Science.gov

Sample records for nanoscale physical properties

  1. Nanoscale chemical interaction enhances the physical properties of bioglass composites.

    PubMed

    Ravarian, Roya; Zhong, Xia; Barbeck, Mike; Ghanaati, Shahram; Kirkpatrick, Charles James; Murphy, Ciara M; Schindeler, Aaron; Chrzanowski, Wojciech; Dehghani, Fariba

    2013-10-22

    Bioglasses are favorable biomaterials for bone tissue engineering; however, their applications are limited due to their brittleness. In addition, the early failure in the interface is a common problem of composites of bioglass and a polymer with high mechanical strength. This effect is due to the phase separation, nonhomogeneous mixture, nonuniform mechanical strength, and different degradation properties of two compounds. To address these issues, in this study a nanoscale interaction between poly(methyl methacrylate) (PMMA) and bioactive glass was formed via silane coupling agent (3-trimethoxysilyl)propyl methacrylate (MPMA). A monolith was produced at optimum composition from this hybrid by the sol-gel method at 50 °C with a rapid gelation time (<50 min) that possessed superior physicochemical properties compared to pure bioglass and physical mixture. For instance, the Young's modulus of bioglass was decreased 40-fold and the dissolution rate of silica was retarded 1.5-fold by integration of PMMA. Prolonged dissolution of silica fosters bone integration due to the continuous dissolution of bioactive silica. The primary osteoblast cells were well anchored and cell migration was observed on the surface of the hybrid. The in vivo studies in mice demonstrated that the integrity of the hybrids was maintained in subcutaneous implantation. They induced mainly a mononuclear phagocytic tissue reaction with a low level of inflammation, while bioglass provoked a tissue reaction with TRAP-positive multinucleated giant cells. These results demonstrated that the presence of a nanoscale interaction between bioglass and PMMA affects the properties of bioglass and broadens its potential applications for bone replacement.

  2. The use of plasmon spectroscopy and imaging in a transmission electron microscope to probe physical properties at the nanoscale.

    PubMed

    Oleshko, Vladimir P

    2012-11-01

    Valence EELS and energy-filtering TEM appear to be powerful tools to explore diverse nanoscale phenomena. The techniques enable real-time information on the band structure, bonding, dielectric and optical response and phase compositions of nanostructured materials. Furthermore, electron beam-induced excitations in the 0 to 50 eV energy loss range dominated by plasmons are sensitive to valence electron states primarily responsible for intrinsic materials properties. We used universality and scaling in relationships between the volume plasmon energy and cohesive energy, elastic moduli and hardness to derive analytical expressions for quantitative determination of the properties. Based on this approach, cohesive and elastic properties of metastable nanoprecipitates in structural alloys and hardness of diesel engine soot nanoparticles have been evaluated. Spatially-resolved plasmon spectroscopic imaging techniques offer possibilities to determine and image in situ multiple physical properties of nanoscale materials and to monitor their changes during dynamic transformations, thus establishing new capabilities for material research.

  3. Improving fundamental abilities of atomic force microscopy for investigating quantitative nanoscale physical properties of complex biological systems

    NASA Astrophysics Data System (ADS)

    Cartagena-Rivera, Alexander X.

    Measurements of local material properties of complex biological systems (e.g. live cells and viruses) in their respective physiological conditions are extremely important in the fields of biophysics, nanotechnology, material science, and nanomedicine. Yet, little is known about the structure-function-property relationship of live cells and viruses. In the case of live cells, the measurements of progressive variations in viscoelastic properties in vitro can provide insight to the mechanistic processes underpinning morphogenesis, mechano-transduction, motility, metastasis, and many more fundamental cellular processes. In the case of living viruses, the relationship between capsid structural framework and the role of the DNA molecule interaction within viruses influencing their stiffness, damping and electrostatic properties can shed light in virological processes like protein subunits assembly/dissassembly, maturation, and infection. The study of mechanics of live cells and viruses has been limited in part due to the lack of technology capable of acquiring high-resolution (nanoscale, subcellular) images of its heterogeneous material properties which vary widely depending on origin and physical interaction. The capabilities of the atomic force microscope (AFM) for measuring forces and topography with sub-nm precision have greatly contributed to research related to biophysics and biomechanics during the past two decades. AFM based biomechanical studies have the unique advantage of resolving/mapping spatially the local material properties over living cells and viruses. However, conventional AFM techniques such as force-volume and quasi-static force-distance curves are too low resolution and low speed to resolve interesting biophysical processes such as cytoskeletal dynamics for cells or assembly/dissasembly of viruses. To overcome this bottleneck, a novel atomic force microscopy mode is developed, that leads to sub-10-nm resolution and sub-15-minutes mapping of local

  4. Using Plasmon Peaks in Electron Energy-Loss Spectroscopy to Determine the Physical and Mechanical Properties of Nanoscale Materials

    SciTech Connect

    Howe, James M.

    2013-05-09

    In this program, we developed new theoretical and experimental insights into understanding the relationships among fundamental universality and scaling phenomena, the solid-state physical and mechanical properties of materials, and the volume plasmon energy as measured by electron energy-loss spectroscopy (EELS). Particular achievements in these areas are summarized as follows: (i) Using a previously proposed physical model based on the universal binding-energy relation (UBER), we established close phenomenological connections regarding the influence of the valence electrons in materials on the longitudinal plasma oscillations (plasmons) and various solid-state properties such as the optical constants (including absorption and dispersion), elastic constants, cohesive energy, etc. (ii) We found that carbon materials, e.g., diamond, graphite, diamond-like carbons, hydrogenated and amorphous carbon films, exhibit strong correlations in density vs. Ep (or maximum of the volume plasmon peak) and density vs. hardness, both from available experimental data and ab initio DFT calculations. This allowed us to derive a three-dimensional relationship between hardness and the plasmon energy, that can be used to determine experimentally both hardness and density of carbon materials based on measurements of the plasmon peak position. (iii) As major experimental accomplishments, we demonstrated the possibility of in-situ monitoring of changes in the physical properties of materials with conditions, e.g., temperature, and we also applied a new plasmon ratio-imaging technique to map multiple physical properties of materials, such as the elastic moduli, cohesive energy and bonding electron density, with a sub-nanometer lateral resolution. This presents new capability for understanding material behavior. (iv) Lastly, we demonstrated a new physical phenomenon - electron-beam trapping, or electron tweezers - of a solid metal nanoparticle inside a liquid metal. This phenomenon is

  5. Synthesis and properties of nanoscale titanium boride

    NASA Astrophysics Data System (ADS)

    Efimova, K. A.; Galevskiy, G. V.; Rudneva, V. V.

    2015-09-01

    This work reports the scientific and technological grounds for plasma synthesis of titanium diboride, including thermodynamic and kinetic conditions of boride formation when titanium and titanium dioxide are interacting with products resulting from boron gasification in the nitrogen - hydrogen plasma flow, and two variations of its behavior using the powder mixtures: titanium - boron and titanium dioxide - boron. To study these technology variations, the mathematical models were derived, describing the relation between element contents in the synthesized products of titanium and free boron and basic parameters. The probable mechanism proposed for forming titanium diboride according to a "vapour - melt - crystal" pattern was examined, covering condensation of titanium vapour in the form of aerosol, boriding of nanoscale melt droplets by boron hydrides and crystallization of titanium - boron melt. The comprehensive physical - chemical certification of titanium diboride was carried out, including the study of its crystal structure, phase and chemical composition, dispersion, morphology and particle oxidation. Technological application prospects for use of titanium diboride nanoscale powder as constituent element in the wettable coating for carbon cathodes having excellent physical and mechanical performance and protective properties.

  6. Properties of nanoscale metal hydrides.

    PubMed

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption. PMID:19420657

  7. Solving time-dependent operator equations for nanoscale physics

    SciTech Connect

    Rau, A. Ravi P.

    2007-08-27

    This is the final technical report on an Office of Basic Energy Sciences Grant, detailing the work accomplished on solving time-dependent operator equations of interest in nanoscale physics. A summary of the results and list of publications is given.

  8. Device Physics of Nanoscale Interdigitated Solar Cells (Poster)

    SciTech Connect

    Metzger, W.; Levi, D.

    2008-05-01

    Nanoscale interdigitated solar cell device architectures are being investigated for organic and inorganic solar cell devices. Due to the inherent complexity of these device designs quantitative modeling is needed to understand the device physics. Theoretical concepts have been proposed that nanodomains of different phases may form in polycrystalline CIGS solar cells. These theories propose that the nanodomains may form complex 3D intertwined p-n networks that enhance device performance.Recent experimental evidence offers some support for the existence of nanodomains in CIGS thin films. This study utilizes CIGS solar cells to examine general and CIGS-specific concepts in nanoscale interdigitated solar cells.

  9. Nanoscale Electrical Properties of Oxide Heterostructures Revealed Via Introspection

    NASA Astrophysics Data System (ADS)

    Cen, Cheng; Thiel, Stefan; Mannhart, Jochen; Levy, Jeremy

    2009-03-01

    Previous work shows that conductive regions can be formed via lateral nanoscale confinement of a quasi-two-dimensional electron gas at the LaAlO3/SrTiO3 interface^2. Here we demonstrate how structures constructed in this method serve not only as novel nanoelectronic devices but also as tools for studying fundamental physics in the underlying material system. Nanowires, tunnel junctions, field effect transistors (FETs), together with associated phenomena that we observed such as negative differential resistance, provide insight into the mechanism responsible for the existence and spatial confinement of the interfacial metal-insulator transition. We discuss several examples of nanodevices and the constraints they place on models and mechanisms that govern their properties. ^2Cen et al, Nature Materials 7, 298 (2008).

  10. When physics and biology meet: the nanoscale case.

    PubMed

    Bueno, Otávio

    2011-06-01

    As an illustration of the complexities involved in connecting physics and molecular biology at the nanoscale, in this paper I discuss two case studies from nanoscience. The first examines the use of a biological structure (DNA) to build nanostructures in a controlled way. The second discusses the attempt to build a single molecular wire, and then decide whether such a wire is indeed conducting. After presenting the central features of each case study, I examine the role played in them by microscopic imaging, the different styles of reasoning involved, and the various theoretical, methodological, and axiological differences. I conclude by arguing that, except for the probe microscopes that are used, there is very little in common between the two cases. At the nanoscale, physics and molecular biology seem to meet in a non-unified way.

  11. Nanoscale theranostics for physical stimulus-responsive cancer therapies.

    PubMed

    Chen, Qian; Ke, Hengte; Dai, Zhifei; Liu, Zhuang

    2015-12-01

    Physical stimulus-responsive therapies often employing multifunctional theranostic agents responsive to external physical stimuli such as light, magnetic field, ultra-sound, radiofrequency, X-ray, etc., have been widely explored as novel cancer therapy strategies, showing encouraging results in many pre-clinical animal experiments. Unlike conventional cancer chemotherapy which often accompanies with severe toxic side effects, physical stimulus-responsive agents usually are non-toxic by themselves and would destruct cancer cells only under specific external stimuli, and thus could offer greatly reduced toxicity and enhanced treatment specificity. In addition, physical stimulus-responsive therapies can also be combined with other traditional therapeutics to achieve synergistic anti-tumor effects via a variety of mechanisms. In this review, we will summarize the latest progress in the development of physical stimulus-responsive therapies, and discuss the important roles of nanoscale theranostic agents involved in those non-conventional therapeutic strategies. PMID:26410788

  12. Physical principles of genomic regulation through cellular nanoscale structure and implications for initiation of carcinogenesis

    NASA Astrophysics Data System (ADS)

    Backman, Vadim

    2011-03-01

    Although compelling evidence suggests that cellular nanoarchitecture and nanoscale environment where molecular interactions take place would be expected to significantly affect macromolecular processes, biological ramifications of cellular nanoscale organization have been largely unexplored. This understanding has been hampered in part by the diffraction limited resolution of optical microscopy. The talk will discuss a novel optical microscopy technique, partial wave spectroscopic (PWS) microscopy, that is capable of quantifying statistical properties of cell structure at the nanoscale. Animal and human studies demonstrated that an alteration in the statistical properties of the nanoscale mass density distribution in the cell nucleus (e.g. nuclear nanoarchitecture) is one of the earliest and ubiquitous events in carcinogenesis and precedes any other known morphological changes at larger length scales (e.g. microarchitecture). The talk will also discuss the physical principles of how the alteration in nuclear nanoarchitecture may modulate genomic processes and, in particular, gene transcription. Work done in collaboration with Hariharan Subramanian, Prabhakar Pradhan, Dhwanil Damania, Lusik Cherkezyan, Yolanda Stypula, Jun Soo Kim, Igal Szleifer, Northwestern University, Evanston, IL, Hemant K. Roy, Northshore University HealthSystems, Evanston, IL

  13. Using theory and computation to model nanoscale properties

    PubMed Central

    Schatz, George C.

    2007-01-01

    This article provides an overview of the use of theory and computation to describe the structural, thermodynamic, mechanical, and optical properties of nanoscale materials. Nanoscience provides important opportunities for theory and computation to lead in the discovery process because the experimental tools often provide an incomplete picture of the structure and/or function of nanomaterials, and theory can often fill in missing features crucial to understanding what is being measured. However, there are important challenges to using theory as well, as the systems of interest are usually too large, and the time scales too long, for a purely atomistic level theory to be useful. At the same time, continuum theories that are appropriate for describing larger-scale (micrometer) phenomena are often not accurate for describing the nanoscale. Despite these challenges, there has been important progress in a number of areas, and there are exciting opportunities that we can look forward to as the capabilities of computational facilities continue to expand. Some specific applications that are discussed in this paper include: self-assembly of supramolecular structures, the thermal properties of nanoscale molecular systems (DNA melting and nanoscale water meniscus formation), the mechanical properties of carbon nanotubes and diamond crystals, and the optical properties of silver and gold nanoparticles. PMID:17438274

  14. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology.

    PubMed

    Schirhagl, Romana; Chang, Kevin; Loretz, Michael; Degen, Christian L

    2014-01-01

    Crystal defects in diamond have emerged as unique objects for a variety of applications, both because they are very stable and because they have interesting optical properties. Embedded in nanocrystals, they can serve, for example, as robust single-photon sources or as fluorescent biomarkers of unlimited photostability and low cytotoxicity. The most fascinating aspect, however, is the ability of some crystal defects, most prominently the nitrogen-vacancy (NV) center, to locally detect and measure a number of physical quantities, such as magnetic and electric fields. This metrology capacity is based on the quantum mechanical interactions of the defect's spin state. In this review, we introduce the new and rapidly evolving field of nanoscale sensing based on single NV centers in diamond. We give a concise overview of the basic properties of diamond, from synthesis to electronic and magnetic properties of embedded NV centers. We describe in detail how single NV centers can be harnessed for nanoscale sensing, including the physical quantities that may be detected, expected sensitivities, and the most common measurement protocols. We conclude by highlighting a number of the diverse and exciting applications that may be enabled by these novel sensors, ranging from measurements of ion concentrations and membrane potentials to nanoscale thermometry and single-spin nuclear magnetic resonance.

  15. EDITORIAL: Physical behaviour at the nanoscale: a model for fertile research Physical behaviour at the nanoscale: a model for fertile research

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-06-01

    At the nanoscale physics follows familiar principles that lead to unfamiliar and even unlikely responses. The change in the balance of a range of physical features results in behaviour that can differ wildly from the same materials at the macroscale. In this issue Di Ventra and Pershin examine some of the memory effects that have attracted increasing interest in investigations of nanoscale electronic systems [1]. The work builds on the familiar premise that external perturbations cannot have an instantaneous effect on any condensed matter system. As they point out, 'This is even more so in systems of nanoscale dimensions where the dynamics of a few atoms may affect the whole structure dramatically'. In this way they explain that the response of these systems will always have some degree of memory present and that memristive, memcapacitive and meminductive systems are simply examples where this feature is particularly prominent. In the late 1990s investigations into the use of carbon nanotubes and SiC nanorods revealed that the moduli of these structures changes with diameter, highlighting the eccentricities of mechanical properties at the nanoscale. These results prompted Miller at the University of Saskatchewan and Shenoy at the Indian Institute of Technology to study the properties of nanotubes and nanorods in detail [2]. 'In the eyes of an engineer these structures are essentially little beams', they explained, 'Albeit they are "little" to a degree that challenges our traditional notions of continuum mechanics'. In their work they developed one of the first simple models for explaining the behaviour of the Young's modulus of nanostructures, verified by direct atomistic simulation of axial loading of these structures. Since then, consideration of different nanoscale structures and the dissipation of energy under stress and strain have also demystified the extraordinary mechanical properties of natural materials such as collagen [3] and spider's silk [4]. The

  16. Nanoscale Properties of Neural Cell Prosthetic and Astrocyte Response

    NASA Astrophysics Data System (ADS)

    Flowers, D. A.; Ayres, V. M.; Delgado-Rivera, R.; Ahmed, I.; Meiners, S. A.

    2009-03-01

    Preliminary data from in-vivo investigations (rat model) suggest that a nanofiber prosthetic device of fibroblast growth factor-2 (FGF-2)-modified nanofibers can correctly guide regenerating axons across an injury gap with aligned functional recovery. Scanning Probe Recognition Microscopy (SPRM) with auto-tracking of individual nanofibers is used for investigation of the key nanoscale properties of the nanofiber prosthetic device for central nervous system tissue engineering and repair. The key properties under SPRM investigation include nanofiber stiffness and surface roughness, nanofiber curvature, nanofiber mesh density and porosity, and growth factor presentation and distribution. Each of these factors has been demonstrated to have global effects on cell morphology, function, proliferation, morphogenesis, migration, and differentiation. The effect of FGF-2 modification on the key nanoscale properties is investigated. Results from the nanofiber prosthetic properties investigations are correlated with astrocyte response to unmodified and FGF-2 modified scaffolds, using 2D planar substrates as a control.

  17. Nanoscale electrical properties of epitaxial Cu3Ge film.

    PubMed

    Wu, Fan; Cai, Wei; Gao, Jia; Loo, Yueh-Lin; Yao, Nan

    2016-01-01

    Cu3Ge has been pursued as next-generation interconnection/contact material due to its high thermal stability, low bulk resistivity and diffusion barrier property. Improvements in electrical performance and structure of Cu3Ge have attracted great attention in the past decades. Despite the remarkable progress in Cu3Ge fabrication on various substrates by different deposition methods, polycrystalline films with excess Ge were frequently obtained. Moreover, the characterization of nanoscale electrical properties remains challenging. Here we show the fabrication of epitaxial Cu3Ge thin film and its nanoscale electrical properties, which are directly correlated with localized film microstructures and supported by HRTEM observations. The average resistivity and work function of epitaxial Cu3Ge thin film are measured to be 6 ± 1 μΩ cm and ~4.47 ± 0.02 eV respectively, qualifying it as a good alternative to Cu. PMID:27363582

  18. Nanoscale electrical properties of epitaxial Cu3Ge film

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cai, Wei; Gao, Jia; Loo, Yueh-Lin; Yao, Nan

    2016-07-01

    Cu3Ge has been pursued as next-generation interconnection/contact material due to its high thermal stability, low bulk resistivity and diffusion barrier property. Improvements in electrical performance and structure of Cu3Ge have attracted great attention in the past decades. Despite the remarkable progress in Cu3Ge fabrication on various substrates by different deposition methods, polycrystalline films with excess Ge were frequently obtained. Moreover, the characterization of nanoscale electrical properties remains challenging. Here we show the fabrication of epitaxial Cu3Ge thin film and its nanoscale electrical properties, which are directly correlated with localized film microstructures and supported by HRTEM observations. The average resistivity and work function of epitaxial Cu3Ge thin film are measured to be 6 ± 1 μΩ cm and ~4.47 ± 0.02 eV respectively, qualifying it as a good alternative to Cu.

  19. Nanoscale electrical properties of epitaxial Cu3Ge film

    PubMed Central

    Wu, Fan; Cai, Wei; Gao, Jia; Loo, Yueh-Lin; Yao, Nan

    2016-01-01

    Cu3Ge has been pursued as next-generation interconnection/contact material due to its high thermal stability, low bulk resistivity and diffusion barrier property. Improvements in electrical performance and structure of Cu3Ge have attracted great attention in the past decades. Despite the remarkable progress in Cu3Ge fabrication on various substrates by different deposition methods, polycrystalline films with excess Ge were frequently obtained. Moreover, the characterization of nanoscale electrical properties remains challenging. Here we show the fabrication of epitaxial Cu3Ge thin film and its nanoscale electrical properties, which are directly correlated with localized film microstructures and supported by HRTEM observations. The average resistivity and work function of epitaxial Cu3Ge thin film are measured to be 6 ± 1 μΩ cm and ~4.47 ± 0.02 eV respectively, qualifying it as a good alternative to Cu. PMID:27363582

  20. Physical controls on directed virus assembly at nanoscale chemical templates

    SciTech Connect

    Cheung, C L; Chung, S; Chatterji, A; Lin, T; Johnson, J E; Hok, S; Perkins, J; De Yoreo, J

    2006-05-10

    Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In-situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, and drove 1D and 2D condensation at subcritical volume fractions. The growth kinetics followed a t{sup 1/2} law controlled by the slow diffusion of viruses. The lateral expansion of virus clusters that initially form on the 1D templates following introduction of polyethylene glycol (PEG) into the solution suggests a significant role for weak interaction.

  1. Mechanical Properties Characterization at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Fong, Hanson; Sopp, Jeffery; Sarikaya, Mehmet

    2001-05-01

    Nanoindentation is an unique technique that characterizes mechanical properties of materials down to the nanometer scale. With a force range from nanoNewtons to milliNewtons, unique properties of surface structures and thin films in the mesoscale can be routinely quantifieds. With technology continually pushing toward smaller feature size in electronic and mechanical devices as well as biomaterials applications, nanoindentation has become an invaluable method to measure these characteristic features. Here, we report its application in the study the biological hard tissues. For example, using engineered metallic indentation tips, the elastic properties of the 20 nm protein layer in the biocomposite of the abalone shell was measured. The elastic modulus was found to be exceptionally high compared to most synthetic polymers. With the combination of AFM imaging nanoindentation, we were able to measure the difference in deformation behavior at the mesoscale between normal and genetically altered mouse enamel. These measurements were complementary in determining the growth defects resulting from genetically modified enamel proteins. Details of these results and future prospects will be discussed.

  2. Atomistic methodologies for material properties of 2D materials at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our

  3. Optical Properties of Nanoscale Bismuth Selenide and Its Heterocrystals

    NASA Astrophysics Data System (ADS)

    Vargas, Anthony

    Over the past 12 years since the groundbreaking work on graphene, the field of 2D layered materials has grown by leaps and bounds as more materials are theoretically predicted and experimentically verified. These materials and their unique electronic, optical, and mechanical properties have inspired the scientific community to explore and investigate novel, fundamental physical phenomena as well create and refine technological devices which leverage the host of unique benefits which these materials possess. In the past few years, this burgeoning field has heavily moved towards combining layers of various materials into novel heterostructures. These heterostructures are an exciting area of research because of the plethora of exciting possibilities and results which arise due to the large number of heterostructure combinations and configurations. Particularly, the research into the optical properties of these layered materials and their heterostructures under confinement provides another exciting avenue for developing optoelectric devices. In this dissertation, I present work on the synthesis of Bi2Se 3 nanostructures via chemical vapor deposition (CVD) and the study of the optical properties of these nanostructures and their heterostructures with MoS2. The bulk of the current published work on Bi2Se 3 has focused on the exotic topological properties of its surface states, both interesting fundamental physics purposes as well as for studying avenues for spintronics. In contrast, the work presented here focuses on studying the optical properties of Bi2Se3 nanostructures and how these properties evolve when subjected to confinement. Specifically, the absorbance of singlecrystal Bi2Se3 with sizes tailored down to a few nanometers in diameter and a few quintuple layers (QLs) in thickness. We find a dramatically large bandgap, Eg ≥ 2.5 eV, in the smallest particles which is much higher than that seen in 1QL measurements taken with ARPES. Additionally, utilizing

  4. From computational materials science to nanoscale device physics

    NASA Astrophysics Data System (ADS)

    Ghosh, Avik

    2008-10-01

    I will outline formal, computational and device level challenges for modeling and simulation of nanoelectronic devices and systems. Formal challenges involve developing the basic equations for quantum transport in the presence of strong many-body correlations (Coulomb Blockade), incoherent scattering (phonons) and time-dependent effects at the nano-micro interface (hysteretic switching and random telegraph noise). Computational challenges involve translating these equations into quantitative, predictive models, particularly at surfaces and interfaces, where we need practical semi-empirical descriptions with transferable parameters to handle hybrid regions. In addition, we need multiscaling and embedding techniques to merge these models with more detailed ``ab-initio'' descriptions of chemically significant moieties. Finally, Device level challenges involve identifying fundamental limits of existing device paradigms, such as molecular FETs, as well as exploring novel device operational principles. I will touch upon the fundamental issues that arise in context of each challenge, and possible means of solving them. I will then apply these ideas to a specific device architecture, namely, an ordered array of quantum dots grown on the surface of a nanoscale silicon transistor. All of the challenges identified above manifest themselves prominently in this geometry that operates at the nano-micro interface. Specifically, I will discuss how the strongly correlated electrons in the nanoscale dots ``talk'' to their weakly interacting macroscopic counterparts, how the interfacial electronic structure captures both long-ranged band correlations and short-ranged chemical correlations, and how the tunable coupling with the localized dot degrees of freedom can lead to novel physics, such as the experimentally observed blocking and unblocking of a nanotube current by correlated interactions between multiple oxide traps.

  5. Size Effects on the Magnetic Properties of Nanoscale Particles

    NASA Astrophysics Data System (ADS)

    Chen, Jianping

    Finite size effects on the magnetic properties of nanoscale particles have been studied in this work. The first system studied was MnFe_2O _4 prepared by coprecipitation followed by digestion. The particles were single crystals with an average diameter controllable from 5 nm to 25 nm. These particles have a higher inversion degree of metal ion distribution between the tetrahedral sites and octahedral sites of the spinel structure than those synthesized with ceramic methods. This higher inversion leads to a higher Curie temperature. We found that the structure of the particles can be varied by heat treatment. The Curie temperature of the particles decreased after heat treatment in inert gas, however, it increased after heat treatment in air. The size effects show in two aspects on the MnFe_2O _4 particles. First, the Curie temperature decreased as particles size was reduced, which was explained by finite size scaling. Second, the saturation magnetization decreased as particle size decreased because of the existence of a nonmagnetic layer on the surface of MnFe_2 O_4 particles. The second system studied was Co particles synthesized with an inverse micelle technique. The particles were small (1-5 nm) and had a narrow size distribution. The Co particles were superparamagnetic at room temperature and showed a set of consistent magnetic data in magnetic moment per particle, coercivity, and blocking temperature. We found the anisotropy constant and saturation magnetization of Co particles had a strong size dependence. The anisotropy constant was above the bulk value of Co and increased as particle size decreased. The saturation magnetization increased as the particle became smaller. The magnetic properties of Co particles also strongly suggested a core/shell structure in each particle. But no physical inhomogeneity was observed. We have also studied ligand effects on the magnetic properties of Co particles. The magnetization of the Co particles was quenched by 36%, 27

  6. EDITORIAL: Physical behaviour at the nanoscale: a model for fertile research Physical behaviour at the nanoscale: a model for fertile research

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-06-01

    At the nanoscale physics follows familiar principles that lead to unfamiliar and even unlikely responses. The change in the balance of a range of physical features results in behaviour that can differ wildly from the same materials at the macroscale. In this issue Di Ventra and Pershin examine some of the memory effects that have attracted increasing interest in investigations of nanoscale electronic systems [1]. The work builds on the familiar premise that external perturbations cannot have an instantaneous effect on any condensed matter system. As they point out, 'This is even more so in systems of nanoscale dimensions where the dynamics of a few atoms may affect the whole structure dramatically'. In this way they explain that the response of these systems will always have some degree of memory present and that memristive, memcapacitive and meminductive systems are simply examples where this feature is particularly prominent. In the late 1990s investigations into the use of carbon nanotubes and SiC nanorods revealed that the moduli of these structures changes with diameter, highlighting the eccentricities of mechanical properties at the nanoscale. These results prompted Miller at the University of Saskatchewan and Shenoy at the Indian Institute of Technology to study the properties of nanotubes and nanorods in detail [2]. 'In the eyes of an engineer these structures are essentially little beams', they explained, 'Albeit they are "little" to a degree that challenges our traditional notions of continuum mechanics'. In their work they developed one of the first simple models for explaining the behaviour of the Young's modulus of nanostructures, verified by direct atomistic simulation of axial loading of these structures. Since then, consideration of different nanoscale structures and the dissipation of energy under stress and strain have also demystified the extraordinary mechanical properties of natural materials such as collagen [3] and spider's silk [4]. The

  7. Properties of nanoscale dielectrics from first principles computations

    NASA Astrophysics Data System (ADS)

    Shi, Ning

    In recent years, dielectric materials of nanoscale dimensions have aroused considerable interest. We mention two examples. First, in the semiconductor industry, in order to keep pace with Moore's law scaling, the thickness of gate oxide dielectric material is reaching nanoscale dimensions. Second, the high energy density capacitor industry is currently considering dielectric composites with a polymer host matrix filled with inorganic dielectric nanoparticles or polarizable organic molecules. The driving force for the former application is high dielectric constants (or high-k), and those for the latter are high-k and/or high dielectric breakdown strengths. Thus, it is important to characterize the electronic and dielectric properties of materials in the nano-regime, where surface and interface effects naturally play a dominant role. The primary goal of this work is to determine the extent to which such surface/interface effects modify the dielectric constants, band edges, and dielectric breakdown strengths of systems with at least one of their dimensions in the nano-regime. Towards that end, we have developed new computational methodologies at the first principles (density functional) level of theory. These methods have then been applied to several relevant and critical nanoscale systems, including Si:SiO2 and Si:HfO2 heterojunctions, and polymeric composites containing Cu-phthalocyanine and SiO2 nanoparticles.

  8. Deciphering the Physical Basis of Biomineralization through Investigations of Nanoscale Growth Processes

    NASA Astrophysics Data System (ADS)

    Dove, P. M.; Davis, K. J.; De Yoreo, J. J.; Orme, C. A.

    2001-12-01

    Microbes and higher organisms direct the formation of complex structures in controlled biomineralization. Using biologically mediated crystallization strategies that have evolved over millenia, organisms have developed the ability to produce nanophase structures as single crystals and composite materials with remarkable properties that fulfill specific functional needs. Modern organisms, as well as those found in the sediment and rock records, chronicle Nature's ability to synthesize sophisticated nanostructures. Although biomineral compositions and their morphologies are windows to interpreting environments of prosperity and decline, most current interpretations lack an understanding of fundamental processes. Hence, the physical basis of biological mineralization continues as one of Nature's best kept secrets. Recently, the biomineralization processes of marine microorganisms have emerged as particularly important owing to the use of biomineral products as paleoclimate indicators. Besides providing critical information on crystal growth history, the minor and trace elements found in these materials also behave as impurities to regulate their properties and formation rates. Using integrated approaches, we are investigating the kinetics and thermodynamics of calcite growth to decipher mechanisms of biomineral formation. Our focus is to link molecular interactions with surface processes and nanoscale controls on crystal morphology. The molecular-scale structure of the crystalline interface is a critical growth determinant, especially when considering nanocrystalline phases. By combining in situ AFM studies of growth that use carefully characterized solution chemistries with molecular modeling and surface spectroscopic investigations, we couple observations of nanoscale growth mechanisms with quantitative kinetic and thermodynamic information. This approach is showing how key inorganic growth impurities, Mg2+ and Sr2+, affect mineralization through complex ion

  9. Nanoscale lead and noble gas inclusions in aluminum: structures and properties.

    PubMed

    Johnson, Erik; Andersen, Hans Henrik; Dahmen, Ulrich

    2004-08-01

    Transmission electron microscopy has been used for structural and physical characterization of nanoscale inclusions of lead and noble gases in aluminum. When the inclusion sizes approach nanoscale dimensions, many of their properties are seen to deviate from similar properties in bulk and in most cases the deviations will increase as the inclusion sizes decrease. Binary alloys of lead and noble gases with aluminum are characterized by extremely low mutual solubilities and inclusions will, therefore, exist as practically pure components embedded in the aluminum matrix. Furthermore, the thermal vacancy mobility in aluminum at and above room temperature is sufficiently high to accommodate volume strains associated with the inclusions thus leading to virtually strain free crystals. The inclusions grow in parallel cube alignment with the aluminum matrix and have a cuboctahedral shape, which reflects directly the anisotropy of the interfacial energies. Inclusions in grain boundaries can have single crystalline or bicrystalline morphology that can be explained from a generalized Wulff analysis such as the xi-vector construction. The inclusions have been found to display a variety of nanoscale features such as high Laplace pressure, size-dependent superheating during melting, deviations from the Wulff shape displaying magic size effects, a shape dependence of edge energy, and so on. All these effects have been observed and monitored by TEM using conventional imaging conditions and high-resolution conditions in combination with in-situ analysis at elevated temperatures.

  10. Physical nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype.

    PubMed

    Connor, Yamicia; Tekleab, Sarah; Nandakumar, Shyama; Walls, Cherelle; Tekleab, Yonatan; Husain, Amjad; Gadish, Or; Sabbisetti, Venkata; Kaushik, Shelly; Sehrawat, Seema; Kulkarni, Ashish; Dvorak, Harold; Zetter, Bruce; R Edelman, Elazer; Sengupta, Shiladitya

    2015-01-01

    Metastasis is a major cause of mortality and remains a hurdle in the search for a cure for cancer. Not much is known about metastatic cancer cells and endothelial cross-talk, which occurs at multiple stages during metastasis. Here we report a dynamic regulation of the endothelium by cancer cells through the formation of nanoscale intercellular membrane bridges, which act as physical conduits for transfer of microRNAs. The communication between the tumour cell and the endothelium upregulates markers associated with pathological endothelium, which is reversed by pharmacological inhibition of these nanoscale conduits. These results lead us to define the notion of 'metastatic hijack': cancer cell-induced transformation of healthy endothelium into pathological endothelium via horizontal communication through the nanoscale conduits. Pharmacological perturbation of these nanoscale membrane bridges decreases metastatic foci in vivo. Targeting these nanoscale membrane bridges may potentially emerge as a new therapeutic opportunity in the management of metastatic cancer. PMID:26669454

  11. Physical nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype

    PubMed Central

    Connor, Yamicia; Tekleab, Sarah; Nandakumar, Shyama; Walls, Cherelle; Tekleab, Yonatan; Husain, Amjad; Gadish, Or; Sabbisetti, Venkata; Kaushik, Shelly; Sehrawat, Seema; Kulkarni, Ashish; Dvorak, Harold; Zetter, Bruce; R. Edelman, Elazer; Sengupta, Shiladitya

    2015-01-01

    Metastasis is a major cause of mortality and remains a hurdle in the search for a cure for cancer. Not much is known about metastatic cancer cells and endothelial cross-talk, which occurs at multiple stages during metastasis. Here we report a dynamic regulation of the endothelium by cancer cells through the formation of nanoscale intercellular membrane bridges, which act as physical conduits for transfer of microRNAs. The communication between the tumour cell and the endothelium upregulates markers associated with pathological endothelium, which is reversed by pharmacological inhibition of these nanoscale conduits. These results lead us to define the notion of ‘metastatic hijack': cancer cell-induced transformation of healthy endothelium into pathological endothelium via horizontal communication through the nanoscale conduits. Pharmacological perturbation of these nanoscale membrane bridges decreases metastatic foci in vivo. Targeting these nanoscale membrane bridges may potentially emerge as a new therapeutic opportunity in the management of metastatic cancer. PMID:26669454

  12. Understanding electronic structure and transport properties in nanoscale junctions

    NASA Astrophysics Data System (ADS)

    Dhungana, Kamal B.

    Understanding the electronic structure and the transport properties of nanoscale materials are pivotal for designing future nano-scale electronic devices. Nanoscale materials could be individual or groups of molecules, nanotubes, semiconducting quantum dots, and biomolecules. Among these several alternatives, organic molecules are very promising and the field of molecular electronics has progressed significantly over the past few decades. Despite these progresses, it has not yet been possible to achieve atomic level control at the metal-molecule interface during a conductance measurement, which hinders the progress in this field. The lack of atomic level information of the interface also makes it much harder for theorist to interpret the experimental results. To identify the junction configuration that possibly exists during the experimental measurement of conductance in molecular junction, we created an ensemble of Ruthanium-bis(terpyridine) molecular devices, and studied the transport behavior in these molecular junctions. This helps us identifying the junction geometry that yields the experimentally measured current-voltage characteristics. Today's electronic devices mostly ignore the spin effect of an electron. The inclusion of spin effect of an electron on solid-state transistor allows us to build more efficient electronic devices; this also alleviates the problem of huge heat dissipation in the nanoscale electronic devices. Different materials have been utilized to build three terminals spin transistor since its inception in 1950. In search of suitable candidates for the molecular spin transistor, we have recently designed a spin-valve transistor based on an organometallic molecule; a large amplification (320 %) in tunnel magneto-resistance (TMR) is found to occur at an experimentally accessible gate field. This suggests that the organic molecules can be utilized for making the next generation three terminal spintronic devices. Similarly, we have designed a

  13. Physical Properties of Polymers

    NASA Astrophysics Data System (ADS)

    Mark, James; Ngai, Kia; Graessley, William; Mandelkern, Leo; Samulski, Edward; Koenig, Jack; Wignall, George

    2004-04-01

    This thoroughly revised and updated third edition is written by seven well-known authorities in the polymer science community. Each author contributes a chapter which reflects his own interests and expertise in the physical states and associated properties of polymers. Second Edition published by the American Chemical Society Hb (1993): 0-841-22505-2

  14. Polymer constitutive properties and adhesive effects at the nanoscale

    NASA Astrophysics Data System (ADS)

    Palacio, Manuel Luis Ballelos

    The development of new materials and devices depend on accurately determining its mechanical properties. As the length scale of device components decreases, nanoindentation is evolving into a desirable metrology tool due to its load and displacement resolution. This dissertation examines models for evaluating the elastic modulus (E), hardness (H), yield strength (sigmays) and adhesion energy (G) of glassy and rubbery polymers. Two types of glassy polymer films were examined---fully dense and porous. These films are of interest due to their potential as low dielectric constant ("low-k") materials for microelectronic systems. Quasi-static and creep indentation techniques were employed to determine the modulus, and results from the latter appear to give more reliable results as it accounts for viscoelastic effects. Hardness was also determined, and its relationship with the yield strength at the nanoscale follows the prediction of a model valid for macroscale testing, implying length scale connectivity. The same test methods were applied to films with 10, 20 and 35% porosity, where the observed 45 percent drop of the E and sigma ys with increasing porosity was described using a model that assumes the pores are closed cell systems. Temperature effects on yielding were also examined from 24 to 140°C, where the hardness was found to follow Eyring's rate theory. Another glassy polymer, polyethersulfone, was studied to determine the effect of arsenic ion implantation on surface mechanical properties. Implantation enhances the hardness only up to a certain threshold ion dose, beyond which it decreases due to sputtering of material from the surface. The adhesion energy of acrylic pressure sensitive adhesive-like networks was determined by nanoindentation. These rubbery polymers have been studied in the past using the JKR apparatus, which measures self-adhesion at the microscale. An unloading rate dependence analogous to the crack propagation rate behavior was observed for

  15. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering.

    PubMed

    Yang, Shengxue; Wang, Cong; Sahin, Hasan; Chen, Hui; Li, Yan; Li, Shu-Shen; Suslu, Aslihan; Peeters, Francois M; Liu, Qian; Li, Jingbo; Tongay, Sefaattin

    2015-03-11

    Creating materials with ultimate control over their physical properties is vital for a wide range of applications. From a traditional materials design perspective, this task often requires precise control over the atomic composition and structure. However, owing to their mechanical properties, low-dimensional layered materials can actually withstand a significant amount of strain and thus sustain elastic deformations before fracture. This, in return, presents a unique technique for tuning their physical properties by "strain engineering". Here, we find that local strain induced on ReSe2, a new member of the transition metal dichalcogenides family, greatly changes its magnetic, optical, and electrical properties. Local strain induced by generation of wrinkle (1) modulates the optical gap as evidenced by red-shifted photoluminescence peak, (2) enhances light emission, (3) induces magnetism, and (4) modulates the electrical properties. The results not only allow us to create materials with vastly different properties at the nanoscale, but also enable a wide range of applications based on 2D materials, including strain sensors, stretchable electrodes, flexible field-effect transistors, artificial-muscle actuators, solar cells, and other spintronic, electromechanical, piezoelectric, photonic devices.

  16. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties

    NASA Astrophysics Data System (ADS)

    Nadort, Annemarie; Zhao, Jiangbo; Goldys, Ewa M.

    2016-07-01

    Upconversion photoluminescence is a nonlinear effect where multiple lower energy excitation photons produce higher energy emission photons. This fundamentally interesting process has many applications in biomedical imaging, light source and display technology, and solar energy harvesting. In this review we discuss the underlying physical principles and their modelling using rate equations. We discuss how the understanding of photophysical processes enabled a strategic influence over the optical properties of upconversion especially in rationally designed materials. We subsequently present an overview of recent experimental strategies to control and optimize the optical properties of upconversion nanoparticles, focussing on their emission spectral properties and brightness.

  17. The Properties of Confined Water and Fluid Flow at the Nanoscale

    SciTech Connect

    Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G

    2009-03-09

    This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.

  18. Nanoscale viscoelastic properties and adhesion of polydimethylsiloxane for tissue engineering

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wright, K. E.; Birch, M. A.

    2014-02-01

    It has shown that altering crosslink density of biopolymers will regulate the morphology of Mesenchymal Stem Cells (MSCs) and the subsequent MSCs differentiation. These observations have been found in a wide range of biopolymers. However, a recent work published in Nature Materials has revealed that MSCs morphology and differentiation was unaffected by crosslink density of polydimethylsiloxane (PDMS), which remains elusive. To understand such unusual behaviour, we use nanoindentation tests and modelling to characterize viscoelastic properties and surface adhesion of PDMS with different base:crosslink ratio varied from 50:1 (50D) to 10:1 (10D). It has shown that lower crosslink density leads to lower elastic moduli. Despite lower nanoindentation elastic moduli, PDMS with lowest crosslink density has higher local surface adhesion which would affect cell-biomaterials interactions. This work suggests that surface adhesion is likely another important physical cue to regulate cell-biomaterials interactions. [Figure not available: see fulltext.

  19. Physical methods in nanoscale science with the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Schaffer, Tilman Erich

    1998-12-01

    The atomic force microscope (AFM) has opened up a wide gate to the nanoscopic world. Since its invention twelve years ago, it has allowed researchers to advance to new science. The extent of this advancement is strongly coupled to the sophistication of AFM instrumentation and to the methods with which AFMs are used. New AFMs and methods are needed to push the limits. Chapter 1 and 2 introduce such new AFMs with low-noise and high-speed characteristics. The AFM presented in Chapter 2 has a focused spot size of 1.6 m m in diameter and is capable of using cantilevers much smaller than previously possible. Chapter 3 discusses the physics of the detection system and gives methods for improving the detection sensitivity. Thermal motion of the cantilever, usually contributing to the noise in a measurement, is a method for probing the oscillatory hydration potential at a calcite-water interface in Chapter 4. Chapter 5 establishes a method of measuring the three-dimensional electromagnetic field over a surface and comparing the data to micro-magnetic models. Biomineralization of marine abalone nacre is the subject of interdisciplinary Chapter 6, where a variety of microscopic and statistical methods distinguish between two competing models of nacre growth.

  20. Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale.

    PubMed

    Legleiter, Justin; Park, Matthew; Cusick, Brian; Kowalewski, Tomasz

    2006-03-28

    One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip-sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip-sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by "comb" filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach. PMID:16551751

  1. Scanning probe acceleration microscopy (SPAM) in fluids: Mapping mechanical properties of surfaces at the nanoscale

    NASA Astrophysics Data System (ADS)

    Legleiter, Justin; Park, Matthew; Cusick, Brian; Kowalewski, Tomasz

    2006-03-01

    One of the major thrusts in proximal probe techniques is combination of imaging capabilities with simultaneous measurements of physical properties. In tapping mode atomic force microscopy (TMAFM), the most straightforward way to accomplish this goal is to reconstruct the time-resolved force interaction between the tip and surface. These tip-sample forces can be used to detect interactions (e.g., binding sites) and map material properties with nanoscale spatial resolution. Here, we describe a previously unreported approach, which we refer to as scanning probe acceleration microscopy (SPAM), in which the TMAFM cantilever acts as an accelerometer to extract tip-sample forces during imaging. This method utilizes the second derivative of the deflection signal to recover the tip acceleration trajectory. The challenge in such an approach is that with real, noisy data, the second derivative of the signal is strongly dominated by the noise. This problem is solved by taking advantage of the fact that most of the information about the deflection trajectory is contained in the higher harmonics, making it possible to filter the signal by “comb” filtering, i.e., by taking its Fourier transform and inverting it while selectively retaining only the intensities at integer harmonic frequencies. Such a comb filtering method works particularly well in fluid TMAFM because of the highly distorted character of the deflection signal. Numerical simulations and in situ TMAFM experiments on supported lipid bilayer patches on mica are reported to demonstrate the validity of this approach.

  2. A nanoscale co-precipitation approach for property enhancement of Fe-base alloys

    PubMed Central

    Zhang, Zhongwu; Liu, Chain Tsuan; Miller, Michael K.; Wang, Xun-Li; Wen, Yuren; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei; Chen, Guang; Chin, Bryan A.

    2013-01-01

    Precipitate size and number density are two key factors for tailoring the mechanical behavior of nanoscale precipitate-hardened alloys. However, during thermal aging, the precipitate size and number density change, leading to either poor strength or high strength but significantly reduced ductility. Here we demonstrate, by producing nanoscale co-precipitates in composition-optimized multicomponent precipitation-hardened alloys, a unique approach to improve the stability of the alloy against thermal aging and hence the mechanical properties. Our study provides compelling experimental evidence that these nanoscale co-precipitates consist of a Cu-enriched bcc core partially encased by a B2-ordered Ni(Mn, Al) phase. This co-precipitate provides a more complex obstacle for dislocation movement due to atomic ordering together with interphases, resulting in a high yield strength alloy without sacrificing alloy ductility. PMID:23429646

  3. SEMICONDUCTOR DEVICES Nanoscale strained-Si MOSFET physics and modeling approaches: a review

    NASA Astrophysics Data System (ADS)

    Chaudhry, Amit; Roy, J. N.; Joshi, Garima

    2010-10-01

    An attempt has been made to give a detailed review of strained silicon technology. Various device models have been studied that consider the effect of strain on the devices, and comparisons have been drawn. A review of some modeling issues in strained silicon technology has also been outlined. The review indicates that this technology is very much required in nanoscale MOSFETs due to its several potential benefits, and there is a strong need for an analytical model which describes the complete physics of the strain technology.

  4. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics Talk: Understanding Nano-scale Electronic Systems via Large-scale Computation

    NASA Astrophysics Data System (ADS)

    Cao, Chao

    2009-03-01

    Nano-scale physical phenomena and processes, especially those in electronics, have drawn great attention in the past decade. Experiments have shown that electronic and transport properties of functionalized carbon nanotubes are sensitive to adsorption of gas molecules such as H2, NO2, and NH3. Similar measurements have also been performed to study adsorption of proteins on other semiconductor nano-wires. These experiments suggest that nano-scale systems can be useful for making future chemical and biological sensors. Aiming to understand the physical mechanisms underlying and governing property changes at nano-scale, we start off by investigating, via first-principles method, the electronic structure of Pd-CNT before and after hydrogen adsorption, and continue with coherent electronic transport using non-equilibrium Green’s function techniques combined with density functional theory. Once our results are fully analyzed they can be used to interpret and understand experimental data, with a few difficult issues to be addressed. Finally, we discuss a newly developed multi-scale computing architecture, OPAL, that coordinates simultaneous execution of multiple codes. Inspired by the capabilities of this computing framework, we present a scenario of future modeling and simulation of multi-scale, multi-physical processes.

  5. Processing, microstructure evolution and properties of nanoscale aluminum alloys

    NASA Astrophysics Data System (ADS)

    Han, Jixiong

    In this project, phase transformations and precipitation behavior in age-hardenable nanoscale materials systems, using Al-Cu alloys as model materials, were first studied. The Al-Cu nanoparticles were synthesized by a Plasma Ablation process and found to contain a 2˜5 nm thick adherent aluminum oxide scale, which prevented further oxidation. On aging of the particles, a precipitation sequence consisting of, nearly pure Cu precipitates to the metastable theta' to equilibrium theta was observed, with all three forming along the oxide-particle interface. The structure of theta' and its interface with the Al matrix has been characterized in detail. Ultrafine Al-Cu nanoparticles (5˜25 nm) were also synthesized by inert gas condensation (IGC) and their aging behavior was studied. These particles were found to be quite stable against precipitation. Secondly, pure Al nanoparticles were prepared by the Exploding Wire process and their sintering and consolidation behavior were studied. It was found that nanopowders of Al could be processed to bulk structures with high hardness and density. Sintering temperature was found to have a dominant effect on density, hardness and microstructure. Sintering at temperatures >600°C led to breakup of the oxide scale, leading to an interesting nanocomposite composed of 100˜200 nm Al oxide dispersed in a bimodal nanometer-micrometer size Al matrix grains. Although there was some grain growth, the randomly dispersed oxide fragments were quite effective in pinning the Al grain boundaries, preventing excessive grain growth and retaining high hardness. Cold rolling and hot rolling were effective methods for attaining full densification and high hardness. Thirdly, the microstructure evolution and mechanical behavior of Al-Al 2O3 nanocomposites were studied. The composites can retain high strength at elevated temperature and thermal soaking has practically no detrimental effect on strength. Although the ductility of the composite remains

  6. Nanoscale Atomic Displacements Ordering for Enhanced Piezoelectric Properties in Lead-Free ABO3 Ferroelectrics.

    PubMed

    Pramanick, Abhijit; Jørgensen, Mads R V; Diallo, Souleymane O; Christianson, Andrew D; Fernandez-Baca, Jaime A; Hoffmann, Christina; Wang, Xiaoping; Lan, Si; Wang, Xun-Li

    2015-08-01

    In situ synchrotron X-ray diffuse scattering and inelastic neutron scattering measurements from a prototype ABO3 ferroelectric single-crystal are used to elucidate how electric fields along a nonpolar direction can enhance its piezoelectric properties. The central mechanism is found to be a nanoscale ordering of B atom displacements, which induces increased lattice instability and therefore a greater susceptibility to electric-field-induced mechanical deformation.

  7. Lattice Dynamical Properties of Ferroelectric Thin Films at the Nanoscale

    SciTech Connect

    Xi, Xiaoxing

    2014-01-13

    In this project, we have successfully demonstrated atomic layer-by-layer growth by laser MBE from separate targets by depositing SrTiO3 films from SrO and TiO2 targets. The RHEED intensity oscillation was used to monitor and control the growth of each SrO and TiO2 layer. We have shown that by using separate oxide targets, laser MBE can achieve the same level of stoichiometry control as the reactive MBE. We have also studied strain relaxation in LaAlO3 films and its effect on the 2D electron gas at LaAlO3/SrTiO3 interface. We found that there are two layers of different in-plane lattice constants in the LaAlO3 films, one next to the SrTiO3 substrate nearly coherently strained, while the top part relaxed as the film thickness increases above 20 unit cells. This strain relaxation significantly affect the transport properties of the LaAlO3/SrTiO3 interface.

  8. Relationship between nanoscale mineral properties and calcein labeling in mineralizing bone surfaces.

    PubMed

    Aido, Marta; Kerschnitzki, Michael; Hoerth, Rebecca; Burghammer, Manfred; Montero, Cédric; Checa, Sara; Fratzl, Peter; Duda, Georg N; Willie, Bettina M; Wagermaier, Wolfgang

    2014-08-01

    Bone's mineral properties, such as particle thickness and degree of alignment have been associated with bone quality. Bone formation, remodeling, aging of the tissue and mineral homeostasis influence mineral particle properties leading to specific patterns across bone. Scanning small angle X-ray scattering (sSAXS) with synchrotron radiation is a powerful tool, which allows us to study bone's nanoscale mineral properties in a position-resolved way. We used sSAXS, fluorescence light microscopy and backscattered electron (BSE) imaging to study bone's mineral properties at the tibial midshaft of in vivo-loaded mice. By combining these techniques, we could detect local changes in mineral properties. Regions labeled with calcein fluorochrome have lower mean mineral thickness and degree of mineral alignment. We also observed thinner and less aligned mineral particles near blood vessels. We conclude that mineral properties (i) are altered by fluorochrome labeling and (ii) depend on the proximity to blood vessels.

  9. Cesium Eluate Physical Property Determination

    SciTech Connect

    Baich, M.A.

    2001-02-13

    Two bench-scale process simulations of the proposed cesium eluate evaporation process of concentrating eluate produced in the Hanford Site Waste Treatment Plant were conducted. The primary objective of these experiments was to determine the physical properties and the saturation concentration of the eluate evaporator bottoms while producing condensate approximately 0.50 molar HN03.

  10. Advances in imaging and quantification of electrical properties at the nanoscale using Scanning Microwave Impedance Microscopy (sMIM)

    NASA Astrophysics Data System (ADS)

    Friedman, Stuart; Stanke, Fred; Yang, Yongliang; Amster, Oskar

    Scanning Microwave Impedance Microscopy (sMIM) is a mode for Atomic Force Microscopy (AFM) enabling imaging of unique contrast mechanisms and measurement of local permittivity and conductivity at the 10's of nm length scale. sMIM has been applied to a variety of systems including nanotubes, nanowires, 2D materials, photovoltaics and semiconductor devices. Early results were largely semi-quantitative. This talk will focus on techniques for extracting quantitative physical parameters such as permittivity, conductivity, doping concentrations and thin film properties from sMIM data. Particular attention will be paid to non-linear materials where sMIM has been used to acquire nano-scale capacitance-voltage curves. These curves can be used to identify the dopant type (n vs p) and doping level in doped semiconductors, both bulk samples and devices. Supported in part by DOE-SBIR DE-SC0009856.

  11. The effect of growth temperature on the nanoscale biochemical surface properties of Yersinia pestis.

    PubMed

    Wang, Congzhou; Stanciu, Cristina E; Ehrhardt, Christopher J; Yadavalli, Vamsi K

    2016-08-01

    Yersinia pestis, the causative agent of plague, has been responsible for several recurrent, lethal pandemics in history. Currently, it is an important pathogen to study owing to its virulence, adaptation to different environments during transmission, and potential use in bioterrorism. Here, we report on the changes to Y. pestis surfaces in different external microenvironments, specifically culture temperatures (6, 25, and 37 °C). Using nanoscale imaging coupled with functional mapping, we illustrate that changes in the surfaces of the bacterium from a morphological and biochemical standpoint can be analyzed simultaneously using atomic force microscopy. The results from functional mapping, obtained at a single cell level, show that the density of lipopolysaccharide (measured via terminal N-acetylglucosamine) on Y. pestis grown at 37 °C is only slightly higher than cells grown at 25 °C, but nearly three times higher than cells maintained at 6 °C for an extended period of time, thereby demonstrating that adaptations to different environments can be effectively captured using this technique. This nanoscale evaluation provides a new microscopic approach to study nanoscale properties of bacterial pathogens and investigate adaptations to different external environments. PMID:27259520

  12. Vacuum-ultraviolet reflectance spectra and optical properties of nanoscale wurtzite boron nitride

    NASA Astrophysics Data System (ADS)

    Yixi, Su; Xin, Ju; Kun, Wei; Chaoshu, Shi; Zhengfu, Han; Junyan, Shi; Jie, Deng; Sheng, Zhu; Yuanbin, Chi

    1994-12-01

    The optical reflectance spectra of various wurtzite-BN (w-BN) specimens prepared by the shock-wave method have been measured in the vacuum-ultraviolet region with synchrotron radiation. The optical constants have been determined by applying the Kramers-Kronig relation. The optical band gap was found to be 8.7+/-0.5 eV, which compares favorably with the latest calculations. The effect of the nanoscale particle size on the reflectance spectra and optical properties is also discussed.

  13. Physical Origins of Thermal Properties of Cement Paste

    NASA Astrophysics Data System (ADS)

    Abdolhosseini Qomi, Mohammad Javad; Ulm, Franz-Josef; Pellenq, Roland J.-M.

    2015-06-01

    Despite the ever-increasing interest in multiscale porous materials, the chemophysical origin of their thermal properties at the nanoscale and its connection to the macroscale properties still remain rather obscure. In this paper, we link the atomic- and macroscopic-level thermal properties by combining tools of statistical physics and mean-field homogenization theory. We begin with analyzing the vibrational density of states of several calcium-silicate materials in the cement paste. Unlike crystalline phases, we indicate that calcium silicate hydrates (CSH) exhibit extra vibrational states at low frequencies (<2 THz ) compared to the vibrational states predicted by the Debye model. This anomaly is commonly referred to as the boson peak in glass physics. In addition, the specific-heat capacity of CSH in both dry and saturated states scales linearly with the calcium-to-silicon ratio. We show that the nanoscale-confining environment of CSH decreases the apparent heat capacity of water by a factor of 4. Furthermore, full thermal conductivity tensors for all phases are calculated via the Green-Kubo formalism. We estimate the mean free path of phonons in calcium silicates to be on the order of interatomic bonds. This satisfies the scale separability condition and justifies the use of mean-field homogenization theories for upscaling purposes. Upscaling schemes yield a good estimate of the macroscopic specific-heat capacity and thermal conductivity of cement paste during the hydration process, independent of fitting parameters.

  14. Physical properties of evaporite minerals

    USGS Publications Warehouse

    Robertson, Eugene C.

    1962-01-01

    The data in the following tables were abstracted from measurements of physical properties of evaporite minerals or of equivalent synthetic compounds. The compounds considered are the halide and sulfate salts which supposedly precipitated from evaporating ocean water and which form very extensive and thick "rock salt" beds. These beds are composed almost entirely of NaCl. In places where the beds are deeply buried and where fractures occur in the overlying rocks, the salt is plastically extruded upward as in a pipe to form the "salt domes". Most of the tables are for NaCl, both the natural (halite) and the synthetic salt, polycrystalline and single crystals. These measurements have been collected for use 1) in studies on storage of radioactive wastes in salt domes or beds, 2) in calculations concerned with nuclear tests in salt domes and beds, and 3) in studies of phenomena in salt of geologic interest. Rather than an exhaustive compilation of physical property measurements, there tables represent a summary of data from accessible sources. As limitations of time have presented making a more systematic and comprehensive selection, the data given may seem arbitrarily chosen. Some of the data listed are old, and newer, more accurate data are undoubtedly available. Halite (an synthetic NaCl) has been very thoroughly studied because of its relatively simple and highly symmetrical crystal structure, its easy availability naturally or synthetically, both in single crystals and polycrystalline, its useful and scientifically interesting properties, and its role as a compound of almost purely ionic bonding. The measurements of NaCl in the tables, however, represent only a small part of the total number of observations; discrimination was necessary to keep the size of the tabulations manageable. The physical properties of the evaporite minerals other than halite and sylvite have received only desultory attention of experiementalists, and appear in only a few tables. The

  15. Nanoscale investigation of the electrical properties in semiconductor polymer-carbon nanotube hybrid materials

    NASA Astrophysics Data System (ADS)

    Desbief, Simon; Hergué, Noémie; Douhéret, Olivier; Surin, Mathieu; Dubois, Philippe; Geerts, Yves; Lazzaroni, Roberto; Leclère, Philippe

    2012-03-01

    The morphology and electrical properties of hybrids of a semiconducting polymer (namely poly(3-hexylthiophene) P3HT) and carbon nanotubes are investigated at the nanoscale with a combination of Scanning Probe Microscopy techniques, i.e., Conductive Atomic Force Microscopy (C-AFM) and time-resolved Current Sensing Force Spectroscopy Atomic Force Microscopy (CSFS-AFM, or PeakForce TUNA™). This allows us to probe the electrical properties of the 15 nm wide P3HT nanofibers as well as the interface between the polymer and single carbon nanotubes. This is achieved by applying controlled, low forces on the tip during imaging, which allows a direct comparison between the morphology and the electrical properties at the nanometre scale.The morphology and electrical properties of hybrids of a semiconducting polymer (namely poly(3-hexylthiophene) P3HT) and carbon nanotubes are investigated at the nanoscale with a combination of Scanning Probe Microscopy techniques, i.e., Conductive Atomic Force Microscopy (C-AFM) and time-resolved Current Sensing Force Spectroscopy Atomic Force Microscopy (CSFS-AFM, or PeakForce TUNA™). This allows us to probe the electrical properties of the 15 nm wide P3HT nanofibers as well as the interface between the polymer and single carbon nanotubes. This is achieved by applying controlled, low forces on the tip during imaging, which allows a direct comparison between the morphology and the electrical properties at the nanometre scale. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11888b

  16. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide

    SciTech Connect

    Bao, Wei; Borys, Nicholas J.; Ko, Changhyun; Suh, Joonki; Fan, Wen; Thron, Andrew; Zhang, Yingjie; Buyanin, Alexander; Zhang, Jie; Cabrini, Stefano; Ashby, Paul D.; Weber-Bargioni, Alexander; Tongay, Sefaattin; Aloni, Shaul; Ogletree, D. Frank; Wu, Junqiao; Salmeron, Miquel B.; Schuck, P. James

    2015-08-13

    The ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices are two-dimensional monolayer transition metal dichalcogenide semiconductors. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. We use the ‘Campanile’ nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes. Moreover, synthetic monolayer MoS2 is found to be composed of two distinct optoelectronic regions: an interior, locally ordered but mesoscopically heterogeneous two-dimensional quantum well and an unexpected ~300-nm wide, energetically disordered edge region. Further, grain boundaries are imaged with sufficient resolution to quantify local exciton-quenching phenomena, and complimentary nano-Auger microscopy reveals that the optically defective grain boundary and edge regions are sulfur deficient. In conclusion, the nanoscale structure–property relationships established here are critical for the interpretation of edge- and boundary-related phenomena and the development of next-generation two-dimensional optoelectronic devices.

  17. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide

    DOE PAGES

    Bao, Wei; Borys, Nicholas J.; Ko, Changhyun; Suh, Joonki; Fan, Wen; Thron, Andrew; Zhang, Yingjie; Buyanin, Alexander; Zhang, Jie; Cabrini, Stefano; et al

    2015-08-13

    The ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices are two-dimensional monolayer transition metal dichalcogenide semiconductors. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. We use the ‘Campanile’ nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes. Moreover, synthetic monolayer MoS2 is found to be composed of two distinct optoelectronic regions: an interior, locally ordered but mesoscopically heterogeneous two-dimensional quantum well and an unexpected ~300-nm wide, energetically disorderedmore » edge region. Further, grain boundaries are imaged with sufficient resolution to quantify local exciton-quenching phenomena, and complimentary nano-Auger microscopy reveals that the optically defective grain boundary and edge regions are sulfur deficient. In conclusion, the nanoscale structure–property relationships established here are critical for the interpretation of edge- and boundary-related phenomena and the development of next-generation two-dimensional optoelectronic devices.« less

  18. Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Bao, Wei; Borys, Nicholas J.; Ko, Changhyun; Suh, Joonki; Fan, Wen; Thron, Andrew; Zhang, Yingjie; Buyanin, Alexander; Zhang, Jie; Cabrini, Stefano; Ashby, Paul D.; Weber-Bargioni, Alexander; Tongay, Sefaattin; Aloni, Shaul; Ogletree, D. Frank; Wu, Junqiao; Salmeron, Miquel B.; Schuck, P. James

    2015-08-01

    Two-dimensional monolayer transition metal dichalcogenide semiconductors are ideal building blocks for atomically thin, flexible optoelectronic and catalytic devices. Although challenging for two-dimensional systems, sub-diffraction optical microscopy provides a nanoscale material understanding that is vital for optimizing their optoelectronic properties. Here we use the `Campanile' nano-optical probe to spectroscopically image exciton recombination within monolayer MoS2 with sub-wavelength resolution (60 nm), at the length scale relevant to many critical optoelectronic processes. Synthetic monolayer MoS2 is found to be composed of two distinct optoelectronic regions: an interior, locally ordered but mesoscopically heterogeneous two-dimensional quantum well and an unexpected ~300-nm wide, energetically disordered edge region. Further, grain boundaries are imaged with sufficient resolution to quantify local exciton-quenching phenomena, and complimentary nano-Auger microscopy reveals that the optically defective grain boundary and edge regions are sulfur deficient. The nanoscale structure-property relationships established here are critical for the interpretation of edge- and boundary-related phenomena and the development of next-generation two-dimensional optoelectronic devices.

  19. Regenerator matrix physical property data

    NASA Technical Reports Server (NTRS)

    Fucinari, C. A.

    1980-01-01

    Among several cellular ceramic structures manufactured by various suppliers for regenerator application in a gas turbine engine, three have the best potential for achieving durability and performance objectives for use in gas turbines, Stirling engines, and waste heat recovery systems: (1) an aluminum-silicate sinusoidal flow passage made from a corrugated wate paper process; (2) an extruded isosceles triangle flow passage; and (3) a second generation matrix incorporating a square flow passage formed by an embossing process. Key physical and thermal property data for these configurations presented include: heat transfer and pressure drop characteristics, compressive strength, tensile strength and elasticity, thermal expansion characteristics, chanical attack, and thermal stability.

  20. Physical Properties of Bright Comets

    NASA Astrophysics Data System (ADS)

    Pittichová, J.; Meech, K. J.

    2002-09-01

    We will show preliminary results from a program of long-term observation of the dust coma activity of bright comets. One and half years of observation of 32 selected comets in B, V, R, I filters are used for the study of the physical properties and the dust activity of their comae at a range of heliocentric distances from 0.99 to 8.61 AU. This enables us to compare the activity of different cometary nuclei at similar solar radiation conditions. As shown in the Table, the selected comets belong to different cometary populations from the point of view of their active age (near parabolic orbits versus short-period orbits, outbursts of brightness, disruption of nuclei) and orbital parameters (the eccentricity from 0.04 to 1.01 AU, the perihelion distance from 0.34 to 8.24 AU). The knowledge of physical properties of cometary nuclei and coma are very important to our understanding of the environment in the outer solar system during the era of formation. The comet dataset of 1128 images will enable us to study thermal evolution of the small dust particles, their dynamical parameters and size distribution as a function of time and grain size at different heliocentric distances. Our future goal is to model the near-nucleus particle region using a Finston-Probstein dust model. Since our observations are still in progress at this time we will present only preliminary results of brightness and color changes for several selected bright comets.

  1. Nanoscale Mapping of Dielectric Properties of Nanomaterials from Kilohertz to Megahertz Using Ultrasmall Cantilevers.

    PubMed

    Cadena, Maria J; Sung, Seung Hyun; Boudouris, Bryan W; Reifenberger, Ronald; Raman, Arvind

    2016-04-26

    Electrostatic force microscopy (EFM) is often used for nanoscale dielectric spectroscopy, the measurement of local dielectric properties of materials as a function of frequency. However, the frequency range of atomic force microscopy (AFM)-based dielectric spectroscopy has been limited to a few kilohertz by the resonance frequency and noise of soft microcantilevers used for this purpose. Here, we boost the frequency range of local dielectric spectroscopy by 3 orders of magnitude from a few kilohertz to a few megahertz by developing a technique that exploits the high resonance frequency and low thermal noise of ultrasmall cantilevers (USCs). We map the frequency response of the real and imaginary components of the capacitance gradient (∂C(ω)/∂z) by using second-harmonic EFM and a theoretical model, which relates cantilever dynamics to the complex dielectric constant. We demonstrate the method by mapping the nanoscale dielectric spectrum of polymer-based materials for organic electronic devices. Beyond offering a powerful extension to AFM-based dielectric spectroscopy, the approach also allows the identification of electrostatic excitation frequencies which affords high dielectric contrast on nanomaterials.

  2. A nanoscale duplex precipitation approach for improving the properties of Fe-base alloys

    SciTech Connect

    Zhang, Zhongwu; Liu, C T; Wang, Xun-Li; Wen, Y. R.; Fujita, T.; Hirata, A.; Chen, M.W.; Miller, Michael K; Chen, Guang; Chin, Bryan

    2013-01-01

    The precipitate size and number density are important factors for tailoring the mechanical behaviors of nanoscale precipitate-hardened alloys. However during thermal aging, the precipitate size and number density change leading to either poor strength or high strength but significantly reduced ductility. Here we demonstrate, by producing nanoprecipitates with unusual duplex structures in a composition-optimized multicomponent precipitation-hardened alloy, a unique approach to improve the stability of the alloy against the effects of thermal aging and consequently change in the mechanical properties. Our study provides compelling experimental evidence that these nanoscale precipitates consist of a duplex structures with a Cu-enriched bcc core that is partially encased by a B2-ordered Ni(Mn,Al) phase. This duplex structure enables the precipitate size and number density to be independently optimized, provides a more complex obstacle for dislocation movement due to the ordering and an additional interphase interface, and yields a high yield strength alloy without sacrificing the ductility.

  3. Template synthesis of nanoscale materials using the membrane porosity

    NASA Astrophysics Data System (ADS)

    Piraux, L.; Dubois, S.; Demoustier-Champagne, S.

    1997-08-01

    The template strategy combined with electrodeposition techniques have been successfully used to produce nanoscale objects in the cylindrical pores of track-etched polycarbonate membranes. Using this method, nanometer-size metallic wires, conductive polymer nanotubules, superconducting nanowires and quasi-one-dimensional magnetic multilayers have been fabricated. These nanoscale materials exhibit physical properties different from those found in the bulk.

  4. [PHYSICAL PROPERTIES OF PLASTER BANDAGES].

    PubMed

    Antabak, Anko; Barisić, Branimir; Andabak, Matej; Bradić, Lucija; Brajcinović, Melita; Haramina, Tatjana; Haluzan, Damir; Fuchs, Nino; Durkovir, Selena; Curković, Selena; Luetić, Tomislav; Sisko, Jerko; Prlić, Ivica

    2015-01-01

    The physical properties of plaster bandages are a very important factor in achieving the basic functions of immobilization (maintaining bone fragments in the best possible position), which directly affects the speed and quality of fracture healing. This paper compares the differences between the physical properties of plaster bandages (mass, specific weight, drying rate, elasticity and strength) and records the differences in plaster modeling of fast bonding 10 cm wide plaster bandages, from three different manufacturers: Safix plus (Hartmann, Germany), Cellona (Lohman Rauscher, Austria) and Gipsan (Ivo Lola Ribar ltd., Croatia). Plaster tiles from ten layers of plaster, dimension 10 x 10 cm were made. The total number of tiles from each manufacturer was 48. The water temperature of 22 °C was used for the first 24 tiles and 34 'C was used for the remainder. The average specific weight of the original packaging was: Cellona (0.52 g/cm3), Gipsan (0.50 g/cm3), Safix plus (0.38 g/cm3). Three days after plaster tile modeling an average specific weight of the tiles was: Gipsan (1.15 g/cm3), Safix plus (1.00 g/cm3), Cellona (1.10 g/cm3). The average humidity of 50% for Safix plus and Cellona plaster tiles was recorded 18 hours after modeling, while for the Gipsan plaster tiles, this humidity value was seen after 48 hours. On the third day after plaster modeling the average humidity of the plaster tiles was 30% for Gipsan, 24% for Safix and 16% for Cellona. Cellona plaster tiles made with 34 °C water achieved the highest elasticity (11.75±3.18 MPa), and Gipsan plaster tiles made with 22 °C had the lowest (7.21±0.9 MPa). Cellona plaster tiles made with 34 °C water showed maximum material strength (4390±838 MPa), and Gipsan plaster tiles made with 22 °C water showed the lowest material strength (771±367 MPa). The rigidity and strength of Cellona and Gipsan plaster are higher in tiles made in warmer water, and for Safix plus are higher in tiles made in cooler water

  5. Fluorescence Ratiometric Properties Induced by Nanoparticle Plasmonics and Nanoscale Dye Dynamics

    PubMed Central

    2013-01-01

    Nanoscale transport of merocyanine 540 within/near the plasmon field of gold nanoparticles was recognized as an effective inducer of single-excitation dual-emission ratiometric properties. With a high concentration of the signal transducer (ammonium), a 700% increase in fluorescence was observed at the new red-shifted emission maximum, compared to a nanoparticle free sensor membrane. A previously nonrecognized isosbestic point is demonstrated at 581.4 ± 0.1 nm. The mechanism can be utilized for enhanced and simplified ratiometric optical chemical sensors and potentially for thin film engineering to make solar cells more effective and stable by a broader and more regulated absorption. PMID:23781159

  6. iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties.

    PubMed

    Chen, Nan; Reeja-Jayan, B; Liu, Andong; Lau, Jonathan; Dunn, Bruce; Gleason, Karen K

    2016-03-01

    A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed. PMID:26785633

  7. iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties.

    PubMed

    Chen, Nan; Reeja-Jayan, B; Liu, Andong; Lau, Jonathan; Dunn, Bruce; Gleason, Karen K

    2016-03-01

    A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed.

  8. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Klapetek, P.; Koenders, L.

    2011-09-01

    This special issue of Measurement Science and Technology presents selected contributions from the NanoScale 2010 seminar held in Brno, Czech Republic. It was the 5th Seminar on Nanoscale Calibration Standards and Methods and the 9th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized with the Czech Metrology Institute (CMI) and the Nanometrology Group of the Technical Committee-Length of EURAMET. There were two workshops that were integrated into NanoScale 2010: first a workshop presenting the results obtained in NANOTRACE, a European Metrology Research Project (EMRP) on displacement-measuring optical interferometers, and second a workshop about the European metrology landscape in nanometrology related to thin films, scanning probe microscopy and critical dimension. The aim of this workshop was to bring together developers, applicants and metrologists working in this field of nanometrology and to discuss future needs. For more information see www.co-nanomet.eu. The articles in this special issue of Measurement Science and Technology cover some novel scientific results. This issue can serve also as a representative selection of topics that are currently being investigated in the field of European and world-wide nanometrology. Besides traditional topics of dimensional metrology, like development of novel interferometers or laser stabilization techniques, some novel interesting trends in the field of nanometrology are observed. As metrology generally reflects the needs of scientific and industrial research, many research topics addressed refer to current trends in nanotechnology, too, focusing on traceability and improved measurement accuracy in this field. While historically the most studied standards in nanometrology were related to simple geometric structures like step heights or 1D or 2D gratings, now we are facing tasks to measure 3D structures and many unforeseen questions arising from interesting physical

  9. Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives.

    PubMed

    Guo, Gang; Shi, Qiwu; Luo, Yanbing; Fan, Rangrang; Zhou, Liangxue; Qian, Zhiyong; Yu, Jie

    2014-01-01

    This study investigated ageing-resistant properties of carboxyl-terminated polyester (polyethylene glycol terephthalate) composites modified with nanoscale titanium dioxide particles (nano-TiO2). The nano-TiO2 was pretreated by a dry coating method, with aluminate coupling agent as a functional grafting additive. The agglomeration resistance was evaluated, which exhibited significant improvement for the modified nanoparticles. Then, the effects of the modified nano-TiO2 on the crosslinking and ageing-resistant properties of the composites were studied. With a real-time Fourier transform infrared (FT-IR) measurement, the nano-TiO2 displayed promoting effect on the crosslinking of polyester resin with triglycidyl isocyanurate (TGIC) as crosslinking agent. Moreover, the gloss retention, colour aberration and the surface morphologies of the composites during accelerated UV ageing (1500 hours) were investigated. The results demonstrated much less degree of ageing degradation for the nanocomposites, indicating an important role of the nano-TiO2 in improving the ageing-resistant properties of synthetic polymer composites. PMID:24872802

  10. Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives.

    PubMed

    Guo, Gang; Shi, Qiwu; Luo, Yanbing; Fan, Rangrang; Zhou, Liangxue; Qian, Zhiyong; Yu, Jie

    2014-01-01

    This study investigated ageing-resistant properties of carboxyl-terminated polyester (polyethylene glycol terephthalate) composites modified with nanoscale titanium dioxide particles (nano-TiO2). The nano-TiO2 was pretreated by a dry coating method, with aluminate coupling agent as a functional grafting additive. The agglomeration resistance was evaluated, which exhibited significant improvement for the modified nanoparticles. Then, the effects of the modified nano-TiO2 on the crosslinking and ageing-resistant properties of the composites were studied. With a real-time Fourier transform infrared (FT-IR) measurement, the nano-TiO2 displayed promoting effect on the crosslinking of polyester resin with triglycidyl isocyanurate (TGIC) as crosslinking agent. Moreover, the gloss retention, colour aberration and the surface morphologies of the composites during accelerated UV ageing (1500 hours) were investigated. The results demonstrated much less degree of ageing degradation for the nanocomposites, indicating an important role of the nano-TiO2 in improving the ageing-resistant properties of synthetic polymer composites.

  11. Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives

    NASA Astrophysics Data System (ADS)

    Guo, Gang; Shi, Qiwu; Luo, Yanbing; Fan, Rangrang; Zhou, Liangxue; Qian, Zhiyong; Yu, Jie

    2014-05-01

    This study investigated ageing-resistant properties of carboxyl-terminated polyester (polyethylene glycol terephthalate) composites modified with nanoscale titanium dioxide particles (nano-TiO2). The nano-TiO2 was pretreated by a dry coating method, with aluminate coupling agent as a functional grafting additive. The agglomeration resistance was evaluated, which exhibited significant improvement for the modified nanoparticles. Then, the effects of the modified nano-TiO2 on the crosslinking and ageing-resistant properties of the composites were studied. With a real-time Fourier transform infrared (FT-IR) measurement, the nano-TiO2 displayed promoting effect on the crosslinking of polyester resin with triglycidyl isocyanurate (TGIC) as crosslinking agent. Moreover, the gloss retention, colour aberration and the surface morphologies of the composites during accelerated UV ageing (1500 hours) were investigated. The results demonstrated much less degree of ageing degradation for the nanocomposites, indicating an important role of the nano-TiO2 in improving the ageing-resistant properties of synthetic polymer composites.

  12. Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives

    PubMed Central

    2014-01-01

    This study investigated ageing-resistant properties of carboxyl-terminated polyester (polyethylene glycol terephthalate) composites modified with nanoscale titanium dioxide particles (nano-TiO2). The nano-TiO2 was pretreated by a dry coating method, with aluminate coupling agent as a functional grafting additive. The agglomeration resistance was evaluated, which exhibited significant improvement for the modified nanoparticles. Then, the effects of the modified nano-TiO2 on the crosslinking and ageing-resistant properties of the composites were studied. With a real-time Fourier transform infrared (FT-IR) measurement, the nano-TiO2 displayed promoting effect on the crosslinking of polyester resin with triglycidyl isocyanurate (TGIC) as crosslinking agent. Moreover, the gloss retention, colour aberration and the surface morphologies of the composites during accelerated UV ageing (1500 hours) were investigated. The results demonstrated much less degree of ageing degradation for the nanocomposites, indicating an important role of the nano-TiO2 in improving the ageing-resistant properties of synthetic polymer composites. PMID:24872802

  13. Cellular Response to Non-contacting Nanoscale Sublayer: Cells Sense Several Nanometer Mechanical Property.

    PubMed

    Azuma, Tomoyuki; Teramura, Yuji; Takai, Madoka

    2016-05-01

    Cell adhesion is influenced not only from the surface property of materials but also from the mechanical properties of the nanometer sublayer just below the surface. In this study, we fabricated a well-defined diblock polymer brush composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-aminoethyl methacrylate (AEMA). The underlying layer of poly(MPC) is a highly viscous polymer, and the surface layer of poly(AEMA) is a cell-adhesive cationic polymer. The adhesion of L929 mouse fibroblasts was examined on the diblock polymer brush to see the effect of a non-contacting underlying polymer layer on the cell-adhesion behavior. Cells could sense the viscoelasticity of the underlying layers at the nanometer level, although the various fabricated diblock polymer brushes had the same surface property and the functional group. Thus, we found a new factor which could control cell spread at the nanometer level, and this insight would be important to design nanoscale biomaterials and interfaces. PMID:27064435

  14. Physical properties and mantle dynamics

    SciTech Connect

    Shankland, T.J.; Johnson, P.A.; McCall, K.R.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Because planetary interiors are remote, laboratory methods and associated theory are an essential step for interpreting geophysical measurements in terms of quantities that are needed for understanding Earth--temperature, composition, stress state, history, and hazards. One objective is the study of minerals and rocks as materials using experimental methods; another is to develop new methods, as in high pressure research, codes for computation in rock/soil physics, or nuclear-based analysis. Accomplishments include developing a single-crystal x-ray diffraction apparatus with application to materials at extremely high pressure and temperature; P-V-T equations of state and seismic velocity measurements for understanding the composition of Earth`s outer 1,000 km; creating computational tools to explain complex stress-strain histories of rocks; and measuring tungsten/thorium ratios W/Th that agree with the hypothesis that Earth accreted heterogeneously. Work performed in this project applies to geosciences, geothermal energy, mineral and rock properties, seismic detection, and isotope dating.

  15. John H. Dillon Medal Talk: Protein Fibrils, Polymer Physics: Encounter at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Mezzenga, Raffaele

    2011-03-01

    Aggregation of proteins is central to many aspects of daily life, ranging from blood coagulation, to eye cataract formation disease, food processing, or neurodegenerative infections. In particular, the physical mechanisms responsible for amyloidosis, the irreversible fibril formation of various proteins implicated in protein misfolding disorders such as Alzheimer, Creutzfeldt-Jakob or Huntington's diseases, have not yet been fully elucidated. In this talk I will discuss how polymer physics and colloidal science concepts can be used to reveal very useful information on the formation, structure and properties of amyloid protein fibrils. I will discuss their physical properties at various length scales, from their collective liquid crystalline behavior in solution to their structural features at the single molecule length scale and show how polymer science notions can shed a new light on these interesting systems. 1) ``Understanding amyloid aggregation by statistical analysis of atomic force microscopy images'' J. Adamcik, J.-M. Jung, J. Flakowski, P. De Los Rios, G. Dietler and R. Mezzenga, Nature nanotechnology, 5, 423 (2010)

  16. Dependence of nanoscale friction and adhesion properties of articular cartilage on contact load.

    PubMed

    Chan, S M T; Neu, C P; Komvopoulos, K; Reddi, A H

    2011-04-29

    Boundary lubrication of articular cartilage by conformal, molecularly thin films reduces friction and adhesion between asperities at the cartilage-cartilage contact interface when the contact conditions are not conducive to fluid film lubrication. In this study, the nanoscale friction and adhesion properties of articular cartilage from typical load-bearing and non-load-bearing joint regions were studied in the boundary lubrication regime under a range of physiological contact pressures using an atomic force microscope (AFM). Adhesion of load-bearing cartilage was found to be much lower than that of non-load-bearing cartilage. In addition, load-bearing cartilage demonstrated steady and low friction coefficient through the entire load range examined, whereas non-load-bearing cartilage showed higher friction coefficient that decreased nonlinearly with increasing normal load. AFM imaging and roughness calculations indicated that the above trends in the nanotribological properties of cartilage are not due to topographical (roughness) differences. However, immunohistochemistry revealed consistently higher surface concentration of boundary lubricant at load-bearing joint regions. The results of this study suggest that under contact conditions leading to joint starvation from fluid lubrication, the higher content of boundary lubricant at load-bearing cartilage sites preserves synovial joint function by minimizing adhesion and wear at asperity microcontacts, which are precursors for tissue degeneration.

  17. Electrical and Optical Properties of CeNi5 Nanoscale Films.

    PubMed

    Todoran, Radu; Todoran, Daniela; Racolta, Dania; Szakács, Zsolt

    2016-12-01

    Rare earth compounds are interesting from both a theoretical point of view and for their applications. That is the reason why determining their optical and electrical properties deserves special attention. In this article, we present the conditions we obtained homogenous CeNi5 thin films of nanometer thicknesses. To achieve this goal, our method of choice was laser-induced vaporization, using short and modulated impulses, with electro-optical tuning for the quality factor. The layers that were deposited at a single laser burst had thicknesses between 1.5 and 2.5 nm, depending on the geometry of the experimental setup.Structural and compositional studies of the nanoscale films were made using XRD. The temperature dependence of electrical conductivity was also determined. The following optical properties of the specimens were computed using the Kramers-Krönig framework and discussed: absolute reflection and transmission coefficients for a single wavelength and relative ones for the wide UV-VIS-IR spectra, spectral dependence of the refractive index, and extinction coefficient as real and imaginary parts of the complex refractive index. The valence band studies were made with X-ray photoelectron spectroscopy. All these determinations were well correlated and permitted the evaluation of the energy densities of states in the deeper bands, near the Fermi energy, and at the surface states. PMID:27184966

  18. Viscoelastic nanoscale properties of cuticle contribute to the high-pass properties of spider vibration receptor (Cupiennius salei Keys).

    PubMed

    McConney, Michael E; Schaber, Clemens F; Julian, Michael D; Barth, Friedrich G; Tsukruk, Vladimir V

    2007-12-22

    Atomic force microscopy (AFM) and surface force spectroscopy were applied in live spiders to their joint pad material located distal of the metatarsal lyriform organs, which are highly sensitive vibration sensors. The surface topography of the material is sufficiently smooth to probe the local nanomechanical properties with nanometre elastic deflections. Nanoscale loads were applied in the proximad direction on the distal joint region simulating the natural stimulus situation. The force curves obtained indicate the presence of a soft, liquid-like epicuticular layer (20-40 nm thick) above the pad material, which has much higher stiffness. The Young modulus of the pad material is close to 15 MPa at low frequencies, but increases rapidly with increasing frequencies approximately above 30 Hz to approximately 70 MPa at 112 Hz. The adhesive forces drop sharply by about 40% in the same frequency range. The strong frequency dependence of the elastic modulus indicates the viscoelastic nature of the pad material, its glass transition temperature being close to room temperature (25 +/- 2 degrees C) and, therefore, to its maximized energy absorption from low-frequency mechanical stimuli. These viscoelastic properties of the cuticular pad are suggested to be at least partly responsible for the high-pass characteristics of the vibration sensor's physiological properties demonstrated earlier.

  19. Nanoscale 2013

    NASA Astrophysics Data System (ADS)

    Koenders, Ludger; Ducourtieux, Sebastien

    2014-04-01

    The accurate determination of the properties of micro- and nano-structures is essential in research and development. It is also a prerequisite in process control and quality assurance in industry. In most cases, especially at the nanometer range, knowledge of the dimensional properties of structures is the fundamental base, to which further physical properties are linked. Quantitative measurements presuppose reliable and stable instruments, suitable measurement procedures as well as calibration artifacts and methods. This special issue of Measurement Science and Technology presents selected contributions from the NanoScale 2013 seminar held in Paris, France, on 25 and 26 April. It was the 6th Seminar on NanoScale Calibration Standards and Methods and the 10th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized with the Nanometrology Group of the Technical Committee-Length of EURAMET, the Physikalisch-Technische Bundesanstalt and the Laboratoire National de Métrologie et d'Essais. Three satellite meetings related to nanometrology were coupled to the seminar. The first one was an open Symposium on Scanning Probe Microscopy Standardization organized by the ISO/TC 201/SC9 technical committee. The two others were specific meetings focused on two European Metrology Research Projects funded by the European Association of National Metrology Institutes (EURAMET) (see www.euramet.org), the first one focused on the improvement of the traceability for high accuracy devices dealing with sub-nm length measurement and implementing optical interferometers or capacitive sensors (JRP SIB08 subnano), the second one aiming to develop a new metrological traceability for the measurement of the mechanical properties of nano-objects (JRP NEW05 MechProNo). More than 100 experts from industry, calibration laboratories and metrology institutes from around the world joined the NanoScale 2013 Seminar to attend 23 oral and 64 poster

  20. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation.

    PubMed

    Kumar, Anil; Chen, Fei; Mozhi, Anbu; Zhang, Xu; Zhao, Yuanyuan; Xue, Xiangdong; Hao, Yanli; Zhang, Xiaoning; Wang, Paul C; Liang, Xing-Jie

    2013-09-21

    The advent of nanotechnology has reignited interest in the field of pharmaceutical science for the development of nanomedicine. Nanomedicinal formulations are nanometer-sized carrier materials designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Nanomedicine is a new approach to deliver the pharmaceuticals through different routes of administration with safer and more effective therapies compared to conventional methods. To date, various kinds of nanomaterials have been developed over the years to make delivery systems more effective for the treatment of various diseases. Even though nanomaterials have significant advantages due to their unique nanoscale properties, there are still significant challenges in the improvement and development of nanoformulations with composites and other materials. Here in this review, we highlight the nanomedicinal formulations aiming to improve the balance between the efficacy and the toxicity of therapeutic interventions through different routes of administration and how to design nanomedicine for safer and more effective ways to improve the treatment quality. We also emphasize the environmental and health prospects of nanomaterials for human health care.

  1. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Chen, Fei; Mozhi, Anbu; Zhang, Xu; Zhao, Yuanyuan; Xue, Xiangdong; Hao, Yanli; Zhang, Xiaoning; Wang, Paul C.; Liang, Xing-Jie

    2013-08-01

    The advent of nanotechnology has reignited interest in the field of pharmaceutical science for the development of nanomedicine. Nanomedicinal formulations are nanometer-sized carrier materials designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Nanomedicine is a new approach to deliver the pharmaceuticals through different routes of administration with safer and more effective therapies compared to conventional methods. To date, various kinds of nanomaterials have been developed over the years to make delivery systems more effective for the treatment of various diseases. Even though nanomaterials have significant advantages due to their unique nanoscale properties, there are still significant challenges in the improvement and development of nanoformulations with composites and other materials. Here in this review, we highlight the nanomedicinal formulations aiming to improve the balance between the efficacy and the toxicity of therapeutic interventions through different routes of administration and how to design nanomedicine for safer and more effective ways to improve the treatment quality. We also emphasize the environmental and health prospects of nanomaterials for human health care.

  2. Nanoscale characterization and magnetic property of NiCoCu/Cu multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Qi, Kuo; Li, Xinghua; Zhang, Hong; Wang, Li; Xue, Desheng; Zhang, Haoli; Zhou, Baofan; Mellors, Nigel J.; Peng, Yong

    2012-12-01

    NiCo/Cu multilayer nanowires have been successfully fabricated by a pulse electrodeposition technique using anodic aluminum oxide templates, and their chemistry, crystal structure and magnetic properties characterized at the nanoscale. It was found that each individual nanowire had a regular periodic structure. The NiCo/Cu nanowires also displayed a continuous morphology, smooth surface and polycrystalline fcc structure. EDX elemental mappings confirmed the presence of nickel, cobalt and copper, which appear clearly with a periodic distribution throughout the samples. Both the NiCo and Cu layers were polycrystalline and the average length of the interlayers between NiCo and Cu layers was approximately 3-4 nm. The NiCo/Cu nanowire arrays had an easy axis parallel to the length of wire and exhibited a curling magnetization reversal mechanism. This study highlights the basis morphological, structural and chemical information for NiCoCu/Cu multilayer nanowires, which is critical for their applications in nanodevices and nanoelectronics.

  3. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation

    PubMed Central

    Mozhi, Anbu; Zhang, Xu; Zhao, Yuanyuan; Xue, Xiangdong; Hao, Yanli; Zhang, Xiaoning; Wang, Paul C.; Liang, Xing-Jie

    2014-01-01

    The advent of nanotechnology has reignited interest in the field of pharmaceutical science for the development of nanomedicine. Nanomedicinal formulations are nanometer-sized carrier materials designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Nanomedicine is a new approach to deliver the pharmaceuticals through different routes of administration with safer and more effective therapies compared to conventional methods. To date, various kinds of nanomaterials have been developed over the years to make delivery systems more effective for the treatment of various diseases. Even though nanomaterials have significant advantages due to their unique nanoscale properties, there are still significant challenges in the improvement and development of nanoformulations with composites and other materials. Here in this review, we highlight the nanomedicinal formulations aiming to improve the balance between the efficacy and the toxicity of therapeutic interventions through different routes of administration and how to design nanomedicine for safer and more effective ways to improve the treatment quality. We also emphasize the environmental and health prospects of nanomaterials for human health care. PMID:23860639

  4. Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Fontaine, Thierry; Latgé, Jean-Paul; Dufrêne, Yves F.

    2015-09-01

    Many fungal pathogens produce cell surface polysaccharides that play essential roles in host-pathogen interactions. In Aspergillus fumigatus, the newly discovered polysaccharide galactosaminogalactan (GAG) mediates adherence to a variety of substrates through molecular mechanisms that are poorly understood. Here we use atomic force microscopy to unravel the localization and adhesion of GAG on living fungal cells. Using single-molecule imaging with tips bearing anti-GAG antibodies, we found that GAG is massively exposed on wild-type (WT) germ tubes, consistent with the notion that this glycopolymer is secreted by the mycelium of A. fumigatus, while it is lacking on WT resting conidia and on germ tubes from a mutant (Δuge3) deficient in GAG. Imaging germ tubes with tips bearing anti-β-glucan antibodies shows that exposure of β-glucan is strongly increased in the Δuge3 mutant, indicating that this polysaccharide is masked by GAG during hyphal growth. Single-cell force measurements show that expression of GAG on germ tubes promotes specific adhesion to pneumocytes and non-specific adhesion to hydrophobic substrates. These results provide a molecular foundation for the multifunctional adhesion properties of GAG, thus suggesting it could be used as a potential target in anti-adhesion therapy and immunotherapy. Our methodology represents a powerful approach for characterizing the nanoscale organization and adhesion of cell wall polysaccharides during fungal morphogenesis, thereby contributing to increase our understanding of their role in biofilm formation and immune responses.

  5. Physical Properties of Supraglacial Debris on Mars

    NASA Astrophysics Data System (ADS)

    Baker, D. M. H.; Carter, L. M.

    2016-09-01

    The thickness and physical properties of surface debris preserving glacial ice in the mid-latitudes of Mars is assessed using crater morphology and radar sounding data. We suggest that this debris layer is much thicker than has been hypothesized.

  6. Physical properties of cumin and caraway seeds

    NASA Astrophysics Data System (ADS)

    Zare, D.; Bakhshipour, A.; Chen, G.

    2013-12-01

    Physical properties of cumin and caraway seeds were measured and compared at constant moisture content of 7.5% w.b. The average thousand mass of grain, mean length, mean width, mean thickness, equivalent diameter, geometric mean diameter, surface area, volume, sphericity, aspect ratio, true density, bulk density and porosity were measured for cumin and caraway. There are significant differences (p<0.01) in most physical properties of cumin and caraway, except porosity and sphericity

  7. Lorentz contact resonance spectroscopy for nanoscale characterisation of structural and mechanical properties of biological, dental and pharmaceutical materials.

    PubMed

    Khanal, Dipesh; Dillon, Eoghan; Hau, Herman; Fu, Dong; Ramzan, Iqbal; Chrzanowski, Wojciech

    2015-12-01

    Scanning probe microscopy has been widely used to obtain topographical information and to quantify nanostructural properties of different materials. Qualitative and quantitative imaging is of particular interest to study material-material interactions and map surface properties on a nanoscale (i.e. stiffness and viscoelastic properties). These data are essential for the development of new biomedical materials. Currently, there are limited options to map viscoelastic properties of materials at nanoscale and at high resolutions. Lorentz contact resonance (LCR) is an emerging technique, which allows mapping viscoelasticity of samples with stiffness ranging from a few hundred Pa up to several GPa. Here we demonstrate the applicability of LCR to probe and map the viscoelasticity and stiffness of 'soft' (biological sample: cell treated with nanodiamond), 'medium hard' (pharmaceutical sample: pMDI canister) and 'hard' (human teeth enamel) specimens. The results allowed the identification of nanodiamond on the cells and the qualitative assessment of its distribution based on its nanomechanical properties. It also enabled mapping of the mechanical properties of the cell to demonstrate variability of these characteristics in a single cell. Qualitative imaging of an enamel sample demonstrated variations of stiffness across the specimen and precise identification of enamel prisms (higher stiffness) and enamel interrods (lower stiffness). Similarly, mapping of the pMDI canister wall showed that drug particles were adsorbed to the wall. These particles showed differences in stiffness at nanoscale, which suggested variations in surface composition-multiphasic material. LCR technique emerges as a valuable tool for probing viscoelasticity of samples of varying stiffness's. PMID:26518012

  8. Lorentz contact resonance spectroscopy for nanoscale characterisation of structural and mechanical properties of biological, dental and pharmaceutical materials.

    PubMed

    Khanal, Dipesh; Dillon, Eoghan; Hau, Herman; Fu, Dong; Ramzan, Iqbal; Chrzanowski, Wojciech

    2015-12-01

    Scanning probe microscopy has been widely used to obtain topographical information and to quantify nanostructural properties of different materials. Qualitative and quantitative imaging is of particular interest to study material-material interactions and map surface properties on a nanoscale (i.e. stiffness and viscoelastic properties). These data are essential for the development of new biomedical materials. Currently, there are limited options to map viscoelastic properties of materials at nanoscale and at high resolutions. Lorentz contact resonance (LCR) is an emerging technique, which allows mapping viscoelasticity of samples with stiffness ranging from a few hundred Pa up to several GPa. Here we demonstrate the applicability of LCR to probe and map the viscoelasticity and stiffness of 'soft' (biological sample: cell treated with nanodiamond), 'medium hard' (pharmaceutical sample: pMDI canister) and 'hard' (human teeth enamel) specimens. The results allowed the identification of nanodiamond on the cells and the qualitative assessment of its distribution based on its nanomechanical properties. It also enabled mapping of the mechanical properties of the cell to demonstrate variability of these characteristics in a single cell. Qualitative imaging of an enamel sample demonstrated variations of stiffness across the specimen and precise identification of enamel prisms (higher stiffness) and enamel interrods (lower stiffness). Similarly, mapping of the pMDI canister wall showed that drug particles were adsorbed to the wall. These particles showed differences in stiffness at nanoscale, which suggested variations in surface composition-multiphasic material. LCR technique emerges as a valuable tool for probing viscoelasticity of samples of varying stiffness's.

  9. Material properties and applications of blended organic thin films with nanoscale domains deposited by RIR-MAPLE

    NASA Astrophysics Data System (ADS)

    Stiff-Roberts, Adrienne D.; McCormick, Ryan D.; Ge, Wangyao

    2015-03-01

    Resonant-infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been used to deposit blended, organic thin-films with nanoscale domain sizes of constituent polymers, small molecules, or colloidal nanoparticles. In the emulsion-based RIR-MAPLE process, the target contains a nonpolar, organic solvent phase and a polar, water phase. The emulsion properties have a direct impact on the nanoscale morphology of single-component organic thin films, while the morphology of blended, organic thin films also depends on the RIR-MAPLE deposition mode. In addition to these fundamental aspects, applications of blended organic films (organic solar cells, anti-reflection coatings, and multi-functional surfaces) deposited by emulsion-based RIR-MAPLE are presented. Importantly, domain sizes in the blended films are critical to thin-film functionality.

  10. Nanoscale Properties of Rocks and Subduction Zone Rheology: Inferences for the Mechanisms of Deep Earthquakes

    NASA Astrophysics Data System (ADS)

    Riedel, M. R.

    2007-12-01

    Grain boundaries are the key for the understanding of mineral reaction kinetics. More generally, nanometer scale processes involved in breaking and establishing bonds at reaction sites determine how and at which rate bulk rock properties change in response to external tectonic forcing and possibly feed back into various geodynamic processes. A particular problem is the effects of grain-boundary energy on the kinetics of the olivine-spinel phase transformation in subducting slabs. Slab rheology is affected in many ways by this (metastable) mineral phase change. Sluggish kinetics due to metastable hindrance is likely to cause particular difficulties, because of possible strong non-linear feedback loops between strain-rate and change of creep properties during transformation. In order to get these nanoscale properties included into thermo-mechanical models, reliable kinetic data is required. The measurement of grain-boundary energies is, however, a rather difficult problem. Conventional methods of grain boundary surface tension measurement include (a) equilibrium angles at triple junction (b) rotating ball method (c) thermal groove method, and others (Gottstein & Shvindlerman, 1999). Here I suggest a new method that allows for the derivation of grain-boundary energies for an isochemical phase transformation based on experimental (in-situ) kinetic data in combination with a corresponding dynamic scaling law (Riedel and Karato, 1997). The application of this method to the olivine-spinel phase transformation in subducting slabs provides a solution to the extrapolation problem of measured kinetic data: Any kinetic phase boundary measured at the laboratory time scale can be "scaled" to the correct critical isotherm at subduction zones, under experimentelly "forbidden" conditions (Liou et al., 2000). Consequences for the metastability hypothesis that relates deep seismicity with olivine metastability are derived and discussed. References: Gottstein G, Shvindlerman LS (1999

  11. The trinucleons: Physical observables and model properties

    SciTech Connect

    Gibson, B.F.

    1992-01-01

    Our progress in understanding the properties of {sup 3}H and {sup 3}He in terms of a nonrelativistic Hamiltonian picture employing realistic nuclear forces is reviewed. Trinucleon model properties are summarized for a number of contemporary force models, and predictions for physical observables are presented. Disagreement between theoretical model results and experimental results are highlighted.

  12. The trinucleons: Physical observables and model properties

    SciTech Connect

    Gibson, B.F.

    1992-05-01

    Our progress in understanding the properties of {sup 3}H and {sup 3}He in terms of a nonrelativistic Hamiltonian picture employing realistic nuclear forces is reviewed. Trinucleon model properties are summarized for a number of contemporary force models, and predictions for physical observables are presented. Disagreement between theoretical model results and experimental results are highlighted.

  13. Structure and physical properties of silkworm cocoons

    PubMed Central

    Chen, Fujia; Porter, David; Vollrath, Fritz

    2012-01-01

    Silkworm cocoons have evolved a wide range of different structures and combinations of physical and chemical properties in order to cope with different threats and environmental conditions. We present our observations and measurements on 25 diverse types of cocoons in a first attempt to correlate physical properties with the structure and morphology of the cocoons. These two architectural parameters appear to be far more important than the material properties of the silk fibres themselves. We consider tensile and compressive mechanical properties and gas permeation of the cocoon walls, and in each case identify mechanisms or models that relate these properties to cocoon structure, usually based upon non-woven fibre composites. These properties are of relevance also for synthetic non-woven composite materials and our studies will help formulate bio-inspired design principles for new materials. PMID:22552916

  14. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    SciTech Connect

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  15. Physical Properties of Centaur Objects

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Centaurs are objects in unstable orbits that cross the orbits of the giant planets. They are presumed to be recent additions to the planetary zone of the Solar System, having been dynamically perturbed from the Kulper Disk by the gravitational action of Neptune. Telescopic observations of Centaurs are important because they give us a view of the composition (and in some cases cometary activity) of large bodies that are normally to far from the Sun to be studied in detail. This paper reports on physical observations, primarily through spectroscopy, of the compositions of a small number of Centaurs that have been studied to date. In particular, the composition of 5145 Pholus is reviewed, following the published work of Crulkshank et al., in which compositional models that fit the spectrum well included H2O ice, the organic solid Titan tholin, a light hydrocarbon ice (e.g., CH3OH), the silicate mineral olivine, and amorphous carbon. The Centaur 1997 CU(26) shows evidence for H2O ice, but nothing else is yet identified.

  16. Physical characterization of neurocatheter performance in a brain phantom gelatin with nanoscale porosity: steady-state and oscillatory flows

    NASA Astrophysics Data System (ADS)

    Bauman, M. A.; Gillies, G. T.; Raghavan, R.; Brady, M. L.; Pedain, C.

    2004-01-01

    An agarose gelatin having nanoscale transport properties similar to those of in vivo mammalian brain was employed as a surrogate for living brain tissue in the evaluation of infusion therapy protocols and neurocatheters to be used in the treatment of brain tumours. The catheters under study were a polyimide tube of 950 µm outer diameter (OD) and 750 µm inner diameter (ID), and a silicone tube of 2.5 mm OD and 1.25 mm ID. From the pressure profiles that were measured during infusions of a solution of Bromphenol Blue dye into this gel, we infer that forces on the order of 0.1 fN were driving the solute molecules through the {\\approx } 200 nm intramatrix voids in the gel at rates of {\\approx } 10\

  17. Self-assembly and physical properties of atomic aggregates

    NASA Astrophysics Data System (ADS)

    Berber, Savas

    In this Thesis, I present a study of nanoscaled atomic aggregates such as fullerenes, nanotubes, diamondoids, and related materials. Nanotubes and fullerenes, which could be formed of any layered material, show unusual physical properties due to their lower dimensionality and nanometer size. I have investigated the microscopic self-assembly mechanisms and the physical properties of these nanoscale atomic aggregates through computer simulations primarily by using molecular dynamics simulations combined with structure optimization and total energy calculations. First, I determined the stability, optimum geometry and electronic properties of nanometer-sized capped graphitic cones, called "nanohorns". My main result, simulated scanning tunneling microscopy images of the various structures at different bias voltages, indicate a net electron transfer towards the pentagon vertex sites. Next, I investigated the absorption of fullerenes in a nanotube during a hierarchical self-assembly of "nanopeapods". I found the absorption through a defect to be significantly more efficient than the end-on absorption. I also investigated the energetics and detailed fusion mechanism of fullerenes inside a carbon nanotube. I found that fullerenes are pulled in by a "capillary" force, which yields an effective GPa pressure. Fusion of fullerenes continues along the minimum energy path as a sequence of Stone-Wales transformations. I have further investigated the microscopic dislocation mechanism leading to structural transformations in nanostructures. In particular, I studied the relative stability and the conversion mechanism between multi-wall carbon nanotubes and graphitic scrolls. I postulated a zipper-like mechanism, which converts a scroll to the more stable multiwall nanotube. I also found this transformation to proceed very efficiently due to the unusually low associated activation barrier. A further study related to defects in nanoscale systems involves the response of defective

  18. Physical properties of hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Waite, W. F.; Santamarina, J. C.; Cortes, D. D.; Dugan, B.; Espinoza, D. N.; Germaine, J.; Jang, J.; Jung, J. W.; Kneafsey, T. J.; Shin, H.; Soga, K.; Winters, W. J.; Yun, T.-S.

    2009-12-01

    Methane gas hydrates, crystalline inclusion compounds formed from methane and water, are found in marine continental margin and permafrost sediments worldwide. This article reviews the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate-bearing sediments. Formation phenomena include pore-scale habit, solubility, spatial variability, and host sediment aggregate properties. Physical properties include thermal properties, permeability, electrical conductivity and permittivity, small-strain elastic P and S wave velocities, shear strength, and volume changes resulting from hydrate dissociation. The magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrate-bearing sediments to changes in mechanical, thermal, or chemical boundary conditions. These predictions are vital for mitigating borehole, local, and regional slope stability hazards; optimizing recovery techniques for extracting methane from hydrate-bearing sediments or sequestering carbon dioxide in gas hydrate; and evaluating the role of gas hydrate in the global carbon cycle.

  19. Physical Properties of Gas Hydrates: A Review

    DOE PAGES

    Gabitto, Jorge F.; Tsouris, Costas

    2010-01-01

    Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16   m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less

  20. Physical Properties of Gas Hydrates: A Review

    SciTech Connect

    Gabitto, Jorge; Tsouris, Costas

    2010-01-01

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  1. Characterizing Nanoscale Transient Communication.

    PubMed

    Chen, Yifan; Anwar, Putri Santi; Huang, Limin; Asvial, Muhamad

    2016-04-01

    We consider the novel paradigm of nanoscale transient communication (NTC), where certain components of the small-scale communication link are physically transient. As such, the transmitter and the receiver may change their properties over a prescribed lifespan due to their time-varying structures. The NTC systems may find important applications in the biomedical, environmental, and military fields, where system degradability allows for benign integration into life and environment. In this paper, we analyze the NTC systems from the channel-modeling and capacity-analysis perspectives and focus on the stochastically meaningful slow transience scenario, where the coherence time of degeneration Td is much longer than the coding delay Tc. We first develop novel and parsimonious models to characterize the NTC channels, where three types of physical layers are considered: electromagnetism-based terahertz (THz) communication, diffusion-based molecular communication (DMC), and nanobots-assisted touchable communication (TouchCom). We then revisit the classical performance measure of ϵ-outage channel capacity and take a fresh look at its formulations in the NTC context. Next, we present the notion of capacity degeneration profile (CDP), which describes the reduction of channel capacity with respect to the degeneration time. Finally, we provide numerical examples to demonstrate the features of CDP. To the best of our knowledge, the current work represents a first attempt to systematically evaluate the quality of nanoscale communication systems deteriorating with time.

  2. Exploring Nanoscale Electrical Properties of CuO-Graphene Based Hybrid Interfaced Memory Device by Conductive Atomic Force Microscopy.

    PubMed

    Singh, Bharti; Mehta, B R; Varandani, Deepak; Savu, Andreea Veronica; Brugger, Juergen

    2016-04-01

    The phenomenon of resistive switching is based on nanoscale changes in the electrical properties of the interface. In the present study, conductive atomic force microscope based nanoscale measurements of copper oxide (CuO-multilayer graphene (MLG) hybrid interface based devices have been carried out to understand changes in the electrical properties during resistive switching of the Ti-CuO/MLG-Cu memory cells having different dimensions fabricated on the same substrate using stencil lithography technique. The dependence of resistive switching characteristics in LRS and HRS and current level of the conductive filaments (CF) on the electrode area have been studied. As the device dimension is reduced, the filamentary contribution is enhanced in comparison to the background contribution, resulting in'an increase in the current density ratio between LRS and HRS. It is also observed that as the device dimension is decreased from 150 to 25 µm, the filament size decreases from 95 nm to 20 nm, respectively, which causes a decrease in the reset current and reset voltage. The results of the nanoscale CAFM measurements have shown a good correlation with the switching parameters obtained by the macroscale pad I-V measurements, thereby, suggesting the origin of resistive switching is due to the formation and rupture of an entity called filament, whose dimension is in nanorange. It is observed that changes in the electrical properties of the overall interface layer along with changes in the electrical conductivity of these filaments contribute towards resistive switching phenomenon. This study suggests that a significant reduction of reset current can be achieved by decreasing the memory device dimensions. PMID:27451764

  3. Dynamic molecular crystals with switchable physical properties.

    PubMed

    Sato, Osamu

    2016-06-21

    The development of molecular materials whose physical properties can be controlled by external stimuli - such as light, electric field, temperature, and pressure - has recently attracted much attention owing to their potential applications in molecular devices. There are a number of ways to alter the physical properties of crystalline materials. These include the modulation of the spin and redox states of the crystal's components, or the incorporation within the crystalline lattice of tunable molecules that exhibit stimuli-induced changes in their molecular structure. A switching behaviour can also be induced by changing the molecular orientation of the crystal's components, even in cases where the overall molecular structure is not affected. Controlling intermolecular interactions within a molecular material is also an effective tool to modulate its physical properties. This Review discusses recent advances in the development of such stimuli-responsive, switchable crystalline compounds - referred to here as dynamic molecular crystals - and suggests how different approaches can serve to prepare functional materials. PMID:27325090

  4. Aerosol physical properties from satellite horizon inversion

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Malchow, H. L.; Merritt, D. C.; Var, R. E.; Whitney, C. K.

    1973-01-01

    The feasibility is investigated of determining the physical properties of aerosols globally in the altitude region of 10 to 100 km from a satellite horizon scanning experiment. The investigation utilizes a horizon inversion technique previously developed and extended. Aerosol physical properties such as number density, size distribution, and the real and imaginary components of the index of refraction are demonstrated to be invertible in the aerosol size ranges (0.01-0.1 microns), (0.1-1.0 microns), (1.0-10 microns). Extensions of previously developed radiative transfer models and recursive inversion algorithms are displayed.

  5. Physical properties of cytoplasmic intermediate filaments.

    PubMed

    Block, Johanna; Schroeder, Viktor; Pawelzyk, Paul; Willenbacher, Norbert; Köster, Sarah

    2015-11-01

    Intermediate filaments (IFs) constitute a sophisticated filament system in the cytoplasm of eukaryotes. They form bundles and networks with adapted viscoelastic properties and are strongly interconnected with the other filament types, microfilaments and microtubules. IFs are cell type specific and apart from biochemical functions, they act as mechanical entities to provide stability and resilience to cells and tissues. We review the physical properties of these abundant structural proteins including both in vitro studies and cell experiments. IFs are hierarchical structures and their physical properties seem to a large part be encoded in the very specific architecture of the biopolymers. Thus, we begin our review by presenting the assembly mechanism, followed by the mechanical properties of individual filaments, network and structure formation due to electrostatic interactions, and eventually the mechanics of in vitro and cellular networks. This article is part of a Special Issue entitled: Mechanobiology.

  6. Physical Properties of Cometary Nucleus Candidates

    NASA Technical Reports Server (NTRS)

    Jewitt, David; Hillman, John (Technical Monitor)

    2003-01-01

    In this proposal we aim to study the physical properties of the Centaurs and the dead comets, these being the precursors to, and the remnants from, the active cometary nuclei. The nuclei themselves are very difficult to study, because of the contaminating effects of near-nucleus coma. Systematic investigation of the nuclei both before they enter the zone of strong sublimation and after they have depleted their near-surface volatiles should neatly bracket the properties of these objects, revealing evolutionary effects.

  7. Microstructures, percolation thresholds, and rock physical properties

    NASA Astrophysics Data System (ADS)

    Guéguen, Y.; Chelidze, T.; Le Ravalec, M.

    1997-09-01

    The physical properties (transport properties and mechanical properties) of porous/cracked rocks are mainly functions of their microstructure. In this connection the problem of critical (threshold) porosity for transport, elasticity and mechanical strength is especially important. Two dominant mathematical formalisms — effective medium theory (EMT) and percolation theory — pretend to give answers to this problem. Some of the EMT models do not predict any threshold (differential effective medium). Other EMT models (self-consistent models) do predict thresholds, but it is shown that these thresholds are fictitious and result from an extension of a theory beyond its limit of validity. The failure of EMT methods at high pores/crack concentrations is the result of clustering effects. The appropriate formalism to correctly describe the phenomenon of clustering of pores and cracks and the behaviour of a system close to its critical porosity is percolation theory. Percolation thresholds can be predicted in that case from classical site or bond percolation on regular or random lattices. The threshold values depend on the density and average size of pores/cracks so that porosity is not sufficient in general to characterize the threshold for a specific physical property. The general term 'critical porosity' should thus be used with caution and it is preferable to specify which property is concerned and what kind of microstructure is present. This term can be more safely used for a population of rocks which have an identical average shape of pores/cracks and for a given physical property.

  8. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy.

    PubMed

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-02-01

    The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell's equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density. PMID:26886803

  9. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-02-01

    The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell's equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density.

  10. Correlation between growth kinetics and nanoscale resistive switching properties of SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Muenstermann, Ruth; Menke, Tobias; Dittmann, Regina; Mi, Shaobo; Jia, Chun-Lin; Park, Daesung; Mayer, Joachim

    2010-12-01

    We deliberately fabricated SrTiO3 thin films deviating from ideal stoichiometry and from two-dimensional layer-by-layer growth mode, in order to study the impact of well pronounced defect arrangements on the nanoscale electrical properties. By combining transmission electron microscopy with conductive-tip atomic force microscopy we succeeded to elucidate the microstructure of thin films grown by pulsed laser deposition under kinetically limited growth conditions and to correlate it with the local electrical properties. SrTiO3 thin films, grown in a layer-by-layer growth mode, exhibit a defect structure and conductivity pattern close to single crystals, containing irregularly distributed, resistive switching spots. In contrast to this, Ti-rich films exhibit short-range-ordered, well-conducting resistive switching units. For Ti-rich films grown in a kinetically more restricted island growth mode, we succeeded to identify defective island boundaries with the location of tip-induced resistive switching. The observed nanoscale switching behavior is consistent with a voltage driven oxygen vacancy movement that induces a local redox-based metal-to-insulator transition. Switching occurs preferentially in defect-rich regions, that exhibit a high concentration of oxygen vacancies and might act as easy-diffusion-channels.

  11. Waste Feed Evaporation Physical Properties Modeling

    SciTech Connect

    Daniel, W.E.

    2003-08-25

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software.

  12. Physical and mechanical properties of hemp seed

    NASA Astrophysics Data System (ADS)

    Taheri-Garavand, A.; Nassiri, A.; Gharibzahedi, S.

    2012-04-01

    The current study was conducted to investigate the effect of moisture content on the post-harvest physical and mechanical properties of hemp seed in the range of 5.39 to 27.12% d.b. Results showed that the effect of moisture content on the most physical properties of the grain was significant (P<0.05). The results of mechanical tests demonstrated that the effect of loading rate on the mechanical properties of hemp seed was not significant. However, the moisture content effect on rupture force and energy was significant (P<0.01). The lowest value of rupture force was obtained at the highest loading rate (3mm min-1)and in the moisture content of 27.12% d.b. Moreover, the interaction effects of loading rate and moisture content on the rupture force and energy of hemp seed were significant (P<0.05).

  13. Unraveling the physics of vertical organic field effect transistors through nanoscale engineering of a self-assembled transparent electrode.

    PubMed

    Ben-Sasson, Ariel J; Tessler, Nir

    2012-09-12

    While organic transistors' performances are continually pushed to achieve lower power consumption, higher working frequencies, and higher current densities, a new type of organic transistors characterized by a vertical architecture offers a radically different design approach to outperform its traditional counterparts. Naturally, the distinct vertical architecture gives way to different governing physical ground rules and structural key features such as the need for an embedded transparent electrode. In this paper, we make use of a zero-frequency electric field-transparent patterned electrode produced through block-copolymer self-assembly based lithography to control the performances of the vertical organic field effect transistor (VOFET) and to study its governing physical mechanisms. Unlike other VOFET structures, this design, involving well-defined electrode architecture, is fully tractable, allowing for detailed modeling, analysis, and optimization. We provide for the first time a complete account of the physics underpinning the VOFET operation, considering two complementary mechanisms: the virtual contact formation (Schottky barrier lowering) and the induced potential barrier (solid-state triode-like shielding). We demonstrate how each mechanism, separately, accounts for the link between controllable nanoscale structural modifications in the patterned electrode and the VOFET performances. For example, the ON/OFF current ratio increases by up to 2 orders of magnitude when the perforations aspect ratio (height/width) decreases from ∼0.2 to ∼0.1. The patterned electrode is demonstrated to be not only penetrable to zero-frequency electric fields but also transparent in the visible spectrum, featuring uniformity, spike-free structure, material diversity, amenability with flexible surfaces, low sheet resistance (20-2000 Ω sq(-1)) and high transparency (60-90%). The excellent layer transparency of the patterned electrode and the VOFET's exceptional electrical

  14. Physical Properties of Hanford Transuranic Waste

    SciTech Connect

    Berg, John C.

    2010-03-25

    The research described herein was undertaken to provide needed physical property descriptions of the Hanford transuranic tank sludges under conditions that might exist during retrieval, treatment, packaging and transportation for disposal. The work addressed the development of a fundamental understanding of the types of systems represented by these sludge suspensions through correlation of the macroscopic rheological properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of the work have advanced existing understanding of the sedimentation and aggregation properties of complex colloidal suspensions. Bench scale models were investigated with respect to their structural, colloidal and rheological properties that should be useful for the development and optimization of techniques to process the wastes at various DOE sites.

  15. The Electronic Properties of Nanoscale Meta-lattice Made by High Pressure CVD

    NASA Astrophysics Data System (ADS)

    Huang, Zhaohui; Crespi, Vincent

    Meta-lattice can be defined as an artificial 3D superlattice with periodic structural modulation occurred at 10nm scale. One viable route to synthesize can be as follows: A template is first prepared by close-packed nanometer-sized silica spheres, then Si/Ge or a binary semiconductor is infiltrated into voids by high pressure chemical vapor deposition (CVD). Later silica spheres can be removed by chemical method, and voids in the inverse meta-latice offer the opportunity for a second infiltration. Due to the characteristic length of voids, meta-lattice provides a platform to test novel mesoscopic electronic and thermal phenomena. A meta-lattice solid can show novel physical properties that each constituent infiltrate material does not have. Since a significan portion of atoms are located on the surface, the interface structure details are expected to play a critical role. Here we investigate Si/Ge inverse meta-lattices with or without silica template present. Tight-binding, DFT and GW/BSE techniques are employed to look into the electronic and optical properties.

  16. Physical properties of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Clark, Pamela E.

    1988-01-01

    The global physical properties of Mercury are summarized with attention given to its figure and orbital parameters. The combination of properties suggests that Mercury has an extensive iron-rich core, possibly with a still-functioning dynamo, which is 42 percent of the interior by volume. Mercury's three major axes are comparable in size, indicating that the planet is a triaxial ellipsoid rather than an oblate spheroid. In terms of the domination of its surface by an intermediate plains terrane, it is more Venus- or Mars-like; however, due to the presence of a large metallic magnetic core, its interior may be more earth-like.

  17. F-Canyon Sludge Physical Properties

    SciTech Connect

    Poirier, M. R.; Hansen, P. R.; Fink, S. D.

    2005-08-22

    The Site Deactivation and Decommissioning (SDD) Organization is evaluating options to disposition the 800 underground tanks (including removal of the sludge heels from these tanks). To support this effort, D&D requested assistance from Savannah River National Laboratory (SRNL) personnel to determine the pertinent physical properties to effectively mobilize the sludge from these tanks (Tanks 804, 808, and 809). SDD provided SRNL with samples of the sludge from Tanks 804, 808, and 809. The authors measured the following physical properties for each tank: particle settling rate, shear strength (i.e., settled solids yield stress), slurry rheology (i.e., yield stress and consistency), total solids concentration in the sludge, soluble solids concentration of the sludge, sludge density, and particle size distribution.

  18. Physical properties of Dowell Chemical Seal Ring

    SciTech Connect

    Benny, H.L.

    1985-07-01

    This document outlines the tests, procedures, and results of an evaluation program for Dowell's Chemical Seal Ring.'' The testing reported here deals with the physical properties of density, compression, tensile strength, elongation, and a push-out/bond strength test. Dowell's Chemical Seal Ring'' is proposed as a gasket-like seal between grout layers in the annulus around the Exploratory Shaft steel liner. 4 refs., 1 fig., 4 tabs.

  19. Chemical and Physical Properties of Tantalum Powder

    NASA Astrophysics Data System (ADS)

    Purushotham, Y.; Balaji, T.; Kumar, Arbind; Govindaiah, R.; Sharma, M. K.; Sethi, V. C.; Prakash, T. L.

    The present work is intended to produce capacitor grade Tantalum powder by sodium reduction of potassium tantalum fluoride prepared from an indigenous ore source. The powder has been characterized for its chemical and physical properties, and compared with the commercially available powders. It is found that indigenous powder has higher impurity levels which could, however, be reduced to acceptance limits. The average particle size is within the prescribed limits.

  20. Chirality: a relational geometric-physical property.

    PubMed

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term.

  1. Physical and biological properties of Bazna waters

    PubMed Central

    TRÂMBIŢAŞ, DAN

    2013-01-01

    The healing properties of Bazna waters and their therapeutic indications have been well known since the 18th century. The objective of the present study was to characterize these waters from physical and biological points of view, and to further analyze the nitrogen compounds, especially NH4+. The following physical parameters of the water were analyzed: density (g/cm3), electric resistivity (Ω·m), electric conductivity (cm−1o−1), salinity, The pH analysis of the biological component was performed on samples from 4 basins. Nitrogen compounds were dosed in the form of ammonium ion (NH4+). The physical and chemical proprieties are similar across the basins. Flora and fauna biological components were identified. Ammonium ions were identified in large quantities, but this did not lead to hygienicaly unclean waters. PMID:26527972

  2. Physical assessment of toxicology at nanoscale: nano dose-metrics and toxicity factor

    NASA Astrophysics Data System (ADS)

    Pompa, P. P.; Vecchio, G.; Galeone, A.; Brunetti, V.; Maiorano, G.; Sabella, S.; Cingolani, R.

    2011-07-01

    In this work, we propose a systematic and reproducible evaluation of nanoparticles (NPs) toxicology in living systems, based on a physical assessment and quantification of the toxic effects of NPs by the experimental determination of the key parameter affecting the toxicity outcome (i.e., the number of NPs) and of the NPs ``toxicity factor''. Such a strategy was applied to a well determined scenario, i.e., the ingestion of citrate-capped gold NPs (AuNPs) of different sizes by the model system Drosophila melanogaster. Using these AuNPs as a reference toxicity standard, we were able to define different regions in the multiparametric space of toxicity, enabling the classification of the toxic levels of other nanomaterials, such as quantum dots and pegylated AuNPs. This approach may pave the way to a systematic classification of nanomaterials, leading to important developments in risk assessment and regulatory approval, as well as in a wide range of nanomedicine applications.

  3. Nanoscale ear drum: Graphene based nanoscale sensors

    NASA Astrophysics Data System (ADS)

    Avdoshenko, Stas M.; Gomes da Rocha, Claudia; Cuniberti, Gianaurelio

    2012-05-01

    The difficulty in determining the mass of a sample increases as its size diminishes. At the nanoscale, there are no direct methods for resolving the mass of single molecules or nanoparticles and so more sophisticated approaches based on electromechanical phenomena are required. More importantly, one demands that such nanoelectromechanical techniques could provide not only information about the mass of the target molecules but also about their geometrical properties. In this sense, we report a theoretical study that illustrates in detail how graphene membranes can operate as nanoelectromechanical mass-sensor devices. Wide graphene sheets were exposed to different types and amounts of molecules and molecular dynamic simulations were employed to treat these doping processes statistically. We demonstrate that the mass variation effect and information about the graphene-molecule interactions can be inferred through dynamical response functions. Our results confirm the potential use of graphene as a mass detector device with remarkable precision in estimating variations in mass at the molecular scale and other physical properties of the dopants.

  4. Nanoscale nonlinear radio frequency properties of bulk Nb: Origins of extrinsic nonlinear effects

    NASA Astrophysics Data System (ADS)

    Tai, Tamin; Ghamsari, B. G.; Bieler, T.; Anlage, Steven M.

    2015-10-01

    The performance of niobium-based superconducting radio frequency (SRF) particle-accelerator cavities can be sensitive to localized defects that give rise to quenches at high accelerating gradients. In order to identify these material defects on bulk Nb surfaces at their operating frequency and temperature, a wide-bandwidth microwave microscope with localized and strong RF magnetic fields is developed by integrating a magnetic write head into the near-field microwave microscope to enable mapping of the local electrodynamic response in the multi-GHz frequency regime at cryogenic temperatures. This magnetic writer demonstrates a localized and strong RF magnetic field on bulk Nb surface with Bsurface>102 mT and submicron resolution. By measuring the nonlinear response of the superconductor, nonlinearity coming from the nanoscale weak-link Josephson junctions due to the contaminated surface in the cavity-fabrication process is demonstrated.

  5. Mapping viscoelastic properties of healthy and pathological red blood cells at the nanoscale level

    NASA Astrophysics Data System (ADS)

    Ciasca, G.; Papi, M.; di Claudio, S.; Chiarpotto, M.; Palmieri, V.; Maulucci, G.; Nocca, G.; Rossi, C.; de Spirito, M.

    2015-10-01

    In order to pass through the microcirculation, red blood cells (RBCs) need to undergo extensive deformations and to recover the original shape. This extreme deformability is altered by various pathological conditions. On the other hand, an altered RBC deformability can have major effects on blood flow and can lead to pathological implications. The study of the viscoelastic response of red blood cells to mechanical stimuli is crucial to fully understand deformability changes under pathological conditions. However, the typical erythrocyte biconcave shape hints to a complex and intrinsically heterogeneous mechanical response that must be investigated by using probes at the nanoscale level. In this work, the local viscoelastic behaviour of healthy and pathological red blood cells was probed by Atomic Force Microscopy (AFM). Our results clearly show that the RBC stiffness is not spatially homogeneous, suggesting a strong correlation with the erythrocyte biconcave shape. Moreover, our nanoscale mapping highlights the key role played by viscous forces, demonstrating that RBCs do not behave as pure elastic bodies. The fundamental role played by viscous forces is further strengthened by the comparison between healthy and pathological (diabetes mellitus) RBCs. It is well known that pathological RBCs are usually stiffer than the healthy ones. Our measures unveil a more complex scenario according to which the difference between normal and pathological red blood cells does not merely lie in their stiffness but also in a different dynamical response to external stimuli that is governed by viscous forces.In order to pass through the microcirculation, red blood cells (RBCs) need to undergo extensive deformations and to recover the original shape. This extreme deformability is altered by various pathological conditions. On the other hand, an altered RBC deformability can have major effects on blood flow and can lead to pathological implications. The study of the viscoelastic

  6. Physical properties of the Uranian satellites

    NASA Technical Reports Server (NTRS)

    Brown, Robert H.; Johnson, Torrence V.; Synnott, Stephen; Anderson, John D.; Jacobson, Robert A.; Dermott, Stanley F.; Thomas, Peter C.

    1991-01-01

    Data regarding the Uranian satellites' radii, masses, mean density, and, consequently, their internal structures obtained from the Voyager encounter are analyzed. Topics covered are the sizes, shapes, topography, masses, densities, and models of the internal structures of the five major satellites. The sizes and shapes of the 10 small satellites discovered by Voyager 2 are discussed. The physical properties of the large satellites of Uranus are compared to those other satellites in the outer solar system, particularly those of Jupiter and Saturn, and the implications that these comparisons have for understanding the origin and evolution of the satellites of Uranus are discussed.

  7. F antigen. II. Chemical and physical properties.

    PubMed

    Utzinger, R

    1975-01-01

    Physical and chemical properties of the liver-specific F antigen suggested a model for the labile quarternary structure of the protein. The native molecule showed a size slightly larger than 60,000 dalton (d), which was reduced to about 40,000 d under acidic conditions. Breaking of hydrogen bonds by chaotropic treatment resulted in the release of components of 30,000, 7,000 and 2,000 d. The smallest component was split to fragments of about 1,000 d by the reducing action of sulfhydryl compounds.

  8. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  9. Precipitation of nanoscale mercuric sulfides in the presence of natural organic matter: Structural properties, aggregation, and biotransformation

    NASA Astrophysics Data System (ADS)

    Pham, Anh Le-Tuan; Morris, Amanda; Zhang, Tong; Ticknor, Jonathan; Levard, Clément; Hsu-Kim, Heileen

    2014-05-01

    Mercuric sulfide species are likely the predominant forms of mercury (Hg) in anoxic environments where the bioavailability of Hg is a key factor for the production of methylmercury (MeHg) by microorganisms. Dissolved organic matter (DOM) is known to affect the formation, aggregation, and dissolution of HgS particles; however the connection of these processes to Hg bioavailability is not well understood. The objectives of this study were to gain insights into the molecular structure and aggregation properties of nanoscale HgS particles that were formed and aged in the presence of DOM and to link this information to bioavailability for methylating bacteria. Characterization of nanoscale HgS was performed with a series of techniques including transmission electron microscopy, photon scattering, X-ray diffraction, and X-ray absorption spectroscopy. The characterization results indicated that the HgS precipitates formed were metacinnabar-like spherical nanoparticles that were 3-5 nm in diameter. Over the course of the aging process, HgS nanoparticles (nano-HgS) agglomerated to form mass-fractal aggregates, although the size of each primary particle within the aggregates remained unchanged. Furthermore, the crystallinity of nano-HgS increased as the particles aged. The methylation potential of nano-HgS by sulfate-reducing bacteria decreased during the aging process. No clear correlation was observed between the net productions of MeHg and the concentrations of dissolved Hg(II) in the culture media, suggesting that the decrease in the methylation potential of aged nano-HgS was not simply because of the slower supply of dissolved Hg(II) by nano-HgS. While the link between the aging of nano-HgS and decrease of methylation potential is not fully understood, the results of our study indicate that freshly formed HgS particles in DOM-rich water will include a variety of nanoscale structures that have a wide range of methylation potentials. This knowledge provides a basis for

  10. Physical Properties of the Glycoprotein Mucin

    NASA Astrophysics Data System (ADS)

    Matthews, Garrett; Davis, William; Superfine, Richard; Boucher, Richard

    2003-03-01

    Epithelial cell surfaces are covered by a protective gel known as mucus. The physiological function of this gel depends on its rheological properties, and these properties are largely derived from the secreted glycoprotein mucin. The genetic disease Cystic Fibrosis (CF) is characterized by the adhesion of thick, viscous mucus on these tissues. In the lungs, this results in the interruption of mucus transport thus compromising the first line of defense against pathogens in these tissues. In order to restore the flow of tracheobronchial mucus out of the body, knowledge of the molecular and physical properties of mucin and mucin solutions would be greatly beneficial. The present model for these molecules is that of a long linear strand consisting of highly glycosylated regions linked by cystein-rich globular regions. It is thought that the globular regions may interact either through intermolecular disulfide bonds or through hydrophobic interactions. It has also been speculated that the glycosylated regions may have lectin-like interactions. In the present work, single mucin molecules were imaged at high resolution using atomic force microscopy (AFM). Phase mode imaging was used to map the interactions between functionalized AFM tips and the molecular topography. Additionally, using force-distance curves with the AFM, the adhesion between mucin bound tips and cell surface glycocalyx and glycocalyx-like model surfaces, was measured. And, finally, the viscoelastic properties of mucin solutions were measured using the recently developed technique, single particle tracking microrheology. A model is being developed that will incorporate the properties of mucins beginning at the single molecule and ending with the bulk viscoelastic properties.

  11. Microstructures and tribological properties of CrN/ZrN nanoscale multilayer coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Z. G.; Rapaud, O.; Allain, N.; Mercs, D.; Baraket, M.; Dong, C.; Coddet, C.

    2009-01-01

    Nanoscale multilayer CrN/ZrN coatings with bilayer thicknesses ranging from 11.7 to 66.7 nm were prepared by reactive magnetron sputtering techniques. The structure of the thin films was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction results showed that CrN individual layers presented a <1 1 1> preferred orientation in the multilayer coatings. The diffraction peaks of CrN shifted continuously to low diffraction angle with decreasing bilayer thickness. TEM observations showed that the multilayer did not form a superlattice structure instead of the coexistence of nanocrystalline CrN and ZrN layers. Columnar growth for all the coatings was observed by cross-sectional SEM. Nanoindentation tests showed that the multilayer coatings had almost a constant nanohardness of 29 GPa in spite of the variations of bilayer thickness. Pin-on-disk tests indicated that both the friction coefficients and wear rates increased when decreasing bilayer thickness. However, in comparison with the monolayer coating, the multilayer coatings exhibited excellent wear resistance.

  12. Self-assembled nanoscale coordination polymers with trigger release properties for effective anticancer therapy

    NASA Astrophysics Data System (ADS)

    Liu, Demin; Poon, Christopher; Lu, Kuangda; He, Chunbai; Lin, Wenbin

    2014-06-01

    Nanoscale coordination polymers (NCPs) are self-assembled from metal ions and organic bridging ligands, and can overcome many drawbacks of existing drug delivery systems by virtue of tunable compositions, sizes and shapes, high drug loadings, ease of surface modification and intrinsic biodegradability. Here we report the self-assembly of zinc bisphosphonate NCPs that carry 48±3 wt% cisplatin prodrug and 45±5 wt% oxaliplatin prodrug. In vivo pharmacokinetic studies in mice show minimal uptake of pegylated NCPs by the mononuclear phagocyte system and excellent blood circulation half-lives of 16.4±2.9 and 12.0±3.9 h for the NCPs carrying cisplatin and oxaliplatin, respectively. In all tumour xenograft models evaluated, including CT26 colon cancer, H460 lung cancer and AsPC-1 pancreatic cancer, pegylated NCPs show superior potency and efficacy compared with free drugs. As the first example of using NCPs as nanotherapeutics with enhanced antitumour activities, this study establishes NCPs as a promising drug delivery platform for cancer therapy.

  13. Effects of nanoscale dispersion in the dielectric properties of poly(vinyl alcohol)-bentonite nanocomposites.

    PubMed

    Hernández, María C; Suárez, N; Martínez, Luis A; Feijoo, José L; Lo Mónaco, Salvador; Salazar, Norkys

    2008-05-01

    We investigate the effects of clay proportion and nanoscale dispersion in the dielectric response of poly(vinyl alcohol)-bentonite nanocomposites. The dielectric study was performed using the thermally stimulated depolarization current technique, covering the temperature range of the secondary and high-temperature relaxation processes. Important changes in the secondary relaxations are observed at low clay contents in comparison with neat poly(vinyl alcohol) (PVA). The high-temperature processes show a complex peak, which is a combination of the glass-rubber transition and the space-charge relaxations. The analysis of these processes shows the existence of two segmental relaxations for the nanocomposites. Dielectric results were complemented by calorimetric experiments using differential scanning calorimetry. Morphologic characterization was performed by x-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM and XRD results show a mixture of intercalated and exfoliated clay dispersion in a trend that promotes the exfoliated phase as the bentonite content diminishes. Dielectric and morphological results indicate the existence of polymer-clay interactions through the formation of hydrogen bounds and promoted by the exfoliated dispersion of the clay. These interactions affect not only the segmental dynamics, but also the secondary local dynamics of PVA. PMID:18643091

  14. Nanoscale optical properties of indium gallium nitride/gallium nitride nanodisk-in-rod heterostructures.

    PubMed

    Zhou, Xiang; Lu, Ming-Yen; Lu, Yu-Jung; Jones, Eric J; Gwo, Shangjr; Gradečak, Silvija

    2015-03-24

    III-nitride based nanorods and nanowires offer great potential for optoelectronic applications such as light emitting diodes or nanolasers. We report nanoscale optical studies of InGaN/GaN nanodisk-in-rod heterostructures to quantify uniformity of light emission on the ensemble level, as well as the emission characteristics from individual InGaN nanodisks. Despite the high overall luminescence efficiency, spectral and intensity inhomogeneities were observed and directly correlated to the compositional variations among nanodisks and to the presence of structural defect, respectively. Observed light quenching is correlated to type I1 stacking faults in InGaN nanodisks, and the mechanisms for stacking fault induced nonradiative recombinations are discussed in the context of band structure around stacking faults and Fermi level pinning at nanorod surfaces. Our results highlight the importance of controlling III-nitride nanostructure growths to further reduce defect formation and ensure compositional homogeneity for optoelectronic devices with high efficiencies and desirable spectrum response.

  15. HYDRAULIC AND PHYSICAL PROPERTIES OF MCU SALTSTONE

    SciTech Connect

    Dixon, K; Mark Phifer, M

    2008-03-19

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone., Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement or lime to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of MCU (Modular Caustic Side Solvent Extraction Unit) saltstone relative to two permeating fluids. These fluids included simulated groundwater equilibrated with vault concrete and simulated saltstone pore fluid. Samples of the MCU saltstone were prepared by the Savannah River National Laboratory (SRNL) and allowed to cure for twenty eight days prior to testing. These samples included two three-inch diameter by six inch long mold samples and three one-inch diameter by twelve inch long mold samples.

  16. Some physical properties of naturally irradiated fluorite

    USGS Publications Warehouse

    Berman, Robert

    1955-01-01

    Five samples of purple fluorite found in association with radioactive, materials, and a synthetic colorless control sample were studied and compared.  Before and after heating, observations were made on specific gravity, index of refraction, unit-cell size, breadth of X-ray diffraction lines, and fluorescence.  The purple samples became colorless on heating above 175° C.  During the process, observations were made on color, thermoluminescence, and differential thermal analysis curves.  There were strong correlations between the various physical properties, and it was found possible to arrange the samples in order of increasing difference in their physical properties from the control sample. This order apparently represents increasing structural damage by radiation; if so, it correlates with decreasing specific gravity, increasing index of refraction, broadening of X-ray lines, and increasingly strong exothermic reactions on annealing. The differences between the samples in index of refraction and X-ray pattern are largely eliminated on annealing.  Annealing begins at 1750 C; thermoluminescence at lower temperatures is due to electrons escaping from the metastable potential traps, not the destruction of those traps which takes place on annealing.

  17. Physical properties of soils in Rostov agglomeration

    NASA Astrophysics Data System (ADS)

    Gorbov, S. N.; Bezuglova, O. S.; Abrosimov, K. N.; Skvortsova, E. B.; Tagiverdiev, S. S.; Morozov, I. V.

    2016-08-01

    Physical properties of natural and anthropogenically transformed soils of Rostov agglomeration were examined. The data obtained by conventional methods and new approaches to the study of soil physical properties (in particular, tomographic study of soil monoliths) were used for comparing the soils of different functional zones of the urban area. For urban territories in the steppe zone, a comparison of humus-accumulative horizons (A, Asod, Ap, and buried [A] horizons) made it possible to trace tendencies of changes in surface soils under different anthropogenic impacts and in the buried and sealed soils. The microtomographic study demonstrated differences in the bulk density and aggregation of urban soils from different functional zones. The A horizon in the forest-park zone is characterized by good aggregation and high porosity, whereas buried humus-accumulative horizons of anthropogenically transformed soils are characterized by poor aggregation and low porosity. The traditional parameters of soil structure and texture also proved to be informative for the identification of urban pedogenesis.

  18. Physical Properties of Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Mohammed, T. E.; Schmitt, D. R.

    2015-12-01

    The effect of fractures on the physical properties of porous media is of considerable interest to oil and gas exploration as well as enhanced geothermal systems and carbon capture and storage. This work represents an attempt to study the effect fractures have on multiple physical properties of rocks. An experimental technique to make simultaneous electric and ultrasonic measurements on cylindrical core plugs is developed. Aluminum end caps are mounted with ultrasonic transducers to transmit pules along the axis of the cylinder while non-polarizing electrodes are mounted on the sides of the core to make complex conductivity measurements perpendicular to the cylinder axis. Electrical measurements are made by applying a sinusoidal voltage across the measurement circuit that consist of a resister and the sample in series. The magnitude and phase of the signal across the sample is recorded relative to the input signal across a range of frequencies. Synthetic rock analogs are constructed using sintered glass beads with fractures imbedded in them. The fracture location, size and orientation are controlled and each fractured specimen has an unfractured counterpart. Porosity, Permeability, electrical conductivity and ultrasonic velocity measurements are conducted on each sample with the complex electrical conductivities recorded at frequencies from 10hz to 1 Mhz. These measurements allow us to examine the changes induced by these mesoscale fractures on the embedding porous medium. Of particular interest is the effect of fracture orientation on electrical conductivity of the rock. Seismic anisotropy caused by fractures is a well understood phenomenon with many rock physics models dedicated to its understanding. The effect of fractures on electrical conductivity is less well understood with electrical anisotropy scarcely investigated in the literature. None the less, using electrical conductivity to characterize fractures can add an extra constraint to characterization based

  19. Determining Physical Properties of the Cell Cortex.

    PubMed

    Saha, Arnab; Nishikawa, Masatoshi; Behrndt, Martin; Heisenberg, Carl-Philipp; Jülicher, Frank; Grill, Stephan W

    2016-03-29

    Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell- and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example, the characteristic time of stress relaxation (the Maxwell time τM) in the actomyosin sets the timescale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length λ) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer in vivo directly from laser ablation experiments. For this we investigate the cortical response to laser ablation in the one-cell-stage Caenorhabditis elegans embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse-grained physical description of the cortex in terms of a two-dimensional thin film of an active viscoelastic gel. To determine the Maxwell time τM, the hydrodynamic length λ, the ratio of active stress ζΔμ, and per-area friction γ, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best-fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. Our method provides an accurate and robust means for measuring physical parameters of the actomyosin cortical layer. It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights into the active mechanics processes that govern tissue-scale morphogenesis. PMID

  20. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.

    PubMed

    Cole, Milton W; Crespi, Vincent H; Dresselhaus, Mildred S; Dresselhaus, Gene; Fischer, John E; Gutierrez, Humberto R; Kojima, K; Mahan, Gerald D; Rao, Apparao M; Sofo, Jorge O; Tachibana, M; Wako, K; Xiong, Qihua

    2010-08-25

    This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C(60) and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature

  1. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review

    NASA Astrophysics Data System (ADS)

    Cole, Milton W.; Crespi, Vincent H.; Dresselhaus, Mildred S.; Dresselhaus, Gene; Fischer, John E.; Gutierrez, Humberto R.; Kojima, K.; Mahan, Gerald D.; Rao, Apparao M.; Sofo, Jorge O.; Tachibana, M.; Wako, K.; Xiong, Qihua

    2010-08-01

    This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C60 and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature

  2. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.

    PubMed

    Cole, Milton W; Crespi, Vincent H; Dresselhaus, Mildred S; Dresselhaus, Gene; Fischer, John E; Gutierrez, Humberto R; Kojima, K; Mahan, Gerald D; Rao, Apparao M; Sofo, Jorge O; Tachibana, M; Wako, K; Xiong, Qihua

    2010-08-25

    This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C(60) and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature

  3. Physical Properties of Thin Film Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Bouras, N.; Djebbouri, M.; Outemzabet, R.; Sali, S.; Zerrouki, H.; Zouaoui, A.; Kesri, N.

    2005-10-01

    The physics and chemistry of semiconducting materials is a continuous question of debate. We can find a large stock of well-known properties but at the same time, many things are not understood. In recent years, porous silicon (PS-Si), diselenide of copper and indium (CuInSe2 or CIS) and metal oxide semiconductors like tin oxide (SnO2) and zinc oxide (ZnO) have been subjected to extensive studies because of the rising interest their potential applications in fields such as electronic components, solar panels, catalysis, gas sensors, in biocompatible materials, in Li-based batteries, in new generation of MOSFETS. Bulk structure and surface and interface properties play important roles in all of these applications. A deeper understanding of these fundamental properties would impact largely on technological application performances. In our laboratory, thin films of undoped and antimony-doped films of tin oxide have been deposited by chemical vapor deposition. Spray pyrolysis was used for ZnO. CIS was prepared by flash evaporation or close-space vapor transport. Some of the deposition parameters have been varied, such as substrate temperature, time of deposition (or anodization), and molar concentration of bath preparation. For some samples, thermal annealing was carried out under oxygen (or air), under nitrogen gas and under vacuum. Deposition and post-deposition parameters are known to strongly influence film structure and electrical resistivity. We investigated the influence of film thickness and thermal annealing on structural optical and electrical properties of the films. Examination of SnO2 by x-ray diffraction showed that the main films are polycrystalline with rutile structure. The x-ray spectra of ZnO indicated a hexagonal wurtzite structure. Characterizations of CIS films with compositional analysis, x-ray diffraction, scanning microscopy, spectrophotometry, and photoluminescence were carried out.

  4. Physical Properties of the Uranian Satellites

    NASA Technical Reports Server (NTRS)

    Brown, R. H.

    1984-01-01

    Recent work on the satellites of Uranus revealed many of their basic physical properties. Radiometric measurements showed that the Ariel, Umbriel, Titania and Oberon have diameters which range from 1630 to 1110 km and albedos which range from 0.30 to 0.18. Spectrophotometric observations of Miranda suggest that it may have the highest albedo of the known Uranian satellites and a diameter of about 500 km. Near-infrared measurements show that Ariel, Titania and Oberon have the largest known opposition surges. All five known satellites of Uranus have surfaces which are composed of water ice contaminated with small amounts of dark material. The dark material on the surfaces of Ariel, Umbriel, Titania and Oberon is spectrally bland and has spectral similarities to carbon black, charcoal, carbonaceous chondritic material and other dark, spectrally neutral materials. Recent density determinations suggest that there may be large density differences among Ariel, Umbriel, Titania and Oberon, with density increasing with distance from Uranus.

  5. Physical properties of the Uranian satellites

    SciTech Connect

    Brown, R.H.

    1984-10-01

    Recent work on the satellites of Uranus revealed many of their basic physical properties. Radiometric measurements showed that the Ariel, Umbriel, Titania and Oberon have diameters which range from 1630 to 1110 km and albedos which range from 0.30 to 0.18. Spectrophotometric observations of Miranda suggest that it may have the highest albedo of the known Uranian satellites and a diameter of about 500 km. Near-infrared measurements show that Ariel, Titania and Oberon have the largest known opposition surges. All five known satellites of Uranus have surfaces which are composed of water ice contaminated with small amounts of dark material. The dark material on the surfaces of Ariel, Umbriel, Titania and Oberon is spectrally bland and has spectral similarities to carbon black, charcoal, carbonaceous chondritic material and other dark, spectrally neutral materials. Recent density determinations suggest that there may be large density differences among Ariel, Umbriel, Titania and Oberon, with density increasing with distance from Uranus.

  6. Physical Properties of Hanford Transuranic Waste Sludge

    SciTech Connect

    Poloski, A.; Berg, Dr.

    2003-06-01

    Since the start of this project in March of 2004 two main goals have been achieved. First, the laboratory facilities of the Center for Surfaces, Polymers and Colloids (SPC) at the University of Washington have been updated with the purchase and installation of two state-of-the-art analysis tools. Second, a study of the sedimentation behavior of high density colloidal solids in complex media has been performed. The results of this study were presented at the 78th ACS Colloid and Surface Science Symposium at Yale University in New Haven, CT, and have been submitted for publication to the Journal of Colloid and Interface Science. Both the new equipment and the results of the initial study will help to gain insight into the physical properties of Hanford transuranic waste sludge.

  7. Percolation and Physical Properties of Rock Salt

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.

    2015-12-01

    Textural equilibrium controls the distribution of the liquid phase in many naturally occurring porous materials such as partially molten rocks and alloys, salt-brine and ice-water systems. In these materials, pore geometry evolves to minimize the solid-liquid interfacial energy while maintaining a constant dihedral angle, θ, at solid-liquid contact lines. A characteristic of texturally equilibrated porous media, in the absence of deformation, is that the pore network percolates at any porosity for θ<60° while a percolation threshold exists for θ>60°. However, in ductile polycrystalline materials including rock salt, the balance between surface tension and ductile deformation controls the percolation of fluid pockets along grain corners and edges. Here we show sufficiently rapid deformation can overcome this threshold by elongating and connecting isolated pores by examining a large number of accessible salt samples from deep water Gulf of Mexico. We first confirm the percolation threshold in static laboratory experiments on synthetic salt samples with X-ray microtomography. We then provide field evidence on existence of interconnected pore space in rock salt in extremely low porosities, significantly below the static percolation threshold. Scaling arguments suggest that strain rates in salt are sufficient to overcome surface tension and may allow percolation. We also present the first level-set computations of three-dimensional texturally equilibrated melt networks in realistic rock fabrics. The resulting pore space is used to obtain the effective physical properties of rock, effective electrical conductivity and mechanical properties, with a novel numerical model.

  8. Physical and chemical properties of radionuclide therapy.

    PubMed

    Wessels, B W; Meares, C F

    2000-04-01

    As more radionuclide therapies move from laboratory feasibility studies into clinical reality, it becomes increasingly important for the labeling chemistry to produce consistently a stable radiopharmaceutical that remains intact under the challenge of human catabolism. Similarly, once proof of principle is established to bring a radionuclide conjugate into clinical therapy trials, dosimetric estimates should be made to select the appropriate radionuclide properties, which are based on animal-specific or patient-specific pharmacokinetics and match a set of specific clinical endpoints. These properties may include the radionuclide physical half-life, radiolabeled conjugate biological uptake and clearance, product-specific activity, range and type of emissions, and resultant effects on tumor and normal tissue cellular survival. The immunologist and labeling chemist have now produced a variety of strategies that have potential to increase the therapeutic ratio (tumor-to-normal tissue dose ratio). The advent of normal tissue clearing agents, fragmented or chimerized carriers to improve targeting, and the method of bispecific or two-step and three-step targeting agents has increased the need for realistic modeling of the carrier in vivo to guide prospectively the competitive development of these radiopharmaceuticals. In this article, examples have been taken from the literature to elucidate the benchmark of success that careful experimental design has fostered to bring these agents into clinical practice by creative and logical methodologies.

  9. Physical Property Comparison of Ordinary Chondrite Classes

    NASA Astrophysics Data System (ADS)

    Ostrowski, Daniel; Bryson, Kathryn L.

    2016-10-01

    Measurements of the physical properties of meteorites are essential in helping to determine the physical characteristics of the parent asteroids. Studying of physical properties can provide fundamental information to understand meteoroid behavior in the atmosphere and determine methods to deflect potentially hazardous asteroids. Initial focus of our study is on ordinary chondrites, since they are over 70% of the meteorites.To date we have measured the density (bulk and grain), porosity, thermal emissivity, and acoustic velocity of 7 ordinary chondrites (Tamdakht, Chelyabinsk, and multiple Antarctic meteorites). Each meteorite is first scanned using a 3D laser scanner to determine bulk density. For the other tests 1.5cm cubes are studied. Grain density is determined using gas pycnometer using nitrogen gas. Acoustic velocity, longitudinal and shear wave, are measured using an Olympus 45-MG in single element mode. Thermal emissivity is measured from 20°C up to atmospheric entry temperatures, and is based on average measurements over the wavelength range of 8 to 14μm.Tamdakht's bulk density is that of an average H Chondrite (3-4 g/cm3), while it has a low longitudinal velocity of 3540 m/s compared to the normal rage for H chondrites at 3529-6660 m/s. The velocity is consistent across all three axes in the sample. One possibility is an internal fracture, where part of has been seen on the surface of one of the test cubes. Chelyabinsk and the studied Antarctic meteorites have lower bulk and higher grain densities yielding above average porosities. Tamdakht is on the high end of the emissivity range for H chondrites and Chelyabinsk is on the high end for LL chondrites. Emissivity ranges from 0.985-0.995 at 20°C for the ordinary chondrites studied. Heated samples emissivity decreases slightly, 0.045, from initial 20°C measurement. Between 40-200°C, the emissivity stays fairly constant after decrease from room temperature. BTN 00304 has the highest average over the

  10. Physical properties of Michigan Antrim Shale

    SciTech Connect

    Hockings, W.A.

    1980-08-01

    The physical properties of approximately 225 core samples and 700 samples of well cuttings from the Antrim Shale formation in the Michigan Basin were measured. The properties included density, porosity, permeability, pore size distribution, specific surface, and thermal expansion. Measurements were made before and after roasting in air and in nitrogen. In general the properties showed little variation with depth or location within the sampling area. The average porosity was about 8 percent of which approximately one-half consisted of closed pores. The porosity increased by about a factor of two after roasting at 500/sup 0/C. The permeability was found to be very low, averaging about 0.008 millidarcies. Permeability was higher in the direction parallel to the bedding planes than in the direction perpendicular to the planes. After roasting at 500/sup 0/C the permeability increased by about a factor of ten. Measurements while heating from 20 to 225/sup 0/C showed only minor variations in permeability with temperature. The specific surface area of the shale is low, averaging about 0.5 square meters per gram. The pore size distribution is bimodal with most of the pore volume in the size ranges of 0.01 to 0.1 and 10 to 100 micrometers. The shale expands about one percent perpendicular to bedding and 0.2 percent parallel to bedding when heated to 500/sup 0/C. The average expansion coefficient is 0.0025 percent per /sup 0/C on heating and 0.0010 on cooling. Peaks in the heating curve occur at about 25/sup 0/C and 450/sup 0/C.

  11. Acoustic Imaging of Snowpack Physical Properties

    NASA Astrophysics Data System (ADS)

    Kinar, N. J.; Pomeroy, J. W.

    2011-12-01

    Measurements of snowpack depth, density, structure and temperature have often been conducted by the use of snowpits and invasive measurement devices. Previous research has shown that acoustic waves passing through snow are capable of measuring these properties. An experimental observation device (SAS2, System for the Acoustic Sounding of Snow) was used to autonomously send audible sound waves into the top of the snowpack and to receive and process the waves reflected from the interior and bottom of the snowpack. A loudspeaker and microphone array separated by an offset distance was suspended in the air above the surface of the snowpack. Sound waves produced from a loudspeaker as frequency-swept sequences and maximum length sequences were used as source signals. Up to 24 microphones measured the audible signal from the snowpack. The signal-to-noise ratio was compared between sequences in the presence of environmental noise contributed by wind and reflections from vegetation. Beamforming algorithms were used to reject spurious reflections and to compensate for movement of the sensor assembly during the time of data collection. A custom-designed circuit with digital signal processing hardware implemented an inversion algorithm to relate the reflected sound wave data to snowpack physical properties and to create a two-dimensional image of snowpack stratigraphy. The low power consumption circuit was powered by batteries and through WiFi and Bluetooth interfaces enabled the display of processed data on a mobile device. Acoustic observations were logged to an SD card after each measurement. The SAS2 system was deployed at remote field locations in the Rocky Mountains of Alberta, Canada. Acoustic snow properties data was compared with data collected from gravimetric sampling, thermocouple arrays, radiometers and snowpit observations of density, stratigraphy and crystal structure. Aspects for further research and limitations of the acoustic sensing system are also discussed.

  12. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Picotto, G. B.; Koenders, L.; Wilkening, G.

    2009-08-01

    Instrumentation and measurement techniques at the nanoscale play a crucial role not only in extending our knowledge of the properties of matter and processes in nanosciences, but also in addressing new measurement needs in process control and quality assurance in industry. Micro- and nanotechnologies are now facing a growing demand for quantitative measurements to support the reliability, safety and competitiveness of products and services. Quantitative measurements presuppose reliable and stable instruments and measurement procedures as well as suitable calibration artefacts to ensure the quality of measurements and traceability to standards. This special issue of Measurement Science and Technology presents selected contributions from the Nanoscale 2008 seminar held at the Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, in September 2008. This was the 4th Seminar on Nanoscale Calibration Standards and Methods and the 8th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized by the Nanometrology Group within EUROMET (The European Collaboration in Measurement Standards), the German Nanotechnology Competence Centre 'Ultraprecise Surface Figuring' (CC-UPOB), the Physikalisch-Technische Bundesanstalt (PTB) and INRIM. A special event during the seminar was the 'knighting' of Günter Wilkening from PTB, Braunschweig, Germany, as the 1st Knight of Dimensional Nanometrology. Günter Wilkening received the NanoKnight Award for his outstanding work in the field of dimensional nanometrology over the last 20 years. The contributions in this special issue deal with the developments and improvements of instrumentation and measurement methods for scanning force microscopy (SFM), electron and optical microscopy, high-resolution interferometry, calibration of instruments and new standards, new facilities and applications including critical dimension (CD) measurements on small and medium structures and nanoparticle

  13. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites.

    PubMed

    Misra, Superb K; Mohn, Dirk; Brunner, Tobias J; Stark, Wendelin J; Philip, Sheryl E; Roy, Ipsita; Salih, Vehid; Knowles, Jonathan C; Boccaccini, Aldo R

    2008-04-01

    This study compares the effects of introducing micro (m-BG) and nanoscale (n-BG) bioactive glass particles on the various properties (thermal, mechanical and microstructural) of poly(3hydroxybutyrate) (P(3HB))/bioactive glass composite systems. P(3HB)/bioactive glass composite films with three different concentrations of m-BG and n-BG (10, 20 and 30 wt%, respectively) were prepared by a solvent casting technique. The addition of n-BG particles had a significant stiffening effect on the composites, modulus when compared with m-BG. However, there were no significant differences in the thermal properties of the composites due to the addition of n-BG and m-BG particles. The systematic addition of n-BG particles induced a nanostructured topography on the surface of the composites, which was not visible by SEM in m-BG composites. This surface effect induced by n-BG particles considerably improved the total protein adsorption on the n-BG composites compared to the unfilled polymer and the m-BG composites. A short term in vitro degradation (30 days) study in simulated body fluid (SBF) showed a high level of bioactivity as well as higher water absorption for the P(3HB)/n-BG composites. Furthermore, a cell proliferation study using MG-63 cells demonstrated the good biocompatibility of both types of P(3HB)/bioactive glass composite systems. The results of this investigation confirm that the addition of nanosized bioactive glass particles had a more significant effect on the mechanical and structural properties of a composite system in comparison with microparticles, as well as enhancing protein adsorption, two desirable effects for the application of the composites in tissue engineering. PMID:18255139

  14. Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera

    SciTech Connect

    Papi, M.; Paoletti, P.; Geraghty, B.; Akhtar, R.

    2014-03-10

    We apply the PeakForce Quantitative Nanomechanical Property Mapping (PFQNM) atomic force microscopy mode for the investigation of regional variations in the nanomechanical properties of porcine sclera. We examine variations in the collagen fibril diameter, adhesion, elastic modulus and dissipation in the posterior, equatorial and anterior regions of the sclera. The mean fibril diameter, elastic modulus and dissipation increased from the posterior to the anterior region. Collagen fibril diameter correlated linearly with elastic modulus. Our data matches the known macroscopic mechanical behavior of the sclera. We propose that PFQNM has significant potential in ocular biomechanics and biophysics research.

  15. Dynamic Mechanical Properties, Crystallization Behavior and Morphology of Nanoscale Tin Fluorophosphate Glass/Polyamide 66 Hybrid Materials.

    PubMed

    Liu, Huiwen; Yang, Jing; Yu, Honglin; Zou, Xiaoxuan; Jing, Bo; Dai, Wenli

    2016-04-01

    The dynamic mechanical properties, crystallization behavior and morphology of nanoscale Tg tin fluorophosphate glass (TFP glass)/polyamide 66 (PA66) hybrid materials were investigated by XRD, DSC and SEM. The experimental results showed that the Tg of TFP/PA66 hybrid decreased and the third relaxation in the highly filled hybrid appeared due to the interaction between the TFP glass and amide groups of PA66. The storage modulus of the hybrid materials increased with increase in the content of TFP at low temperatures but had little effect at high temperatures. This result was attributed to the stiffness depression of the TFP glass when the temperature rose above its Tg and the similar elasticity of the two phases because of the interaction between the components. The degree of crystallinity and a, y crystal content of PA66 both decreased due to the interaction between the two phases. In addition, the phase defect, the size distribution and the compatibility of TFP in the PA66 matrix were discussed by SEM, the results showed that the TFP appeared aggregation partly, but had the favorable compatibility in the PA66 matrix. PMID:27451779

  16. The ``Music" of Silica-Poly(methyl methacrylate) Core-Shell Spheres: Eigenvibrations and Mechanical Properties at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Still, Tim; Sainidou, Rebecca; Hellmann, Goetz; Fytas, George

    2009-03-01

    We report on the measurement of elastic vibrational modes (eigenvibrations) in silica--poly(methyl meth-acrylate) (SiO2--PMMA) core-shell spheres and corresponding spherical hollow capsules (PMMA) with different particle size (dia-meter: 232 nm--405 nm) and shell thickness (25 nm--112 nm) using Brillouin light scattering, supported by numerical calculations. [T. Still et al., Nano Lett. 8, 3194 (2008)] These localized modes allow to access the mechanical moduli of core and shell material. We observe reduced mechanical strength of the porous silica core and for the core-shell spheres a striking increase of the moduli in both the SiO2 core and the PMMA shell. The peculiar behavior of the vibrational modes in the hollow capsules is attributed to antagonistic dependence on overall size and layer thickness. The present investigation of the acoustical properties of the individual core-shell particles can lead to the use of such nanoscale engineered particles in more eloborate systems to control hypersonic phonons.

  17. Electrum, the Gold-Silver Alloy, from the Bulk Scale to the Nanoscale: Synthesis, Properties, and Segregation Rules.

    PubMed

    Guisbiers, Grégory; Mendoza-Cruz, Rubén; Bazán-Díaz, Lourdes; Velázquez-Salazar, J Jesús; Mendoza-Perez, Rafael; Robledo-Torres, José Antonio; Rodriguez-Lopez, José-Luis; Montejano-Carrizales, Juan Martín; Whetten, Robert L; José-Yacamán, Miguel

    2016-01-26

    The alloy Au-Ag system is an important noble bimetallic phase, both historically (as "Electrum") and now especially in nanotechnology, as it is applied in catalysis and nanomedicine. To comprehend the structural characteristics and the thermodynamic stability of this alloy, a knowledge of its phase diagram is required that considers explicitly its size and shape (morphology) dependence. However, as the experimental determination remains quite challenging at the nanoscale, theoretical guidance can provide significant advantages. Using a regular solution model within a nanothermodynamic approach to evaluate the size effect on all the parameters (melting temperature, melting enthalpy, and interaction parameters in both phases), the nanophase diagram is predicted. Besides an overall shift downward, there is a "tilting" effect on the solidus-liquidus curves for some particular shapes exposing the (100) and (110) facets (cube, rhombic dodecahedron, and cuboctahedron). The segregation calculation reveals the preferential presence of silver at the surface for all the polyhedral shapes considered, in excellent agreement with the latest transmission electron microscopy observations and energy dispersive spectroscopy analysis. By reviewing the nature of the surface segregated element of different bimetallic nanoalloys, two surface segregation rules, based on the melting temperatures and surface energies, are deduced. Finally, the optical properties of Au-Ag nanoparticles, calculated within the discrete dipole approximation, show the control that can be achieved in the tuning of the local surface plasmon resonance, depending of the alloy content, the chemical ordering, the morphology, the size of the nanoparticle, and the nature of the surrounding environment. PMID:26605557

  18. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties.

    PubMed

    Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P

    2016-02-01

    In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.

  19. The boron oxide{endash}boric acid system: Nanoscale mechanical and wear properties

    SciTech Connect

    Ma, X.; Unertl, W.N.; Erdemir, A.

    1999-08-01

    The film that forms spontaneously when boron oxide (B{sub 2}O{sub 3}) is exposed to humid air is a solid lubricant. This film is usually assumed to be boric acid (H{sub 3}BO{sub 3}), the stable bulk phase. We describe the nanometer-scale surface morphology, mechanical properties, and tribological properties of these films and compare them with crystals precipitated from saturated solutions of boric acid. Scanning force microscopy (SFM) and low-load indentation were the primary experimental tools. Mechanical properties and their variation with depth are reported. In all cases, the surfaces were covered with a layer that has different mechanical properties than the underlying bulk. The films formed on boron oxide showed no evidence of crystalline structure. A thin surface layer was rapidly removed, followed by slower wear of the underlying film. The thickness of this initial layer was sensitive to sample preparation conditions, including humidity. Friction on the worn surface was lower than on the as-formed surface in all cases. In contrast, the SFM tip was unable to cause any wear to the surface film on the precipitated crystals. Indentation pop-in features were common for precipitated crystals but did not occur on the films formed on boron oxide. The surface structures were more complex than assumed in models put forth previously to explain the mechanism of lubricity in the boron oxide{endash}boric acid{endash}water system. {copyright} {ital 1999 Materials Research Society.}

  20. Exposure and Health Effects Review of Engineered Nanoscale Cerium and Cerium Dioxide Associated with its Use as a Fuel Additive - NOW IN PRINT IN THE JOURNAL

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels that are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (Ce02) has recently gained a wide range of applications which includes coatin...

  1. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  2. Small is Different: Nanoscale Computational Microscopy

    NASA Astrophysics Data System (ADS)

    Landman, Uzi

    2015-03-01

    Finite materials systems of reduced sizes exhibit discrete quantized energy level spectra and specific structures and morphologies, which are manifested in unique, nonscalable, size-dependent physical and chemical properties. Indeed, when the scale of materials structures is reduced to the nanoscale, emergent phenomena often occurs, that is not commonly expected, or deduced, from knowledge learned at larger sizes. Characterization and understanding of the size-dependent evolution of the properties of materials aggregates are among the major challenges of modern materials science. Computer-based classical and quantum computations and simulations are tools of discovery of nanoscale emergent behavior. We highlight such behavior in diverse systems, including: (i) Atomistic simulations of nanoscale liquid jets and bridges and the stochastic hydrodynamic description of their properties; (ii) Metal nanoclusters and their self-assembled superlattices exhibiting stabilities and properties originating from superatom electronic shell-closing, atom packing, and interactions between protecting ligands; (iii) Electric-field-induced shape-transitions and electrocrystallization of liquid droplets, and (iv) Symmetry-breaking and formation of highly-correlated Wigner molecules between electrons in 2D quantum dots and bosons in traps.

  3. Determining dynamic properties of a nanoscale aerogel via an advanced transfer function method

    NASA Astrophysics Data System (ADS)

    Rashoff, Matthew

    A newly-published transfer function method is employed to determine dynamic properties of an aerogel. Termed the "dynamic mass method," it can be applied to any porous, elastic material and is thought to be superior to previous methods because it employs a mass as a function of frequency and produces data that is frequency-dependent in the complex regime, which is a more accurate representation of elastic materials. Moreover, losses are determined seamlessly as imaginary components of their associated properties, which eliminates the need to calculate additional loss factors. The properties of this aerogel with respect to vibrational loading in particular are of interest because it has been manufactured relatively inexpensively compared to other similar materials currently available. The specimen is tested by fixing it between two steel plates of known mass and attaching the system to a shaker. Impulse-response data is collected by driving the shaker with a log-sweep-sine signal. Transforming the data into the frequency domain allows for spectral analysis of multiple properties, including dynamic mass, density, impedance, Young's modulus, and speed of sound in the material. The resulting data suggests that the frequency range for valid data is wider than those of previous implementations of other transfer function methods. Additionally, the material that was tested appears to be a good candidate for use as a vibration isolator because of its low ratio of input force to bottom and top acceleration at low frequencies, and because it is ductile in the same frequency range. However, the material's behavior in shear dynamic loading situations needs to be studied before anything definitive can be said about its potential as a commercial noise and vibration isolator.

  4. Nanoscale steel-brass multilayer laminates made by cold rolling: Microstructure and tensile properties

    SciTech Connect

    Kavarana, F.H.; Ravichandran, K.S.; Sahay, S.S.

    2000-05-10

    The thrust of this study is to fabricate steel-brass multilayer laminates with layer thicknesses in the nanometer range and to evaluate their mechanical properties. Repeated cold rolling of multilayer stacks was adopted to produce the laminates, because the relative simplicity and the low-cost nature of this process can allow the scaling-up of the technique to the level of commercial-scale production. This work is a continuation of a previous study, in which steel-brass laminates with layer thicknesses in the micrometer range were fabricated for the first time and their tensile properties were evaluated. The present work, however, emphasizes making multilayers with layer thicknesses in the nanometer range and evaluating their mechanical properties. The dependence of strength and ductility on the layer spacing in the nanometer range, is highlighted. It is shown that strength levels comparable to quenched and tempered low alloy steels can be achieved in the laminates by rolling down to the low end of nanometer range. The relevant strengthening mechanisms are also discussed.

  5. Thermomechanical properties of Ni-Ti shape memory wires containing nanoscale precipitates induced by stress-assisted ageing.

    PubMed

    Cong, D Y; Saha, G; Barnett, M R

    2014-12-01

    This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys.

  6. Physical properties of defined lipopolysaccharide salts.

    PubMed

    Coughlin, R T; Haug, A; McGroarty, E J

    1983-04-12

    The electron spin resonance probes 5-doxylstearate and 4-(dodecyldimethylammonio)-1-oxy-2,2,6,6-tetramethylpiperidine bromide were used to characterize the fluidity of the acyl chain and head-group regions, respectively, of defined salts of lipopolysaccharide (LPS) from Escherichia coli K12. The removal of the weakly bound divalent cations from native LPS by electrodialysis and their replacement by sodium had little effect on the midpoint of the lipid-phase transition or on head-group mobility. In contrast, lipopolysaccharide acyl chain mobility increased following electrodialysis. The replacement of most of the remaining cations with sodium resulted in a further dramatic increase in mobility in both the polar and nonpolar regions of lipopolysaccharide. Head-group mobility of the sodium salt of LPS was shown to be reduced with the addition of divalent cations. Furthermore, evidence is presented which suggests that low magnesium concentrations may induce phase separations in the sodium salt. The magnesium salt of lipopolysaccharide closely resembled the native form in both head-group and acyl chain mobility although the cation charge to phosphorus ratio in the magnesium salt was greater than that detected in the native isolate. Analyses of other lipopolysaccharide salts support our hypothesis that many of the observed differences in the physical and pathological properties of lipopolysaccharide salts may simply be explained by the degree of charge neutralization. PMID:6303400

  7. Physical properties of molten carbonate electrolyte

    SciTech Connect

    Kojima, T.; Yanagida, M.; Tanimoto, K.

    1996-12-31

    Recently many kinds of compositions of molten carbonate electrolyte have been applied to molten carbonate fuel cell in order to avoid the several problems such as corrosion of separator plate and NiO cathode dissolution. Many researchers recognize that the addition of alkaline earth (Ca, Sr, and Ba) carbonate to Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} and Li{sub 2}CO{sub 3}-K{sub 2}CO{sub 3} eutectic electrolytes is effective to avoid these problems. On the other hand, one of the corrosion products, CrO{sub 4}{sup 2-} ion is found to dissolve into electrolyte and accumulated during the long-term MCFC operations. This would affect the performance of MCFC. There, however, are little known data of physical properties of molten carbonate containing alkaline earth carbonates and CrO{sub 4}{sup 2-}. We report the measured and accumulated data for these molten carbonate of electrical conductivity and surface tension to select favorable composition of molten carbonate electrolytes.

  8. Dynamic structural disorder in supported nanoscale catalysts

    SciTech Connect

    Rehr, J. J.; Vila, F. D.

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  9. Nanoscale optical properties of metal nanoparticles probed by Second Harmonic Generation microscopy.

    PubMed

    Shen, Hong; Nguyen, Ngoc; Gachet, David; Maillard, Vincent; Toury, Timothée; Brasselet, Sophie

    2013-05-20

    We report spatial and vectorial imaging of local fields' confinement properties in metal nanoparticles with branched shapes, using Second Harmonic Generation (SHG) microscopy. Taking advantage of the coherent nature of this nonlinear process, the technique provides a direct evidence of the coupling between the excitation polarization and both localization and polarization specificities of local fields at the sub-diffraction scale. These combined features, which are governed by the nanoparticles' symmetry, are not accessible using other contrasts such as linear optical techniques or two-photon luminescence.

  10. Nanoscale Piezoelectric Properties of Self-Assembled Fmoc-FF Peptide Fibrous Networks.

    PubMed

    Ryan, Kate; Beirne, Jason; Redmond, Gareth; Kilpatrick, Jason I; Guyonnet, Jill; Buchete, Nicolae-Viorel; Kholkin, Andrei L; Rodriguez, Brian J

    2015-06-17

    Fibrous peptide networks, such as the structural framework of self-assembled fluorenylmethyloxycarbonyl diphenylalanine (Fmoc-FF) nanofibrils, have mechanical properties that could successfully mimic natural tissues, making them promising materials for tissue engineering scaffolds. These nanomaterials have been determined to exhibit shear piezoelectricity using piezoresponse force microscopy, as previously reported for FF nanotubes. Structural analyses of Fmoc-FF nanofibrils suggest that the observed piezoelectric response may result from the noncentrosymmetric nature of an underlying β-sheet topology. The observed piezoelectricity of Fmoc-FF fibrous networks is advantageous for a range of biomedical applications where electrical or mechanical stimuli are required. PMID:25994251

  11. Nanoscale Piezoelectric Properties of Self-Assembled Fmoc-FF Peptide Fibrous Networks.

    PubMed

    Ryan, Kate; Beirne, Jason; Redmond, Gareth; Kilpatrick, Jason I; Guyonnet, Jill; Buchete, Nicolae-Viorel; Kholkin, Andrei L; Rodriguez, Brian J

    2015-06-17

    Fibrous peptide networks, such as the structural framework of self-assembled fluorenylmethyloxycarbonyl diphenylalanine (Fmoc-FF) nanofibrils, have mechanical properties that could successfully mimic natural tissues, making them promising materials for tissue engineering scaffolds. These nanomaterials have been determined to exhibit shear piezoelectricity using piezoresponse force microscopy, as previously reported for FF nanotubes. Structural analyses of Fmoc-FF nanofibrils suggest that the observed piezoelectric response may result from the noncentrosymmetric nature of an underlying β-sheet topology. The observed piezoelectricity of Fmoc-FF fibrous networks is advantageous for a range of biomedical applications where electrical or mechanical stimuli are required.

  12. Nano-scale structure and mechanical properties of the human dentine-enamel junction.

    PubMed

    Chan, Y L; Ngan, A H W; King, N M

    2011-07-01

    Despite being an interface between two mechanically mismatched phases of the soft dentine and hard enamel, the dentine-enamel junction (DEJ) in a human tooth is in general capable of withstanding a long working life of repeated dynamic loading. The current poor understanding of the structure and properties of the DEJ has presented a major obstacle to designing better therapeutic protocols for complications concerning the DEJ. In this investigation, it was discovered that the DEJ is a thin, but gradual interface with characteristics transiting from those of dentine to those of enamel. The collagen fibres in dentine enter into the enamel side of the DEJ and terminate in a region in which the hydroxyapatite crystals begin to show enamel characteristics. Using focused ion beam machining, micro-beams were fabricated from regions within 50 μm of the DEJ and were subjected to bend tests. In spite of the similarity in the flexural strength of the DEJ and enamel, fractographs revealed cracks in the DEJ that propagated along structures with dentine characteristics. To the best of our knowledge, this is the first report on the testing of the mechanical properties of the DEJ.

  13. Dissolved organic matter adsorption to model surfaces: adlayer formation, properties, and dynamics at the nanoscale.

    PubMed

    Armanious, Antonius; Aeppli, Meret; Sander, Michael

    2014-08-19

    Adlayers of dissolved organic matter (DOM) form on many surfaces in natural and engineered systems and affect a number of important processes in these systems. Yet, the nanoscalar properties and dynamics of DOM adlayers remain poorly investigated. This work provides a systematic analysis of the properties and dynamics of adlayers formed from a diverse set of eight humic and fulvic acids, used as DOM models, on surfaces of self-assembled monolayers (SAMs) of different alkylthiols covalently bound to gold supports. DOM adsorption to positively charged amine-terminated SAMs resulted in the formation of water-rich adlayers with nanometer thicknesses that were relatively rigid, irreversibly adsorbed, and collapsed upon air drying, as demonstrated by combined quartz crystal microbalance and ellipsometry measurements. DOM adlayer thicknesses varied only slightly with solution pH from 5 to 8 but increased markedly with increasing ionic strength. Contact angle measurements revealed that the DOM adlayers were relatively polar, likely due to the high water contents of the adlayers. Comparing DOM adsorption to SAM-coated sensors that systematically differed in surface charge and polarity characteristics showed that electrostatics dominated DOM-surface interactions. Laccase adsorption to DOM adlayers on amine-terminated SAMs served to demonstrate the applicability of the presented experimental approach to study the interactions of (bio)macromolecules and (nano)particles with DOM.

  14. Tuning the Optical Properties of Mesoporous TiO2 Films by Nanoscale Engineering

    SciTech Connect

    Schwenzer, Birgit; Wang, Liang; Swensen, James S.; Padmaperuma, Asanga B.; Silverman, Gary; Korotkov, Roman; Gaspar, Daniel J.

    2012-07-03

    Introducing mesoscale pores into spincoated titanium dioxide films, prepared by spincoating different sol-gel precursor solutions on silicon substrates and subsequent annealing at 350 C, 400 C or 450 C, respectively, affects several optical properties of the material. The change in refractive index observed for different mesoporous anatase films directly correlates with changes in pore size, but is also in a more complex manner influenced by the film thickness and the density of pores within the films. Additionally, the band gap of the films is blueshifted by the stress the introduction of pores exerts on the inorganic matrix. The differently sized pores were templated by Pluronic{reg_sign} block copolymers in the solgel solutions and tuned by employing different annealing temperatures for the film preparation. This study focused on elucidating the effect different templating materials (F127 and P123) have on the pore size of the final mesoporous titania film, and on understanding the relation of varying polymer concentration (taking P123 as an example) in the sol-gel solution to the pore concentration and size in the resultant titania film. Titania thin film samples or corresponding titanium dioxide powders were characterized by X-ray diffraction, nitrogen adsorption, ellipsometery, UV/Vis spectrometry and other techniques to understand the interplay between mesoporosity and optical properties.

  15. Synthesis, structure, and opto-electronic properties of organic-based nanoscale heterojunctions

    NASA Astrophysics Data System (ADS)

    Rezek, Bohuslav; Čermák, Jan; Kromka, Alexander; Ledinský, Martin; Hubík, Pavel; Mareš, Jiří J.; Purkrt, Adam; Cimrová, Vĕra; Fejfar, Antonín; Kočka, Jan

    2011-12-01

    Enormous research effort has been put into optimizing organic-based opto-electronic systems for efficient generation of free charge carriers. This optimization is mainly due to typically high dissociation energy (0.1-1 eV) and short diffusion length (10 nm) of excitons in organic materials. Inherently, interplay of microscopic structural, chemical, and opto-electronic properties plays crucial role. We show that employing and combining advanced scanning probe techniques can provide us significant insight into the correlation of these properties. By adjusting parameters of contact- and tapping-mode atomic force microscopy (AFM), we perform morphologic and mechanical characterizations (nanoshaving) of organic layers, measure their electrical conductivity by current-sensing AFM, and deduce work functions and surface photovoltage (SPV) effects by Kelvin force microscopy using high spatial resolution. These data are further correlated with local material composition detected using micro-Raman spectroscopy and with other electronic transport data. We demonstrate benefits of this multi-dimensional characterizations on (i) bulk heterojunction of fully organic composite films, indicating differences in blend quality and component segregation leading to local shunts of photovoltaic cell, and (ii) thin-film heterojunction of polypyrrole (PPy) electropolymerized on hydrogen-terminated diamond, indicating covalent bonding and transfer of charge carriers from PPy to diamond.

  16. Correlating the nanoscale mechanical and chemical properties of knockout mice bones

    NASA Astrophysics Data System (ADS)

    Kavukcuoglu, Nadire Beril

    Bone is a mineral-organic composite where the organic matrix is mainly type I collagen plus small amounts of non-collagenous proteins including osteopontin (OPN), osteocalcin (OC) and fibrillin 2 (Fbn2). Mature bone undergoes remodeling continually so new bone is formed and old bone resorbed. Uncoupling between the bone resorption and bone formation causes an overall loss of bone mass and leads to diseases like osteoporosis and osteopenia. These are characterized by structural deterioration of the bone tissue and an increased risk of fracture. The non-collagenous bone proteins are known to have a role in regulating bone turnover and to affect the structural integrity of bone. OPN and OC play a key role in bone resorption and formation, while absence of Fbn-2 causes a connective tissue disorder (congenital contractural arachnodactyly) and has been associated with decreased bone mass. In this thesis nanoindentation and Raman-microspectroscopy techniques were used to investigate and correlate the mechanical and chemical properties of cortical femoral bones from OPN deficient (OPN-/-), OC deficient (OC-/-) and Fbn-2 deficient (Fbn2-/-) mice and their age, sex and background matched wild-type controls (OPN+/+, OC+/+ and Fbn2+/+). For OPN the hardness (H) and elastic modulus (E) of under 12 week OPN-/- bones were significantly lower than for OPN+/+ bones, but Raman showed no significant difference. Mechanical properties of bones from mice older than 12 weeks were not significantly different with genotype. However, mineralization and crystallinity from >50 week OPN-/- bones were significantly higher than for OPN+/+ bones. Mechanical properties of OPN-/- bones showed no variation with age, but mineralization, crystallinity and type-B carbonate substitution increased for both genotypes. For OC-/- intra-bone analyses showed that the hardness and crystallinity of the bones were significantly higher, especially in the mid-cortical sections, compared to OC+/+ bones. Fbn2

  17. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.

    PubMed

    Jain, Prashant K; Huang, Xiaohua; El-Sayed, Ivan H; El-Sayed, Mostafa A

    2008-12-01

    Noble metal nanostructures attract much interest because of their unique properties, including large optical field enhancements resulting in the strong scattering and absorption of light. The enhancement in the optical and photothermal properties of noble metal nanoparticles arises from resonant oscillation of their free electrons in the presence of light, also known as localized surface plasmon resonance (LSPR). The plasmon resonance can either radiate light (Mie scattering), a process that finds great utility in optical and imaging fields, or be rapidly converted to heat (absorption); the latter mechanism of dissipation has opened up applications in several new areas. The ability to integrate metal nanoparticles into biological systems has had greatest impact in biology and biomedicine. In this Account, we discuss the plasmonic properties of gold and silver nanostructures and present examples of how they are being utilized for biodiagnostics, biophysical studies, and medical therapy. For instance, taking advantage of the strong LSPR scattering of gold nanoparticles conjugated with specific targeting molecules allows the molecule-specific imaging and diagnosis of diseases such as cancer. We emphasize in particular how the unique tunability of the plasmon resonance properties of metal nanoparticles through variation of their size, shape, composition, and medium allows chemists to design nanostructures geared for specific bio-applications. We discuss some interesting nanostructure geometries, including nanorods, nanoshells, and nanoparticle pairs, that exhibit dramatically enhanced and tunable plasmon resonances, making them highly suitable for bio-applications. Tuning the nanostructure shape (e.g., nanoprisms, nanorods, or nanoshells) is another means of enhancing the sensitivity of the LSPR to the nanoparticle environment and, thereby, designing effective biosensing agents. Metal nanoparticle pairs or assemblies display distance-dependent plasmon resonances as a

  18. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.

    PubMed

    Jain, Prashant K; Huang, Xiaohua; El-Sayed, Ivan H; El-Sayed, Mostafa A

    2008-12-01

    Noble metal nanostructures attract much interest because of their unique properties, including large optical field enhancements resulting in the strong scattering and absorption of light. The enhancement in the optical and photothermal properties of noble metal nanoparticles arises from resonant oscillation of their free electrons in the presence of light, also known as localized surface plasmon resonance (LSPR). The plasmon resonance can either radiate light (Mie scattering), a process that finds great utility in optical and imaging fields, or be rapidly converted to heat (absorption); the latter mechanism of dissipation has opened up applications in several new areas. The ability to integrate metal nanoparticles into biological systems has had greatest impact in biology and biomedicine. In this Account, we discuss the plasmonic properties of gold and silver nanostructures and present examples of how they are being utilized for biodiagnostics, biophysical studies, and medical therapy. For instance, taking advantage of the strong LSPR scattering of gold nanoparticles conjugated with specific targeting molecules allows the molecule-specific imaging and diagnosis of diseases such as cancer. We emphasize in particular how the unique tunability of the plasmon resonance properties of metal nanoparticles through variation of their size, shape, composition, and medium allows chemists to design nanostructures geared for specific bio-applications. We discuss some interesting nanostructure geometries, including nanorods, nanoshells, and nanoparticle pairs, that exhibit dramatically enhanced and tunable plasmon resonances, making them highly suitable for bio-applications. Tuning the nanostructure shape (e.g., nanoprisms, nanorods, or nanoshells) is another means of enhancing the sensitivity of the LSPR to the nanoparticle environment and, thereby, designing effective biosensing agents. Metal nanoparticle pairs or assemblies display distance-dependent plasmon resonances as a

  19. A training effect on electrical properties in nanoscale BiFeO3.

    PubMed

    Goswami, Sudipta; Bhattacharya, Dipten; Li, Wuxia; Cui, Ajuan; Jiang, QianQing; Gu, Chang-zhi

    2013-04-01

    We report our observation of the training effect on dc electrical properties in a nanochain of BiFeO3 as a result of large scale migration of defects under the combined influence of electric field and Joule heating. We show that an optimum number of cycles of electric field within the range zero to ~1.0 MV cm(-1) across a temperature range 80-300 K helps in reaching the stable state via a glass-transition-like process in the defect structure. Further treatment does not give rise to any substantial modification. We conclude that such a training effect is ubiquitous in pristine nanowires or chains of oxides and needs to be addressed for applications in nanoelectronic devices. PMID:23478468

  20. Structure and mechanical properties of nanoscale multilayered CrN/ZrSiN coatings

    SciTech Connect

    Zhang, Z. G.; Rapaud, O.; Allain, N.; Baraket, M.; Dong, C.; Coddet, C.

    2009-07-15

    Nanocrystalline/amorphous CrN/ZrSiN multilayer coatings with a bilayer thickness ranging from 11 to 153 nm were prepared by reactive magnetron sputtering technique. The microstructure and mechanical properties of these thin films were characterized by x-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and nanoindentation. The formation of nanocrystalline CrN and nanocomposite ZiSiN in the single layer coatings was identified by XRD and FTIR. The periodic structure of the as-deposited multilayer coatings was confirmed by TEM observation. Nanoindentation tests showed that both the values of hardness (H) and reduced elastic modulus (E{sub r}) of CrN/ZrSiN multilayers remained almost constant despite varying the bilayer thickness. The multilayer coatings exhibited higher H of 30 GPa and higher resistance to plastic deformation when compared to the single layer CrN and ZrSiN coatings.

  1. The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function.

    PubMed

    Achterberg, Volker F; Buscemi, Lara; Diekmann, Heike; Smith-Clerc, Josiane; Schwengler, Helge; Meister, Jean-Jacques; Wenck, Horst; Gallinat, Stefan; Hinz, Boris

    2014-07-01

    Changes in the mechanical properties of dermis occur during skin aging or tissue remodeling and affect the activity of resident fibroblasts. With the aim to establish elastic culture substrates that reproduce the variable softness of dermis, we determined Young's elastic modulus E of human dermis at the cell perception level using atomic force microscopy. The E of dermis ranged from 0.1 to 10 kPa, varied depending on body area and dermal layer, and tended to increase with age in 26-55-year-old donors. The activation state of human dermal fibroblasts cultured on "skin-soft" E (5 kPa) silicone culture substrates was compared with stiff plastic culture (GPa), collagen gel cultures (0.1-9 kPa), and fresh human dermal tissue. Fibroblasts cultured on skin-soft silicones displayed low mRNA levels of fibrosis-associated genes and increased expression of the matrix metalloproteinases (MMPs) MMP-1 and MMP-3 as compared with collagen gel and plastic cultures. The activation profile exhibited by fibroblasts on "skin-soft" silicone culture substrates was most comparable with that of human dermis than any other tested culture condition. Hence, providing biomimetic mechanical conditions generates fibroblasts that are more suitable to investigate physiologically relevant cell processes than fibroblasts spontaneously activated by stiff conventional culture surfaces.

  2. Buff/wipe effects on the physicochemical properties of perfluoropolyether nanoscale thin films

    NASA Astrophysics Data System (ADS)

    Chen, Haigang; Seung Chung, Pil; Jhon, Myung S.

    2014-05-01

    Buff/Wipe (B/W) process is commonly used in disk drive manufacturing to remove the particles and asperities on the lubricated disk surface. In this paper, we investigated how B/W process impacts the physicochemical properties of perfluoropolyethers (PFPE) nano-films through the study of surface energy and bonded ratio. Two-liquid geometric method was used to analyze the surface energy of nonfunctional PFPE, i.e., Z03, and functional PFPE, i.e., Zdol, lubricated media before and after B/W process. It was found that the dispersive surface energy of Z03 films greatly decreased after B/W, which was more significant in the submonolayer regime. In addition, the bonded ratio slightly increased. However, B/W effect on the surface energy and bonded ratio was not detected for Zdol films. It is hypothesized that nonfunctional PFPE behaves liquid-like on the carbon overcoat due to the weak interaction between lubricant and overcoat. External mechanical stress as applied with B/W can change the conformation and increase the surface coverage for nonfunctional PFPE. On the other hand, functional PFPEs behave solid-like due to the strong attraction between lubricant and overcoat; therefore, it is difficult to change the conformation by external stress from B/W process.

  3. Viscoelastic properties and nanoscale structures of composite oligopeptide-polysaccharide hydrogels.

    PubMed

    Hyland, Laura L; Taraban, Marc B; Feng, Yue; Hammouda, Boualem; Yu, Y Bruce

    2012-03-01

    Biocompatible and biodegradable peptide hydrogels are drawing increasing attention as prospective materials for human soft tissue repair and replacement. To improve the rather unfavorable mechanical properties of our pure peptide hydrogels, in this work we examined the possibility of creating a double hydrogel network. This network was created by means of the coassembly of mutually attractive, but self-repulsive oligopeptides within an already-existing fibrous network formed by the charged, biocompatible polysaccharides chitosan, alginate, and chondroitin. Using dynamic oscillatory rheology experiments, it was found that the coassembly of the peptides within the existing polysaccharide network resulted in a less stiff material as compared to the pure peptide networks (the elastic modulus G' decreased from 90 to 10 kPa). However, these composite oligopeptide-polysaccharide hydrogels were characterized by a greater resistance to deformation (the yield strain γ grew from 4 to 100%). Small-angle neutron scattering (SANS) was used to study the 2D cross-sectional shapes of the fibers, their dimensional characteristics, and the mesh sizes of the fibrous networks. Differences in material structures found with SANS experiments confirmed rheology data, showing that incorporation of the peptides dramatically changed the morphology of the polysaccharide network. The resulting fibers were structurally very similar to those forming the pure peptide networks, but formed less stiff gels because of their markedly greater mesh sizes. Together, these findings suggest an approach for the development of highly deformation-resistant biomaterials. PMID:21994046

  4. Thickness dependence of structure and piezoelectric properties at nanoscale of polycrystalline lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Araújo, E. B.; Lima, E. C.; Bdikin, I. K.; Kholkin, A. L.

    2013-05-01

    Lead zirconate titanate Pb(Zr0.50Ti0.50)O3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric, and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100)-orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. The increase of self-polarization with the film thickness increasing from 200 nm to 710 nm suggests that Schottky barriers and/or mechanical coupling near the film-substrate interface are not primarily responsible for the observed self-polarization effect in our films.

  5. Electrum, the Gold–Silver Alloy, from the Bulk Scale to the Nanoscale: Synthesis, Properties, and Segregation Rules

    PubMed Central

    2015-01-01

    The alloy Au–Ag system is an important noble bimetallic phase, both historically (as “Electrum”) and now especially in nanotechnology, as it is applied in catalysis and nanomedicine. To comprehend the structural characteristics and the thermodynamic stability of this alloy, a knowledge of its phase diagram is required that considers explicitly its size and shape (morphology) dependence. However, as the experimental determination remains quite challenging at the nanoscale, theoretical guidance can provide significant advantages. Using a regular solution model within a nanothermodynamic approach to evaluate the size effect on all the parameters (melting temperature, melting enthalpy, and interaction parameters in both phases), the nanophase diagram is predicted. Besides an overall shift downward, there is a “tilting” effect on the solidus–liquidus curves for some particular shapes exposing the (100) and (110) facets (cube, rhombic dodecahedron, and cuboctahedron). The segregation calculation reveals the preferential presence of silver at the surface for all the polyhedral shapes considered, in excellent agreement with the latest transmission electron microscopy observations and energy dispersive spectroscopy analysis. By reviewing the nature of the surface segregated element of different bimetallic nanoalloys, two surface segregation rules, based on the melting temperatures and surface energies, are deduced. Finally, the optical properties of Au–Ag nanoparticles, calculated within the discrete dipole approximation, show the control that can be achieved in the tuning of the local surface plasmon resonance, depending of the alloy content, the chemical ordering, the morphology, the size of the nanoparticle, and the nature of the surrounding environment. PMID:26605557

  6. Size effects of nano-scale pinning centers on the superconducting properties of YBCO single grains

    NASA Astrophysics Data System (ADS)

    Moutalbi, Nahed; Noudem, Jacques G.; M'chirgui, Ali

    2014-08-01

    High pinning superconductors are the most promising materials for power engineering. Their superconducting properties are governed by the microstructure quality and the vortex pinning behavior. We report on a study of the vortex pinning in YBa2Cu3O7-x (YBCO) single grain with defects induced through the addition of insulating nano-particles. In order to improve the critical current density, YBCO textured bulk superconductors were elaborated using the Top Seeded Melt Texture and Growth process with different addition amounts of Al2O3 nano-particles. Serving as strong pinning centers, 0.05% excess of Al2O3 causes a significant enhancement of the critical current density Jc under self field and in magnetic fields at 77 K. The enhanced flux pinning achieved with the low level of alumina nano-particles endorses the effectiveness of insulating nano-inclusions to induce effectives pinning sites within the superconducting matrix. On the other side, we focused on the effect of the size of pinning centers on the critical current density. This work was carried out using two batches of alumina nano-particles characterized by two different particle size distributions with mean diameters PSD1 = 20 nm and PSD2 = 2.27 μm. The matching effects of the observed pinning force density have been compared. The obtained results have shown that the flux pinning is closely dependent on the size of the artificial pinning centers. Our results suggest that the optimization of the size of the artificial pinning centers is crucial to a much better understanding of the pinning mechanisms and therefore to insure high superconducting performance for the practical application of superconducting materials.

  7. Internal and external atomic steps in graphite exhibit dramatically different physical and chemical properties.

    PubMed

    Lee, Hyunsoo; Lee, Han-Bo-Ram; Kwon, Sangku; Salmeron, Miquel; Park, Jeong Young

    2015-04-28

    We report on the physical and chemical properties of atomic steps on the surface of highly oriented pyrolytic graphite (HOPG) investigated using atomic force microscopy. Two types of step edges are identified: internal (formed during crystal growth) and external (formed by mechanical cleavage of bulk HOPG). The external steps exhibit higher friction than the internal steps due to the broken bonds of the exposed edge C atoms, while carbon atoms in the internal steps are not exposed. The reactivity of the atomic steps is manifested in a variety of ways, including the preferential attachment of Pt nanoparticles deposited on HOPG when using atomic layer deposition and KOH clusters formed during drop casting from aqueous solutions. These phenomena imply that only external atomic steps can be used for selective electrodeposition for nanoscale electronic devices.

  8. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reporting physical and chemical... chemical properties. Studies of physical and chemical properties must be reported under this subpart if...) Degradation by chemical mechanisms—hydrolytic, reductive, and oxidative. (j) Degradation by...

  9. Introduction to physical properties and elasticity models: Chapter 20

    USGS Publications Warehouse

    Dvorkin, Jack; Helgerud, Michael B.; Waite, William F.; Kirby, Stephen H.; Nur, Amos

    2003-01-01

    Estimating the in situ methane hydrate volume from seismic surveys requires knowledge of the rock physics relations between wave speeds and elastic moduli in hydrate/sediment mixtures. The elastic moduli of hydrate/sediment mixtures depend on the elastic properties of the individual sedimentary particles and the manner in which they are arranged. In this chapter, we present some rock physics data currently available from literature. The unreferenced values in Table I were not measured directly, but were derived from other values in Tables I and II using standard relationships between elastic properties for homogeneous, isotropic material. These derivations allow us to extend the list of physical property estimates, but at the expense of introducing uncertainties due to combining property values measured under different physical conditions. This is most apparent in the case of structure II (sII) hydrate for which very few physical properties have been measured under identical conditions.

  10. Dielectric spectroscopy at the nanoscale by atomic force microscopy: A simple model linking materials properties and experimental response

    SciTech Connect

    Miccio, Luis A. Colmenero, Juan; Kummali, Mohammed M.; Alegría, Ángel; Schwartz, Gustavo A.

    2014-05-14

    The use of an atomic force microscope for studying molecular dynamics through dielectric spectroscopy with spatial resolution in the nanometer scale is a recently developed approach. However, difficulties in the quantitative connection of the obtained data and the material dielectric properties, namely, frequency dependent dielectric permittivity, have limited its application. In this work, we develop a simple electrical model based on physically meaningful parameters to connect the atomic force microscopy (AFM) based dielectric spectroscopy experimental results with the material dielectric properties. We have tested the accuracy of the model and analyzed the relevance of the forces arising from the electrical interaction with the AFM probe cantilever. In this way, by using this model, it is now possible to obtain quantitative information of the local dielectric material properties in a broad frequency range. Furthermore, it is also possible to determine the experimental setup providing the best sensitivity in the detected signal.

  11. Nanoscale metal-organic materials.

    PubMed

    Carné, Arnau; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel

    2011-01-01

    Metal-organic materials are found to be a fascinating novel class of functional nanomaterials. The limitless combinations between inorganic and organic building blocks enable researchers to synthesize 0- and 1-D metal-organic discrete nanostructures with varied compositions, morphologies and sizes, fabricate 2-D metal-organic thin films and membranes, and even structure them on surfaces at the nanometre length scale. In this tutorial review, the synthetic methodologies for preparing these miniaturized materials as well as their potential properties and future applications are discussed. This review wants to offer a panoramic view of this embryonic class of nanoscale materials that will be of interest to a cross-section of researchers working in chemistry, physics, medicine, nanotechnology, materials chemistry, etc., in the next years.

  12. Nanoscale control of phonon excitations in graphene

    PubMed Central

    Kim, Hyo Won; Ko, Wonhee; Ku, JiYeon; Jeon, Insu; Kim, Donggyu; Kwon, Hyeokshin; Oh, Youngtek; Ryu, Seunghwa; Kuk, Young; Hwang, Sung Woo; Suh, Hwansoo

    2015-01-01

    Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realising graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron–phonon excitations, further influencing phonon-assisted inelastic electron tunnelling. PMID:26109454

  13. Mechanical and physical properties of plasma-sprayed stabilized zirconia

    NASA Technical Reports Server (NTRS)

    Siemers, P. A.; Mehan, R. L.

    1983-01-01

    Physical and mechanical properties were determined for plasma-sprayed MgO- or Y2O3-stabilized ZrO2 thermal barrier coatings. Properties were determined for the ceramic coating in both the freestanding condition and as-bonded to a metal substrate. The properties of the NiCrAlY bond coating were also investigated.

  14. Biochemical basis of physical properties of respiratory tract secretions.

    PubMed

    Lopez-Vidriero, M T

    1987-01-01

    The physical properties of respiratory tract secretion (RTS) play a prominent rôle in the non-specific defence mechanisms of the lung. Viscosity and elasticity, that is flow and deformation, are only two of the physical properties of RTS. Spinability, pourability, adhesiveness and tackiness are starting to be recognised as physical properties of RTS and its is likely that they may be relevant in the pathogenesis of airways obstruction. RTS is a gel, which consists of a cross-linked polymer network dispersed in a liquid solvent. The polymeric structure of the epithelial glycoprotein can be explained in terms of covalent (disulphide) linkages and/or physical entanglement between glycoproteins subunits. Other constituents of RTS such as proteins, lipids, ions and water can influence the physical properties of RTS. PMID:3322857

  15. Biochemical basis of physical properties of respiratory tract secretions.

    PubMed

    Lopez-Vidriero, M T

    1987-01-01

    The physical properties of respiratory tract secretion (RTS) play a prominent rôle in the non-specific defence mechanisms of the lung. Viscosity and elasticity, that is flow and deformation, are only two of the physical properties of RTS. Spinability, pourability, adhesiveness and tackiness are starting to be recognised as physical properties of RTS and its is likely that they may be relevant in the pathogenesis of airways obstruction. RTS is a gel, which consists of a cross-linked polymer network dispersed in a liquid solvent. The polymeric structure of the epithelial glycoprotein can be explained in terms of covalent (disulphide) linkages and/or physical entanglement between glycoproteins subunits. Other constituents of RTS such as proteins, lipids, ions and water can influence the physical properties of RTS.

  16. Temperature mapping of operating nanoscale devices by scanning probe thermometry.

    PubMed

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  17. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    PubMed Central

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-01-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip–sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal–semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution. PMID:26936427

  18. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    NASA Astrophysics Data System (ADS)

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-03-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution.

  19. Physical and mechanical properties of icebergs

    SciTech Connect

    Gammon, P.H.; Bobby, W.; Gagnon, R.E.; Russell, W.E.

    1983-05-01

    Physical and mechanical characteristics of iceberg ice were studied from samples collected near the shores of eastern Newfoundland. Although the physical characteristics show considerable diversity, iceberg ice has some common features and is generally porous, lacks significant concentrations of dissolved materials, contains internal cracks and has an irregular interlocking grain structure. A review of mechanical testing of ice was carried out and an experimental setup was devised to reduce effects of improper contact between specimen and loading apparatus. Uniaxial compressive strength for iceberg ice was determined and compared with that for lake ice. The strength of iceberg ice was higher than that of lake ice but Young's Modulus for lake ice was higher.

  20. Prediction of Solvent Physical Properties using the Hierarchical Clustering Method

    EPA Science Inventory

    Recently a QSAR (Quantitative Structure Activity Relationship) method, the hierarchical clustering method, was developed to estimate acute toxicity values for large, diverse datasets. This methodology has now been applied to the estimate solvent physical properties including sur...

  1. Predicting Soil Biological and Physical Properties Using Hydrological Properties

    NASA Astrophysics Data System (ADS)

    Geiger, L.; Hofmockel, K.; Kaleita, A.; Hargreaves, S.

    2012-12-01

    Soil biological and chemical properties vary at different spatial scales, which make predicting processes associated with these properties difficult. However, soil biological and chemical properties are important to fertility and ecosystem functioning. In this study, we used a Self Organizing Map (SOM) to determine whether soil hydrological characteristics can be used to characterize the distribution of a suite of soil biological and chemical properties. From a row crop field in south-central Iowa, we generated 36 sampling locations via a SOM, which were grouped into three categories according to hydrological properties by the SOM. Soil samples were then analyzed for microbial biomass, carbon and nitrogen mineralization potential, and organic and inorganic pools of carbon and nitrogen. We found that sampling locations in category 1 (potholes and toe slopes) had greater microbial biomass, total carbon, total nitrogen, and extractable organic carbon than compared locations in the two well-drained categories. Nitrogen and carbon mineralization and inorganic nitrogen pools did not differ significantly among the categories. These results demonstrate that hydrological characteristics can be used to predict relatively stable biological and chemical soil properties. However, prediction of nitrogen and carbon fluxes remains a challenge.

  2. Highly Anti-UV Properties of Silk Fiber with Uniform and Conformal Nanoscale TiO2 Coatings via Atomic Layer Deposition.

    PubMed

    Xiao, Xingfang; Liu, Xin; Chen, Fengxiang; Fang, Dong; Zhang, Chunhua; Xia, Liangjun; Xu, Weilin

    2015-09-30

    In this study, silk fiber was successfully modified via the application of a nanoscale titania coating using atomic layer deposition (ALD), with titanium tetraisopropoxide (TIP) and water as precursors at 100 °C. Scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscope, and field emission scanning electron microscope results demonstrated that uniform and conformal titania coatings were deposited onto the silk fiber. The thermal and mechanical properties of the TiO2 silk fiber were then investigated. The results showed that the thermal stability and mechanical properties of this material were superior to those of the uncoated substance. Furthermore, the titania ALD process provided the silk fiber with excellent protection against UV radiation. Specifically, the TiO2-coated silk fibers exhibited significant increases in UV absorbance, considerably less yellowing, and greatly enhanced mechanical properties compared with the uncoated silk fiber after UV exposure. PMID:26389713

  3. Highly Anti-UV Properties of Silk Fiber with Uniform and Conformal Nanoscale TiO2 Coatings via Atomic Layer Deposition.

    PubMed

    Xiao, Xingfang; Liu, Xin; Chen, Fengxiang; Fang, Dong; Zhang, Chunhua; Xia, Liangjun; Xu, Weilin

    2015-09-30

    In this study, silk fiber was successfully modified via the application of a nanoscale titania coating using atomic layer deposition (ALD), with titanium tetraisopropoxide (TIP) and water as precursors at 100 °C. Scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscope, and field emission scanning electron microscope results demonstrated that uniform and conformal titania coatings were deposited onto the silk fiber. The thermal and mechanical properties of the TiO2 silk fiber were then investigated. The results showed that the thermal stability and mechanical properties of this material were superior to those of the uncoated substance. Furthermore, the titania ALD process provided the silk fiber with excellent protection against UV radiation. Specifically, the TiO2-coated silk fibers exhibited significant increases in UV absorbance, considerably less yellowing, and greatly enhanced mechanical properties compared with the uncoated silk fiber after UV exposure.

  4. Microwave techniques for physical property measurements

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1993-01-01

    Industrial processing of metals and ceramics is now being streamlined by the development of theoretical models. High temperature thermophysical properties of these materials are required to successfully apply these theories. Unfortunately, there is insufficient experimental data available for many of these properties, particularly in the molten state. Microwave fields can be used to measure specific heat, thermal diffusivity, thermal conductivity and dielectric constants at high temperatures. We propose to (1) develop a microwave flash method (analogous to the laser flash technique) that can simultaneously measure the thermal diffusivity and specific heat of insulators and semiconductors at high temperatures, (2) an appropriate theory and experimental apparatus to demonstrate the measurement of the specific heat of a metal using a new microwave ac specific heat technique, and (3) experimental methods for noncontact measurement of the real and imaginary dielectric constants.

  5. 4.4 Physical Properties of the Most Important Radionuclides

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.4 Physical Properties of the Most Important Radionuclides' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy'.

  6. Psychometric Properties of the Commitment to Physical Activity Scale

    ERIC Educational Resources Information Center

    DeBate, Rita DiGioacchino; Huberty, Jennifer; Pettee, Kelley

    2009-01-01

    Objective: To assess psychometric properties of the Commitment to Physical Activity Scale (CPAS). Methods: Girls in third to fifth grades (n = 932) completed the CPAS before and after a physical activity intervention. Psychometric measures included internal consistency, factor analysis, and concurrent validity. Results: Three CPAS factors emerged:…

  7. Let Students Discover an Important Physical Property of a Slinky

    NASA Astrophysics Data System (ADS)

    Gash, Philip

    2016-10-01

    This paper describes a simple experiment that lets first-year physics and engineering students discover an important physical property of a Slinky. The restoring force for the fundamental oscillation frequency is provided only by those coils between the support and the Slinky center of mass.

  8. Let Students Discover an Important Physical Property of a Slinky

    ERIC Educational Resources Information Center

    Gash, Philip

    2016-01-01

    This paper describes a simple experiment that lets first-year physics and engineering students discover an important physical property of a Slinky. The restoring force for the fundamental oscillation frequency is provided only by those coils between the support and the Slinky center of mass.

  9. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  10. Optimization of Rei-mullite Physical Properties

    NASA Technical Reports Server (NTRS)

    Tanzilli, R. A.; Musikant, S.; Bolinger, P. N.; Brazel, J. P.

    1973-01-01

    Micromechanical and thermal modeling studies prove that ceramic fiber mullite materials is the only system capable of shuttle thermal protection to 1644 K. Hafnia pigmentated mullite surface coatings meet both orbital and reentry thermal radiative requirements for reuse without refurbishment. Thermal and mechanical models show growths potentials associated with the mullite system for a factor of 2 improvement in mechanical properties, and a factor of 2 to 3 reduction in thermal conductivity.

  11. Symmetry and causality properties of physical fields

    PubMed Central

    Jakobsen, H. P.; Ørsted, B.; Segal, I. E.; Speh, B.; Vergne, M.

    1978-01-01

    Representations of groups of causality-preserving transformations on locally Minkowskian space-times, by actions on classes of wave functions of designated transformation properties, are analyzed, in extension of the conventional theoretical treatment of free relativistic particles. In particular, the constraints of positivity of the energy and finiteness of propagation velocity are developed, and the concept of mass is explored, within the indicated framework. PMID:16592512

  12. Nanoscale Proteomics

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Masselon, Christophe D.; Pasa-Tolic, Liljiana; Camp, David G.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-02-01

    This paper describes efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies, i.e. nanoscale proteomics. The approach combines high-efficiency nano-scale LC with advanced MS, including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology developed enables large-scale protein identification from nanogram size proteomic samples and characterization of more abundant proteins from sub-picogram size complex samples. Protein identification in such studies using MS is feasible from <75 zeptomole of a protein, and the average proteome measurement throughput is >200 proteins/h and ~3 h/sample. Higher throughput (>1000 proteins/h) and more sensitive detection limits can be obtained using a “accurate mass and time” tag approach developed at our laboratory. These capabilities lay the foundation for studies from single or limited numbers of cells.

  13. Functionalising surfaces at the nanoscale using plasma technology.

    PubMed

    Moore, R

    2009-01-01

    Plasma technology offers a highly effective toolbox for nanoscale surface engineering of materials. The potential variety of nanoscale features and new properties that can be achieved are reviewed here.

  14. Interfacial band alignment and structural properties of nanoscale TiO{sub 2} thin films for integration with epitaxial crystallographic oriented germanium

    SciTech Connect

    Jain, N.; Zhu, Y.; Hudait, M. K.; Maurya, D.; Varghese, R.; Priya, S.

    2014-01-14

    We have investigated the structural and band alignment properties of nanoscale titanium dioxide (TiO{sub 2}) thin films deposited on epitaxial crystallographic oriented Ge layers grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy. The TiO{sub 2} thin films deposited at low temperature by physical vapor deposition were found to be amorphous in nature, and high-resolution transmission electron microscopy confirmed a sharp heterointerface between the TiO{sub 2} thin film and the epitaxially grown Ge with no traceable interfacial layer. A comprehensive assessment on the effect of substrate orientation on the band alignment at the TiO{sub 2}/Ge heterointerface is presented by utilizing x-ray photoelectron spectroscopy and spectroscopic ellipsometry. A band-gap of 3.33 ± 0.02 eV was determined for the amorphous TiO{sub 2} thin film from the Tauc plot. Irrespective of the crystallographic orientation of the epitaxial Ge layer, a sufficient valence band-offset of greater than 2 eV was obtained at the TiO{sub 2}/Ge heterointerface while the corresponding conduction band-offsets for the aforementioned TiO{sub 2}/Ge system were found to be smaller than 1 eV. A comparative assessment on the effect of Ge substrate orientation revealed a valence band-offset relation of ΔE{sub V}(100) > ΔE{sub V}(111) > ΔE{sub V}(110) and a conduction band-offset relation of ΔE{sub C}(110) > ΔE{sub C}(111) > ΔE{sub C}(100). These band-offset parameters are of critical importance and will provide key insight for the design and performance analysis of TiO{sub 2} for potential high-κ dielectric integration and for future metal-insulator-semiconductor contact applications with next generation of Ge based metal-oxide field-effect transistors.

  15. Changes of physical properties in multiferroic phase transitions.

    PubMed

    Litvin, Daniel B

    2014-07-01

    The physical property coefficients that arise in a phase transition which are zero in the high-symmetry phase and nonzero in the low-symmetry phase are called spontaneous coefficients. For all 1601 Aizu species of phase transitions, matrices have been constructed which show the nonzero coefficients of a wide variety of magnetic and nonmagnetic physical properties including toroidal property coefficients in the high-symmetry phase and their corresponding spontaneous coefficients in the low-symmetry phase. It is also shown that these spontaneous coefficients provide for the distinction of and switching between nonferroelastic domain pairs. PMID:25970196

  16. Physical and Chemical Properties of Modified Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Puzyr, A. P.; Bondar, V. S.; Bukayemsky, A. A.; Selyutin, G. E.; Kargin, V. F.

    A unique technology of nanodiamond surface modification is suggested which allows to separation of commercial nanodiamond powders into two fractions (F1 and F2), each possessing absolutely new properties as compared to the initial powder. Fl and F2 differ in size characteristics. Initial and modified nanodiamonds contain iron impurities and two types of nondiamond carbon. The color of the powders and hydrosols does not correlate with the content of non-diamond carbon. According to the EPR data, modified nanodiamonds possess a high level of diamond matrix shielding, and the extracted fractions differ in width of the basic transition area and in the SHF energy adsorption ratio. Due to this, Fl can be applied as precursors for CVD growth of nanocrystalline diamond and as field electron emission tips.

  17. Rock physics properties of some lunar samples

    NASA Technical Reports Server (NTRS)

    Warren, N.; Trice, R.; Anderson, O. L.; Soga, N.

    1973-01-01

    Linear strains and acoustic velocity data for lunar samples under uniaxial and hydrostatic loading are presented. Elastic properties are presented for 60335,20; 15555,68; 15498,23; and 12063,97. Internal friction data are summarized for a number of artificial lunar glasses with compositions similar to lunar rocks 12009, 12012, 14305, 15021, and 15555. Zero porosity model-rock moduli are calculated for a number of lunar model-rocks, with mineralogies similar to Apollo 12, 14, and 16 rocks. Model-rock calculations indicate that rock types in the troctolitic composition range may provide reasonable modeling of the lunar upper mantle. Model calculations involving pore crack effects are compatible with a strong dependence of rock moduli on pore strain, and therefore of rock velocities on nonhydrostatic loading. The high velocity of rocks under uniaxial loading appears to be compatible with, and may aid in, interpretation of near-surface velocity profiles observed in the active seismic experiment.

  18. Nanoscale footprints of self-running gallium droplets on GaAs surface.

    PubMed

    Wu, Jiang; Wang, Zhiming M; Li, Alvason Z; Benamara, Mourad; Li, Shibin; Salamo, Gregory J

    2011-01-01

    In this work, the nanoscale footprints of self-driven liquid gallium droplet movement on a GaAs (001) surface will be presented and analyzed. The nanoscale footprints of a primary droplet trail and ordered secondary droplets along primary droplet trails are observed on the GaAs surface. A well ordered nanoterrace from the trail is left behind by a running droplet. In addition, collision events between two running droplets are investigated. The exposed fresh surface after a collision demonstrates a superior evaporation property. Based on the observation of droplet evolution at different stages as well as nanoscale footprints, a schematic diagram of droplet evolution is outlined in an attempt to understand the phenomenon of stick-slip droplet motion on the GaAs surface. The present study adds another piece of work to obtain the physical picture of a stick-slip self-driven mechanism in nanoscale, bridging nano and micro systems.

  19. Nanoscale Footprints of Self-Running Gallium Droplets on GaAs Surface

    PubMed Central

    Wu, Jiang; Wang, Zhiming M.; Li, Alvason Z.; Benamara, Mourad; Li, Shibin; Salamo, Gregory J.

    2011-01-01

    In this work, the nanoscale footprints of self-driven liquid gallium droplet movement on a GaAs (001) surface will be presented and analyzed. The nanoscale footprints of a primary droplet trail and ordered secondary droplets along primary droplet trails are observed on the GaAs surface. A well ordered nanoterrace from the trail is left behind by a running droplet. In addition, collision events between two running droplets are investigated. The exposed fresh surface after a collision demonstrates a superior evaporation property. Based on the observation of droplet evolution at different stages as well as nanoscale footprints, a schematic diagram of droplet evolution is outlined in an attempt to understand the phenomenon of stick-slip droplet motion on the GaAs surface. The present study adds another piece of work to obtain the physical picture of a stick-slip self-driven mechanism in nanoscale, bridging nano and micro systems. PMID:21673965

  20. Optical Spectroscopy at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Hong, Xiaoping

    Recent advances in material science and fabrication techniques enabled development of nanoscale applications and devices with superior performances and high degree of integration. Exotic physics also emerges at nanoscale where confinement of electrons and phonons leads to drastically different behavior from those in the bulk materials. It is therefore rewarding and interesting to investigate and understand material properties at the nanoscale. Optical spectroscopy, one of the most versatile techniques for studying material properties and light-matter interactions, can provide new insights into the nanomaterials. In this thesis, I explore advanced laser spectroscopic techniques to probe a variety of different nanoscale phenomena. A powerful tool in nanoscience and engineering is scanning tunneling microscopy (STM). Its capability in atomic resolution imaging and spectroscopy unveiled the mystical quantum world of atoms and molecules. However identification of molecular species under investigation is one of the limiting functionalities of the STM. To address this need, we take advantage of the molecular `fingerprints' - vibrational spectroscopy, by combining an infrared light sources with scanning tunneling microscopy. In order to map out sharp molecular resonances, an infrared continuous wave broadly tunable optical parametric oscillator was developed with mode-hop free fine tuning capabilities. We then combine this laser with STM by shooting the beam onto the STM substrate with sub-monolayer diamondoids deposition. Thermal expansion of the substrate is detected by the ultrasensitive tunneling current when infrared frequency is tuned across the molecular vibrational range. Molecular vibrational spectroscopy could be obtained by recording the thermal expansion as a function of the excitation wavelength. Another interesting field of the nanoscience is carbon nanotube, an ideal model of one dimensional physics and applications. Due to the small light absorption with

  1. Advances in imaging and quantification of electrical properties at the nanoscale using Scanning Microwave Impedance Microscopy (sMIM)

    NASA Astrophysics Data System (ADS)

    Friedman, Stuart; Yang, Yongliang; Amster, Oskar

    2015-03-01

    Scanning Microwave Impedance Microscopy (sMIM) is a mode for Atomic Force Microscopy (AFM) enabling imaging of unique contrast mechanisms and measurement of local permittivity and conductivity at the 10's of nm length scale. Recent results will be presented illustrating high-resolution electrical features such as sub 15 nm Moire' patterns in Graphene, carbon nanotubes of various electrical states and ferro-electrics. In addition to imaging, the technique is suited to a variety of metrology applications where specific physical properties are determined quantitatively. We will present research activities on quantitative measurements using multiple techniques to determine dielectric constant (permittivity) and conductivity (e.g. dopant concentration) for a range of materials. Examples include bulk dielectrics, low-k dielectric thin films, capacitance standards and doped semiconductors. Funded in part by DOE SBIR DE-SC0009586.

  2. Physical Properties of Asteroid (1917) Cuyo

    NASA Astrophysics Data System (ADS)

    Rożek, A.; Lowry, S. C.; Duddy, S. R.; Snodgrass, C.; Weissman, P. R.; Wolters, S. D.; Fitzsimmons, A.; Green, S. F.; Hicks, M. D.; Rozitis, B.

    2013-09-01

    Asteroid (1917) Cuyo is a Near-Earth Asteroid (NEA) from the Amor group. It is orbitting the Sun on a highly elongated orbit with semimajor axis 2.15 AU and eccentricity 0.504. At a low delta-V (8.6 kms-1) it could be a potential target for future spacecraft missions. Radar observations indicated a slight elongation of the object with a "breadth ratio" of the asteroid's mean cross section estimated to be 1.14 [7]. Further studies showed its rotation period to be 2.6905 ± 0.0007h [11], and it was classified as 'Sr' type in the Bus-DeMeo taxonomy [8]. Cuyo was observed as part of our ESO Large Programme. The programme includes ongoing optical photometric monitoring of selected NEAs, thermal-IR observations, and optical-NIR spectroscopy. Among the principal aims of the programme are the physical characterisation of NEAs, shape modelling, and search for YORP-induced changes in rotation periods. Here we present our latest results and analysis from our observational monitoring of (1917) Cuyo. We are conducting a broad study of this asteroid, including optical photometry and spectroscopy, and thermal-IR observations. This work is ongoing and we shall present our latest results at the meeting.

  3. Nanoscale characterization of the electrical properties of oxide electrodes at the organic semiconductor-oxide electrode interface in organic solar cells

    NASA Astrophysics Data System (ADS)

    MacDonald, Gordon Alex

    This dissertation focuses on characterizing the nanoscale and surface averaged electrical properties of transparent conducting oxide electrodes such as indium tin oxide (ITO) and transparent metal-oxide (MO) electron selective interlayers (ESLs), such as zinc oxide (ZnO), the ability of these materials to rapidly extract photogenerated charges from organic semiconductors (OSCs) used in organic photovoltaic (OPV) cells, and evaluating their impact on the power conversion efficiency (PCE) of OPV devices. In Chapter 1, we will introduce the fundamental principles, benefits, and the key innovations that have advanced this technology. In Chapter 2 of this dissertation, we demonstrate an innovative application of conductive probe atomic force microscopy (CAFM) to map the nanoscale electrical heterogeneity at the interface between ITO, and a well-studied OSC, copper phthalocyanine (CuPc).(MacDonald et al. (2012) ACS Nano, 6, p. 9623) In this work we collected arrays of current-voltage (J-V) curves, using a CAFM probe as the top contact of CuPc/ITO systems, to map the local J-V responses. By comparing J-V responses to known models for charge transport, we were able to determine if the local rate-limiting-step for charge transport is through the OSC (ohmic) or the CuPc/ITO interface (non-ohmic). Chapter 3 focus on the electrical property characterization of RF-magnetron sputtered ZnO (sp-ZnO) ESL films on ITO substrates. We have shown that the energetic alignment of ESLs and the OSC active materials plays a critical role in determining the PCE of OPV devices and UV light soaking sensitivity. We have used a combination of device testing, modeling, and impedance spectroscopy to characterize the effects that energetic alignment has on the charge carrier transport and distribution within the OPV device. In Chapter 4 we demonstrate that the local properties of sp-ZnO films varies as a function of the underlying ITO crystal face. We show that the local ITO crystal face determines

  4. SAPHYR: the Swiss Atlas of PHYsical properties of Rocks

    NASA Astrophysics Data System (ADS)

    Wenning, Q. C.; Zappone, A. S.; Kissling, E.

    2015-12-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR) is a multi-year project, aiming to compile a comprehensive data set on physical properties of rocks exposed in Switzerland and surrounding areas. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public, such as industrial, engineering, land and resource planning companies, as well as academic institutions. Since the early sixties worldwide geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. In combination with efforts to investigate deep structure of the continental crust by controlled source seismology, laboratories capable to reproduce pressure and temperature conditions to depth of 50km and more collected measurements of various parameters on a wide variety of rock types. In recent years, the increasing interest on non-traditional energy supply, (deep geothermal energy, shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. The idea to organize those laboratory data into a geographically referenced database (GIS) is supported by the Swiss Commission for Geophysics. The data refer to density and porosity, seismic, magnetic, thermal properties, permeability and electrical properties. An effort has been placed on collecting samples and measuring the physical properties of lithologies that are poorly documented in literature. The phase of laboratory measurements is still in progress. At present SAPHYR focuses towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology, boreholes data and seismic surveys, combined with lab determined pressure and temperature derivatives. An early version of the final product is presented here.

  5. Physical Properties of Hanford Transuranic Waste Sludge

    SciTech Connect

    Berg, John C.

    2005-06-01

    Equipment that was purchased in the abbreviated year 1 of this project has been used during year 2 to study the fundamental behavior of materials that simulate the behavior of the Hanford transuranic waste sludge. Two significant results have been found, and each has been submitted for publication. Both studies found non-DLVO behavior in simulant systems. These separate but related studies were performed concurrently. It was previously shown in Rassat et al.'s report Physical and Liquid Chemical Simulant Formulations for Transuranic Wastes in Hanford Single-Shell Tanks that colloidal clays behave similarly to transuranic waste sludge (PNNL-14333, National Technical Information Service, U.S. Dept. of Commerce). Rassat et al. also discussed the pH and salt content of actual waste materials. It was shown that these materials exist at high pHs, generally above 10, and at high salt content, approximately 1.5 M from a mixture of different salts. A type of clay commonly studied, due to its uniformity, is a synthetic hectorite, Laponite. Therefore the work performed over the course of the last year was done mainly using suspensions of Laponite at high pH and involving high salt concentrations. One study was titled ''Relating Clay Rheology to Colloidal Parameters''. It has been submitted to the Journal of Colloid and INterface Science and is currently in the review process. The idea was to gain the ability to use measurable quantities to predict the flow behavior of clay systems, which should be similar to transuranic waste sludge. Leong et al. had previously shown that the yield stress of colloidal slurries of titania and alumina could be predicted, given the measurement of the accessible parameter zeta potential (Leong YK et al. J Chem Soc Faraday Trans, 19 (1993) 2473). Colloidal clays have a fundamentally different morphology and surface charge distribution than the spheroidal, uniformly charged colloids previously studied. This study was therefore performed in order to

  6. Nano-scale origins of recombination activity and optical properties of extended defects in mc-Si wafers and PV cells

    NASA Astrophysics Data System (ADS)

    Guthrey, Harvey L., IV

    Multicrystalline silicon (mc-Si) is the most used absorber in photovoltaic (PV) cells at present. If efficiencies are to improve in this established technology a better understanding of how minority carrier lifetimes are reduced is necessary. The capture of minority carriers by states associated with extended defects is known to play a major role in reducing minority carrier lifetimes. Energy levels introduced into the silicon bandgap often have electrical activity or optical signatures that can provide clues as to the structural or chemical origin of a particular level. This work utilizes electron beam induced current (EBIC), cathodoluminescence (CL) imaging and spectroscopy, photoluminescence (PL) imaging, and nano-scale chemical analysis to provide new insight into the origin of the electrical and optical properties of extended defects in mc-Si wafers and PV cells. A new interpretation of the temperature dependence of EBIC contrast is formulated based on observations of an anomalous form of the contrast vs. temperature curves as well as evidence of high impurity content. In addition an attempt is made to determine the origin of specific types of defect related emission as well as how this emission is influenced by processing steps applied to mc-Si wafers. Nano-scale chemical analysis is used to reveal the origin of the observed luminescence.

  7. Physical properties of Southern infrared dark clouds

    NASA Astrophysics Data System (ADS)

    Vasyunina, T.; Linz, H.; Henning, Th.; Stecklum, B.; Klose, S.; Nyman, L.-Å.

    2009-05-01

    Context: What are the mechanisms by which massive stars form? What are the initial conditions for these processes? It is commonly assumed that cold and dense Infrared Dark Clouds (IRDCs) represent the birth-sites of massive stars. Therefore, these clouds have been receiving an increasing amount of attention, and their analysis offers the opportunity to tackle the afore mentioned questions. Aims: To enlarge the sample of well-characterised IRDCs in the southern hemisphere, where ALMA will play a major role in the near future, we have developed a program to study the gas and dust of southern infrared dark clouds. The present paper attempts to characterize the continuum properties of this sample of IRDCs. Methods: We cross-correlated 1.2 mm continuum data from SIMBA bolometer array mounted on SEST telescope with Spitzer/GLIMPSE images to establish the connection between emission sources at millimeter wavelengths and the IRDCs that we observe at 8 μm in absorption against the bright PAH background. Analysing the dust emission and extinction enables us to determine the masses and column densities, which are important quantities in characterizing the initial conditions of massive star formation. We also evaluated the limitations of the emission and extinction methods. Results: The morphology of the 1.2 mm continuum emission is in all cases in close agreement with the mid-infrared extinction. The total masses of the IRDCs were found to range from 150 to 1150 M_⊙ (emission data) and from 300 to 1750 M_⊙ (extinction data). We derived peak column densities of between 0.9 and 4.6 × 1022 cm-2 (emission data) and 2.1 and 5.4 × 1022 cm-2 (extinction data). We demonstrate that the extinction method is unreliable at very high extinction values (and column densities) beyond AV values of roughly 75 mag according to the Weingartner & Draine (2001) extinction relation RV = 5.5 model B (around 200 mag when following the common Mathis (1990, ApJ, 548, 296) extinction calibration

  8. Nanoscale thermal transport.

    SciTech Connect

    Cahill, D. G.; Ford, W. K.; Goodson, K. E.; Mahan, G. D.; Majumdar, A.; Maris, H. J.; Merlin, R.; Phillpot, S. R.; Materials Science Division; Univ. of Illinois; Intel Corp.; Stanford Univ.; Penn State Univ.; Univ. of California at Berkeley; Brown Univ.; Univ. of Michigan

    2003-01-15

    Rapid progress in the synthesis and processing of materials with structure on nanometer length scales has created a demand for greater scientific understanding of thermal transport in nanoscale devices, individual nanostructures, and nanostructured materials. This review emphasizes developments in experiment, theory, and computation that have occurred in the past ten years and summarizes the present status of the field. Interfaces between materials become increasingly important on small length scales. The thermal conductance of many solid-solid interfaces have been studied experimentally but the range of observed interface properties is much smaller than predicted by simple theory. Classical molecular dynamics simulations are emerging as a powerful tool for calculations of thermal conductance and phonon scattering, and may provide for a lively interplay of experiment and theory in the near term. Fundamental issues remain concerning the correct definitions of temperature in nonequilibrium nanoscale systems. Modern Si microelectronics are now firmly in the nanoscale regime--experiments have demonstrated that the close proximity of interfaces and the extremely small volume of heat dissipation strongly modifies thermal transport, thereby aggravating problems of thermal management. Microelectronic devices are too large to yield to atomic-level simulation in the foreseeable future and, therefore, calculations of thermal transport must rely on solutions of the Boltzmann transport equation; microscopic phonon scattering rates needed for predictive models are, even for Si, poorly known. Low-dimensional nanostructures, such as carbon nanotubes, are predicted to have novel transport properties; the first quantitative experiments of the thermal conductivity of nanotubes have recently been achieved using microfabricated measurement systems. Nanoscale porosity decreases the permittivity of amorphous dielectrics but porosity also strongly decreases the thermal conductivity. The

  9. Effect of composition on physical properties of food powders

    NASA Astrophysics Data System (ADS)

    Szulc, Karolina; Lenart, Andrzej

    2016-04-01

    The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.

  10. Investigating correlation between legal and physical property: possibilities and constraints

    NASA Astrophysics Data System (ADS)

    Dimopoulou, E.; Kitsakis, D.; Tsiliakou, E.

    2015-06-01

    Contemporary urban environment is characterized by complexity and mixed use of space, in which overlapping land parcels and different RRRs (Rights, Restrictions and Responsibilities) are frequent phenomena. Internationally, real property legislation either focuses on surface property or has introduced individual 3D real property units. The former approach merely accommodates issues related to subdivision, expropriation and transactions on part of the real property above or below surface, while the latter provides for defining and registering 3D real property units. National laws require two-dimensional real property descriptions and only a limited number of jurisdictions provide for threedimensional data presentation and recording. International awareness on 3D Cadastre may be apparent through the proposals for transition of existing cadastral systems to 3D along with legal amendments improving national 3D Cadastre legislation. Concurrently the use of appropriate data sources and the correct depiction of 3D property units' boundaries and spatial relationships need to be addressed. Spatial relations and constraints amongst real world objects could be modeled geometrically and topologically utilizing numerous modeling tools, e.g. CityGML, BIM and further sophisticated 3D software or by adapting international standards, e.g. LADM. A direct correlation between legal and physical property should be based on consistent geometry between physical and legal space, improving the accuracy that legal spaces' volumes or locations are defined. To address these issues, this paper investigates correlation possibilities and constraints between legal and physical space of typical 3D property cases. These cases comprise buildings or their interior spaces with mixed use, as well as complex structures described by explicit facade patterns, generated by procedural or by BIM ready 3D models. The 3D models presented are evaluated, regarding compliancy to physical or legal reality.

  11. Physical properties about metal matrix FGM of molybdenum and copper

    SciTech Connect

    Nakano, Kouichi; Nishida, Shinichi

    1995-11-01

    Metal matrix composites (MMC) have been made trials to produce by a lot of fabrication processes such as the powder metallurgical method, the plasma spraying, the diffusion bonding, the physical vapor deposition method, the hot isostatic pressing (HIP) etc. In the most cases of these processes, dissimilar materials are combined or bonded directly. The various physical properties are discontinuous at the bonded interface of the dissimilar materials. In order to overcome the problem, functionally gradient materials (FGM) have been considered recently, and have attracted the authors. Its compositions are prepared so that physical properties continuously vary across the bond interface of the dissimilar metals. In this study, a FGM is produced by a new process based on HIP. Copper and molybdenum, which are distinct in the thermo-physical property to each other, are the constitutents for the FGM. This composition have been confirmed by absorbed electron and characteristics X-ray images of each mixed layer for FGM to be uniform or continuous. The following items have been investigated and compared with the linear law of mixture rule: Vickers hardness, thermal expansion, and thermal conductivity at a one-dimensional non-steady state. Those physical properties have been identified to depend on the mixing ratios of copper and molybdenum. Pretty good agreements have been obtained between the experimental data and the calculated values according to the linear law of mixture rule.

  12. Use of ultrasound to monitor physical properties of soybean oil

    NASA Astrophysics Data System (ADS)

    Baêsso, R. M.; Oliveira, P. A.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2016-07-01

    The study of the monitoring physical properties of soybean oil was performed. The pulse-echo method allowed measuring the density and viscosity of the oil in real time and accurately. The physical property values were related to the acoustic time of flight ratio, dimensionless parameter that can be obtained from any reference. In our case, we used the time of flight at 20°C as reference and a fixed distance between the transducer and the reflector. Ultrasonic monitoring technique employed here has shown promising in the analysis of edible oils.

  13. Aerosol physical properties in the stratosphere (APPS) radiometer design

    NASA Technical Reports Server (NTRS)

    Gray, C. R.; Woodin, E. A.; Anderson, T. J.; Magee, R. J.; Karthas, G. W.

    1977-01-01

    The measurement concepts and radiometer design developed to obtain earth-limb spectral radiance measurements for the Aerosol Physical Properties in the Stratosphere (APPS) measurement program are presented. The measurements made by a radiometer of this design can be inverted to yield vertical profiles of Rayleigh scatterers, ozone, nitrogen dioxide, aerosol extinction, and aerosol physical properties, including a Junge size-distribution parameter, and a real and imaginary index of refraction. The radiometer design provides the capacity for remote sensing of stratospheric constituents from space on platforms such as the space shuttle and satellites, and therefore provides for global measurements on a daily basis.

  14. Spatial variability of snow physical properties across northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Courville, Z.; Polashenski, C.; Dibb, J. E.; Domine, F.

    2013-12-01

    In the late spring and early summer of 2013, researchers on the SAGE (Sunlight Absorption on the Greenland ice sheet Experiment) Traverse, embarked on a 4000 km ground traverse across northwestern Greenland in an attempt to quantify spatial variability of snow chemistry, snow physical properties, and snow reflectance. The field team targeted sites first visited by Carl Benson during his series of traverses from 1952 to 1955 as part of his pioneering work to characterize the Greenland Ice Sheet. This route now represents a rapidly changing and variable area of Greenland, as the route passes through several of the ice sheet facies first delimited by Benson. Along the traverse, the SAGE field team made ground-based albedo measurements using a hand-held spectroradiometer and collected snow physical property samples to determine snow specific surface area (SSA) from shallow, 2m pits. In addition, snow density and stratigraphy were measured. Snow layers in the near-surface and at the previous season's melt layer were targeted for sampling. Here we present preliminary snow physical property results from the upper portion of the snow pits and relate these to surface albedo data collected over the route. Further measurements of snow properties in the 2012 melt layer will be analyzed to assess the potential role of snow chemical (see Dibb et al. for a discussion of chemical analysis) and physical property driven albedo feedbacks could have played in contributing to that event. Route of 2013 SAGE Traverse in northwestern Greenland.

  15. Reconciling the Orbital and Physical Properties of the Martian Moons

    NASA Astrophysics Data System (ADS)

    Ronnet, T.; Vernazza, P.; Mousis, O.; Brugger, B.; Beck, P.; Devouard, B.; Witasse, O.; Cipriani, F.

    2016-09-01

    The origin of Phobos and Deimos is still an open question. Currently, none of the three proposed scenarios for their origin (intact capture of two distinct outer solar system small bodies, co-accretion with Mars, and accretion within an impact-generated disk) are able to reconcile their orbital and physical properties. Here we investigate the expected mineralogical composition and size of the grains from which the moons once accreted assuming they formed within an impact-generated accretion disk. A comparison of our results with the present-day spectral properties of the moons allows us to conclude that their building blocks cannot originate from a magma phase, thus preventing their formation in the innermost part of the disk. Instead, gas-to-solid condensation of the building blocks in the outer part of an extended gaseous disk is found as a possible formation mechanism as it does allow reproducing both the spectral and physical properties of the moons. Such a scenario may finally reconcile their orbital and physical properties, alleviating the need to invoke an unlikely capture scenario to explain their physical properties.

  16. Optical/Electronic Heterogeneity of WSe2 at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Park, Kyoung-Duck; Khatib, Omar; Kravtsov, Vasily; Ulbricht, Ronald; Clark, Genevieve; Xu, Xiaodong; Raschke, Markus

    Many classes of two-dimensional (2D) materials have emerged as a potential platform for novel electronic and optical devices. However, the physical properties are strongly influenced by nanoscale heterogeneities in the form of nucleation sites, defects, strains, and edges. Here we demonstrate nano-optical imaging of the associated influence on structure and electronic properties with sub-20 nm spatial resolution from combined tip-enhanced Raman scattering (TERS) and photoluminescence (TEPL) spectroscopy and imaging. In monolayer WSe2 micro-crystals grown by physical vapor deposition (PVD), we observe significant variations in TERS and TEPL near crystal edges and atomic-scale grain boundaries (GBs), consistent with variations in strain and/or exciton diffusion. Specifically, theoretical exciton diffusion lengths (25 nm) at GBs and heterogeneous nanoscale (30-80 nm) PL emission including a spectral blue-shift at edges are experimentally probed. Further, we are able to engineer the local bandgap of WSe2 crystals by dynamic AFM-control in reversible (24 meV) and irreversible (48 meV) fashions, enabling systematic in-situ studies of the coupling of mechanical degrees of freedom to the nanoscale electronic properties in layered 2D materials.

  17. Physical Vapor Deposition for the Controlled Synthesis of Magnetic Nanocrystals

    NASA Astrophysics Data System (ADS)

    Lee, Jonathan; van Buuren, Tony; Jeffries, Jason; Orme, Christine; McCall, Scott

    2014-03-01

    The ability to tailor the nanoscale architecture of magnetic materials provides an important pathway to enhancing their properties. For multicomponent systems, this necessitates precise control over the structure and composition of the nanoscale materials used in their manufacture. We report on the fabrication of a variety of nanoscale hard and soft magnetic materials using physical vapor deposition and will discuss characterization of their structure and physical properties, conducted with the aim of deriving structure-function relationships. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  18. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    USGS Publications Warehouse

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  19. Nanoscale TiO₂-coated LPGs as radiation-tolerant humidity sensors for high-energy physics applications.

    PubMed

    Consales, Marco; Berruti, Gaia; Borriello, Anna; Giordano, Michele; Buontempo, Salvatore; Breglio, Giovanni; Makovec, Alajos; Petagna, Paolo; Cusano, Andrea

    2014-07-15

    This Letter deals with a feasibility analysis for the development of radiation-tolerant fiber-optic humidity sensors based on long-period grating (LPG) technology to be applied in high-energy physics (HEP) experiments currently running at the European Organization for Nuclear Research (CERN). In particular, here we propose a high-sensitivity LPG sensor coated with a finely tuned titanium dioxide (TiO₂) thin layer (~100 nm thick) through the solgel deposition method. Relative humidity (RH) monitoring in the range 0%-75% and at four different temperatures (in the range -10°C-25°C) was carried out to assess sensor performance in real operative conditions required in typical experiments running at CERN. Experimental results demonstrate the very high RH sensitivities of the proposed device (up to 1.4 nm/% RH in correspondence to very low humidity levels), which turned out to be from one to three orders of magnitude higher than those exhibited by fiber Bragg grating sensors coated with micrometer-thin polyimide overlays. The radiation tolerance capability of the TiO₂-coated LPG sensor is also investigated by comparing the sensing performance before and after its exposure to a 1 Mrad dose of γ-ionizing radiation. Overall, the results collected demonstrate the strong potential of the proposed technology with regard to its future exploitation in HEP applications as a robust and valid alternative to the commercial (polymer-based) hygrometers currently used.

  20. Nanoscale TiO₂-coated LPGs as radiation-tolerant humidity sensors for high-energy physics applications.

    PubMed

    Consales, Marco; Berruti, Gaia; Borriello, Anna; Giordano, Michele; Buontempo, Salvatore; Breglio, Giovanni; Makovec, Alajos; Petagna, Paolo; Cusano, Andrea

    2014-07-15

    This Letter deals with a feasibility analysis for the development of radiation-tolerant fiber-optic humidity sensors based on long-period grating (LPG) technology to be applied in high-energy physics (HEP) experiments currently running at the European Organization for Nuclear Research (CERN). In particular, here we propose a high-sensitivity LPG sensor coated with a finely tuned titanium dioxide (TiO₂) thin layer (~100 nm thick) through the solgel deposition method. Relative humidity (RH) monitoring in the range 0%-75% and at four different temperatures (in the range -10°C-25°C) was carried out to assess sensor performance in real operative conditions required in typical experiments running at CERN. Experimental results demonstrate the very high RH sensitivities of the proposed device (up to 1.4 nm/% RH in correspondence to very low humidity levels), which turned out to be from one to three orders of magnitude higher than those exhibited by fiber Bragg grating sensors coated with micrometer-thin polyimide overlays. The radiation tolerance capability of the TiO₂-coated LPG sensor is also investigated by comparing the sensing performance before and after its exposure to a 1 Mrad dose of γ-ionizing radiation. Overall, the results collected demonstrate the strong potential of the proposed technology with regard to its future exploitation in HEP applications as a robust and valid alternative to the commercial (polymer-based) hygrometers currently used. PMID:25121668

  1. Synthesis and physical properties of pennycress estolides and esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new series of pennycress (Thlasphi arvense L.) based free-acid estolides was synthesized by an acid-catalyzed condensation reaction, followed by an esterification reaction to produce the 2-ethylhexyl (2-EH) esters of the initial estolides. The physical properties of the estolides are highly affect...

  2. Physical property characterization of 183-H Basin sludge

    SciTech Connect

    Biyani, R.K.; Delegard, C.H.

    1995-09-20

    This document describes the characterization of 183-H Basin sludge physical properties, e.g. bulk density of sludge and absorbent, and determination of free liquids. Calcination of crucible-size samples of sludge was also done and the resulting `loss-on-ignition` was compared to the theoretical weight loss based on sludge analysis obtained from Weston Labs.

  3. Mechanical and physical properties of modern boron fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1978-01-01

    The results of accurate measurements of the modern boron fiber's Young's modulus, flexural modulus, shear modulus, and Poisson's ratio are reported. Physical property data concerning fiber density, thermal expansion, and resistance obtained during the course of the mechanical studies are also given.

  4. Physical Properties of Meteorite Falls in Relation to Planetary Defense

    NASA Astrophysics Data System (ADS)

    Ostrowski, D.; Sears, D. W. G.; Bryson, K.; Agrawal, P.

    2015-07-01

    NASA ARC has set up a new lab to study a suite of physical properties of all types of meteorite falls. This is aide to the Planetary Defense initiative at Ames in determining how to deflect or the impact outcome of potentially hazardous bodies.

  5. Physical and Chemical Properties of Anthropogenic Aerosols: An overview

    EPA Science Inventory

    A wide variety of anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is complex. Combustion aerosols can c...

  6. Characterization of physical and aerodynamic properties of walnuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to study the physical and aerodynamic properties of freshly harvested walnuts. Measurements were carried out for three walnut varieties, Tulare, Howard and Chandler cultivated in California, USA. The nuts treated with and without Ethephon were collected from mechan...

  7. Physical Properties of Craters on Asteroid (21) Lutetia

    NASA Astrophysics Data System (ADS)

    Vincent, J.-B.; Marchi, S.; Besse, S.; Böhnhardt, H.; Sierks, H.; A'Hearn, M.; Angrilli, F.; Barbieri, C.; Barucci, A.; Cremonese, G.; da Deppo, V.; Davidsson, B.; Debei, S.; de Cecco, M.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutierrez, P.; Hviid, S. F.; Ip, W.-H.; Keller, H. U.; Kramm, J. R.; Knollenberg, J.; Koschny, D.; Kuehrt, E.; Kueppers, M.; Lamy, P.; Lara, L. M.; Lazzarin, M.; Lopez-Moreno, J. J.; Magrin, S.; Marzari, F.; Massironi, M.; Michalik, H.; Naletto, G.; Rickman, H.; Rodrigo, R.; Sabau, L.; Thomas, N.; Wenzel, K.-P.

    2011-03-01

    This abstract presents the physical properties of craters derived from the measurement of depth/diameter ratios on asteroid (21) Lutetia. We show how the d/D ratio varies in different regions and how it can be used to better understand the processes that affected the surface.

  8. IMPROVED PHYSICAL PROPERTIES OF ZEIN USING GLYOXAL AS A CROSSLINKER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of crosslinkers glyoxal, methylglyoxal and formaldehyde on physical properties of zein films was studied. Zein was solubilized in 90%(v/v) aqueous ethanol and the pH was adjusted with either hydrochloric acid or sodium hydroxide. Crosslinkers were added to 0.3, 1, 3 and 6%(w/w by zein w...

  9. IMPROVED PHYSICAL PROPERTIES OF ZEIN USING GLYOXAL AS A CROSSLINKER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of crosslinkers glyoxal, methylglyoxal and formaldehyde on physical properties of zein films was studied. Crosslinker concentrations varied from 0.3 to 6% by zein weight. Films crosslinked with glyoxal and formaldehyde showed a significant increase in tensile strength under certain pH c...

  10. Effect of adjuvant physical properties on spray characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of adjuvant physical properties on spray characteristics were studied. Dynamic surface tension was measured with a Sensa Dyne surface tensiometer 6000 using the maximum bubble pressure method. Viscosity was measured with a Brookfield synchro-lectric viscometer model LVT using a UL adap...

  11. Geology and physical properties of the Monterey Formation, California

    SciTech Connect

    Isaacs, C.M.

    1984-04-01

    Original sediments of the Monterey Formation have diverse compositions reflecting both paleobasin setting (fine detritus) and oceanographic productivity (silica/carbonate). Varying stages of diagenesis, which includes silica phase transformations and dolomitization, have produced fractured reservoirs characterized by a complex array of rock types with a wide range of physical properties.

  12. Physical Properties of Cell Water in Partially Dried Saccharomyces cerevisiae

    PubMed Central

    Koga, Shozo; Echigo, Akira; Nunomura, Kazuko

    1966-01-01

    The equilibrium vapor pressure, the heat of vaporization, the dielectric increment, and the NMR spectra of partially dried cells were studied in Saccharomyces cerevisiae with water contents varying in the range from 25 to 0.8%. The comparative study of those physical properties suggests that physical states of the microbe can be classified into four regions in accordance with the states of the cell water: the solution region, the gel region, the mobile adsorption region, and the localized water region. Much difference in the physiological properties is found between the cells in the solution region and those in the gel region, whereas the pattern changes in physical properties take place when the cells in the gel region are dried to a further extent into the mobile or the localized region. The various modes in the molecular motion of the cell water reflected in those physical properties of the cell seem to give some insight into the biological functions of the molecule in the native as well as the dried states of the cell. PMID:5970569

  13. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    PubMed

    Cook, Daniel L; Bookstein, Fred L; Gennari, John H

    2011-01-01

    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration.

  14. Physical and related sensory properties of a swallowable bolus.

    PubMed

    Loret, C; Walter, M; Pineau, N; Peyron, M A; Hartmann, C; Martin, N

    2011-10-24

    Rheology and water content properties of cereal boluses collected just before swallowing were investigated. No specific physical markers for swallowing were found between subjects. Each subject had his own mastication strategy leading to food boluses with different rheological and water content properties. However, for most of the subjects, similar physical properties were found for food boluses obtained from consumption of different cereals. Results showed that the food boluses from different cereals exhibited gel-like properties being in a range from 14.1 kPa to 21.2 kPa (G'(1 Hz, 0.4%)), when swallowed. The food boluses had a static yield stress varying from 1.3 kPa to 4.3 kPa. Another interesting finding was that the water content of food boluses might be an important marker for swallowing since it was similar for different cereal food boluses (around 50%). This physical property might drive the fluid sensory perception, which could also be a sensory swallowing threshold. PMID:21620879

  15. Physical and mechanical properties of the lunar soil (a review)

    NASA Astrophysics Data System (ADS)

    Slyuta, E. N.

    2014-09-01

    We review the data on the physical and mechanical properties of the lunar soil that were acquired in the direct investigations on the lunar surface carried out in the manned and automatic missions and in the laboratory examination of the lunar samples returned to the Earth. In justice to the American manned program Apollo, we show that a large volume of the data on the properties of the lunar soil was also obtained in the Soviet automatic program Lunokhod and with the automatic space stations Luna-16, -20, and -24 that returned the lunar soil samples to the Earth. We consider all of the main physical and mechanical properties of the lunar soil, such as the granulometric composition, density and porosity, cohesion and adhesion, angle of internal friction, shear strength of loose soil, deformation characteristics (the deformation modulus and Poisson ratio), compressibility, and the bearing capacity, and show the change of some properties versus the depth. In most cases, the analytical dependence of the main parameters is presented, which is required in developing reliable engineering models of the lunar soil. The main physical and mechanical properties are listed in the summarizing table, and the currently available models and simulants of the lunar soil are reviewed.

  16. Physical Properties of Five Brands of K-Files

    PubMed Central

    Izadi, Arash; Shahravan, Arash; Shabani Nejad, Hoda

    2016-01-01

    Introduction: Endodontic K-files are major tools for cleaning and shaping of the root canal systems. As there are various K-files available in Iranian market, the physical properties of the five available brands were investigated to assist the clinician when selecting suitable endodontic K-files according to the intended application. Materials and Methods: Physical properties (including debris creation, machinery defect and corrosion) of the selected K-files were investigated by a scanning electron microscope (SEM) under ×250 magnification. For evaluating the flutes number, a stereomicroscope was used with ×40 magnification. Results: Maximum and minimum debris and corrosion were observed in the Larmrose and Perfect K-files, respectively. Dentsply showed the least machinery defects. Other brands had intermediary properties. In addition, Larmrose K-files showed the maximum flutes number compared to the other brands. Conclusion: According to the results, none of the K-files had the ideal properties. More studies regarding the physical properties of the K-files and their clinical efficacy are suggested. PMID:27141219

  17. Process depending morphology and resulting physical properties of TPU

    SciTech Connect

    Frick, Achim Spadaro, Marcel

    2015-12-17

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix or of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.

  18. Synthesis, characterization, and physical properties of 1D nanostructures

    NASA Astrophysics Data System (ADS)

    Marley, Peter Mchael

    framework is facilitated by the nanometer-sized dimensions of the materials, which leads to accommodation of strain without amorphization. The topotactic approach demonstrated here indicates not just novel intercalation chemistry accessible at nanoscale dimensions but also suggests a facile synthetic route to ternary vanadium oxide bronzes (MxV2O 5) exhibiting intriguing physical properties that range from electronic phase transitions to charge ordering and superconductivity.

  19. Biomedically relevant chemical and physical properties of coal combustion products.

    PubMed Central

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

  20. Gas diffusion and physical property investigations for polar firn

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.

    2012-12-01

    Improved understanding of physical and gas transport properties of firn and their controls on interstitial gas diffusion would inform ice core interpretation and snow/atmosphere exchange processes. In particular, gas diffusivity is relevant in the important calculation of gas age/ice age differences, but extensive direct measurements of gas diffusivity of firn have not been made. This paper describes an investigation that relates gas diffusivity and permeability based on measurements of the physical properties of firn over a wide range of density. Gas diffusivity and permeability measurements were made on a set of homogeneous samples from varying depths between the surface and pore close-off at Summit, Greenland. Microstructural properties were obtained using Micro-CT measurements. Correlations between our findings and firn densification processes are examined.

  1. Physical and Electronic Properties Changed by Aging Plutonium

    SciTech Connect

    Chung, B W; Tobin, J G; Thompson, S R; Ebbinghaus, B B

    2005-03-22

    Plutonium, because of its radioactive nature, ages from the ''inside out'' by means of self-irradiation damage and thus produces Frankel-type defects and defect clusters. The defects resulting from the residual lattice damage and helium in-growth could result in microstructural, electronic, and physical property changes. This paper presents volume, density, and electronic property change observed from both naturally and accelerated aged plutonium alloys. Accelerated alloys are plutonium alloys with a fraction of Pu-238 to accelerate the aging process by approximately 18 times the rate of unaged weapons-grade plutonium. After thirty-five equivalent years of aging on accelerated alloys, the samples have swelled in volume by approximately 0.1% and now exhibit a near linear volume increase due to helium in-growth. We will correlate the physical property changes to the electronic structure of plutonium observed by the resonant photoelectron spectroscopy (RESPES).

  2. Thermoelectric effects in nanoscale junctions.

    PubMed

    Dubi, Yonatan; Di Ventra, Massimiliano

    2009-01-01

    Despite its intrinsic nonequilibrium origin, thermoelectricity in nanoscale systems is usually described within a static scattering approach which disregards the dynamical interaction with the thermal baths that maintain energy flow. Using the theory of open quantum systems, we show instead that unexpected properties, such as a resonant structure and large sign sensitivity, emerge if the nonequilibrium nature of this problem is considered. Our approach also allows us to define and study a local temperature, which shows hot spots and oscillations along the system according to the coupling of the latter to the electrodes. This demonstrates that Fourier's lawa paradigm of statistical mechanicsis generally violated in nanoscale junctions. PMID:19072125

  3. Nanoscale investigation of platinum nanoparticles on strontium titanium oxide grown via physical vapor deposition and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Christensen, Steven Thomas

    This dissertation examines growth of platinum nanoparticles from vapor deposition on SrTiO3 using a characterization approach that combines imaging techniques and X-ray methods. The primary suite of characterization probes includes atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and X-ray absorption spectroscopy (XAS). The vapor deposition techniques include physical vapor deposition (PVD) by evaporation and atomic layer deposition (ALD). For the PVD platinum study, AFM/XRF showed ˜10 nm nanoparticles separated by an average of 100 nm. The combination of AFM, GISAXS, and XRF indicated that the nanoparticles observed with AFM were actually comprised of closely spaced, smaller nanoparticles. These conclusions were supported by high-resolution SEM. The unusual behavior of platinum nanoparticles to aggregate without coalescence or sintering was observed previously by other researchers using transmissision electron microscopy (TEM). Platinum nanoparticle growth was also investigated on SrTiO3 (001) single crystals using ALD to nucleate nanoparticles that subsequently grew and coalesced into granular films as the ALD progresses. The expected growth rate for the early stages of ALD showed a two-fold increase which was attributed to the platinum deposition occurring faster on the bare substrate. Once the nanoparticles had coalesced into a film, steady state ALD growth proceeded. The formation of nanoparticles was attributed to the atomic diffusion of platinum atoms on the surface in addition to direct growth from the ALD precursor gases. The platinum ALD nanoparticles were also studied on SrTiO3 nanocube powders. The SrTiO3 nanocubes average 60 nm on a side and the cube faces have a {001} orientation. The ALD proceeded in a similar fashion as on the single crystal substrates where the deposition rate was twice as fast as the steady state growth rate. The Pt nanoparticle

  4. PhySIC: a veto supertree method with desirable properties.

    PubMed

    Ranwez, Vincent; Berry, Vincent; Criscuolo, Alexis; Fabre, Pierre-Henri; Guillemot, Sylvain; Scornavacca, Celine; Douzery, Emmanuel J P

    2007-10-01

    This paper focuses on veto supertree methods; i.e., methods that aim at producing a conservative synthesis of the relationships agreed upon by all source trees. We propose desirable properties that a supertree should satisfy in this framework, namely the non-contradiction property (PC) and the induction property (PI). The former requires that the supertree does not contain relationships that contradict one or a combination of the source topologies, whereas the latter requires that all topological information contained in the supertree is present in a source tree or collectively induced by several source trees. We provide simple examples to illustrate their relevance and that allow a comparison with previously advocated properties. We show that these properties can be checked in polynomial time for any given rooted supertree. Moreover, we introduce the PhySIC method (PHYlogenetic Signal with Induction and non-Contradiction). For k input trees spanning a set of n taxa, this method produces a supertree that satisfies the above-mentioned properties in O(kn(3) + n(4)) computing time. The polytomies of the produced supertree are also tagged by labels indicating areas of conflict as well as those with insufficient overlap. As a whole, PhySIC enables the user to quickly summarize consensual information of a set of trees and localize groups of taxa for which the data require consolidation. Lastly, we illustrate the behaviour of PhySIC on primate data sets of various sizes, and propose a supertree covering 95% of all primate extant genera. The PhySIC algorithm is available at http://atgc.lirmm.fr/cgi-bin/PhySIC. PMID:17918032

  5. The Influence of Fuelbed Physical Properties on Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Urbanski, S. P.; Lincoln, E.; Baker, S. P.; Richardson, M.

    2014-12-01

    Emissions from biomass fires can significantly degrade regional air quality and therefore are of major concern to air regulators and land managers in the U.S. and Canada. Accurately estimating emissions from different fire types in various ecosystems is crucial to predicting and mitigating the impact of fires on air quality. The physical properties of ecosystems' fuelbeds can heavily influence the combustion processes (e.g. flaming or smoldering) and the resultant emissions. However, despite recent progress in characterizing the composition of biomass smoke, significant knowledge gaps remain regarding the linkage between basic fuelbed physical properties and emissions. In laboratory experiments we examined the effects of fuelbed properties on combustion efficiency (CE) and emissions for an important fuel component of temperate and boreal forests - conifer needles. The bulk density (BD), depth (DZ), and moisture content (MC) of Ponderosa Pine needle fuelbeds were manipulated in 75 burns for which gas and particle emissions were measured. We found CE was negatively correlated with BD, DZ and MC and that the emission factors of species associated with smoldering combustion processes (CO, CH4, particles) were positively correlated with these fuelbed properties. The study indicates the physical properties of conifer needle fuelbeds have a significant effect on CE and hence emissions. However, many of the emission models used to predict and manage smoke impacts on air quality assume conifer litter burns by flaming combustion with a high CE and correspondingly low emissions of CO, CH4, particles, and organic compounds. Our results suggest emission models underestimate emissions from fires involving a large component of conifer needles. Additionally, our findings indicate that laboratory studies of emissions should carefully control fuelbed physical properties to avoid confounding effects that may obscure the effects being tested and lead to erroneous interpretations.

  6. LDRD-LW Final Report: 07-LW-041 "Magnetism in Semiconductor Nanocrystals: New Physics at the Nanoscale"

    SciTech Connect

    Meulenberg, R W; Lee, J I; McCall, S K

    2009-10-19

    The work conducted in this project was conducted with the aim of identifying and understanding the origin and mechanisms of magnetic behavior in undoped semiconductor nanocrystals (NCs), specifically those composed of CdSe. It was anticipated that the successful completion of this task would have the effect of addressing and resolving significant controversy over this topic in the literature. Meanwhile, application of the resultant knowledge was expected to permit manipulation of the magnetic properties, particularly the strength of any magnetic effects, which is of potential relevance in a range of advanced technologies. More specifically, the project was designed and research conducted with the goal of addressing the following series of questions: (1) How does the magnitude of the magnetism in CdSe NCs change with the organic molecules used to passivate their surface the NC size? i.e. Is the magnetism an intrinsic effect in the nanocrystalline CdSe (as observed for Au NCs) or a surface termination driven effect? (2) What is the chemical (elemental) nature of the magnetism? i.e. Are the magnetic effects associated with the Cd atoms or the Se atoms or both? (3) What is/are the underlying mechanism(s)? (4) How can the magnetism be controlled for further applications? To achieve this goal, several experimental/technical milestones were identified to be fulfilled during the course of the research: (A) The preparation of well characterized CdSe NCs with varying surface termination (B) Establishing the extent of the magnetism of these NCs using magnetometry (particularly using superconducting interference device [SQUID]) (C) Establishing the chemical nature of the magnetism using x-ray magnetic circular dichroism (XMCD) - the element specific nature of the technique allows identification of the element responsible for the magnetism (D) Identification of the effect of surface termination on the empty densities of states (DOS) using x-ray absorption spectroscopy (XAS

  7. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study.

    PubMed

    Wei, Yu-Ting; Wu, Shian-Chee; Chou, Chih-Ming; Che, Choi-Hong; Tsai, Shin-Mu; Lien, Hsing-Lung

    2010-01-01

    A 200m(2) pilot-scale field test successfully demonstrated the use of nanoscale zero-valent iron (NZVI) for effective remediation of groundwater contaminated with chlorinated organic compounds in Taiwan within six months. Both commercially available and on-site synthesized NZVI were used. A well-defined monitoring program allowing to collect three-dimensional spatial data from 13 nested multi-level monitoring wells was conducted to monitor geochemical parameters in groundwater. The degradation efficiency of vinyl chloride (VC) determined at most of monitoring wells was 50-99%. It was found that the injection of NZVI caused a significant change in total iron, total solid (TS) and suspended solid (SS) concentrations in groundwater. Total iron concentration showed a moderate and weak correlation with SS and TS, respectively, suggesting that SS may be used to indicate the NZVI distribution in groundwater. A decrease in oxidation-reduction potential (ORP) values from about -100 to -400mV after NZVI injection was observed. This revealed that NZVI is an effective means of achieving highly reducing conditions in the subsurface environment. Both VC degradation efficiency and ORP showed a correlative tendency as an increase in VC degradation efficiency corresponded to a decrease of ORP. This is in agreement with the previous studies suggesting that ORP can serve as an indicator for the NZVI reactivity.

  8. Effects of physical properties on thermo-fluids cavitating flows

    NASA Astrophysics Data System (ADS)

    Chen, T. R.; Wang, G. Y.; Huang, B.; Li, D. Q.; Ma, X. J.; Li, X. L.

    2015-12-01

    The aims of this paper are to study the thermo-fluid cavitating flows and to evaluate the effects of physical properties on cavitation behaviours. The Favre-averaged Navier-Stokes equations with the energy equation are applied to numerically investigate the liquid nitrogen cavitating flows around a NASA hydrofoil. Meanwhile, the thermodynamic parameter Σ is used to assess the thermodynamic effects on cavitating flows. The results indicate that the thermodynamic effects on the thermo-fluid cavitating flows significantly affect the cavitation behaviours, including pressure and temperature distribution, the variation of physical properties, and cavity structures. The thermodynamic effects can be evaluated by physical properties under the same free-stream conditions. The global sensitivity analysis of liquid nitrogen suggests that ρv, Cl and L significantly influence temperature drop and cavity structure in the existing numerical framework, while pv plays the dominant role when these properties vary with temperature. The liquid viscosity μl slightly affects the flow structure via changing the Reynolds number Re equivalently, however, it hardly affects the temperature distribution.

  9. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization. PMID:18471849

  10. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  11. Swiss Atlas of PHYsical properties of Rocks (SAPHYR)

    NASA Astrophysics Data System (ADS)

    Zappone, Alba; Kissling, Eduard

    2015-04-01

    The Swiss Atlas of PHYsical properties of Rocks (SAPHYR), is a multi-year project, funded entirely by Swiss Commission for Geophysics (SGPK), with the aim to compile a comprehensive data set in digital form on physical properties of rocks exposed in Switzerland and surrounding regions. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public including industrial, engineering, land and resource planning companies, as well as academic institutions, or simply people interested in geology. Since the early sixties worldwide many scientists, i.e. geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. Particularly in the years in which seismic reflection and refraction crustal scale projects were investigating the deep structures of the Alps, laboratories capable to reproduce the pressure and temperature ranges of the continental crust were collecting measurements of various rock parameters on a wide variety of lithologies, developing in the meantime more and more sophisticated experimental methodologies. In recent years, the increasing interest of European Countries on non-traditional energy supply, (i.e. Deep Geothermal Energy and shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. SAPHYR aims to organize all those laboratory data into a geographically referenced database (GIS). The data refer to density, porosity, permeability, and seismic, magnetic, thermal and electric properties. In the past years, effort has been placed on collecting samples and measuring the physical properties of lithologies that were poorly documented in literature. The phase of laboratory measurements is still in progress. Recently, SAPHYR project focused towards developing

  12. Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property

    ERIC Educational Resources Information Center

    Jungermann, Arnd H.

    2006-01-01

    In contrast to most other thermodynamic data, entropy values are not given in relation to a certain--more or less arbitrarily defined--zero level. They are listed in standard thermodynamic tables as absolute values of specific substances. Therefore these values describe a physical property of the listed substances. One of the main tasks of…

  13. Flexoelectricity in Nanoscale Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Catalan, Gustau

    2012-02-01

    All ferroelectrics are piezoelectric and thus have an intrinsic coupling between polarization and strain. There exists an additional electromechanical coupling, however, between polarization and strain gradients. Strain gradients are intrinsically vectorial fields and, therefore, they can in principle be used to modify both the orientation and the sign of the polarization, thanks to the coupling known as flexoelectricity. Flexoelectricity is possible even in paraelectric materials, but is generally stronger in ferroelectrics on account of their high permittivity (the flexoelectric coefficient is proportional to the dielectric constant). Moreover, strain gradients can be large at the nanoscale due to the smallness of the relaxation length and, accordingly, strong flexoelectric effects can be expected in nanoscale ferroelectrics. In this talk we will present two recent results that highlight the above features. In the first part, I will show how polarization tilting can be achieved in a nominally tetragonal ferroelectric (PbTiO3) thanks to the internal flexoelectric fields generated in nano-twinned epitaxial thin films. Flexoelectricity thus offers a purely physical means of achieving rotated polarizations, which are thought to be useful for enhanced piezoelectricity. In the second part, we will show how the large strain gradients generated by pushing the sharp tip of an atomic force microscope against the surface of a thin ferroelectric film can be used to actively switch its polarity by 180^o. This enables a new concept for ``multiferroic'' memory operation in which the memory bits are written mechanically and read electrically.

  14. Chemical and Physical Properties of Hi-Cal-2

    NASA Technical Reports Server (NTRS)

    Spakowski, A. E.; Allen, Harrison, Jr.; Caves, Robert M.

    1955-01-01

    As part of the Navy Project Zip to consider various boron-containing materials as possible high-energy fuels, the chemical and physical properties of Hi-Cal-2 prepared by the Callery Chemical Company were evaluated at the NACA Lewis laboratory. Elemental chemical analysis, heat of combustion, vapor pressure and decomposition, freezing point, density, self ignition temperature, flash point, and blow-out velocity were determined for the fuel. Although the precision of measurement of these properties was not equal to that obtained for hydrocarbons, this special release research memorandum was prepared to make the data available as soon as possible.

  15. Micro/nanoscale continuous printing: direct-writing of wavy micro/nano structures via electrospinning

    NASA Astrophysics Data System (ADS)

    Fang, Feiyu; Du, Zefeng; Zeng, Jun; Zhu, Ziming; Chen, Xin; Chen, Xindu; Lv, Yuanjun; Wang, Han

    2015-07-01

    Micro/nanofibers that are created by direct-writing using an electrospinning (ES) technique have aroused much recent attention, owing to their intriguing physical properties and great potential as building blocks for micro/nanoscale devices. In this work, a wavy direct-writing (WDW) process was developed to directly write wavy micro/nanostructures suitable for the fabrication of micro/nanoscale devices. The low voltage WDW technique is anticipated to be useful for a broad range of applications including flexible/stretchable electronics, micro optoelectronics, nano-antennas, microelectromechanical systems (MEMS), and biomedical engineering.

  16. Bimagnetic h-Co/h-CoO nanotetrapods: preparation, nanoscale characterization, three-dimensional architecture and their magnetic properties

    NASA Astrophysics Data System (ADS)

    Deng, Xia; Yang, Dezheng; Tan, Guoguo; Li, Xinghua; Zhang, Junwei; Liu, Qingfang; Zhang, Haoli; Mellors, Nigel J.; Xue, Desheng; Peng, Yong

    2014-10-01

    Well-defined bimagnetic h-Co decorated wurtzite h-CoO nanotetrapods with uniform size have been successfully fabricated by a one-pot thermal decomposition method for the first time, and their three-dimensional architecture, crystal structure, chemical phase and exchange bias effect are characterized at the nanoscale. It is found that individual bimagnetic h-Co/h-CoO nanotetrapods are made of a h-CoO nanotetrapod skeleton to which multiple nanocrystals of ferromagnetic metallic h-Co are directly attached. The chemical analysis shows that the mass ratio of h-CoO and h-Co is 65 : 35. The detailed investigations of the crystal structure reveal that both the h-CoO nanotetrapod skeleton and h-Co nanoparticles have hexagonal structure. The four pods of individual nanotetrapods are single crystals with the same [001] orientation along with their pod axes and grow together by twinning with (110) the twin interface and the 120° spatial boundary angle. The magnetic measurements reveal that the h-Co/h-CoO nanotetrapods have a surprisingly strong room temperature ferromagnetism and there exists a weak exchange coupling between the h-CoO nanotetrapod skeleton and the decorated h-Co tiny nanoparticles. It is believed that our new structural form of the bimagnetic h-Co/h-CoO nanotetrapods provides not only a smart functional 3D nanoarchitecture as building block in nanoelectronics and nanosensors, but also an ideal specimen for a further understanding of weak antiferromagnetic-ferromagnetic interaction.Well-defined bimagnetic h-Co decorated wurtzite h-CoO nanotetrapods with uniform size have been successfully fabricated by a one-pot thermal decomposition method for the first time, and their three-dimensional architecture, crystal structure, chemical phase and exchange bias effect are characterized at the nanoscale. It is found that individual bimagnetic h-Co/h-CoO nanotetrapods are made of a h-CoO nanotetrapod skeleton to which multiple nanocrystals of ferromagnetic metallic h

  17. Nanoscale adhesion interactions in carbon nanotube based systems and experimental study of the mechanical properties of carbon and boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Zheng, Meng

    Part I: Carbon nanotubes (CNTs) are a type of 1D nanostructures, which possess extraordinary mechanical, electrical, thermal, and chemical properties and are promising for a number of applications. For many of their applications, CNTs will be assembled into micro or macro-scale structures (e.g. thin-films and yarns), or integrated with other bulk materials to form heterogeneous material systems and devices (e.g. nanocomposites and solid-state electronics). The interfaces formed among CNTs themselves and between the CNT and other material surfaces play crucial roles in the functioning and performance of CNT-based material systems and devices. Therefore, characterization of the interfacial interaction in CNT-based systems is a critical step to understand the nanoscale interface and tune the system and device design and manufacturing for optimal functioning and performance. In this part of dissertation, a combination of both mechanical and theoretical methods was employed to study the adhesion interactions in CNT-based systems. Part II: Both CNTs and boron nitride nanotubes (BNNTs) possess superb mechanical properties and are promising for a great many applications. They can be used in similar applications, such as reinforcing fibers in polymer composites based on their similar mechanical and thermal properties. CNTs are promising for electronics and sensors while BNNTs can be used as electrical insulators due to the tremendous differences of the electrical property. Furthermore, BNNTs can survive in high temperature and hazardous environments because of their resistant to oxidation and harsh chemicals. In order to optimize their applications, their mechanical properties should be fully understood. In this part of the dissertation research, first, the radial elasticity of single-walled CNTs and BNNTs was investigated by means of atomic force microscopy (AFM); secondly, the engineering radial deformations in single walled CNTs and BNNTs covered by monolayer grapheme

  18. Unique characterization of lunar samples by physical properties

    NASA Technical Reports Server (NTRS)

    Todd, T.; Richter, D. A.; Simmons, G.; Wang, H.

    1973-01-01

    The measurement of compressional velocity, shear velocity, static compressibility, and thermal expansion of (1) a suite of shocked rocks fron the Ries impact in Germany, (2) a suite of samples cracked by thermal cycling to high temperatures, (3) many terrestrial igneous rocks, and (4) lunar basalts, gabbroic anorthosites, and breccias, indicate that shock metamorphism is the primary cause for values of physical properties of lunar rocks being diffferent from their intrinsic values. Large scale thermal metamorphism, thermal cycling between temperatures of lunar day and night, large thermal gradients, or thermal fatigue could possibly cause minor cracking in the top few centimeters of the lunar regolith, but are probably not important mechanism for extensively changing values of physical properties of lunar rocks.-

  19. Physical and chemical properties of pomegranate fruit accessions from Croatia.

    PubMed

    Radunić, Mira; Jukić Špika, Maja; Goreta Ban, Smiljana; Gadže, Jelena; Díaz-Pérez, Juan Carlos; MacLean, Dan

    2015-06-15

    The objective was to evaluate physical and chemical properties of eight pomegranate accessions (seven cultivars and one wild genotype) collected from the Mediterranean region of Croatia. Accessions showed high variability in fruit weight and size, calyx and peel properties, number of arils per fruit, total aril weight, and aril and juice yield. Variables that define sweet taste, such as low total acidity (TA; 0.37-0.59%), high total soluble solids content (TSS; 12.5-15.0%) and their ratio (TSS/TA) were evaluated, and results generally aligned with sweetness classifications of the fruit. Pomegranate fruit had a high variability in total phenolic content (1985.6-2948.7 mg/L). HPLC-MALDI-TOF/MS analysis showed that accessions with dark red arils had the highest total anthocyanin content, with cyanidin 3-glucoside as the most abundant compound. Principal component analysis revealed great differences in fruit physical characteristics and chemical composition among pomegranate accessions.

  20. Physical and chemical properties of pomegranate fruit accessions from Croatia.

    PubMed

    Radunić, Mira; Jukić Špika, Maja; Goreta Ban, Smiljana; Gadže, Jelena; Díaz-Pérez, Juan Carlos; MacLean, Dan

    2015-06-15

    The objective was to evaluate physical and chemical properties of eight pomegranate accessions (seven cultivars and one wild genotype) collected from the Mediterranean region of Croatia. Accessions showed high variability in fruit weight and size, calyx and peel properties, number of arils per fruit, total aril weight, and aril and juice yield. Variables that define sweet taste, such as low total acidity (TA; 0.37-0.59%), high total soluble solids content (TSS; 12.5-15.0%) and their ratio (TSS/TA) were evaluated, and results generally aligned with sweetness classifications of the fruit. Pomegranate fruit had a high variability in total phenolic content (1985.6-2948.7 mg/L). HPLC-MALDI-TOF/MS analysis showed that accessions with dark red arils had the highest total anthocyanin content, with cyanidin 3-glucoside as the most abundant compound. Principal component analysis revealed great differences in fruit physical characteristics and chemical composition among pomegranate accessions. PMID:25660857

  1. Structurally imperfect glycine-containing ferroelectrics and their physical properties

    NASA Astrophysics Data System (ADS)

    Khasinevich, N. I.; Chesnokov, E. D.; Tarasevich, E. V.; Rodin, S. V.

    The study is concerned with the effect of substitutional and growth defects on the physical properties of diglycine nitrate crystals, which belong to the triglycine sulfate group of ferroelectric crystals. In particular, experimental data are presented on the temperature dependences of the piezoelectric moduli, elastic compliances, electromechanical coupling coefficients, and electrostriction coefficients of pure and alanine-alloyed crystals. The permittivity and the nuclear spin-lattice relaxation time of the crystals are also determined.

  2. Investigation of physical properties of TiO2 nanolayers

    NASA Astrophysics Data System (ADS)

    Struk, Przemyslaw; Pustelny, Tadeusz

    2015-12-01

    We present applications of titanium dioxide wide bandgap oxide semiconductor and its application in integrated optics devices. The paper is focus on research of physical properties TiO2 such as: spectral transmittance, refractive index, extinction coefficient in the UV-VIS-IR range of light as well as surface topography. In addition we show the numerical calculation and optical characterization of fabricated optical planar waveguide based on TiO2.

  3. Role of physical properties of liquids in cavitation erosion

    NASA Technical Reports Server (NTRS)

    Thiruvengadam, A.

    1974-01-01

    The dependence of erosion rates on the ambient temperature of water is discussed. The assumption that the gas inside the bubble is compressed adiabatically during collapse gives better agreement with experiments than the assumption that the gas is isothermally compressed. Acoustic impedance is an important liquid parameter that governs the erosion intensity in vibratory devices. The investigation reveals that the major physical properties of liquids governing the intensity of erosion include density, sound speed, surface tension, vapor pressure, gas content, and nuclei distribution.

  4. Synthesis and physical properties of some composite systems

    NASA Astrophysics Data System (ADS)

    Pu, Zhengcai

    There are four major parts in this dissertation: (1) investigation of filler-matrix interactions in poly(dimethylsiloxane)/zeolite (PDMS/zeolite) composites, (2) characterization of mechanical and thermal properties of 3-(trimethoxysilyl)propyl methacrylate coated silica (TPM-Si) filled poly(methyl acrylate) (PMA), (3) small angle x-ray scattering studies of chain penetration into cavities of a zeolite in poly(ethyl acrylate)/zeolite (PEA/zeolite) hybrid material, (4) study of hydrolysis kinetics and stability of bis(triethoxysilyl)ethane (BTESE) in water-ethanol solutions by Fourier transform infrared (FTIR) spectroscopy. In the first part of this study, two types of PDMS/zeolite composites with physically or chemically crosslinked networks were prepared through two different approaches: (1) blending hydroxyl-terminated linear PDMS with zeolite and crosslinking PDMS with tetraethylorthosilicate (TEOS); (2) mixing dichlorodimethylsilane with zeolite, and then hydrolyzing and polymerizing the dichlorodimethylsilane with water. The physical properties of the resulting composites, including mechanical properties, swelling properties, and small angle X-ray (SAXS), were measured and compared. It was shown that the PDMS/zeolite composites having PDMS networks differently crosslinked behave differently in many aspects. In the second part of the study, composites of PMA and of TPM-Si with randomly dispersed, regularly dispersed, and aggregated silica were prepared by blending methyl acrylate and TPM-Si, followed by free radical polymerization. Simple tension properties, equibiaxial extension properties, dynamic mechanical properties, and differential scanning calorimetry (DSC) properties of the resulting composites were investigated. It was shown that well-defined relationships exist between the physical properties of the composites and the preparation processes. In the third part of this study, small angle X-ray scattering (SAXS) intensities of PEA/zeolite hybrids were

  5. [The effect of physical properties of chitosan on cell activity and on its mechanics property].

    PubMed

    Tian, Shengli; Ye, Zhiyi

    2012-12-01

    Chitosan is a natural biopolymer and is made up of D-glucosamine subunits linked by beta-(1,4) glycosidic bond. In recent years, the application of chitosan has attracted more and more attention because of its good biological function in cell biology. The properties of chitosan-based biomaterial are attributed to the physical properties and chemical composition of chitosan. The author of this paper summarized recent related studies and progresses of the influence of physical properties of chitosan on cell activity and cell mechanics property at home and abroad. The findings show that most studies mainly focused on the influence of chitosan and cell activity, while few were on cell mechanics property. The related studies of the influence of chitosan on cell will contribute to the explanation for the mechanism of the interaction between chitosan and cell, and provide the theoretical support for the further study.

  6. Physical Properties of Biological Entities: An Introduction to the Ontology of Physics for Biology

    PubMed Central

    Cook, Daniel L.; Bookstein, Fred L.; Gennari, John H.

    2011-01-01

    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities—molecules, cells, organs—are well-established, there are no principled ontologies of physical properties—energies, volumes, flow rates—of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration. PMID:22216106

  7. Relationship between physical properties and sensory attributes of carbonated beverages.

    PubMed

    Kappes, S M; Schmidt, S J; Lee, S-Y

    2007-01-01

    Bulk sweeteners provide functional properties in beverages, including sweet taste, bulking, bitter masking, structure, and mouthfeel. Diet beverages come closer to the taste of regular beverages using a blend of high-intensity sweeteners; however, some properties, including bulking, structure, and mouthfeel, remain significantly different. Relating physical properties to sensory characteristics is an important step in understanding why mouthfeel differences are apparent in beverages sweetened with alternative sweeteners compared to bulk sweeteners. The objectives of this research were to (1) measure sweetener profile, Brix, refractive index, viscosity, a(w), carbonation, titratable acidity, and pH of commercial carbonated beverages; and (2) correlate the physical property measurements to descriptive analysis of the beverages. Correlation analysis, partial least squares, canonical correlation analysis, and cluster analysis were used to analyze the data. Brix, viscosity, and sweet taste were highly correlated among one another and were all negatively correlated to a(w). Carbonated and decarbonated pH were highly correlated to each other and were both negatively correlated to mouthcoating. Numbing, burn, bite, and carbonation were highly correlated to total acidity, citric acid, and ascorbic acid and negatively correlated to phosphoric acid. The mouthfeel difference between diet and regular lemon/lime carbonated beverages is small and may be related to overall differences between flavor, acid, and sweetener types and usage levels. This research is significant because it demonstrates the use of both sensory attributes and physical properties to identify types of ingredients and levels that may decrease the mouthfeel perception differences between regular and diet carbonated beverages, which could consequently lead to higher acceptance of diet beverages by the consumers of regular. PMID:17995891

  8. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    systems. In addition, the role of thermodynamic fluctuations on superconducting properties has been extensively studied in the context of nanoparticles and nanowires both experimentally and theoretically. In the past decade, a lot of work has been initiated in the area of interface superconductivity where different techniques have been demonstrated to tune Tc. Although the progress in this field has deepened our understanding of nanoscale superconductors, there are several open and key questions which need to be addressed. Some of these are: (1) can superconductivity be enhanced and Tc increased in nanostructures with respect to the bulk limit and if so, how can it be controlled? (2) What are the theoretical and experimental limits for the enhancement and control of superconductivity? (3) Can the phenomena identified in conventional nanostructures shed light on phenomena in high Tc superconductors and vice versa? (4) How will the new fundamental physics of superconductivity at the nanoscale promote advances in nanotechnology applications and vice versa? The papers in this focus section reflect the advances made in this field, in particular in nanowires and nanofilms, but also attempt to answer some of the key open questions outlined above. The theoretical papers explore unconventional quantum phenomena such as the role of confinement in the dynamics of single Cooper pairs in isolated grains [1] and Fano resonances in superconducting gaps in multi-condensate superconductors near a 2.5 Lifshitz transition [2]. Here a new emerging class of quantum phenomena of fundamental physics appear at the Bose-BCS crossover in multi-condensate superconductors [2]. Nanosize effects can now be manipulated by controlling defects in layered oxides [3]. A new approach is provided by controlling the self-organization of oxygen interstitials in layered copper oxides that show an intrinsic nanoscale phase separation [4]. In this case a non-trivial distribution of superconducting nanograins

  9. Characterization of the physical properties for solid granular materials

    SciTech Connect

    Tucker, Jonathan R.; Shadle, Lawrence J.; Guenther, Chris; Benyahia, Sofiane; Mei, Joseph S.; Banta, Larry

    2012-01-01

    Accurate prediction of the behavior of a system is strongly governed by the components within that system. For multiphase systems incorporating solid powder-like particles, there are many different physical properties which need to be known to some level of accuracy for proper design, modeling, or data analysis. In the past, the material properties were determined initially as a secondary part of the study or design. In an attempt to provide results with the least level of uncertainty, a procedure was developed and implemented to provide consistent analysis of several different types of materials. The properties that were characterized included particle sizing and size distributions, shape analysis, density (particle, skeletal and bulk), minimum fluidization velocities, void fractions, particle porosity, and assignment within the Geldart Classification. In the methods used for this experiment, a novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Materials of known properties were initially characterized to validate the accuracy and methodology, prior to testing materials of unknown properties. The procedures used yielded valid and accurate results, with a high level of repeatability. A database of these materials has been developed to assist in model validation efforts and future designs. It is also anticipated that further development of these procedures wil be expanded increasing the properties included in the database.

  10. Anatomy of Nanoscale Propulsion.

    PubMed

    Yadav, Vinita; Duan, Wentao; Butler, Peter J; Sen, Ayusman

    2015-01-01

    Nature supports multifaceted forms of life. Despite the variety and complexity of these forms, motility remains the epicenter of life. The applicable laws of physics change upon going from macroscales to microscales and nanoscales, which are characterized by low Reynolds number (Re). We discuss motion at low Re in natural and synthetic systems, along with various propulsion mechanisms, including electrophoresis, electrolyte diffusiophoresis, and nonelectrolyte diffusiophoresis. We also describe the newly uncovered phenomena of motility in non-ATP-driven self-powered enzymes and the directional movement of these enzymes in response to substrate gradients. These enzymes can also be immobilized to function as fluid pumps in response to the presence of their substrates. Finally, we review emergent collective behavior arising from interacting motile species, and we discuss the possible biomedical applications of the synthetic nanobots and microbots.

  11. Nanoscale memristive radiofrequency switches

    NASA Astrophysics Data System (ADS)

    Pi, Shuang; Ghadiri-Sadrabadi, Mohammad; Bardin, Joseph C.; Xia, Qiangfei

    2015-06-01

    Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on a memristive device. The device can be programmed with a voltage as low as 0.4 V and has an ON/OFF conductance ratio up to 1012 with long state retention. We measure the radiofrequency performance of the switch up to 110 GHz and demonstrate low insertion loss (0.3 dB at 40 GHz), high isolation (30 dB at 40 GHz), an average cutoff frequency of 35 THz and competitive linearity and power-handling capability. Our results suggest that, in addition to their application in memory and computing, memristive devices are also a leading contender for radiofrequency switch applications.

  12. Dependence of physical and mechanical properties on polymer architecture for model polymer networks

    NASA Astrophysics Data System (ADS)

    Guo, Ruilan

    Effect of architecture at nanoscale on the macroscopic properties of polymer materials has long been a field of major interest, as evidenced by inhomogeneities in networks, multimodal network topologies, etc. The primary purpose of this research is to establish the architecture-property relationship of polymer networks by studying the physical and mechanical responses of a series of topologically different PTHF networks. Monodispersed allyl-tenninated PTHF precursors were synthesized through "living" cationic polymerization and functional end-capping. Model networks of various crosslink densities and inhomogeneities levels (unimodal, bimodal and clustered) were prepared by endlinking precursors via thiol-ene reaction. Thermal characteristics, i.e., glass transition, melting point, and heat of fusion, of model PTHF networks were investigated as functions of crosslink density and inhomogeneities, which showed different dependence on these two architectural parameters. Study of freezing point depression (FPD) of solvent confined in swollen networks indicated that the size of solvent microcrystals is comparable to the mesh size formed by intercrosslink chains depending on crosslink density and inhomogeneities. Relationship between crystal size and FPD provided a good reflection of the existing architecture facts in the networks. Mechanical responses of elastic chains to uniaxial strains were studied through SANS. Spatial inhomogeneities in bimodal and clustered networks gave rise to "abnormal butterfly patterns", which became more pronounced as elongation ratio increases. Radii of gyration of chains were analyzed at directions parallel and perpendicular to stretching axis. Dependence of Rg on lambda was compared to three rubber elasticity models and the molecular deformation mechanisms for unimodal, bimodal and clustered networks were explored. The thesis focused its last part on the investigation of evolution of free volume distribution of linear polymer (PE

  13. Folds and buckles at the nanoscale: experimental and theoretical investigation of the bending properties of graphene membranes.

    PubMed

    Morandi, Vittorio; Ortolani, Luca; Migliori, Andrea; Degli Esposti Boschi, Cristian; Cadelano, Emiliano; Colombo, Luciano

    2014-01-01

    The elastic properties of graphene crystals have been extensively investigated, revealing unique properties in the linear and nonlinear regimes, when the membranes are under either stretching or bending loading conditions. Nevertheless less knowledge has been developed so far on folded graphene membranes and ribbons. It has been recently suggested that fold-induced curvatures, without in-plane strain, can affect the local chemical reactivity, the mechanical properties, and the electron transfer in graphene membranes. This intriguing perspective envisages a materials-by-design approach through the engineering of folding and bending to develop enhanced nano-resonators or nano-electro-mechanical devices. Here we present a novel methodology to investigate the mechanical properties of folded and wrinkled graphene crystals, combining transmission electron microscopy mapping of 3D curvatures and theoretical modeling based on continuum elasticity theory and tight-binding atomistic simulations.

  14. Pure carbon nanoscale devices: Nanotube heterojunctions

    SciTech Connect

    Chico, L.; Crespi, V.H.; Benedict, L.X.; Louie, S.G.; Cohen, M.L. |

    1996-02-01

    Introduction of pentagon-heptagon pair defects into the hexagonal network of a single carbon nanotube can change the helicity of the tube and alter its electronic structure. Using a tight-binding method to calculate the electronic structure of such systems we show that they behave as nanoscale metal/semiconductor or semiconductor/semiconductor junctions. These junctions could be the building blocks of nanoscale electronic devices made entirely of carbon. {copyright} {ital 1996 The American Physical Society.}

  15. HYDRAULIC AND PHYSICAL PROPERTIES OF SALTSTONE GROUTS AND VAULT CONCRETES

    SciTech Connect

    Dixon, K; John Harbour, J; Mark Phifer, M

    2008-11-25

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone. Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement (dry premix) to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of three types of saltstone and two vault concretes. The saltstone formulations included saltstone premix batched with (1) Deliquification, Dissolution, and Adjustment (DDA) salt simulant (w/pm 0.60), (2) Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) salt simulant (w/pm 0.60), and (3) Salt Waste Processing Facility (SWPF) salt simulant (w/pm 0.60). The vault concrete formulations tested included the Vault 1/4 concrete and two variations of the Vault 2 concrete (Mix 1 and Mix 2). Wet properties measured for the saltstone formulations included yield stress, plastic viscosity, wet unit weight, bleed water volume, gel time, set time, and heat of hydration. Hydraulic and physical properties measured on the cured saltstone and concrete samples included saturated hydraulic conductivity, moisture retention, compressive strength, porosity, particle density, and dry bulk density. These properties

  16. Nanoscale Fluid Mechanics and Energy Conversion

    SciTech Connect

    Chen, X; Xu, BX; Liu, L

    2014-05-29

    Under nanoconfinement, fluid molecules and ions exhibit radically different configurations, properties, and energetics from those of their bulk counterparts. These unique characteristics of nanoconfined fluids, along with the unconventional interactions with solids at the nanoscale, have provided many opportunities for engineering innovation. With properly designed nanoconfinement, several nanofluidic systems have been devised in our group in the past several years to achieve energy conversion functions with high efficiencies. This review is dedicated to elucidating the unique characteristics of nanofluidics, introducing several novel nanofluidic systems combining nanoporous materials with functional fluids, and to unveiling their working mechanisms. In all these systems, the ultra-large surface area available in nanoporous materials provides an ideal platform for seamlessly interfacing with nanoconfined fluids, and efficiently converting energy between the mechanical, thermal, and electrical forms. These systems have been demonstrated to have great potentials for applications including energy dissipation/absorption, energy trapping, actuation, and energy harvesting. Their efficiencies can be further enhanced by designing efforts based upon improved understanding of nanofluidics, which represents an important addition to classical fluid mechanics. Through the few systems exemplified in this review, the emerging research field of nanoscale fluid mechanics may promote more exciting nanofluidic phenomena and mechanisms, with increasing applications by encompassing aspects of mechanics, materials, physics, chemistry, biology, etc.

  17. Exploring Carbon Nanotubes for Nanoscale Devices

    NASA Technical Reports Server (NTRS)

    Han, Jie; Dai; Anantram; Jaffe; Saini, Subhash (Technical Monitor)

    1998-01-01

    Carbon nanotubes (CNTs) are shown to promise great opportunities in nanoelectronic devices and nanoelectromechanical systems (NEMS) because of their inherent nanoscale sizes, intrinsic electric conductivities, and seamless hexagonal network architectures. I present our collaborative work with Stanford on exploring CNTs for nanodevices in this talk. The electrical property measurements suggest that metallic tubes are quantum wires. Furthermore, two and three terminal CNT junctions have been observed experimentally. We have proposed and studied CNT-based molecular switches and logic devices for future digital electronics. We also have studied CNTs based NEMS inclusing gears, cantilevers, and scanning probe microscopy tips. We investigate both chemistry and physics based aspects of the CNT NEMS. Our results suggest that CNT have ideal stiffness, vibrational frequencies, Q-factors, geometry-dependent electric conductivities, and the highest chemical and mechanical stabilities for the NEMS. The use of CNT SPM tips for nanolithography is presented for demonstration of the advantages of the CNT NEMS.

  18. The number comb for a soil physical properties dynamic measurement

    NASA Astrophysics Data System (ADS)

    Olechko, K.; Patiño, P.; Tarquis, A. M.

    2012-04-01

    We propose the prime numbers distribution extracted from the soil digital multiscale images and some physical properties time series as the precise indicator of the spatial and temporal dynamics under soil management changes. With this new indicator the soil dynamics can be studied as a critical phenomenon where each phase transition is estimated and modeled by the graph partitioning induced phase transition. The critical point of prime numbers distribution was correlated with the beginning of Andosols, Vertisols and saline soils physical degradation under the unsustainable soil management in Michoacan, Guanajuato and Veracruz States of Mexico. The data banks corresponding to the long time periods (between 10 and 28 years) were statistically compared by RISK 5.0 software and our own algorithms. Our approach makes us able to distill free-form natural laws of soils physical properties dynamics directly from the experimental data. The Richter (1987) and Schmidt and Lipson (2009) original approaches were very useful to design the algorithms to identify Hamiltonians, Lagrangians and other laws of geometric and momentum conservation especially for erosion case.

  19. Nanoscale magnetism and novel electronic properties of a bilayer bismuth(111) film with vacancies and chemical doping.

    PubMed

    Sahoo, M P K; Zhang, Yajun; Wang, Jie

    2016-07-27

    Magnetically doped topological insulators (TIs) exhibit several exotic phenomena including the magnetoelectric effect and quantum anomalous Hall effect. However, from an experimental perspective, incorporation of spin moment into 3D TIs is still challenging. Thus, instead of 3D TIs, the 2D form of TIs may open up new opportunities to induce magnetism. Based on first principles calculations, we demonstrate a novel strategy to realize robust magnetism and exotic electronic properties in a 2D TI [bilayer Bi(111) film: abbreviated as Bi(111)]. We examine the magnetic and electronic properties of Bi(111) with defects such as bismuth monovacancies (MVs) and divacancies (DVs), and these defects decorated with 3d transition metals (TMs). It has been observed that the MV in Bi(111) can induce novel half metallicity with a net magnetic moment of 1 μB. The origin of half metallicity and magnetism in MV/Bi(111) is further explained by the passivation of the σ-dangling bonds near the defect site. Furthermore, in spite of the nonmagnetic nature of DVs, the TMs (V, Cr, Mn, and Fe) trapped at the 5/8/5 defect structure of DVs can not only yield a much higher spin moment than those trapped at the MVs but also display intriguing electronic properties such as metallic, semiconducting and spin gapless semiconducting properties. The predicted magnetic and electronic properties of TM/DV/Bi(111) systems are explained through density of states, spin density distribution and Bader charge analysis. PMID:27406933

  20. Nanoscale magnetism and novel electronic properties of a bilayer bismuth(111) film with vacancies and chemical doping.

    PubMed

    Sahoo, M P K; Zhang, Yajun; Wang, Jie

    2016-07-27

    Magnetically doped topological insulators (TIs) exhibit several exotic phenomena including the magnetoelectric effect and quantum anomalous Hall effect. However, from an experimental perspective, incorporation of spin moment into 3D TIs is still challenging. Thus, instead of 3D TIs, the 2D form of TIs may open up new opportunities to induce magnetism. Based on first principles calculations, we demonstrate a novel strategy to realize robust magnetism and exotic electronic properties in a 2D TI [bilayer Bi(111) film: abbreviated as Bi(111)]. We examine the magnetic and electronic properties of Bi(111) with defects such as bismuth monovacancies (MVs) and divacancies (DVs), and these defects decorated with 3d transition metals (TMs). It has been observed that the MV in Bi(111) can induce novel half metallicity with a net magnetic moment of 1 μB. The origin of half metallicity and magnetism in MV/Bi(111) is further explained by the passivation of the σ-dangling bonds near the defect site. Furthermore, in spite of the nonmagnetic nature of DVs, the TMs (V, Cr, Mn, and Fe) trapped at the 5/8/5 defect structure of DVs can not only yield a much higher spin moment than those trapped at the MVs but also display intriguing electronic properties such as metallic, semiconducting and spin gapless semiconducting properties. The predicted magnetic and electronic properties of TM/DV/Bi(111) systems are explained through density of states, spin density distribution and Bader charge analysis.

  1. New directions for nanoscale thermoelectric materials research

    NASA Technical Reports Server (NTRS)

    Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, F.; Fleurial, J. P.; Gogna, P.

    2005-01-01

    Many of the recent advances in enhancing the thermoelectric figure of merit are linked to nanoscale phenomena with both bulk samples containing nanoscale constituents and nanoscale materials exhibiting enhanced thermoelectric performance in their own right. Prior theoretical and experimental proof of principle studies on isolated quantum well and quantum wire samples have now evolved into studies on bulk samples containing nanostructured constituents. In this review, nanostructural composites are shown to exhibit nanostructures and properties that show promise for thermoelectric applications. A review of some of the results obtained to date are presented.

  2. Exploring nanoscale electrical and electronic properties of organic and polymeric functional materials by atomic force microscopy based approaches.

    PubMed

    Palermo, Vincenzo; Liscio, Andrea; Palma, Matteo; Surin, Mathieu; Lazzaroni, Roberto; Samorì, Paolo

    2007-08-28

    Beyond imaging, atomic force microscopy (AFM) based methodologies enable the quantitative investigation of a variety of physico-chemical properties of (multicomponent) materials with a spatial resolution of a few nanometers. This Feature Article is focused on two AFM modes, i.e. conducting and Kelvin probe force microscopies, which allow the study of electrical and electronic properties of organic thin films, respectively. These nanotools provide a wealth of information on (dynamic) characteristics of tailor-made functional architectures, opening pathways towards their technological application in electronics, catalysis and medicine.

  3. QA/QC requirements for physical properties sampling and analysis

    SciTech Connect

    Innis, B.E.

    1993-07-21

    This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories also measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.

  4. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    systems. In addition, the role of thermodynamic fluctuations on superconducting properties has been extensively studied in the context of nanoparticles and nanowires both experimentally and theoretically. In the past decade, a lot of work has been initiated in the area of interface superconductivity where different techniques have been demonstrated to tune Tc. Although the progress in this field has deepened our understanding of nanoscale superconductors, there are several open and key questions which need to be addressed. Some of these are: (1) can superconductivity be enhanced and Tc increased in nanostructures with respect to the bulk limit and if so, how can it be controlled? (2) What are the theoretical and experimental limits for the enhancement and control of superconductivity? (3) Can the phenomena identified in conventional nanostructures shed light on phenomena in high Tc superconductors and vice versa? (4) How will the new fundamental physics of superconductivity at the nanoscale promote advances in nanotechnology applications and vice versa? The papers in this focus section reflect the advances made in this field, in particular in nanowires and nanofilms, but also attempt to answer some of the key open questions outlined above. The theoretical papers explore unconventional quantum phenomena such as the role of confinement in the dynamics of single Cooper pairs in isolated grains [1] and Fano resonances in superconducting gaps in multi-condensate superconductors near a 2.5 Lifshitz transition [2]. Here a new emerging class of quantum phenomena of fundamental physics appear at the Bose-BCS crossover in multi-condensate superconductors [2]. Nanosize effects can now be manipulated by controlling defects in layered oxides [3]. A new approach is provided by controlling the self-organization of oxygen interstitials in layered copper oxides that show an intrinsic nanoscale phase separation [4]. In this case a non-trivial distribution of superconducting nanograins

  5. Magnetic properties of nano-scale hematite, α-Fe{sub 2}O{sub 3}, studied by time-of-flight inelastic neutron spectroscopy

    SciTech Connect

    Hill, Adrian H.; Jacobsen, Henrik Holm, Sonja L.; Lefmann, Kim; Stewart, J. Ross; Jiao, Feng; Jensen, Niels P.; Mutka, Hannu; Seydel, Tilo; Harrison, Andrew

    2014-01-28

    Samples of nanoscale hematite, α-Fe{sub 2}O{sub 3}, with different surface geometries and properties have been studied with inelastic time-of-flight neutron scattering. The 15 nm diameter nanoparticles previously shown to have two collective magnetic excitation modes in separate triple-axis neutron scattering studies have been studied in further detail using the advantage of a large detector area, high resolution, and large energy transfer range of the IN5 TOF spectrometer. A mesoporous hematite sample has also been studied, showing similarities to that of the nanoparticle sample and bulk α-Fe{sub 2}O{sub 3}. Analysis of these modes provides temperature dependence of the magnetic anisotropy coefficient along the c-axis, κ{sub 1}. This is shown to remain negative throughout the temperature range studied in both samples, providing an explanation for the previously observed suppression of the Morin transition in the mesoporous material. The values of this anisotropy coefficient are found to lie between those of bulk and nano-particulate samples, showing the hybrid nature of the mesoporous 3-dimensional structure.

  6. Magnetic properties of nano-scale hematite, α-Fe2O3, studied by time-of-flight inelastic neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hill, Adrian H.; Jacobsen, Henrik; Stewart, J. Ross; Jiao, Feng; Jensen, Niels P.; Holm, Sonja L.; Mutka, Hannu; Seydel, Tilo; Harrison, Andrew; Lefmann, Kim

    2014-01-01

    Samples of nanoscale hematite, α-Fe2O3, with different surface geometries and properties have been studied with inelastic time-of-flight neutron scattering. The 15 nm diameter nanoparticles previously shown to have two collective magnetic excitation modes in separate triple-axis neutron scattering studies have been studied in further detail using the advantage of a large detector area, high resolution, and large energy transfer range of the IN5 TOF spectrometer. A mesoporous hematite sample has also been studied, showing similarities to that of the nanoparticle sample and bulk α-Fe2O3. Analysis of these modes provides temperature dependence of the magnetic anisotropy coefficient along the c-axis, κ1. This is shown to remain negative throughout the temperature range studied in both samples, providing an explanation for the previously observed suppression of the Morin transition in the mesoporous material. The values of this anisotropy coefficient are found to lie between those of bulk and nano-particulate samples, showing the hybrid nature of the mesoporous 3-dimensional structure.

  7. Progress in physical properties of Chinese stock markets

    NASA Astrophysics Data System (ADS)

    Liang, Yuan; Yang, Guang; Huang, Ji-Ping

    2013-08-01

    In the past two decades, statistical physics was brought into the field of finance, applying new methods and concepts to financial time series and developing a new interdiscipline "econophysics". In this review, we introduce several commonly used methods for stock time series in econophysics including distribution functions, correlation functions, detrended fluctuation analysis method, detrended moving average method, and multifractal analysis. Then based on these methods, we review some statistical properties of Chinese stock markets including scaling behavior, long-term correlations, cross-correlations, leverage effects, antileverage effects, and multifractality. Last, based on an agent-based model, we develop a new option pricing model — financial market model that shows a good agreement with the prices using real Shanghai Index data. This review is helpful for people to understand and research statistical physics of financial markets.

  8. EXAFS and XANES analysis of oxides at the nanoscale

    PubMed Central

    Kuzmin, Alexei; Chaboy, Jesús

    2014-01-01

    Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.). As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS) analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS) is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs) and iron oxide nanoparticles. PMID:25485137

  9. MEASUREMENTS OF BLACK CARBON PARTICLES CHEMICAL, PHYSICAL, AND OPTICAL PROPERTIES

    SciTech Connect

    Onasch, T.B.; Sedlacek, A.; Cross, E. S.; Davidovits, P.; Worsnop, D. R.; Ahern, A.; Lack, D. A.; Cappa, C. D.; Trimborn, A.; Freedman, A.; Olfert, J. S.; Jayne, J. T.; Massoli, P.; Williams, L. R.; Mazzoleni, C.; Schwarz, J. P.; Thornhill, D. A.; Slowik, J. G.; Kok, G. L.; Brem, B. T.; Subramanian, R.; Spackman, J. R.; Freitag, S.; and Dubey, M. K.

    2009-12-14

    Accurate measurements of the chemical, physical, and optical properties of aerosol particles containing black carbon are necessary to improve current estimates of the radiative forcing in the atmosphere. A collaborative research effort between Aerodyne Research, Inc. and Boston College has focused on conducting field and laboratory experiments on carbonaceous particles and the development and characterization of new particulate instrumentation. This presentation will focus on the chemical, physical, and optical properties of black carbon particles measured in the laboratory in order to understand the effects of atmospheric processing on black carbon particles. Results from a three-week study during July 2008 of mass- and optical-based black carbon measurements will be presented. The project utilized the Boston College laboratory flame apparatus and aerosol conditioning and characterization equipment. A pre-mixed flat flame burner operating at controlled fuel-to-air ratios produced stable and reproducible concentrations of soot particles with known sizes, morphologies, and chemical compositions. In addition, other black carbon particle types, including fullerene soot, glassy carbon spheres, oxidized flame soot, Regal black, and Aquadag, were also atomized, size selected, and sampled. The study covered an experimental matrix that systematically selected particle mobility size (30 to 300 nm) and black carbon particle mass, particle number concentration, particle shape (dynamic shape factor and fractal dimension), and particle chemistry and density (changed via coatings). Particles were coated with a measured thickness (few nm to {approx}150 nm) of sulfuric acid or bis (2-ethylhexyl) sebacate and passed through a thermal denuder to remove the coatings. Highlights of the study to be presented include: (1) Characterization of the chemical and physical properties of various types of black carbon particles, (2) Mass specific absorption measurements as a function of fuel

  10. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    PubMed Central

    Habuchi, Satoshi

    2014-01-01

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology. PMID:25152893

  11. The clouds of Venus. [physical and chemical properties

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1975-01-01

    The physical and chemical properties of the clouds of Venus are reviewed, with special emphasis on data that are related to cloud dynamics. None of the currently-popular interpretations of cloud phenomena on Venus is consistent with all the data. Either a considerable fraction of the observational evidence is faulty or has been misinterpreted, or the clouds of Venus are much more complex than the current simplistic models. Several lines of attack are suggested to resolve some of the contradictions. A sound understanding of the clouds appears to be several years in the future.

  12. Physical properties of coriander seeds at different moisture content

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Singh, K. K.; Kumar, R.

    2012-10-01

    Physical properties of coriander seeds were determined at moisture content of 3.5-17.7%, d.b. The major axis and 1 000 seeds mass were found to decrease nonlinearly with increase in seed moisture. The medium and minor axes, geometric mean diameter, sphericity, unit volume, surface area and angle of repose increased linearly. Bulk density decreased linearly, however the true density increased non-linearly. The coefficient of static friction increased nonlinearly for different surfaces with increase in moisture level and its maximum was found for plywood surface. The rupture force and energy absorbed decreased linearly with increasing moisture content.

  13. Effects of Surface Coating on Physical Properties of Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tariq, M.; Hasnain, S. M.

    2015-08-01

    Polymer-coated nanoparticles improve the stability of materials against aggregation and enhance the physical properties, thus making it possible to use different applications in vast fields of science. In this work, silver nanoparticles were synthesized by a chemical reduction method and were further coated with the polymers polyvinyl alcohol (PVA) and polystyrene (PS). The influence of the polymer coating on the optical and electrical properties of the silver nanoparticles were investigated and compared with that of as-prepared silver nanoparticles. The nature of the prepared silver nanoparticles in the face-centered cubic structure is confirmed by peaks in the x-ray diffraction pattern. The temperature dependence of resistivity of the silver nanoparticles exhibit semiconducting behavior in the temperature range 100-300 K.

  14. Physical properties of alternatives to the fully halogenated chlorofluorocarbons

    NASA Technical Reports Server (NTRS)

    Mclinden, Mark O.

    1990-01-01

    Presented here are recommended values and correlations of selected physical properties of several alternatives to the fully halogenated chlorocarbons. The quality of the data used in this compilation varies widely, ranging from well-documented, high accuracy measurements from published sources to completely undocumented values listed on anonymous data sheets. That some of the properties for some fluids are available only from the latter type of source is clearly not the desired state of affairs. While some would reject all such data, the compilation given here is presented in the spirit of laying out the present state of knowledge and making available a set of data in a timely manner, even though its quality is sometimes uncertain. The correlations presented here are certain to change quickly as additional information becomes available.

  15. Nanoionic devices: Interface nanoarchitechtonics for physical property tuning and enhancement

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takashi; Terabe, Kazuya; Yang, Rui; Aono, Masakazu

    2016-11-01

    Nanoionic devices have been developed to generate novel functions overcoming limitations of conventional materials synthesis and semiconductor technology. Various physical properties can be tuned and enhanced by local ion transport near the solid/solid interface. Two electronic carrier doping methods can be used to achieve extremely high-density electronic carriers: one is electrostatic carrier doping using an electric double layer (EDL); the other is electrochemical carrier doping using a redox reaction. Atomistic restructuring near the solid/solid interface driven by a DC voltage, namely, interface nanoarchitechtonics, has huge potential. For instance, the use of EDL enables high-density carrier doping in potential superconductors, which can hardly accept chemical doping, in order to achieve room-temperature superconductivity. Optical bandgap and photoluminescence can be controlled for various applications including smart windows and biosensors. In situ tuning of magnetic properties is promising for low-power-consumption spintronics. Synaptic plasticity in the human brain is achieved in neuromorphic devices.

  16. Physical properties of superconducting single crystal iron sulfide

    NASA Astrophysics Data System (ADS)

    Rodriguez, Efrain E.; Borg, Christopher K. H.; Zhou, Xiuquan; Paglione, Johnpierre; University of Maryland Collaboration

    Recently, the simple binary tetragonal iron sulfide, FeS, was found to be a superconductor with a Tc = 5 K. We have prepared single crystals of tetragonal iron sulfide through hydrothermal de-intercalation of KxFe2-yS2. The KxFe2-yS2 single crystal precursors were grown by slow cooling of stoichiometric melts of K, Fe and S. The silver, plate-like FeS single crystals were highly crystalline with a superconducting transition temperature (Tc) of 4 K. The high quality of the FeS crystals revealed highly anisotropic nature of the magnetic and electronic properties intrinsic to FeS. The physical properties and thermal stability of single crystal FeS will be discussed in detail.

  17. Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids

    NASA Technical Reports Server (NTRS)

    Beach, Duane E. (Technical Monitor); Devarakonda, Angirasa; Anderson, William G.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic, and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development is necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500 to 550 K. Life test data for thermo-chemical compatibility are almost non-existent.

  18. Physical properties and compression loading behaviour of corn seed

    NASA Astrophysics Data System (ADS)

    Babić, Lj.; Radojèin, M.; Pavkov, I.; Babić, M.; Turan, J.; Zoranović, M.; Stanišić, S.

    2013-03-01

    The aim of this study was to acquire data on the physical properties and compression loading behaviour of seed of six corn hybrid varieties. The mean values of length, width, thickness, geometric diameter, surface area, porosity, single kernel mass, sphericity, bulk and true density, 1 000 kernelmass and coefficient of friction were studied at single level of corn seed moisture content. The calculated secant modulus of elasticity during compressive loading for dent corn was 0.995 times that of the semi-flint type; there were no significant differences in the value of this mechanical property between semi-flint and dent corn varieties. The linear model showed a decreasing tendency of secant modulus of elasticity for all hybrids as the moisture content of seeds increased.

  19. Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Anderson, William G.

    2004-01-01

    Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development in necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500-550 K. Life test data for thermo-chemical compatibility are almost non-existent.

  20. Thickness-dependent dielectric properties of nanoscale Pt/(Pb,Ba)ZrO 3/BaPbO 3 capacitors

    NASA Astrophysics Data System (ADS)

    Wu, Lin-Jung; Wu, Jenn-Ming

    2007-10-01

    Lead barium zirconate (PBZ) thin films on BaPbO 3(BPO)/Pt/Ti/SiO 2/Si substrates have been prepared by rf-magnetron sputtering at 500 °C. The orientation of PBZ film changes from random to (1 1 1)-prefer oriented when the thickness increases. The grain size increases with increasing PBZ thickness. The dielectric properties are greatly suppressed when the thickness of dielectrics decreases. The dielectric constant and tunability decrease from 536% and 49.1% to 205% and 22.7%, respectively, when the thickness of PBZ decreases from 323 to 62 nm. The origins of the collapsed dielectric behavior are discussed. The variation of dielectric properties with film thickness can be interpreted by (a) antiferroelectric layer at PBZ/BPO interface, (b) dead layer at Pt/PBZ interface, and (c) grain boundary dead layers.

  1. Study of the physical properties of crystalline rocks in the southeast Voronezh anteclise

    NASA Technical Reports Server (NTRS)

    Dmitriyevskiy, V. S.; Afanasyev, N. S.; Frolov, S. M.

    1985-01-01

    The physical properties of rocks, in the crystalline mass of the Voronezh anteclise, were studied. The study of the physical properties of rocks is important for the improvement of geophysical methods for mapping crystalline rocks in the foundation and exploration of different geological objects which are associated with the crystalline foundation, covered by the sedimentary mantle. It is found that: (1) rocks in the crystalline foundation are very different in physical properties; (2) the physical properties are closely related to their substance composition and genesis; (3) petrographic properties give clues of rock afficiation to certain complexes; and (4) physical and magnetic properties should be examined by petrography, chemical and X-ray analysis.

  2. N-Methylmelamines: Synthesis, Characterization, and Physical Properties.

    PubMed

    List, Manuela; Puchinger, Helmut; Gabriel, Herbert; Monkowius, Uwe; Schwarzinger, Clemens

    2016-05-20

    N-Methylmelamines have recently gained importance as valuable compounds for manufacturing modified melamine formaldehyde resins and other polymer building blocks. A great advantage of these polymers is the reduction of the carcinogenic formaldehyde. Selecting the polymerization processes (e.g., substance polymerization, polymerization in solution) and controlling the polymerization reaction and properties of these novel materials requires knowledge of the properties of the individual melamine derivatives used as new building blocks. All possible permutations of N-methylmelamines were prepared, and reaction progress was monitored by GC/MS. 2,4,6-Tris(dimethylamino)-1,3,5-triazine was prepared to complete the series; this is, however, also a possible byproduct in various synthesis routes. The reaction conditions were optimized to obtain high yields of each derivative with the highest possible purity. The substances were characterized by NMR and IR spectroscopy, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. In addition, physical properties, such as solubility, melting points, and pKb values, were determined. The number of amino-, methylamino-, and dimethylamino groups has a significant effect on these properties. In summary, we found that by increasing the number of amino- and methylamino groups, solubility and pKb increase. With increasing number of amino groups, the compounds tend to form hydrogen bonds, and thus, the melting point shifts to higher temperature ranges where they start to decompose. PMID:27100712

  3. N-Methylmelamines: Synthesis, Characterization, and Physical Properties.

    PubMed

    List, Manuela; Puchinger, Helmut; Gabriel, Herbert; Monkowius, Uwe; Schwarzinger, Clemens

    2016-05-20

    N-Methylmelamines have recently gained importance as valuable compounds for manufacturing modified melamine formaldehyde resins and other polymer building blocks. A great advantage of these polymers is the reduction of the carcinogenic formaldehyde. Selecting the polymerization processes (e.g., substance polymerization, polymerization in solution) and controlling the polymerization reaction and properties of these novel materials requires knowledge of the properties of the individual melamine derivatives used as new building blocks. All possible permutations of N-methylmelamines were prepared, and reaction progress was monitored by GC/MS. 2,4,6-Tris(dimethylamino)-1,3,5-triazine was prepared to complete the series; this is, however, also a possible byproduct in various synthesis routes. The reaction conditions were optimized to obtain high yields of each derivative with the highest possible purity. The substances were characterized by NMR and IR spectroscopy, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction. In addition, physical properties, such as solubility, melting points, and pKb values, were determined. The number of amino-, methylamino-, and dimethylamino groups has a significant effect on these properties. In summary, we found that by increasing the number of amino- and methylamino groups, solubility and pKb increase. With increasing number of amino groups, the compounds tend to form hydrogen bonds, and thus, the melting point shifts to higher temperature ranges where they start to decompose.

  4. Nuclear Envelopes Properties and Physical Interactions with Nucleoplasm

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Dahl, Kris; Wilson, Kathy

    2004-03-01

    Given the stresses imposed on a cell and its organelles and the nuclear envelope's important role as a barrier between cytoplasm and nucleoplasm, we sought to measure and model mechanical properties of isolated nuclear envelopes. Xenopus laevis oocyte (XO) nuclei are primarily used since they have been widely studied in many fields as model systems for nuclear structure and function. We manipulate the nuclear envelope by both osmotic swelling and micromanipulation to determine an effective elastic modulus. We show the envelope properties are independent of the effects of the nucleoplasm. Micropipette aspiration of XO nuclei gives an effective elastic modulus of the nuclear envelope of 250 mN/m with similar results obtained from isotropic swelling of XO nuclear envelopes. The results suggest that these nuclear envelopes have relatively homogeneous properties and are highly elastic, sustaining strains of 50-100Square-net simulations and comparisons to polymer network models suggests that XO nuclear envelope physical properties are dominated by the lamin network. If applicable to nuclei in other cells, a "pre-compressed" state envisioned here would allow for significant shear flexibility, especially important for motile cells whose nuclei need to rapidly deform.

  5. Electrochemistry of conductive polymers 37. Nanoscale monitoring of electrical properties during electrochemical growth of polypyrrole and its aging.

    PubMed

    Lee, Hyo Joong; Park, Su-Moon

    2005-07-14

    Electrical and morphological properties of polypyrrole (PPy) films were studied during and after their electrochemical growth under various experimental conditions on a nanometer scale using a current-sensing atomic force microscope (CS-AFM). Of acetonitrile (ACN) solutions containing various amounts of water, one that contained 1.0% water produced the best quality films in their electrical and morphological properties in terms of homogeneities. The degree of doping, as well as time evolution of the film structure and its conductivity, of the PPy films was investigated during their growth in water and ACN with 1.0% water by obtaining the current images at a few designated growing stages, and the results were compared. Well-doped, conductive films were obtained from the very early stage during the electrodeposition of PPy in the ACN solution, while the films were poorly doped in water. As the film deposition progressed further in both aqueous and nonaqueous media, the doped areas spread over the whole surface leading to a more homogeneously conducting film. The current-voltage traces were obtained at each growing stage, which showed that the conductivity increases in both media as the PPy grows; the conductivity of the film grown in ACN is much higher than that of the film grown in water at all growing stages. The electrical properties of the PPy film deteriorated gradually upon exposure to air.

  6. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect

    NASA Astrophysics Data System (ADS)

    Park, G. D.; Cho, J. S.; Kang, Y. C.

    2015-10-01

    Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the 150th cycle of the nickel sulfide/rGO composite powders prepared by sulfidation of the Ni/rGO composite and nickel acetate/GO composite powders at a current density of 0.3 A g-1 are 449 and 363 mA h g-1, respectively; their capacity retentions, calculated from the tenth cycle, are 100 and 87%. The nickel sulfide hollow nanospheres/rGO composite powders possess structural stability over repeated Na-ion insertion and extraction processes, and also show excellent rate performance for Na-ion storage.Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the

  7. Physical-chemical property based sequence motifs and methods regarding same

    DOEpatents

    Braun, Werner; Mathura, Venkatarajan S.; Schein, Catherine H.

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  8. Physical and mechanical properties of calf lumbosacral trabecular bone.

    PubMed

    Swartz, D E; Wittenberg, R H; Shea, M; White, A A; Hayes, W C

    1991-01-01

    The physical and mechanical properties of calf lumbar and sacral trabecular bone were determined and compared with those of human trabecular bone. The mean tissue density (1.66 +/- 0.12 g cm-3), equivalent mineral density (169 +/- 36 mg cm-3), apparent density (453 +/- 89 mg cm-3), ash density (194 +/- 59 mg cm-3), ash content (0.6 +/- 0.05%), compressive strength (7.1 +/- 3.0 MPa) and compressive modulus (173 +/- 97 MPa) of calf trabecular bone are similar to those of young human. There were moderate, positive linear correlations between apparent density and equivalent mineral density, ash density, and compressive strength; and between compressive strength and equivalent mineral density (R2 ranging from 0.35 to 0.48, p less than 0.001). Apparent density, ash density, and equivalent mineral density did not differ significantly in different regions. In contrast to humans, the compressive strength increased from posterior, near the facet, to the anterior vertebral body. These comparisons of physical and mechanical properties, as well as anatomical comparisons by others, indicate that the calf spine is a good model of the young non-osteoporotic human spine and thus useful for the testing of spinal instrumentation.

  9. [Physical and chemical properties of vanadium and its compounds].

    PubMed

    Tudares, C

    1998-04-01

    Vanadium is present in the earth crust mainly in the heavy oils, carbons and bituminous materials, where is associated with the heavy fractions. Many live beings have vanadium in their tissues. Their industrial applications are fundamentally based in the physical and chemical properties. From the environmental point of view the vanadium emissions to the atmosphere are produced in areas around siderurgical industries, oil refineries and cities that use fossil fuels for heating. The pollution process in these areas is associated partially with the presence of vanadium compounds, as is the case in the eastern coast of the lake of Maracaibo, Venezuela. Some clinical-epidemiological researches report a high incidence of congenital malformations at the Central Nervous System level, and this has been associated with the intense oil activities of the region. The high incidence of the Central Nervous System congenital malformations could be associated with the vanadium compounds present in the eastern coast of the lake of Maracaibo; here is the interest in the physical and chemical properties knowledge of vanadium and their compounds.

  10. Physical properties of ice cream containing milk protein concentrates.

    PubMed

    Alvarez, V B; Wolters, C L; Vodovotz, Y; Ji, T

    2005-03-01

    Two milk protein concentrates (MPC, 56 and 85%) were studied as substitutes for 20 and 50% of the protein content in ice cream mix. The basic mix formula had 12% fat, 11% nonfat milk solids, 15% sweetener, and 0.3% stabilizer/emulsifier blend. Protein levels remained constant, and total solids were compensated for in MPC mixes by the addition of polydextrose. Physical properties investigated included apparent viscosity, fat globule size, melting rate, shape retention, and freezing behavior using differential scanning calorimetry. Milk protein concentrate formulations had higher mix viscosity, larger amount of fat destabilization, narrower ice melting curves, and greater shape retention compared with the control. Milk protein concentrates did not offer significant modifications of ice cream physical properties on a constant protein basis when substituted for up to 50% of the protein supplied by nonfat dry milk. Milk protein concentrates may offer ice cream manufacturers an alternative source of milk solids non-fat, especially in mixes reduced in lactose or fat, where higher milk solids nonfat are needed to compensate other losses of total solids.

  11. Circulating tumor cell enrichment based on physical properties

    PubMed Central

    Harouaka, Ramdane A.; Nisic, Merisa; Zheng, Si-Yang

    2013-01-01

    The metastatic dissemination and spread of malignant circulating tumor cells (CTCs) accounts for over 90% of cancer related deaths. CTCs detach from a primary tumor, travel through the circulatory system, then invade and proliferate in distant organs. The detection of CTCs from blood has been established for prognostic monitoring and is predictive of patient outcome. Analysis of CTCs could enable the means for early detection and screening in cancer, as well as provide diagnostic access to tumor tissues in a minimally invasive way. The fundamental challenge with analyzing CTCs is the fact that they occur at extremely low concentrations in blood, on the order of one out of a billion cells. Various technologies have been proposed to isolate CTCs for enrichment. Here we focus on antigen-independent approaches that are not limited by specific capture antibodies. Intrinsic physical properties of CTCs including cell size, deformability, and electrical properties are reviewed, and technologies developed to exploit them for enrichment from blood are summarized. Physical enrichment technologies are of particular interest as they have the potential to increase yield, and enable the analysis of rare CTC phenotypes that may not be otherwise obtained. PMID:23832928

  12. Hanford Waste Physical and Rheological Properties: Data and Gaps - 12078

    SciTech Connect

    Kurath, D.E.; Wells, B.E.; Huckaby, J.L.; Mahoney, L.A.; Daniel, R.C.; Burns, C.A.; Tingey, J.M.; Cooley, S.K.

    2012-07-01

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant (WTP). These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed. (authors)

  13. Hanford Waste Physical and Rheological Properties: Data and Gaps

    SciTech Connect

    Kurath, Dean E.; Wells, Beric E.; Huckaby, James L.; Mahoney, Lenna A.; Daniel, Richard C.; Burns, Carolyn A.; Tingey, Joel M.; Cooley, Scott K.

    2012-03-01

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant. These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed.

  14. Physical properties of polymorphic yeast prion amyloid fibers.

    PubMed

    Castro, Carlos E; Dong, Jijun; Boyce, Mary C; Lindquist, Susan; Lang, Matthew J

    2011-07-20

    Amyloid fibers play important roles in many human diseases and natural biological processes and have immense potential as novel nanomaterials. We explore the physical properties of polymorphic amyloid fibers formed by yeast prion protein Sup35. Amyloid fibers that conferred distinct prion phenotypes ([PSI(+)]), strong (S) versus weak (W) nonsense suppression, displayed different physical properties. Both S[PSI(+)] and W[PSI(+)] fibers contained structural inhomogeneities, specifically local regions of static curvature in S[PSI(+)] fibers and kinks and self-cross-linking in W[PSI(+)] fibers. Force-extension experiments with optical tweezers revealed persistence lengths of 1.5 μm and 3.3 μm and axial stiffness of 5600 pN and 9100 pN for S[PSI(+)] and W[PSI(+)] fibers, respectively. Thermal fluctuation analysis confirmed the twofold difference in persistence length between S[PSI(+)] and W[PSI(+)] fibers and revealed a torsional stiffness of kinks and cross-links of ~100-200 pN·nm/rad. PMID:21767497

  15. Atomistic and Nanoscale Origins of Macroscopic Properties of Silicate Melts at High-Pressure: Spectroscopy & Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Lee, S.; Fei, Y.; Cody, G.; Mysen, B.; Mao, H.; Eng, P.

    2005-12-01

    Atomic structure of amorphous oxide melts at high pressure controls their macroscopic properties and geophysical progresses in the Earth's interior. Advances in NMR spectroscopy, x-ray optics, and theoretical analyses enable us to determine the structure of silicate glasses and provides clues to the microscopic origins of melt properties and relevant geochemical processes, such as generation, migration, and dynamics of magmas at high pressures (e.g. Lee et al. Geophy. Res. Letts. 2003, 30, p1845; Lee et al. Phys. Rev. Letts. 2005, 94, p165507; Lee et al. Nature Materials 2005, accepted). Here we report recent progress on pressure-induced structural changes in various amorphous oxide glasses and melt at high pressures using multi-nuclear solid state NMR, and synchrotron X-rays, and quantum simulations. In prototypical amorphous borates, and silicates, as well as complex aluminosilicate glasses and melts, the fractions of highly coordinated framework units (e.g. five coordinated [5,6]Si, [5,6]Al, [4]B) increase with increasing pressure with multiple densification mechanisms. The distribution of these framework cations at high pressure is not completely random but favors formation of oxygen linking dissimilar Si pairs such as [5,6]Si-O-[4]Al. Whereas the general trend in the effect of pressure on the structure is similar in those amorphous oxides, detailed pressure-induced structural changes are largely dependent on the degree of polymerization in the melts, types and fractions of network modifying cations at isobaric conditions. Topological disorder due to Si-O bond length distribution increases with pressure and is also larger for more polymerized amorphous oxides. Na-23 NMR spectra for sodium silicate and aluminosilicate glasses revealed that Na-O distance in the binary sodium silicates increases with pressure but that in the aluminosilicate glasses decreases with pressure. These results demonstrate that the pressure-induced structural changes in the silicate melts

  16. PHYSICAL PROPERTY MEASUREMENTS OF LABORATORY PREPARED SALTSTONE GROUT

    SciTech Connect

    Hansen, E.; Cozzi, A.; Edwards, T.

    2014-05-05

    The Saltstone Production Facility (SPF) built two new Saltstone Disposal Units (SDU), SDU 3 and SDU 5, in 2013. The variable frequency drive (VFD) for the grout transfer hose pump tripped due to high current demand by the motor during the initial radioactive saltstone transfer to SDU 5B on 12/5/2013. This was not observed during clean cap processing on July 5, 2013 to SDU 3A, which is a slightly longer distance from the SPF than is SDU 5B. Saltstone Design Authority (SDA) is evaluating the grout pump performance and capabilities to transfer the grout processed in SPF to SDU 3/5. To assist in this evaluation, grout physical properties are required. At this time, there are no rheological data from the actual SPF so the properties of laboratory prepared samples using simulated salt solution or Tank 50 salt solution will be measured. The physical properties of grout prepared in the laboratory with de-ionized water (DI) and salt solutions were obtained at 0.60 and 0.59 water to premix (W/P) ratios, respectively. The yield stress of the DI grout was greater than any salt grout. The plastic viscosity of the DI grout was lower than all of the salt grouts (including salt grout with admixture). When these physical data were used to determine the pressure drop and fluid horsepower for steady state conditions, the salt grouts without admixture addition required a higher pressure drop and higher fluid horsepower to transport. When 0.00076 g Daratard 17/g premix was added, both the pressure drop and fluid horsepower were below that of the DI grout. Higher concentrations of Daratard 17 further reduced the pressure drop and fluid horsepower. The uncertainty in the single point Bingham Plastic parameters is + 4% of the reported values and is the bounding uncertainty. Two different mechanical agitator mixing protocols were followed for the simulant salt grout, one having a total mixing time of three minutes and the other having a time of 10 minutes. The Bingham Plastic parameters

  17. Nanoscale thermal probing

    PubMed Central

    Yue, Yanan; Wang, Xinwei

    2012-01-01

    Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface imaging and temperature measurement. To overcome the restriction of the conventional methods, the scanning thermal microscopy technique is widely used. From the perspective of measuring target, the optical feature size method can be applied by using either Raman or fluorescence thermometry. The near-field optical method that measures nanoscale temperature by focusing the optical field to a nano-sized region provides a non-contact and non-destructive way for nanoscale thermal probing. Although the resistance thermometry based on nano-sized thermal sensors is possible for nanoscale thermal probing, significant effort is still needed to reduce the size of the current sensors by using advanced fabrication techniques. At the same time, the development of nanoscale imaging techniques, such as fluorescence imaging, provides a great potential solution to resolve the nanoscale thermal probing problem. PMID:22419968

  18. Physical Properties of Saturn's Rings from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    Marouf, Essam A.; French, R.; Rappaport, N.; Wong, K.; McGhee, C.; Anabtawi, A.

    2008-09-01

    Twenty-four one-sided Cassini radio occultation observations have been successfully completed. Two types of observations provide information about physical ring properties. The first is differential extinction of three sinusoidal signals simultaneously transmitted through the rings (0.94, 3.6, and 13 cm-wavelength). The observations reveal remarkable variability among the three main rings, A, B, and C, and across local features within each ring. Assuming "classical” ring model and solid water ice composition, comparison of observed differential optical depth with theoretical predictions based on a power-law size distribution constrains the power law index and the minimum radius of abundant particle sizes. In particular, the smallest particle radius in most of Ring C, inner Ring B, and outer ring A appear to be limited to about 4 to 5 mm, and in regions B2 and B4 of Ring B, and in the inner region of Ring A to be greater than few tens of centimeters. The second observation type is the near-forward scattered signal. The measured spectrograms provide characterization of the collective diffraction pattern of the particles and particle clusters. In ring regions where gravitational wakes are likely absent, inversion of the spectral measurement yields the size distribution of particles of radius > about 1 m. The results are consistent with the Voyager results, showing sharp upper size cutoff in the few to several meters radius range. In regions of gravitational wakes, we constrain physical ring properties using comparisons of the observations with predictions of Monte-Carlo simulations of extinction and near-forward diffraction by randomly blocked diffraction screen ring models. The comparisons constrain particle cluster sizes, spatial density, orientation, and ring vertical thickness. The simulations also allow for investigation of physical ring models that account in a self-consistent manner for observed variation of optical depth and forward scattering with ring

  19. Quasar Spectral Energy Distributions As A Function Of Physical Property

    NASA Astrophysics Data System (ADS)

    Townsend, Shonda; Ganguly, R.; Stark, M. A.; Derseweh, J. A.; Richmond, J. M.

    2012-05-01

    Galaxy evolution models have shown that quasars are a crucial ingredient in the evolution of massive galaxies. Outflows play a key role in the story of quasars and their host galaxies, by helping regulate the accretion process, the star-formation rate and mass of the host galaxy (i.e., feedback). The prescription for modeling outflows as a contributor to feedback requires knowledge of the outflow velocity, geometry, and column density. In particular, we need to understand how these depend on physical parameters and how much is determined stochastically (and with what distribution). In turn, models of outflows have shown particular sensitivity to the shape of the spectral energy distribution (SED), depending on the UV luminosity to transfer momentum to the gas, the X-ray luminosity to regulate how efficiently that transfer can be, etc. To investigate how SED changes with physical properties, we follow up on Richards et al. (2006), who constructed SEDs with varying luminosity. Here, we construct SEDs as a function of redshift, and physical property (black hole mass, bolometric luminosity, Eddington ratio) for volume limited samples drawn from the Sloan Digital Sky Survey, with photometry supplemented from 2MASS, WISE, GALEX, ROSAT, and Chandra. To estimate black hole masses, we adopt the scaling relations from Greene & Ho (2005) based on the H-alpha emission line FWHM. This requires redshifts less than 0.4. To construct volume-limited subsamples, we begin by adopting g=19.8 as a nominal limiting magnitude over which we are guaranteed to detect z<0.4 quasars. At redshift 0.4, we are complete down to Mg=-21.8, which yields 3300 objects from Data Release 7. At z=0.1, we are complete down to Mg=-18.5. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. 09-ADP09-0016 issued through the Astrophysics Data Analysis Program.

  20. Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior

    NASA Astrophysics Data System (ADS)

    Titantah, John T.; Karttunen, Mikko

    2016-05-01

    Electronic and optical properties of silver clusters were calculated using two different ab initio approaches: (1) based on all-electron full-potential linearized-augmented plane-wave method and (2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ~1.7 nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147, gives way to a dominant plasmon peak localized at wavelengths 350 nm ≤ λ ≤ 600 nm. It is, thus, at this length-scale that the conduction electrons' collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters.

  1. Physical and functional properties of arrowroot starch extrudates.

    PubMed

    Jyothi, A N; Sheriff, J T; Sajeev, M S

    2009-03-01

    Arrowroot starch, a commercially underexploited tuber starch but having potential digestive and medicinal properties, has been subjected to extrusion cooking using a single screw food extruder. Different levels of feed moisture (12%, 14%, and 16%) and extrusion temperatures (140, 150, 160, 170, 180, and 190 degrees C) were used for extrusion. The physical properties--bulk density, true density, porosity, and expansion ratio; functional properties such as water absorption index, water solubility index, oil absorption index, pasting, rheological, and textural properties; and in vitro enzyme digestibility of the extrudates were determined. The expansion ratio of the extrudates ranged from 3.22 to 6.09. The water absorption index (6.52 to 8.85 g gel/g dry sample), water solubility index (15.92% to 41.31%), and oil absorption index (0.50 to 1.70 g/g) were higher for the extrudates in comparison to native starch (1.81 g gel/g dry sample, 1.16% and 0.60 g/g, respectively). The rheological properties, storage modulus, and loss modulus of the gelatinized powdered extrudates were significantly lower (P < 0.05) and these behaved like solutions rather than a paste or a gel. Hardness and toughness were more for the samples extruded at higher feed moisture and lower extrusion temperature, whereas snap force and energy were higher at lower feed moisture and temperature. There was a significant decrease in the percentage digestibility of arrowroot starch (30.07% after 30 min of incubation with the enzyme) after extrusion (25.27% to 30.56%). Extrusion cooking of arrowroot starch resulted in products with very good expansion, color, and lower digestibility, which can be exploited for its potential use as a snack food. PMID:19323747

  2. Physical and functional properties of arrowroot starch extrudates.

    PubMed

    Jyothi, A N; Sheriff, J T; Sajeev, M S

    2009-03-01

    Arrowroot starch, a commercially underexploited tuber starch but having potential digestive and medicinal properties, has been subjected to extrusion cooking using a single screw food extruder. Different levels of feed moisture (12%, 14%, and 16%) and extrusion temperatures (140, 150, 160, 170, 180, and 190 degrees C) were used for extrusion. The physical properties--bulk density, true density, porosity, and expansion ratio; functional properties such as water absorption index, water solubility index, oil absorption index, pasting, rheological, and textural properties; and in vitro enzyme digestibility of the extrudates were determined. The expansion ratio of the extrudates ranged from 3.22 to 6.09. The water absorption index (6.52 to 8.85 g gel/g dry sample), water solubility index (15.92% to 41.31%), and oil absorption index (0.50 to 1.70 g/g) were higher for the extrudates in comparison to native starch (1.81 g gel/g dry sample, 1.16% and 0.60 g/g, respectively). The rheological properties, storage modulus, and loss modulus of the gelatinized powdered extrudates were significantly lower (P < 0.05) and these behaved like solutions rather than a paste or a gel. Hardness and toughness were more for the samples extruded at higher feed moisture and lower extrusion temperature, whereas snap force and energy were higher at lower feed moisture and temperature. There was a significant decrease in the percentage digestibility of arrowroot starch (30.07% after 30 min of incubation with the enzyme) after extrusion (25.27% to 30.56%). Extrusion cooking of arrowroot starch resulted in products with very good expansion, color, and lower digestibility, which can be exploited for its potential use as a snack food.

  3. Aerosols physical properties at Hada Al Sham, western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.-P.; Hussein, T.; Aaltonen, V.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Almazroui, M.; Almehmadi, F. M.; Al Zawad, F. M.; Hakala, J.; Khoder, M.; Neitola, K.; Petäjä, T.; Shabbaj, I. I.; Hämeri, K.

    2016-06-01

    This is the first time to clearly derive the comprehensive physical properties of aerosols at a rural background area in Saudi Arabia. Aerosol measurements station was established at a rural background area in the Western Saudi Arabia to study the aerosol properties. This study gives overview of the aerosol physical properties (PM10, PM2.5, black carbon and total number concentration) over the measurement period from November 2012 to February 2015. The average PM10 and PM2.5 concentrations were 95 ± 78 μg m-3 (mean ± STD, at ambient conditions) and 33 ± 68 μg m-3 (at ambient conditions), respectively. As expected PM10 concentration was dominated by coarse mode particles (PM10-PM2.5), most probably desert dust. Especially from February to June the coarse mode concentrations were high because of dust storm season. Aerosol mass concentrations had clear diurnal cycle. Lower values were observed around noon. This behavior is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). During the day time the boundary layer is evolving, causing enhanced mixing and dilution leading to lower concentration. PM10 and PM2.5 concentrations were comparable to values measured at close by city of Jeddah. Black carbon concentration was about 2% and 6% of PM10 and PM2.5 mass, respectively. Total number concentration was dominated by frequent new particle formation and particle growth events. The typical diurnal cycle in particle total number concentration was clearly different from PM10 and PM2.5.

  4. Planetary Defense and the High Temperture Physical Properties of Meteorites.

    NASA Astrophysics Data System (ADS)

    Ostrowski, D. R.; Sears, D. W. G.; Bryson, K.

    2015-12-01

    The Ames Meteorite Characterization Laboratory is examining the physical proprerties of a diverse selection of meteorites. Each meteorite will be processed by the full suite of observations and measurements: petrographic/microscopic studies, density, porosity, albedo, shock effects, thermal conductivity, heat capacity, emissivity, and acoustic velocity. Of these measurments, density and porosity are the most studied to date (Macke, 2010; Britt and Consolmagno, 2003). The thermal properties of meteorites are less well understood. Thermal conductivity, heat capacity, and thermal emissivity are important data for a number of applications but especially to understanding the behavior of a meteor as it passes through the atmosphere. Opeil et al. (2010) have shown that meteorites have a thermal conductivities lower than the pure minerals they are composed of by a factor of 3 to 10, with the values coming to a roughly constant number from 150 to 300 K. Calculated conductivity numbers from Yomogida and Matsui (1983) show the H chondrites have the higest conductivity in the range of 3.8 W/m*K at 200 K and then slowly decreases to 3.2 W/m*K at 400 K. Whereas they show the LL chondrites do not reach 1 W/m*K over the temperature range 100 to 400 K. While there have been several high temperature spectroscopic studies of meteorites, to date all experimental data for the physical properties of meteorites were obtained at temperatures below 400 K, since previous studies were made in attempts to understand the formation and evolution of asteroids. Our laboratory will focus on understanding the thermal properties of materials at temperatures above 300 K and, where possible, up to atmospheric entry temperatures. Work on pure minerals has shown that thermal conductivity decreases as temperatures exceed 300 K but it is unknown whether this holds true for meteorites. We will describe our laboratory and procedures, and present some preliminary data, at the meeting.

  5. Relationships between physical properties and sequence in silkworm silks

    NASA Astrophysics Data System (ADS)

    Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji

    2016-06-01

    Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase.

  6. Structure and physical properties of Hydrogrossular mineral series

    NASA Astrophysics Data System (ADS)

    Adhikari, Puja

    The mineral hydrogrossular series (Ca3Al2(SiO 4)3-x(OH)4x; 0 ≤ x ≤ 3) are important water bearing minerals found in the upper and lower part of the Earth's mantle. They are vital to the planet's hydrosphere under different hydrothermal conditions. The composition and structure of this mineral series are important in geoscience and share many commonalities with cement and clay materials. Other than the end members of the series x = 0 (grossular) and x = 3 (katoite) which have a cubic garnet structure, the structure of the series is totally unknown. We used large-scale ab initio modeling to investigate the structures and properties for hydrogrossular series for x = 0, 0.5, 1, 1.5, 2, 2.5, 3. Results indicate that for x > 0 and x < 3, the structures are tetragonal. This shows that there is structural change related to the lowering of overall symmetry associated with the composition of SiO4 tetrahedra and AlO6 octahedra. Total Bond order also explains the reason behind the change in the compressibility of the series. The electronic structure, mechanical and optical properties of the hydrogrossular series are calculated and the results for grossular and katoite are in good agreement with the available experimental data. The x--dependence of these physical properties for the series supports the notion of the aforementioned structural transition from cubic to tetragonal.

  7. Relationships between physical properties and sequence in silkworm silks

    PubMed Central

    Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji

    2016-01-01

    Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase. PMID:27279149

  8. Computational Studies of Physical Properties of Boron Carbide

    SciTech Connect

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  9. Some physical properties of tabletted seed of Garcinia kola (HECKEL).

    PubMed

    Onunkwo, G C; Egeonu, H C; Adikwu, M U; Ojile, J E; Olowosulu, A K

    2004-06-01

    The formulation of Garcinia kola seeds into tablet dosage form and evaluation of some physical properties of the tablets are presented. A chemical assay was conducted on the dry, powdered seeds as well as the crude aqueous extract of the seeds. The dry powdered seeds contain 0.003% of flavonoids while the crude extract contained 0.007% of flavonoids based on rutin used as the standard. The powdered material (50 mg) and crude extract (10 mg) were formulated into tablets using the wet granulation method. Named binders were evaluated in these formulations. The various tablet parameters were evaluated, namely: weight variation, thickness and diameter, hardness, friability, disintegration time, dissolution profile and content uniformity. The results indicated that the tablets had good disintegration time, dissolution and hardness/friability profiles. Tablets formulated with starch had the best disintegration properties but were consequently very friable. Tablets formulated from 10 mg of the crude extract needed a larger proportion of diluents, which affected the tablet properties.

  10. Relationships between physical properties and sequence in silkworm silks.

    PubMed

    Malay, Ali D; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B; Damrongsakkul, Siriporn; Numata, Keiji

    2016-01-01

    Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase. PMID:27279149

  11. Gamma irradiation influence on physical properties of milk proteins

    NASA Astrophysics Data System (ADS)

    Cieśla, K.; Salmieri, S.; Lacroix, M.; Tien, C. Le

    2004-09-01

    Gamma irradiation was found to be an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on calcium and sodium caseinates alone or combined with some globular proteins. Our current studies concern gamma irradiation influence on the physical properties of calcium caseinate-whey protein isolate-glycerol (1:1:1) solutions and gels, used for films preparation. Irradiation of solutions was carried out with Co-60 gamma rays applying 0 and 32 kGy dose. The increase in viscosity of solutions was found after irradiation connected to induced crosslinking. Lower viscosity values were detected, however, after heating of the solutions irradiated with a 32 kGy dose than after heating of the non-irradiated ones regarding differences in the structure of gels and resulting in different temperature-viscosity curves that were recorded for the irradiated and the non-irradiated samples during heating and cooling. Creation of less stiff but better ordered gels after irradiation arises probably from reorganisation of aperiodic helical phase and β-sheets, in particular from increase of β-strands, detected by FTIR. Films obtained from these gels are characterised by improved barrier properties and mechanical resistance and are more rigid than those prepared from the non-irradiated gels. The route of gel creation was investigated for the control and the irradiated samples during heating and the subsequent cooling.

  12. First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique

    NASA Astrophysics Data System (ADS)

    Deepa, Manchala; Sudhakar, Palagiri; Nagamadhuri, Kandula Venkata; Balakrishna Reddy, Kota; Giridhara Krishna, Thimmavajjula; Prasad, Tollamadugu Naga Venkata Krishna Vara

    2015-06-01

    Nanoscale materials, whose size typically falls below 100 nm, exhibit novel chemical, physical and biological properties which are different from their bulk counterparts. In the present investigation, we demonstrated that nanoscale calcium oxide particles (n-CaO) could transport through phloem tissue of groundnut unlike the corresponding bulk materials. n-CaO particles are prepared using sol-gel method. The size of the as prepared n-CaO measured (69.9 nm) using transmission electron microscopic technique (TEM). Results of the hydroponics experiment using solution culture technique revealed that foliar application of n-CaO at different concentrations (10, 50, 100, 500, 1,000 ppm) on groundnut plants confirmed the entry of calcium into leaves and stems through phloem compared to bulk source of calcium sprayed (CaO and CaNO3). After spraying of n-CaO, calcium content in roots, shoots and leaves significantly increased. Based on visual scoring of calcium deficiency correction and calcium content in plant parts, we may establish the fact that nanoscale calcium oxide particles (size 69.9 nm) could move through phloem tissue in groundnut. This is the first report on phloem transport of nanoscale calcium oxide particles in plants and this result points to the use of nanoscale calcium oxide particles as calcium source to the plants through foliar application, agricultural crops in particular, as bulk calcium application through foliar nutrition is restricted due to its non-mobility in phloem.

  13. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh M.; Turzhitsky, Vladimir; Subramanian, Hariharan; Roy, Hemant K.; Taflove, Allen; Dravid, Vinayak P.; Backman, Vadim

    2011-04-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed. Originally submitted for the special focus issue on physical oncology.

  14. Elastic properties of GaN nanowires: revealing the influence of planar defects on young's modulus at nanoscale.

    PubMed

    Dai, Sheng; Zhao, Jiong; He, Mo-rigen; Wang, Xiaoguang; Wan, Jingchun; Shan, Zhiwei; Zhu, Jing

    2015-01-14

    The elastic properties of gallium nitride (GaN) nanowires with different structures were investigated by in situ electron microscopy in this work. The electric-field-induced resonance method was utilized to reveal that the single crystalline GaN nanowires, along [120] direction, had the similar Young's modulus as the bulk value at the diameter ranging 92-110 nm. Meanwhile, the elastic behavior of the obtuse-angle twin (OT) GaN nanowires was disclosed both by the in situ SEM resonance technique and in situ transmission electron microscopy tensile test for the first time. Our results showed that the average Young's modulus of these OT nanowires was greatly decreased to about 66 GPa and indicated no size dependence at the diameter ranging 98-171 nm. A quantitative explanation for this phenomenon is proposed based on the rules of mixtures in classical mechanics. It is revealed that the elastic modulus of one-dimensional nanomaterials is dependent on the relative orientations and the volume fractions of the planar defects.

  15. Correlating bulk properties and nanoscale rearrangement during UV-initiated gelation of hybrid nanoparticle/ block copolymer systems

    NASA Astrophysics Data System (ADS)

    Juggernauth, K. Anne; Seifert, Soenke; Love, Brian

    2013-03-01

    We use rheology and Small Angle X-Ray Scattering (SAXS) to investigate UV initiated gel formation in aqueous dispersions of clay nanoparticles in the presence of poly(ethyleneoxide-b-propyleneoxide-b-ethyleneoxide) block copolymer surfactants (Pluronics®) and small amounts of a photoacid generator (PAG). This material system demonstrates stable liquid-like behavior in the absence of UV but undergoes bulk gelation upon UV exposure. Rheology was used to monitor the bulk properties of a series of samples undergoing UV exposure and confirm bulk gel formation. We further probe nanoparticle rearrangement using time resolved synchrotron SAXS with simultaneous UV exposure. Time dependent SAXS indicate an absence of long range order and crystallinity while changes in the scattering profile are related to short range interparticle interactions leading to a stable or arrested structure. Finally, we compare the time scales for structural rearrangement of nanoparticles with the bulk gelation behavior. Our results show that the kinetics for local structural changes between particles and bulk gelation from UV exposure are strongly correlated.

  16. Biosafe Nanoscale Pharmaceutical Adjuvant Materials

    PubMed Central

    Jin, Shubin; Li, Shengliang; Wang, Chongxi; Liu, Juan; Yang, Xiaolong; Wang, Paul C.; Zhang, Xin; Liang, Xing-Jie

    2014-01-01

    Thanks to developments in the field of nanotechnology over the past decades, more and more biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical research. Nanomaterials possess unique properties which could be employed to develop drug carriers with longer circulation time, higher loading capacity, better stability in physiological conditions, controlled drug release, and targeted drug delivery. In this review article, we will review recent progress in the application of representative organic, inorganic and hybrid biosafe nanoscale materials in pharmaceutical research, especially focusing on nanomaterial-based novel drug delivery systems. In addition, we briefly discuss the advantages and notable functions that make these nanomaterials suitable for the design of new medicines; the biosafety of each material discussed in this article is also highlighted to provide a comprehensive understanding of their adjuvant attributes. PMID:25429253

  17. Nanoscale {LnIII(24)ZnII(6)} Triangular Metalloring with Magnetic Refrigerant, Slow Magnetic Relaxation, and Fluorescent Properties.

    PubMed

    Zhang, Li; Zhao, Lang; Zhang, Peng; Wang, Chao; Yuan, Sen-Wen; Tang, Jinkui

    2015-12-01

    The self-assembly of Ln(ClO4)3 · 6H2O and Zn(OAc)2 · 2H2O with pyrazine-2-carboxylic acid (HL) results in the formation of three novel nanosized {LnIII(24)ZnII(6)} triangular metallorings, [Gd24Zn6L24(OAc)22(μ3-OH)30(H2O)14](ClO4)7(OAc) · 2CH3OH · 26H2O (1), [Tb24Zn6L24(OAc)22(μ3-OH)30(CH3O)2(CH3OH)2(H2O)10](ClO4)5(OH) · 6CH3OH · 12H2O (2), and (H3O)[Dy24Zn6L24(OAc)22(μ3-OH)30(H2O)14](ClO4)7(OAc)2 · 4CH3OH · 22H2O (3), having the largest nuclearity among any known Ln/Zn clusters. Magnetic and luminescent studies reveal the special prowess for each lanthanide complex. Magnetic studies reveal that 1 exhibits a significant cryogenic magnetocaloric effect with a maximum -ΔSm (isothermal magnetic entropy change) value of 30.0 J kg(-1) K(-1) at 2.5 K and 7 T and that a slow magnetization relaxation is observed for the dysprosium analogue. In addition, the solid-state photophysical properties of 2 display strong characteristic Tb(III) photoluminescent emission in the visible region, suggesting that Tb(III)-based luminescence is sensitized by the effective energy transfer from the ligand HL to the metal centers. PMID:26600284

  18. Physical properties of the WR stars in Westerlund 1

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.; Clark, J. S.; Negueruela, I.

    The Westerlund 1 (Wd1) cluster hosts a rich and varied collection of massive stars. Its dynamical youth and the absence of ongoing star formation indicate a coeval population. As such, the simultaneous presence of both late-type supergiants and Wolf-Rayet stars has defied explanation in the context of single-star evolution. Observational evidence points to a high binary fraction, hence this stellar population offers a robust test for stellar models accounting for both single-star and binary evolution. We present an optical to near-IR (VLT & NTT) spectroscopic analysis of 22 WR stars in Wd 1, delivering physical properties for the WR stars. We discuss how these differ from the Galactic field population, and how they may be reconciled with the predictions of single and binary evolutionary models.

  19. Struvite-based fertilizer and its physical and chemical properties.

    PubMed

    Latifian, Maryam; Liu, Jing; Mattiasson, Bo

    2012-12-01

    This study describes a method to formulate struvite fine powder into pellets that are easy to spread on agricultural land. To evaluate the quality of produced pellets, some chemical and physical properties commonly measured for fertilizers were tested. The findings indicated that the salt index and heavy metal content ofstruvite pellets were significantly lower than those of commercial NPK fertilizers. In addition, the percentage of nutrient released from struvite pellets after 105 days was in the range of 9.6-23.2, 8.4-26.7 and 11.3-32.6% for nitrogen, phosphorous and magnesium, respectively, which is considerably lower than that of commercial NPK fertilizer. Among different formulations between struvite crystals and binders, starch and bentonite were the most efficient in agglomerating struvite powder, leading to an increase in the crush strength to over the recommended limit of >2.5 kgf for fertilizer hardness. PMID:23437670

  20. Some physical properties of ginkgo nuts and kernels

    NASA Astrophysics Data System (ADS)

    Ch'ng, P. E.; Abdullah, M. H. R. O.; Mathai, E. J.; Yunus, N. A.

    2013-12-01

    Some data of the physical properties of ginkgo nuts at a moisture content of 45.53% (±2.07) (wet basis) and of their kernels at 60.13% (± 2.00) (wet basis) are presented in this paper. It consists of the estimation of the mean length, width, thickness, the geometric mean diameter, sphericity, aspect ratio, unit mass, surface area, volume, true density, bulk density, and porosity measures. The coefficient of static friction for nuts and kernels was determined by using plywood, glass, rubber, and galvanized steel sheet. The data are essential in the field of food engineering especially dealing with design and development of machines, and equipment for processing and handling agriculture products.

  1. Physical properties of wild mango fruit and nut

    NASA Astrophysics Data System (ADS)

    Ehiem, J. C.; Simonyan, K. J.

    2012-02-01

    Physical properties of two wild mango varieties were studied at 81.9 and 24.5% moisture (w.b.) for the fruits and nuts, respectively. The shape and size of the fruit are the same while that of nuts differs at P = 0.05. The mass, density and bulk density of the fruits are statistically different at P = 0.05 but the volume is the same. The shape and size, volume and bulk density of the nuts are statistically the same at P = 0.05. The nuts of both varieties are also the same at P = 0.05 in terms of mass and density. The packing factor for both fruits and nut of the two varieties are the same at 0.95. The relevant data obtained for the two varieties would be useful for design and development of machines and equipment for processing and handling operations.

  2. Aerosol physical properties and their impact on climate change processes

    NASA Astrophysics Data System (ADS)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Makuch, Przemyslaw; Pakszys, Paulina; Markuszewski, Piotr; Piskozub, Jacek; Drozdowska, Violetta; Gutowska, Dorota; Rozwadowska, Anna

    2013-04-01

    Characterizing aerosols involves the specification of not only their spatial and temporal distributions but their multi-component composition, particle size distribution and physical properties as well. Due to their light attenuation and scattering properties, aerosols influence radiance measured by satellite for ocean color remote sensing. Studies of marine aerosol production and transport are important for many earth sciences such as cloud physics, atmospheric optics, environmental pollution studies, and interaction between ocean and atmosphere. It was one of the reasons for the growth in the number of research programs dealing with marine aerosols. Sea salt aerosols are among the most abundant components of the atmospheric aerosol, and thus it exerts a strong influence on radiation, cloud formation, meteorology and chemistry of the marine atmosphere. An accurate understanding and description of these mechanisms is crucial to modeling climate and climate change. This work provides information on combined aerosol studies made with lidars and sun photometers onboard the ship and in different coastal areas. We concentrate on aerosol optical thickness and its variations with aerosol advections into the study area. We pay special attention to the problem of proper data collection and analyses techniques. We showed that in order to detect the dynamics of potential aerosol composition changes it is necessary to use data from different stations where measurements are made using the same techniques. The combination of such information with air mass back-trajectories and data collected at stations located on the route of air masses provides comprehensive picture of aerosol variations in the study area both vertically and horizontally. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01

  3. Chemical and physical properties of dry flue gas desulfurization products.

    PubMed

    Kost, David A; Bigham, Jerry M; Stehouwer, Richard C; Beeghly, Joel H; Fowler, Randy; Traina, Samuel J; Wolfe, William E; Dick, Warren A

    2005-01-01

    Beneficial and environmentally safe recycling of flue gas desulfurization (FGD) products requires detailed knowledge of their chemical and physical properties. We analyzed 59 dry FGD samples collected from 13 locations representing four major FGD scrubbing technologies. The chemistry of all samples was dominated by Ca, S, Al, Fe, and Si and strong preferential partitioning into the acid insoluble residue (i.e., coal ash residue) was observed for Al, Ba, Be, Cr, Fe, Li, K, Pb, Si, and V. Sulfur, Ca, and Mg occurred primarily in water- or acid-soluble forms associated with the sorbents or scrubber reaction products. Deionized water leachates (American Society for Testing and Materials [ASTM] method) and dilute acetic acid leachates (toxicity characteristic leaching procedure [TCLP] method) had mean pH values of >11.2 and high mean concentrations of S primarily as SO(2-)4 and Ca. Concentrations of Ag, As, Ba, Cd, Cr, Hg, Pb, and Se (except for ASTM Se in two samples) were below drinking water standards in both ASTM and TCLP leachates. Total toxicity equivalents (TEQ) of dioxins, for two FGD products used for mine reclamation, were 0.48 and 0.53 ng kg(-1). This was similar to the background level of the mine spoil (0.57 ng kg(-1)). The FGD materials were mostly uniform in particle size. Specific surface area (m2 g(-1)) was related to particle size and varied from 1.3 for bed ash to 9.5 for spray dryer material. Many of the chemical and physical properties of these FGD samples were associated with the quality of the coal rather than the combustion and SO2 scrubbing processes used.

  4. The physical properties of the interstellar cloud around the heliosphere

    NASA Astrophysics Data System (ADS)

    Gry, C.

    2015-12-01

    A new interpretation of interstellar absorption lines in the spectra of nearby stars indicates that the medium surrounding the Sun can be regarded as a single, coherent cloud if we relax the assumption that a cloud behaves like a rigid body. This outlook permits us to construct a comprehensive picture of the local interstellar cloud and reveals that it departs from homogeneity in a number of aspects and physical properties: - This local cloud undergoes a deformation related to a compression in the direction of motion and an expansion in perpendicular directions, much like a squashed balloon. - The metal abundances decrease steadily from the rear to the head of the cloud, and this phenomenon does not appear to be related to ionization effects. - The cloud average HI density, estimated toward a number of nearby stars around which an astrophere is detected in Lyman alpha, varies from 0.03 to 0.1 cm-3. The cloud outer boundary inferred from the average density and column densities is very irregular with an average distance to the Sun of 9 +/- 7 pc. - The electron density and the cloud temperature can be derived from the combination of the ionization equilibrium of MgI and the excitation of CII in a restricted number of sightlines where column density is such that MgI and CII* features are strong enough to be detectable without saturating MgII. We present a few additional targets from which we examine the physical conditions inside the cloud.

  5. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: A novel analytical thermal model for multilevel nano-scale interconnects considering the via effect

    NASA Astrophysics Data System (ADS)

    Zhu, Zhang-Ming; Li, Ru; Hao, Bao-Tian; Yang, Yin-Tang

    2009-11-01

    Based on the heat diffusion equation of multilevel interconnects, a novel analytical thermal model for multilevel nano-scale interconnects considering the via effect is presented, which can compute quickly the temperature of multilevel interconnects, with substrate temperature given. Based on the proposed model and the 65 nm complementary metal oxide semiconductor (CMOS) process parameter, the temperature of nano-scale interconnects is computed. The computed results show that the via effect has a great effect on local interconnects, but the reduction of thermal conductivity has little effect on local interconnects. With the reduction of thermal conductivity or the increase of current density, however, the temperature of global interconnects rises greatly, which can result in a great deterioration in their performance. The proposed model can be applied to computer aided design (CAD) of very large-scale integrated circuits (VLSIs) in nano-scale technologies.

  6. Linking membrane physical properties and low temperature tolerance in arthropods.

    PubMed

    Waagner, Dorthe; Bouvrais, Hélène; Ipsen, John H; Holmstrup, Martin

    2013-12-01

    Maintenance of membrane fluidity is of crucial importance in ectotherms experiencing thermal changes. This maintenance has in ectotherms most often been indicated using indirect measures of biochemical changes of phospholipid membranes, which is then assumed to modulate the physico-chemical properties of the membrane. Here, we measure bending rigidity characterizing the membrane flexibility of re-constituted membrane vesicles to provide a more direct link between membrane physical characteristics and low temperature tolerance. Bending rigidity of lipid bilayers was measured in vitro using Giant Unilamellar Vesicles formed from phospholipid extracts of the springtail, Folsomia candida. The bending rigidity of these membranes decreased when exposed to 0.4 vol% ethanol (0.23 mM/L). Springtails exposed to ethanol for 24h significantly increased their cold shock tolerance. Thus, by chemically inducing decreased membrane rigidity, we have shown a direct link between the physico-chemical properties of the membranes and the capacity to tolerate low temperature in a chill-susceptible arthropod. PMID:24080490

  7. Mineral trioxide aggregate: a review of physical properties.

    PubMed

    Malhotra, Neeraj; Agarwal, Antara; Mala, Kundabala

    2013-02-01

    The purpose of this two-part series is to review the composition, properties, products, and clinical aspects of mineral trioxide aggregate (MTA) materials. Electronic search of scientific papers from January 1991 to May 2010 was accomplished using PubMed and MedLine search engines to include relevant scientific citations from the peer-reviewed journals published in English. MTA is a refined form of the parent compound, Portland cement (PC). It demonstrates a strong biocompatible nature owing to the high pH and its ability to form hydroxyapatite. MTA materials provide a better seal than traditional endodontic materials as observed in dye leakage, fluid filtration, protein leakage, and bacterial penetration leakage studies, and it has been recognized as a bioactive material. Currently a variety of MTA commercial products are available, including Proroot Gray MTA and White MTA both from DENTSPLY Tulsa Dental Specialties (www.DENTSPLY.com), and MTA Angelus (Angelus,www.angelus.ind.br). Although these materials are indicated for various dental uses/applications, long-term in-vivo clinical studies are still needed to claim the same. This first of this series highlights and discusses the composition, physical, and/or chemical properties of MTA. A subsequent article will offer an overview of the material aspect (commercial products) and clinical considerations for MTA materials.

  8. Linking membrane physical properties and low temperature tolerance in arthropods.

    PubMed

    Waagner, Dorthe; Bouvrais, Hélène; Ipsen, John H; Holmstrup, Martin

    2013-12-01

    Maintenance of membrane fluidity is of crucial importance in ectotherms experiencing thermal changes. This maintenance has in ectotherms most often been indicated using indirect measures of biochemical changes of phospholipid membranes, which is then assumed to modulate the physico-chemical properties of the membrane. Here, we measure bending rigidity characterizing the membrane flexibility of re-constituted membrane vesicles to provide a more direct link between membrane physical characteristics and low temperature tolerance. Bending rigidity of lipid bilayers was measured in vitro using Giant Unilamellar Vesicles formed from phospholipid extracts of the springtail, Folsomia candida. The bending rigidity of these membranes decreased when exposed to 0.4 vol% ethanol (0.23 mM/L). Springtails exposed to ethanol for 24h significantly increased their cold shock tolerance. Thus, by chemically inducing decreased membrane rigidity, we have shown a direct link between the physico-chemical properties of the membranes and the capacity to tolerate low temperature in a chill-susceptible arthropod.

  9. Physical Properties of Volcanic Deposits on Venus from Radar Polarimetry

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Campbell, Donald B.; Campbell, Bruce A.

    2005-01-01

    Studies of the morphology and radar properties of volcanic deposits can aid in understanding their differences and formation. On Venus, volcanoes range in size from large highland edifices, such as Theia Mons, to small shields and domes which are often found in groups of tens to hundreds. In plains regions, windstreaks are sometimes found near shield fields, suggesting that there may be fine grained deposits associated with the volcanoes. Previous studies of Bell Regio suggest the presence of fine-grained material in a low dielectric constant triangular shaped region on the flank of Tepev Mons, which may be crater ejecta or a pyroclastic deposit spread westward by wind. The eastern caldera on Tepev Mons shows a steep trend in backscattered power with incidence angle and has high RMS-slopes, implying a finegrained covering such as ash. Radar waves can easily penetrate smooth mantling layers such as ash and aeolian deposits. If a radar system can measure two orthogonal polarizations, it is possible to detect subsurface scattering and infer the presence of surficial deposits. The Magellan spacecraft could only measure one polarization and was therefore not able to fully characterize the polarization state of the radar echoes. We compare Arecibo dual-polarization data for Venus to Magellan images and emissivity data to investigate the physical properties of volcanic deposits.

  10. Physical Properties of Intermetallic FE2VA1

    SciTech Connect

    Ye Feng

    2002-05-30

    Fe{sub 2}VAl has recently been discovered to have a negative temperature coefficient of resistivity, moderately enhanced specific heat coefficient, and a large DOS at the Fermi level by photoemission. This triggered a round of heated research to understand the ground state of this material, both theoretically and experimentally. here they report a comprehensive characterization of Fe{sub 2}VAl. X-ray diffraction exhibited appreciable antisite disorder in all of our samples. FTIR spectroscopy measurements showed that the carrier density and scattering time had little sample-to-sample variation or temperature dependence for near-stoichiometric samples. FTIR and DC resistivity suggest that the transport properties of Fe{sub 2}VAl are influenced by both localized and delocalized carriers, with the former primarily responsible for the negative temperature coefficient of resistivity. Magnetization measurements reveal that near-stoichiometric samples have superparamagnetic clusters with at least two sizes of moments. X-ray photoemission from Fe core level showed localized magnetic moments on site-exchanged Fe. They conclude that in Fe{sub 2}VAl, antisite disorder causes significant modification to the semi-metallic band structure proposed by LDA calculations. With antisite disorder considered, they are now able to explain most of the physical properties of Fe{sub 2}VAl.

  11. Influence of the Soil Genesis on Physical and Mechanical Properties

    PubMed Central

    Marschalko, Marian; Yilmaz, Işık; Fojtová, Lucie; Kubečka, Karel; Bouchal, Tomáš; Bednárik, Martin

    2013-01-01

    The paper deals with the influence of soil genesis on the physical-mechanical properties. The presented case study was conducted in the region of the Ostrava Basin where there is a varied genetic composition of the Quaternary geological structure on the underlying Neogeneous sediments which are sediments of analogous granulometry but different genesis. In this study, 7827 soil samples of an eolian, fluvial, glacial, and deluvial origin and their laboratory analyses results were used. The study identified different values in certain cases, mostly in coarser-grained foundation soils, such as sandy loam S4 (MS) and clayey sand F4 (CS). The soils of the fluvial origin manifest different values than other genetic types. Next, based on regression analyses, dependence was proved neither on the deposition depth (depth of samples) nor from the point of view of the individual foundation soil classes or the genetic types. The contribution of the paper is to point at the influence of genesis on the foundation soil properties so that engineering geologists and geotechnicians pay more attention to the genesis during engineering-geological and geotechnical investigations. PMID:23844398

  12. Mineral trioxide aggregate: a review of physical properties.

    PubMed

    Malhotra, Neeraj; Agarwal, Antara; Mala, Kundabala

    2013-02-01

    The purpose of this two-part series is to review the composition, properties, products, and clinical aspects of mineral trioxide aggregate (MTA) materials. Electronic search of scientific papers from January 1991 to May 2010 was accomplished using PubMed and MedLine search engines to include relevant scientific citations from the peer-reviewed journals published in English. MTA is a refined form of the parent compound, Portland cement (PC). It demonstrates a strong biocompatible nature owing to the high pH and its ability to form hydroxyapatite. MTA materials provide a better seal than traditional endodontic materials as observed in dye leakage, fluid filtration, protein leakage, and bacterial penetration leakage studies, and it has been recognized as a bioactive material. Currently a variety of MTA commercial products are available, including Proroot Gray MTA and White MTA both from DENTSPLY Tulsa Dental Specialties (www.DENTSPLY.com), and MTA Angelus (Angelus,www.angelus.ind.br). Although these materials are indicated for various dental uses/applications, long-term in-vivo clinical studies are still needed to claim the same. This first of this series highlights and discusses the composition, physical, and/or chemical properties of MTA. A subsequent article will offer an overview of the material aspect (commercial products) and clinical considerations for MTA materials. PMID:23627406

  13. Influence of the soil genesis on physical and mechanical properties.

    PubMed

    Marschalko, Marian; Yilmaz, Işık; Fojtová, Lucie; Kubečka, Karel; Bouchal, Tomáš; Bednárik, Martin

    2013-01-01

    The paper deals with the influence of soil genesis on the physical-mechanical properties. The presented case study was conducted in the region of the Ostrava Basin where there is a varied genetic composition of the Quaternary geological structure on the underlying Neogeneous sediments which are sediments of analogous granulometry but different genesis. In this study, 7827 soil samples of an eolian, fluvial, glacial, and deluvial origin and their laboratory analyses results were used. The study identified different values in certain cases, mostly in coarser-grained foundation soils, such as sandy loam S4 (MS) and clayey sand F4 (CS). The soils of the fluvial origin manifest different values than other genetic types. Next, based on regression analyses, dependence was proved neither on the deposition depth (depth of samples) nor from the point of view of the individual foundation soil classes or the genetic types. The contribution of the paper is to point at the influence of genesis on the foundation soil properties so that engineering geologists and geotechnicians pay more attention to the genesis during engineering-geological and geotechnical investigations.

  14. Physical and mechanical properties of elastomers in orthodontic positioners.

    PubMed

    Warunek, S P; Sorensen, S E; Cunat, J J; Green, L J

    1989-05-01

    Elastomers for conventional Kesling-type tooth positioners are relatively inelastic and are primarily indicated as finishing devices. However, new materials, first described in the Japanese literature, with claims of a greater range of tooth movement warrant a comparison with conventional materials. Physical and mechanical property testing of positioner elastomers has not been reported in the orthodontic literature. This investigation compared properties of a high temperature vulcanizing (HTV) Japanese silicone (Orthocon) to three traditional polyurethane and vinyl-based polymers and five experimental silicone elastomers. Fourier transform infrared spectroscopy established the definitive chemical composition of the urethane and vinyl materials obtained from a commercial positioner laboratory. Tear strength, tensile strength, tensile stress at selected elongations, and ultimate elongation of all materials were evaluated at 37 degrees C in an aqueous environment. Hardness and water sorption values also were determined and an in vitro force measurement apparatus was fabricated to determine force levels exerted by positioner materials at low displacements. Orthocon was statistically different (Duncan's multiple range test, p less than 0.05) from the traditional commercial urethane and vinyl materials. Orthocon had lower tear strength than the traditional materials. It also demonstrated lower stress values below 100% elongation. The parameters of tensile stress at 50% elongation and ultimate elongation were statistically identical for Orthocon and one experimental silicone material.

  15. Hardrock Elastic Physical Properties: Birch's Seismic Parameter Revisited

    NASA Astrophysics Data System (ADS)

    Wu, M.; Milkereit, B.

    2014-12-01

    Identifying rock composition and properties is imperative in a variety of fields including geotechnical engineering, mining, and petroleum exploration, in order to accurately make any petrophysical calculations. Density is, in particular, an important parameter that allows us to differentiate between lithologies and estimate or calculate other petrophysical properties. It is well established that compressional and shear wave velocities of common crystalline rocks increase with increasing densities (i.e. the Birch and Nafe-Drake relationships). Conventional empirical relations do not take into account S-wave velocity. Physical properties of Fe-oxides and massive sulfides, however, differ significantly from the empirical velocity-density relationships. Currently, acquiring in-situ density data is challenging and problematic, and therefore, developing an approximation for density based on seismic wave velocity and elastic moduli would be beneficial. With the goal of finding other possible or better relationships between density and the elastic moduli, a database of density, P-wave velocity, S-wave velocity, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio was compiled based on a multitude of lab samples. The database is comprised of isotropic, non-porous metamorphic rock. Multi-parameter cross plots of the various elastic parameters have been analyzed in order to find a suitable parameter combination that reduces high density outliers. As expected, the P-wave velocity to S-wave velocity ratios show no correlation with density. However, Birch's seismic parameter, along with the bulk modulus, shows promise in providing a link between observed compressional and shear wave velocities and rock densities, including massive sulfides and Fe-oxides.

  16. Statistics of physical properties of dark matter clusters

    SciTech Connect

    Shaw, Laurie; Weller, Jochen; Ostriker, Jeremiah P.; Bode, Paul; /Princeton U. Observ.

    2005-09-01

    We have identified over 2000 well resolved cluster halos, and also their associated bound subhalos, from the output of 1024{sup 3} particle cosmological N-body simulation (of box size 320h{sup -1}Mpc and softening length 3.2h{sup -1}kpc). We present an algorithm to identify those halos still in the process of relaxing into dynamical equilibrium, and a detailed analysis of the integral and internal physical properties for all the halos in our sample. The majority are prolate, and tend to rotate around their minor principle axis. We find there to be no correlation between the spin and virial mass of the clusters halos and that the higher mass halos are less dynamically relaxed and have a lower concentration. Additionally, the orbital angular momentum of the substructure is typically well aligned with the rotational angular momentum of the ''host'' halo. There is also evidence of the transfer of angular momentum from subhalos to their host. Overall, we find that measured halo properties are often significantly influenced by the fraction of mass contained within substructure. Dimensionless properties do depend weakly on the ratio of halo mass (M{sub h}) to our characteristic mass scale (M{sub *} = 8 x 10{sup 14}h{sup -1}M{sub {circle_dot}}). This lack of self-similarity is in the expected sense in that, for example, ''old halos'' with M{sub h}/M{sub *} << 1 have less substructure than ''young halos'' with M{sub h}/M{sub *} >> 1.

  17. Physical characterization of functionalized spider silk: electronic and sensing properties

    NASA Astrophysics Data System (ADS)

    Steven, Eden; Park, Jin Gyu; Paravastu, Anant; Branco Lopes, Elsa; Brooks, James S.; Englander, Ongi; Siegrist, Theo; Kaner, Papatya; Alamo, Rufina G.

    2011-10-01

    This work explores functional, fundamental and applied aspects of naturally harvested spider silk fibers. Natural silk is a protein polymer where different amino acids control the physical properties of fibroin bundles, producing, for example, combinations of β-sheet (crystalline) and amorphous (helical) structural regions. This complexity presents opportunities for functional modification to obtain new types of material properties. Electrical conductivity is the starting point of this investigation, where the insulating nature of neat silk under ambient conditions is described first. Modification of the conductivity by humidity, exposure to polar solvents, iodine doping, pyrolization and deposition of a thin metallic film are explored next. The conductivity increases exponentially with relative humidity and/or solvent, whereas only an incremental increase occurs after iodine doping. In contrast, iodine doping, optimal at 70 °C, has a strong effect on the morphology of silk bundles (increasing their size), on the process of pyrolization (suppressing mass loss rates) and on the resulting carbonized fiber structure (that becomes more robust against bending and strain). The effects of iodine doping and other functional parameters (vacuum and thin film coating) motivated an investigation with magic angle spinning nuclear magnetic resonance (MAS-NMR) to monitor doping-induced changes in the amino acid-protein backbone signature. MAS-NMR revealed a moderate effect of iodine on the helical and β-sheet structures, and a lesser effect of gold sputtering. The effects of iodine doping were further probed by Fourier transform infrared (FTIR) spectroscopy, revealing a partial transformation of β-sheet-to-amorphous constituency. A model is proposed, based on the findings from the MAS-NMR and FTIR, which involves iodine-induced changes in the silk fibroin bundle environment that can account for the altered physical properties. Finally, proof-of-concept applications of

  18. Nanoscale memristive radiofrequency switches.

    PubMed

    Pi, Shuang; Ghadiri-Sadrabadi, Mohammad; Bardin, Joseph C; Xia, Qiangfei

    2015-01-01

    Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on a memristive device. The device can be programmed with a voltage as low as 0.4 V and has an ON/OFF conductance ratio up to 10(12) with long state retention. We measure the radiofrequency performance of the switch up to 110 GHz and demonstrate low insertion loss (0.3 dB at 40 GHz), high isolation (30 dB at 40 GHz), an average cutoff frequency of 35 THz and competitive linearity and power-handling capability. Our results suggest that, in addition to their application in memory and computing, memristive devices are also a leading contender for radiofrequency switch applications. PMID:26108890

  19. Physical properties of organic and biomaterials: Fundamentals and applications

    NASA Astrophysics Data System (ADS)

    Steven, Eden

    Silk materials are natural protein-based materials with an exceptional toughness. In addition to their toughness, silk materials also possess complex physical properties and functions resulting from a particular set of amino-acid arrangement that produces structures with crystalline beta-sheets connected by amorphous chains. Extensive studies have been performed to study their structure-function relationship leading to recent advancements in bio-integrated devices. Applications to fields other than textiles and biomedicine, however, have been scarce. In this dissertation, an investigation of the electronic properties, functionalization, and role of silk materials (spider silk and Bombyx mori cocoon silk) in the field of organic materials research is presented. The investigation is conducted from an experimental physics point of view where correlations with charge transport mechanisms in disordered, semiconducting, and insulating materials are made when appropriate. First, I present the electronic properties of spider silk fibers under ambient, humidified, iodized, polar solvent exposure, and pyrolized conditions. The conductivity is exponentially dependent on relative humidity changes and the solvent polarity. Iodine doping increases the conductivity only slightly but has pronounced effects on the pyrolization process, increasing the yield and flexibility of the pyrolized silk fibers. The iodized samples were further studied using magic angle spinning nuclear magnetic resonance (MAS-NMR) and Fourier transform infrared spectroscopy (FTIR) revealing non-homogenous iodine doping and I2 induced hydrogenation that are responsible for the minimal conductivity improvement and the pyrolization effects, respectively. Next, I present the investigation of silk fiber functionalization with gold and its role in electrical measurements. The gold functionalized silk fiber (Au-SS) is metallic down to cryogenic temperatures, has a certain amount of flexibility, and possesses

  20. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical inventories of personal property. 109-1.5110 Section 109-1.5110 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS GENERAL...

  1. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical inventories of personal property. 109-1.5110 Section 109-1.5110 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS GENERAL...

  2. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical inventories of personal property. 109-1.5110 Section 109-1.5110 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY MANAGEMENT REGULATIONS GENERAL...

  3. Nanoscale octahedral molecular sieves: Syntheses, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Liu, Jia

    The major part of this research consists of studies on novel synthesis methods, characterization, and catalytic applications of nanoscale manganese oxide octahedral molecular sieves. The second part involves studies of new applications of bulk porous molecular sieve and layered materials (MSLM), zeolites, and inorganic powder materials for diminishing wound bleeding. Manganese oxide octahedral molecular sieves (OMS) are very important microporous materials. They have been used widely as bulk materials in catalysis, separations, chemical sensors, and batteries, due to their unique tunnel structures and useful properties. Novel methods have been developed to synthesize novel nanoscale octahedral molecular sieve manganese oxides (OMS) and metal-substituted OMS materials in order to modify their physical and chemical properties and to improve their catalytic applications. Different synthetic routes were investigated to find better, faster, and cheaper pathways to produce nanoscale or metal-substituted OMS materials. In the synthetic study of nanosize OMS materials, a combination of sol-gel synthesis and hydrothermal reaction was used to prepare pure crystalline nanofibrous todorokite-type (OMS-1) and cryptomelane-typed (OMS-2) manganese oxides using four alkali cations (Li+, K+, Na +, Rb+) and NH4+ cations. In the synthesis study of nanoscale and metal-substituted OMS materials, a combination of sol-gel synthesis and solid-state reaction was used to prepare transition metal-substituted OMS-2 nanorods, nanoneedles, and nanowires. Preparative parameters of syntheses, such as cation templates, heating temperature and time, were investigated in these syntheses of OMS-1 and OMS-2 materials. The catalytic activities of the novel synthetic nanoscale OMS materials has been evaluated on green oxidation of alcohols and toluene and were found to be much higher than their correspondent bulk materials. New applications of bulk manganese oxide molecular sieve and layered materials

  4. Physical properties of organic and biomaterials: Fundamentals and applications

    NASA Astrophysics Data System (ADS)

    Steven, Eden

    Silk materials are natural protein-based materials with an exceptional toughness. In addition to their toughness, silk materials also possess complex physical properties and functions resulting from a particular set of amino-acid arrangement that produces structures with crystalline beta-sheets connected by amorphous chains. Extensive studies have been performed to study their structure-function relationship leading to recent advancements in bio-integrated devices. Applications to fields other than textiles and biomedicine, however, have been scarce. In this dissertation, an investigation of the electronic properties, functionalization, and role of silk materials (spider silk and Bombyx mori cocoon silk) in the field of organic materials research is presented. The investigation is conducted from an experimental physics point of view where correlations with charge transport mechanisms in disordered, semiconducting, and insulating materials are made when appropriate. First, I present the electronic properties of spider silk fibers under ambient, humidified, iodized, polar solvent exposure, and pyrolized conditions. The conductivity is exponentially dependent on relative humidity changes and the solvent polarity. Iodine doping increases the conductivity only slightly but has pronounced effects on the pyrolization process, increasing the yield and flexibility of the pyrolized silk fibers. The iodized samples were further studied using magic angle spinning nuclear magnetic resonance (MAS-NMR) and Fourier transform infrared spectroscopy (FTIR) revealing non-homogenous iodine doping and I2 induced hydrogenation that are responsible for the minimal conductivity improvement and the pyrolization effects, respectively. Next, I present the investigation of silk fiber functionalization with gold and its role in electrical measurements. The gold functionalized silk fiber (Au-SS) is metallic down to cryogenic temperatures, has a certain amount of flexibility, and possesses

  5. Physical and Mechanical Properties of Composites and Light Alloys Reinforced with Detonation Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Sakovich, G. V.; Vorozhtsov, S. A.; Vorozhtsov, A. B.; Potekaev, A. I.; Kulkov, S. N.

    2016-07-01

    The influence of introduction of particles of detonation-synthesized nanodiamonds into composites and aluminum-base light alloys on their physical and mechanical properties is analyzed. The data on microstructure and physical and mechanical properties of composites and cast aluminum alloys reinforced with diamond nanoparticles are presented. The introduction of nanoparticles is shown to result in a significant improvement of the material properties.

  6. 41 CFR 109-1.5110 - Physical inventories of personal property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of... items indicates that this action is necessary for effective property accounting, utilization, or control... property records, and with applicable financial control accounts. (j) The results of physical...

  7. Molecular mechanistic origin of nanoscale contact, friction, and scratch in complex particulate systems.

    PubMed

    Jalilvand, Soroosh; Shahsavari, Rouzbeh

    2015-02-11

    Nanoscale contact mechanisms, such as friction, scratch, and wear, have a profound impact on physics of technologically important particulate systems. Determining the key underlying interparticle interactions that govern the properties of the particulate systems has been long an engineering challenge. Here, we focus on particulate calcium-silicate-hydrate (C-S-H) as a model system and use atomistic simulations to decode the interplay between crystallographic directions, structural defects, and atomic species on normal and frictional forces. By exhibiting high material inhomogeneity and low structural symmetry, C-S-H provides an excellent system to explore various contact-induced nanoscale deformation mechanisms in complex particulate systems. Our findings provide a deep fundamental understanding of the role of inherent material features, such as van der Waals versus Coulombic interactions and the role of atomic species, in controlling the nanoscale normal contact, friction, and scratch mechanisms, thereby providing de novo insight and strategies for intelligent modulation of the physics of the particulate systems. This work is the first report on atomic-scale investigation of the contact-induced nanoscale mechanisms in structurally complex C-S-H materials and can potentially open new opportunities for knowledge-based engineering of several other particulate systems such as ceramics, sands, and powders and self-assembly of colloidal systems in general.

  8. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    SciTech Connect

    Pickenheim, B.; Bibler, N.

    2010-06-08

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be

  9. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    SciTech Connect

    Lambert, D.; Pickenheim, B.; Hay, M.

    2011-06-20

    The Defense Waste Processing Facility (DWPF) is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and

  10. Evaluation of Physical Properties of Generic and Branded Travoprost Formulations

    PubMed Central

    Wadhwani, Meenakshi; Mishra, Sanjay K; Velpandian, Thirumurthy; Sihota, Ramanjit; Kotnala, Ankita; Bhartiya, Shibal; Dada, Tanuj

    2016-01-01

    ABSTRACT Purpose: Comparative evaluation of pharmaceutical characteristics of three marketed generic vs branded travoprost formulations. Materials and methods: Three generic travoprost formulations and one branded (Travatan without benzalkonium chloride) formulation (10 vials each), obtained from authorized agents from the respective companies and having the same batch number, were used. These formulations were coded and labels were removed. At a standardized room temperature of 25°C, the drop size, pH, relative viscosity, and total drops per vial were determined for Travatan (Alcon, Fort Worth, TX, USA) and all the generic formulations. Travoprost concentration in all four brands was estimated by using liquid chromatography-coupled tandem mass spectrometry LCMS. Results: Out of the four formulations, two drugs (TP 1 and TP 4) were found to follow the United States Pharmacopoeia (USP) limits for ophthalmic formulation regarding drug concentration, while the remaining two drugs failed due to the limits being either above 110% (TP 2) or below 90% (TP 3). Two of them (TP 1 and TP 2) had osmolality of 313 and 262 mOsm respectively, which did not comply with the osmolality limits within 300 mOsm (+ 10%). The pH of all the formulations ranged between 4.7 and 5.9, and the mean drop size was 30.23 ± 6.03 uL. The total amount of drug volume in the bottles varied from 2.58 ± 0.15 to 3.38 ± 0.06 mL/bottle. Conclusion: There are wide variations in the physical properties of generic formulations available in India. Although some generic drugs are compliant with the pharmacopeia standards, this study underscores the need for a better quality control in the production of generic travoprost formulations. How to cite this article: Wadhwani M, Mishra SK, Angmo D, Velpandian T, Sihota R, Kotnala A, Bhartiya S, Dada T. Evaluation of Physical Properties of Generic and Branded Travoprost Formulations. J Curr Glaucoma Pract. 2016;10(2):49-55. PMID:27536047

  11. Synthesis and physical properties of highly sulfonated polyaniline. Technical report

    SciTech Connect

    Wei, X.L.; Bobeczko, C.; Epstein, A.J.

    1996-03-01

    Sulfonated polyaniline (EB-SPAN) is a self-doped conducting polymer. It has a high water solubility and a novel pH-dependent DC conductivity that is of interest for fundamental science and also for applications in such areas as rechargeable battery and pH control technologies. The authors report here the extensive characterization and details of synthesis of a new form of sulfonated polyaniline (LEB-SPAN) which shows novel or significantly improved chemical and physical properties. LEB-SPAN has a much high sulfur to nitrogen ratio (S/N) of N approx. 0.75, 50% larger than that previously reported for EB-SPAN, S/N approx. 0.50. This change in composition leads to significant alteration of the properties including an order of magnitude increase in the room temperature DC conductivity to approx. 1 S./cm, nearly double the solubility in water, and a completely different pH-dependence of the oxidation potential (E1/2). For LEB-SPAN the DC conductivity is unaffected by pH over the range 0 < or = pH < or = 14, strikingly different from the behavior of both parent polyaniline and EB-SPAN which become insulating for pH > or = 3 and pH > or = 7.5; respectively. Temperature-dependent DC conductivity and EPR measurements for LEB-SPAN reveal a lower activation energy for the conductivity and a higher density of states at the Fermi energy as compared with EB-SPAN. The dramatic differences in the pH-dependence of the DC conductivity, cyclic voltammetry (CV), FTIR, and UV-Vis results for LEB-SPAN and EB-SPAN are shown to be a consequence of the much higher S/N ratio in LEB-SPAN.

  12. Bumpy, Sticky, and Shaky: Nanoscale Science and the Curriculum

    ERIC Educational Resources Information Center

    Taylor, Amy; Jones, Gail; Pearl, Thomas P.

    2008-01-01

    Nanoscience, or the study of the world at the size of a billionth of a meter, has the potential to help students see how all of the sciences are related. Behavior of materials at the nanoscale differs from materials at the macroscale. This article introduces three nanoscale properties and how they relate to various science domains. Three…

  13. Physics-based surface potential, electric field and drain current model of a δp+ Si1-xGex gate-drain underlap nanoscale n-TFET

    NASA Astrophysics Data System (ADS)

    Goswami, Rupam; Bhowmick, Brinda; Baishya, Srimanta

    2016-09-01

    This article develops a 2-D model for surface potential, electric field and drain current for a nanoscale silicon tunnel field effect transistors (TFET) with a ?? layer at source-channel tunnel junction. Mathematical formulation based on the TFET physics has been carried out throughout the text taking into consideration the various parameters involving the mole-fraction-dependent ? layer. Both lateral and vertical electric fields have been modelled. A comparison is conducted between the modelled and the simulated values for three cases: polysilicon gate with silicon dioxide as gate dielectric, aluminium gate with alumina as gate dielectric and aluminium gate with hafnium oxide as gate dielectric. The model is found to be valid for all the three cases.

  14. Mapping Elasticity at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Stan, Gheorghe; Price, William

    2006-03-01

    In the last few years Atomic Force Acoustic Microscopy has been developed to investigate the elastic response of materials at the nanoscale ^[1],[2]. We have extended this technique to the real-time mapping of nanomechanical properties of material surfaces. This mapping allows us to investigate the local variation of elastic properties with nanometer resolution and to reduce the uncertainties that arise from single measurements. Quantitative measurements are acquired by first performing an accurate calibration of the elastic properties of the Atomic Force Microscope’s probes with respect to single crystal reference materials. A wide variety of surfaces with different mechanical properties have been investigated to illustrate the applicability of this technique. ^[1] U. Rabe et al., Surf. Interface Anal. 33 , 65 (2002)^[2] D.C. Hurley et al., J. Appl. Phys. 94, 2347 (2003)

  15. Flow-specific physical properties of coconut flours

    NASA Astrophysics Data System (ADS)

    Manikantan, Musuvadi R.; Kingsly Ambrose, Rose P.; Alavi, Sajid

    2015-10-01

    Coconut milk residue and virgin coconut oil cake are important co-products of virgin coconut oil that are used in the animal feed industry. Flour from these products has a number of potential human health benefits and can be used in different food formulations. The objective of this study was to find out the flow-specific physical properties of coconut flours at three moisture levels. Coconut milk residue flour with 4.53 to 8.18% moisture content (w.b.) had bulk density and tapped density of 317.37 to 312.65 and 371.44 to 377.23 kg m-3, respectively; the corresponding values for virgin coconut oil cake flour with 3.85 to 7.98% moisture content (wet basis) were 611.22 to 608.68 and 663.55 to 672.93 kg m-3, respectively. The compressibility index and Hausner ratio increased with moisture. The angle of repose increased with moisture and ranged from 34.12 to 36.20 and 21.07 to 23.82° for coconut milk residue flour and virgin coconut oil cake flour, respectively. The coefficient of static and rolling friction increased with moisture for all test surfaces, with the plywood offering more resistance to flow than other test surfaces. The results of this study will be helpful in designing handling, flow, and processing systems for coconut milk residue and virgin coconut oil cake flours.

  16. Physical properties of orbital debris from spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Jorgensen, K.; Africano, J.; Hamada, K.; Stansbery, E.; Sydney, P.; Kervin, P.

    2004-01-01

    Currently, certain physical properties, such as material type and albedo, of orbital debris are assumed when used to determine the size of the objects. A study to ascertain whether or not the assumed values are valid has begun using reflectance spectroscopy as a means of determining the material type of the object. What appears to some as a squiggly line is actually the reflectance of sunlight from the object. By comparing the location, depth, and width of the absorption features on the squiggly lines, the material type of the debris object is identified. Once the material type is known, the albedo of the object can be determined. This paper discusses the results from observations of large rocket bodies and satellites in both lower and geosynchronous Earth orbits (LEO and GEO, respectively) taken at the air force maui optical and supercomputing (AMOS) site located in Maui, Hawaii. Using the 1.6-m telescope and a spectral range of 0.3-0.9 μm, differences between rocket bodies of different types and launch dates, as well as satellites of different types and launch dates are determined. Variations seen in the squiggle lines are due to colors of paint, space weathering, and for the satellites, orientation and size of the solar panels. Future direction of the project will be discussed as well as plans for future observations.

  17. Physical and mechanical properties of modified bacterial cellulose composite films

    NASA Astrophysics Data System (ADS)

    Indrarti, Lucia; Indriyati, Syampurwadi, Anung; Pujiastuti, Sri

    2016-02-01

    To open wide range application opportunities of Bacterial Cellulose (BC) such as for agricultural purposes and edible film, BC slurries were blended with Glycerol (Gly), Sorbitol (Sor) and Carboxymethyl Cellulose (CMC). The physical and mechanical properties of BC composites were investigated to gain a better understanding of the relationship between BC and the additive types. Addition of glycerol, sorbitol and CMC influenced the water solubility of BC composite films. FTIR analysis showed the characteristic bands of cellulose. Addition of CMC, glycerol, and sorbitol slightly changed the FTIR spectrum of the composites. Tensile test showed that CMC not only acted as cross-linking agent where the tensile strength doubled up to 180 MPa, but also acted as plasticizer with the elongation at break increased more than 100% compared to that of BC film. On the other hand, glycerol and sorbitol acted as plasticizers that decreased the tensile strength and increased the elongation. Addition of CMC can improve film transparency, which is quite important in consumer acceptance of edible films in food industry.

  18. Influence of moisture content on physical properties of minor millets.

    PubMed

    Balasubramanian, S; Viswanathan, R

    2010-06-01

    Physical properties including 1000 kernel weight, bulk density, true density, porosity, angle of repose, coefficient of static friction, coefficient of internal friction and grain hardness were determined for foxtail millet, little millet, kodo millet, common millet, barnyard millet and finger millet in the moisture content range of 11.1 to 25% db. Thousand kernel weight increased from 2.3 to 6.1 g and angle of repose increased from 25.0 to 38.2°. Bulk density decreased from 868.1 to 477.1 kg/m(3) and true density from 1988.7 to 884.4 kg/m(3) for all minor millets when observed in the moisture range of 11.1 to 25%. Porosity decreased from 63.7 to 32.5%. Coefficient of static friction of minor millets against mild steel surface increased from 0.253 to 0.728 and coefficient of internal friction was in the range of 1.217 and 1.964 in the moisture range studied. Grain hardness decreased from 30.7 to 12.4 for all minor millets when moisture content was increased from 11.1 to 25% db. PMID:23572637

  19. Theoretical study of photo-physical properties of indolylmaleimide derivatives.

    PubMed

    Zheng, ZiLong; Zhao, Yi; Nakazono, Manabu; Nanbu, Shinkoh

    2012-03-01

    Photo-physical properties of bromo-indolylmaleimide (IM-Br), indole-succinimide (IS), and their anions were theoretically investigated compared with the previous theoretical result for indolylmaleimide (IM) [Phys. Chem. Chem. Phys., 2010, 12, 9783]. The energies for the electronic excited states as well as the ground states were computed for these molecules using the multi-reference perturbation calculations based on the second order Rayleigh-Schrödinger perturbation theory (CASPT2) at the cc-pVDZ basis set level. The electron-accepting or electron-donating effect caused by bromine-substitution was discussed in the intra-molecular charge transfer (ICT) mechanism. The order of natural orbitals of the bromine-substituted monovalent anion with a deprotonated indole NH group (I((-))M-Br) was found to be rearranged by the effect of electron-donation, which leads to pseudo-crossing of the potential energy cures of the S(1) and S(2) states. The large stokes shift observed for I((-))M-Br was due to pseudo-crossing. Meanwhile, IM and IM-Br show abnormal deprotonation, which is explained by the charge distribution on the indole and maleimide moieties. Finally, the monovalent anions I((-))M-Br and I((-))M by a deprotonation of the indole NH end and the neutral IS were proposed to be the most feasible candidates corresponding to the experimental spectra in solution. PMID:22293896

  20. DIET at the nanoscale

    NASA Astrophysics Data System (ADS)

    Dujardin, G.; Boer-Duchemin, E.; Le Moal, E.; Mayne, A. J.; Riedel, D.

    2016-01-01

    We review the long evolution of DIET (Dynamics at surfaces Induced by Electronic Transitions) that began in the 1960s when Menzel, Gomer and Redhead proposed their famous stimulated desorption model. DIET entered the "nanoscale" in the 1990s when researchers at Bell Labs and IBM realized that the Scanning Tunneling Microscope (STM) could be used as an atomic size source of electrons to electronically excite individual atoms and molecules on surfaces. Resonant and radiant Inelastic Electron Tunneling (IET) using the STM have considerably enlarged the range of applications of DIET. Nowadays, "DIET at the nanoscale" covers a broad range of phenomena at the atomic-scale. This includes molecular dynamics (dissociation, desorption, isomerization, displacement, chemical reactions), vibrational spectroscopy and dynamics, spin spectroscopy and manipulation, luminescence spectroscopy, Raman spectroscopy and plasmonics. Future trends of DIET at the nanoscale offer exciting prospects for new methods to control light and matter at the nanoscale.

  1. Fats, Oils, & Colors of a Nanoscale Material

    ERIC Educational Resources Information Center

    Lisensky, George C.; Horoszewski, Dana; Gentry, Kenneth L.; Zenner, Greta M.; Crone, Wendy C .

    2006-01-01

    Phase changes and intermolecular forces are important physical science concepts but are not always easy to present in an active learning format. This article presents several interactive activities in which students plot the melting points of some fatty acids and explore the effect that the nanoscale size and shape of molecules have on the…

  2. Physical property characterization of a damage zone in granitic rock - Implications for geothermal reservoir properties

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn; Madonna, Claudio; Amann, Florian; Gischig, Valentin; Burg, Jean-Pierre

    2016-04-01

    Geothermal energy offers a viable alternative to mitigate greenhouse gas emitting energy production. A tradeoff between less expensive drilling costs and increased permeability at shallow depths versus increased heat production at deeper depths stipulates the economic energy potential of a given reservoir. From a geological perspective, successful retrieval of geothermal energy from the subsurface requires sufficient knowledge of the structural and stratigraphic relationship of the target formations, which govern the thermal conditions, physical properties, and fluid flow properties of reservoir rocks. In Switzerland, deep basement rocks (~5 km) with fluid conducting damage zones and enhanced fractured systems stimulated by hydraulic shearing are seen as a potential geothermal reservoir system. Damage zones, both natural and induced, provide permeability enhancement that is especially important for creating fluid conductivity where the matrix permeability is low. This study concentrates on characterizing the elastic and transport properties entering into a natural damage zone penetrated by a borehole at the Grimsel underground research laboratory. The borehole drilled from a cavern at 480 m below ground surface penetrates approximately 20 m of mostly intact Grimsel granodiorite before entering the first phyllosilicate-rich shear zone (~0.2 m thick). The borehole intersects a second shear zone at approximately 23.8m. Between the two shear zones the Grimsel granodiorite is heavily fractured. The minimum principle stress magnitude from in-situ measurements decreases along the borehole into the first shear zone. Two mutually perpendicular core samples of Grimsel granodiorite were taken every 0.1 m from 19.5 to 20.1 m to characterize the physical properties and anisotropy changes as a gradient away from the damage zone. Measurements of ultrasonic compressional (Vp) and shear (Vs) velocities at 1 MHz frequency are conducted at room temperature and hydrostatic pressures

  3. Wavelet coherency analysis to relate saturated hydraulic properties to soil physical properties

    NASA Astrophysics Data System (ADS)

    Si, Bing Cheng; Zeleke, Takele B.

    2005-11-01

    A soil property may be related to another and the relationships may change depending on the scale and location. Understanding these scale- and location-dependent relationships is important for prediction of one soil property based on another. The objective of this study is to use wavelet coherency analysis to examine whether the relationship between hydraulic properties and soil physical properties are scale- and location-dependent. Undisturbed cores were collected along a transect from the sandy loam soil of a farm field in northern Saskatchewan, Canada. Saturated hydraulic conductivity (Ks), sand content, and organic carbon content (OC) were measured on these cores, and their relationships as a function of scale and location were analyzed using wavelets. Results indicated that the wavelet coherency between Ks and sand content is only significantly different from that of red noises at the scales around 48 m. The cross-wavelet spectrum and wavelet coherency are predominantly in phase, suggesting a positive correlation between Ks and sand. For Ks and OC, significant coherency exists at scales from 30 to 48 and around 80 m. At the scales of 30-48 and around 80 m the relationships are predominantly out of phase, suggesting negative correlation. Therefore relationships between Ks and sand or Ks and OC are not only scale-dependent but also location-dependent. Scale and location dependence have an important implication for understanding the scaling relationships between Ks and sand and OC and for the prediction of Ks from sand and OC.

  4. Physical and Mechanical Properties of Niobium for SRF Science and Technology

    SciTech Connect

    Ganapati Rao Myneni

    2006-10-31

    Optimized mechanical and physical properties of high purity niobium are crucial for obtaining high performance SRF particle beam accelerator structures consistently. This paper summarizes these important material properties for both high purity polycrystalline and single crystal niobium.

  5. PHYSICAL PROPERTIES OF FLUORINATED PROPANE AND BUTANE DERIVATIVES AS ALTERNATIVE REFRIGERANTS

    EPA Science Inventory

    Physical property measurements are presented for 24 fluorinated propane and butane derivatives and one fluorinated ether. These measurements include melting point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling point, critical propertie...

  6. Summary of tank waste physical properties at the Hanford Site

    SciTech Connect

    Nguyen, Q.H.

    1994-04-01

    This report summarizes the physical parameters measured from Hanford Site tank wastes. Physical parameters were measured to determine the physical nature of the tank wastes to develop simulants and design in-tank equipment. The physical parameters were measured mostly from core samples obtained directly below tank risers. Tank waste physical parameters were collected through a database search, interviewing and selecting references from documents. This report shows the data measured from tank waste but does not describe how the analyses wee done. This report will be updated as additional data are measured or more documents are reviewed.

  7. Phase stability of zirconia at nanoscale.

    NASA Astrophysics Data System (ADS)

    Sabiryanov, Renat; Mei, W. N.

    2004-03-01

    There are three phases of ZrO2, namely cubic, tetragonal and monoclinic. Cubic phase of zirconia is usually stabilized by various dopants such as yttria and magnesia. However, it has been observed that these stablizers are indeed the source failure of doped ZrO2 in both orthopaedics and in ZrO2 used in high temperature applications. Recently, the cubic zirconia was fabricated as granular media with the grain sizes less than 17nm. We examine the phase stability in zirconia nanoparticles using first principle electronic structure method. We observe considerable relaxation of lattice in the monoclinic phase near the surface. This effect combined with surface tension and possibly vacancies in nanostructures are sources of stability of cubic zirconia at nanoscale. We performed calculation of the surface tension calculations for the pure (001) surface. The uniform compressive strain is applied in the plane of the slab to find the elastic response of the system. The slab is allowed to relax in the perpendicular direction. Uniform compressive strain in the plane of the slab causes increase in the distance between Zr and O layers for (001) surface (as a solid tends to preserve the volume). For cubic it gives -0.65N/m, while for monoclinic -0.48N/m. Furthermore, the solid-gas surface tension is a fundamental physical/chemical property of a solid, which affects its wetting properties. Therefore, cubic zirconia is more suitable to design the material combining wettability, ductility and hardness.

  8. HETDEX: The Physical Properties of Lyman-alpha Emitters

    NASA Astrophysics Data System (ADS)

    Gronwall, Caryl; Blanc, G.; Ciardullo, R.; Finkelstein, S.; Gawiser, E.; Gebhardt, K.; HETDEX Collaboration

    2012-01-01

    Beginning in Fall 2012, the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) will map out 300 square degrees via a blind integral-field spectroscopic survey which will detect 800,000 Lyman-alpha emitters (LAEs) at 1.9 < z < 3.5. The goal of HETDEX is to explore the expansion history of the universe via the LAE power spectrum, but these emission-line sources are also important probes of galaxy evolution. LAEs are observed "in the act" of formation with low mass, little dust, very young ages, and a two-dimensional clustering scale-length that implies that they are the progenitors of today's Milky Way type galaxies. The unprecedented size of the HETDEX survey will allow us to explore the 3-D clustering of these objects and to measure their halo masses as a function of redshift. We will also be able to explore the physical properties of LAEs over a wide range of environments, and study how their luminosity functions, equivalent width distributions, and star formation rates change with galaxy density and redshift. In preparation for HETDEX, we undertook a 3 year pilot survey to test the feasibility of the experiment and design an optimal observing strategy. These observations were performed with a proto-type HETDEX spectrograph (VIRUS-P) on the McDonald 2.7-m telescope, and covered Ly-alpha in the redshift range 1.9 < z < 3.8. This survey discovered 104 Ly-alpha emitting galaxies in 169 sq. arcmin of sky, and reached objects with Ly-alpha line luminosities as faint as 3 x 1042 ergs/s. We will present the Ly-alpha luminosity function, equivalent width distributions, and star formation rates measured for this sample and discuss the implications of the pilot survey results for HETDEX.

  9. Characterization of sheep lung lymph lipoproteins: chemical and physical properties

    SciTech Connect

    Forte, T.M.; Cross, C.E.; Gunther, R.A.; Kramer, G.C.

    1983-01-01

    The authors have determined the composition and distribution of plasma and lung lymph lipoproteins from unanesthetized ewes. Cholesterol, triglyceride, and phospholipid levels in lung lymph were 45%, 50%, and 50%, respectively, of those in plasma. Lipoproteins from both lymph and plasma were separated into two major fractions: d < 1.063 g/ml or LDL, and d 1.063-1.21 g/ml or HDL. HDL was the major lipoprotein species in the plasma and lymph. Gradients gel electrophoresis of HDL on 4-30% gels showed that, in lymph, HDL particles were shifted to larger sizes; in addition to a peak at 8.5 nm, which was similar to plasma HDL, there were two additional components of larger size, one at 9.2 nm and the other at 12 nm. Electron microscopy revealed that lymph HDL contained two new particles not seen in plasma: large, round particles, 13.6 nm diameter, and discoidal particles, 18.7 by 4.9 nm, long and short axis, respectively. Compositional analysis of lymph HDL revealed a relative enrichment in free cholesterol as well as an enrichment in apolipoprotein E. Lymph LDL on gradient gel electrophoresis was extremely heterogeneous. Several peaks were evident in the 23-30 nm size range (similar to plasma LDL), but a supplementary component at approximately 15-16 nm was also present. Whereas plasma LDL on electron microscopy contained only round particles 26 nm in diameter, lymph contained an additional, unusual particle which was close-packed, with square geometry, and was 15 nm in diameter. Changes in the physical and chemical properties of lung lymph lipoproteins suggest that these particles are metabolically modified.

  10. Physical properties of luminous dust-poor quasars

    SciTech Connect

    Jun, Hyunsung David; Im, Myungshin E-mail: mim@astro.snu.ac.kr

    2013-12-20

    We identify and characterize a population of luminous, dust-poor quasars at 0 < z < 5 that is photometrically similar to objects previously found at z > 6. This class of active galactic nuclei is known to show little IR emission from dusty structure, but it is poorly understood in terms of number evolution and dependence on physical quantities. To better understand the properties of these quasars, we compile a rest-frame UV to IR library of 41,000 optically selected type 1 quasars with L {sub bol} > 10{sup 45.7} erg s{sup –1}. After fitting the broadband spectral energy distributions (SEDs) with accretion disk and dust components, we find 0.6% of our sample to be hot dust-poor, with rest-frame 2.3 μm to 0.51 μm flux density ratios of –0.5 dex or less. The dust-poor SEDs are blue in the UV-optical and weak in the mid-IR, such that their accretion disks are less obscured and the hot dust emission traces that of warm dust down to the dust-poor regime. At a given bolometric luminosity, dust-poor quasars are lower in black hole mass and higher in Eddington ratio than general luminous quasars, suggesting that they are in a rapidly growing evolutionary state in which the dust-poor phase appears as a short or rare phenomenon. The dust-poor fraction increases with redshift, and possible implications for their evolution are discussed.

  11. Physical properties of orbital debris from squiggly lines

    NASA Astrophysics Data System (ADS)

    Jorgensen, K.; Africano, J.; Hamada, K.; Stansbery, E.; Sydney, P.; Kervin, P.

    Currently, certain physical properties, such as material type and albedo, of orbital debris are assumed when used to determine the size of the objects. A study to ascertain whether or not the assumed values are valid has begun using reflectance spectroscopy as a means of determining the material type of the object. What appears to some as a squiggly line is actually the reflectance of sunlight from the object. By comparing the location, depth, and width of the absorption features on the squiggly lines, the material type of the debris object is identified. Once the material type is known, the albedo of the object can be determined. This paper discusses the results from observations of large rocket bodies and satellites in both lower and geosynchronous Earth orbits (LEO and GEO, respectively) taken at the Air Force Maui Optical Supercomputing (AMOS) site located in Maui, Hawaii. Using the 1.6- meter telescope and a spectral range of 0.3 to 0.9 microns, differences between rocket bodies of different types and launch dates, as well as satellites of different types and launch dates are determined. Variations seen in the squiggle lines are due to colors of paint, space weathering, and for the satellites, orientation and size of the solar panels. Initial findings from an additional observation run using the 3.67-meter telescope equipped with both a visible and near-infrared spectrometer (out to 2 microns) are also described. Future direction of the project will be discussed as well as plans for future observations.

  12. Physical properties of antimony-doped tin oxide thick films

    NASA Astrophysics Data System (ADS)

    Kaneko, H.; Miyake, K.

    1982-05-01

    The physical properties of Sb-doped SnO2 thick films, prepared by a repeating chemical spray deposition method, have been investigated. The films 1000-14 000-Å thick were deposited on fused quartz, borosilicate glass, and soda lime glass substrates at 600 °C using an aqueous solution of a mixture of SnCl4 and SbCl3. The films prepared by the method are homogeneous, and the electrical resistivity of the films on fused quartz and borosilicate glass substrates were found to be independent of the film thickness, and are 9.5×10-4 Ω cm, and 8.6×10-4 Ω cm, respectively. The resistivity of the films thicker than 4000 Å on soda lime glass substrates is almost constant, and is 1.8×10-3 Ω cm, although a large increase in the resistivity of the thinner films was observed. The optical band gap of the films on fused quartz and borosilicate glass substrates is also independent of the film thickness, and is almost the same: 3.75 eV. But the band gap of the films on soda lime glass substrates depends on the film thickness, and increases from 2.85 to 3.08 eV with increasing thickness from 2250 to 13 000 Å. The Hall mobility and carrier concentration of the films were also measured. The results of x-ray diffraction analysis and observations by SEM are described.

  13. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions. PMID:24601011

  14. Physical and chemical properties of San Francisco Bay, California, 1980

    USGS Publications Warehouse

    Ota, Allan Y.; Schemel, L.E.; Hager, S.W.

    1989-01-01

    The U.S. Geological Survey conducted hydrologic investigations in both the deep water channels and the shallow-water regions of the San Francisco Bay estuarine system during 1980. Cruises were conducted regularly, usually at two-week intervals. Physical and chemical properties presented in this report include temperature , salinity, suspended particulate matter, turbidity, extinction coefficient, partial pressure of CO2, partial pressure of oxygen , dissolved organic carbon, particulate organic carbon, discrete chlorophyll a, fluorescence of photosynthetic pigments, dissolved silica, dissolved phosphate, nitrate plus nitrite, nitrite, ammonium, dissolved inorganic nitrogen, dissolved nitrogen, dissolved phosphorus, total nitrogen, and total phosphorus. Analytical methods are described. The body of data contained in this report characterizes hydrologic conditions in San Francisco Bay during a year with an average rate of freshwater inflow to the estuary. Concentrations of dissolved silica (discrete-sample) ranged from 3.8 to 310 micro-M in the northern reach of the bay, whereas the range in the southern reach was limited to 63 to 150 micro-M. Concentrations of phosphate (discrete-sample) ranged from 1.3 to 4.4 micro-M in the northern reach, which was narrow in comparison with that of 2.2 to 19.0 micro-M in the southern reach. Concentrations of nitrate plus nitrite (discrete-sample) ranged from near zero to 53 micro-M in the northern reach, and from 2.3 to 64 micro-M in the southern reach. Concentrations of nitrite (discrete-sample) were low in both reaches, exhibiting a range from nearly zero to approximately 2.3 micro-M. Concentrations of ammonium (discrete-sample) ranged from near zero to 14.2 micro-M in the northern reach, and from near zero to 8.3 micro-M in the southern reach. (USGS)

  15. Layered Nature With Different Physical Properties Of Firn

    NASA Astrophysics Data System (ADS)

    Okuyama, J.; Fujita, S.; Takeya, S.; Koerner, R. M.; Hondoh, T.

    2003-12-01

    To better understand the formation mechanism of the layered structures in firn, we have introduced new methods to clarify the various physical properties relating to the firn-densification process; that is, the X-ray transmission method for detailed profile of density, the X-ray CT for the anisotropy of crystal shapes, the X-ray diffraction method for the crystallographic orientations of both 0002 and 11-20, and the open resonator method for the dielectric permittivity tensor at microwave frequency. These methods have been applied to the firn in both the Dome Fuji ice core from East Antarctica and the P96 ice core from Penny Ice Cap, Baffin Island, Canada. We have found by these measurements that (1) the crystal shapes elongated vertically near the surface turn into spherical ones with depth, (2) the layers with the preferential c axis orientations (fabrics) in vertical alternate with those in horizontal, (3) these preferential orientations gradually vary towards random ones with depth, but (4) there still exist the layered structures with different fabrics even at the close-off depth, and (5) the dielectric anisotropy, or the difference between the dielectric constants parallel and perpendicular to the core axis, decreases with depth. On the basis of these findings, we propose a grain-rotation mechanism during the firn-densification process, which well explains the finding (3). The finding (4) suggests that ice below the close-off depth is also composed of the layered structures with different fabrics. Since the difference in fabrics between layers increases by plastic deformation of grains below the close-off depth, the layered structures with different fabrics must be developed with depth.

  16. Effect of chain microstructure on physical properties of olefin copolymers

    NASA Astrophysics Data System (ADS)

    Poon, Benjamin Chunman

    The effect of chain microstructure on various physical properties was studied in polyethylene and polypropylene copolymers. Adhesion of Ziegler-Natta (ZNPE) and metallocene (mPE) catalyzed ethylene-octene copolymers to polypropylene (PP) were studied by measuring the delamination toughness G of coextruded microlayers using the T-peel test. It was found that the heterogeneous ZNPE exhibited poor adhesion to polypropylene. It was proposed that the low molecular weight, highly branched ZNPE fractions migrate to the interface to form an amorphous layer. The homogeneous mPE with the same short chain branch content showed very high G. Blending ZNPE with an mPE increased G. Atomic force microscopy revealed that blending mPE into ZNPE reduced or eliminated the amorphous interfacial layer. It was hypothesized that mPE increased miscibility of low molecular weight, highly branched fractions of ZNPE and prevented their segregation at the interface. The solid state structure and properties of homogeneous propylene-octene copolymers were examined. Based on the combined observations from melting behavior, dynamic mechanical response, morphology with primarily atomic force microscopy, X-ray diffraction, and tensile deformation, a classification scheme with 4 distinct categories is proposed. The homopolymer with 60 wt% crystallinity constitutes Type IV. It is characterized by large alpha-positive spherulite. Copolymers with up to 5 mol% octene, with at least 35 wt% crystallinity, are classified as Type III. They crystallize as alpha-positive spherulites that are smaller than the homopolymer. Both Type IV and Type III materials exhibit thermoplastic behavior. Copolymers classified as Type II have between 5 and 10 mol% octene with crystallinity in the range of 20--35%. Type II materials have smaller impinging spherulites than Type III copolymers and they are negative. The materials in this category have plastomeric behavior. Type I copolymers have more than 10 mol% octene and less

  17. Physical and chemical properties of industrial mineral oils affecting lubrication

    SciTech Connect

    Godfrey, D.; Herguth, W.R.

    1996-02-01

    The lubricating properties of mineral oils, and contaminants which affect those properties, are discussed. A contaminant is any material not in the original fresh oil, whether it is generated within the system or ingested. 5 refs.

  18. Phonon hydrodynamics and its applications in nanoscale heat transport

    NASA Astrophysics Data System (ADS)

    Guo, Yangyu; Wang, Moran

    2015-09-01

    Phonon hydrodynamics is an effective macroscopic method to study heat transport in dielectric solid and semiconductor. It has a clear and intuitive physical picture, transforming the abstract and ambiguous heat transport process into a concrete and evident process of phonon gas flow. Furthermore, with the aid of the abundant models and methods developed in classical hydrodynamics, phonon hydrodynamics becomes much easier to implement in comparison to the current popular approaches based on the first-principle method and kinetic theories involving complicated computations. Therefore, it is a promising tool for studying micro- and nanoscale heat transport in rapidly developing micro and nano science and technology. However, there still lacks a comprehensive account of the theoretical foundations, development and implementation of this approach. This work represents such an attempt in providing a full landscape, from physical fundamental and kinetic theory of phonons to phonon hydrodynamics in view of descriptions of phonon systems at microscopic, mesoscopic and macroscopic levels. Thus a systematical kinetic framework, summing up so far scattered theoretical models and methods in phonon hydrodynamics as individual cases, is established through a frame of a Chapman-Enskog solution to phonon Boltzmann equation. Then the basic tenets and procedures in implementing phonon hydrodynamics in nanoscale heat transport are presented through a review of its recent wide applications in modeling thermal transport properties of nanostructures. Finally, we discuss some pending questions and perspectives highlighted by a novel concept of generalized phonon hydrodynamics and possible applications in micro/nano phononics, which will shed more light on more profound understanding and credible applications of this new approach in micro- and nanoscale heat transport science.

  19. The mechanical behavior of nanoscale metallic multilayers: A survey

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Xie, J. Y.; Wang, F.; Huang, P.; Xu, K. W.; Lu, T. J.

    2015-06-01

    The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of microlaminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size-dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plastic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engineers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qualities the interfaces in NMMs display at atomic scale.

  20. Change in physical properties of pine bark and switchgrass substrates over time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternatives to pine bark for nursery crop substrates have been proposed, including the use of straw materials such as switchgrass. While straw substrates can be developed with suitable physical properties measured immediately after mixing, little is known about how the physical properties of straw...

  1. Mental Rolodexing: Senior Chemistry Majors' Understanding of Chemical and Physical Properties

    ERIC Educational Resources Information Center

    DeFever, Ryan S.; Bruce, Heather; Bhattacharyya, Gautam

    2015-01-01

    Using a constructivist framework, eight senior chemistry majors were interviewed twice to determine: (i) structural inferences they are able to make from chemical and physical properties; and (ii) their ability to apply their inferences and understandings of these chemical and physical properties to solve tasks on the reactivity of organic…

  2. Physical and orbital properties of β Pictoris b

    NASA Astrophysics Data System (ADS)

    Bonnefoy, M.; Marleau, G.-D.; Galicher, R.; Beust, H.; Lagrange, A.-M.; Baudino, J.-L.; Chauvin, G.; Borgniet, S.; Meunier, N.; Rameau, J.; Boccaletti, A.; Cumming, A.; Helling, C.; Homeier, D.; Allard, F.; Delorme, P.

    2014-07-01

    The intermediate-mass star β Pictoris is known to be surrounded by a structured edge-on debris disk within which a gas giant planet was discovered orbiting at 8-10 AU. The physical properties of β Pic b were previously inferred from broad- and narrow-band 0.9-4.8 μm photometry. We used commissioning data of the Gemini Planet Imager (GPI) to obtain new astrometry and a low-resolution (R ~ 35-39) J-band (1.12-1.35 μm) spectrum of the planet. We find that the planet has passed the quadrature. We constrain its semi-major axis to ≤10 AU (90% prob.) with a peak at 8.9+0.4-0.6 AU. The joint fit of the planet astrometry and the most recent radial velocity measurements of the star yields a planet dynamical mass lower than 20 MJup (≥96% prob.). The extracted spectrum of β Pic b is similar to those of young L1-1.5+1 dwarfs. We used the spectral type estimate to revise the planet luminosity to log (L/L⊙) = -3.90 ± 0.07. The 0.9-4.8 μm photometry and spectrum are reproduced for Teff = 1650 ± 150 K and a log g ≤ 4.7 dex by 12 grids of PHOENIX-based and LESIA atmospheric models. For the most recent system age estimate (21 ± 4 Myr), the bolometric luminosity and the constraints on the dynamical mass of β Pic b are only reproduced by warm- and hot-start tracks with initial entropies Si> 10.5 kB/baryon. These initial conditions may result from an inefficient accretion shock and/or a planetesimal density at formation higher than in the classical core-accretion model. Considering a younger age for the system or a conservative formation time for β Pic b does not change these conclusions. Appendices are available in electronic form at http://www.aanda.org

  3. Physical properties of the Saturn's rings with the opposition effect.

    NASA Astrophysics Data System (ADS)

    Deau, E.

    2012-04-01

    We use the Cassini/ISS images from the early prime mission to build lit phase curves data from 0.01 degrees to 155 degrees at a solar elevation of 23-20 degrees. All the main rings exhibit on their phase curves a prominent surge at small phase angles. We use various opposition effect models to explain the opposition surge of the rings, including the coherent backscattering, the shadow hiding and a combination of the two (Kawata & Irvine 1974 In: Exploration of the planetary system Book p441; Shkuratov et al. 1999, Icarus, 141, p132; Poulet et al. 2002 Icarus, 158, p224 ; Hapke et al. 2002 Icarus, 157, p523). Our results show that either the coherent backscattering alone or a combination of the shadow hiding and the coherent backscattering can explain the observations providing physical properties (albedo, filling factor, grain size) consistent with previous other studies. However, they disagree with the most recent work of Degiorgio et al. 2011 (EPSC-DPS Abstract #732). We think that their attempt to use the shadow hiding alone lead to unrealistic values of the filling factor of the ring particles layer. For example they found 10^-3 in one of the thickest regions of the C ring (a plateau at R=88439km with an optical depth tau=0.22). We totally disagree with their conclusions stating that these values are consistent for the C ring plateaux and did not found any references that are consistent with theirs, as they claimed. We believe that their unrealistic values originated from the assumptions of the models they used (Kawata & Irvine and Hapke), which are basically an uniform size distribution. Any model using an uniform size distribution force the medium to be very diluted to reproduce the opposition surge. Our modeling that uses a power law size distribution provides realistic values. All these results have been already published previously (http://adsabs.harvard.edu/abs/2007PhDT........25D) and are summarized in a forthcoming manuscript submitted to publication so

  4. Physical, chemical, and mineral properties of the Polonnaruwa stones

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.; Samaranayake, Anil; Wickramarathne, Keerthi; Oldroyd, Anthony

    2013-09-01

    We report on the physical, chemical and mineral properties of a series of stone fragments recovered from the North Central Province of Sri Lanka following a witnessed fireball event on 29 December 2012. The stones exhibit highly porous poikilitic textures comprising of isotropic silica-rich/plagioclase-like hosts. Inclusions range in size and shape from mm-sized to smaller subangular grains frequently more fractured than the surrounding host and include ilmenite, olivine (fayalitic), quartz and accessory zircon. Bulk mineral compositions include accessory cristobalite, hercynite, anorthite, wuestite, albite, anorthoclase and the high pressure olivine polymorph wadsleyite, suggesting previous endurance of a shock pressure of ~20 GPa. Further evidence of shock is confirmed by the conversion of all plagioclase to maskelynite. Here the infrared absorption spectra in the region 580 cm-1 to 380 cm-1 due to the Si-O-Si or Si-O-Al absorption band shows a partial shift in the peak at 380 cm-1 towards 480 cm-1 indicating an intermediate position between crystalline and amorphous phase. Host matrix chemical compositions vary between samples, but all are rich in SiO2. Silica-rich melts display a heterogeneous K-enrichment comparable to that reported in a range of non-terrestrial material from rare iron meteorites to LL chondritic breccias and Lunar granites. Bulk chemical compositions of plagioclase-like samples are comparable to reported data e.g. Miller Ranger 05035 (Lunar), while Si-rich samples accord well with mafic and felsic glasses reported in NWA 1664 (Howardite) as well as data for fusion crust present in a variety of meteoritic samples. Triple oxygen isotope results show Δ17O = -0.335 with δ18O (‰ rel. SMOW) values of 17.816 +/- 0.100 and compare well with those of known CI chondrites and are within the range of CI-like (Meta-C) chondrites. Rare earth elemental abundances show a profound Europium anomaly of between 0.7 and 0.9 ppm while CI normalized REE

  5. Physical, Chemical and Mineral Properties of the Polonnaruwa Stones

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.; Samaranayake, Anil; Wickramarathne, Keerthi; Oldroyd, Anthony

    We report on the physical, chemical and mineral properties of a series of stone fragments recovered from the North Central Province of Sri Lanka following a witnessed fireball event on 29 December 2012. The stones exhibit highly porous poikilitic textures comprising of isotropic silica-rich/plagioclase-like hosts. Inclusions range in size and shape from mm-sized to smaller subangular grains frequently more fractured than the surrounding host and include ilmenite, olivine (fayalitic), quartz and accessory zircon. Bulk mineral compositions include accessory cristobalite, hercynite, anorthite, wuestite, albite, anorthoclase and the high pressure olivine polymorph wadsleyite, suggesting previous endurance of a shock pressure of ~20GPa. Further evidence of shock is confirmed by theconversion of all plagioclase to maskelynite. Here the infrared absorption spectra in the region 580 cm-1 to 380 cm-1 due to the Si-O-Si or Si-O-Al absorption band shows a partial shift in the peak at 380 cm-1 towards 480 cm-1 indicating an intermediate position between crystalline and amorphous phase. Host matrix chemical compositions vary between samples, but all are rich in SiO2. Silica-rich melts display a heterogeneous K-enrichment comparable to that reported in a range of nonterrestrial material from rare iron meteorites to LL chondritic breccias and Lunar granites. Bulk chemical compositions of plagioclase-like samples are comparable to reported data e.g. Miller Ranger 05035 (Lunar), while Si-rich samples accord well with mafic and felsic glasses reported in NWA 1664 (Howardite)as well asdata for fusion crust present in a variety of meteoritic samples.Triple oxygen isotope results show Δ17O = .0.335 with δ18O (‰ rel. SMOW) values of 17.816 ± 0.100 and compare well with those of known CI chondrites and are within the range of CI-like (Meta-C) chondrites. Rare earth elemental abundances show a profound Europium anomaly of between 0.7 and 0.9 ppm while CI normalized REE patterns

  6. Nanoscale control designs for systems.

    PubMed

    Chen, Yung-Yue

    2014-02-01

    Nanoscale control is the science of the control of objects at dimensions with 100 nm or less and the manipulation of them at this level of precision. The desired attributes of systems under nanoscale control design are extreme high resolution, accuracy, stability, and fast response. An important perspective of investigation in nanoscale control design includes system modeling and precision control devices and materials at a nanoscale dimension, i.e., design of nanopositioners. Nanopositioners are mechatronic systems with an ultraprecise resolution down to a fraction of an atomic diameter and developed to move objects over a small range in nanoscale dimension. After reviewing a lot of existing literatures for nanoscale control designs, the way to successful nanoscale control is accurate position sensing and feedback control of the motion. An overview of nanoscale identification, linear, and nonlinear control technologies, and devices that are playing a key role in improving precision, accuracy, and response of operation of these systems are introduced in this research.

  7. Patterns and determinants of wood physical and mechanical properties across major tree species in China.

    PubMed

    Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun

    2015-06-01

    The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.

  8. Optical Properties of Materials in an Undergraduate Physics Curriculum

    NASA Astrophysics Data System (ADS)

    Blanco, Julio R.

    2006-03-01

    The need to introduce physics undergraduates to non-traditional subjects is ever increasing due to the job opportunities in interdisciplinary fields. The traditional upper-level curricula after the standard sequence in introductory calculus-based physics is challenging to many students. Adding more elective requirements is not in vogue with university administrators that must deal with a large influx of students with fewer resources. Experimental physics lends itself well to introduce students to interdisciplinary concepts. At California State University Northridge (CSUN), we have introduced modules in experimental physics to meet this need. All juniors and seniors are required to take two units of experimental physics per semester, a total of eight units. An experimental unit represents three contact hours per week. Each two units consist of two modules, each lasting seven and a half weeks, six hours per week. One of these modules exposes the students to thin film deposition by sputtering, imaging by scanning electron microscopy, and optical characterization using scanning ellipsometry. This early exposure to interdisciplinary applied physics motivates students and identifies difficulties with fundamental concepts.

  9. Lunar physical properties from analysis of magnetometer data

    NASA Technical Reports Server (NTRS)

    Daily, W. D.

    1979-01-01

    The electromagnetic properties of the lunar interior are discussed with emphasis on (1) bulk, crustal, and local anomalous conductivity; (2) bulk magnetic permeability measurements, iron abundance estimates, and core size limits; (3) lunar ionosphere and atmosphere; and (4) crustal magnetic remanence: scale size measurements and constraints on remanence origin. Appendices treat the phase relationship between the energetic particle flux modulation and current disc penetrations in the Jovian magnetosphere (Pioneer 10 inbound) theories for the origin of lunar magnetism; electrical conductivity anomalies associated with circular lunar maria; electromagnetic properties of the Moon; Mare Serenitatis conductivity anomaly detected by Apollo 16 and Lunokhod 2 magnetometers; and lunar properties from magnetometer data: effects of data errors.

  10. Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators.

    PubMed

    Koumoulis, Dimitrios; Morris, Gerald D; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D; Wang, Kang L; Fiete, Gregory A; Kanatzidis, Mercouri G; Bouchard, Louis-S

    2015-07-14

    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive (8)Li(+) ions that can provide "one-dimensional imaging" in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the (8)Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron-nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials.

  11. Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators.

    PubMed

    Koumoulis, Dimitrios; Morris, Gerald D; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D; Wang, Kang L; Fiete, Gregory A; Kanatzidis, Mercouri G; Bouchard, Louis-S

    2015-07-14

    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive (8)Li(+) ions that can provide "one-dimensional imaging" in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the (8)Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron-nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. PMID:26124141

  12. Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators

    PubMed Central

    Koumoulis, Dimitrios; Morris, Gerald D.; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D.; Wang, Kang L.; Fiete, Gregory A.; Kanatzidis, Mercouri G.; Bouchard, Louis-S.

    2015-01-01

    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive 8Li+ ions that can provide “one-dimensional imaging” in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the 8Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron–nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. PMID:26124141

  13. Physical properties of materials derived from diamondoid molecules

    NASA Astrophysics Data System (ADS)

    Clay, W. A.; Dahl, J. E. P.; Carlson, R. M. K.; Melosh, N. A.; Shen, Z.-X.

    2015-01-01

    Diamondoids are small hydrocarbon molecules which have the same rigid cage structure as bulk diamond. They can be considered the smallest nanoparticles of diamond. They exhibit a mixture of properties inherited from bulk cubic diamond as well as a number of unique properties related to their size and structure. Diamondoids with different sizes and shapes can be separated and purified, enabling detailed studies of the effects of size and structure on the diamondoids' properties and also allowing the creation of chemically functionalized diamondoids which can be used to create new materials. Most notable among these new materials are self-assembled monolayers of diamondoid-thiols, which exhibit a number of unique electron emission properties.

  14. Transport in closed nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bushong, Neil

    2005-03-01

    An alternative way to describe electrical transport in nanoscale systems has been recently proposed where two large but finite charged electrodes discharge across a nanoscale junction (M. Di Ventra and T. Todorov, J. Phys. Cond. Matt. 16, 8025 (2004)). We have applied this concept to describe the dynamics of a finite quasi-one dimensional gold wire using both a simple tight-binding model and time-dependent density-functional theory. After an initial transient, a quasi-steady state sets in whose lifetime increases with system size. This quasi-steady state is due to the wave properties of the electron wavefunctions and the resultant uncertainty principle and is established without inelastic effects. The corresponding current-voltage characteristics at steady state are in very good agreement with those calculated from the static scattering approach. We discuss local electron distributions, electrostatic potentials, and local resistivity dipoles formed at the quasi-steady state and compare these findings with the static open-boundary problem. A relation between information entropy and electron dynamics is discussed. Work supported by NSF.

  15. Physical properties of sediment containing methane gas hydrate

    USGS Publications Warehouse

    Winters, W.J.; Waite, W.F.; Mason, D.H.; Gilbert, L.Y.

    2005-01-01

    A study conducted by the US Geological Survey (USGS) on the formation, behavior, and properties of mixtures of gas hydrate and sediment is presented. The results show that the properties of host material influence the type and quantity of hydrates formed. The presence of hydrate during mechanical shear tests affects the measured sediment pore pressure. Sediment shear strength may be increased more than 500 percent by intact hydrate, but greatly weakened if the hydrate dissociates.

  16. CRC handbook of physical properties of rocks. Volume III

    SciTech Connect

    Carmichael, R.S.

    1984-01-01

    This book presents topics on: Density of rocks and minerals, includes histograms of density ranges; elastic constants of minerals, elastic moduli, thermal properties; inelastic properties, strength and rheology for rocks and minerals, rock mechanics and friction, and stress-strain relations; radioactivity, decay constants and heat production of isotope systems in geology; seismic attenuation, in rocks, minerals, and the earth, with application to oil exploration and terrestrial studies; and index.

  17. Effect of irrigation and nutrient on physical properties of safflower seeds

    NASA Astrophysics Data System (ADS)

    Feyzollahzadeh, Maziar; ModaresMotlagh, Asaad; Nikbakht, Ali M.

    2014-03-01

    The effect of irrigation and nutrient treatments on physical properties of safflower seeds was investigated. Physical properties of safflower seeds were determined at a moisture content of 7% w.b. The parameters determined at different treatments were: size, geometric mean diameter, sphericity, surface area, mass, volume, bulk and true densities, porosity, and static and dynamic coefficient of friction. The results showed a better effect of the use of organic fertilizers in comparison with chemical ones. The results showed that nutrient and irrigation treatments had a significant effect on most of the physical properties of safflower seeds at p<0.01.

  18. Physical Sensing of Surface Properties by Microswimmers – Directing Bacterial Motion via Wall Slip

    PubMed Central

    Hu, Jinglei; Wysocki, Adam; Winkler, Roland G.; Gompper, Gerhard

    2015-01-01

    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width. PMID:25993019

  19. Nanoscale surface photovoltage of organic semiconductors with two pass Kelvin probe microscopy

    NASA Astrophysics Data System (ADS)

    Escasain, E.; Lopez-Elvira, E.; Baro, A. M.; Colchero, J.; Palacios-Lidon, E.

    2011-09-01

    Kelvin probe microscopy implemented with controlled sample illumination is used to study nanoscale surface photovoltage effects. With this objective a two trace method, where each scanning line is measured with and without external illumination, is proposed. This methodology allows a direct comparison of the contact potential images acquired in darkness and under illumination and, therefore, the surface photovoltage is simply inferred. Combined with an appropriate data analysis, the temporal and spatial evolution of reversible and irreversible photo-induced processes can be obtained. The potential and versatility of this technique is applied to MEH-PPV thin films. Photo-physical phenomena such as the mesoscale polymer electronic light-induced response as well as the local nanoscale electro-optical properties are studied.

  20. Sensing at the nanoscale

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    The merits of nanostructures in sensing may seem obvious, yet playing these attributes to their maximum advantage can be a work of genius. As fast as sensing technology is improving, expectations are growing, with demands for cheaper devices with higher sensitivities and an ever increasing range of functionalities and compatibilities. At the same time tough scientific challenges like low power operation, noise and low selectivity are keeping researchers busy. This special issue on sensing at the nanoscale with guest editor Christofer Hierold from ETH Zurich features some of the latest developments in sensing research pushing at the limits of current capabilities. Cheap and easy fabrication is a top priority. Among the most popular nanomaterials in sensing are ZnO nanowires and in this issue Dario Zappa and colleagues at Brescia University in Italy simplify an already cheap and efficient synthesis method, demonstrating ZnO nanowire fabrication directly onto silicon substrates [1]. Meanwhile Nicolae Barson and colleagues in Germany point out the advantages of flame spray pyrolysis fabrication in a topical review [2] and, maximizing on existing resources, researchers in Denmark and Taiwan report cantilever sensing using a US20 commercial DVD-ROM optical pickup unit as the readout source [3]. The sensor is designed to detect physiological concentrations of soluble urokinase plasminogen activator receptor, a protein associated with inflammation due to HIV, cancer and other infectious diseases. With their extreme properties carbon nanostructures feature prominently in the issue, including the demonstration of a versatile and flexible carbon nanotube strain sensor [4] and a graphene charge sensor with sensitivities of the order of 1.3 × 10-3 e Hz-1/2 [5]. The issue of patterning for sensing devices is also tackled by researchers in the US who demonstrate a novel approach for multicomponent pattering metal/metal oxide nanoparticles on graphene [6]. Changes in electrical

  1. Physical Properties of Various Materials Relevant to Granular Flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the ubiquitous nature of granular materials, ranging from natural avalanches to industrial storage and processing operations, interest in quantifying and predicting the dynamics of granular flow continues to increase. The objective of this study was to investigate various physical proper...

  2. Hand-held calculator programs determine natural-gas physical properties

    SciTech Connect

    Ajitsaria, N.K.

    1983-06-01

    Although physical properties of natural gas are readily available in the literature, the determination of such properties using a hand-held calculator can be of great convenience to the engineer. Two typical examples of gas properties often required in gas transmission and reservoir engineering calculations are compressibility factor (z factor) and viscosity (..mu..). In this article, programs developed for determining these properties are described.

  3. Selection and Physical Properties of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Fang, G. W.

    2014-09-01

    Extremely Red Objects (EROs) and BzKs continue to attract considerable interest. It has been suggested that they may be the direct progenitors of present-day massive E/S0 galaxies, and can provide crucial constraints on the current galaxy formation and evolution models. Therefore, the key question is to measure the relative fraction of OGs (old galaxies) and DGs (young, and dusty starburst galaxies) in the sample of EROs. Many groups have been currently investigating the fractions of these two ERO populations using a variety of observational approaches, but the fraction of OGs and DGs from different surveys is different. In the meantime, a number of observations suggest that the epoch of z˜2 also plays an important role in galaxy formation and evolution for various reasons: the cosmic star formation rate density (SFRD) begins to drop at z˜2 from a flat plateau at higher redshifts; the morphological type mix of field galaxies changes remarkably at z˜2; the number density of QSOs has a peak at z˜2; and about 50% to 70% of the stellar mass assembly of galaxies took place in the redshift range 1physical properties of passive and star-forming galaxies at z˜2 in the AEGIS field, and (3) the mid-infrared spectroscopy and multi-wavelength study of ultraluminous infrared galaxies (ULIRGs) at z˜2 in the AEGIS field. Chapter 1 gives a brief review on the research progresses of EROs at z˜1, BzKs at z˜2, and ULIRGs at z˜2, respectively. In Chapter 2 we present a quantitative study of the classification of EROs in the UDF and COSMOS field. Our sample includes 5264 (COSMOS, K_{Vega} ≤19.2) and 24 EROs (UDF, K_{Vega}≤22.0) with (i-K)_{AB}≥2.45. Using the fitting method of spectral energy distribution (SED), [3.6]-[8.0] color, and the nonparametric measures of galaxy morphology, we classify EROs into two classes: DGs and OGs. We find

  4. Polymer crystallization in thin films: morphology and physical properties

    NASA Astrophysics Data System (ADS)

    Kelly, Giovanni; Albert, Julie

    Polymer crystallization has been studied both computationally and experimentally for decades, elucidating many of the mysteries surrounding crystallization kinetics and thermodynamics. However, many unanswered questions remain pertaining to the relationships between crystallization phenomena and material properties needed for specific applications that range from drug delivery and tissue engineering to optical devices and mechanically robust membranes. One of the especially interesting facets of polymer crystallization is the behavior observed when these long chain molecules are spatially confined in thin and ultrathin films. Confined geometry leads to chain configurations, and therefore thermal, mechanical, and optical properties, sometimes far removed from reported bulk values. This project aims to study the phenomena exhibited by linear semi-crystalline polymers in thin films as well as the way in which blending with homopolymers, block copolymers, and novel polymer chain architectures affect morphology, biodegradation, optical, thermal, and mechanical properties.

  5. Physical properties of Ce-TZP at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Han, Y. M.; Chen, Z.; Zhou, M.; Huang, R. J.; Huang, C. J.; Li, L. F.

    2014-01-01

    Electrical insulators, which are used to insulate cryogenic supply lines and conductor windings, are critical units in superconducting TOKAMAK magnets. Electrical insulators used in superconducting magnets fall into axial and radial insulators. These insulators can be made from glass ribbon epoxy densification and have been used in the Experiment Advanced Superconducting Tokamak (EAST). The properties of Ce-TZP can satisfy the requirement of electrical insulators. In this paper, thermal conductivity, mechanical properties and coefficient of thermal expansion of Ce-TZP have been investigated at cryogenic temperatures. Results indicate that the Ce-TZP shows better properties than epoxy and it demonstrates that the Ce-TZP can be used as insulation material in superconducting magnets.

  6. Physicochemical properties of physical chitin hydrogels: modeling and relation with the mechanical properties.

    PubMed

    Vachoud, L; Domard, A

    2001-01-01

    In this work, we were interested in the modeling of syneresis of physical chitin hydrogels by a mathematic law allowing us to predict the variation of the weight of the gel as a function of time. The variation of the weight of the gel during syneresis can be described by W(t)()/W(0) = (t(1/2) + (W(infinity)/W(0))t)/(t(1/2)) + t) where W(0), W(infinity), and W(t)() are the weights of the gel at the beginning of syneresis, for infinite time and for a time t, respectively. t(1/2) corresponds to the half-time of syneresis. W(infinity)/W(0) and t(1/2) were studied in relation with several parameters such as the ionic strength, pH, degree of acetylation of chitin and the initial concentration of polymer. The mechanical properties of chitin hydrogels maintained during syneresis in media of different pH's and ionic strengths were also investigated.

  7. The quantum physics of photosynthesis.

    PubMed

    Ritz, Thorsten; Damjanović, Ana; Schulten, Klaus

    2002-03-12

    Biological cells contain nanoscale machineries that exhibit a unique combination of high efficiency, high adaptability to changing environmental conditions, and high reliability. Recent progress in obtaining atomically resolved structures provide an opportunity for an atomic-level explanation of the biological function of cellular machineries and the underlying physical mechanisms. A prime example in this regard is the apparatus with which purple bacteria harvest the light of the sun. Its highly symmetrical architecture and close interplay of biological functionality with quantum physical processes allow an illuminating demonstration of the fact that properties of living beings ultimately rely on and are determined by the laws of physics.

  8. Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey

    2008-03-01

    The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.

  9. Physical property measurements of doped cesium iodide crystals

    NASA Technical Reports Server (NTRS)

    Synder, R. S.; Clotfelter, W. N.

    1974-01-01

    Mechanical and thermal property values are reported for crystalline cesium iodide doped with sodium and thallium. Young's modulus, bulk modulus, shear modulus, and Poisson's ratio were obtained from ultrasonic measurements. Young's modulus and the samples' elastic and plastic behavior were also measured under tension and compression. Thermal expansion and thermal conductivity were the temperature dependent measurements that were made.

  10. Synthesis and physical properties of new estolide esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oil-based oils usually fail to meet the rigorous demands of industrial lubricants by not having acceptable low temperature properties, pour point (PP) and/or cloud point (CP). The oleic estolide was esterified with a series of 16 different alcohols that were either branched or straight-cha...

  11. Physical properties of epoxy resin/titanium dioxide nanocomposites

    SciTech Connect

    Polyzos, Georgios; Tuncer, Enis; Sauers, Isidor; More, Karren Leslie

    2011-01-01

    A polymeric nanocomposite system (nanodielectric) was fabricated, and its mechanical properties were determined. The fabricated nanocomposite was composed of low concentrations of monodispersed titanium dioxide (TiO{sub 2}) nanoparticles and an epoxy resin specially designed for cryogenic applications. The monodispersed TiO{sub 2} nanoparticles were synthesized in an aqueous solution of titanium chloride and polyethylene glycol and subsequently dispersed in a commercial-grade epoxy resin (Araldite{reg_sign} 5808). Nanocomposite thin sheets were prepared at several weight fractions of TiO{sub 2}. The morphology of the composites, determined by transmission electron microscopy, showed that the nanoparticles aggregated to form particle clusters. The influence of thermal processing and the effect of filler dispersion on the structure-property relationships were identified by differential scanning calorimetry and dynamic mechanical analysis at a broad range of temperatures. The effect of the aggregates on the electrical insulation properties was determined by dielectric breakdown measurements. The optical properties of the nanocomposites and their potential use as filters in the ultraviolet-visible (UV-vis) range were determined by UV-vis spectroscopy.

  12. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... they investigated one or more of the following properties: (a) Water solubility. (b) Adsorption/desorption on particulate surfaces, e.g., soil. (c) Vapor pressure. (d) Octanol/water partition coefficient. (e) Density/relative density (specific gravity). (f) Particle size distribution for insoluble...

  13. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... they investigated one or more of the following properties: (a) Water solubility. (b) Adsorption/desorption on particulate surfaces, e.g., soil. (c) Vapor pressure. (d) Octanol/water partition coefficient. (e) Density/relative density (specific gravity). (f) Particle size distribution for insoluble...

  14. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... they investigated one or more of the following properties: (a) Water solubility. (b) Adsorption/desorption on particulate surfaces, e.g., soil. (c) Vapor pressure. (d) Octanol/water partition coefficient. (e) Density/relative density (specific gravity). (f) Particle size distribution for insoluble...

  15. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... they investigated one or more of the following properties: (a) Water solubility. (b) Adsorption/desorption on particulate surfaces, e.g., soil. (c) Vapor pressure. (d) Octanol/water partition coefficient. (e) Density/relative density (specific gravity). (f) Particle size distribution for insoluble...

  16. PHYSICAL PROPERTIES OF EXTRUDED AND INJECTION MOLDED CORN GLUTEN MEAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was performed to investigate the compounding of corn gluten meal (CGM) and decanoic acid and to evaluate their mechanical properties. The mixture of CGM and 30% decanoic acid was compounded in a twin screw extruder, followed by injection molding. Scanning electron microscopy (SEM), tens...

  17. Program Gives Data On Physical Properties Of Hydrogen

    NASA Technical Reports Server (NTRS)

    Roder, H. M.; Mccarty, R. D.; Hall, W. J.

    1994-01-01

    TAB II computer program provides values of thermodynamic and transport properties of hydrogen in useful format. Also, provides values for equilibrium hydrogen and para-hydrogen. Program fast, moderately accurate, and operates over wide ranges of input variables. Written in FORTRAN 77.

  18. Synthesis and physical properties of isostearic acids and their esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saturated branched-chain fatty acids (sbc-FAs) are found as minor constituents in several natural fats and oils. Sbc-FAs are of interest since they have lower melting points than their linear counterparts and exhibit good oxidative stability; properties that make them ideally suited in a number of ...

  19. Symposium GC: Nanoscale Charge Transport in Excitonic Solar Cells

    SciTech Connect

    Bommisetty, Venkat

    2011-06-23

    This paper provides a summary only and table of contents of the sessions. Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  20. ESTIMATION OF PHYSICAL PROPERTIES AND CHEMICAL REACTIVITY PARAMETERS OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The computer program SPARC (Sparc Performs Automated Reasoning in Chemistry)has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms ...

  1. PREDICTION OF CHEMICAL REACTIVITY PARAMETERS AND PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FROM MOLECULAR STRUCTURE USING SPARC

    EPA Science Inventory

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  2. Evaluation of correlation between physical properties and ultrasonic pulse velocity of fired clay samples.

    PubMed

    Özkan, İlker; Yayla, Zeliha

    2016-03-01

    The aim of this study is to establish a correlation between physical properties and ultrasonic pulse velocity of clay samples fired at elevated temperatures. Brick-making clay and pottery clay were studied for this purpose. The physical properties of clay samples were assessed after firing pressed clay samples separately at temperatures of 850, 900, 950, 1000, 1050 and 1100 °C. A commercial ultrasonic testing instrument (Proceq Pundit Lab) was used to evaluate the ultrasonic pulse velocity measurements for each fired clay sample as a function of temperature. It was observed that there became a relationship between physical properties and ultrasonic pulse velocities of the samples. The results showed that in consequence of increasing densification of the samples, the differences between the ultrasonic pulse velocities were higher with increasing temperature. These findings may facilitate the use of ultrasonic pulse velocity for the estimation of physical properties of fired clay samples.

  3. VizieR Online Data Catalog: Physical properties of VVDS galaxies (Lamareille+, 2009)

    NASA Astrophysics Data System (ADS)

    Lamareille, F.; Brinchmann, J.; Contini, T.; Walcher, C. J.; Charlot, S.; Perez-Montero, E.; Zamorani, G.; Pozzetti, L.; Bolzonella, M.; Garilli, B.; Paltani, S.; Bongiorno, A.; Le Fevre, O.; Bottini, D.; Le Brun, V.; Maccagni, D.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Cappi, A.; Ciliegi, P.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; Iovino, A.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Meneux, B.; Merighi, R.; Pello, R.; Pollo, A.; Radovich, M.; Vergani, D.; Zucca, E.; Romano, A.; Grado, A.; Limatola, L.

    2009-01-01

    This catalog gives emission-line measurements and spectral indices for galaxies observed in the VIMOS/VLT Deep Survery (VVDS), together with derived physical properties such as stellar masses and metallicities. (3 data files).

  4. Preparation and Physical Properties of One-Dimensional Structures: Bap(Fe2S4)q.

    ERIC Educational Resources Information Center

    Swinnea, J. S.; Steinfink, H.

    1980-01-01

    Reviews the structure, preparation, and physical properties of a series of compounds characterized by structures formed from sublattices which have incommensurate repeat distances in one or two directions. (Author/CS)

  5. Statistical evaluation of physical properties in Area 12, Nevada Test Site, using the USGS/DNA Storage and Retrieval System

    SciTech Connect

    Brethauer, G.E.; Magner, J.E.; Miller, D.R.

    1980-05-01

    The US Geological Survey/Defense Nuclear Agency Physical-Properties Storage and Retrieval System was used to generate tables displaying the basic statistics of physical-properties data sets sorted according to geologic identification and tunnel complex in Rainier and Aqueduct Mesas. An approximate procedure to statistically evaluate the significance of geologic identifier versus physical-property average value was developed. Results of this procedure indicate that no conclusive consistent relation exists between geologic identifier and physical-properties average value.

  6. Toxicity and physical properties of atrazine and its degradation products: A literature survey

    SciTech Connect

    Pugh, K.C.

    1994-10-01

    The Tennessee Valley Authority`s Environmental Research Center has been developing a means of detoxifying atrazine waste waters using TiO{sub 2} photocatalysis. The toxicity and physical properties of atrazine and its degradation products will probably be required information in obtaining permits from the United States Environmental Protection Agency for the demonstration of any photocatalytic treatment of atrazine waste waters. The following report is a literature survey of the toxicological and physical properties of atrazine and its degradation products.

  7. Statistical physics ""Beyond equilibrium

    SciTech Connect

    Ecke, Robert E

    2009-01-01

    The scientific challenges of the 21st century will increasingly involve competing interactions, geometric frustration, spatial and temporal intrinsic inhomogeneity, nanoscale structures, and interactions spanning many scales. We will focus on a broad class of emerging problems that will require new tools in non-equilibrium statistical physics and that will find application in new material functionality, in predicting complex spatial dynamics, and in understanding novel states of matter. Our work will encompass materials under extreme conditions involving elastic/plastic deformation, competing interactions, intrinsic inhomogeneity, frustration in condensed matter systems, scaling phenomena in disordered materials from glasses to granular matter, quantum chemistry applied to nano-scale materials, soft-matter materials, and spatio-temporal properties of both ordinary and complex fluids.

  8. [Evaluating method of the characteristic physical properties of the wetting mass using texture analyser].

    PubMed

    Gao, Ya; Hong, Yan-long; Xian, Jie-chen; Zhang, Ning; Feng, Yi; Yang, Xiu-juan

    2012-08-01

    To build the evaluating method of the characteristic physical properties of the wetting mass, this study reported the preparation of wetting mass by adding water into microcrystalline cellulose, and using texture analyser texture profile analysis to test its physical properties, including hardness, adhesiveness, springness, cohesiveness, chewiness, resilience and so on, then finding out the better method and parameters. The method was evaluated and used to test wetting mass, which was made of microcrystalline cellulose of different types and polyvinylpyrrolidone. When running texture profile analysis whose trigger force was 1500 g, the relative standard deviation was under 10%, and the trend of every characteristic physical property tallied with the theory result by water ratio increase. Testing result of the same excipient with the same water ratio had a higher precision, while characteristic physical properties of wetting mass who was made of the same excipient with different water ratios and different excipients had a great difference. Using texture analyser to test physical properties of wetting mass could get a result which tallied with the theory by water ratio increase, and had a well precision, accuracy and sensitivity, and thus it could also evaluate the characteristic physical properties of wetting mass relatively well. PMID:23162903

  9. Modelling the historical changes in physical soil properties caused by wind erosion process

    NASA Astrophysics Data System (ADS)

    Lackóová, Lenka

    2016-04-01

    Soil physical properties could be significantly affected by land degradation processes. Spatial variation modelling of physical soil properties in time is important in areas where wind erosion occurs regularly. The objectives of this study were to determine the changes of spatial variability of sand, silt and clay % contents in selected area in Slovakia over 45 years using topsoil physical properties at European scale (using LUCAS topsoil) and historical Complex Soil Survey Data. The Complex Soil Survey was made in the period 1960-1970 for the whole of the Slovak Republic, using a unified methodology to build an important soil properties database including physical topsoil properties. Spatial model distribution using regression kriging algorithm created by Soil Science and Conservation Research Institute was used for comparison with LUCAS topsoil particle size distribution datasets and their derived products of clay, sand and silt % content. The results of this study will show the effects of wind erosion in long time scale. Continual total mass removal during wind erosion can produce dramatic changes in the texture of the soil surface. Fine particles are removed, which tend to concentrate sand as erosion continues. Wind erosion physically removes the most fertile portion of the soil which may lead to lower productivity or destroying the characteristics of topsoil beneficial to plant growth. Historical changes of physical soil properties are discussed in this study.

  10. Structural and physical properties of BiVO3

    NASA Astrophysics Data System (ADS)

    Singh, M. P.; Razavi, F. S.

    2014-03-01

    We report the phase stabilization and properties of BiVO3 (BVO) thin films, grown on (001) SrTiO3 and LaAlO3, using the pulsed laser deposition technique. Bi and V are in 3+ oxidation states as measured by using x-ray photoelectrons spectroscopy. BVO exhibits a Curie-Weiss paramagnetic behaviour and about -26 K Weiss temperature. This demonstrates the presence of a strong correlation effect due to the spin fluctuation. Additionally, these films exhibit a semiconducting behaviour owing to the thermally activated conduction process. A plausible explanation of the observed properties is presented by comparing with the closely related LaVO3 and other orthovanadates.

  11. Active doublet method for measuring small changes in physical properties

    DOEpatents

    Roberts, Peter M.; Fehler, Michael C.; Johnson, Paul A.; Phillips, W. Scott

    1994-01-01

    Small changes in material properties of a work piece are detected by measuring small changes in elastic wave velocity and attenuation within a work piece. Active, repeatable source generate coda wave responses from a work piece, where the coda wave responses are temporally displaced. By analyzing progressive relative phase and amplitude changes between the coda wave responses as a function of elapsed time, accurate determinations of velocity and attenuation changes are made. Thus, a small change in velocity occurring within a sample region during the time periods between excitation origin times (herein called "doublets") will produce a relative delay that changes with elapsed time over some portion of the scattered waves. This trend of changing delay is easier to detect than an isolated delay based on a single arrival and provides a direct measure of elastic wave velocity changes arising from changed material properties of the work piece.

  12. Physical properties of kraft black liquor. Final report. Phase I

    SciTech Connect

    Fricke, A.L.

    1983-12-01

    Methods were selected, equipment installed, and procedures developed for determining rheological properties; for determining thermal properties (stability, density, thermal expansion, and heat capacity); for purification and characterization of lignin (glass transition, stability, weight average molecular weight, and number average molecular weight); and for performing chemical analyses (negative inorganic ions, positive inorganic ions, acid organic salts, lignin, and total solids). A strategy for pulping to supply test liquors was developed, and a statistically designed pulping experiment was specified for a Southern softwood species. Arrangements were made for performing initial pulping work in an industrial pilot plant, and a preliminary set of pulping experiments were conducted. Liquors from the preliminary pulping experiments were used to test procedures and to determine reproducibility of the experiment. Literature was also surveyed and preliminary selection of designs for a pilot digester, and for equipment to determine surface tension were made.

  13. Structural and physical properties of BiVO{sub 3}

    SciTech Connect

    Singh, M. P. Razavi, F. S.

    2014-03-31

    We report the phase stabilization and properties of BiVO{sub 3} (BVO) thin films, grown on (001) SrTiO{sub 3} and LaAlO{sub 3}, using the pulsed laser deposition technique. Bi and V are in 3+ oxidation states as measured by using x-ray photoelectrons spectroscopy. BVO exhibits a Curie-Weiss paramagnetic behaviour and about −26 K Weiss temperature. This demonstrates the presence of a strong correlation effect due to the spin fluctuation. Additionally, these films exhibit a semiconducting behaviour owing to the thermally activated conduction process. A plausible explanation of the observed properties is presented by comparing with the closely related LaVO{sub 3} and other orthovanadates.

  14. Determination of physical properties of fibrous thermal insulation

    NASA Astrophysics Data System (ADS)

    Tilioua, A.; Libessart, L.; Joulin, A.; Lassue, S.; Monod, B.; Jeandel, G.

    2012-10-01

    The objective of this study is to characterize both experimentally and theoretically, conductive and radiative heat transfer within polyester batting. This material is derived from recycled bottles (PET) with fibres of constant diameters. Two other mineral and plant fibrous insulation materials, (glass wool and hemp wool) are also characterized for comparative purposes. To determine the overall thermophysical properties of the tested materials, heat flux measurement are carried out using a device developed in house. The radiative properties of the material are determined by an inverse method based on measurements of transmittance and reflectance using a FTIR spectrometer and by solving the equation of radiative heat transfer. These measures are compared to results of numerical simulations.

  15. Physical properties of preserved core from the Geysers scientific corehole

    SciTech Connect

    Roberts, J.J.; Bonner, B.P.; Duba, A.G.; Schneberk, D.L.

    1996-01-24

    X-ray attenuation, electrical conductivity, and ultrasonic velocity are reported for a segment of preserved core from SB-15D, 918 ft. X-ray tomography and ultrasonic measurements change as the core dries, providing information regarding handling and disturbance of the core. Electrical conductivity measurements at reservoir conditions indicate that pore fluid properties and pore microstructure control bulk conductivity. These data are useful for calibration and interpretation of field geophysical measurements.

  16. Effect of film properties for non-linear DPL model in a nanoscale MOSFET with high-k material: ZrO2/HfO2/La2O3

    NASA Astrophysics Data System (ADS)

    Shomali, Zahra; Ghazanfarian, Jafar; Abbassi, Abbas

    2015-07-01

    Numerical simulation of non-linear non-Fourier heat conduction within a nano-scale metal-oxide-semiconductor field-effect transistor (MOSFET) is presented under the framework of Dual-Phase-Lag model including the boundary phonon scattering. The MOSFET is modeled in four cases of: (I) thin silicon slab, (II) including uniform heat generation, (III) double-layered buried oxide MOSFET with uniform heat generation in silicon-dioxide layer, and (IV) high-k/metal gate transistor. First, four cases are studied under four conditions of (a) constant bulk and (b) constant film thermal properties, (c) temperature-dependent properties of bulk silicon, and (d) temperature-dependent thermal properties of film silicon. The heat source and boundary conditions are similar to what existed in a real MOSFET. It is concluded that in all cases, considering the film properties lowers the temperature jump due to the reduction of the Knudsen number. Furthermore, the speed of heat flux penetration for film properties is less than that of the cases concerning bulk properties. Also, considering the temperature-dependent properties drastically changes the temperature and heat flux distributions within the transistor, which increases the diffusion speed and more, decreases the steady state time. Calculations for case (III) presents that all previous studies have underestimated the value of the peak temperature rise by considering the constant bulk properties of silicon. Also, it is found that among the high-k dielectrics investigated in case (IV), zirconium dioxide shows the least peak temperature rise. This presents that zirconium dioxide is a good candidate as far as the thermal issues are concerned.

  17. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine

    PubMed Central

    2012-01-01

    Finally, we have addressed some relevant findings on the importance of having well-defined synthetic strategies developed for the generation of MNPs, with a focus on particle formation mechanism and recent modifications made on the preparation of monodisperse samples of relatively large quantities not only with similar physical features, but also with similar crystallochemical characteristics. Then, different methodologies for the functionalization of the prepared MNPs together with the characterization techniques are explained. Theorical views on the magnetism of nanoparticles are considered. PMID:22348683

  18. Physical properties of the Creutzfeldt-Jakob disease agent

    SciTech Connect

    Sklaviadis, T.K.; Manuelidis, L.; Manuelidis, E.E.

    1989-03-01

    In this report, the authors present the first physical characterization of the Creutzfeld-Jakob disease agent. Preparations with high yields of infectivity (assayed infectious units) were obtained by a novel, gentle procedure in which initially sedimenting Gp34 (prion protein) was disaggregated by a variety of criteria with no subsequent loss of infectivity. Studies with this preparation indicate that most of the Creutzfeldt-Jakob disease agent has both a viruslike size and density. In velocity sedimentation and isopycnic sucrose gradients, infectivity comigrated with nucleic acid-protein complexes of appreciable size.

  19. Physical properties of whey protein--hydroxypropylmethylcellulose blend edible films.

    PubMed

    Brindle, L P; Krochta, J M

    2008-11-01

    The formations of glycerol (Gly)-plasticized whey protein isolate (WPI)-hydroxypropylmethylcellulose (HPMC) films, blended using different combinations and at different conditions, were investigated. The resulting WPI: Gly-HPMC films were analyzed for mechanical properties, oxygen permeability (OP), and water solubility. Differences due to HPMC quantity and blend method were determined via SAS software. While WPI: Gly and HPMC films were transparent, blend films were translucent, indicating some degree of immiscibility and/or WPI-HPMC aggregated domains in the blend films. WPI: Gly-HPMC films were stronger than WPI: Gly films and more flexible and stretchable than HPMC films, with films becoming stiffer, stronger, and less stretchable as the concentration of HPMC increased. However, WPI: Gly-HPMC blended films maintained the same low OP of WPI: Gly films, significantly lower than the OP of HPMC films. Comparison of mechanical properties and OP of films made by heat-denaturing WPI before and after blending with HPMC did not indicate any difference in degree of cross-linking between the methods, while solubility data indicated otherwise. Overall, while adding HPMC to WPI: Gly films had a large effect on the flexibility, strength, stretchability, and water solubility of the film polymeric network, results indicated that HPMC had no effect on OP through the polymer network. WPI-HPMC blend films had a desirable combination of mechanical and oxygen barrier properties, reflecting the combination of hydrogen-bonding, hydrophobic interactions, and disulfide bond cross-linking in the blended polymer network.

  20. Surface nanoscale axial photonics.

    PubMed

    Sumetsky, M; Fini, J M

    2011-12-19

    Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schrödinger equation. These modes can be steered with dramatically small nanoscale variation of the fiber radius, which is quite simple to introduce in practice. Extremely low loss of SNAP devices is achieved due to the low surface roughness inherent in a drawn fiber surface. In excellent agreement with the developed theory, we experimentally demonstrate localization of light in quantum wells, halting light by a point source, tunneling through potential barriers, dark states, etc. This demonstration has intriguing potential applications in filtering, switching, slowing light, and sensing.

  1. Sensing at the nanoscale

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    The merits of nanostructures in sensing may seem obvious, yet playing these attributes to their maximum advantage can be a work of genius. As fast as sensing technology is improving, expectations are growing, with demands for cheaper devices with higher sensitivities and an ever increasing range of functionalities and compatibilities. At the same time tough scientific challenges like low power operation, noise and low selectivity are keeping researchers busy. This special issue on sensing at the nanoscale with guest editor Christofer Hierold from ETH Zurich features some of the latest developments in sensing research pushing at the limits of current capabilities. Cheap and easy fabrication is a top priority. Among the most popular nanomaterials in sensing are ZnO nanowires and in this issue Dario Zappa and colleagues at Brescia University in Italy simplify an already cheap and efficient synthesis method, demonstrating ZnO nanowire fabrication directly onto silicon substrates [1]. Meanwhile Nicolae Barson and colleagues in Germany point out the advantages of flame spray pyrolysis fabrication in a topical review [2] and, maximizing on existing resources, researchers in Denmark and Taiwan report cantilever sensing using a US20 commercial DVD-ROM optical pickup unit as the readout source [3]. The sensor is designed to detect physiological concentrations of soluble urokinase plasminogen activator receptor, a protein associated with inflammation due to HIV, cancer and other infectious diseases. With their extreme properties carbon nanostructures feature prominently in the issue, including the demonstration of a versatile and flexible carbon nanotube strain sensor [4] and a graphene charge sensor with sensitivities of the order of 1.3 × 10-3 e Hz-1/2 [5]. The issue of patterning for sensing devices is also tackled by researchers in the US who demonstrate a novel approach for multicomponent pattering metal/metal oxide nanoparticles on graphene [6]. Changes in electrical

  2. Electroanalysis at the nanoscale.

    PubMed

    Dawson, Karen; O'Riordan, Alan

    2014-01-01

    This article reviews the state of the art of silicon chip-based nanoelectrochemical devices for sensing applications. We first describe analyte mass transport to nanoscale electrodes and emphasize understanding the importance of mass transport for the design of nanoelectrode arrays. We then describe bottom-up and top-down approaches to nanoelectrode fabrication and integration at silicon substrates. Finally, we explore recent examples of on-chip nanoelectrodes employed as sensors and diagnostics, finishing with a brief look at future applications.

  3. Enhanced nanoscale friction on fluorinated graphene.

    PubMed

    Kwon, Sangku; Ko, Jae-Hyeon; Jeon, Ki-Joon; Kim, Yong-Hyun; Park, Jeong Young

    2012-12-12

    Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene. PMID:22720882

  4. Development of an ASPEN PLUS physical property database for biofuels components

    SciTech Connect

    Wooley, R.J.; Putsche, V.

    1996-04-01

    Physical property data for many of the key components used in the simulation for the ethanol from lignocellulose process are not available in the standard ASPEN PLUS property databases. Indeed, many of the properties necessary to successfully simulate this process are not available anywhere. In addition, inputting the available properties into each simulation is awkward and tedious, and mistakes can be easily introduced when a long list of physical property equation parameters is entered. Therefore, one must evaluate the literature, estimate properties where necessary, and determine a set of consistent physical properties for all components of interest. The components must then be entered into an in-house NREL ASPEN PLUS database so they can be called on without being retyped into each specific simulation. The first phase of this work is complete. A complete set of properties for the currently identifiable important compounds in the ethanol process is attached. With this as the starting base the authors can continue to search for and evaluate new properties or have properties measured in the laboratory and update the central database.

  5. HETDEX: The Physical Properties of [O II] Emitters

    NASA Astrophysics Data System (ADS)

    Ciardullo, Robin; Gronwall, C.; Blanc, G.; Gebhardt, K.; Jogee, S.; HETDEX Collaboration

    2012-01-01

    Beginning in Fall 2012, the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) will map out 300 square degrees of sky via a blind integral-field spectroscopic survey. While the main goal of the project is to measure the power spectrum of 800,000 Lyα emitters between 1.9 < z < 3.5, the survey will also identify 1,000,000 [O II] emitting galaxies with z < 0.5. Together, these data will provide an unprecedented view of the emission-line universe and allow us to not only examine the history star formation, but to study the properties of star-forming galaxies as a function of environment. To prepare for HETDEX, a 3 year pilot survey was undertaken with a proto-type integral-field spectrograph (VIRUS-P) on the McDonald 2.7-m telescope. This program, which tested the HETDEX instrumentation, data reduction, target properties, observing procedures, and ancillary data requirements, produced R=800 spectra between 350 nm and 580 nm for 169 square arcmin of sky in the COSMOS, GOODS-N, MUNICS-S2, and XMM-LSS fields. The survey found 397 emission-line objects, including 104 Lyα emitters between 1.9 < z < 3.8 and 284 [O II] galaxies with z < 0.56. We present the properties of the [O II] emitters found in this survey, and detail their line strengths, internal extinction, and emission-line luminosity function. We use these data to show that over the past 5 Gyr, star-formation in the universe has decreased linearly, in both in an absolute and relative sense. We compare the star formation rates measured via [O II] fluxes to those determined via the rest-frame ultraviolet, explore the extinction corrections for our sample, and discuss the implications of our work for the main HETDEX survey.

  6. Physical properties of salt, anhydrite and gypsum : preliminary report

    USGS Publications Warehouse

    Robertson, Eugene C.; Robie, Richard A.; Books, Kenneth G.

    1958-01-01

    This summary is the result of a search of the available literature. Emphasis is placed on the mechanical and calorimetric properties of salt; the measurements of elastic, thermal, magnetic, and mass properties of salt are merely tabulated. Under hydrostatic pressure 100 percent at a nearly constant stress difference of about 300 kg/cm2. Similarily, under temperatures > 400?C at one atmosphere, salt deforms plastically to strains > 100 percent under stress differences of about 100 kg/cm2. Entha1pies were calculated for various temperatures to 2,000? C from the low temperature and high temperature heat capacities and the heats of solution of the following minerals: salt (or halite), NaCl; anhydrite, CaS04; quartz, Si02; and calcite, CaC03. Three combinations of these minerals were assumed to represent three possible natural salt beds, and the heats required to raise the temperature of each to 1,500?C and to 2,000?C were calculated. For a half and half mixture of salt and anhydrite, 1,300 cal/gm were required to raise the temperature to 2,000?C. For an evaporite containing 60 percent salt and about equal amounts of anhydrite, calcite, and quartz, 1,100 cal/gm are required to raise the temperature to 2,OOO?C. Most of the measurements of the elastic moduli were made on single crystals of salt, anhydrite, and gypsum. For the most part, the measurements of density, magnetic susceptibility, and other properties were made on natural salt samples.

  7. Some physical properties of Apollo 12 lunar samples

    NASA Technical Reports Server (NTRS)

    Gold, T.; Oleary, B. T.; Campbell, M.

    1971-01-01

    The size distribution of the lunar fines is measured, and small but significant differences are found between the Apollo 11 and 12 samples as well as among the Apollo 12 core samples. The observed differences in grain size distribtuion in the core samples are related to surface transportation processes, and the importance of a sedimentation process versus meteoritic impact gardening of the mare grounds is discussed. The optical and the radio frequency electrical properties are measured and are also found to differ only slightly from Apollo 11 results.

  8. Martian physical properties experiments: The Viking Mars Lander

    USGS Publications Warehouse

    Shorthill, R.W.; Hutton, R.E.; Moore, H.J.; Scott, R.F.

    1972-01-01

    Current data indicate that Mars, like the Earth and Moon, will have a soil-like layer. An understanding of this soil-like layer is an essential ingredient in understanding the Martian ecology. The Viking Lander and its subsystems will be used in a manner similar to that used by Sue Surveyor program to define properties of the Martian "soil". Data for estimates of bearing strength, cohesion, angle of internal friction, porosity, grain size, adhesion, thermal inertia, dielectric constants, and homogeneity of the Martian surface materials will be collected. ?? 1972.

  9. Impact of petroleum products on soil composition and physical-chemical properties

    NASA Astrophysics Data System (ADS)

    Brakorenko, N. N.; Korotchenko, T. V.

    2016-03-01

    The article describes the grain-size distribution, physical and mechanical properties, swelling and specific electrical resistivity of soils before and after the contact with petroleum products. The changes in mechanical properties of soils contaminated with petroleum products have been stated. It leads to the increase in compressibility values, decline in internal friction angle and cohesion.

  10. The physical and chemical properties and resource potential of Martian surface soils.

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.; Gooding, J. L.; Roush, T.; Banin, A.; Burt, D.; Clark, B. C.; Flynn, G.; Gwynne, O.

    The physical and chemical properties of Martian surface soils are reviewed from the perspective of providing resources to support human activities on Mars. The relevant properties can only be inferred from limited analyses performed by the Viking Landers, from information derived from remote sensing, and from analysis of the SNC meteorites thought to be from Mars.

  11. Control of the Physical and Technical Properties of Water in Technological Processes

    NASA Astrophysics Data System (ADS)

    Klopotov, V. D.; Gorlenko, N. P.; Sarkisov, Yu S.; Kulchenko, A. K.; Klopotov, A. A.

    2016-08-01

    The physical and technical properties of water activated by the electrochemical treatment in a two-chamber electrolizer are investigated. The regularities of changes inthe values of acidity, redox potential, ionic composition, concentration of oxygen, structural organization of catholyte and anolyte are revealed. The possibility of controlling the properties of the liquid for more efficient extraction of polymetallic minerals by flotation is described.

  12. Titanates: Physical properties. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning the physical properties of titanates. The effects of heat, pressure, radiation, valence states, and aging on titanate containing compounds are evaluated. Microstructural analysis, fracture strength, surface energy, and grain boundary properties are also examined. Titanates used as fillers and coupling agents are briefly discussed. (Contains a minimum of 128 citations and includes a subject term index and title list.)

  13. Titanates: Physical properties. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the physical properties of titanates. The effects of heat, pressure, radiation, valence states, and aging on titanate containing compounds are evaluated. Microstructural analysis, fracture strength, surface energy, and grain boundary properties are also examined. Titanates used as fillers and coupling agents are briefly discussed. (Contains a minimum of 57 citations and includes a subject term index and title list.)

  14. The Spectrophotometer II: A Module on the Spectral Properties of Light. Tech Physics Series.

    ERIC Educational Resources Information Center

    Frank, Nathaniel; And Others

    This module is designed to give the learner an understanding of the nature of light and how its properties are used in the design of spectrophotometers. Problems promote the use of spectrophotometers in qualitative analysis, the optical elements used in a monochromator, and the physical properties of the prism and the diffraction grating. Other…

  15. Changes in Properties of Matter. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    All matter possesses certain properties--mass, weight, volume and density. But what happens to these properties when the matter changes form? How does wood become ash when it burns? And how does ice cream change when it melts? Students will learn the difference between chemical and physical changes in this excellent introduction to the changes of…

  16. Novel models on fluid's variable thermo-physical properties for extensive study on convection heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Shang, De-Yi; Zhong, Liang-Cai

    2016-04-01

    Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.

  17. Pharmacological properties of physical exercise in the elderly.

    PubMed

    Vina, Jose; Borras, Consuelo; Sanchis-Gomar, Fabian; Martinez-Bello, Vladimir E; Olaso-Gonzalez, Gloria; Gambini, Juan; Ingles, Marta; Gomez-Cabrera, Mari Carmen

    2014-01-01

    Scientific evidence links physical activity to several benefits. Recently, we proposed the idea that exercise can be regarded as a drug. As with many drugs, dosage is of great importance. However, to issue a public recommendation of physical activity in aging is not an easy task. Exercise in the elderly needs to be carefully tailored and individualized with the specific objectives of the person or group in mind. The beneficial effects of exercise in two of the main age-related diseases, sarcopenia and Alzheimer's Disease, are dealt with at the beginning of this report. Subsequently, dosage of exercise and the molecular signaling pathways involved in its adaptations are discussed. Exercise and aging are associated with oxidative stress so the paradox arises, and is discussed, as to whether exercise would be advisable for the aged population from an oxidative stress point of view. Two of the main redox-sensitive signaling pathways altered in old skeletal muscle during exercise, NF-κB and PGC-1α, are also reviewed. The last section of the manuscript is devoted to the age-associated diseases in which exercise is contraindicated. Finally, we address the option of applying exercise mimetics as an alternative for disabled old people. The overall denouement is that exercise is so beneficial that it should be deemed a drug both for young and old populations. If old adults adopted a more active lifestyle, there would be a significant delay in frailty and dependency with clear benefits to individual well-being and to the public's health.

  18. The physical and chemical properties of ultrathin oxide films.

    PubMed

    Street, S C; Xu, C; Goodman, D W

    1997-01-01

    Thin oxide films (from one to tens of monolayers) of SiO2, MgO, NiO, Al2O3, FexOy, and TiO2 supported on refractory metal substrates have been prepared by depositing the oxide metal precursor in a background of oxygen (ca 1 x 10(-5) Torr). The thinness of these oxide samples facilitates investigation by an array of surface techniques, many of which are precluded when applied to the corresponding bulk oxide. Layered and mixed binary oxides have been prepared by sequential synthesis of dissimilar oxide layers or co-deposition of two different oxides. Recent work has shown that the underlying oxide substrate can markedly influence the electronic and chemical properties of the overlayer oxide. The structural, electronic, and chemical properties of these ultrathin oxide films have been probed using Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (ELS), ion-scattering spectroscopy (ISS), high-resolution electron energy loss spectroscopy (HREELS), infrared reflectance absorption spectroscopy (IRAS), temperature-programmed desorption (TPD), scanning tunneling microscopy (STM), and scanning tunneling spectroscopy (STS).

  19. Study of physical properties of integrated ferroelectric/ferromagnetic heterostructures

    SciTech Connect

    Martinez, R.; Kumar, A.; Palai, R.; Katiyar, R. S.; Scott, J. F.

    2010-06-15

    Superlattices (SLs) with different periodicity of ferromagnetic La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) and ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} as constitutive layers were fabricated on conducting LaNiO{sub 3} coated (001) oriented MgO substrates using pulsed laser deposition. The crystallinity, ferroelectric, and magnetic properties of the SLs were studied over a wide range of temperatures and frequencies. The structure exhibited ferromagnetic behavior at 300 K and ferroelectric behavior over a range of temperatures between 100 and 300 K. A frequency-dependent change in dielectric constant and tangent loss were observed above the ferromagnetic-paramagnetic temperature. The frequency-dependent dielectric anomalies are attributed to the change in metallic and magnetic nature of LSMO and also the interfacial effect of two different phases that are connected alternatively in series. The effect of ferromagnetic LSMO layers on ferroelectric properties of the SLs indicated strong influence of the interfaces. The asymmetric behavior of ferroelectric loop and the capacitance-voltage relationship suggest development of a built field in the SLs due to high strain across the interfaces.

  20. Physical properties of interplanetary dust: laboratory and numerical simulations

    NASA Astrophysics Data System (ADS)

    Hadamcik, Edith; Lasue, Jeremie; Levasseur-Regourd, Anny-Chantal; Renard, Jean-Baptiste; Buch, Arnaud; Carrasco, Nathalie; Cottin, Hervé; Fray, Nicolas; Guan, Yuan Yong; Szopa, Cyril

    Laboratory light scattering measurements with the PROGRA2 experiment, in A300-CNES and ESA dedicated microgravity flights or in ground based configurations, offer an alternative to models for exploring the scattering properties of particles with structures too complex to be easily handled by computer simulations [1,2]. The technique allows the use of large size distributions (nanometers to hundreds of micrometers) and a large variety of materials, similar to those suspected to compose the interplanetary particles [3]. Asteroids are probably the source of compact particles, while comets have been shown to eject compact and fluffy materials [4]. Moreover giant planets provide further a small number of interplanetary particles. Some interstellar particles are also present. To choose the best samples and size distributions, we consider previous numerical models for the interplanetary particles and their evolution with solar distance. In this model, fluffy particles are simulated by fractal aggregates and compact particles by ellipsoids. The materials considered are silicates and carbonaceous compound. The silicate grains can be coated by the organics. Observations are fitted with two parameters: the size distribution of the particles and the ratio of silicates over carbonaceous compounds. From the light scattering properties of the particles, their equilibrium temperature can be calculated for different structures and composition. The variation of their optical properties and temperatures are studied with the heliocentric distance [5,6]. Results on analogs of cometary particles [7] and powdered meteorites as asteroidal particles will be presented and compared to numerical simulations as well as observations. Organics on cometary grains can constitute distributed sources if degraded by solar UV and heat [8, 9]. The optical properties of CxHyNz compounds are studied after thermal evolution [10]. As a first approach, they are used to simulate the evolution of cometary or