collected up to 15 N. Program Origin 9.0 was used for data analysis. The obtained results show that up to about 2 N the strain vs. stress characteristics of the tested tapes are similar while for greater stress they differ essentially. An alternative, to commonly used, way of defining relative strain is proposed. This definition could be more suitable in those cases when desired tape tensions are higher than 50% i.e. in ligament and tendon techniques.

  14. Effect of decompression drying treatment on physical properties of solid foods.

    PubMed

    Morikawa, Takuya; Takada, Norihisa; Miura, Makoto

    2017-04-01

    This study used a decompression drying instrument to investigate the effects of a drying treatment on the physical properties of solid foods. Commercial tofu was used as a model food and was treated at different temperature and pressure conditions in a drying chamber. Overall, high temperatures resulted in better drying. Additionally, pressure in the chamber influenced the drying conditions of samples. Differences in physical properties, such as food texture, shrinkage, and color were observed among some samples, even with similar moisture content. This was caused by differences in moisture distribution in the food, which seems to have manifested as a thin, dried film on the surfaces of samples. It caused inefficient drying and changes in physical properties. Control of the drying conditions (i.e. pressure and heat supply) has relations with not only physical properties, but also the drying efficiency of solid foods.

  15. Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties.

    PubMed

    Nia, Hadi Tavakoli; Han, Lin; Bozchalooi, Iman Soltani; Roughley, Peter; Youcef-Toumi, Kamal; Grodzinsky, Alan J; Ortiz, Christine

    2015-03-24

    Poroelastic interactions between interstitial fluid and the extracellular matrix of connective tissues are critical to biological and pathophysiological functions involving solute transport, energy dissipation, self-stiffening and lubrication. However, the molecular origins of poroelasticity at the nanoscale are largely unknown. Here, the broad-spectrum dynamic nanomechanical behavior of cartilage aggrecan monolayer is revealed for the first time, including the equilibrium and instantaneous moduli and the peak in the phase angle of the complex modulus. By performing a length scale study and comparing the experimental results to theoretical predictions, we confirm that the mechanism underlying the observed dynamic nanomechanics is due to solid-fluid interactions (poroelasticity) at the molecular scale. Utilizing finite element modeling, the molecular-scale hydraulic permeability of the aggrecan assembly was quantified (kaggrecan = (4.8 ± 2.8) × 10(-15) m(4)/N·s) and found to be similar to the nanoscale hydraulic permeability of intact normal cartilage tissue but much lower than that of early diseased tissue. The mechanisms underlying aggrecan poroelasticity were further investigated by altering electrostatic interactions between the molecule's constituent glycosaminoglycan chains: electrostatic interactions dominated steric interactions in governing molecular behavior. While the hydraulic permeability of aggrecan layers does not change across species and age, aggrecan from adult human cartilage is stiffer than the aggrecan from newborn human tissue.

  16. The power laws of nanoscale forces in ambient conditions

    NASA Astrophysics Data System (ADS)

    Chiesa, Matteo; Santos, Sergio; Lai, Chia-Yun

    Power laws are ubiquitous in the physical sciences and indispensable to qualitatively and quantitatively describe physical phenomena. A nanoscale force law that accurately describes the phenomena observed in ambient conditions at several nm or fractions of a nm above a surface however is still lacking. Here we report a power law derived from experimental data and describing the interaction between an atomic force microscope AFM tip modelled as a sphere and a surface in ambient conditions. By employing a graphite surface as a model system the resulting effective power is found to be a function of the tip radius and the distance. The data suggest a nano to mesoscale transition in the power law that results in relative agreement with the distance-dependencies predicted by the Hamaker and Lifshitz theories for van der Waals forces for the larger tip radii only

  17. EDITORIAL: Mastering matter at the nanoscale Mastering matter at the nanoscale

    NASA Astrophysics Data System (ADS)

    Forchel, Alfred

    2009-10-01

    In the early 1980s, the development of scanning probe techniques gave scientists a titillating view of surfaces with nanometre resolution, igniting activity in research at the nanoscale. Images at unprecedented resolution were unveiled with the aid of various types of nanosized tips, including the scanning tunnelling (Binnig G, Rohrer H, Gerber C and Weibel E 1982 Appl. Phys. Lett. 40 178-80) the atomic force (Binnig G, Quate C F and Gerber C 1986 Phys. Rev. Lett. 56 930-3) and the near-field scanning microscopes (Dürig U, Pohl D W and Rohner F 1986 J. Appl. Phys. 59 3318-27). From the magnitude of tunnelling currents between conductive surfaces and van der Waals forces between dielectrics to the non-propagating evanescent fields at illuminated surfaces, a range of signal responses were harnessed enabling conductive, dielectric and even biological systems to be imaged. But it may be argued that it was the ability to manipulate matter at the nanoscale that really empowered nanotechnology. From the inception of the scanning probe revolution, these probes used to image nanostructures were also discovered to be remarkable tools for the manipulation of nanoparticles. Insights into the mechanism behind such processes were reported by a team of researchers at UCLA over ten years ago in 1998 (Baur C et al 1998 Nanotechnology 9 360-4). In addition, lithography and etching methods of patterning continue to evolve into ever more sophisticated techniques for exerting design over the structure of matter at the nanoscale. These so-called top-down methods, such as photolithography, electron-beam lithography and nanoimprint lithography, now provide control over features with a resolution of a few nanometres. Bottom-up fabrication techniques that exploit the self-assembly of constituents into desired structures have also stimulated extensive research. These techniques, such as the electrochemically assembled quantum-dot arrays reported by a team of US reasearchers over ten years

  18. Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Fontaine, Thierry; Latgé, Jean-Paul; Dufrêne, Yves F.

    2015-09-01

    Many fungal pathogens produce cell surface polysaccharides that play essential roles in host-pathogen interactions. In Aspergillus fumigatus, the newly discovered polysaccharide galactosaminogalactan (GAG) mediates adherence to a variety of substrates through molecular mechanisms that are poorly understood. Here we use atomic force microscopy to unravel the localization and adhesion of GAG on living fungal cells. Using single-molecule imaging with tips bearing anti-GAG antibodies, we found that GAG is massively exposed on wild-type (WT) germ tubes, consistent with the notion that this glycopolymer is secreted by the mycelium of A. fumigatus, while it is lacking on WT resting conidia and on germ tubes from a mutant (Δuge3) deficient in GAG. Imaging germ tubes with tips bearing anti-β-glucan antibodies shows that exposure of β-glucan is strongly increased in the Δuge3 mutant, indicating that this polysaccharide is masked by GAG during hyphal growth. Single-cell force measurements show that expression of GAG on germ tubes promotes specific adhesion to pneumocytes and non-specific adhesion to hydrophobic substrates. These results provide a molecular foundation for the multifunctional adhesion properties of GAG, thus suggesting it could be used as a potential target in anti-adhesion therapy and immunotherapy. Our methodology represents a powerful approach for characterizing the nanoscale organization and adhesion of cell wall polysaccharides during fungal morphogenesis, thereby contributing to increase our understanding of their role in biofilm formation and immune responses.

  19. Polymer Physics Prize Talk

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica

    Polymer electrolytes have been particularly difficult to describe theoretically given the large number of disparate length scales involved in determining their physical properties. The Debye length, the Bjerrum length, the ion size, the chain length, and the distance between the charges along their backbones determine their structure and their response to external fields. We have developed an approach that uses multi-scale calculations with the capability of demonstrating the phase behavior of polymer electrolytes and of providing a conceptual understanding of how charge dictates nano-scale structure formation. Moreover, our molecular dynamics simulations have provided an understanding of the coupling of their conformation to their dynamics, which is crucial to design self-assembling materials, as well as to explore the dynamics of complex electrolytes for energy storage and conversion applications.

  20. Monitoring abnormal bio-optical and physical properties in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Jones, Brooke

    2017-05-01

    The dynamic bio-optical and physical ocean properties within the Gulf of Mexico (GoM) have been identified by the Ocean Weather Laboratory. Ocean properties from VIIRS satellite (Chlorophyll and Bio-Optics and SST) and ocean-circulation models (currents, SST and salinity) were used to identify regions of dynamic changing properties. The degree of environmental change is defined by the dynamic anomaly of bio-optical and physical environmental properties (DAP). A Mississippi River plume event (Aug 2015) that extended to Key West was used to demonstrate the anomaly products. Locations where normal and abnormal ocean properties occur determine ecological and physical hotspots in the GoM, which can be used for adaptive sampling of ocean processes. Methods are described to characterize the weekly abnormal environmental properties using differences with a previous baseline 8 week mean with a 2 week lag. The intensity of anomaly is quantified using levels of standard deviation of the baseline and can be used to recognize ocean events and provide decision support for adaptive sampling. The similarities of the locations of different environmental property anomalies suggest interaction between the bio-optical and physical properties. A coral bleaching event at the Flower Garden Banks Marine Protected Area is represented by the salinity anomaly. Results identify ocean regions for sampling to reduce data gaps and improve monitoring of bio-optical and physical properties.

  1. Nanoscale electron manipulation in metals with intense THz electric fields

    NASA Astrophysics Data System (ADS)

    Takeda, Jun; Yoshioka, Katsumasa; Minami, Yasuo; Katayama, Ikufumi

    2018-03-01

    Improved control over the electromagnetic properties of metals on a nanoscale is crucial for the development of next-generation nanoelectronics and plasmonic devices. Harnessing the terahertz (THz)-electric-field-induced nonlinearity for the motion of electrons is a promising method of manipulating the local electromagnetic properties of metals, while avoiding undesirable thermal effects and electronic transitions. In this review, we demonstrate the manipulation of electron delocalization in ultrathin gold (Au) films with nanostructures, by intense THz electric-field transients. On increasing the electric-field strength of the THz pulses, the transmittance in the THz-frequency region abruptly decreases around the percolation threshold. The observed THz-electric-field-induced nonlinearity is analysed, based on the Drude-Smith model. The results suggest that ultrafast electron delocalization occurs by electron tunnelling across the narrow insulating bridge between the Au nanostructures, without material breakdown. In order to quantitatively discuss the tunnelling process, we perform scanning tunnelling microscopy with carrier-envelope phase (CEP)-controlled single-cycle THz electric fields. By applying CEP-controlled THz electric fields to the 1 nm nanogap between a metal nanotip and graphite sample, many electrons could be coherently driven through the quantum tunnelling process, either from the nanotip to the sample or vice versa. The presented concept, namely, electron tunnelling mediated by CEP-controlled single-cycle THz electric fields, can facilitate the development of nanoscale electron manipulation, applicable to next-generation ultrafast nanoelectronics and plasmonic devices.

  2. Nanoscale platforms for messenger RNA delivery.

    PubMed

    Li, Bin; Zhang, Xinfu; Dong, Yizhou

    2018-05-04

    Messenger RNA (mRNA) has become a promising class of drugs for diverse therapeutic applications in the past few years. A series of clinical trials are ongoing or will be initiated in the near future for the treatment of a variety of diseases. Currently, mRNA-based therapeutics mainly focuses on ex vivo transfection and local administration in clinical studies. Efficient and safe delivery of therapeutically relevant mRNAs remains one of the major challenges for their broad applications in humans. Thus, effective delivery systems are urgently needed to overcome this limitation. In recent years, numerous nanoscale biomaterials have been constructed for mRNA delivery in order to protect mRNA from extracellular degradation and facilitate endosomal escape after cellular uptake. Nanoscale platforms have expanded the feasibility of mRNA-based therapeutics, and enabled its potential applications to protein replacement therapy, cancer immunotherapy, therapeutic vaccines, regenerative medicine, and genome editing. This review focuses on recent advances, challenges, and future directions in nanoscale platforms designed for mRNA delivery, including lipid and lipid-derived nanoparticles, polymer-based nanoparticles, protein derivatives mRNA complexes, and other types of nanomaterials. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures. © 2018 Wiley Periodicals, Inc.

  3. 2D Quantum Mechanical Study of Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  4. Scanning microwave microscopy technique for nanoscale characterization of magnetic materials

    NASA Astrophysics Data System (ADS)

    Joseph, C. H.; Sardi, G. M.; Tuca, S. S.; Gramse, G.; Lucibello, A.; Proietti, E.; Kienberger, F.; Marcelli, R.

    2016-12-01

    In this work, microwave characterization of magnetic materials using the scanning microwave microscopy (SMM) technique is presented. The capabilities of the SMM are employed for analyzing and imaging local magnetic properties of the materials under test at the nanoscale. The analyses are performed by acquiring both amplitude and phase of the reflected microwave signal. The changes in the reflection coefficient S11 are related to the local properties of the material under investigation, and the changes in its magnetic properties have been studied as a function of an external DC magnetic bias. Yttrium iron garnet (YIG) films deposited by RF sputtering and grown by liquid phase epitaxial (LPE) on gadolinium gallium garnet (GGG) substrates and permalloy samples have been characterized. An equivalent electromagnetic transmission line model is discussed for the quantitative analysis of the local magnetic properties. We also observed the hysteretic behavior of the reflection coefficient S11 with an external bias field. The imaging and spectroscopy analysis on the experimental results are evidently indicating the possibilities of measuring local changes in the intrinsic magnetic properties on the surface of the material.

  5. Nanoscale Skyrmions in a Nonchiral Metallic Multiferroic: Ni 2MnGa

    DOE PAGES

    Phatak, Charudatta; Heinonen, Olle; De Graef, Marc; ...

    2016-05-17

    Magnetic skyrmions belong to a set of topologically nontrivial spin textures at the nanoscale that have received increased attention due to their emergent behavior and novel potential spintronic applications. Discovering materials systems that can host skyrmions at room temperature in the absence of external magnetic field is of crucial importance not only from a fundamental aspect, but also from a technological point of view. So far, the observations of skyrmions in bulk metallic ferromagnets have been limited to low temperatures and to materials that exhibit strong chiral interactions. In this paper, we show the formation of nanoscale skyrmions in amore » nonchiral multiferroic material, which is ferromagnetic and ferroelastic, Ni 2MnGa at room temperature without the presence of external magnetic fields. By using Lorentz transmission electron microscopy in combination with micromagnetic simulations, we elucidate their formation, behavior, and stability under applied magnetic fields at room temperature. Finally, the formation of skyrmions in a multiferroic material with no broken inversion symmetry presents new exciting opportunities for the exploration of the fundamental physics of topologically nontrivial spin textures.« less

  6. Grain engineering: How nanoscale inhomogeneities can control charge collection in solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Bradley M.; Stuckelberger, Michael; Guthrey, Harvey

    Statistical and correlative analysis are increasingly important in the design and study of new materials, from semiconductors to metals. Non-destructive measurement techniques, with high spatial resolution, capable of correlating composition and/or structure with device properties, are few and far between. For the case of polycrystalline and inhomogeneous materials, the added challenge is that nanoscale resolution is in general not compatible with the large sampling areas necessary to have a statistical representation of the specimen under study. For the study of grain cores and grain boundaries in polycrystalline solar absorbers this is of particular importance since their dissimilar behavior and variabilitymore » throughout the samples makes it difficult to draw conclusions and ultimately optimize the material. In this study, we present a nanoscale in-operando approach based on the multimodal utilization of synchrotron nano x-ray fluorescence and x-ray beam induced current collected for grain core and grain boundary areas and correlated pixel-by-pixel in fully operational Cu(In(1-x)Gax)Se2Cu(In(1-x)Gax)Se2 solar cells. We observe that low gallium cells have grain boundaries that over perform compared to the grain cores and high gallium cells have boundaries that under perform. These results demonstrate how nanoscale correlative X-ray microscopy can guide research pathways towards grain engineering low cost, high efficiency solar cells.« less

  7. Grain engineering: How nanoscale inhomogeneities can control charge collection in solar cells

    DOE PAGES

    West, Bradley M.; Stuckelberger, Michael; Guthrey, Harvey; ...

    2016-12-16

    We present that statistical and correlative analysis are increasingly important in the design and study of new materials, from semiconductors to metals. Non-destructive measurement techniques, with high spatial resolution, capable of correlating composition and/or structure with device properties, are few and far between. For the case of polycrystalline and inhomogeneous materials, the added challenge is that nanoscale resolution is in general not compatible with the large sampling areas necessary to have a statistical representation of the specimen under study. For the study of grain cores and grain boundaries in polycrystalline solar absorbers this is of particular importance since their dissimilarmore » behavior and variability throughout the samples makes it difficult to draw conclusions and ultimately optimize the material. In this study, we present a nanoscale in-operando approach based on the multimodal utilization of synchrotron nano x-ray fluorescence and x-ray beam induced current collected for grain core and grain boundary areas and correlated pixel-by-pixel in fully operational Cu(In (1-x)Ga x)Se 2 solar cells. We observe that low gallium cells have grain boundaries that over perform compared to the grain cores and high gallium cells have boundaries that under perform. In conclusion, these results demonstrate how nanoscale correlative X-ray microscopy can guide research pathways towards grain engineering low cost, high efficiency solar cells.« less

  8. Achromatic elemental mapping beyond the nanoscale in the transmission electron microscope.

    PubMed

    Urban, K W; Mayer, J; Jinschek, J R; Neish, M J; Lugg, N R; Allen, L J

    2013-05-03

    Newly developed achromatic electron optics allows the use of wide energy windows and makes feasible energy-filtered transmission electron microscopy (EFTEM) at atomic resolution. In this Letter we present EFTEM images formed using electrons that have undergone a silicon L(2,3) core-shell energy loss, exhibiting a resolution in EFTEM of 1.35 Å. This permits elemental mapping beyond the nanoscale provided that quantum mechanical calculations from first principles are done in tandem with the experiment to understand the physical information encoded in the images.

  9. Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.

    PubMed

    Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C

    2015-05-21

    In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.

  10. PETher - Physical Properties of Thermal Water under In-situ-Conditions

    NASA Astrophysics Data System (ADS)

    Herfurth, Sarah; Schröder, Elisabeth

    2016-04-01

    The objective of PETher, a research project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi), is to experimentally determine thermo-physical properties (specific isobaric heat capacity, kinematic viscosity, density and thermal conductivity) of geothermal water in-situ-conditions (pressure, temperature, chemical composition including gas content of the brine) present in geothermal applications. Knowing these thermo-physical properties reduces the uncertainties with respect to estimating the thermal output and therefore the economic viability of the power plant. Up to now, only a limited number of measurements of selected physical properties have been made, usually under laboratory conditions and for individual geothermal plants. In-situ measured parameters, especially in the temperature range of 120°C and higher, at pressures of 20 bar and higher, as well as with a salinity of up to 250 g/l, are sparse to non-existing. Therefore, pure water properties are often used as reference data and for designing the power plant and its components. Currently available numerical models describing the thermo-physical properties are typically not valid for the conditions in geothermal applications and do not consider the substantial influence of the chemical composition of the thermal water. Also, actual geothermal waters have not been subject of detailed measurements systematically performed under operational conditions on a large-scale basis. Owing to the lack of reliable data, a validation of numerical models for investigating geothermal systems is not possible. In order to determine the dependency of the thermo-physical properties of geothermal water on temperature, pressure and salinity in-situ measurements are conducted. The measurements are taking place directly at several geothermal applications located in Germany's hydrogeothermal key regions. In order to do this, a mobile testing unit was developed and refined with instruments specifically

  11. Physics of cosmological cascades and observable properties

    NASA Astrophysics Data System (ADS)

    Fitoussi, T.; Belmont, R.; Malzac, J.; Marcowith, A.; Cohen-Tanugi, J.; Jean, P.

    2017-04-01

    TeV photons from extragalactic sources are absorbed in the intergalactic medium and initiate electromagnetic cascades. These cascades offer a unique tool to probe the properties of the universe at cosmological scales. We present a new Monte Carlo code dedicated to the physics of such cascades. This code has been tested against both published results and analytical approximations, and is made publicly available. Using this numerical tool, we investigate the main cascade properties (spectrum, halo extension and time delays), and study in detail their dependence on the physical parameters (extragalactic magnetic field, extragalactic background light, source redshift, source spectrum and beaming emission). The limitations of analytical solutions are emphasized. In particular, analytical approximations account only for the first generation of photons and higher branches of the cascade tree are neglected.

  12. Nanoscale visualization of electronic properties of AlxGa1-xN/AlyGa1-yN multiple quantum-well heterostructure by spreading resistance microscopy

    NASA Astrophysics Data System (ADS)

    Sviridov, D. E.; Kozlovsky, V. I.; Rong, X.; Chen, G.; Wang, X.; Jmerik, V. N.; Kirilenko, D. A.; Ivanov, S. V.

    2017-01-01

    Cross-sectional spreading resistance microscopy has been used to investigate nanoscale variations in electronic properties of an undoped Al0.75Ga0.25N/Al0.95Ga0.05N multiple quantum well (MQW) heterostructure grown by plasma-assisted molecular beam epitaxy on an AlN/c-sapphire template, prepared by metalorganic vapor phase epitaxy. It is found that a current signal from the MQWs can be detected only at a negative sample bias. Moreover, its value changes periodically from one quantum well (QW) to another. Analysis of the current-voltage characteristics of the contacts of a tip with the structure layers showed that periodic contrast of MQWs is the result of fluctuations of the chemical composition of the QWs and the concentration of electrons accumulated in them. Mathematical simulations indicate that this modulation is associated with the periodic fluctuations of an Al-mole fraction in the barrier layers of the structure due to counter gradients of the intensity of Al and Ga molecular fluxes across the surface of a substrate rotating slowly during growth. The nanoscale fluctuations of the current contrast observed along the QW layers are caused, most likely, by the presence of the areas of lateral carrier localization, which originate during the formation of QWs by sub-monolayer digital alloying technique.

  13. Rate and State Friction Relation for Nanoscale Contacts: Thermally Activated Prandtl-Tomlinson Model with Chemical Aging

    NASA Astrophysics Data System (ADS)

    Tian, Kaiwen; Goldsby, David L.; Carpick, Robert W.

    2018-05-01

    Rate and state friction (RSF) laws are widely used empirical relationships that describe macroscale to microscale frictional behavior. They entail a linear combination of the direct effect (the increase of friction with sliding velocity due to the reduced influence of thermal excitations) and the evolution effect (the change in friction with changes in contact "state," such as the real contact area or the degree of interfacial chemical bonds). Recent atomic force microscope (AFM) experiments and simulations found that nanoscale single-asperity amorphous silica-silica contacts exhibit logarithmic aging (increasing friction with time) over several decades of contact time, due to the formation of interfacial chemical bonds. Here we establish a physically based RSF relation for such contacts by combining the thermally activated Prandtl-Tomlinson (PTT) model with an evolution effect based on the physics of chemical aging. This thermally activated Prandtl-Tomlinson model with chemical aging (PTTCA), like the PTT model, uses the loading point velocity for describing the direct effect, not the tip velocity (as in conventional RSF laws). Also, in the PTTCA model, the combination of the evolution and direct effects may be nonlinear. We present AFM data consistent with the PTTCA model whereby in aging tests, for a given hold time, static friction increases with the logarithm of the loading point velocity. Kinetic friction also increases with the logarithm of the loading point velocity at sufficiently high velocities, but at a different increasing rate. The discrepancy between the rates of increase of static and kinetic friction with velocity arises from the fact that appreciable aging during static contact changes the energy landscape. Our approach extends the PTT model, originally used for crystalline substrates, to amorphous materials. It also establishes how conventional RSF laws can be modified for nanoscale single-asperity contacts to provide a physically based friction

  14. Mechanical and physical properties of agro-based fiberboard

    Treesearch

    S. Lee; T.F. Shupe; C.Y. Hse

    2006-01-01

    In order to better utilize agricultural fibers as an alternative resource for composite panels, several variables were investigated to improve mechanical and physical properties of agm-based fiberboard. This study focused on the effect of fiber morphology, slenderness ratios (UD), and fiber mixing combinations on panel properties. The panel construction types were also...

  15. Reverse micelle synthesis of nanoscale metal containing catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  16. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    PubMed

    Cook, Daniel L; Bookstein, Fred L; Gennari, John H

    2011-01-01

    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration. © 2011 Cook et al.

  17. Linear arrangements of nano-scale ferromagnetic particles spontaneously formed in a copper-base Cu-Ni-Co alloy

    NASA Astrophysics Data System (ADS)

    Sakakura, Hibiki; Kim, Jun-Seop; Takeda, Mahoto

    2018-03-01

    We have investigated the influence of magnetic interactions on the microstructural evolution of nano-scale granular precipitates formed spontaneously in an annealed Cu-20at%Ni-5at%Co alloy and the associated changes of magnetic properties. The techniques used included transmission electron microscopy, superconducting quantum interference device (SQUID) magnetometry, magneto-thermogravimetry (MTG), and first-principles calculations based on the method of Koster-Korringa-Rostker with the coherent potential approximation. Our work has revealed that the nano-scale spherical and cubic precipitates which formed on annealing at 873 K and 973 K comprise mainly cobalt and nickel with a small amount of copper, and are arranged in the 〈1 0 0〉 direction of the copper matrix. The SQUID and MTG measurements suggest that magnetic properties such as coercivity and Curie temperature are closely correlated with the microstructure. The combination of results suggests that magnetic interactions between precipitates during annealing can explain consistently the observed precipitation phenomena.

  18. Physical properties of sugar cookies containing chia-oat composites.

    PubMed

    Inglett, George E; Chen, Diejun; Liu, Sean

    2014-12-01

    Omega-3 fatty acids of chia seeds (Salvia hispanica L.) and soluble β-glucan of oat products are known for lowering blood cholesterol and preventing coronary heart disease. Nutrim, oat bran concentrate (OBC), and whole oat flour (WOF) were composited with finely ground chia, and used in cookies at 20% replacement of wheat flour for improved nutritional and physical quality. The objective was to evaluate physical properties of chia-oat composites, dough, and cookies. These composites had improved water-holding capacities compared to the starting materials. The geometrical properties and texture properties of the cookies were not greatly influenced by a 20% flour replacement using chia-OBC or chia-WOF composites. There was a decrease in the cookie diameter, and increases in the height of cookies and dough hardness using 20% Chia- Nutrim composite. These fine-particle chia-oat composites were prepared by a feasible procedure for improved nutritional value and physical properties of foods. The cookies containing chia-oat composites can be considered a health-promoting functional food. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  19. Interfacial band alignment and structural properties of nanoscale TiO2 thin films for integration with epitaxial crystallographic oriented germanium

    NASA Astrophysics Data System (ADS)

    Jain, N.; Zhu, Y.; Maurya, D.; Varghese, R.; Priya, S.; Hudait, M. K.

    2014-01-01

    We have investigated the structural and band alignment properties of nanoscale titanium dioxide (TiO2) thin films deposited on epitaxial crystallographic oriented Ge layers grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy. The TiO2 thin films deposited at low temperature by physical vapor deposition were found to be amorphous in nature, and high-resolution transmission electron microscopy confirmed a sharp heterointerface between the TiO2 thin film and the epitaxially grown Ge with no traceable interfacial layer. A comprehensive assessment on the effect of substrate orientation on the band alignment at the TiO2/Ge heterointerface is presented by utilizing x-ray photoelectron spectroscopy and spectroscopic ellipsometry. A band-gap of 3.33 ± 0.02 eV was determined for the amorphous TiO2 thin film from the Tauc plot. Irrespective of the crystallographic orientation of the epitaxial Ge layer, a sufficient valence band-offset of greater than 2 eV was obtained at the TiO2/Ge heterointerface while the corresponding conduction band-offsets for the aforementioned TiO2/Ge system were found to be smaller than 1 eV. A comparative assessment on the effect of Ge substrate orientation revealed a valence band-offset relation of ΔEV(100) > ΔEV(111) > ΔEV(110) and a conduction band-offset relation of ΔEC(110) > ΔEC(111) > ΔEC(100). These band-offset parameters are of critical importance and will provide key insight for the design and performance analysis of TiO2 for potential high-κ dielectric integration and for future metal-insulator-semiconductor contact applications with next generation of Ge based metal-oxide field-effect transistors.

  20. Charge transport in nanoscale junctions.

    PubMed

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-03

    the molecular level. Nanoscale charge transport experiments in ionic liquids extend the field to high temperatures and to systems with intriguing interfacial potential distributions. Other directions may include dye-sensitized solar cells, new sensor applications and diagnostic tools for the study of surface-bound single molecules. Another motivation for this special issue is thus to highlight activities across different research communities with nanoscale charge transport as a common denominator. This special issue gathers 27 articles by scientists from the United States, Germany, the UK, Denmark, Russia, France, Israel, Canada, Australia, Sweden, Switzerland, the Netherlands, Belgium and Singapore; it gives us a flavour of the current state-of-the-art of this diverse research area. While based on contributions from many renowned groups and institutions, it obviously cannot claim to represent all groups active in this very broad area. Moreover, a number of world-leading groups were unable to take part in this project within the allocated time limit. Nevertheless, we regard the current selection of papers to be representative enough for the reader to draw their own conclusions about the current status of the field. Each paper is original and has its own merit, as all papers in Journal of Physics: Condensed Matter special issues are subjected to the same scrutiny as regular contributions. The Guest Editors have deliberately not defined the specific subjects covered in this issue. These came out logically from the development of this area, for example: 'Traditional' solid state nanojunctions based on adsorbed layers, oxide films or nanowires sandwiched between two electrodes: effects of molecular structure (aromaticity, anchoring groups), symmetry, orientation, dynamics (noise patterns) and current-induced heating. Various 'physical effects': inelastic tunnelling and Coulomb blockade, polaron effects, switching modes, and negative differential resistance; the role of

  1. 2D or not 2D? The impact of nanoscale roughness and substrate interactions on the tribological properties of graphene and MoS2

    NASA Astrophysics Data System (ADS)

    Elinski, Meagan B.; Liu, Zhuotong; Spear, Jessica C.; Batteas, James D.

    2017-03-01

    The use of 2D nanomaterials for controlling friction and wear at interfaces has received increased attention over the past few years due to their unique structural, thermal, electrical and mechanical properties. These materials proffer potential critical solutions to challenges in boundary lubrication across numerous platforms ranging from engines, to biomedical implants and micro- and nano-scaled machines that will play a major role in the Internet of Things. There has been significant work on a range of 2D nanomaterials, such as graphene and molybdenum disulfide (MoS2). From these studies, their frictional properties have been shown to be highly dependent on numerous factors, such as substrate structure, strain, and competing chemical interactions between the interfaces in sliding contact. Moreover, when considering real contacts in machined interfaces, these surfaces are often composed of nanoscaled asperities, whose intermittent contact dominates the tribochemical processes that result in wear. In this review we aim to capture recent work on the tribological properties of graphene and MoS2 and to discuss the impacts of surface roughness (from the atomic scale to the nanoscale) and chemical interactions at interfaces on their frictional properties, and their use in designing advanced boundary lubrication schemes.

  2. Reverse micelle synthesis of nanoscale metal containing catalysts. [Nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide nanoscale powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  3. Nanoscale Controls on CO2-water-rock Interactions in Saline Reservoirs

    NASA Astrophysics Data System (ADS)

    Deyoreo, J.; Depaolo, D. J.

    2009-12-01

    It is becoming increasingly widely recognized that geologic sequestration of CO2, when combined with economical means of capture, may be one of the most effective approaches to reducing net CO2 emissions to the atmosphere over the next century. Injection of CO2 into saline geologic formations involves forcing a buoyant, low-viscosity fluid into a more dense, higher viscosity fluid. The difference in wetting properties of the two fluids, their partial miscibility, the fact that CO2 and H2O form an acid, and the heterogeneity of geologic formations combine to make the flow and transport details fascinating but difficult to fully characterize and predict. A major question is whether the flow of CO2 into subsurface formations, the efficiency of pore space filling, and the trapping efficiency can be not only predicted but controlled over the decades of injection that might be associated with the life of a power plant. The major technological gaps to controlling and ultimately sequestering subsurface CO2 can be traced to far-from-equilibrum processes that originate at the molecular and nanoscale, but are expressed as complex emergent behavior at larger scales. Essential knowledge gaps involve the effects of nanoscale confinement on material properties, flow and chemical reactions, the effects of nanoparticles, mineral surface dynamics, and microbiota on mineral dissolution/precipitation and fluid flow, and the dynamics of fluid-fluid and fluid-mineral interfaces. To address these scientific and technical challenges, the Energy Frontier Research Center recently established, involving collaboration between LBNL, ORNL, MIT, UC Berkeley, UC Davis and LLNL, will attempt to bring new approaches to the study of nanoscale phenomena in fluid-rock systems to bear on the problem of CO2 behavior in saline formations. The stated goal is to use molecular, nanoscale, and pore-network scale approaches to control flow, dissolution, and precipitation in deep subsurface rock formations to

  4. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces.

    PubMed

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M; Brown, Warren; Liu, Juan; Wang, Gangli

    2015-01-01

    The dynamics of ion transport at nanostructured substrate-solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Further advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current-potential ( I - V ) measurements and theoretical analyses. First, a unique non-zero I - V cross-point and pinched I - V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Second, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging-discharging, as well as chemical and electrical energy conversion. The analysis of the emerging current-potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.

  5. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces

    DOE PAGES

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; ...

    2014-08-20

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–Vmore » curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.« less

  6. Mental Rolodexing: Senior Chemistry Majors' Understanding of Chemical and Physical Properties

    ERIC Educational Resources Information Center

    DeFever, Ryan S.; Bruce, Heather; Bhattacharyya, Gautam

    2015-01-01

    Using a constructivist framework, eight senior chemistry majors were interviewed twice to determine: (i) structural inferences they are able to make from chemical and physical properties; and (ii) their ability to apply their inferences and understandings of these chemical and physical properties to solve tasks on the reactivity of organic…

  7. Nano-Encrypted Morse Code: A Versatile Approach to Programmable and Reversible Nanoscale Assembly and Disassembly

    PubMed Central

    Wong, Ngo Yin; Xing, Hang; Tan, Li Huey; Lu, Yi

    2013-01-01

    While much work has been devoted to nanoscale assembly of functional materials, selective reversible assembly of components in the nanoscale pattern at selective sites has received much less attention. Exerting such a reversible control of the assembly process will make it possible to fine-tune the functional properties of the assembly and to realize more complex designs. Herein, by taking advantage of different binding affinities of biotin and desthiobiotin toward streptavidin, we demonstrate selective and reversible decoration of DNA origami tiles with streptavidin, including revealing an encrypted Morse code “NANO” and reversible exchange of uppercase letter “I” with lowercase “i”. The yields of the conjugations are high (> 90%) and the process is reversible. We expect this versatile conjugation technique to be widely applicable with different nanomaterials and templates. PMID:23373425

  8. Nano-encrypted Morse code: a versatile approach to programmable and reversible nanoscale assembly and disassembly.

    PubMed

    Wong, Ngo Yin; Xing, Hang; Tan, Li Huey; Lu, Yi

    2013-02-27

    While much work has been devoted to nanoscale assembly of functional materials, selective reversible assembly of components in the nanoscale pattern at selective sites has received much less attention. Exerting such a reversible control of the assembly process will make it possible to fine-tune the functional properties of the assembly and to realize more complex designs. Herein, by taking advantage of different binding affinities of biotin and desthiobiotin toward streptavidin, we demonstrate selective and reversible decoration of DNA origami tiles with streptavidin, including revealing an encrypted Morse code "NANO" and reversible exchange of uppercase letter "I" with lowercase "i". The yields of the conjugations are high (>90%), and the process is reversible. We expect this versatile conjugation technique to be widely applicable with different nanomaterials and templates.

  9. Probing and manipulating magnetization at the nanoscale

    NASA Astrophysics Data System (ADS)

    Samarth, Nitin

    2012-02-01

    Combining semiconductors with magnetism in hetero- and nano-structured geometries provides a powerful means of exploring the interplay between spin-dependent transport and nanoscale magnetism. We describe two recent studies in this context. First, we use spin-dependent transport in ferromagnetic semiconductor thin films to provide a new window into nanoscale magnetism [1]: here, we exploit the large anomalous Hall effect in a ferromagnetic semiconductor as a nanoscale probe of the reversible elastic behavior of magnetic domain walls and gain insight into regimes of domain wall behavior inaccessible to more conventional optical techniques. Next, we describe novel ways to create self-assembled hybrid semiconductor/ferromagnet core-shell nanowires [2] and show how magnetoresistance measurements in single nanowires, coupled with micromagnetic simulations, can provide detailed insights into the magnetization reversal process in nanoscale ferromagnets [3]. The work described here was carried out in collaboration with Andrew Balk, Jing Liang, Nicholas Dellas, Mark Nowakowski, David Rench, Mark Wilson, Roman Engel-Herbert, Suzanne Mohney, Peter Schiffer and David Awschalom. This work is supported by ONR, NSF and the NSF-MRSEC program.[4pt] [1] A. L. Balk et al., Phys. Rev.Lett. 107, 077205 (2011).[0pt] [2] N. J. Dellas et al., Appl. Phys. Lett. 97, 072505 (2010).[0pt] [3] J. Liang et al., in preparation.

  10. Improving proton therapy by metal-containing nanoparticles: nanoscale insights

    PubMed Central

    Schlathölter, Thomas; Eustache, Pierre; Porcel, Erika; Salado, Daniela; Stefancikova, Lenka; Tillement, Olivier; Lux, Francois; Mowat, Pierre; Biegun, Aleksandra K; van Goethem, Marc-Jan; Remita, Hynd; Lacombe, Sandrine

    2016-01-01

    The use of nanoparticles to enhance the effect of radiation-based cancer treatments is a growing field of study and recently, even nanoparticle-induced improvement of proton therapy performance has been investigated. Aiming at a clinical implementation of this approach, it is essential to characterize the mechanisms underlying the synergistic effects of nanoparticles combined with proton irradiation. In this study, we investigated the effect of platinum- and gadolinium-based nanoparticles on the nanoscale damage induced by a proton beam of therapeutically relevant energy (150 MeV) using plasmid DNA molecular probe. Two conditions of irradiation (0.44 and 3.6 keV/μm) were considered to mimic the beam properties at the entrance and at the end of the proton track. We demonstrate that the two metal-containing nanoparticles amplify, in particular, the induction of nanosize damages (>2 nm) which are most lethal for cells. More importantly, this effect is even more pronounced at the end of the proton track. This work gives a new insight into the underlying mechanisms on the nanoscale and indicates that the addition of metal-based nanoparticles is a promising strategy not only to increase the cell killing action of fast protons, but also to improve tumor targeting. PMID:27143877

  11. Method to determine thermal profiles of nanoscale circuitry

    DOEpatents

    Zettl, Alexander K; Begtrup, Gavi E

    2013-04-30

    A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

  12. Nanoscale Membrane Curvature detected by Polarized Localization Microscopy

    NASA Astrophysics Data System (ADS)

    Kelly, Christopher; Maarouf, Abir; Woodward, Xinxin

    Nanoscale membrane curvature is a necessary component of countless cellular processes. Here we present Polarized Localization Microscopy (PLM), a super-resolution optical imaging technique that enables the detection of nanoscale membrane curvature with order-of-magnitude improvements over comparable optical techniques. PLM combines the advantages of polarized total internal reflection fluorescence microscopy and fluorescence localization microscopy to reveal single-fluorophore locations and orientations without reducing localization precision by point spread function manipulation. PLM resolved nanoscale membrane curvature of a supported lipid bilayer draped over polystyrene nanoparticles on a glass coverslip, thus creating a model membrane with coexisting flat and curved regions and membrane radii of curvature as small as 20 nm. Further, PLM provides single-molecule trajectories and the aggregation of curvature-inducing proteins with super-resolution to reveal the correlated effects of membrane curvature, dynamics, and molecular sorting. For example, cholera toxin subunit B has been observed to induce nanoscale membrane budding and concentrate at the bud neck. PLM reveals a previously hidden and critical information of membrane topology.

  13. Nanoscale stiffness of individual dendritic molecules and their aggregates

    NASA Astrophysics Data System (ADS)

    Tsukruk, Vladimir V.; Shulha, Hennady; Zhai, Xiaowen

    2003-02-01

    We demonstrate that carefully designed micromapping of the surface stiffness with nanoscale resolution could reveal quantitative data on the elastic properties of compliant, dendritic organic molecules with nanoparticulate dimensions below 3 nm. Much higher elastic modulus was observed for individual, fourth generation dendritic molecules due to their more shape persistent conformation. Large, reversible, elastic deformation is a distinct characteristic of the nanomechanical response observed for individual dendritic molecules. Such a "rubbery" response could be an indication of spatial constraints imposed on vitrification of dendritic molecules tethered to the functionalized interface. Surprisingly, an increased stiffness was also found for the third generation dendritic molecules within long aggregates.

  14. Structure-function properties of anticorrosive exopolyaccharides

    USDA-ARS?s Scientific Manuscript database

    Nanoscale biobased exopolymer films were shown that provide protection to metal substrates under corrosive environments and that the films could be self-repairing in aqueous environments. This work describes the fundamental properties of thin exopolymer films including thermodynamic properties, film...

  15. Laser-Induced Translative Hydrodynamic Mass Snapshots: Noninvasive Characterization and Predictive Modeling via Mapping at Nanoscale

    NASA Astrophysics Data System (ADS)

    Wang, X. W.; Kuchmizhak, A. A.; Li, X.; Juodkazis, S.; Vitrik, O. B.; Kulchin, Yu. N.; Zhakhovsky, V. V.; Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I.; Rudenko, A. A.; Inogamov, N. A.

    2017-10-01

    Subwavelength structures (meta-atoms) with artificially engineered permittivity and permeability have shown promising applications for guiding and controlling the flow of electromagnetic energy on the nanoscale. Ultrafast laser nanoprinting emerges as a promising single-step, green and flexible technology in fabricating large-area arrays of meta-atoms through the translative or ablative modification of noble-metal thin films. Ultrafast laser energy deposition in noble-metal films produces irreversible, intricate nanoscale translative mass redistributions after resolidification of the transient thermally assisted hydrodynamic melt perturbations. Such mass redistribution results in the formation of a radially symmetric frozen surface with modified hidden nanofeatures, which strongly affect the optical response harnessed in plasmonic sensing and nonlinear optical applications. Here, we demonstrate that side-view electron microscopy and ion-beam cross sections together with low-energy electron x-ray dispersion microscopy provide exact information about such three-dimensional patterns, enabling an accurate acquisition of their cross-sectional mass distributions. Such nanoscale solidified structures are theoretically modeled, considering the underlying physical processes associated with laser-induced energy absorption, electron-ion energy exchange, acoustic relaxation, and hydrodynamic flows. A theoretical approach, separating slow and fast physical processes and combining hybrid analytical two-temperature calculations, scalable molecular-dynamics simulations, and a semianalytical thin-shell model is synergistically applied. These advanced characterization approaches are required for a detailed modeling of near-field electromagnetic response and pave the way to a fully automated noninvasive in-line control of a high-throughput and large-scale laser fabrication. This theoretical modeling provides an accurate prediction of scales and topographies of the laser

  16. Dopant atoms as quantum components in silicon nanoscale devices

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaosong; Han, Weihua; Wang, Hao; Ma, Liuhong; Li, Xiaoming; Zhang, Wang; Yan, Wei; Yang, Fuhua

    2018-06-01

    Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics. Project supported by National Key R&D Program of China (No. 2016YFA0200503).

  17. Talin determines the nanoscale architecture of focal adhesions.

    PubMed

    Liu, Jaron; Wang, Yilin; Goh, Wah Ing; Goh, Honzhen; Baird, Michelle A; Ruehland, Svenja; Teo, Shijia; Bate, Neil; Critchley, David R; Davidson, Michael W; Kanchanawong, Pakorn

    2015-09-01

    Insight into how molecular machines perform their biological functions depends on knowledge of the spatial organization of the components, their connectivity, geometry, and organizational hierarchy. However, these parameters are difficult to determine in multicomponent assemblies such as integrin-based focal adhesions (FAs). We have previously applied 3D superresolution fluorescence microscopy to probe the spatial organization of major FA components, observing a nanoscale stratification of proteins between integrins and the actin cytoskeleton. Here we combine superresolution imaging techniques with a protein engineering approach to investigate how such nanoscale architecture arises. We demonstrate that talin plays a key structural role in regulating the nanoscale architecture of FAs, akin to a molecular ruler. Talin diagonally spans the FA core, with its N terminus at the membrane and C terminus demarcating the FA/stress fiber interface. In contrast, vinculin is found to be dispensable for specification of FA nanoscale architecture. Recombinant analogs of talin with modified lengths recapitulated its polarized orientation but altered the FA/stress fiber interface in a linear manner, consistent with its modular structure, and implicating the integrin-talin-actin complex as the primary mechanical linkage in FAs. Talin was found to be ∼97 nm in length and oriented at ∼15° relative to the plasma membrane. Our results identify talin as the primary determinant of FA nanoscale organization and suggest how multiple cellular forces may be integrated at adhesion sites.

  18. ``Effect of Polyalkylthiophene Microstructure on Physical and Optoelectronic Properties''

    NASA Astrophysics Data System (ADS)

    Minkler, Michael J., Jr.; Beckingham, Bryan S.

    Conjugated polymers have been of widespread interest as flexible semiconductors for organic electronic devices such as solar cells, field effect transistor,s and light-emitting diodes. Of particular interest have been alkyl-substituted polythiophenes due to their well-controlled synthesis, favorable optoelectronic properties, and solubility in organic solvents. Importantly, relatively small changes to the chemical microstructure in poly(3-alkylthiophenes) (P3ATs) can have a significant effect on the resulting physical and optoelectronic properties. For instance, the addition of aliphatic side chains onto unsubstituted polythiophene provides solubility but also greatly decreases conductivity in comparison to unsubstituted polythiophene (PT). In this work, we use Grignard metathesis polymerization to synthesize poly(3-hexylthiophene) (P3HT), PT, and statistical copolymers (P[3HT-co-T]) over a range of compositions. We examine the physical properties (melting temperature, crystallinity, etc) by differential scanning calorimetry and wide angle X-ray scattering, optoelectronic properties by UV/Vis spectroscopy, and solubility in organic solvents of these copolymers in order to gain insights into the interplay of microstructure and properties in this class of materials.

  19. Productive Nanosystems: The Physics of Molecular Fabrication

    ERIC Educational Resources Information Center

    Drexler, K. Eric

    2005-01-01

    Fabrication techniques are the foundation of physical technology, and are thus of fundamental interest. Physical principles indicate that nanoscale systems will be able to fabricate a wide range of structures, operating with high productivity and precise molecular control. Advanced systems of this kind will require intermediate generations of…

  20. Physical properties of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Clark, Pamela E.

    1988-01-01

    The global physical properties of Mercury are summarized with attention given to its figure and orbital parameters. The combination of properties suggests that Mercury has an extensive iron-rich core, possibly with a still-functioning dynamo, which is 42 percent of the interior by volume. Mercury's three major axes are comparable in size, indicating that the planet is a triaxial ellipsoid rather than an oblate spheroid. In terms of the domination of its surface by an intermediate plains terrane, it is more Venus- or Mars-like; however, due to the presence of a large metallic magnetic core, its interior may be more earth-like.

  1. Physical properties of botanical surfactants.

    PubMed

    Müller, Lillian Espíndola; Schiedeck, Gustavo

    2018-01-01

    Some vegetal species have saponins in their composition with great potential to be used as natural surfactants in organic crops. This work aims to evaluate some surfactants physical properties of Quillaja brasiliensis and Agave angustifolia, based on different methods of preparation and concentration. The vegetal samples were prepared by drying and grinding, frozen and after chopped or used fresh and chopped. The neutral bar soap was used as a positive control. The drying and grinding of samples were the preparation method that resulted in higher foam column height in both species but Q. brasiliensis was superior to A. angustifolia in all comparisons and foam index was 2756 and 1017 respectively. Critical micelle concentration of Q. brasiliensis was 0.39% with the superficial tension of 54.40mNm -1 while neutral bar soap was 0.15% with 34.96mNm -1 . Aspects such as genetic characteristics of the species, environmental conditions, and analytical methods make it difficult to compare the results with other studies, but Q. brasiliensis powder has potential to be explored as a natural surfactant in organic farming. Not only the surfactants physical properties of botanical saponins should be taken into account but also its effect on insects and diseases control when decided using them. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Nanoscale Plasmonic V-Groove Waveguides for the Interrogation of Single Fluorescent Bacterial Cells.

    PubMed

    Lotan, Oren; Bar-David, Jonathan; Smith, Cameron L C; Yagur-Kroll, Sharon; Belkin, Shimshon; Kristensen, Anders; Levy, Uriel

    2017-09-13

    We experimentally demonstrate the interrogation of an individual Escherichia coli cell using a nanoscale plasmonic V-groove waveguide. Several different configurations were studied. The first involved the excitation of the cell in a liquid environment because it flows on top of the waveguide nanocoupler, while the obtained fluorescence is coupled into the waveguide and collected at the other nanocoupler. The other two configurations involved the positioning of the bacterium within the nanoscale waveguide and its excitation in a dry environment either directly from the top or through waveguide modes. This is achieved by taking advantage of the waveguide properties not only for light guiding but also as a mechanical tool for trapping the bacteria within the V-grooves. The obtained results are supported by a set of numerical simulations, shedding more light on the mechanism of excitation. This demonstration paves the way for the construction of an efficient bioplasmonic chip for diverse cell-based sensing applications.

  3. Process depending morphology and resulting physical properties of TPU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frick, Achim, E-mail: achim.frick@hs-aalen.de; Spadaro, Marcel, E-mail: marcel.spadaro@hs-aalen.de

    2015-12-17

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix ormore » of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.« less

  4. Satellite measurements of physical properties of Saharan dust

    NASA Technical Reports Server (NTRS)

    Lee, Tae Young; Fraser, Robert S.; Kaufman, Yoram

    1986-01-01

    The physical properties of Saharan dust obtained from AVHRR and VISSR images are studied. The techniques of Fraser (1976) and Kaufman and Fraser (1985) are used to derive the aerosol optical depth, mass, and single scattering albedo for the region extending from the west coast of Africa to the Barbados Island for the period of June 21-25, 1984. Optical properties measured by satellite are compared to aircraft measurements taken near Barbados Island during the same period. Remote measurement of thermal properties is also discussed.

  5. Graded metascreens to enable a new degree of nanoscale light management

    PubMed Central

    Mohammadi Estakhri, Nasim; Argyropoulos, Christos; Alù, Andrea

    2015-01-01

    Optical metasurfaces, typically referred to as two-dimensional metamaterials, are arrays of engineered subwavelength inclusions suitably designed to tailor the light properties, including amplitude, phase and polarization state, over deeply subwavelength scales. By exploiting anomalous localized interactions of surface elements with optical waves, metasurfaces can go beyond the functionalities offered by conventional diffractive optical gratings. The innate simplicity of implementation and the distinct underlying physics of their wave–matter interaction distinguish metasurfaces from three-dimensional metamaterials and provide a valuable means of moulding optical waves in the desired manner. Here, we introduce a general approach based on the electromagnetic equivalence principle to develop and synthesize graded, non-periodic metasurfaces to generate arbitrarily prescribed distributions of electromagnetic waves. Graded metasurfaces are realized with a single layer of spatially modulated, electrically polarizable nanoparticles, tailoring the scattering response of the surface with nanoscale resolutions. We discuss promising applications based on the proposed local wave management technique, including the design of ultrathin optical carpet cloaks, alignment-free polarization beam splitters and a novel approach to enable broadband light absorption enhancement in thin-film solar cells. This concept opens up a practical route towards efficient planarized optical structures with potential impact on the integrated nanophotonic technology. PMID:26217059

  6. Ion-damage-free planarization or shallow angle sectioning of solar cells for mapping grain orientation and nanoscale photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Kutes, Yasemin; Luria, Justin; Sun, Yu; Moore, Andrew; Aguirre, Brandon A.; Cruz-Campa, Jose L.; Aindow, Mark; Zubia, David; Huey, Bryan D.

    2017-05-01

    Ion beam milling is the most common modern method for preparing specific features for microscopic analysis, even though concomitant ion implantation and amorphization remain persistent challenges, particularly as they often modify materials properties of interest. Atomic force microscopy (AFM), on the other hand, can mechanically mill specific nanoscale regions in plan-view without chemical or high energy ion damage, due to its resolution, directionality, and fine load control. As an example, AFM-nanomilling (AFM-NM) is implemented for top-down planarization of polycrystalline CdTe thin film solar cells, with a resulting decrease in the root mean square (RMS) roughness by an order of magnitude, even better than for a low incidence FIB polished surface. Subsequent AFM-based property maps reveal a substantially stronger contrast, in this case of the short-circuit current or open circuit voltage during light exposure. Electron back scattering diffraction (EBSD) imaging also becomes possible upon AFM-NM, enabling direct correlations between the local materials properties and the polycrystalline microstructure. Smooth shallow-angle cross-sections are demonstrated as well, based on targeted oblique milling. As expected, this reveals a gradual decrease in the average short-circuit current and maximum power as the underlying CdS and electrode layers are approached, but a relatively consistent open-circuit voltage through the diminishing thickness of the CdTe absorber. AFM-based nanomilling is therefore a powerful tool for material characterization, uniquely providing ion-damage free, selective area, planar smoothing or low-angle sectioning of specimens while preserving their functionality. This enables novel, co-located advanced AFM measurements, EBSD analysis, and investigations by related techniques that are otherwise hindered by surface morphology or surface damage.

  7. Psychometric Properties of the Commitment to Physical Activity Scale

    ERIC Educational Resources Information Center

    DeBate, Rita DiGioacchino; Huberty, Jennifer; Pettee, Kelley

    2009-01-01

    Objective: To assess psychometric properties of the Commitment to Physical Activity Scale (CPAS). Methods: Girls in third to fifth grades (n = 932) completed the CPAS before and after a physical activity intervention. Psychometric measures included internal consistency, factor analysis, and concurrent validity. Results: Three CPAS factors emerged:…

  8. Aerosol physical properties in the stratosphere (APPS) radiometer design

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Woodin, E. A.; Anderson, T. J.; Magee, R. J.; Karthas, G. W.

    1977-01-01

    The measurement concepts and radiometer design developed to obtain earth-limb spectral radiance measurements for the Aerosol Physical Properties in the Stratosphere (APPS) measurement program are presented. The measurements made by a radiometer of this design can be inverted to yield vertical profiles of Rayleigh scatterers, ozone, nitrogen dioxide, aerosol extinction, and aerosol physical properties, including a Junge size-distribution parameter, and a real and imaginary index of refraction. The radiometer design provides the capacity for remote sensing of stratospheric constituents from space on platforms such as the space shuttle and satellites, and therefore provides for global measurements on a daily basis.

  9. Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers.

    PubMed

    Ranaghan, Matthew J; Schwall, Christine T; Alder, Nathan N; Birge, Robert R

    2011-11-16

    Over 4000 putative proteorhodopsins (PRs) have been identified throughout the oceans and seas of the Earth. The first of these eubacterial rhodopsins was discovered in 2000 and has expanded the family of microbial proton pumps to all three domains of life. With photophysical properties similar to those of bacteriorhodopsin, an archaeal proton pump, PRs are also generating interest for their potential use in various photonic applications. We perform here the first reconstitution of the minimal photoactive PR structure into nanoscale phospholipid bilayers (nanodiscs) to better understand how protein-protein and protein-lipid interactions influence the photophysical properties of PR. Spectral (steady-state and time-resolved UV-visible spectroscopy) and physical (size-exclusion chromatography and electron microscopy) characterization of these complexes confirms the preparation of a photoactive PR monomer within nanodiscs. Specifically, when embedded within a nanodisc, monomeric PR exhibits a titratable pK(a) (6.5-7.1) and photocycle lifetime (∼100-200 ms) that are comparable to the detergent-solubilized protein. These ndPRs also produce a photoactive blue-shifted absorbance, centered at 377 or 416 nm, that indicates that protein-protein interactions from a PR oligomer are required for a fast photocycle. Moreover, we demonstrate how these model membrane systems allow modulation of the PR photocycle by variation of the discoidal diameter (i.e., 10 or 12 nm), bilayer thickness (i.e., 23 or 26.5 Å), and degree of saturation of the lipid acyl chain. Nanodiscs also offer a highly stable environment of relevance to potential device applications.

  10. Current Transport Properties of Monolayer Graphene/n-Si Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Pathak, C. S.; Garg, Manjari; Singh, J. P.; Singh, R.

    2018-05-01

    The present work reports on the fabrication and the detailed macroscopic and nanoscale electrical characteristics of monolayer graphene/n-Si Schottky diodes. The temperature dependent electrical transport properties of monolayer graphene/n-Si Schottky diodes were investigated. Nanoscale electrical characterizations were carried out using Kelvin probe force microscopy and conducting atomic force microscopy. Most the values of ideality factor and barrier height are found to be in the range of 2.0–4.4 and 0.50–0.70 eV for monolayer graphene/n-Si nanoscale Schottky contacts. The tunneling of electrons is found to be responsible for the high value of ideality factor for nanoscale Schottky contacts.

  11. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics

    PubMed Central

    2015-01-01

    Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future. PMID:26068279

  12. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics.

    PubMed

    McLeod, Euan; Wei, Qingshan; Ozcan, Aydogan

    2015-07-07

    Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future.

  13. Impact of long-term tillage and manure application on soil physical properties

    USDA-ARS?s Scientific Manuscript database

    Soil physical properties play an integral role in maintaining soil quality for sustainable agricultural practices. Agronomic practices such as tillage systems and organic amendments have been shown to influence soil physical properties. Thus, a study was conducted to evaluate effects of long-term ma...

  14. Linking nanoscale mechanical behavior to bulk physical properties and phenomena of energetic materials

    NASA Astrophysics Data System (ADS)

    Taw, Matthew R.

    The hardness and reduced modulus of aspirin, RDX, HMX, TATB, FOX-7, ADAAF, and TNT/CL-20 were experimentally measured with nanoindentation. These values are reported for the first time using as-received micron sized crystals of energetic materials with no additional mechanical processing. The results for TATB, ADAAF, and TNT/CL-20 are the first of their kind, while comparisons to previous nanoindentation studies on large, carefully grown single crystals of the other energetic materials show that mechanical properties of the larger crystals are comparable to crystals in the condition they are practically used. Measurements on aspirin demonstrate the variation that can occur between nanoindentation indents based on the orientation of a Berkovich tip relative to the surface of the sample. The Hertzian elastic contact model was used to analyze the materials initial yield, or pop-in, behavior. The length, energy, indentation load, and shear stress at initial yielding were used to characterize each material. For the energetic materials the length and energy of the yield excursions were compared to the drop weight sensitivity. This comparison revealed a general trend that more impact sensitive materials have longer, more severe pop-in excursions. Hot spot initiation mechanisms involving crystal defects such as void collapses and dislocation pile-up followed by avalanche are supported by these trends. While this only takes one aspect of impact sensitivity into consideration, if this trend is observed in a larger range of energetics these methods could possibly be used to great advantage in the early stages of new explosives synthesis to obtain an estimation of drop weight sensitivity.

  15. Facile Fabrication of Binary Nanoscale Interface for No-Loss Microdroplet Transportation.

    PubMed

    Liang, Weitao; Zhu, Liqun; Li, Weiping; Xu, Chang; Liu, Huicong

    2016-06-07

    Binary nanoscale interfacial materials are fundamental issues in many applications for smart surfaces. A binary nanoscale interface with binary surface morphology and binary wetting behaviors has been prepared by a facile wet-chemical method. The prepared surface presents superhydrophobicity and high adhesion with the droplet at the same time. The composition, surface morphology, and wetting behaviors of the prepared surface have been systematic studied. The special wetting behaviors can be contributed to the binary nanoscale effect. The stability of the prepared surface was also investigated. As a primary application, a facile device based on the prepared binary nanoscale interface with superhydrophobicity and high adhesion was constructed for microdroplet transportation.

  16. Nanoscale adhesion interactions in carbon nanotube based systems and experimental study of the mechanical properties of carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Zheng, Meng

    Part I: Carbon nanotubes (CNTs) are a type of 1D nanostructures, which possess extraordinary mechanical, electrical, thermal, and chemical properties and are promising for a number of applications. For many of their applications, CNTs will be assembled into micro or macro-scale structures (e.g. thin-films and yarns), or integrated with other bulk materials to form heterogeneous material systems and devices (e.g. nanocomposites and solid-state electronics). The interfaces formed among CNTs themselves and between the CNT and other material surfaces play crucial roles in the functioning and performance of CNT-based material systems and devices. Therefore, characterization of the interfacial interaction in CNT-based systems is a critical step to understand the nanoscale interface and tune the system and device design and manufacturing for optimal functioning and performance. In this part of dissertation, a combination of both mechanical and theoretical methods was employed to study the adhesion interactions in CNT-based systems. Part II: Both CNTs and boron nitride nanotubes (BNNTs) possess superb mechanical properties and are promising for a great many applications. They can be used in similar applications, such as reinforcing fibers in polymer composites based on their similar mechanical and thermal properties. CNTs are promising for electronics and sensors while BNNTs can be used as electrical insulators due to the tremendous differences of the electrical property. Furthermore, BNNTs can survive in high temperature and hazardous environments because of their resistant to oxidation and harsh chemicals. In order to optimize their applications, their mechanical properties should be fully understood. In this part of the dissertation research, first, the radial elasticity of single-walled CNTs and BNNTs was investigated by means of atomic force microscopy (AFM); secondly, the engineering radial deformations in single walled CNTs and BNNTs covered by monolayer grapheme

  17. Classical emergence of intrinsic spin-orbit interaction of light at the nanoscale

    NASA Astrophysics Data System (ADS)

    Vázquez-Lozano, J. Enrique; Martínez, Alejandro

    2018-03-01

    Traditionally, in macroscopic geometrical optics intrinsic polarization and spatial degrees of freedom of light can be treated independently. However, at the subwavelength scale these properties appear to be coupled together, giving rise to the spin-orbit interaction (SOI) of light. In this work we address theoretically the classical emergence of the optical SOI at the nanoscale. By means of a full-vector analysis involving spherical vector waves we show that the spin-orbit factorizability condition, accounting for the mutual influence between the amplitude (spin) and phase (orbit), is fulfilled only in the far-field limit. On the other side, in the near-field region, an additional relative phase introduces an extra term that hinders the factorization and reveals an intricate dynamical behavior according to the SOI regime. As a result, we find a suitable theoretical framework able to capture analytically the main features of intrinsic SOI of light. Besides allowing for a better understanding into the mechanism leading to its classical emergence at the nanoscale, our approach may be useful to design experimental setups that enhance the response of SOI-based effects.

  18. Theory of nanoscale friction on chemically modified graphene

    NASA Astrophysics Data System (ADS)

    Ko, Jae-Hyeon; Kim, Yong-Hyun

    2013-03-01

    Recently, it is known from FFM experiments that friction force on graphene is significantly increased by chemical modification such as hydrogenation, oxidization, and fluorination, whereas adhesion properties are altered marginally. A novel nanotribological theory on two-dimensional materials is proposed on the basis of experimental results and first-principles density-functional theory (DFT) calculations. The proposed theory indicates that the total lateral stiffness that is the proportional constant of friction force is mostly associated with the out-of-plane bending stiffness of two-dimensional materials. This contrasts to the case of three-dimensional materials, in which the shear strength of materials determines nanoscale friction. We will discuss details of DFT calculations and how to generalize the current theory to three dimensional materials.

  19. Nanoscale Structure-Property Relationships of Polyacrylonitrile/CNT Composites as a Function of Polymer Crystallinity and CNT Diameter.

    PubMed

    Gissinger, Jacob R; Pramanik, Chandrani; Newcomb, Bradley; Kumar, Satish; Heinz, Hendrik

    2018-01-10

    Polyacrylonitrile (PAN)/carbon nanotube (CNT) composites are used as precursors for ultrastrong and lightweight carbon fibers. However, insights into the structure at the nanoscale and the relationships to mechanical and thermal properties have remained difficult to obtain. In this study, molecular dynamics simulation with accurate potentials and available experimental data were used to describe the influence of different degrees of PAN preorientation and CNT diameter on the atomic-scale structure and properties of the composites. The inclusion of CNTs in the polymer matrix is favored for an intermediate degree of PAN orientation and small CNT diameter whereas high PAN crystallinity and larger CNT diameter disfavor CNT inclusion. The glass transition at the CNT/PAN interface involves the release of rotational degrees of freedom of the polymer backbone and increased mobility of the protruding nitrile side groups in contact with the carbon nanotubes. The glass-transition temperature of the composite increases in correlation with the amount of CNT/polymer interfacial area per unit volume, i.e., in the presence of CNTs, for higher CNT volume fraction,  and inversely with CNT diameter. The increase in glass-transition temperature upon CNT addition is larger for PAN of lower crystallinity than for PAN of higher crystallinity. Interfacial shear strengths of the composites are higher for CNTs of smaller diameter and for PAN with preorientation, in correlation with more favorable CNT inclusion energies. The lowest interfacial shear strength was observed in amorphous PAN for the same CNT diameter. PAN with ∼75% crystallinity exhibited hexagonal patterns of nitrile groups near and far from the CNT interface which could influence carbonization into regular graphitic structures. The results illustrate the feasibility of near-quantitative insights into macroscale properties of polymer/CNT composites from simulations of nanometer-scale composite domains. Guidance is most

  20. Nanoscale solid-state cooling: a review.

    PubMed

    Ziabari, Amirkoushyar; Zebarjadi, Mona; Vashaee, Daryoosh; Shakouri, Ali

    2016-09-01

    The recent developments in nanoscale solid-state cooling are reviewed. This includes both theoretical and experimental studies of different physical concepts, as well as nanostructured material design and device configurations. We primarily focus on thermoelectric, thermionic and thermo-magnetic coolers. Particular emphasis is given to the concepts based on metal-semiconductor superlattices, graded materials, non-equilibrium thermoelectric devices, Thomson coolers, and photon assisted Peltier coolers as promising methods for efficient solid-state cooling. Thermomagnetic effects such as magneto-Peltier and Nernst-Ettingshausen cooling are briefly described and recent advances and future trends in these areas are reviewed. The ongoing progress in solid-state cooling concepts such as spin-calorimetrics, electrocalorics, non-equilibrium/nonlinear Peltier devices, superconducting junctions and two-dimensional materials are also elucidated and practical achievements are reviewed. We explain the thermoreflectance thermal imaging microscopy and the transient Harman method as two unique techniques developed for characterization of thermoelectric microrefrigerators. The future prospects for solid-state cooling are briefly summarized.

  1. Direct Nanoscale Characterization of Submolecular Mobility in Complex Organic Non-linear Optical Systems

    NASA Astrophysics Data System (ADS)

    Knorr, Daniel; Gray, Tomoko; Kim, Tae-Dong; Luo, Jingdong; Jen, Alex; Overney, Rene

    2008-03-01

    For organic non-linear optical (NLO) materials composed of intricate molecular building blocks, the challenge is to deduce meaningful molecular scale mobility information to understand complex relaxation and phase behavior. This is crucial, as the process of achieving a robust acentric alignment strongly depends on the availability of inter- and intra-molecular mobilities outside the temperature range of the device operation window. Here, we introduce a nanoscale methodology based on scanning probe microscopy that provides direct insight into structural relaxations and shows great potential to direct material design of sophisticated macromolecules. It also offers a means by which mesoscale dynamics and cooperativity involved in relaxation processes can be quantified in terms of dynamic entropy and enthalpy. This study demonstrates this methodology to describe the mesocale dynamics of two systems (1) organic networking dendronized NLO molecular glasses that self-assemble into physically linked polymers due to quadrupolar phenyl-perfluorophenyl interactions and (2) dendronized side-chain electro-optic (EO) polymers. For the self assembling glasses, the degree of intermolecular cooperativity can be deduced using this methodology, while for the dendronized side-chain polymers, specific side chain mobilities are exploited to improve EO properties.

  2. Patterns and determinants of wood physical and mechanical properties across major tree species in China.

    PubMed

    Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun

    2015-06-01

    The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.

  3. Effects of structural modification on reliability of nanoscale nitride HEMTs

    NASA Astrophysics Data System (ADS)

    Gaddipati, Vamsi Mohan

    AlGaN based nanoscale high-electron-mobility transistors (HEMTs) are the next generation of transistor technology that features the unique combination of higher power, wider bandwidth, low noise, higher efficiency, and temperature/radiation hardness than conventional AlGaAs and Si based technologies. However, as evidenced by recent stress tests, reliability of these devices (characterized by a gradual decrease in the output current/power leading to failure of the device in just tens of hours of operation) remains a major concern. Although, in these tests, physical damages were clearly visible in the device, the root cause and nature of these damages have not yet been fully assessed experimentally. Therefore, a comprehensive theoretical study of the physical mechanisms responsible for degradation of AlGaN HEMTs is essential before these devices are deployed in targeted applications. The main objective of the proposed research is to computationally investigate how degradation of state-of-the-art nanoscale AlGaN HEMTs is governed by an intricate and dynamical coupling of thermo-electromechanical processes at different length (atoms-to-transistor) and time (femtosecondto- hours) scales while operating in high voltage, large mechanical, and high temperature/radiation stresses. This work centers around a novel hypotheses as follows: High voltage applied to AlGaN HEMT causes excessive internal heat dissipation, which triggers gate metal diffusion into the semiconducting barrier layer and structural modifications (defect ii formation) leading to diminished polarization induced charge density and output current. Since the dynamical system to be studied is complex, chaotic (where the evolution rule is guided by atomicity of the underlying material), and involve coupled physical processes, an in-house multiscale simulator (QuADS 3-D) has been employed and augmented, where material parameters are obtained atomistically using firstprinciples, structural relaxation and defect

  4. The Influence of Fuelbed Physical Properties on Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Urbanski, S. P.; Lincoln, E.; Baker, S. P.; Richardson, M.

    2014-12-01

    Emissions from biomass fires can significantly degrade regional air quality and therefore are of major concern to air regulators and land managers in the U.S. and Canada. Accurately estimating emissions from different fire types in various ecosystems is crucial to predicting and mitigating the impact of fires on air quality. The physical properties of ecosystems' fuelbeds can heavily influence the combustion processes (e.g. flaming or smoldering) and the resultant emissions. However, despite recent progress in characterizing the composition of biomass smoke, significant knowledge gaps remain regarding the linkage between basic fuelbed physical properties and emissions. In laboratory experiments we examined the effects of fuelbed properties on combustion efficiency (CE) and emissions for an important fuel component of temperate and boreal forests - conifer needles. The bulk density (BD), depth (DZ), and moisture content (MC) of Ponderosa Pine needle fuelbeds were manipulated in 75 burns for which gas and particle emissions were measured. We found CE was negatively correlated with BD, DZ and MC and that the emission factors of species associated with smoldering combustion processes (CO, CH4, particles) were positively correlated with these fuelbed properties. The study indicates the physical properties of conifer needle fuelbeds have a significant effect on CE and hence emissions. However, many of the emission models used to predict and manage smoke impacts on air quality assume conifer litter burns by flaming combustion with a high CE and correspondingly low emissions of CO, CH4, particles, and organic compounds. Our results suggest emission models underestimate emissions from fires involving a large component of conifer needles. Additionally, our findings indicate that laboratory studies of emissions should carefully control fuelbed physical properties to avoid confounding effects that may obscure the effects being tested and lead to erroneous interpretations.

  5. Physics of nanoplatforms and their applications in nanomanufacturing and nanomedicine

    NASA Astrophysics Data System (ADS)

    Gultepe, Evin

    Nanoplatforms are nanoscale structures designed as general platforms for multifunctional nanotechnology applications. Applications of nanotechnology cover broad spectrum of research fields and require true interdisciplinary and multidisciplinary studies. It also requires a fundamental understanding of physical principles in nanoscale since nanomaterials exhibit different properties and experience distinct forces compared to the materials in macroscale. In this thesis, we studied two different nanoplatforms, namely nanoporous oxide coatings and superparamagnetic nanoparticles. We analyzed their physical properties and illustrated their applications in two different fields, nanomanufacturing and nanomedicine. The first nanoplatform we studied is ordered nanoporous arrays of aluminum and titanium oxide. We investigated their fabrication as well as their applications in both nanomanufacturing and nanomedicine. We addressed the question of assembling spherical and cylindrical elements into porous holes - all in the same nanoscale. To investigate the assembly of nanoelements, one has to have an understanding of forces in nanoscale. In this length scale, the electronic and magnetic forces are the dominant forces whereas some macroscale forces like gravity has none to little effect. We demonstrated 3D directed assembly of nanobeads as well as single-wall carbon nanotubes (SWNT) into nanoholes by means of electrophoresis and dielectrophoresis at ambient temperatures. For nanobead assembly, SEM images were sufficient to demonstrate 100% assembly of loaded nanobeads. For SWNT, the connection through assembled nanotubes were used to prove the success of the assembly. The I-V measurements clearly showed that strong Si-SWNT interconnects carrying currents on the order of 1 mA were established inside the nanoholes. This assembly technique is particularly useful for large-scale, rapid, 3D assembly of 106 SWNT over a centimeter square area under mild conditions for nanoscale

  6. A simple quantum mechanical treatment of scattering in nanoscale transistors

    NASA Astrophysics Data System (ADS)

    Venugopal, R.; Paulsson, M.; Goasguen, S.; Datta, S.; Lundstrom, M. S.

    2003-05-01

    We present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling dissipative electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors. The simulation scheme, which solves the nonequilibrium Green's function equations self consistently with Poisson's equation, treats the effect of scattering using a simple approximation inspired by the "Büttiker probes," often used in mesoscopic physics. It is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results are used to highlight quantum effects, discuss the physics of scattering and to relate the quantum mechanical quantities used in our model to experimentally measured low field mobilities. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This paper shows that our approximate treatment of scattering, is an efficient and useful simulation method for modeling electron transport in nanoscale, silicon-on-insulator transistors.

  7. Tunable Physical Properties of Ethylcellulose/Gelatin Composite Nanofibers by Electrospinning.

    PubMed

    Liu, Yuyu; Deng, Lingli; Zhang, Cen; Feng, Fengqin; Zhang, Hui

    2018-02-28

    In this work, the ethylcellulose/gelatin blends at various weight ratios in water/ethanol/acetic acid solution were electrospun to fabricate nanofibers with tunable physical properties. The solution compatibility was predicted based on Hansen solubility parameters and evaluated by rheological measurements. The physical properties were characterized by scanning electron microscopy, porosity, differential scanning calorimetry, thermogravimetry, Fourier transform infrared spectroscopy, and water contact angle. Results showed that the entangled structures among ethylcellulose and gelatin chains through hydrogen bonds gave rise to a fine morphology of the composite fibers with improved thermal stability. The fibers with higher gelatin ratio (75%), possessed hydrophilic surface (water contact angle of 53.5°), and adequate water uptake ability (1234.14%), while the fibers with higher ethylcellulose proportion (75%) tended to be highly water stable with a hydrophobic surface (water contact angle of 129.7°). This work suggested that the composite ethylcellulose/gelatin nanofibers with tunable physical properties have potentials as materials for bioactive encapsulation, food packaging, and filtration applications.

  8. Nanoscale welding of multi-walled carbon nanotubes by 1064 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Yuan, Yanping; Liu, Zhi; Zhang, Kaihu; Han, Weina; Chen, Jimin

    2018-07-01

    This study proposes an efficient approach which uses 1064 nm continuous fiber laser to achieve nanoscale welding of crossed multi-walled carbon nanotubes (MWCNTs). By changing the irradiation time, different quality of nanoscale welding is obtained. The morphology changes are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The experiments demonstrate that better quality of MWCNTs nanoscale welding after 3 s irradiation can be obtained. It is found that new graphene layers between crossed nanotubes induced by laser make the nanoscale welding achieved due to the absorption of laser energy.

  9. Anisotropic local physical properties of human dental enamel in comparison to properties of some common dental filling materials.

    PubMed

    Raue, Lars; Hartmann, Christiane D; Rödiger, Matthias; Bürgers, Ralf; Gersdorff, Nikolaus

    2014-11-01

    A major aspect in evaluating the quality of dental materials is their physical properties. Their properties should be a best fit of the ones of dental hard tissues. Manufacturers give data sheets for each material. The properties listed are characterized by a specific value. This assumes (but does not prove) that there is no direction dependence of the properties. However, dental enamel has direction-dependent properties which additionally vary with location in the tooth. The aim of this paper is to show the local direction dependence of physical properties like the elastic modulus or the thermal expansion in dental hard tissues. With this knowledge the 'perfect filling/dental material' could be characterized. Enamel sections of ∼400-500 μm thickness have been cut with a diamond saw from labial/buccal to palatal/lingual (canine, premolar and molar) and parallel to labial (incisor). Crystallite arrangements have been measured in over 400 data points on all types of teeth with x-ray scattering techniques, known from materials science. X-ray scattering measurements show impressively that dental enamel has a strong direction dependence of its physical properties which also varies with location within the tooth. Dental materials possess only little or no property direction dependence. Therefore, a mismatch was found between enamel and dental materials properties. Since dental materials should possess equal (direction depending) properties, worthwhile properties could be characterized by transferring the directional properties of enamel into a property 'wish list' which future dental materials should fulfil. Hereby the 'perfect dental material' can be characterized.

  10. Modeling Self-Heating Effects in Nanoscale Devices

    NASA Astrophysics Data System (ADS)

    Raleva, K.; Shaik, A. R.; Vasileska, D.; Goodnick, S. M.

    2017-08-01

    Accurate thermal modeling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modeling methods that must be employed in order to determine a device's temperature profile.

  11. Unconventional Nanoscale Photoresponse and Degradation Process in Hybrid Organic-inorganic Perovskites.

    NASA Astrophysics Data System (ADS)

    Chu, Zhaodong; Yang, Mengjin; Schulz, Philip; Wu, Di; Zhu, Kai; Li, Xiaoqin; Lai, Keji

    The remarkable performance of organic-inorganic perovskite solar cells (PSCs) is challenging the dogma that solution-processed thin films are inevitably associated with inferior energy conversion efficiencies. The surprisingly low impact of polycrystallinity on the film quality highlights the unusual photo-response of intrinsic defects and grain boundaries in these materials. Here, we report the first quantitative nanoscale photoconductivity imaging on methylammonium lead triiodide (MAPbI3) thin films by microwave impedance microscopy with light stimulation. The local photoconductivity as a function of the above-gap laser power is consistent with the high carrier mobility and long lifetime of MAPbI3. The photo-response is largely uniform across grains and grain boundaries, which is direct evidence on the inherently benign nature of microstructures in the perovskite thin films. For encapsulated MAPbI3 films, the observed long-term degradation in photoconductivity begins with the disintegration of large grains due to the diffusion of water molecules through the capping layer. Our work suggests that the striking PSC performance is deeply rooted in the nanoscale optoelectronic properties of MAPbI3. We gratefully acknowledge financial support from NSF EFMA-1542747.

  12. Novel models on fluid's variable thermo-physical properties for extensive study on convection heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Shang, De-Yi; Zhong, Liang-Cai

    2017-01-01

    Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.

  13. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  14. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  15. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  16. Nanoscale precipitation in a maraging steel studied by APFIM.

    PubMed

    Stiller, Krystyna; Hättestrand, Mats

    2004-06-01

    This article summarizes findings from our previous investigations and recent studies concerning precipitation in a maraging steel of type 13Cr-9Ni-2Mo-2Cu (at.%) with small additions of Ti (1 at.%) and Al (0.7 at.%). The material was investigated after aging at 475 degrees C up to 400 h using both conventional and three-dimensional atom-probe analyses. The process of phase decomposition in the steel proved to be complicated. It consisted of precipitation of several phases with different chemistry. A Cu-rich phase was first to precipitate and Mo was last in the precipitation sequence. The influence of the complex precipitation path on the material properties is discussed. The investigation clearly demonstrated the usefulness of the applied techniques for investigation of nanoscale precipitation. It is also shown that, complementary methods (such as TEM and EFTEM) giving structural and chemical information on a larger scale must be applied to explain the good properties of the steel after prolonged aging.

  17. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    PubMed

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  18. Effect of different mixing methods on the physical properties of Portland cement.

    PubMed

    Shahi, Shahriar; Ghasemi, Negin; Rahimi, Saeed; Yavari, Hamidreza; Samiei, Mohammad; Jafari, Farnaz

    2016-12-01

    The Portland cement is hydrophilic cement; as a result, the powder-to-liquid ratio affects the properties of the final mix. In addition, the mixing technique affects hydration. The aim of this study was to evaluate the effect of different mixing techniques (conventional, amalgamator and ultrasonic) on some selective physical properties of Portland cement. The physical properties to be evaluated were determined using the ISO 6786:2001 specification. One hundred sixty two samples of Portland cement were prepared for three mixing techniques for each physical property (each 6 samples). Data were analyzed using descriptive statistics, one-way ANOVA and post hoc Tukey tests. Statistical significance was set at P <0.05. The mixing technique had no significant effect on the compressive strength, film thickness and flow of Portland cement ( P >0.05). Dimensional changes (shrinkage), solubility and pH increased significantly by amalgamator and ultrasonic mixing techniques ( P <0.05). The ultrasonic technique significantly decreased working time, and the amalgamator and ultrasonic techniques significantly decreased the setting time ( P <0.05). The mixing technique exerted no significant effect on the flow, film thickness and compressive strength of Portland cement samples. Key words: Physical properties, Portland cement, mixing methods.

  19. Nanoscale Electronic Transport Studies of Novel Strongly Correlated Materials

    NASA Astrophysics Data System (ADS)

    Hardy, Will J.

    Strongly correlated materials are those in which the electron-electron and electron-lattice interactions play pivotal roles in determining many aspects of observable physical behavior, including the electronic and magnetic properties. In this thesis, I describe electronic transport studies of novel strongly correlated materials at the nanoscale. After introducing some basic concepts, briefly reviewing historical development of the field, and discussing the process of making measurements on small length scales, I detail experimental results from studies of four specific materials: two transition metal oxide systems, and two layered transition metal dichalcogenides with intercalated magnetic moments. The first system is a modified version of a classic strongly correlated material, vanadium dioxide (VO2), which here is doped with hydrogen to suppress its metal-insulator transition and stabilize a poorly metallic phase down to liquid helium temperatures. Doped VO2 nanowires, micron flakes, and thin films display magnetoresistance (MR) consistent with weak localization physics, along with mesoscopic resistance fluctuations over short distances, raising questions about how to model transport in bad-metal correlated systems. A second transition metal oxide system is considered next: Quantum wells in SrTiO3 sandwiched between layers of SmTiO3, in which anomalous voltage fluctuation behavior is observed in etched nanostructures at low temperatures. After well-understood alternative origins are ruled out, an explanation is proposed involving a time-varying thermopower due to two-level fluctuations of etching-induced defects. Next, I shift to the topic of layered itinerant magnetic materials with intercalated moments, starting with Fe0.28TaS 2, a hard ferromagnet (FM) with strong spin-orbit coupling. Here, a surprisingly large MR of nearly 70% is observed, an especially striking feature given that the closely related compounds at Fe intercalation fractions of 1/4 or 1/3 have

  20. Psychometric properties of the PROMIS Physical Function item bank in patients receiving physical therapy.

    PubMed

    Crins, Martine H P; van der Wees, Philip J; Klausch, Thomas; van Dulmen, Simone A; Roorda, Leo D; Terwee, Caroline B

    2018-01-01

    The Patient-Reported Outcomes Measurement Information System (PROMIS) is a universally applicable set of instruments, including item banks, short forms and computer adaptive tests (CATs), measuring patient-reported health across different patient populations. PROMIS CATs are highly efficient and the use in practice is considered feasible with little administration time, offering standardized and routine patient monitoring. Before an item bank can be used as CAT, the psychometric properties of the item bank have to be examined. Therefore, the objective was to assess the psychometric properties of the Dutch-Flemish PROMIS Physical Function item bank (DF-PROMIS-PF) in Dutch patients receiving physical therapy. Cross-sectional study. 805 patients >18 years, who received any kind of physical therapy in primary care in the past year, completed the full DF-PROMIS-PF (121 items). Unidimensionality was examined by Confirmatory Factor Analysis and local dependence and monotonicity were evaluated. A Graded Response Model was fitted. Construct validity was examined with correlations between DF-PROMIS-PF T-scores and scores on two legacy instruments (SF-36 Health Survey Physical Functioning scale [SF36-PF10] and the Health Assessment Questionnaire Disability-Index [HAQ-DI]). Reliability (standard errors of theta) was assessed. The results for unidimensionality were mixed (scaled CFI = 0.924, TLI = 0.923, RMSEA = 0.045, 1th factor explained 61.5% of variance). Some local dependence was found (8.2% of item pairs). The item bank showed a broad coverage of the physical function construct (threshold-parameters range: -4.28-2.33) and good construct validity (correlation with SF36-PF10 = 0.84 and HAQ-DI = -0.85). Furthermore, the DF-PROMIS-PF showed greater reliability over a broader score-range than the SF36-PF10 and HAQ-DI. The psychometric properties of the DF-PROMIS-PF item bank are sufficient. The DF-PROMIS-PF can now be used as short forms or CAT to measure the level of physical

  1. Physical Properties of the Double Kerr Solution

    NASA Astrophysics Data System (ADS)

    Herdeiro, Carlos A. R.; Rebelo, Carmen

    We consider two special cases, dubbed counter-rotating and co-rotating of the double-Kerr solution, in four spacetime dimensions. We discuss how various physical properties of the black holes vary as the distance between them varies, namely: the horizon angular velocity and extremality condition, the horizon and ergo-surface geometry.

  2. 75 FR 49487 - Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Study: Nanoscale Silver in Disinfectant Spray AGENCY: Environmental Protection Agency (EPA). ACTION... document ``Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray'' (EPA/600/R-10/081). The... 49488

  3. Dependence of physical and mechanical properties on polymer architecture for model polymer networks

    NASA Astrophysics Data System (ADS)

    Guo, Ruilan

    Effect of architecture at nanoscale on the macroscopic properties of polymer materials has long been a field of major interest, as evidenced by inhomogeneities in networks, multimodal network topologies, etc. The primary purpose of this research is to establish the architecture-property relationship of polymer networks by studying the physical and mechanical responses of a series of topologically different PTHF networks. Monodispersed allyl-tenninated PTHF precursors were synthesized through "living" cationic polymerization and functional end-capping. Model networks of various crosslink densities and inhomogeneities levels (unimodal, bimodal and clustered) were prepared by endlinking precursors via thiol-ene reaction. Thermal characteristics, i.e., glass transition, melting point, and heat of fusion, of model PTHF networks were investigated as functions of crosslink density and inhomogeneities, which showed different dependence on these two architectural parameters. Study of freezing point depression (FPD) of solvent confined in swollen networks indicated that the size of solvent microcrystals is comparable to the mesh size formed by intercrosslink chains depending on crosslink density and inhomogeneities. Relationship between crystal size and FPD provided a good reflection of the existing architecture facts in the networks. Mechanical responses of elastic chains to uniaxial strains were studied through SANS. Spatial inhomogeneities in bimodal and clustered networks gave rise to "abnormal butterfly patterns", which became more pronounced as elongation ratio increases. Radii of gyration of chains were analyzed at directions parallel and perpendicular to stretching axis. Dependence of Rg on lambda was compared to three rubber elasticity models and the molecular deformation mechanisms for unimodal, bimodal and clustered networks were explored. The thesis focused its last part on the investigation of evolution of free volume distribution of linear polymer (PE

  4. Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Christine Cardinal; Graham, Alan; Nemer, Martin

    Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.

  5. Preface: Charge transport in nanoscale junctions

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    the molecular level. Nanoscale charge transport experiments in ionic liquids extend the field to high temperatures and to systems with intriguing interfacial potential distributions. Other directions may include dye-sensitized solar cells, new sensor applications and diagnostic tools for the study of surface-bound single molecules. Another motivation for this special issue is thus to highlight activities across different research communities with nanoscale charge transport as a common denominator. This special issue gathers 27 articles by scientists from the United States, Germany, the UK, Denmark, Russia, France, Israel, Canada, Australia, Sweden, Switzerland, the Netherlands, Belgium and Singapore; it gives us a flavour of the current state-of-the-art of this diverse research area. While based on contributions from many renowned groups and institutions, it obviously cannot claim to represent all groups active in this very broad area. Moreover, a number of world-leading groups were unable to take part in this project within the allocated time limit. Nevertheless, we regard the current selection of papers to be representative enough for the reader to draw their own conclusions about the current status of the field. Each paper is original and has its own merit, as all papers in Journal of Physics: Condensed Matter special issues are subjected to the same scrutiny as regular contributions. The Guest Editors have deliberately not defined the specific subjects covered in this issue. These came out logically from the development of this area, for example: 'Traditional' solid state nanojunctions based on adsorbed layers, oxide films or nanowires sandwiched between two electrodes: effects of molecular structure (aromaticity, anchoring groups), symmetry, orientation, dynamics (noise patterns) and current-induced heating. Various 'physical effects': inelastic tunnelling and Coulomb blockade, polaron effects, switching modes, and negative differential resistance; the role of

  6. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    PubMed Central

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-01-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3–99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale. PMID:26830144

  7. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    PubMed

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational

  8. Soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB ferromagnetic materials and their characterization

    NASA Astrophysics Data System (ADS)

    Rao, G. V. S. Jayapala; Prasad, T. N. V. K. V.; Shameer, Syed; Rao, M. Purnachandra

    2018-04-01

    Neodymium iron boron (NdFeB) permanent magnets have high energy product with suitable magnetic and physical properties for an array of applications including power generation and motors. However, synthetic routes of NdFeB permanent magnets involve critical procedures with high energy and needs scientific skills. Herein, we report on soapnut extract mediated synthesis of nanoscale cobalt substituted NdFeB (Co-NdFeB) permanent magnetic powders (Nd: 15%, Fe: 77.5%, B: 7.5% and Co with molar ratios: 0.5, 1, 1.5 and 2). A 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the prepared nanoscale Co-NdFeB magnetic powders was done using the techniques such as Dynamic Light Scattering (DLS for size and zeta potential measurements), X-ray diffraction (XRD) for structural determination, Scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS) for surface morphological and elemental analysis, Fourier transform infrared spectroscopy (FT-IR) for the identification of functional groups associated and hysteresis loop studies to quantify the magnetization. The results revealed that particles were in irregular and tubular shaped and highly stable (Zeta potential: -44.4 mV) with measured size <100 nm. XRD micrographs revealed a tetragonal crystal structure and FTIR showed predominant N-H and O-H stretching indicates the involvement of these functional groups in the reduction and stabilization process of Co-NdFeB magnetic powders. Hysteresis studies signify the effect of an increase in Co concentration.

  9. Ion-damage-free planarization or shallow angle sectioning of solar cells for mapping grain orientation and nanoscale photovoltaic properties

    DOE PAGES

    Kutes, Yasemin; Luria, Justin; Sun, Yu; ...

    2017-04-11

    Ion beam milling is the most common modern method for preparing specific features for microscopic analysis, even though concomitant ion implantation and amorphization remain persistent challenges, particularly as they often modify materials properties of interest. Atomic force microscopy (AFM), on the other hand, can mechanically mill specific nanoscale regions in plan-view without chemical or high energy ion damage, due to its resolution, directionality, and fine load control. As an example, AFM-nanomilling (AFM-NM) is implemented for top-down planarization of polycrystalline CdTe thin film solar cells, with a resulting decrease in the root mean square (RMS) roughness by an order of magnitude,more » even better than for a low incidence FIB polished surface. Subsequently AFM-based property maps reveal a substantially stronger contrast, in this case of the short-circuit current or open circuit voltage during light exposure. Furthermore, electron back scattering diffraction (EBSD) imaging also becomes possible upon AFM-NM, enabling direct correlations between the local materials properties and the polycrystalline microstructure. Smooth shallow-angle cross-sections are demonstrated as well, based on targeted oblique milling. As expected, this reveals a gradual decrease in the average short-circuit current and maximum power as the underlying CdS and electrode layers are approached, but a relatively consistent open-circuit voltage through the diminishing thickness of the CdTe absorber. AFM-based nanomilling is therefore a powerful tool for material characterization, uniquely providing ion-damage free, selective area, planar smoothing or low-angle sectioning of specimens while preserving their functionality. This then enables novel, co-located advanced AFM measurements, EBSD analysis, and investigations by related techniques that are otherwise hindered by surface morphology or surface damage.« less

  10. Use of ultrasound to monitor physical properties of soybean oil

    NASA Astrophysics Data System (ADS)

    Baêsso, R. M.; Oliveira, P. A.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2016-07-01

    The study of the monitoring physical properties of soybean oil was performed. The pulse-echo method allowed measuring the density and viscosity of the oil in real time and accurately. The physical property values were related to the acoustic time of flight ratio, dimensionless parameter that can be obtained from any reference. In our case, we used the time of flight at 20°C as reference and a fixed distance between the transducer and the reflector. Ultrasonic monitoring technique employed here has shown promising in the analysis of edible oils.

  11. Naphtho[2,1-b:3,4-b']dithiophene-based bulk heterojunction solar cells: how molecular structure influences nanoscale morphology and photovoltaic properties.

    PubMed

    Kim, Yu Jin; Cheon, Ye Rim; Back, Jang Yeol; Kim, Yun-Hi; Chung, Dae Sung; Park, Chan Eon

    2014-11-10

    Organic bulk heterojunction photovoltaic devices based on a series of three naphtho[2,1-b:3,4-b']dithiophene (NDT) derivatives blended with phenyl-C71-butyric acid methyl ester were studied. These three derivatives, which have NDT units with various thiophene-chain lengths, were employed as the donor polymers. The influence of their molecular structures on the correlation between their solar-cell performances and their degree of crystallization was assessed. The grazing-incidence angle X-ray diffraction and atomic force microscopy results showed that the three derivatives exhibit three distinct nanoscale morphologies. We correlated these morphologies with the device physics by determining the J-V characteristics and the hole and electron mobilities of the devices. On the basis of our results, we propose new rules for the design of future generations of NDT-based polymers for use in bulk heterojunction solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. WDM Nanoscale Laser Diodes for Si Photonic Interconnects

    DTIC Science & Technology

    2016-07-25

    mounting on silicon. The nanoscale VCSELs can achieve small optical modes and present a compact laser diode that is also robust. In this work we have used...Distribution Unlimited UU UU UU UU 25-07-2016 1-Feb-2012 31-Dec-2015 Final Report: WDM Nanoscale Laser Diodes for Si Photonic Interconnects The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 VCSEL, optical interconnect, laser diode , semiconductor laser, microcavity REPORT DOCUMENTATION

  13. Biomedically relevant chemical and physical properties of coal combustion products.

    PubMed Central

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

  14. Physical and Mechanical Properties of Composites and Light Alloys Reinforced with Detonation Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Sakovich, G. V.; Vorozhtsov, S. A.; Vorozhtsov, A. B.; Potekaev, A. I.; Kulkov, S. N.

    2016-07-01

    The influence of introduction of particles of detonation-synthesized nanodiamonds into composites and aluminum-base light alloys on their physical and mechanical properties is analyzed. The data on microstructure and physical and mechanical properties of composites and cast aluminum alloys reinforced with diamond nanoparticles are presented. The introduction of nanoparticles is shown to result in a significant improvement of the material properties.

  15. Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, Daehee; Seo, Hosung; Kim, Yunseok, E-mail: yunseokkim@skku.edu

    Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. These results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.

  16. Computational studies of physical properties of Nb-Si based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Lizhi

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered latticesmore » including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.« less

  17. Let Students Discover an Important Physical Property of a Slinky

    ERIC Educational Resources Information Center

    Gash, Philip

    2016-01-01

    This paper describes a simple experiment that lets first-year physics and engineering students discover an important physical property of a Slinky. The restoring force for the fundamental oscillation frequency is provided only by those coils between the support and the Slinky center of mass.

  18. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  19. Ultrasound-assisted synthesis of poly(MMA-co-BA)/ZnO nanocomposites with enhanced physical properties.

    PubMed

    Poddar, Maneesh Kumar; Sharma, Sachin; Pattipaka, Srinivas; Pamu, D; Moholkar, Vijayanand S

    2017-11-01

    The present study reports synthesis and characterization of poly(MMA-co-BA)/ZnO nanocomposites using ultrasound-assisted in-situ emulsion polymerization. Methyl methacrylate (MMA) was copolymerized with butyl acrylate (BA), for enhanced ductility of copolymer matrix, in presence of nanoscale ZnO particles. Ultrasound generated strong micro-turbulence in reaction mixture, which resulted in higher encapsulation and uniform dispersion of ZnO (in native form - without surface modification) in polymer matrix, as compared to mechanical stirring. The nanocomposites were characterized for physical properties and structural morphology using standard techniques such as XRD, FTIR, particle size analysis, UV-Visible spectroscopy, electrical conductivity, TGA, DSC, FE-SEM and TEM. Copolymerization of MMA and BA (in presence of ZnO) followed second order kinetics. Thermal stability (T 10% =324.9°C) and glass transition temperature (T g =67.8°C) of poly(MMA-co-BA)/ZnO nanocomposites showed significant enhancement (35.1°C for 1wt% ZnO and 15.7°C for 4wt% ZnO, respectively), as compared to pristine poly(MMA-co-BA). poly(MMA-co-BA)/ZnO (5wt%) nanocomposites possessed the highest electrical conductivity of 0.192μS/cm and peak UV absorptivity of 0.55 at 372nm. Solution rheological study of nanocomposites revealed enhancement in viscosity with increasing ZnO loading. Maximum viscosity of 0.01Pa-s was obtained for 5wt% ZnO loading. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray (Final Report)

    EPA Science Inventory

    EPA announced the release of the final report, Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray. This report represents a case study of engineered nanoscale silver (nano-Ag), focusing on the specific example of nano-Ag as possibly used in disinfectant spr...

  1. Technetium-99m: basic nuclear physics and chemical properties.

    PubMed

    Castronovo, F P

    1975-05-01

    The nuclear physics and chemical properties of technetium-99m are reviewed. The review of basic nuclear physics includes: classification of nuclides, nuclear stability, production of radionuclides, artificial production of molybdenum-99, production of technetium 99m and -99Mo-99mTc generators. The discussion of the chemistry of technetium includes a profile of several -99mCc-labeled radiopharmaceuticals.

  2. Nanoscale relaxation oscillator

    DOEpatents

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  3. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.

    PubMed

    Zaleski, Stephanie; Wilson, Andrew J; Mattei, Michael; Chen, Xu; Goubert, Guillaume; Cardinal, M Fernanda; Willets, Katherine A; Van Duyne, Richard P

    2016-09-20

    The chemical sensitivity of surface-enhanced Raman spectroscopy (SERS) methodologies allows for the investigation of heterogeneous chemical reactions with high sensitivity. Specifically, SERS methodologies are well-suited to study electron transfer (ET) reactions, which lie at the heart of numerous fundamental processes: electrocatalysis, solar energy conversion, energy storage in batteries, and biological events such as photosynthesis. Heterogeneous ET reactions are commonly monitored by electrochemical methods such as cyclic voltammetry, observing billions of electrochemical events per second. Since the first proof of detecting single molecules by redox cycling, there has been growing interest in examining electrochemistry at the nanoscale and single-molecule levels. Doing so unravels details that would otherwise be obscured by an ensemble experiment. The use of optical spectroscopies, such as SERS, to elucidate nanoscale electrochemical behavior is an attractive alternative to traditional approaches such as scanning electrochemical microscopy (SECM). While techniques such as single-molecule fluorescence or electrogenerated chemiluminescence have been used to optically monitor electrochemical events, SERS methodologies, in particular, have shown great promise for exploring electrochemistry at the nanoscale. SERS is ideally suited to study nanoscale electrochemistry because the Raman-enhancing metallic, nanoscale substrate duly serves as the working electrode material. Moreover, SERS has the ability to directly probe single molecules without redox cycling and can achieve nanoscale spatial resolution in combination with super-resolution or scanning probe microscopies. This Account summarizes the latest progress from the Van Duyne and Willets groups toward understanding nanoelectrochemistry using Raman spectroscopic methodologies. The first half of this Account highlights three techniques that have been recently used to probe few- or single-molecule electrochemical

  4. Influence of wheat kernel physical properties on the pulverizing process.

    PubMed

    Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula

    2014-10-01

    The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.

  5. Electrical Characterization of Critical Phase Change Conditions in Nanoscale Ge2Sb2Te5 Pillars

    NASA Astrophysics Data System (ADS)

    Ozatay, Ozhan; Stipe, Barry; Katine, Jordan; Terris, Bruce

    2008-03-01

    Following the original work of Ovshinsky on disordered semiconductors that exhibit ovonic threshold switching (OTS) there has been substantial interest in the electronic reversible switching properties of chalcogenides^1. The current induced phase transitions between polycrystalline and amorphous states in these materials offer orders of magnitude changes in the conductance which makes them an ideal candidate for non-volatile data storage applications. In this work we investigate the scaling of critical programming conditions required to observe such transitions between highly resistive (disordered) and highly conductive (ordered) states by constructing a resistance map with various pulse widths and amplitudes under different cooling conditions (as a function of pulse trailing edge). We study the evolution of critical phase change conditions as a function of contact size (50nm-1μm) and shape (circle-square-rectangle). We compare the resulting switching behaviour with the predictions of a finite-element model of the electro-thermal physics to analyze the nature of the switching dynamics at the nanoscale. ^1 S-H. Lee, Y. Jung, R. Agarwal, Nature Nanotechnology; doi:10:1038/nnano.2007.291

  6. Selected physical properties of various diesel blends

    NASA Astrophysics Data System (ADS)

    Hlaváčová, Zuzana; Božiková, Monika; Hlaváč, Peter; Regrut, Tomáš; Ardonová, Veronika

    2018-01-01

    The quality determination of biofuels requires identifying the chemical and physical parameters. The key physical parameters are rheological, thermal and electrical properties. In our study, we investigated samples of diesel blends with rape-seed methyl esters content in the range from 3 to 100%. In these, we measured basic thermophysical properties, including thermal conductivity and thermal diffusivity, using two different transient methods - the hot-wire method and the dynamic plane source. Every thermophysical parameter was measured 100 times using both methods for all samples. Dynamic viscosity was measured during the heating process under the temperature range 20-80°C. A digital rotational viscometer (Brookfield DV 2T) was used for dynamic viscosity detection. Electrical conductivity was measured using digital conductivity meter (Model 1152) in a temperature range from -5 to 30°C. The highest values of thermal parameters were reached in the diesel sample with the highest biofuel content. The dynamic viscosity of samples increased with higher concentration of bio-component rapeseed methyl esters. The electrical conductivity of blends also increased with rapeseed methyl esters content.

  7. Nanoscale heterogeneity at the aqueous electrolyte-electrode interface

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Willard, Adam P.

    2015-01-01

    Using molecular dynamics simulations, we reveal emergent properties of hydrated electrode interfaces that while molecular in origin are integral to the behavior of the system across long times scales and large length scales. Specifically, we describe the impact of a disordered and slowly evolving adsorbed layer of water on the molecular structure and dynamics of the electrolyte solution adjacent to it. Generically, we find that densities and mobilities of both water and dissolved ions are spatially heterogeneous in the plane parallel to the electrode over nanosecond timescales. These and other recent results are analyzed in the context of available experimental literature from surface science and electrochemistry. We speculate on the implications of this emerging microscopic picture on the catalytic proficiency of hydrated electrodes, offering a new direction for study in heterogeneous catalysis at the nanoscale.

  8. Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Saikat; Wang, Bo; Cao, Ye

    Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implications for device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of the oxygen vacancy distribution using the mechanical force from a scanning probe microscope tip. By combining Kelvin probe force microscopy imaging and phase-field simulations, we show that oxygen vacancies can move under a stress-gradient-induced depolarisation field. When tailored, this nanoscale flexoelectric effect enables a controlled spatial modulation. In motion, the scanning probe tip thereby deterministically reconfigures the spatial distribution of vacancies. Finally,more » the ability to locally manipulate oxygen vacancies on-demand provides a tool for the exploration of mesoscale quantum phenomena and engineering multifunctional oxide devices.« less

  9. Neuromorphic computing with nanoscale spintronic oscillators

    PubMed Central

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, M. D.; Grollier, Julie

    2017-01-01

    Neurons in the brain behave as non-linear oscillators, which develop rhythmic activity and interact to process information1. Taking inspiration from this behavior to realize high density, low power neuromorphic computing will require huge numbers of nanoscale non-linear oscillators. Indeed, a simple estimation indicates that, in order to fit a hundred million oscillators organized in a two-dimensional array inside a chip the size of a thumb, their lateral dimensions must be smaller than one micrometer. However, despite multiple theoretical proposals2–5, and several candidates such as memristive6 or superconducting7 oscillators, there is no proof of concept today of neuromorphic computing with nano-oscillators. Indeed, nanoscale devices tend to be noisy and to lack the stability required to process data in a reliable way. Here, we show experimentally that a nanoscale spintronic oscillator8,9 can achieve spoken digit recognition with accuracies similar to state of the art neural networks. We pinpoint the regime of magnetization dynamics leading to highest performance. These results, combined with the exceptional ability of these spintronic oscillators to interact together, their long lifetime, and low energy consumption, open the path to fast, parallel, on-chip computation based on networks of oscillators. PMID:28748930

  10. Plasmon-mediated chemical surface functionalization at the nanoscale

    NASA Astrophysics Data System (ADS)

    Nguyen, Mai; Lamouri, Aazdine; Salameh, Chrystelle; Lévi, Georges; Grand, Johan; Boubekeur-Lecaque, Leïla; Mangeney, Claire; Félidj, Nordin

    2016-04-01

    Controlling the surface grafting of species at the nanoscale remains a major challenge, likely to generate many opportunities in materials science. In this work, we propose an original strategy for chemical surface functionalization at the nanoscale, taking advantage of localized surface plasmon (LSP) excitation. The surface functionalization is demonstrated through aryl film grafting (derived from a diazonium salt), covalently bonded at the surface of gold lithographic nanostripes. The aryl film is specifically grafted in areas of maximum near field enhancement, as confirmed by numerical calculation based on the discrete dipole approximation method. The energy of the incident light and the LSP wavelength are shown to be crucial parameters to monitor the aryl film thickness of up to ~30 nm. This robust and versatile strategy opens up exciting prospects for the nanoscale confinement of functional layers on surfaces, which should be particularly interesting for molecular sensing or nanooptics.Controlling the surface grafting of species at the nanoscale remains a major challenge, likely to generate many opportunities in materials science. In this work, we propose an original strategy for chemical surface functionalization at the nanoscale, taking advantage of localized surface plasmon (LSP) excitation. The surface functionalization is demonstrated through aryl film grafting (derived from a diazonium salt), covalently bonded at the surface of gold lithographic nanostripes. The aryl film is specifically grafted in areas of maximum near field enhancement, as confirmed by numerical calculation based on the discrete dipole approximation method. The energy of the incident light and the LSP wavelength are shown to be crucial parameters to monitor the aryl film thickness of up to ~30 nm. This robust and versatile strategy opens up exciting prospects for the nanoscale confinement of functional layers on surfaces, which should be particularly interesting for molecular sensing

  11. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  12. Fabrication of Nanoscale Circuits on Inkjet-Printing Patterned Substrates.

    PubMed

    Chen, Shuoran; Su, Meng; Zhang, Cong; Gao, Meng; Bao, Bin; Yang, Qiang; Su, Bin; Song, Yanlin

    2015-07-08

    Nanoscale circuits are fabricated by assembling different conducting materials (e.g., metal nanoparticles, metal nano-wires, graphene, carbon nanotubes, and conducting polymers) on inkjet-printing patterned substrates. This non-litho-graphy strategy opens a new avenue for integrating conducting building blocks into nanoscale devices in a cost-efficient manner. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Physical properties of Aten, Apollo and Amor asteroids

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy-Ann; Tholen, David J.; Veeder, Glenn J.

    1989-01-01

    Data available on the physical properties of a group of planet-crossing asteroids, the Aten, Apollo, and Amor objects (AAAO) (include data on the taxonomy, mineralogical surface composition, diameter, rotation rate, shape, and surface texture) are presented together with the type of observations used for obtaining these data. These data show that the population of the AAAO is diverse in all of their physical characteristics. This diversity implies that the AAAO come from multiple sources and had different evolutionary histories.

  14. Nanoscale Characterization of Carrier Dynamic and Surface Passivation in InGaN/GaN Multiple Quantum Wells on GaN Nanorods.

    PubMed

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Heilmann, Martin; Yang, Jianfeng; Dai, Xi; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2016-11-23

    Using advanced two-photon excitation confocal microscopy, associated with time-resolved spectroscopy, we characterize InGaN/GaN multiple quantum wells on nanorod heterostructures and demonstrate the passivation effect of a KOH treatment. High-quality InGaN/GaN nanorods were fabricated using nanosphere lithography as a candidate material for light-emitting diode devices. The depth- and time-resolved characterization at the nanoscale provides detailed carrier dynamic analysis helpful for understanding the optical properties. The nanoscale spatially resolved images of InGaN quantum well and defects were acquired simultaneously. We demonstrate that nanorod etching improves light extraction efficiency, and a proper KOH treatment has been found to reduce the surface defects efficiently and enhance the luminescence. The optical characterization techniques provide depth-resolved and time-resolved carrier dynamics with nanoscale spatially resolved mapping, which is crucial for a comprehensive and thorough understanding of nanostructured materials and provides novel insight into the improvement of materials fabrication and applications.

  15. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.

    PubMed

    Park, Sangsu; Noh, Jinwoo; Choo, Myung-Lae; Sheri, Ahmad Muqeem; Chang, Man; Kim, Young-Bae; Kim, Chang Jung; Jeon, Moongu; Lee, Byung-Geun; Lee, Byoung Hun; Hwang, Hyunsang

    2013-09-27

    Efforts to develop scalable learning algorithms for implementation of networks of spiking neurons in silicon have been hindered by the considerable footprints of learning circuits, which grow as the number of synapses increases. Recent developments in nanotechnologies provide an extremely compact device with low-power consumption.In particular, nanoscale resistive switching devices (resistive random-access memory (RRAM)) are regarded as a promising solution for implementation of biological synapses due to their nanoscale dimensions, capacity to store multiple bits and the low energy required to operate distinct states. In this paper, we report the fabrication, modeling and implementation of nanoscale RRAM with multi-level storage capability for an electronic synapse device. In addition, we first experimentally demonstrate the learning capabilities and predictable performance by a neuromorphic circuit composed of a nanoscale 1 kbit RRAM cross-point array of synapses and complementary metal-oxide-semiconductor neuron circuits. These developments open up possibilities for the development of ubiquitous ultra-dense, ultra-low-power cognitive computers.

  16. Probing Interactions at the Nanoscale by Ion Current through Nanopores and Nanovoids

    NASA Astrophysics Data System (ADS)

    Gamble, Trevor Patrick

    Polymer nanopores offer themselves as excellent test beds for study of phenomena that occur on the nano-scale, such as Debye layer formation, surface charge modulation, current saturation, and rectification. Studying ions interactions within the Debye layer, for example, is not possible on the micro-scale, where the pore diameter can be 100 times the size of the zone where interactions of interest occur. However, in our nanopores with an opening diameter less than 10 nm, a slight change of the Debye length can lead to drastic changes of the recorded ion current. Here we present our nanopores' use as a tool to study geometrical and electrochemical properties of porous manganese oxide. There is great value in studying nano-scale properties of this material because of its importance in lithium ion batteries and newly developed nano-architectures within supercapacitors. We electrodeposited manganese oxide wires into our cylindrical nanopores, filling them completely. In this use, nanopores became a template to probe properties of the embedded material such as surface charge, ion selectivity, and porosity. This information was then reported to the Energy Frontier Research Center (EFRC) collaboration, so that other groups can incorporate these recently discovered characteristics into future their nano-architecture design. Additionally, we constructed conical nanopores to study interactions between the surface charges found on the walls and alkali metal ions. In particular we looked at lithium, as it is the electrochemically active ion during charge cycling in EFRC energy storage devices. We attempted to reveal lithium ion's affinity to bind to surface charges. We found this binding led to lowering of the effective surface charge of the pore walls, while also decreasing lithium's ability to move through channels or voids that have charged walls. In connection to manganese oxide, a porous, charged material with voids, information on lithium's interaction with these charges

  17. Effects of Loading Frequency and Film Thickness on the Mechanical Behavior of Nanoscale TiN Film

    NASA Astrophysics Data System (ADS)

    Liu, Jin-na; Xu, Bin-shi; Wang, Hai-dou; Cui, Xiu-fang; Jin, Guo; Xing, Zhi-guo

    2017-09-01

    The mechanical properties of a nanoscale-thickness film material determine its reliability and service life. To achieve quantitative detection of film material mechanical performance based on nanoscale mechanical testing methods and to explore the influence of loading frequency of the cycle load on the fatigue test, a TiN film was prepared on monocrystalline silicon by magnetron sputtering. The microstructure of the nanoscale-thickness film material was characterized by using scanning electron microscopy and high-resolution transmission electron microscopy. The residual stress distribution of the thin film was obtained by using an electronic film stress tester. The hardness values and the fatigue behavior were measured by using a nanomechanical tester. Combined with finite element simulation, the paper analyzed the influence of the film thickness and loading frequency on the deformation, as well as the equivalent stress and strain. The results showed that the TiN film was a typical face-centered cubic structure with a large amount of amorphous. The residual compressive stress decreased gradually with increasing thin film thickness, and the influence of the substrate on the elastic modulus and hardness was also reduced. A greater load frequency would accelerate the dynamic fatigue damage that occurs in TiN films.

  18. Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites

    DOE PAGES

    Cheng, Shiwang; Bocharova, Vera; Belianinov, Alex; ...

    2016-05-20

    The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, T g, has been extensively researched. However, not much is known about the origin of this effect below T g. In this paper, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below T g. We ascribe this phenomenon tomore » a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above T g.« less

  19. Nanoscale Substances on the TSCA Inventory

    EPA Pesticide Factsheets

    This document is to help the regulated community comply with the requirements of the Toxic Substances Control Act (TSCA) Section 5 Premanufacturing Notice (PMN) Program for nanoscale chemical substances.

  20. Spray characteristics affected by physical properties of adjuvants

    USDA-ARS?s Scientific Manuscript database

    Four drift adjuvants, Array, In-Place, Vector and Control, were tested and physical properties and spray spectrum parameters measured. Array had the highest conductivity, indicating a good potential for the electrostatic charging, and the highest shear viscosity. All adjuvants had very similar neut...

  1. Direct Probing of Polarization Charge at Nanoscale Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Owoong; Seol, Daehee; Lee, Dongkyu

    Ferroelectric materials possess spontaneous polarization that can be used for multiple applications. Owing to a long-term development of reducing the sizes of devices, the preparation of ferroelectric materials and devices is entering the nanometer-scale regime. In order to evaluate the ferroelectricity, there is a need to investigate the polarization charge at the nanoscale. Nonetheless, it is generally accepted that the detection of polarization charges using a conventional conductive atomic force microscopy (CAFM) without a top electrode is not feasible because the nanometer-scale radius of an atomic force microscopy (AFM) tip yields a very low signal-to-noise ratio. But, the detection ismore » unrelated to the radius of an AFM tip and, in fact, a matter of the switched area. In this work, the direct probing of the polarization charge at the nanoscale is demonstrated using the positive-up-negative-down method based on the conventional CAFM approach without additional corrections or circuits to reduce the parasitic capacitance. The polarization charge densities of 73.7 and 119.0 µC cm -2 are successfully probed in ferroelectric nanocapacitors and thin films, respectively. The results we obtained show the feasibility of the evaluation of polarization charge at the nanoscale and provide a new guideline for evaluating the ferroelectricity at the nanoscale.« less

  2. The engagement of optical angular momentum in nanoscale chirality

    NASA Astrophysics Data System (ADS)

    Andrews, David L.

    2017-09-01

    Wide-ranging developments in optical angular momentum have recently led to refocused attention on issues of material chirality. The connection between optical spin and circular polarization, linking to well-known and utilized probes of chirality such as circular dichroism, has prompted studies aiming to achieve enhanced means of differentiating enantiomers - molecules or particles of opposite handedness. A number of newly devised schemes for physically separating mirror-image components by optical methods have also been gaining traction, together with a developing appreciation of how the scale of physical dimensions ultimately determines any capacity to differentially select for material chirality. The scope of such enquiries has substantially widened on recognition that suitably structured, topologically charged beams of light - often known as `twisted light' or `optical vortices' can additionally convey orbital angular momentum. A case can be made that understanding the full scope and constraints upon chiroptical interactions in the nanoscale regime involves the resolution of CPT symmetry conditions governing the fundamental interactions between matter and photons. The principles provide a sound theoretical test-bed for new methodologies.

  3. Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip.

    PubMed

    Hu, Jinglei; Wysocki, Adam; Winkler, Roland G; Gompper, Gerhard

    2015-05-20

    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width.

  4. Chirality: a relational geometric-physical property.

    PubMed

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term. © 2013 Wiley Periodicals, Inc.

  5. Nanoscale superstructures assembled by polymerase chain reaction (PCR): programmable construction, structural diversity, and emerging applications.

    PubMed

    Kuang, Hua; Ma, Wei; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-11-19

    networks, (5) protein-DNA co-assembly structures, and (6) DNA block copolymers including trimers and pentamers. These results affirm that this method can produce a variety of chemical structures and in yields that are tunable. Using PCR-based preparation of DNA-bridged nanostructures, we can program the assembly of the nanoscale blocks through the adjustment of the primer intensity on the assembled units, the number of PCR cycles, or both. The resulting structures are highly complex and diverse and have interesting dynamics and collective properties. Potential applications of these materials include chirooptical materials, probe fabrication, and environmental and biomedical sensors.

  6. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    ERIC Educational Resources Information Center

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  7. Nanoscale Mechanical Stimulation Method for Quantifying C. elegans Mechanosensory Behavior and Memory.

    PubMed

    Sugi, Takuma; Okumura, Etsuko; Kiso, Kaori; Igarashi, Ryuji

    2016-01-01

    Withdrawal escape response of C. elegans to nonlocalized vibration is a useful behavioral paradigm to examine mechanisms underlying mechanosensory behavior and its memory-dependent change. However, there are very few methods for investigating the degree of vibration frequency, amplitude and duration needed to induce behavior and memory. Here, we establish a new system to quantify C. elegans mechanosensory behavior and memory using a piezoelectric sheet speaker. In the system, we can flexibly change the vibration properties at a nanoscale displacement level and quantify behavioral responses under each vibration property. This system is an economic setup and easily replicated in other laboratories. By using the system, we clearly detected withdrawal escape responses and confirmed habituation memory. This system will facilitate the understanding of physiological aspects of C. elegans mechanosensory behavior in the future.

  8. Charge separation at nanoscale interfaces: energy-level alignment including two-quasiparticle interactions.

    PubMed

    Li, Huashan; Lin, Zhibin; Lusk, Mark T; Wu, Zhigang

    2014-10-21

    The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.

  9. Effect of adjuvant physical properties on spray characteristics

    USDA-ARS?s Scientific Manuscript database

    The effects of adjuvant physical properties on spray characteristics were studied. Dynamic surface tension was measured with a Sensa Dyne surface tensiometer 6000 using the maximum bubble pressure method. Viscosity was measured with a Brookfield synchro-lectric viscometer model LVT using a UL adap...

  10. Characterization of physical and aerodynamic properties of walnuts

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to study the physical and aerodynamic properties of freshly harvested walnuts. Measurements were carried out for three walnut varieties, Tulare, Howard and Chandler cultivated in California, USA. The nuts treated with and without Ethephon were collected from mechan...

  11. A Thermal Diode Based on Nanoscale Thermal Radiation.

    PubMed

    Fiorino, Anthony; Thompson, Dakotah; Zhu, Linxiao; Mittapally, Rohith; Biehs, Svend-Age; Bezencenet, Odile; El-Bondry, Nadia; Bansropun, Shailendra; Ben-Abdallah, Philippe; Meyhofer, Edgar; Reddy, Pramod

    2018-05-23

    In this work we demonstrate thermal rectification at the nanoscale between doped Si and VO 2 surfaces. Specifically, we show that the metal-insulator transition of VO 2 makes it possible to achieve large differences in the heat flow between Si and VO 2 when the direction of the temperature gradient is reversed. We further show that this rectification increases at nanoscale separations, with a maximum rectification coefficient exceeding 50% at ∼140 nm gaps and a temperature difference of 70 K. Our modeling indicates that this high rectification coefficient arises due to broadband enhancement of heat transfer between metallic VO 2 and doped Si surfaces, as compared to narrower-band exchange that occurs when VO 2 is in its insulating state. This work demonstrates the feasibility of accomplishing near-field-based rectification of heat, which is a key component for creating nanoscale radiation-based information processing devices and thermal management approaches.

  12. Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits.

    PubMed

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Zhao, Yihong; Duan, Chuanhua

    2017-08-09

    Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm 2 . The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

  13. The correlation between gelatin macroscale differences and nanoparticle properties: providing insight into biopolymer variability.

    PubMed

    Stevenson, André T; Jankus, Danny J; Tarshis, Max A; Whittington, Abby R

    2018-05-21

    From therapeutic delivery to sustainable packaging, manipulation of biopolymers into nanostructures imparts biocompatibility to numerous materials with minimal environmental pollution during processing. While biopolymers are appealing natural based materials, the lack of nanoparticle (NP) physicochemical consistency has decreased their nanoscale translation into actual products. Insights regarding the macroscale and nanoscale property variation of gelatin, one of the most common biopolymers already utilized in its bulk form, are presented. Novel correlations between macroscale and nanoscale properties were made by characterizing similar gelatin rigidities obtained from different manufacturers. Samples with significant differences in clarity, indicating sample purity, obtained the largest deviations in NP diameter. Furthermore, a statistically significant positive correlation between macroscale molecular weight dispersity and NP diameter was determined. New theoretical calculations proposing the limited number of gelatin chains that can aggregate and subsequently get crosslinked for NP formation were presented as one possible reason to substantiate the correlation analysis. NP charge and crosslinking extent were also related to diameter. Lower gelatin sample molecular weight dispersities produced statistically smaller average diameters (<75 nm), and higher average electrostatic charges (∼30 mV) and crosslinking extents (∼95%), which were independent of gelatin rigidity, conclusions not shown in the literature. This study demonstrates that the molecular weight composition of the starting material is one significant factor affecting gelatin nanoscale properties and must be characterized prior to NP preparation. Identifying gelatin macroscale and nanoscale correlations offers a route toward greater physicochemical property control and reproducibility of new NP formulations for translation to industry.

  14. Relation of asphalt chemistry to physical properties and specifications.

    DOT National Transportation Integrated Search

    1984-01-01

    This report constitutes a synthesis of published information concerning the chemical composition and characteristics of asphalt cements used in highway construction. The general relations between chemical composition and physical properties and speci...

  15. Nanoscale Reactions In Opto-magneto-electric Systems

    NASA Astrophysics Data System (ADS)

    Zeng, Zheng

    My research is interdisciplinary in the areas of chemistry, physics and biology for better understanding of synergies between nanomaterials and opto-magneto-electric systems aimed at the practical applications in biosensor, energy (energy storage and electrocatalysis), and biomimetics, in particular, the associated electron transfer, light-matter interactions in nanoscale, such as surface plasmon resonance (SPR) (nanoplasmonics), and magnetic field effect on these phenomena with targeted nanomaterials. Specific research thrusts include: (1) investigation of surface plasmon generation from a novel nanoledge structure on thin metal film. The results are used for the nanostructure optimization for a nanofluidic-nanoplasmonic platform that may function as a multiplexed biosensor for protein biomarker detection; (2) examination of magnetic field effect on uniformly deposited metal oxide on electrospun carbon nanofiber (ECNF) scaffold for efficient energy storage (supercapacitor) and electrocatalytic energy conversion (oxygen reduction reduction). (3) magnetic response of cryptochrome 1 (CRY1) in photoinduced heterogeneous electron transfer (PHET).

  16. PHYSICAL PROPERTIES OF FLUORINATED PROPANE AND BUTANE DERIVATIVES AS ALTERNATIVE REFRIGERANTS

    EPA Science Inventory

    Physical property measurements are presented for 24 fluorinated propane and butane derivatives and one fluorinated ether. These measurements include melting point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling point, critical propertie...

  17. Mapping photovoltaic performance with nanoscale resolution

    DOE PAGES

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; ...

    2015-10-16

    Photo-conductive AFM spectroscopy (‘pcAFMs’) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximummore » powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.« less

  18. Geometric rectification for nanoscale vibrational energy harvesting

    NASA Astrophysics Data System (ADS)

    Bustos-Marún, Raúl A.

    2018-02-01

    In this work, we present a mechanism that, based on quantum-mechanical principles, allows one to recover kinetic energy at the nanoscale. Our premise is that very small mechanical excitations, such as those arising from sound waves propagating through a nanoscale system or similar phenomena, can be quite generally converted into useful electrical work by applying the same principles behind conventional adiabatic quantum pumping. The proposal is potentially useful for nanoscale vibrational energy harvesting where it can have several advantages. The most important one is that it avoids the use of classical rectification mechanisms as it is based on what we call geometric rectification. We show that this geometric rectification results from applying appropriate but quite general initial conditions to damped harmonic systems coupled to electronic reservoirs. We analyze an analytically solvable example consisting of a wire suspended over permanent charges where we find the condition for maximizing the pumped charge. We also studied the effects of coupling the system to a capacitor including the effect of current-induced forces and analyzing the steady-state voltage of operation. Finally, we show how quantum effects can be used to boost the performance of the proposed device.

  19. Physical and hydraulic properties of volcanic rocks from Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Lorraine E.

    2003-01-01

    A database of physical and hydraulic properties was developed for rocks in the unsaturated zone at Yucca Mountain, Nevada, a site under consideration as a geologic repository for high-level radioactive waste. The 5320 core samples were collected from 23 shallow (<100 m) and 10 deep (500-1000 m) vertical boreholes. Hydrogeologic units have been characterized in the unsaturated zone [Flint, 1998] that represent rocks with ranges of welding, lithophysae, and high and low temperature alteration (as a result of the depositional, cooling, and alterational history of the lithostratigraphic layers). Lithostratigraphy, the hydrogeologic unit, and the corresponding properties are described. In addition, the physical properties of bulk density, porosity, and particle density; the hydraulic properties of saturated hydraulic conductivity and moisture retention characteristics; and the field water content were measured and compiled for each core sample.

  20. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    PubMed Central

    Yan, Zhi; Jiang, Liying

    2017-01-01

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented. PMID:28336861

  1. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review.

    PubMed

    Yan, Zhi; Jiang, Liying

    2017-01-26

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  2. Methods and devices for fabricating three-dimensional nanoscale structures

    DOEpatents

    Rogers, John A.; Jeon, Seokwoo; Park, Jangung

    2010-04-27

    The present invention provides methods and devices for fabricating 3D structures and patterns of 3D structures on substrate surfaces, including symmetrical and asymmetrical patterns of 3D structures. Methods of the present invention provide a means of fabricating 3D structures having accurately selected physical dimensions, including lateral and vertical dimensions ranging from 10s of nanometers to 1000s of nanometers. In one aspect, methods are provided using a mask element comprising a conformable, elastomeric phase mask capable of establishing conformal contact with a radiation sensitive material undergoing photoprocessing. In another aspect, the temporal and/or spatial coherence of electromagnetic radiation using for photoprocessing is selected to fabricate complex structures having nanoscale features that do not extend entirely through the thickness of the structure fabricated.

  3. Some physical properties of naturally irradiated fluorite

    USGS Publications Warehouse

    Berman, Robert

    1955-01-01

    Five samples of purple fluorite found in association with radioactive, materials, and a synthetic colorless control sample were studied and compared.  Before and after heating, observations were made on specific gravity, index of refraction, unit-cell size, breadth of X-ray diffraction lines, and fluorescence.  The purple samples became colorless on heating above 175° C.  During the process, observations were made on color, thermoluminescence, and differential thermal analysis curves.  There were strong correlations between the various physical properties, and it was found possible to arrange the samples in order of increasing difference in their physical properties from the control sample. This order apparently represents increasing structural damage by radiation; if so, it correlates with decreasing specific gravity, increasing index of refraction, broadening of X-ray lines, and increasingly strong exothermic reactions on annealing. The differences between the samples in index of refraction and X-ray pattern are largely eliminated on annealing.  Annealing begins at 1750 C; thermoluminescence at lower temperatures is due to electrons escaping from the metastable potential traps, not the destruction of those traps which takes place on annealing.

  4. Measuring (bio)physical tree properties using accelerometers

    NASA Astrophysics Data System (ADS)

    van Emmerik, Tim; Steele-Dunne, Susan; Hut, Rolf; Gentine, Pierre; Selker, John; van de Giesen, Nick

    2017-04-01

    Trees play a crucial role in the water, carbon and nitrogen cycle on local, regional and global scales. Understanding the exchange of heat, water, and CO2 between trees and the atmosphere is important to assess the impact of drought, deforestation and climate change. Unfortunately, ground measurements of tree dynamics are often expensive, or difficult due to challenging environments. We demonstrate the potential of measuring (bio)physical properties of trees using robust and affordable acceleration sensors. Tree sway is dependent on e.g. mass and wind energy absorption of the tree. By measuring tree acceleration we can relate the tree motion to external loads (e.g. precipitation), and tree (bio)physical properties (e.g. mass). Using five months of acceleration data of 19 trees in the Brazilian Amazon, we show that the frequency spectrum of tree sway is related to mass, precipitation, and canopy drag. This presentation aims to show the concept of using accelerometers to measure tree dynamics, and we acknowledge that the presented example applications is not an exhaustive list. Further analyses are the scope of current research, and we hope to inspire others to explore additional applications.

  5. Physical, mechanical, and fire properties of oriented strandboard with fire retardant treated veneers

    Treesearch

    Nadir Ayrilmis; Zeki Candan; Robert White

    2007-01-01

    This study evaluated physical, mechanical and fire properties of oriented strand boards (OSB) covered with fire retardant treated veneers. The beech (Fagus orientalis Lipsky) veneers were treated with either monoammonium phosphate, diammonium phosphate, lime water or a borax/boric acid (1 : 1 by weight) mixture. Physical and mechanical properties of the specimens were...

  6. Nanoscale chirality in metal and semiconductor nanoparticles

    PubMed Central

    Thomas, K. George

    2016-01-01

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided. PMID:27752651

  7. Nanoscale chirality in metal and semiconductor nanoparticles.

    PubMed

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  8. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  9. Regenerator matrix physical property data

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.

    1980-01-01

    Among several cellular ceramic structures manufactured by various suppliers for regenerator application in a gas turbine engine, three have the best potential for achieving durability and performance objectives for use in gas turbines, Stirling engines, and waste heat recovery systems: (1) an aluminum-silicate sinusoidal flow passage made from a corrugated wate paper process; (2) an extruded isosceles triangle flow passage; and (3) a second generation matrix incorporating a square flow passage formed by an embossing process. Key physical and thermal property data for these configurations presented include: heat transfer and pressure drop characteristics, compressive strength, tensile strength and elasticity, thermal expansion characteristics, chanical attack, and thermal stability.

  10. Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

    PubMed Central

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

  11. Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions

    DOE PAGES

    Seol, Daehee; Seo, Hosung; Jesse, Stephen; ...

    2015-08-19

    Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. Finally, these results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.

  12. Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, Daehee; Seo, Hosung; Jesse, Stephen

    Electromechanical (EM) response in ion conductive ceramics with piezoelectric inclusions was spatially explored using strain-based atomic force microscopy. Since the sample is composed of two dominant phases of ionic and piezoelectric phases, it allows us to explore two different EM responses of electrically induced ionic response and piezoresponse over the same surface. Furthermore, EM response of the ionic phase, i.e., electrochemical strain, was quantitatively investigated from the comparison with that of the piezoelectric phase, i.e., piezoresponse. Finally, these results could provide additional information on the EM properties, including the electrochemical strain at nanoscale.

  13. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure.

    PubMed

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-15

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  14. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-01

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  15. Against the grain: The physical properties of anisotropic partially molten rocks

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.

    2014-12-01

    Partially molten rocks commonly develop textures that appear close to textural equilibrium, where the melt network evolves to minimize the energy of the melt-solid interfaces, while maintaining the dihedral angle θ at solid-solid-melt contact lines. Textural equilibrium provides a powerful model for the melt distribution that controls the petro-physical properties of partially molten rocks, e.g., permeability, elastic moduli, and electrical resistivity. We present the first level-set computations of three-dimensional texturally equilibrated melt networks in rocks with an anisotropic fabric. Our results show that anisotropy induces wetting of smaller grain boundary faces for θ > 0 at realistic porosities ϕ < 3%. This was previously not thought to be possible at textural equilibrium and reconciles the theory with experimental observations. Wetting of the grain boundary faces leads to a dramatic redistribution of the melt from the edges to the faces that introduces strong anisotropy in the petro-physical properties such as permeability, effective electrical conductivity and mechanical properties. Figure, on left, shows that smaller grain boundaries become wetted at relatively low melt fractions of 3% in stretched polyhedral grains with elongation factor 1.5. Right plot represents the ratio of melt electrical conductivity to effective conductivity of medium (known as formation factor) as an example of anisotropy in physical properties. The plot shows that even slight anisotropy in grains induces considerable anisotropy in electrical properties.

  16. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance

    NASA Astrophysics Data System (ADS)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.

  17. Understanding of the Formation of Micro/Nanoscale Structures on Metal Surfaces by Ultrafast Pulse Laser Processing

    NASA Astrophysics Data System (ADS)

    Peng, Edwin

    In the recent decades, there has been much interest in functionalized surfaces produced by ultrafast laser processing. Using pulse lasers with nanosecond to femtosecond time scale, a wide range of micro/nanoscale structures can be produced on virtually all metal surfaces. These surface structures create special optoelectronic, wetting, and tribological properties with a diverse range of potential applications. The formation mechanisms of these surface structures, especially microscale, mound-like structures, are not fully understood. There has been wide study of ultrafast laser processing of metals. Yet, the proposed formation models present in current literature often lack sufficient experimental verification. Specifically, many studies are limited to surface characterization, e.g. scanning electron microscopy of the surfaces of these micro/nanoscale structures. Valuable insight into the physical processes responsible for formation can be obtained if standard material science characterization methods are performed across the entire mound. In our study, we examined mound-like structures formed on three metal alloys. Using cross section and 3D slice and view operations by a dual beam scanning electron microscope-focused ion beam, the interior microstructures of these mounds are revealed. Taking advantage of amorphous phase formation during laser processing of Ni60Nb40, we verified the fluence-dependent formation model: mounds formed at low fluence are primarily the result of ablation while mounds formed at high fluence are formed by both ablation and rapid resolidification by hydrodynamical fluid flow. For the first time, we revealed the cross section of a wide variety of mound-like structures on titanium surfaces. The increased contribution to mound formation by fluid flow with increasing fluence was observed. Finally, a 3D scanning electron microscopy technique was applied for mounds produced on silver surface by delayed-pulse laser processing. The interior

  18. PREFACE: Selected papers from the Fourth Topical Conference on Nanoscale Science and Engineering of the American Institute of Chemical Engineers

    NASA Astrophysics Data System (ADS)

    Wong, Michael S.; Lee, Gil U.

    2005-07-01

    This special issue of Nanotechnology contains research papers contributed by the participants of the Fourth Topical Conference on Nanoscale Science and Engineering at the Annual Meeting of the American Institute of Chemical Engineers (AIChE), which was held in Austin, Texas, USA, 7-12 November, 2004. This conference saw 284 oral presentations from institutions around the world, which is the highest number for this topical conference series to date. These presentations were organized into 64 sessions, covering the range of nanotechnology subject areas in which chemical engineers are currently engaged. These sessions included the following areas. • Fundamentals: thermodynamics at the nanoscale; applications of nanostructured fluids; transport properties in nanophase and nanoscale systems; molecular modelling methods; self and directed assembly at the nanoscale; nanofabrication and nanoscale processing; manipulation of nanophases by external fields; nanoscale systems; adsorption and transport in carbon nanotubes; nanotribology; making the transition from materials and phenomena to new technologies; operation of micro-and nano-systems. • Materials: nanoparticle synthesis and stabilization; nanoscale structure in polymers; nanotemplating of polymers; synthesis of carbon nanotubes and nanotube-based materials; nanowires; nanoparticle assemblies and superlattices; nanoelectronic materials; self-assembly of templated inorganic materials; nanostructured hybrid organic/inorganic materials; gas phase synthesis of nanoparticles; multicomponent structured particles; nano energetic materials; liquid-phase synthesis of nanoparticles. • Energy: synthesis and characterization of nanostructured catalytic materials; nanomaterials and devices for energy applications. • Biotechnology: nanobiotechnology; nanotechnology for the biotechnology and pharmaceuticals industries; nanotechnology and nanobiotechnology for sensors; advances in biomaterials, bionanotechnology, biomimetic

  19. Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by in situ TEM.

    PubMed

    Kawamoto, Naoyuki; Kakefuda, Yohei; Mori, Takao; Hirose, Kenji; Mitome, Masanori; Bando, Yoshio; Golberg, Dmitri

    2015-11-20

    We developed an original method of in situ nanoscale characterization of thermal resistance utilizing a high-resolution transmission electron microscope (HRTEM). The focused electron beam of the HRTEM was used as a contact-free heat source and a piezo-movable nanothermocouple was developed as a thermal detector. This method has a high flexibility of supplying thermal-flux directions for nano/microscale thermal conductivity analysis, and is a powerful way to probe the thermal properties of complex or composite materials. Using this method we performed reproducible measurements of electron beam-induced temperature changes in pre-selected sections of a heat-sink α-Al(2)O(3)/epoxy-based resin composite. Observed linear behavior of the temperature change in a filler reveals that Fourier's law holds even at such a mesoscopic scale. In addition, we successfully determined the thermal resistance of the nanoscale interfaces between neighboring α-Al(2)O(3) fillers to be 1.16 × 10(-8) m(2)K W(-1), which is 35 times larger than that of the fillers themselves. This method that we have discovered enables evaluation of thermal resistivity of composites on the nanoscale, combined with the ultimate spatial localization and resolution sample analysis capabilities that TEM entails.

  20. Physical Properties of an Ag-Doped Bioactive Flowable Composite Resin

    PubMed Central

    Kattan, Hiba; Chatzistavrou, Xanthippi; Boynton, James; Dennison, Joseph; Yaman, Peter; Papagerakis, Petros

    2015-01-01

    The aim of this work was to study the physical and antibacterial properties of a flowable resin composite incorporating a sol-gel derived silver doped bioactive glass (Ag-BGCOMP). The depth of the cure was calculated by measuring the surface micro-hardness for the top and bottom surfaces. The volumetric polymerization shrinkage was measured by recording the linear shrinkage as change in length, while the biaxial flexural strength was studied measuring the load at failure. The antibacterial properties of the samples were tested against Streptococcus mutans (S. mutans) and Lactobacillus casei (L. casei). The measured values were slightly decreased for all tested physical properties compared to those of control group (flowable resin composite without Ag-BG), however enhanced bacteria inhibition was observed for Ag-BGCOMP. Ag-BGCOMP could find an application in low stress-bearing areas as well as in small cavity preparations to decrease secondary caries. This work provides a good foundation for future studies on evaluating the effects of Ag-BG addition into packable composites for applications in larger cavity preparations where enhanced mechanical properties are needed. PMID:28793463

  1. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    NASA Astrophysics Data System (ADS)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu

    2016-01-01

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.

  2. Experimental Study of Electron and Phonon Dynamics in Nanoscale Materials by Ultrafast Laser Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shen, Xiaohan

    less than 100 nm was observed. The longitudinal acoustic phonon transport in silicon (Si) nanorod with confined diameter and length was investigated. The guided phonon modes in Si nanorod with different frequencies and wave vectors were observed. The mean-free-path of the guided phonons in Si nanorod was found to be larger than the effective phonon mean-free-path in Si film, because of the limited phonon scattering channels in Si nanorod. The phonon density of states and dispersion relation strongly depend on the size and boundary conditions of nanorod. Our work demonstrates the possibility of modifying the phonon transport properties in nanoscale materials by designing the size and boundary conditions, hence the control of thermal conductivity. In addition, the periodicity effect of nanostructures on acoustic phonon transport was investigated in silicon dioxide (SiO2) nanorod arrays. The lattice modes and mechanical eigenmodes were observed, and the pitch effect on lattice modes was discussed. A narrowband acoustic phonon spectroscopic technique with tunable frequency and spectral width throughout GHz frequency range has been developed to investigate the frequency-dependent acoustic phonon transport in nanoscale materials. The quadratic frequency dependence of acoustic attenuation of SiO2 and indium tin oxide (ITO) thin films was observed, and the acoustic attenuation of ITO was found to be larger than SiO2. Moreover, the acoustic control on mechanical resonance of nanoscale materials using the narrowband acoustic phonon source was demonstrated in tungsten thin film.

  3. Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder.

    PubMed

    Peng, Yong; Cullis, Tony; Inkson, Beverley

    2009-01-01

    We report that individual metallic nanowires and nanoobjects can be assembled and welded together into complex nanostructures and conductive circuits by a new nanoscale electrical welding technique using nanovolumes of metal solder. At the weld sites, nanoscale volumes of a chosen metal are deposited using a sacrificial nanowire, which ensures that the nanoobjects to be bonded retain their structural integrity. We demonstrate by welding both similar and dissimilar materials that the use of nanoscale solder is clean, controllable, and reliable and ensures both mechanically strong and electrically conductive contacts. Nanoscale weld resistances of just 20Omega are achieved by using Sn solder. Precise engineering of nanowelds by this technique, including the chemical flexibility of the nanowire solder, and high spatial resolution of the nanowelding method, should result in research applications including fabrication of nanosensors and nanoelectronics constructed from a small number of nanoobjects, and repair of interconnects and failed nanoscale electronics.

  4. From Lab to Fab: Developing a Nanoscale Delivery Tool for Scalable Nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Safi, Asmahan A.

    The emergence of nanomaterials with unique properties at the nanoscale over the past two decades carries a capacity to impact society and transform or create new industries ranging from nanoelectronics to nanomedicine. However, a gap in nanomanufacturing technologies has prevented the translation of nanomaterial into real-world commercialized products. Bridging this gap requires a paradigm shift in methods for fabricating structured devices with a nanoscale resolution in a repeatable fashion. This thesis explores the new paradigms for fabricating nanoscale structures devices and systems for high throughput high registration applications. We present a robust and scalable nanoscale delivery platform, the Nanofountain Probe (NFP), for parallel direct-write of functional materials. The design and microfabrication of NFP is presented. The new generation addresses the challenges of throughput, resolution and ink replenishment characterizing tip-based nanomanufacturing. To achieve these goals, optimized probe geometry is integrated to the process along with channel sealing and cantilever bending. The capabilities of the newly fabricated probes are demonstrated through two type of delivery: protein nanopatterning and single cell nanoinjection. The broad applications of the NFP for single cell delivery are investigated. An external microfluidic packaging is developed to enable delivery in liquid environment. The system is integrated to a combined atomic force microscope and inverted fluorescence microscope. Intracellular delivery is demonstrated by injecting a fluorescent dextran into Hela cells in vitro while monitoring the injection forces. Such developments enable in vitro cellular delivery for single cell studies and high throughput gene expression. The nanomanufacturing capabilities of NFPs are explored. Nanofabrication of carbon nanotube-based electronics presents all the manufacturing challenges characterizing of assembling nanomaterials precisely onto devices. The

  5. Evolutionary biochemistry: revealing the historical and physical causes of protein properties

    PubMed Central

    Harms, Michael J.; Thornton, Joseph W.

    2014-01-01

    The repertoire of proteins and nucleic acids in the living world is determined by evolution; their properties are determined by the laws of physics and chemistry. Explanations of these two kinds of causality — the purviews of evolutionary biology and biochemistry, respectively — are typically pursued in isolation, but many fundamental questions fall squarely at the interface of fields. Here we articulate the paradigm of evolutionary biochemistry, which aims to dissect the physical mechanisms and evolutionary processes by which biological molecules diversified and to reveal how their physical architecture facilitates and constrains their evolution. We show how an integration of evolution with biochemistry moves us towards a more complete understanding of why biological molecules have the properties that they do. PMID:23864121

  6. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    PubMed

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  7. Enhanced reactivity of nanoscale iron particles through a vacuum annealing process

    NASA Astrophysics Data System (ADS)

    Riba, Olga; Barnes, Robert J.; Scott, Thomas B.; Gardner, Murray N.; Jackman, Simon A.; Thompson, Ian P.

    2011-10-01

    A reactivity study was undertaken to compare and assess the rate of dechlorination of chlorinated aliphatic hydrocarbons (CAHs) by annealed and non-annealed nanoscale iron particles. The current study aims to resolve the uncertainties in recently published work studying the effect of the annealing process on the reduction capability of nanoscale Fe particles. Comparison of the normalized rate constants (m2/h/L) obtained for dechlorination reactions of trichloroethene (TCE) and cis-1,2-dichloroethene (cis-1,2-DCE) indicated that annealing nanoscale Fe particles increases their reactivity 30-fold. An electron transfer reaction mechanism for both types of nanoscale particles was found to be responsible for CAH dechlorination, rather than a reduction reaction by activated H2 on the particle surface (i.e., hydrogenation, hydrogenolysis). Surface analysis of the particulate material using X-ray diffraction (XRD) and transmission electron microscopy (TEM) together with surface area measurement by Brunauer, Emmett, Teller (BET) indicate that the vacuum annealing process decreases the surface area and increases crystallinity. BET surface area analysis recorded a decrease in nanoscale Fe particle surface area from 19.0 to 4.8 m2/g and crystallite dimensions inside the particle increased from 8.7 to 18.2 nm as a result of annealing.

  8. Optical and electrical properties of GaN-based light emitting diodes grown on micro- and nano-scale patterned Si substrate

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Hsueh; Lin, Chien-Chung; Deng, Dongmei; Kuo, Hao-Chung; Lau, Kei-May

    2011-10-01

    We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) grown on Micro and Nano-scale Patterned silicon substrate (MPLEDs and NPLEDs). The transmission electron microscopy (TEM) images reveal the suppression of threading dislocation density in InGaN/GaN structure on nano-pattern substrate due to nanoscale epitaxial lateral overgrowth (NELOG). The plan-view and cross-section cathodoluminescence (CL) mappings show less defective and more homogeneous active quantum well region growth on nano-porous substrates. From temperature dependent photoluminescence (PL) and low temperature time-resolved photoluminescence (TRPL) measurement, NPLEDs has better carrier confinement and higher radiative recombination rate than MPLEDs. In terms of device performance, NPLEDs exhibits smaller electroluminescence (EL) peak wavelength blue shift, lower reverse leakage current and decreases efficiency droop compared with the MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power LEDs on Si substrates.

  9. Impact of Desalination on Physical and Mechanical Properties of Lanzhou Loess

    NASA Astrophysics Data System (ADS)

    Bing, Hui; Zhang, Ying; Ma, Min

    2017-12-01

    Soluble salt in soil has a significant influence on the physical and mechanical properties of the soil. We performed desalination experiments on Lanzhou loess, a typical sulfate saline soil, to study the effects of salt on the physical and mechanical properties of the loess and compare variations in the soil properties after desalination. The Atterberg limits of the soil increased after desalination as a result of changes in the soil particle composition and grain refinement. The shear and uniaxial compressive strength of the soil increased as a result of decreased calcitic cementation and other changes to the soil structure. Scanning electron microstructure (SEM) and mercury intrusion porosimetry (MIP) procedures revealed changes to the microstructure and pore-size distribution of the Lanzhou loess after desalination.

  10. Electrochemical deposited nickel nanowires: influence of deposition bath temperature on the morphology and physical properties

    NASA Astrophysics Data System (ADS)

    Sofiah, A. G. N.; Kananathan, J.; Samykano, M.; Ulakanathan, S.; Lah, N. A. C.; Harun, W. S. W.; Sudhakar, K.; Kadirgama, K.; Ngui, W. K.; Siregar, J. P.

    2017-10-01

    This paper investigates the influence of the electrolytic bath temperature on the morphology and physical properties of nickel (Ni) nanowires electrochemically deposited into the anodic alumina oxide porous membrane (AAO). The synthesis was performed using nickel sulfate hexahydrate (NiSO4.6H2O) and boric acid (H3BO3) as an electrolytic bath for the electrochemical deposition of Ni nanowires. During the experiment, the electrolyte bath temperature varied from 40°C, 80°C, and 120°C. After the electrochemical deposition process, AAO templates cleaned with distilled water preceding to dissolution in sodium hydroxide (NaOH) solution to obtain free-standing Ni nanowires. Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD) analysis were employed to characterize the morphology and physical properties of the synthesized Ni nanowires. Finding reveals the electrodeposition bath temperature significantly influences the morphology and physical properties of the synthesized Ni nanowires. Rougher surface texture, larger crystal size, and longer Ni nanowires obtained as the deposition bath temperature increased. From the physical properties properties analysis, it can be concluded that deposition bath temperature influence the physical properties of Ni nanowires.

  11. Constraining the Physical Properties of Near-Earth Object 2009 BD

    NASA Astrophysics Data System (ADS)

    Mommert, M.; Hora, J. L.; Farnocchia, D.; Chesley, S. R.; Vokrouhlický, D.; Trilling, D. E.; Mueller, M.; Harris, A. W.; Smith, H. A.; Fazio, G. G.

    2014-05-01

    We report on Spitzer Space Telescope Infrared Array Camera observations of near-Earth object 2009 BD that were carried out in support of the NASA Asteroid Robotic Retrieval Mission concept. We did not detect 2009 BD in 25 hr of integration at 4.5 μm. Based on an upper-limit flux density determination from our data, we present a probabilistic derivation of the physical properties of this object. The analysis is based on the combination of a thermophysical model with an orbital model accounting for the non-gravitational forces acting upon the body. We find two physically possible solutions. The first solution shows 2009 BD as a 2.9 ± 0.3 m diameter rocky body (ρ = 2.9 ± 0.5 g cm-3) with an extremely high albedo of 0.85_{-0.10}^{+0.20} that is covered with regolith-like material, causing it to exhibit a low thermal inertia (\\Gamma =30_{-10}^{+20} SI units). The second solution suggests 2009 BD to be a 4 ± 1 m diameter asteroid with p_V=0.45_{-0.15}^{+0.35} that consists of a collection of individual bare rock slabs (Γ = 2000 ± 1000 SI units, \\rho = 1.7_{-0.4}^{+0.7} g cm-3). We are unable to rule out either solution based on physical reasoning. 2009 BD is the smallest asteroid for which physical properties have been constrained, in this case using an indirect method and based on a detection limit, providing unique information on the physical properties of objects in the size range smaller than 10 m.

  12. Review on measurement techniques of transport properties of nanowires Additions and Corrections. See DOI:10.1039/C3NR03242F Click here for additional data file.

    PubMed Central

    Rojo, Miguel Muñoz; Calero, Olga Caballero; Lopeandia, A. F.; Rodriguez-Viejo, J.

    2013-01-01

    Physical properties at the nanoscale are novel and different from those in bulk materials. Over the last few decades, there has been an ever growing interest in the fabrication of nanowire structures for a wide variety of applications including energy generation purposes. Nevertheless, the study of their transport properties, such as thermal conductivity, electrical conductivity or Seebeck coefficient, remains an experimental challenge. For instance, in the particular case of nanostructured thermoelectrics, theoretical calculations have shown that nanowires offer a promising way of enhancing the hitherto low efficiency of these materials in the conversion of temperature differences into electricity. Therefore, within the thermoelectrical community there has been a great experimental effort in the measurement of these quantities in actual nanowires. The measurements of these properties at the nanoscale are also of interest in fields other than energy, such as electrical components for microchips, field effect transistors, sensors, and other low scale devices. For all these applications, knowing the transport properties is mandatory. This review deals with the latest techniques developed to perform the measurement of these transport properties in nanowires. A thorough overview of the most important and modern techniques used for the characterization of different kinds of nanowires will be shown. PMID:24113712

  13. Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property

    ERIC Educational Resources Information Center

    Jungermann, Arnd H.

    2006-01-01

    In contrast to most other thermodynamic data, entropy values are not given in relation to a certain--more or less arbitrarily defined--zero level. They are listed in standard thermodynamic tables as absolute values of specific substances. Therefore these values describe a physical property of the listed substances. One of the main tasks of…

  14. Segmented nanowires displaying locally controllable properties

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2013-03-05

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  15. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.

    PubMed

    Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi

    2014-08-12

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

  16. Multi-paradigm simulation at nanoscale: Methodology and application to functional carbon material

    NASA Astrophysics Data System (ADS)

    Su, Haibin

    2012-12-01

    Multiparadigm methods to span the scales from quantum mechanics to practical issues of functional nanoassembly and nanofabrication are enabling first principles predictions to guide and complement the experimental developments by designing and optimizing computationally the materials compositions and structures to assemble nanoscale systems with the requisite properties. In this talk, we employ multi-paradigm approaches to investigate functional carbon materials with versatile character, including fullerene, carbon nanotube (CNT), graphene, and related hybrid structures, which have already created an enormous impact on next generation nano devices. The topics will cover the reaction dynamics of C60 dimerization and the more challenging complex tubular fullerene formation process in the peapod structures; the computational design of a new generation of peapod nano-oscillators, the predicted magnetic state in Nano Buds; opto-electronic properties of graphene nanoribbons; and disorder / vibronic effects on transport in carbonrich materials.

  17. Impact of ultrasonic assisted triangular lattice like arranged dispersion of nanoparticles on physical and mechanical properties of epoxy-TiO2 nanocomposites.

    PubMed

    Goyat, M S; Ghosh, P K

    2018-04-01

    Emerging ex-situ technique, ultrasonic dual mixing (UDM) offers unique and hitherto unapproachable opportunities to alter the physical and mechanical properties of polymer nanocomposites. In this study, triangular lattice-like arranged dispersion of TiO 2 nanoparticles (average size ∼ 48 nm) in the epoxy polymer has been attained via concurrent use of a probe ultra-sonicator and 4 blades pitched impeller which collectively named as UDM technique. The UDM processing of neat epoxy reveals the generation of triangular lattice-like arranged nanocavities with nanoscale inter-cavity spacing. The UDM processing of epoxy-TiO 2 nanocomposites reveals two unique features such as partial and complete entrapping of the nanoparticles by the nanocavities leading the arranged dispersion of particles in the epoxy matrix. Pristine TiO 2 nanoparticles were dispersed in the epoxy polymer at loading fractions of up to 20% by weight. The results display that the arranged dispersion of nanoparticles is very effective at enhancing the glass transition temperature (T g ) and tensile properties of the epoxy at loading fractions of 10 wt%. We quantify a direct relationship among three important parameters such as nanoparticle content, cluster size, and inter-particle spacing. Our results offer a novel understanding of these parameters on the T g and tensile properties of the epoxy nanocomposites. The tensile fracture surfaces revealed several toughening mechanisms such as particle pull-out, plastic void growth, crack deflection, crack bridging and plastic deformation. We show that a strong nanoparticle-matrix interface led to the enhanced mechanical properties due to leading toughening mechanisms such as crack deflection, plastic deformation and particle pull-out. We showed that the UDM has an inordinate prospective to alter the dispersion state of nanoparticles in viscous polymer matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Characteristics for electrochemical machining with nanoscale voltage pulses.

    PubMed

    Lee, E S; Back, S Y; Lee, J T

    2009-06-01

    Electrochemical machining has traditionally been used in highly specialized fields, such as those of the aerospace and defense industries. It is now increasingly being applied in other industries, where parts with difficult-to-cut material, complex geometry and tribology, and devices of nanoscale and microscale are required. Electric characteristic plays a principal function role in and chemical characteristic plays an assistant function role in electrochemical machining. Therefore, essential parameters in electrochemical machining can be described current density, machining time, inter-electrode gap size, electrolyte, electrode shape etc. Electrochemical machining provides an economical and effective method for machining high strength, high tension and heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. The application of nanoscale voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with sub-micrometer precision. In this study, micro probe are developed by electrochemical etching and micro holes are manufactured using these micro probe as tool electrodes. Micro holes and microgroove can be accurately achieved by using nanoscale voltages pulses.

  19. The nanoscale organization of the B lymphocyte membrane☆

    PubMed Central

    Maity, Palash Chandra; Yang, Jianying; Klaesener, Kathrin; Reth, Michael

    2015-01-01

    The fluid mosaic model of Singer and Nicolson correctly predicted that the plasma membrane (PM) forms a lipid bi-layer containing many integral trans-membrane proteins. This model also suggested that most of these proteins were randomly dispersed and freely diffusing moieties. Initially, this view of a dynamic and rather unorganized membrane was supported by early observations of the cell surfaces using the light microscope. However, recent studies on the PM below the diffraction limit of visible light (~ 250 nm) revealed that, at nanoscale dimensions, membranes are highly organized and compartmentalized structures. Lymphocytes are particularly useful to study this nanoscale membrane organization because they grow as single cells and are not permanently engaged in cell:cell contacts within a tissue that can influence membrane organization. In this review, we describe the methods that can be used to better study the protein:protein interaction and nanoscale organization of lymphocyte membrane proteins, with a focus on the B cell antigen receptor (BCR). Furthermore, we discuss the factors that may generate and maintain these membrane structures. PMID:25450974

  20. Unified scaling behavior of physical properties of clays in alcohol solutions.

    PubMed

    Pujala, Ravi Kumar; Pawar, Nisha; Bohidar, H B

    2011-12-15

    This paper reports observation of universal scaling of physical properties of clay particles, Laponite (aspect ratio=30) (L) and Na Montmorillonite (MMT, aspect ratio=200), in aqueous alcohol solutions (methanol, ethanol and 1-propanol) with solvent polarity, defined through reaction field factor f(OH)(ɛ(0),n)=[(ɛ(0) - 1/ɛ(0) + 2) - (n(2) - 1/n(2) + 2)], at room temperature (20°C). Here, ɛ(0) and n are the static dielectric constant and refractive index of the solvent concerned. Physical properties (Z) such as zeta potential, effective aggregate size, viscosity and surface tension scaled with the relative solvent polarity as Z∼δf(α); δf=(f(w)(ɛ(0),n) - f(OH)(ɛ(0),n)), where f(w)(ɛ(0),n) is the reaction field factor for water, Z is the normalized physical property, and α is its characteristic scaling exponent. The value of this exponent was found to be invariant of aspect ratio of the clay but dependent on the solvent polarity only. Copyright © 2011 Elsevier Inc. All rights reserved.