Science.gov

Sample records for nanoscale zno sensor

  1. Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Dorfman, Adam; Hahm, Jong-in

    2006-06-01

    We report that engineered nanoscale zinc oxide structures can be effectively used for the identification of the biothreat agent, Bacillus anthracis by successfully discriminating its DNA sequence from other genetically related species. We explore both covalent and non-covalent linking schemes in order to couple probe DNA strands to the zinc oxide nanostructures. Hybridization reactions are performed with various concentrations of target DNA strands whose sequence is unique to Bacillus anthracis. The use of zinc oxide nanomaterials greatly enhances the fluorescence signal collected after carrying out duplex formation reaction. Specifically, the covalent strategy allows detection of the target species at sample concentrations at a level as low as a few femtomolar as compared to the detection sensitivity in the tens of nanomolar range when using the non-covalent scheme. The presence of the underlying zinc oxide nanomaterials is critical in achieving increased fluorescence detection of hybridized DNA and, therefore, accomplishing rapid and extremely sensitive identification of the biothreat agent. We also demonstrate the easy integration potential of nanoscale zinc oxide into high density arrays by using various types of zinc oxide sensor prototypes in the DNA sequence detection. When combined with conventional automatic sample handling apparatus and computerized fluorescence detection equipment, our approach can greatly promote the use of zinc oxide nanomaterials as signal enhancing platforms for rapid, multiplexed, high-throughput, highly sensitive, DNA sensor arrays.

  2. Role of Au in the growth and nanoscale optical properties of ZnO nanowires

    SciTech Connect

    Brewster, M.; Zhou, Xiang; Lim, S. K.; Gradecak, S.

    2011-03-17

    Metallic nanoparticles play a crucial role in nanowire growth and have profound consequences on nanowire morphology and their physical properties. Here, we investigate the evolving role of the Au nanoparticle during ZnO nanowire growth and its effects on nanoscale photoemission of the nanowires. We observe the transition from Au-assisted to non-assisted growth mechanisms during a single nanowire growth, with significant changes in growth rates during these two regimes. This transition occurs through the reduction of oxygen partial pressure, which modifies the ZnO facet stability and increases Au diffusion. Nanoscale quenching of ZnO cathodoluminescence occurs near the Au nanoparticle due to excited electron diffusion to the nanoparticle. Thus, the Au nanoparticle is critically linked to the nanowire growth mechanism and corresponding growth rate through the energy of its interface with the ZnO nanowire, and its presence modifies nanowire optical properties on the nanoscale.

  3. Hybrid material based on plasmonic nanodisks decorated ZnO and its application on nanoscale lasers

    NASA Astrophysics Data System (ADS)

    Chen, Zuxin; Lai, Boya; Zhang, Junming; Wang, Guoping; Chu, Sheng

    2014-07-01

    Plasmonic noble metal nanodisks with regular (triangular or hexagonal) shapes have been epitaxially formed on ZnO nanorods’ (0002) surfaces. The composite material’s crystal structures, epitaxial relationships between metal nanodisks, and ZnO host crystals were fully investigated. The effects from metal nanodisks on lasing characteristics of two types of ZnO nanoscale cavities (Fabry-Perot and Whispering Gallery Mode cavity) were studied. The results suggest that metal nanodisks can effectively enhance the lasing performance by lowering the lasing threshold in the ZnO Whispering Gallery Mode nanoplate laser, whereas the Fabry-Perot ZnO nanorods lasers were much less affected by the metal decoration. The plasmonic enhancement mechanism for the ZnO nanoplate cavities was further studied using numerical simulations as well as spatially resolved photoluminescence measurement.

  4. Strain sensor based on cellulose ZnO hybrid nanocomposite

    NASA Astrophysics Data System (ADS)

    Ko, Hyun-U.; Yun, Gyu-Young; Kim, Joo Hyung; Kim, Jaehwan

    2014-04-01

    ZnO is well known semiconductor material with high band gap as well as piezoelectricity. Because of its high performance of electromechanical behavior, ZnO based piezoelectric devices have taken great attention from many research groups. However, ZnO should be grown on a flexible substrate so as to allow its flexibility. Since cellulose is renewable, flexible and biocompatible, ZnO is grown on cellulose by hydrothermal process, then a novel flexible piezoelectric material. We report the fabrication and strain sensor behavior of cellulose ZnO hybrid nanocomposite(CEZOHN) In this research, simple piezoelectric strain sensor based on CEZOHN is made by directly stretching it and by boding it on a cantilever. Its performance is measured in terms of longitudinal and bending strain. This strain sensor shows a good linearity.

  5. Humidity sensors based on ZnO Colloidal nanocrystal clusters

    NASA Astrophysics Data System (ADS)

    Si, Shufeng; Li, Shuo; Ming, Zhengqiu; Jin, Linpei

    2010-06-01

    High pure ZnO Colloidal nanocrystal clusters (CNCs) were synthesized by a modified hydrolyzation method. The diameters of as-prepared ZnO crystalline were between 20 and 40 nm, however, the ZnO CNCs arrived at 400-800 nm. The ZnO CNCs sensor were found to have high sensitivity and fast response/recovery time to humidity, and their resistance changed approximately three orders of magnitude from about 1.58 × 10 9 Ω in dry air (10 RH%) to 1.65 × 10 6 Ω in 93 RH% air. Furthermore, the ZnO CNCs sensors were relatively stable to humidity for a long time.

  6. Nanoscale Surface Plasmonics Sensor With Nanofluidic Control

    NASA Technical Reports Server (NTRS)

    Wei, Jianjun; Singhal, Sameer; Waldeck, David H.; Kofke, Matthew

    2013-01-01

    Conventional quantitative protein assays of bodily fluids typically involve multiple steps to obtain desired measurements. Such methods are not well suited for fast and accurate assay measurements in austere environments such as spaceflight and in the aftermath of disasters. Consequently, there is a need for a protein assay technology capable of routinely monitoring proteins in austere environments. For example, there is an immediate need for a urine protein assay to assess astronaut renal health during spaceflight. The disclosed nanoscale surface plasmonics sensor provides a core detection method that can be integrated to a lab-on-chip device that satisfies the unmet need for such a protein assay technology. Assays based upon combinations of nanoholes, nanorings, and nanoslits with transmission surface plasmon resonance (SPR) are used for assays requiring extreme sensitivity, and are capable of detecting specific analytes at concentrations as low as picomole to femtomole level in well-controlled environments. The device operates in a transmission mode configuration in which light is directed at one planar surface of the array, which functions as an optical aperture. The incident light induces surface plasmon light transmission from the opposite surface of the array. The presence of a target analyte is detected by changes in the spectrum of light transmitted by the array when a target analyte induces a change in the refractive index of the fluid within the nanochannels. This occurs, for example, when a target analyte binds to a receptor fixed to the walls of the nanochannels in the array. Independent fluid handling capability for individual nanoarrays on a nanofluidic chip containing a plurality of nanochannel arrays allows each array to be used to sense a different target analyte and/or for paired arrays to analyze control and test samples simultaneously in parallel. The present invention incorporates transmission mode nanoplasmonics and nanofluidics into a single

  7. Nanoscale calibration of n-type ZnO staircase structures by scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Wang, L.; Laurent, J.; Chauveau, J. M.; Sallet, V.; Jomard, F.; Brémond, G.

    2015-11-01

    Cross-sectional scanning capacitance microscopy (SCM) was performed on n-type ZnO multi-layer structures homoepitaxially grown by molecular beam epitaxy method. Highly contrasted SCM signals were obtained between the ZnO layers with different Ga densities. Through comparison with dopant depth profiles from secondary ion mass spectroscopy measurement, it is demonstrated that SCM is able to distinguish carrier concentrations at all levels of the samples (from 2 × 1017 cm-3 to 3 × 1020 cm-3). The good agreement of the results from the two techniques indicates that SCM can be a useful tool for two dimensional carrier profiling at nanoscale for ZnO nanostructure development. As an example, residual carrier concentration inside the non-intentionally doped buffer layer was estimated to be around 2 × 1016 cm-3 through calibration analysis.

  8. Design of Surface Modifications for Nanoscale Sensor Applications

    PubMed Central

    Reimhult, Erik; Höök, Fredrik

    2015-01-01

    Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges. PMID:25594599

  9. Mn doped nanostucture ZnO thin film for photo sensor and gas sensor application

    NASA Astrophysics Data System (ADS)

    Mahajan, Sandip V.; Upadhye, Deepak S.; Shaikh, Shahid U.; Birajadar, Ravikiran B.; Siddiqui, Farha Y.; Ghule, Anil V.; Sharma, Ramphal

    2013-02-01

    Mn doped nanostructure ZnO thin film prepared by soft chemically route method. ZnO thin films were deposited on glass substrate by successive ionic layer adsorption and reaction technique (SILAR). After deposit ZnO thin film dipped in MnSO4 solution for 1 min. The optical properties as absorbance were determined using UV-Spectrophotometer and band gap was also calculated. The Structural properties were studied by XRD. The improvement in gas sensing properties was found to enhance after doping of Mn on ZnO thin film. The Photo Sensor nature was calculated by I-V characteristics.

  10. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles

    PubMed Central

    Bertoni, Giovanni; Fabbri, Filippo; Villani, Marco; Lazzarini, Laura; Turner, Stuart; Van Tendeloo, Gustaaf; Calestani, Davide; Gradečak, Silvija; Zappettini, Andrea; Salviati, Giancarlo

    2016-01-01

    Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules, resulting in clean interfaces. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presenting an isotropic distribution around the nanoparticle. On the contrary, a localization of the ZnO signal has been observed inside the Au nanoparticle, as also confirmed by numerical simulations. PMID:26754789

  11. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles

    DOE PAGES

    Bertoni, Giovanni; Fabbri, Filippo; Villani, Marco; ...

    2016-01-12

    Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules, resulting in clean interfaces. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presentingmore » an isotropic distribution around the nanoparticle. Moreover, on the contrary, a localization of the ZnO signal has been observed inside the Au nanoparticle, as also confirmed by numerical simulations.« less

  12. Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles

    SciTech Connect

    Bertoni, Giovanni; Fabbri, Filippo; Villani, Marco; Lazzarini, Laura; Turner, Stuart; Van Tendeloo, Gustaaf; Calestani, Davide; Gradečak, Silvija; Zappettini, Andrea; Salviati, Giancarlo

    2016-01-12

    Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules, resulting in clean interfaces. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presenting an isotropic distribution around the nanoparticle. Moreover, on the contrary, a localization of the ZnO signal has been observed inside the Au nanoparticle, as also confirmed by numerical simulations.

  13. ZnO Coated Nanospring-Based Gas Sensors

    NASA Astrophysics Data System (ADS)

    Bakharev, Pavel Viktorovich

    The current research demonstrates new techniques for characterization of electrical transport properties of the metal oxide polycrystalline structures, gas and vapor phase kinetics, surface processes such as gas-surface, vapor-surface interactions and redox processes by applying novel gas sensing devices. Real-time sensor electrical response characteristics obtained under highly controlled laboratory conditions have been used to characterize corresponding surface interactions and electrical properties of the gas sensitive structures. Novel redox chemical sensors (chemiresistors) have been fabricated with 3-D and 1-D ZnO coated nanospring (NS) structures. Silica NSs served as insulating scaffolding for a ZnO gas sensitive layer and has been grown via a vapor-liquid-solid (VLS) mechanism by using a chemical vapor deposition (CVD) technique. The NSs have been coated with polycrystalline ZnO by atomic layer deposition (ALD). The chemiresistor devices have been thoroughly characterized in terms of their crystal structures (by XRD, FESEM, TEM, and ellipsometry) and their electrical response properties. A 3-D gas sensor has been constructed from a xenon light bulb by coating it with a 3-D zinc oxide coated silica nanospring mat, where the xenon light bulb served as a sensor heater. This inexpensive sensor platform has been used to characterize gas-solid, vapor-solid, and redox processes. The optimal temperature of the gas sensitive ZnO layer, the temperature of the vapor-gas mixture and the crystal structure of the gas sensitive layer have been determined to reach the highest sensitivity of the gas sensors. The activation energy of toluene oxidation (Ed) on the ZnO surface and the activation energy of oxidation (Ea) of the depleted ZnO surface have been determined and analyzed. A 1-D chemiresistor has been fabricated with a single ZnO coated silica nanospring by photolithography. The question of sensor sensitivity of MOS nanomaterials and MOS thin films has been addressed

  14. Nanoscale calibration of n-type ZnO staircase structures by scanning capacitance microscopy

    SciTech Connect

    Wang, L. Laurent, J.; Brémond, G.; Chauveau, J. M.; Sallet, V.; Jomard, F.

    2015-11-09

    Cross-sectional scanning capacitance microscopy (SCM) was performed on n-type ZnO multi-layer structures homoepitaxially grown by molecular beam epitaxy method. Highly contrasted SCM signals were obtained between the ZnO layers with different Ga densities. Through comparison with dopant depth profiles from secondary ion mass spectroscopy measurement, it is demonstrated that SCM is able to distinguish carrier concentrations at all levels of the samples (from 2 × 10{sup 17 }cm{sup −3} to 3 × 10{sup 20 }cm{sup −3}). The good agreement of the results from the two techniques indicates that SCM can be a useful tool for two dimensional carrier profiling at nanoscale for ZnO nanostructure development. As an example, residual carrier concentration inside the non-intentionally doped buffer layer was estimated to be around 2 × 10{sup 16 }cm{sup −3} through calibration analysis.

  15. CMOS Alcohol Sensor Employing ZnO Nanowire Sensing Films

    NASA Astrophysics Data System (ADS)

    Santra, S.; Ali, S. Z.; Guha, P. K.; Hiralal, P.; Unalan, H. E.; Dalal, S. H.; Covington, J. A.; Milne, W. I.; Gardner, J. W.; Udrea, F.

    2009-05-01

    This paper reports on the utilization of zinc oxide nanowires (ZnO NWs) on a silicon on insulator (SOI) CMOS micro-hotplate for use as an alcohol sensor. The device was designed in Cadence and fabricated in a 1.0 μm SOI CMOS process at XFAB (Germany). The basic resistive gas sensor comprises of a metal micro-heater (made of aluminum) embedded in an ultra-thin membrane. Gold plated aluminum electrodes, formed of the top metal, are used for contacting with the sensing material. This design allows high operating temperatures with low power consumption. The membrane was formed by using deep reactive ion etching. ZnO NWs were grown on SOI CMOS substrates by a simple and low-cost hydrothermal method. A few nanometer of ZnO seed layer was first sputtered on the chips, using a metal mask, and then the chips were dipped in a zinc nitrate hexahydrate and hexamethylenetramine solution at 90° C to grow ZnO NWs. The chemical sensitivity of the on-chip NWs were studied in the presence of ethanol (C2H5OH) vapour (with 10% relative humidity) at two different temperatures: 200 and 250° C (the corresponding power consumptions are only 18 and 22 mW). The concentrations of ethanol vapour were varied from 175-1484 ppm (pers per million) and the maximum response was observed 40% (change in resistance in %) at 786 ppm at 250° C. These preliminary measurements showed that the on-chip deposited ZnO NWs could be a promising material for a CMOS based ethanol sensor.

  16. ZnO nanowire-based CO sensor

    NASA Astrophysics Data System (ADS)

    Ho, Mon-Shu; Chen, Wei-Hao; Chen, Yu-Lin; Chang, Meng-Fan

    This study applied ZnO nanowires to the fabrication of a CO gas sensor operable at room temperature. Following the deposition of a seed layer by spin coating, an aqueous solution method was used to grow ZnO nanowires. This was followed by the self-assembly of an electrode array via dielectrophoresis prior to the fabrication of the CO sensing device. The material characteristics were analyzed using FE-SEM, EDS, GIXRD, FE-TEM, and the measurement of photoluminescence (PL). Our results identified the ZnO nanowires as a single crystalline wurtzite structure. Extending the growth period from 30 min to 360 min led to an increase in the length and diameter of the nanowires. After two hours, the ZnO presented a preferred crystal orientation of [002]. Sensor chips were assembled using 60 pairs of electrodes with gaps of 2 μm, over which were lain nanowires to complete the sensing devices. The average sensing response was 48.37 s and the average recovery time was 65.61 s, with a sensing response magnitude of approximately 6.8% at room temperature.

  17. Photocontrollable water permeation on the micro/nanoscale hierarchical structured ZnO mesh films.

    PubMed

    Tian, Dongliang; Zhang, Xiaofang; Zhai, Jin; Jiang, Lei

    2011-04-05

    Most research of responsive surfaces mainly focus on the wettability transition on different solid substrate surfaces, but the dynamic properties of the micro/nanostructure-enhanced responsive wettability on microscale pore arrays are lacking and still remain a challenge. Here we report the photocontrollable water permeation on micro/nanoscale hierarchical structured ZnO-coated stainless steel mesh films. Especially, for aligned ZnO nanorod array-coated stainless steel mesh film, the film shows good water permeability under irradiation, while it is impermeable to water after dark storage. A detailed investigation indicates that the special nanostructure and the appropriate size of the microscale mesh pores play a crucial role in the excellent controllability over water permeation. The excellent controllability of water permeation on this film is promising in various important applications such as filtration, microreactor, and micro/nano fluidic devices. This work may provide interesting insight into the design of novel functional devices that are relevant to surface wettability.

  18. A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Hung; Chang, Shoou-Jinn; Hsueh, Ting-Jen

    2016-09-01

    In this work, a low-temperature ZnO nanowire ethanol gas sensor was prepared on plastic substrate. The operating temperature of the ZnO nanowire ethanol gas sensor was reduced to room temperature using ultraviolet illumination. The experimental results indicate a favorable sensor response at low temperature, with the best response at 60 °C. The results also reveal that the ZnO nanowire ethanol gas sensor can be easily integrated into portable products, whose waste heat can improve sensor response and achieve energy savings, while energy consumption can be further reduced by solar irradiation.

  19. Nanoscale pressure sensors realized from suspended graphene membrane devices

    SciTech Connect

    Aguilera-Servin, Juan; Miao, Tengfei; Bockrath, Marc

    2015-02-23

    We study the transport properties of graphene layers placed over ∼200 nm triangular holes via attached electrodes under applied pressure. We find that the injected current division between counter electrodes depends on pressure and can be used to realize a nanoscale pressure sensor. Estimating various potential contributions to the resistivity change of the deflected graphene membrane including piezoresistivity, changing gate capacitance, and the valley Hall effect due to the pressure-induced synthetic magnetic field, we find that the valley Hall effect yields the largest expected contribution to the longitudinal resistivity modulation for accessible device parameters. Such devices in the ballistic transport regime may enable the realization of tunable valley polarized electron sources.

  20. Nanoscale pressure sensors realized from suspended graphene membrane devices

    NASA Astrophysics Data System (ADS)

    Aguilera-Servin, Juan; Miao, Tengfei; Bockrath, Marc

    2015-02-01

    We study the transport properties of graphene layers placed over ˜200 nm triangular holes via attached electrodes under applied pressure. We find that the injected current division between counter electrodes depends on pressure and can be used to realize a nanoscale pressure sensor. Estimating various potential contributions to the resistivity change of the deflected graphene membrane including piezoresistivity, changing gate capacitance, and the valley Hall effect due to the pressure-induced synthetic magnetic field, we find that the valley Hall effect yields the largest expected contribution to the longitudinal resistivity modulation for accessible device parameters. Such devices in the ballistic transport regime may enable the realization of tunable valley polarized electron sources.

  1. Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions.

    PubMed

    Adams, L K; Lyon, D Y; McIntosh, A; Alvarez, P J J

    2006-01-01

    TiO2, SiO2 and ZnO are common additives with improved applications at the nanoscale. The antibacterial activity of TiO2, which has important ecosystem health implications, is well understood. However, less attention has been paid to the antibacterial activity of SiO2 and ZnO despite them also producing reactive oxygen species. This paper explores the relative toxicity of TiO2, SiO2 and ZnO water suspensions towards bacteria (B. subtilis, E. coli) and the eukaryotic Daphnia magna. These three photosensitive nanomaterials were hazardous to all test organisms, with toxicity increasing with particle concentration. Toxicity of the three compounds decreased from ZnO to TiO2 to SiO2 and Daphnia were most susceptible to their effects. Nominal particle size did not affect the toxicity of these compounds. Antibacterial activity was noted under both dark and light conditions indicating that mechanisms additional to ROS production were responsible for growth inhibition. These results highlight the need for caution during the use and disposal of such manufactured nanomaterials to prevent unintended environmental impacts, as well as the importance of further research on the mechanisms and factors that increase toxicity to enhance risk management.

  2. Gas dependent sensing mechanism in ZnO nanobelt sensor

    NASA Astrophysics Data System (ADS)

    Kaur, Manmeet; Kailasaganapathi, S.; Ramgir, Niranjan; Datta, Niyanta; Kumar, Sushil; Debnath, A. K.; Aswal, D. K.; Gupta, S. K.

    2017-02-01

    Gas sensing properties of ZnO nanobelts synthesized using carbothermal reduction method has been investigated. At room temperature (28 °C), the sensor films exhibit an appreciable response towards H2S and NO and response of these two gases were studied as a function of concentration. For NO the sensor films exhibit a complete reversible curve for the concentration range between 1 and 60 ppm. However, for H2S a complete recovery was obtained for concentration <5 ppm and for higher concentration a partial recovery of the baseline resistance was observed. The reason for the incomplete recovery was investigated using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) studies of the sample before and after the H2S exposure. After exposure, appearance of an additional peak at 26.6° corresponding to the formation of ZnS was observed in XRD. Formation of additional phase was further corroborated using the results of XPS. H2S exposure causes decrease in the intensity of O 1s peak and appearance of sulphide peaks at binding energies of 162.8 and 161.8 eV corresponding to S-2p peaks - 2p3/2 and 2p1/2, confirms the formation of ZnS upon exposure.

  3. Defect-free ZnO nanorods for low temperature hydrogen sensor applications

    SciTech Connect

    Ranwa, Sapana; Kumar, Mahesh; Kulriya, Pawan K.; Sahu, Vikas Kumar; Kukreja, L. M.

    2014-11-24

    Uniformly distributed and defect-free vertically aligned ZnO nanorods (NRs) with high aspect ratio are deposited on Si by sputtering technique. X-ray diffraction along with transmission electron microscopy studies confirmed the single crystalline wurtzite structure of ZnO. Absence of wide band emission in photoluminescence spectra showed defect-free growth of ZnO NRs which was further conformed by diamagnetic behavior of the NRs. H{sub 2} sensing mechanism based on the change in physical dimension of channel is proposed to explain the fast response (∼21.6 s) and recovery times (∼27 s) of ZnO NRs/Si/ZnO NRs sensors. Proposed H{sub 2} sensor operates at low temperature (∼70 °C) unlike the existing high temperature (>150 °C) sensors.

  4. Nanoscale optofluidic sensor arrays for Dengue virus detection

    NASA Astrophysics Data System (ADS)

    Mandal, Sudeep; Akhmechet, Roman; Chen, Likun; Nugen, Sam; Baeumner, Antje; Erickson, David

    2007-09-01

    Here we present our work towards the development of Nanoscale Optofluidic Sensor Arrays (NOSA), which is an optofluidic architecture for performing label free, highly parallel, detections of biomolecular interactions. The approach is based on the use of optically resonant devices whose resonant wavelength is shifted due to a local change in refractive index caused by a positive binding event between a surface bound molecule and it solution phase target. A special two stage micro-/nanofluidics architecture is used to first functionalize the devices and then to deliver the targets. Two variants of the NOSA will be presented here. The first approach utilizes a 1D resonant cavity in a 1D silicon-on-insulator (SOI) waveguide with a unique differential size functionalization approach. This approach allows binding events at one or at a combination of the many sensing sites which causes a unique shift in the output resonator spectrum. The latter approach consists of a SOI waveguide evanescently coupled to multiple 1-D photonic crystal resonators of different sizes along the length, each of which is functionalized with a different oligonucleotide probe. These devices have an extremely low limit of detection and are compatible with aqueous environments. The primary advantage of these devices over existing technology is that it combines the sensitivity (limit of detection) of nanosensor technology with the parallelism of the microarray type format. Our initial application is in the detection of viral RNA of Dengue virus.

  5. Highly Sensitive and Selective Ethanol Sensor Fabricated with In-Doped 3DOM ZnO.

    PubMed

    Wang, Zhihua; Tian, Ziwei; Han, Dongmei; Gu, Fubo

    2016-03-02

    ZnO is an important n-type semiconductor sensing material. Currently, much attention has been attracted to finding an effective method to prepare ZnO nanomaterials with high sensing sensitivity and excellent selectivity. A three-dimensionally ordered macroporous (3DOM) ZnO nanostructure with a large surface area is beneficial to gas and electron transfer, which can enhance the gas sensitivity of ZnO. Indium (In) doping is an effective way to improve the sensing properties of ZnO. In this paper, In-doped 3DOM ZnO with enhanced sensitivity and selectivity has been synthesized by using a colloidal crystal templating method. The 3DOM ZnO with 5 at. % of In-doping exhibits the highest sensitivity (∼88) to 100 ppm ethanol at 250 °C, which is approximately 3 times higher than that of pure 3DOM ZnO. The huge improvement to the sensitivity to ethanol was attributed to the increase in the surface area and the electron carrier concentration. The doping by In introduces more electrons into the matrix, which is helpful for increasing the amount of adsorbed oxygen, leading to high sensitivity. The In-doped 3DOM ZnO is a promising material for a new type of ethanol sensor.

  6. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  7. Reducing adhesion force by means of atomic layer deposition of ZnO films with nanoscale surface roughness.

    PubMed

    Chai, Zhimin; Liu, Yuhong; Lu, Xinchun; He, Dannong

    2014-03-12

    Adhesion is a big concern for the design of Si-based microelectromechanical devices. A ZnO film with nanoscale surface roughness is a promising candidate to decrease adhesion as the protective coating. In this study, the adhesion force of ZnO films prepared by atomic layer deposition (ALD) on a Si (100) substrate was studied. The root-mean-square (RMS) roughness of the ZnO films was in the range of 0.7-4.28 nm, and the contact angle of water was in the range of 85-88°. The adhesion force was measured by atomic force microscopy (AFM) at both low (12%) and high (60%) relative humidities. The results show that the adhesion force decreases as the surface roughness increases. A low adhesion force at high RMS roughness is attributed to the large asperities on the film, and a large adhesion force at high humidity is attributed to the large capillary force. The experimental adhesion force was compared to the force calculated using the Rabinovich model. Although the theoretical value underestimates the experimental value, the proportion of the two components of the adhesion force is clearly shown. At the low humidity, the van der Waals force component differs not greatly with the capillary force component, while at the high humidity, the capillary force component becomes dominant.

  8. Nanoscale elastic modulus of single horizontal ZnO nanorod using nanoindentation experiment.

    PubMed

    Soomro, Muhammad Yousuf; Hussain, Ijaz; Bano, Nargis; Broitman, Esteban; Nur, Omer; Willander, Magnus

    2012-02-21

    We measure the elastic modulus of a single horizontal ZnO nanorod [NR] grown by a low-temperature hydrothermal chemical process on silicon substrates by performing room-temperature, direct load-controlled nanoindentation measurements. The configuration of the experiment for the single ZnO NR was achieved using a focused ion beam/scanning electron microscope dual-beam instrument. The single ZnO NR was positioned horizontally over a hole on a silicon wafer using a nanomanipulator, and both ends were bonded with platinum, defining a three-point bending configuration. The elastic modulus of the ZnO NR, extracted from the unloading curve using the well-known Oliver-Pharr method, resulted in a value of approximately 800 GPa. Also, we discuss the NR creep mechanism observed under indentation. The mechanical behavior reported in this paper will be a useful reference for the design and applications of future nanodevices.

  9. Nanoscale elastic modulus of single horizontal ZnO nanorod using nanoindentation experiment

    PubMed Central

    2012-01-01

    We measure the elastic modulus of a single horizontal ZnO nanorod [NR] grown by a low-temperature hydrothermal chemical process on silicon substrates by performing room-temperature, direct load-controlled nanoindentation measurements. The configuration of the experiment for the single ZnO NR was achieved using a focused ion beam/scanning electron microscope dual-beam instrument. The single ZnO NR was positioned horizontally over a hole on a silicon wafer using a nanomanipulator, and both ends were bonded with platinum, defining a three-point bending configuration. The elastic modulus of the ZnO NR, extracted from the unloading curve using the well-known Oliver-Pharr method, resulted in a value of approximately 800 GPa. Also, we discuss the NR creep mechanism observed under indentation. The mechanical behavior reported in this paper will be a useful reference for the design and applications of future nanodevices. PMID:22353250

  10. Nanoscale elastic modulus of single horizontal ZnO nanorod using nanoindentation experiment

    NASA Astrophysics Data System (ADS)

    Soomro, Muhammad Yousuf; Hussain, Ijaz; Bano, Nargis; Broitman, Esteban; Nur, Omer; Willander, Magnus

    2012-02-01

    We measure the elastic modulus of a single horizontal ZnO nanorod [NR] grown by a low-temperature hydrothermal chemical process on silicon substrates by performing room-temperature, direct load-controlled nanoindentation measurements. The configuration of the experiment for the single ZnO NR was achieved using a focused ion beam/scanning electron microscope dual-beam instrument. The single ZnO NR was positioned horizontally over a hole on a silicon wafer using a nanomanipulator, and both ends were bonded with platinum, defining a three-point bending configuration. The elastic modulus of the ZnO NR, extracted from the unloading curve using the well-known Oliver-Pharr method, resulted in a value of approximately 800 GPa. Also, we discuss the NR creep mechanism observed under indentation. The mechanical behavior reported in this paper will be a useful reference for the design and applications of future nanodevices.

  11. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires.

    PubMed

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-12-08

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews.

  12. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires

    PubMed Central

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-01-01

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews. PMID:25494351

  13. Humidity sensor base on the ZnO nanorods and fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Huan; Cao, Zhigang; Zhang, Xinyu; Yin, Chenchen; Li, Kang; Zhang, Guosheng; Yu, Benli

    2016-10-01

    A novel fiber relative humidity (RH) sensor is demonstrated in this paper. The sensor is composed of a fiber Michelson modal interferometer (MMI) and the ZnO nanorods which grown on the fiber to improve the sensitivity of the sensor. Two standard single mode fibers are spliced to form the MMI, misaligned splicing program is used at the spliced point. Relative humidity sensing experiment shows that the intensity of interference spectrum changes linearly with relative humidity. With the relative humidity increasing in the range from 30% to 85%, the intensity of the dip in the interference spectrum linearly increases higher than 50%. The relative humidity response of the sensor is induced by the interference between core mode and cladding mode. The ZnO nanorods with high surface to volume ratio grown outside of the fiber cladding enhance the sensitivity of the sensor.

  14. ZnO nanorod/wire based gas sensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Duan, Xuexin; Zhang, Daihua; Zhang, Qing; Zhang, Qiankun; Chen, Yan

    2016-10-01

    ZnO nanorod/wire is a nanomaterial that possessing high surface area to volume ratio and excellent optical and electrical properties, indicating its promising sensing capabilities in various applications. Here, we present the research work of ZnO nanorod/wire based sensors carried out in our lab, which were used in the optical, electrical and mechanical sensing areas, respectively. In optical sensing, a ZnO nanorod array was fabricated at the endface of an optical fiber, forming a sensing probe, whose interference spectrum shifts upon the exposure to gas analyte. In electrical sensing, the ZnO nanowires decorated extended-gate field-effect transistor was used as a pH sensor, whose source-drain current changed dramatically under different pH values when applying the same gate voltage. Finally, regarding to the mechanical sensing, the ZnO nanorods were applied to the surface of the solidly mounted resonator for gas detecting, whose resonant frequency shifts due to the absorption of gas analytes.

  15. NANOSCALE SCIENCE AND TECHNOLOGY FOR THE DEVELOPMENT OF ENVIRONMENTAL SENSORS

    SciTech Connect

    Ronald Andres, School of Chemical Engineering, Purdue University David Janes, School of Electrical and Computer Engineering, Purdue University Clifford Kubiak, Dept. of Chemistry, UCSD Ronald Reifenberger, Dept. of Physics, Purdue University

    2007-01-03

    Under this funding, we proposed to: i) develop a ChemFET sensor platform, ii) develop a ChemDiode sensor platform, iii) synthesize receptor molecules suitable for chemical sensing, iv) study the electrostatic potential changes induced by receptor/target binding on surfaces and v) develop VLSI fabrication approaches for micron-scale chemical sensor devices. The accomplishments under these various thrusts are summarized in this section.

  16. Nanoscale piezoelectric response of ZnO nanowires measured using a nanoindentation technique.

    PubMed

    Broitman, Esteban; Soomro, Muhammad Yousuf; Lu, Jun; Willander, Magnus; Hultman, Lars

    2013-07-14

    We report the piezoelectric properties of ZnO nanowires (NWs) obtained by using a nanoindenter with a conductive boron-doped diamond tip. The direct piezoelectric effect was measured by performing nanoindentations under load control, and the generated piezoelectric voltage was characterized as a function of the applied loads in the range 0.2-6 mN. The converse piezoelectric effect was measured by applying a DC voltage to the sample while there was a low applied force to allow the tip being always in physical contact with the NWs. Vertically aligned ZnO NWs were grown on inexpensive, flexible, and disposable paper substrates using a template-free low temperature aqueous chemical growth method. When using the nanoindenter to measure the direct piezoelectric effect, piezopotential values of up to 26 mV were generated. Corresponding measurement of the converse piezoelectric effect gave an effective piezoelectric coefficient d33(eff) of ∼9.2 pm V(-1). The ZnO NWs were also characterized using scanning electron microscopy, X-ray diffraction, and high-resolution transmission electron microscopy. The new nanoindentation approach provides a straightforward method to characterize piezoelectric material deposited on flexible and disposable substrates for the next generation of nanodevices.

  17. Porous silver nanosheets: a novel sensing material for nanoscale and microscale airflow sensors.

    PubMed

    Marzbanrad, Ehsan; Zhao, Boxin; Zhou, Norman Y

    2015-11-06

    Fabrication of nanoscale and microscale machines and devices is one of the goals of nanotechnology. For this purpose, different materials, methods, and devices should be developed. Among them, various types of miniaturized sensors are required to build the nanoscale and microscale systems. In this research, we introduce a new nanoscale sensing material, silver nanosheets, for applications such as nanoscale and microscale gas flow sensors. The silver nanosheets were synthesized through the reduction of silver ions by ascorbic acid in the presence of poly(methacrylic acid) as a capping agent, followed by the growth of silver in the shape of hexagonal and triangular nanoplates, and self-assembly and nanojoining of these structural blocks. At the end of this process, the synthesized nanosheets were floated on the solution. Then, their electrical and thermal stability was demonstrated at 120 °C, and their atmospheric corrosion resistance was clarified at the same temperature range by thermogravimetric analysis. We employed the silver nanosheets in fabricating airflow sensors by scooping out the nanosheets by means of a sensor substrate, drying them at room temperature, and then annealing them at 300 °C for one hour. The fabricated sensors were tested for their ability to measure airflow in the range of 1 to 5 ml min(-1), which resulted in a linear response to the airflow with a response and recovery time around 2 s. Moreover, continuous dynamic testing demonstrated that the response of the sensors was stable and hence the sensors can be used for a long time without detectable drift in their response.

  18. Porous silver nanosheets: a novel sensing material for nanoscale and microscale airflow sensors

    NASA Astrophysics Data System (ADS)

    Marzbanrad, Ehsan; Zhao, Boxin; Zhou, Norman Y.

    2015-11-01

    Fabrication of nanoscale and microscale machines and devices is one of the goals of nanotechnology. For this purpose, different materials, methods, and devices should be developed. Among them, various types of miniaturized sensors are required to build the nanoscale and microscale systems. In this research, we introduce a new nanoscale sensing material, silver nanosheets, for applications such as nanoscale and microscale gas flow sensors. The silver nanosheets were synthesized through the reduction of silver ions by ascorbic acid in the presence of poly(methacrylic acid) as a capping agent, followed by the growth of silver in the shape of hexagonal and triangular nanoplates, and self-assembly and nanojoining of these structural blocks. At the end of this process, the synthesized nanosheets were floated on the solution. Then, their electrical and thermal stability was demonstrated at 120 °C, and their atmospheric corrosion resistance was clarified at the same temperature range by thermogravimetric analysis. We employed the silver nanosheets in fabricating airflow sensors by scooping out the nanosheets by means of a sensor substrate, drying them at room temperature, and then annealing them at 300 °C for one hour. The fabricated sensors were tested for their ability to measure airflow in the range of 1 to 5 ml min-1, which resulted in a linear response to the airflow with a response and recovery time around 2 s. Moreover, continuous dynamic testing demonstrated that the response of the sensors was stable and hence the sensors can be used for a long time without detectable drift in their response.

  19. Single ZnO Nanowire-Based Gas Sensors to Detect Low Concentrations of Hydrogen

    PubMed Central

    Cardoza-Contreras, Marlene N.; Romo-Herrera, José M.; Ríos, Luis A.; García-Gutiérrez, R.; Zepeda, T. A.; Contreras, Oscar E.

    2015-01-01

    Low concentrations of hazardous gases are difficult to detect with common gas sensors. Using semiconductor nanostructures as a sensor element is an alternative. Single ZnO nanowire gas sensor devices were fabricated by manipulation and connection of a single nanowire into a four-electrode aluminum probe in situ in a dual-beam scanning electron microscope-focused ion beam with a manipulator and a gas injection system in/column. The electrical response of the manufactured devices shows response times up to 29 s for a 121 ppm of H2 pulse, with a variation in the nanowire resistance appreciable at room temperature and at 373.15 K of approximately 8% and 14% respectively, showing that ZnO nanowires are good candidates to detect low concentrations of H2. PMID:26690158

  20. Single ZnO Nanowire-Based Gas Sensors to Detect Low Concentrations of Hydrogen.

    PubMed

    Cardoza-Contreras, Marlene N; Romo-Herrera, José M; Ríos, Luis A; García-Gutiérrez, R; Zepeda, T A; Contreras, Oscar E

    2015-12-04

    Low concentrations of hazardous gases are difficult to detect with common gas sensors. Using semiconductor nanostructures as a sensor element is an alternative. Single ZnO nanowire gas sensor devices were fabricated by manipulation and connection of a single nanowire into a four-electrode aluminum probe in situ in a dual-beam scanning electron microscope-focused ion beam with a manipulator and a gas injection system in/column. The electrical response of the manufactured devices shows response times up to 29 s for a 121 ppm of H₂ pulse, with a variation in the nanowire resistance appreciable at room temperature and at 373.15 K of approximately 8% and 14% respectively, showing that ZnO nanowires are good candidates to detect low concentrations of H₂.

  1. Integrated chemical and biological systems in nanowire structures towards nano-scale sensors

    NASA Astrophysics Data System (ADS)

    Hernandez, Rose M.

    Nanowires composed of metal and conducting polymers with integrated proteins and chemical systems have been investigated as building blocks for next-generation nano-scale sensors and assemblies. These nanowires were fabricated by combining chemical and electrochemical methods of synthesis of gold and conducting polymers in nanopores of anodized alumina membranes. Polymer nanowires were synthesized from buffer solutions as a mean to promote a biocompatible environment for the incorporation of proteins. A variety of proteins were incorporated into the polymer matrix by entrapment during polymerization that imparted the polymer material with biological functionality. Another class of composite nanowires containing electro-active conducting polymer junctions was developed for applications in chemical sensor arrays. The methodologies described in this thesis provide an inexpensive and straightforward approach to the synthesis of anisotropic nanoparticles incorporating a variety of biological and inorganic species that can be integrated to current microelectronic technologies for the development of nano-scale sensor arrays.

  2. ZnO nanoparticles based fiber optic gas sensor

    NASA Astrophysics Data System (ADS)

    Narasimman, S.; Balakrishnan, L.; Meher, S. R.; Sivacoumar, R.; Alex, Z. C.

    2016-05-01

    In this work, ZnO nanoparticles were synthesized by simple aqueous chemical route method. The synthesized ZnO nanoparticles were characterized by X-ray diffraction andscanning electron microscope. The sensitivity of the nanoparticles was studied for different gases like acetone, ammonia andethanol in terms of variation in spectral light intensity. The XRD and SEM analysis confirms the formation of hexagonal wurtzite structure with the grain size of 11.2 nm. The small cladding region of the optical fiber was replaced with the synthesized nanoparticles. The light spectrum was recorded for different gas concentrations. The synthesized nanoparticles showed high sensitivity towards ammonia in low ppm level and acetone in high ppm level.

  3. Nanoscale organic and polymeric field-effect transistors as chemical sensors.

    PubMed

    Wang, Liang; Fine, Daniel; Sharma, Deepak; Torsi, Luisa; Dodabalapur, Ananth

    2006-01-01

    This article reviews recently published work concerning improved understanding of, and advancements in, organic and polymer semiconductor vapor-phase chemical sensing. Thin-film transistor sensors ranging in size from hundreds of microns down to a few nanometers are discussed, with comparisons made of sensing responses recorded at these different channel-length scales. The vapor-sensing behavior of nanoscale organic transistors is different from that of large-scale devices, because electrical transport in a nanoscale organic thin-film transistor depends on its morphological structure and interface properties (for example injection barrier) which could be modulated by delivery of analyte. Materials used in nanoscale devices, for example nanoparticles, nanotubes, and nanowires, are also briefly summarized in an attempt to introduce other relevant nano-transducers.

  4. Novel Gas Sensor Based on ZnO Nanorod Circular Arrays for C2H5OH Gas Detection.

    PubMed

    Jianjiao, Zhang; Hongyan, Yue; Erjun, Guo; Shaolin, Zhang; Liping, Wang; Chunyu, Zhang; Xin, Gao; Jing, Chang; Hong, Zhang

    2015-03-01

    Novel side-heating gas sensor based on ZnO nanorod circular arrays was firstly fabricated by hydrothermal treatment assisted with a kind of simple dip-coating technique. The structure and morphologies of ZnO nanorods were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), respectively. XRD result indicates that the obtained ZnO nanorods have good crystalline with the hexagonal wurtzite structure. SEM result indicates that ZnO nanorod arrays are vertically growth on the surface of ceramic tube of side-heating sensor with controlled diameter and length, narrow size distribution and high orientation. The gas sensing properties of ZnO nanorod circular arrays are also evaluated. Comparative to the sensor based on scattered ZnO nanorods responding to 25 ppm H2, CO, C6H5CH3 and C2H5OH gas, respectively, the sensing values of high orientation gas sensor are generally increased by 5%. This novel sensor has good application promising for the fabrication of cost effective and high performance gas sensors.

  5. The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation

    SciTech Connect

    Liao, L.; Lu, H. B.; Li, J. C.; Liu, C.; Fu, D. J.; Liu, Y. L.

    2007-10-22

    In this letter, we present a gas sensor using a single ZnO nanowire as a sensing unit. This ZnO nanowire-based sensor has quick and high sensitive response to H{sub 2}S in air at room temperature. It has also been found that the gas sensitivity of the ZnO nanowires could be modulated and enhanced by He{sup +} implantation at an appropriate dose. A possible explanation is given based on the modulation model of the depletion layer.

  6. Ultra-high sensitive ammonia chemical sensor based on ZnO nanopencils.

    PubMed

    Dar, G N; Umar, Ahmad; Zaidi, Shabi Abbas; Baskoutas, S; Hwang, S W; Abaker, M; Al-Hajry, A; Al-Sayari, S A

    2012-01-30

    This paper reports a very simple, reliable and facile methodology to fabricate ultra-high sensitive liquid ammonia chemical sensor using well-crystalline hexagonal-shaped ZnO nanopencils as an efficient electron mediator. A low-temperature facile hydrothermal technique was used to synthesize ZnO nanopencils. The synthesized nanopencils were characterized in detail in terms of their morphological, structural and optical properties which confirmed that the synthesized nanomaterial is well-crystalline, possessing wurtzite hexagonal phase and possess very good optical properties. A very high sensitivity of ≈ 26.58μAcm(-2)mM(-1) and detection limit of ≈ 5nM with a correlation coefficient (R) of 0.9965 and a response time of less than 10s were observed for the fabricated liquid ammonia by I-V technique. To the best of our knowledge, by comparing the literature, it is confirmed that the fabricated sensor based on ZnO nanopencils exhibits highest sensitivity and lowest detection limit for liquid ammonia. This research opens a way that simply synthesized nanomaterials could be used as efficient electron mediators for the fabrication of efficient liquid ammonia chemical sensors.

  7. A facile synthesis of mesoporous Pdsbnd ZnO nanocomposites as efficient chemical sensor

    NASA Astrophysics Data System (ADS)

    Ismail, Adel A.; Harraz, Farid A.; Faisal, M.; El-Toni, Ahmed Mohamed; Al-Hajry, A.; Al-Assiri, M. S.

    2016-07-01

    Mesoporous ZnO was synthesized through the sol-gel method in the presence of triblock co-polymer Pluronic (F-127) template as the structure directing agent. Palladium nanoparticles were photochemically reduced and deposited onto mesoporous ZnO to obtain 1 wt.% Pd/ZnO nanocomposite. Structural and morphological analysis revealed high homogeneity and monodispersity of Pd nanoclusters with small particle sizes ∼ 2-5 nm onto mesoporous ZnO. The electrochemical detection of ethanol in aqueous solutions was conducted at the newly developed Pd/ZnO modified glassy carbon electrode (GCE) by the current-potential (IV) and cyclic voltammetry (CV) techniques and compared with bare GCE or pure ZnO. The presence of Pd dopant greatly enhances the sensitivity of ZnO, and the obtained mesoporous Pd/ZnO sensor has an excellent performance for precision detection of ethanol in aqueous solution with low concentration. The sensitivity was found to be 33.08 μAcm-2 mM-1 at lower concentration zone (0.05-0.8 mM) and 2.13 μAcm-2 mM-1 at higher concentration zone (0.8-12 mM), with a limit of detection (LOD) 19.2 μM. The kinetics study of ethanol oxidation revealed a characteristic feature for a mixed surface and diffusion-controlled process. These excellent sensing characteristics make the mesoporous Pd/ZnO nanocomposite a good candidate for the production of high-performance electrochemical sensors at low ethanol concentration in aqueous solution.

  8. Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers.

    PubMed

    Dukic, Maja; Winhold, Marcel; Schwalb, Christian H; Adams, Jonathan D; Stavrov, Vladimir; Huth, Michael; Fantner, Georg E

    2016-09-26

    The sensitivity and detection speed of cantilever-based mechanical sensors increases drastically through size reduction. The need for such increased performance for high-speed nanocharacterization and bio-sensing, drives their sub-micrometre miniaturization in a variety of research fields. However, existing detection methods of the cantilever motion do not scale down easily, prohibiting further increase in the sensitivity and detection speed. Here we report a nanomechanical sensor readout based on electron co-tunnelling through a nanogranular metal. The sensors can be deposited with lateral dimensions down to tens of nm, allowing the readout of nanoscale cantilevers without constraints on their size, geometry or material. By modifying the inter-granular tunnel-coupling strength, the sensors' conductivity can be tuned by up to four orders of magnitude, to optimize their performance. We show that the nanoscale printed sensors are functional on 500 nm wide cantilevers and that their sensitivity is suited even for demanding applications such as atomic force microscopy.

  9. Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers

    NASA Astrophysics Data System (ADS)

    Dukic, Maja; Winhold, Marcel; Schwalb, Christian H.; Adams, Jonathan D.; Stavrov, Vladimir; Huth, Michael; Fantner, Georg E.

    2016-09-01

    The sensitivity and detection speed of cantilever-based mechanical sensors increases drastically through size reduction. The need for such increased performance for high-speed nanocharacterization and bio-sensing, drives their sub-micrometre miniaturization in a variety of research fields. However, existing detection methods of the cantilever motion do not scale down easily, prohibiting further increase in the sensitivity and detection speed. Here we report a nanomechanical sensor readout based on electron co-tunnelling through a nanogranular metal. The sensors can be deposited with lateral dimensions down to tens of nm, allowing the readout of nanoscale cantilevers without constraints on their size, geometry or material. By modifying the inter-granular tunnel-coupling strength, the sensors' conductivity can be tuned by up to four orders of magnitude, to optimize their performance. We show that the nanoscale printed sensors are functional on 500 nm wide cantilevers and that their sensitivity is suited even for demanding applications such as atomic force microscopy.

  10. Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers

    PubMed Central

    Dukic, Maja; Winhold, Marcel; Schwalb, Christian H.; Adams, Jonathan D.; Stavrov, Vladimir; Huth, Michael; Fantner, Georg E.

    2016-01-01

    The sensitivity and detection speed of cantilever-based mechanical sensors increases drastically through size reduction. The need for such increased performance for high-speed nanocharacterization and bio-sensing, drives their sub-micrometre miniaturization in a variety of research fields. However, existing detection methods of the cantilever motion do not scale down easily, prohibiting further increase in the sensitivity and detection speed. Here we report a nanomechanical sensor readout based on electron co-tunnelling through a nanogranular metal. The sensors can be deposited with lateral dimensions down to tens of nm, allowing the readout of nanoscale cantilevers without constraints on their size, geometry or material. By modifying the inter-granular tunnel-coupling strength, the sensors' conductivity can be tuned by up to four orders of magnitude, to optimize their performance. We show that the nanoscale printed sensors are functional on 500 nm wide cantilevers and that their sensitivity is suited even for demanding applications such as atomic force microscopy. PMID:27666316

  11. Nanoscale Sensor Technologies for Disease Detection via Volatolomics.

    PubMed

    Vishinkin, Rotem; Haick, Hossam

    2015-12-01

    The detection of many diseases is missed because of delayed diagnoses or the low efficacy of some treatments. This emphasizes the urgent need for inexpensive and minimally invasive technologies that would allow efficient early detection, stratifying the population for personalized therapy, and improving the efficacy of rapid bed-side assessment of treatment. An emerging approach that has a high potential to fulfill these needs is based on so-called "volatolomics", namely, chemical processes involving profiles of highly volatile organic compounds (VOCs) emitted from body fluids, including breath, skin, urine and blood. This article presents a didactic review of some of the main advances related to the use of nanomaterial-based solid-state and flexible sensors, and related artificially intelligent sensing arrays for the detection and monitoring of disease with volatolomics. The article attempts to review the technological gaps and confounding factors related to VOC testing. Different ways to choose nanomaterial-based sensors are discussed, while considering the profiles of targeted volatile markers and possible limitations of applying the sensing approach. Perspectives for taking volatolomics to a new level in the field of diagnostics are highlighted.

  12. A nano-structured ZnO film as diagnostic X-ray sensor

    SciTech Connect

    Valenca, Claudia Patricia Varela; Liborio da Silveira, Matheus Augusto; Macedo, Marcelo Andrade; Pereira dos Santos, Luiz Antonio

    2015-07-01

    Currently some international organizations such as WHO and IAEA have shown concerns about the quality of diagnostic services in clinics and hospitals that use ionizing radiation. In fact, the IAEA recommend that the characteristics of the X-ray beam must be adjusted to obtain the highest quality of the radiographic image with the minimum exposure to the patient. Several types of detectors may be used for monitoring X-ray beams, such as: ionization chamber, photodiode, phototransistor, among others. Recently nano-structured films made of various types of metal oxide materials have been used for various technological applications. Accordingly, the purpose of this paper is to present a sort of device based on a nano-structured zinc oxide (ZnO) to operate as a diagnostic X-ray sensor. By depositing a thin film on the glass substrate some ZnO semiconductor samples were built by sputtering techniques and then mounted in a BNC type connector to perform the electrical characterization. To test the device, we choose a standard X-Ray beam, the RQR9 radiation quality, which is normally used as the tool and condition for calibrating diagnostic X-Ray instruments in the energy range of computed tomography, in accordance with the stated requirements of IEC 61267. A 6430 sub-femto-ammeter, Keithley, was used as electrometer to perform the output readings and simultaneously bias the ZnO sensor. Analysis of the angular dependence and the dose rate were performed to evaluate how the device responds under the RQR9 radiation spectra. Although the results have shown that the ZnO film presents a certain angular dependence, if an angle of incidence of photons is selected, the device displays reproducibility as X-ray sensor and has the feature of radiation hardness unlike other types of semiconductor electronic devices typically used as an X-ray detector. (authors)

  13. Effect of gamma irradiation on Schottky-contacted vertically aligned ZnO nanorod-based hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Ranwa, Sapana; Singh Barala, Surendra; Fanetti, Mattia; Kumar, Mahesh

    2016-08-01

    We report the impact of gamma irradiation on the performance of a gold Schottky-contacted ZnO nanorod-based hydrogen sensor. RF-sputtered vertically aligned highly c-axis-oriented ZnO NRs were grown on Si(100) substrate. X-ray diffraction shows no significant change in crystal structure at low gamma doses from 1 to 5 kGy. As gamma irradiation doses increase to 10 kGy, the single crystalline ZnO structure converts to polycrystalline. The photoluminescence spectra also shows suppression of the near-band emission peak and the huge wide-band spectrum indicates the generation of structural defects at high gamma doses. At 1 kGy, the hydrogen sensor response was enhanced from 67% to 77% for 1% hydrogen in pure argon at a 150 °C operating temperature. However, at 10 kGy, the relative response decreases to 33.5%. High gamma irradiation causes displacement damage and defects in ZnO NRs, and as a result, degrades the sensor’s performance as a result. Low gamma irradiation doses activate the ZnO NR surface through ionization, which enhances the sensor performance. The relative response of the hydrogen sensor was enhanced by ∼14.9% with respect to pristine ZnO using 1 kGy gamma ray treatment.

  14. Micro/nanoscale hierarchical structured ZnO mesh film for separation of water and oil.

    PubMed

    Tian, Dongliang; Zhang, Xiaofang; Wang, Xiao; Zhai, Jin; Jiang, Lei

    2011-08-28

    Oil contaminated water is a common problem in the world, thus to effectively separate water and oil is an urgent task for us to resolve. By control of surface wettability of a solid substrate, both superhydrophobicity and superoleophilicity on a film can be realized, which is necessary for water and oil separation. Here we report a stable superhydrophobic and superoleophilic ZnO-coated stainless steel mesh film with special hierarchical micro/nanostructures that can be used to separate a water and oil mixture effectively. Namely, the film is superhydrophobic and water cannot penetrate the mesh film because of the large negative capillary effect, while the film is superoleophilic and liquid paraffin oil can spread out quickly and permeate the mesh film spontaneously due to the capillary effect. A detailed investigation indicates that microscale and nanoscale hierarchical structures and the appropriate size of the microscale mesh pores on the mesh films play an important role in obtaining the excellent water and oil separation property. This work provides an alternative to current separation meshes and is promising in various important applications such as separation and filtration, lab-on-a-chip devices and micro/nanofluidic devices.

  15. Low-Frequency Self-Powered Footstep Sensor Based on ZnO Nanowires on Paper Substrate

    NASA Astrophysics Data System (ADS)

    Nour, E. S.; Bondarevs, A.; Huss, P.; Sandberg, M.; Gong, S.; Willander, M.; Nur, O.

    2016-03-01

    In this work, we design and fabricate a wireless system with the main operating device based on zinc oxide (ZnO) nanowires. The main operating device is based on piezoelectric nanogenerator (NG) achieved using ZnO nanowires grown hydrothermally on paper substrate. The fabricated NG is capable of harvesting ambient mechanical energy from various kinds of human motion, e.g., footsteps. The harvested electric output has been used to serve as a self-powered pressure sensor. Without any storage device, the signal from a single footstep has successfully triggered a wireless sensor node circuit. This study demonstrates the feasibility of using ZnO nanowire piezoelectric NG as a low-frequency self-powered sensor, with potential applications in wireless sensor networks.

  16. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor.

    PubMed

    Pelliccione, Matthew; Jenkins, Alec; Ovartchaiyapong, Preeti; Reetz, Christopher; Emmanouilidou, Eve; Ni, Ni; Bleszynski Jayich, Ania C

    2016-08-01

    High-spatial-resolution magnetic imaging has driven important developments in fields ranging from materials science to biology. However, to uncover finer details approaching the nanoscale with greater sensitivity requires the development of a radically new sensor technology. The nitrogen-vacancy (NV) defect in diamond has emerged as a promising candidate for such a sensor on the basis of its atomic size and quantum-limited sensing capabilities. It has remained an outstanding challenge to implement the NV centre as a nanoscale scanning magnetic probe at cryogenic temperatures, however, where many solid-state systems exhibit non-trivial magnetic order. Here, we present NV magnetic imaging down to 6 K with 3 μT Hz(-1/2) field sensitivity, and use the technique to image vortices in the iron pnictide superconductor BaFe2(As0.7P0.3)2 with critical temperature Tc = 30 K. The expansion of NV-based magnetic imaging to cryogenic temperatures will enable future studies of previously inaccessible nanoscale magnetism in condensed-matter systems.

  17. Theory of signal and noise in double-gated nanoscale electronic pH sensors

    PubMed Central

    Go, Jonghyun; Nair, Pradeep R.; Alam, Muhammad A.

    2012-01-01

    The maximum sensitivity of classical nanowire (NW)-based pH sensors is defined by the Nernst limit of 59 mV/pH. For typical noise levels in ultra-small single-gated nanowire sensors, the signal-to-noise ratio is often not sufficient to resolve pH changes necessary for a broad range of applications. Recently, a new class of double-gated devices was demonstrated to offer apparent “super-Nernstian” response (>59 mV/pH) by amplifying the original pH signal through innovative biasing schemes. However, the pH-sensitivity of these nanoscale devices as a function of biasing configurations, number of electrodes, and signal-to-noise ratio (SNR) remains poorly understood. Even the basic question such as “Do double-gated sensors actually resolve smaller changes in pH compared to conventional single-gated sensors in the presence of various sources of noise?” remains unanswered. In this article, we provide a comprehensive numerical and analytical theory of signal and noise of double-gated pH sensors to conclude that, while the theoretical lower limit of pH-resolution does not improve for double-gated sensors, this new class of sensors does improve the (instrument-limited) pH resolution. PMID:22991484

  18. Theory of signal and noise in double-gated nanoscale electronic pH sensors

    SciTech Connect

    Go, Jonghyun; Nair, Pradeep R.; Alam, Muhammad A.

    2012-08-01

    The maximum sensitivity of classical nanowire (NW)-based pH sensors is defined by the Nernst limit of 59 mV/pH. For typical noise levels in ultra-small single-gated nanowire sensors, the signal-to-noise ratio is often not sufficient to resolve pH changes necessary for a broad range of applications. Recently, a new class of double-gated devices was demonstrated to offer apparent 'super-Nernstian' response (>59 mV/pH) by amplifying the original pH signal through innovative biasing schemes. However, the pH-sensitivity of these nanoscale devices as a function of biasing configurations, number of electrodes, and signal-to-noise ratio (SNR) remains poorly understood. Even the basic question such as 'Do double-gated sensors actually resolve smaller changes in pH compared to conventional single-gated sensors in the presence of various sources of noise?' remains unanswered. In this article, we provide a comprehensive numerical and analytical theory of signal and noise of double-gated pH sensors to conclude that, while the theoretical lower limit of pH-resolution does not improve for double-gated sensors, this new class of sensors does improve the (instrument-limited) pH resolution.

  19. An efficient BTX sensor based on ZnO nanoflowers grown by CBD method

    NASA Astrophysics Data System (ADS)

    Acharyya, D.; Bhattacharyya, P.

    2015-04-01

    In this paper, sensing performance of ZnO nanoflower like structures derived by chemical bath deposition method (CBD), towards Benzene Toluene and Xylene (BTX) vapors is reported. Relatively higher bath temperature (110 °C) and high pH value (pH: 11) of solution escort to higher growth rate along [0 0 0 1] plane of ZnO, which eventually resulted in pointed edge nanorod based flower like structures after 3 h. After detailed structural characterizations (field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD)), existence of different defect states (viz. oxygen vacancy (Vo), Zinc vacancy (VZn) and Zinc interstitials (Zni)) were authenticated by Photoluminescence (PL) spectroscopy. BTX sensing performance, employing the nanoflowers as the sensing layer, was carried out in resistive mode with two Pd lateral electrodes. The sensor study was performed at different temperatures (150-350 °C) in the concentration range of 0.5-700 ppm of the respective vapors. The highest normalized resistance response (NRR%) was achieved at 200 °C. At this optimum temperature, normalized resistance responses (39.3/92.6%, 45.8/96.9%, and 47.8/99% respectively) were found to be promising towards 0.5/700 ppm of benzene, toluene and xylene. The response time of the sensor towards the target species were also found to be appreciably fast (15 s, 6 s, and 5 s) towards 700 ppm of benzene, toluene and xylene respectively. Detailed sensing mechanism for BTX with such flower like ZnO structures was explained with the help of interaction of band structures (of ZnO) with the corresponding highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the target species.

  20. Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method.

    PubMed

    Shingange, K; Tshabalala, Z P; Ntwaeaborwa, O M; Motaung, D E; Mhlongo, G H

    2016-10-01

    ZnO nanorods synthesized using microwave-assisted approach were functionalized with gold (Au) nanoparticles. The Au coverage on the surface of the functionalized ZnO was controlled by adjusting the concentration of the Au precursor. According to X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) results, it was confirmed that Au form nanoparticles loaded on the surface of ZnO. The small Au loading level of 0.5wt% showed the highest response of 1600-100ppm of NH3 gas at room temperature (RT) whereas further increase of Au loading level resulted in poor detection of NH3. All Au loaded ZnO (Au/ZnO) based sensors exhibited very short recovery and response times compared to unloaded ZnO sensing materials. The responses of ZnO and Au/ZnO based sensors (0.5-2.5wt%) to other flammable gases, including H2, CO and CH4, were considerably less, demonstrating that Au/ZnO based sensors were highly selective to NH3 gas at room temperature. Spill over mechanism which is the main reason for the observed enhanced NH3 response with 0.5 Au loading level is explained in detail.

  1. Simple Fabrication Process for 2D ZnO Nanowalls and Their Potential Application as a Methane Sensor

    PubMed Central

    Chen, Tse-Pu; Chang, Sheng-Po; Hung, Fei-Yi; Chang, Shoou-Jinn; Hu, Zhan-Shuo; Chen, Kuan-Jen

    2013-01-01

    Two-dimensional (2D) ZnO nanowalls were prepared on a glass substrate by a low-temperature thermal evaporation method, in which the fabrication process did not use a metal catalyst or the pre-deposition of a ZnO seed layer on the substrate. The nanowalls were characterized for their surface morphology, and the structural and optical properties were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescence (PL). The fabricated ZnO nanowalls have many advantages, such as low growth temperature and good crystal quality, while being fast, low cost, and easy to fabricate. Methane sensor measurements of the ZnO nanowalls show a high sensitivity to methane gas, and rapid response and recovery times. These unique characteristics are attributed to the high surface-to-volume ratio of the ZnO nanowalls. Thus, the ZnO nanowall methane sensor is a potential gas sensor candidate owing to its good performance. PMID:23519350

  2. Simple fabrication process for 2D ZnO nanowalls and their potential application as a methane sensor.

    PubMed

    Chen, Tse-Pu; Chang, Sheng-Po; Hung, Fei-Yi; Chang, Shoou-Jinn; Hu, Zhan-Shuo; Chen, Kuan-Jen

    2013-03-20

    Two-dimensional (2D) ZnO nanowalls were prepared on a glass substrate by a low-temperature thermal evaporation method, in which the fabrication process did not use a metal catalyst or the pre-deposition of a ZnO seed layer on the substrate. The nanowalls were characterized for their surface morphology, and the structural and optical properties were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescence (PL). The fabricated ZnO nanowalls have many advantages, such as low growth temperature and good crystal quality, while being fast, low cost, and easy to fabricate. Methane sensor measurements of the ZnO nanowalls show a high sensitivity to methane gas, and rapid response and recovery times. These unique characteristics are attributed to the high surface-to-volume ratio of the ZnO nanowalls. Thus, the ZnO nanowall methane sensor is a potential gas sensor candidate owing to its good performance.

  3. Acoustoelectric Effect on the Responses of SAW Sensors Coated with Electrospun ZnO Nanostructured Thin Film

    PubMed Central

    Tasaltin, Cihat; Ebeoglu, Mehmet Ali; Ozturk, Zafer Ziya

    2012-01-01

    In this study, zinc oxide (ZnO) was a very good candidate for improving the sensitivity of gas sensor technology. The preparation of an electrospun ZnO nanostructured thin film on a 433 MHz Rayleigh wave based Surface Acoustic Wave (SAW) sensor and the investigation of the acoustoelectric effect on the responses of the SAW sensor are reported. We prepared an electrospun ZnO nanostructured thin film on the SAW devices by using an electrospray technique. To investigate the dependency of the sensor response on the structure and the number of the ZnO nanoparticles, SAW sensors were prepared with different coating loads. The coating frequency shifts were adjusted to fall between 100 kHz and 2.4 MHz. The sensor measurements were performed against VOCs such as acetone, trichloroethylene, chloroform, ethanol, n-propanol and methanol vapor. The sensor responses of n-propanol have opposite characteristics to the other VOCs, and we attributed these characteristics to the elastic effect/acoustoelectric effect.

  4. Application of ZnO single-crystal wire grown by the thermal evaporation method as a chemical gas sensor for hydrogen sulfide.

    PubMed

    Park, N K; Lee, S Y; Lee, T J

    2011-01-01

    A zinc oxide single-crystal wire was synthesized for application as a gas-sensing material for hydrogen sulfide, and its gas-sensing properties were investigated in this study. The gas sensor consisted of a ZnO thin film as the buffer layer and a ZnO single-crystal wire. The ZnO thin film was deposited over a patterning silicon substrate with a gold electrode by the CFR method. The ZnO single-crystal wire was synthesized over the ZnO thin film using zinc and activated carbon as the precursor for the thermal evaporation method at 800 degrees C. The electrical properties of the gas sensors that were prepared for the growth of ZnO single-crystal wire varied with the amount of zinc contained in the precursor. The charged current on the gas sensors increased with the increasing amount of zinc in the precursor. It was concluded that the charged current on the gas sensors was related to ZnO single-crystal wire growth on the silicon substrate area between the two electrodes. The charged current on the gas sensor was enhanced when the ZnO single-crystal wire was exposed to a H2S stream. The experimental results obtained in this study confirmed that a ZnO single-crystal wire can be used as a gas sensor for H2S.

  5. Gas sensor based on ZnO film/silica pillars

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Liang, Yaxiang; Yi, Futing; Wang, Bo; Zhang, Tianchong; Wang, Yuting; Zhou, Yue

    2016-12-01

    Silica submicron pillars are used as substrate for Zinc oxide (ZnO) gas sensor for the first time. The submicron pillars with the large surface ratio can improve the gas sensing performance obviously. Silicon pillars are fabricated by cesium chloride (CsCl) self-assembly lithography and inductively coupled plasma dry etching as substrate, the ZnO film is deposited on the pillars surface by RF magnetron sputtering. With this method, the pillar based gas sensor has the higher gas response, the shorter response and recovery time than the planar one with different working temperatures, different gas concentrations. 300 °C is the best working temperature, for planar gas sensor, the gas response is 22.81 for 1520 ppm ethanol, the response time is 55 s and the recovery time is 169 s. While for the pillar based one, the gas response is 28.20, the response time is 51 s and the recovery time is 92 s.

  6. ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+.

    PubMed

    Zhang, Bintian; Lu, Lili; Hu, Qichang; Huang, Feng; Lin, Zhang

    2014-06-15

    Lead contamination is now widespread, and exposure to lead may cause adverse effects on human beings. In this study, a photoelectrochemical sensor based on flower-like ZnO nanostructures was developed for Pb(2+) detection, using a Pb(2+)-dependent DNAzyme as the recognition unit and a double-strand DNA intercalator, Ru(bpy)2(dppz)(2+) (bpy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c] phenazine) as the photoelectrochemical signal reporter. The ZnO nanoflower was fabricated on an indium tin oxide (ITO) electrode by the convenient hydrothermal decomposition method. The morphology and photoelectrochemical property of the ZnO nanoflowers were characterized by SEM, XRD and photocurrent measurements. DNAzyme-substrate duplex was assembled on an ITO/ZnO electrode through electrostatic adsorption. In the presence of Pb(2+), RNA-cleavage activity of the DNAzyme was activated and its substrate strand was cleaved, resulting in the release of Ru(bpy)2(dppz)(2+) from the DNA film and the concomitant photocurrent decrease. The detection principle was verified by fluorescence measurements. Under the optimized conditions, a linear relationship between photocurrent and Pb(2+) concentration was obtained over the range of 0.5-20 nM, with a detection limit of 0.1 nM. Interference from other common metal ions was found negligible. Applicability of the sensor was demonstrated by analyzing lead level in human serum and Pb(2+) spiked water samples. This facile and economical sensor system showed high sensitivity and selectivity, thus can be potentially applied for on-site monitoring of lead contaminant.

  7. Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S. I.; Georgieva, V.; Yordanov, R.; Raicheva, Z.; Szilágyi, I. M.

    2016-11-01

    Applying atomic layer deposition (ALD), very thin zinc oxide (ZnO) films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The gas sensing of the ZnO films to NO2 was tested in the concentration interval between 10 and 5000 ppm. On the basis of registered frequency change of the QCM, for each concentration the sorbed mass was calculated. Further characterization of the films was carried out by various techniques, i.e. by SEM-EDS, XRD, ellipsometry, and FTIR spectroscopy. Although being very thin, the films were gas sensitive to NO2 already at room temperature and could register very well as low concentrations as 100 ppm, while the sorption was fully reversible. Our results for very thin ALD ZnO films show that the described fast, simple and cost-effective technology could be implemented for producing gas sensors working at room temperature and being capable to detect in real time low concentrations of NO2.

  8. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology.

    PubMed

    Schirhagl, Romana; Chang, Kevin; Loretz, Michael; Degen, Christian L

    2014-01-01

    Crystal defects in diamond have emerged as unique objects for a variety of applications, both because they are very stable and because they have interesting optical properties. Embedded in nanocrystals, they can serve, for example, as robust single-photon sources or as fluorescent biomarkers of unlimited photostability and low cytotoxicity. The most fascinating aspect, however, is the ability of some crystal defects, most prominently the nitrogen-vacancy (NV) center, to locally detect and measure a number of physical quantities, such as magnetic and electric fields. This metrology capacity is based on the quantum mechanical interactions of the defect's spin state. In this review, we introduce the new and rapidly evolving field of nanoscale sensing based on single NV centers in diamond. We give a concise overview of the basic properties of diamond, from synthesis to electronic and magnetic properties of embedded NV centers. We describe in detail how single NV centers can be harnessed for nanoscale sensing, including the physical quantities that may be detected, expected sensitivities, and the most common measurement protocols. We conclude by highlighting a number of the diverse and exciting applications that may be enabled by these novel sensors, ranging from measurements of ion concentrations and membrane potentials to nanoscale thermometry and single-spin nuclear magnetic resonance.

  9. Ultra-long Zn2SnO4-ZnO microwires based gas sensor for hydrogen detection

    NASA Astrophysics Data System (ADS)

    Fan, Hong; Xu, Shucong; Cao, Xianmin; Liu, Daoxi; Yin, Yaoyu; Hao, Haiyong; Wei, Dezhou; Shen, Yanbai

    2017-04-01

    Ultra-long Zn2SnO4-ZnO microwires were synthesized by thermal evaporation of the mixture of SnO2, ZnO and C powders. Microstructural characterization by means of X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy showed that Zn2SnO4-ZnO microwires with excellent crystallinity were 2.8-3.2 μm in diameter and 4.0-4.2 mm in length. The maximal length-to-diameter ratio of Zn2SnO4-ZnO microwires is approximately 1500. H2 sensing properties showed that Zn2SnO4-ZnO microwires exhibited not only excellent reversibility to H2, but also a good linear relationship between the sensor response and H2 concentration. The response time and recovery time decreased as the operating temperature increased. The highest sensor response of 9.6 to 1000 ppm H2 was achieved at an operating temperature of 300 °C. The electron depletion theory was used for explaining H2 sensing mechanism by the chemical adsorption and reaction of H2 molecules on the surface of Zn2SnO4-ZnO microwires.

  10. Nanoscale temperature sensor based on Fano resonance in metal-insulator-metal waveguide

    NASA Astrophysics Data System (ADS)

    Kong, Yan; Wei, Qi; Liu, Cheng; Wang, Shouyu

    2017-02-01

    In order to realize temperature measurements with high sensitivity using compact structure, a nanoscale metal-insulator-metal waveguide based sensor combining with Fano resonance is proposed in this paper. Sealed ethanol in resonant cavity is adopted to further improve sensing performance. Additionally, dual resonant cavity based configuration is designed to generate a Fano-based sharp and asymmetric spectrum, providing high figure of merit in measurements. Moreover, structural parameters are optimized considering both transmission rate and spectral peak width. Certified by numerical calculation, sensitivity of 0.36 nm/°C is acquired with the optimized structure, indicating the designed sensor can play an important role in the nano-integrated plasmonic devices for high-accurate temperature detection.

  11. Fabrication and characterization of SnO2/ZnO gas sensors for detecting toluene gas.

    PubMed

    Min, Byung-Sam; Park, Young-Ho; Lee, Chang-Seop

    2014-11-01

    This study investigates the use of SnO2, ZnO, Ag, Au, Cu, In, Pd, Ru and carbon black to improve the sensitivity of a gas sensor for detecting toluene gas. Metal-SnO2/ZnO thick films were screen-printed onto Al2O3 substrates with platinum electrodes. The physico-chemical properties of the sensor materials were characterized using SEM/EDS, XRD, and BET analyses. Measuring the electrical resistance of each sensor as a function of the gas concentration determined the sensing characteristics. The sensors were tested using toluene, benzene, xylene, ethanol, methanol, ammonia and trimethylamine vapors with concentrations of 1-2000 ppm. The gas sensing properties of metal-SnO2/ZnO thick films depended on the content and variety of metals and the content of carbon black. The optimum condition of sensor material for toluene gas detection is operation temperature 300 degrees C and when metal catalyst Cu and carbon black were added. The best sensitivity and selectivity for toluene gas at 300 degrees C resulted from doping with 5 wt.% carbon black, 1 wt.% Cu and 20 wt.% ZnO to SnO2.

  12. Simultaneous tuning of electric field intensity and structural properties of ZnO: Graphene nanostructures for FOSPR based nicotine sensor.

    PubMed

    Tabassum, Rana; Gupta, Banshi D

    2017-05-15

    We report theoretical and experimental realization of a SPR based fiber optic nicotine sensor having coatings of silver and graphene doped ZnO nanostructure onto the unclad core of the optical fiber. The volume fraction (f) of graphene in ZnO was optimized using simulation of electric field intensity. Four types of graphene doped ZnO nanostructures viz. nanocomposites, nanoflowers, nanotubes and nanofibers were prepared using optimized value of f. The morphology, photoluminescence (PL) spectra and UV-vis spectra of these nanostructures were studied. The peak PL intensity was found to be highest for ZnO: graphene nanofibers. The optimized value of f in ZnO: graphene nanofiber was reconfirmed using UV-vis spectroscopy. The experiments were performed on the fiber optic probe fabricated with Ag/ZnO: graphene layer and optimized parameters for in-situ detection of nicotine. The interaction of nicotine with ZnO: graphene nanostructures alters the dielectric function of ZnO: graphene nanostructure which is manifested in terms of shift in resonance wavelength. From the sensing signal, the performance parameters were measured including sensitivity, limit of detection (LOD), limit of quantification (LOQ), stability, repeatability and selectivity. The real sample prepared using cigarette tobacco leaves and analyzed using the fabricated sensor makes it suitable for practical applications. The achieved values of LOD and LOQ are found to be unrivalled in comparison to the reported ones. The sensor possesses additional advantages such as, immunity to electromagnetic interference, low cost, capability of online monitoring, remote sensing.

  13. Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Jyh-Liang; Yang, Po-Yu; Hsieh, Tsang-Yen; Juan, Pi-Chun

    2016-01-01

    Hydrothermally synthesized aluminum-doped ZnO (AZO) nanostructures have been adopted in extended-gate field-effect transistor (EGFET) sensors to demonstrate the sensitive and stable pH and glucose sensing characteristics of AZO-nanostructured EGFET sensors. The AZO-nanostructured EGFET sensors exhibited the following superior pH sensing characteristics: a high current sensitivity of 0.96 µA1/2/pH, a high linearity of 0.9999, less distortion of output waveforms, a small hysteresis width of 4.83 mV, good long-term repeatability, and a wide sensing range from pHs 1 to 13. The glucose sensing characteristics of AZO-nanostructured biosensors exhibited the desired sensitivity of 60.5 µA·cm-2·mM-1 and a linearity of 0.9996 up to 13.9 mM. The attractive characteristics of high sensitivity, high linearity, and repeatability of using ionic AZO-nanostructured EGFET sensors indicate their potential use as electrochemical and disposable biosensors.

  14. Use of an embedded contact sensor to study nanoscale heat transfer in heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Wu, Haoyu; Bogy, David

    2017-01-01

    A near field transducer is employed in the heat assisted magnetic recording technology in order to focus the light energy into a nanoscale spot on the disk. This is necessary to heat the high coercivity magnetic media to their Curie temperature, so the write transducer can record the data. However, the heat transfer mechanism across the head disk interface (HDI) is still not well understood. The current perpendicular media recording systems have a thermal fly-height control means in the air bearing slider near the read/write transducers for placing the transducers within 1 to 2 nm of the rotating disk. In order to monitor this near contact spacing, this system also uses an embedded contact sensor (ECS). Here, we investigate how this ECS can be used to study the heat transfer across the nanoscale gap between the read/write transducer and the disk. This study shows that the self heating effect of the ECS is strong when its current bias is too high. But this self heating effect can be isolated from other heat sources, which allows us to use the ECS for the desired heat transfer measurements. The experiments show that the heat transfer across the HDI is a strong function of the head-disk spacing.

  15. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    SciTech Connect

    Gupta, D.; Barman, P. B.; Hazra, S. K.; Dutta, D.; Kumar, M.; Som, T.

    2015-10-28

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C–150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C–150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  16. Temperature dependent dual hydrogen sensor response of Pd nanoparticle decorated Al doped ZnO surfaces

    NASA Astrophysics Data System (ADS)

    Gupta, D.; Dutta, D.; Kumar, M.; Barman, P. B.; Som, T.; Hazra, S. K.

    2015-10-01

    Sputter deposited Al doped ZnO (AZO) thin films exhibit a dual hydrogen sensing response in the temperature range 40 °C-150 °C after surface modifications with palladium nanoparticles. The unmodified AZO films showed no response in hydrogen in the temperature range 40 °C-150 °C. The operational temperature windows on the low and high temperature sides have been estimated by isolating the semiconductor-to-metal transition temperature zone of the sensor device. The gas response pattern was modeled by considering various adsorption isotherms, which revealed the dominance of heterogeneous adsorption characteristics. The Arrhenius adsorption barrier showed dual variation with change in hydrogen gas concentration on either side of the semiconductor-to-metal transition. A detailed analysis of the hydrogen gas response pattern by considering the changes in nano palladium due to hydrogen adsorption, and semiconductor-to-metal transition of nanocrystalline Al doped ZnO layer due to temperature, along with material characterization studies by glancing incidence X-ray diffraction, atomic force microscopy, and transmission electron microscopy, are presented.

  17. Synthesis of high crystallinity ZnO nanowire array on polymer substrate and flexible fiber-based sensor.

    PubMed

    Liu, Jinmei; Wu, Weiwei; Bai, Suo; Qin, Yong

    2011-11-01

    Well aligned ZnO nanowire (NW) arrays are grown on Kevlar fiber and Kapton film via the chemical vapor deposition (CVD) method. These NWs have better crystallinity than those synthesized through the low-temperature hydrothermal method. The average length and diameter of ZnO NWs grown on Kevlar fiber can be controlled from 0.5 to 2.76 μm and 30 to 300 nm, respectively. A flexible ultraviolet (UV) sensor based on Kevlar fiber/ZnO NWs hybrid structure is made to detect UV illumination quantificationally.

  18. Humidity Sensing Properties of Paper Substrates and Their Passivation with ZnO Nanoparticles for Sensor Applications

    PubMed Central

    Niarchos, Georgios; Dubourg, Georges; Afroudakis, Georgios; Georgopoulos, Markos; Tsouti, Vasiliki; Makarona, Eleni; Crnojevic-Bengin, Vesna; Tsamis, Christos

    2017-01-01

    In this paper, we investigated the effect of humidity on paper substrates and propose a simple and low-cost method for their passivation using ZnO nanoparticles. To this end, we built paper-based microdevices based on an interdigitated electrode (IDE) configuration by means of a mask-less laser patterning method on simple commercial printing papers. Initial resistive measurements indicate that a paper substrate with a porous surface can be used as a cost-effective, sensitive and disposable humidity sensor in the 20% to 70% relative humidity (RH) range. Successive spin-coated layers of ZnO nanoparticles then, control the effect of humidity. Using this approach, the sensors become passive to relative humidity changes, paving the way to the development of ZnO-based gas sensors on paper substrates insensitive to humidity. PMID:28273847

  19. Humidity Sensing Properties of Paper Substrates and Their Passivation with ZnO Nanoparticles for Sensor Applications.

    PubMed

    Niarchos, Georgios; Dubourg, Georges; Afroudakis, Georgios; Georgopoulos, Markos; Tsouti, Vasiliki; Makarona, Eleni; Crnojevic-Bengin, Vesna; Tsamis, Christos

    2017-03-04

    In this paper, we investigated the effect of humidity on paper substrates and propose a simple and low-cost method for their passivation using ZnO nanoparticles. To this end, we built paper-based microdevices based on an interdigitated electrode (IDE) configuration by means of a mask-less laser patterning method on simple commercial printing papers. Initial resistive measurements indicate that a paper substrate with a porous surface can be used as a cost-effective, sensitive and disposable humidity sensor in the 20% to 70% relative humidity (RH) range. Successive spin-coated layers of ZnO nanoparticles then, control the effect of humidity. Using this approach, the sensors become passive to relative humidity changes, paving the way to the development of ZnO-based gas sensors on paper substrates insensitive to humidity.

  20. Synthesis of ZnO tetrapods for flexible and transparent UV sensors.

    PubMed

    Rackauskas, Simas; Mustonen, Kimmo; Järvinen, Terhi; Mattila, Marco; Klimova, Olga; Jiang, Hua; Tolochko, Oleg; Lipsanen, Harri; Kauppinen, Esko I; Nasibulin, Albert G

    2012-03-09

    ZnO tetrapods (ZnO-Ts) were synthesized in a vertical flow reactor by gas phase oxidation of Zn vapor in an air atmosphere. The morphology of the product was varied from nearly spherical nanoparticles to ZnO-Ts, together with the partial pressure of Zn and reaction temperature. MgO introduced during synthesis, increased the band gap, the optical transparency in the visible range, and also changed the ZnO-T structure. Fabricated flexible transparent UV sensors showed a 45-fold current increase under UV irradiation with an intensity of 30 μW cm(-2) at a wavelength of 365 nm and response time of 0.9 s.

  1. Experimental Artifacts for Morphological Tweaking of Chemical Sensor Materials: Studies on ZnO

    PubMed Central

    Haq, Ikram Ul; Azad, Abdul-Majeed

    2012-01-01

    Sensing mechanisms of gases on solid structures are predominantly surface-dominated. Benign surface features in terms of small grain size, high aspect ratio, large surface area and open and connected porosity, are required to realize a successful sensor material. Such morphological artifacts are a function of the fabrication and processing techniques employed. In this paper, we describe the fabrication of monoshaped and monosized zinc oxide (ZnO) particles by a homogeneous precipitation method, using urea and/or hexmethyltetraamine as the reductant. The effect of operating conditions and experimental variables, such as the relative concentration of the precursors, temperature, and the aging time on the morphology of the resulting particles was studied systematically. These experimental parameters were optimized in order to achieve particles of uniform morphology and of narrow size distribution. Some of these particles were employed for the detection of ammonia gas at room temperature. PMID:22969399

  2. A novel micro- and nano-scale positioning sensor based on radio frequency resonant cavities.

    PubMed

    Asua, Estibaliz; Etxebarria, Victor; García-Arribas, Alfredo; Feutchwanger, Jorge; Portilla, Joaquín; Lucas, Julio

    2014-05-30

    In many micro- and nano-scale technological applications high sensitivity displacement sensors are needed, especially in ultraprecision metrology and manufacturing. In this work a new way of sensing displacement based on radio frequency resonant cavities is presented and experimentally demonstrated using a first laboratory prototype. The principle of operation of the new transducer is summarized and tested. Furthermore, an electronic interface that can be used together with the displacement transducer is designed and proved. It has been experimentally demonstrated that very high and linear sensitivity characteristic curves, in the range of some kHz/nm; are easily obtainable using this kind of transducer when it is combined with a laboratory network analyzer. In order to replace a network analyzer and provide a more affordable, self-contained, compact solution, an electronic interface has been designed, preserving as much as possible the excellent performance of the transducer, and turning it into a true standalone positioning sensor. The results obtained using the transducer together with a first prototype of the electronic interface built with cheap discrete elements show that positioning accuracies in the micrometer range are obtainable using this cost-effective solution. Better accuracies would also be attainable but using more involved and costly electronics interfaces.

  3. A Novel Micro- and Nano-Scale Positioning Sensor Based on Radio Frequency Resonant Cavities

    PubMed Central

    Asua, Estibaliz; Etxebarria, Victor; García-Arribas, Alfredo; Feutchwanger, Jorge; Portilla, Joaquín; Lucas, Julio

    2014-01-01

    In many micro- and nano-scale technological applications high sensitivity displacement sensors are needed, especially in ultraprecision metrology and manufacturing. In this work a new way of sensing displacement based on radio frequency resonant cavities is presented and experimentally demonstrated using a first laboratory prototype. The principle of operation of the new transducer is summarized and tested. Furthermore, an electronic interface that can be used together with the displacement transducer is designed and proved. It has been experimentally demonstrated that very high and linear sensitivity characteristic curves, in the range of some kHz/nm; are easily obtainable using this kind of transducer when it is combined with a laboratory network analyzer. In order to replace a network analyzer and provide a more affordable, self-contained, compact solution, an electronic interface has been designed, preserving as much as possible the excellent performance of the transducer, and turning it into a true standalone positioning sensor. The results obtained using the transducer together with a first prototype of the electronic interface built with cheap discrete elements show that positioning accuracies in the micrometer range are obtainable using this cost-effective solution. Better accuracies would also be attainable but using more involved and costly electronics interfaces. PMID:24887041

  4. A High-Sensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature

    NASA Astrophysics Data System (ADS)

    Sinha, M.; Mahapatra, R.; Mondal, B.; Ghosh, R.

    2017-04-01

    In the present work, zinc oxide (ZnO) microrods with the average diameter of 350 nm have been synthesized on fluorine doped tin oxide (FTO) substrate using a hydrothermal reaction process at a low temperature of 90°C. The methanol gas sensing behaviour of as-synthesized ZnO microrods have been studied at different operating temperatures (100-300°C). The gas sensing results show that the ZnO microrods exhibit excellent sensitivity, selectivity, and stability toward methanol gas at 300°C. The as-grown ZnO microrods sensor also shows the good sensitivity for methanol even at a low operating temperature of 100°C. The ultra-high sensitivity of 4.41 × 104% [gas sensitivity, S g = ( I g - I a)/ I a × 100%] and 5.11 × 102% to 100 ppm methanol gas at a temperature of 300°C and 100°C, respectively, has been observed. A fast response time of 200 ms and 270 ms as well as a recovery time of 120 ms and 1330 ms to methanol gas have also been found at an operating temperature of 300°C and 100°C, respectively. The response and recovery time decreases with increasing operation temperature of the sensor.

  5. Confined Formation of Ultrathin ZnO Nanorods/Reduced Graphene Oxide Mesoporous Nanocomposites for High-Performance Room-Temperature NO2 Sensors.

    PubMed

    Xia, Yi; Wang, Jing; Xu, Jian-Long; Li, Xian; Xie, Dan; Xiang, Lan; Komarneni, Sridhar

    2016-12-28

    Here we demonstrate high-performance room-temperature NO2 sensors based on ultrathin ZnO nanorods/reduced graphene oxide (rGO) mesoporous nanocomposites. Ultrathin ZnO nanorods were loaded on rGO nanosheets by a facile two-step additive-free solution synthesis involving anchored seeding followed by oriented growth. The ZnO nanorod diameters were simply controlled by the seed diameters associated with the spatial confinement effects of graphene oxide (GO) nanosheets. Compared to the solely ZnO nanorods and rGO-based sensors, the optimal sensor based on ultrathin ZnO nanorods/rGO nanocomposites exhibited higher sensitivity and quicker p-type response to parts per million level of NO2 at room temperature, and the sensitivity to 1 ppm of NO2 was 119% with the response and recovery time being 75 and 132 s. Moreover, the sensor exhibited full reversibility, excellent selectivity, and a low detection limit (50 ppb) to NO2 at room temperature. In addition to the high transport capability of rGO as well as excellent NO2 adsorption ability derived from ultrathin ZnO nanorods and mesoporous structures, the superior sensing performance of the nanocomposites was attributed to the synergetic effect of ZnO and rGO, which was realized by the electron transfer across the ZnO-rGO interfaces through band energy alignment.

  6. Conducting properties of nearly depleted ZnO nanowire UV sensors fabricated by dielectrophoresis.

    PubMed

    García Núñez, C; García Marín, A; Nanterne, P; Piqueras, J; Kung, P; Pau, J L

    2013-10-18

    ZnO nanowires (NWs) with different radii (rNW) have been aligned between pre-patterned electrodes using dielectrophoresis (DEP) for the fabrication of high gain UV sensors. The DEP conditions (voltage amplitude and frequency) and electrode material, geometry and size were optimized to enhance the efficiency during the DEP process. To understand the alignment mechanism of the ZnO NWs, the dielectrophoretic force (FDEP) was analyzed as a function of the DEP conditions and NW dimensions. These studies showed that the DEP alignment process tends to trap NWs with a smaller radius. The effects of NW size on device performance were analyzed by means of I-V measurements in darkness and under illumination (200 nm < λ < 600 nm). In darkness, the NW resistance increases as rNW decreases due to the reduction of the conduction volume, until saturation is reached for rNW < 65 nm. On the other hand, the NW spectral photoresponse shows high values around 10(8) A W(-1) (measured at 5 V and λ < 370 nm) and follows a linear trend as a function of the NW cross section. In addition, the cut-off wavelength depends on rNW, presenting a clear blue-shift for NWs with a lower radius (rNW < 50 nm). Transient photoresponse studies show that NWs with lower radii have longer rise times and shorter decay times mainly due to surface trapping effects. Regardless of NW size, passivation of the surface using a dielectric capping layer of SiO2 reduces the dynamic range of the photoresponse due to a strong increase of the dark current.

  7. Enhanced ethanol sensing properties of TiO2/ZnO core-shell nanorod sensors

    NASA Astrophysics Data System (ADS)

    Park, Sunghoon; An, Soyeon; Ko, Hyunsung; Lee, Sangmin; Kim, Hyoun Woo; Lee, Chongmu

    2014-06-01

    TiO2-core/ZnO-shell nanorods were synthesized using a two-step process: the synthesis of TiO2 nanorods using a hydrothermal method followed by atomic layer deposition of ZnO. The mean diameter and length of the nanorods were ˜300 nm and ˜2.3 μm, respectively. The cores and shells of the nanorods were monoclinic-structured single-crystal TiO2 and wurtzite-structured single-crystal ZnO, respectively. The multiple networked TiO2-core/ZnO-shell nanorod sensors showed responses of 132-1054 % at ethanol (C2H5OH) concentrations ranging from 5 to 25 ppm at 150 ∘C. These responses were 1-5 times higher than those of the pristine TiO2 nanorod sensors at the same C2H5OH concentration range. The substantial improvement in the response of the pristine TiO2 nanorods to C2H5OH gas by their encapsulation with ZnO may be attributed to the enhanced absorption and dehydrogenation of ethanol. In addition, the enhanced sensor response of the core-shell nanorods can be attributed partly to changes in resistance due to both the surface depletion layer of each core-shell nanorod and the potential barriers built in the junctions caused by a combination of homointerfaces and heterointerfaces.

  8. Nano-scale islands of ruthenium oxide as an electrochemical sensor for iodate and periodate determination.

    PubMed

    Chatraei, Fatemeh; Zare, Hamid R

    2013-03-01

    In this study, a promising electrochemical sensor was fabricated by the electrodeposition of nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles, RuON) on a glassy carbon electrode (RuON-GCE). Then, the electrocatalytic oxidation of iodate and periodate was investigated on it, using cyclic voltammetry, chronoamperometry and amperometry as diagnostic techniques. The charge transfer coefficient, α, and the charge transfer rate constant, ks, for electron transfer between RuON and GCE were calculated as 0.5 ± 0.03 and 9.0 ± 0.7 s(-1) respectively. A comparison of the data obtained from the electrocatalytic reduction of iodate and periodate at a bare GCE (BGCE) and RuON-GCE clearly shows that the unique electronic properties of nanoparticles definitely improve the characteristics of iodate and periodate electrocatalytic reduction. The kinetic parameters such as the electron transfer coefficient, α, and the heterogeneous electron transfer rate constant, k', for the reduction of iodate and periodate at RuON-GCE surface were determined using cyclic voltammetry. Amperometry revealed a good linear relationship between the peak current and the concentration of iodate and periodate. The detection limits of 0.9 and 0.2 μM were calculated for iodate and periodate respectively.

  9. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices

    PubMed Central

    Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W.

    2015-01-01

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparentand working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90o. Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices. PMID:26076705

  10. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices.

    PubMed

    Zheng, Z Q; Yao, J D; Wang, B; Yang, G W

    2015-06-16

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparent, and working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90(o). Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices.

  11. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Q.; Yao, J. D.; Wang, B.; Yang, G. W.

    2015-06-01

    In recent years, owing to the significant applications of health monitoring, wearable electronic devices such as smart watches, smart glass and wearable cameras have been growing rapidly. Gas sensor is an important part of wearable electronic devices for detecting pollutant, toxic, and combustible gases. However, in order to apply to wearable electronic devices, the gas sensor needs flexible, transparent, and working at room temperature, which are not available for traditional gas sensors. Here, we for the first time fabricate a light-controlling, flexible, transparentand working at room-temperature ethanol gas sensor by using commercial ZnO nanoparticles. The fabricated sensor not only exhibits fast and excellent photoresponse, but also shows high sensing response to ethanol under UV irradiation. Meanwhile, its transmittance exceeds 62% in the visible spectral range, and the sensing performance keeps the same even bent it at a curvature angle of 90o. Additionally, using commercial ZnO nanoparticles provides a facile and low-cost route to fabricate wearable electronic devices.

  12. SnO2 nanoparticle-coated ZnO nanotube arrays for high-performance electrochemical sensors.

    PubMed

    She, Guangwei; Huang, Xing; Jin, Liangliang; Qi, Xiaopeng; Mu, Lixuan; Shi, Wensheng

    2014-11-01

    Novel 1D nanostructures offer new opportunities for improving the performance of electrochemical sensors. In this study, highly ordered 1D nanostructure array electrodes composed of SnO2 nanoparticle-coated ZnO (SnO2 @ZnO) nanotubes are designed and fabricated. The composite nanotube array architecture not only endows the electrochemical electrodes with large surface areas, but also allows electrons to be quickly transferred along the nanotubes. Modifying the SnO2 @ZnO nanotube arrays with negatively charged polymer film and employing them as a working electrode, sensitive and selective electrochemical detection of an important neurotransmitter, i.e., dopamine, is realized via the cycle voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Interference from ascorbic acid can be successfully eliminated. The oxidative peak currents recorded from CV linearly depend on the dopamine concentrations from 0.1 to 100 μM with a sensitivity of 2.16 × 10(-7) A μM(-1) cm(-2) and detection limit of 45.2 nM. Using the DPV technique, an improved sensitivity and detection limit of 1.94 × 10(-6) A μM(-1) cm(-2) and 17.7 nM are respectively achieved. Moreover, the SnO2 @ZnO nanotube array electrodes can be reused through simple ultrasonical cleaning and no obvious deterioration is observed in the performance.

  13. Nanostructured SnO2-ZnO composite gas sensors for selective detection of carbon monoxide.

    PubMed

    Chesler, Paul; Hornoiu, Cristian; Mihaiu, Susana; Vladut, Cristina; Calderon Moreno, Jose Maria; Anastasescu, Mihai; Moldovan, Carmen; Firtat, Bogdan; Brasoveanu, Costin; Muscalu, George; Stan, Ion; Gartner, Mariuca

    2016-01-01

    A series of SnO2-ZnO composite nanostructured (thin) films with different amounts of SnO2 (from 0 to 50 wt %) was prepared and deposited on a miniaturized porous alumina transducer using the sol-gel and dip coating method. The transducer, developed by our research group, contains Au interdigital electrodes on one side and a Pt heater on the other side. The sensing films were characterized using SEM and AFM techniques. Highly toxic and flammable gases (CO, CO2, CH4, and C3H8) were tested under lab conditions (carrier gas was dry air) using a special gas sensing cell developed by our research group. The gas concentrations varied between 5 and 2000 ppm and the optimum working temperatures were in the range of 210-300 °C. It was found that the sensing performance was influenced by the amount of oxide components present in the composite material. Improved sensing performance was achieved for the ZnO (98 wt %)-SnO2 (2 wt %) composite as compared to the sensors containing only the pristine oxides. The sensor response, cross-response and recovery characteristics of the analyzed materials are reported. The high sensitivity (RS = 1.21) to low amounts of CO (5 ppm) was reported for the sensor containing a composite sensitive film with ZnO (98 wt %)-SnO2 (2 wt %). This sensor response to CO was five times higher as compared to its response to CO2, CH4, and C3H8, thus the sensor is considered to be selective for CO under these test conditions.

  14. An economic approach to fabricate photo sensor based on nanostructured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Huse, Nanasaheb; Upadhye, Deepak; Sharma, Ramphal

    2016-05-01

    Nanostructural ZnO Thin Films have been synthesized by simple and economic Chemical Bath Deposition technique onto glass substrate with bath temperature at 60°C for 1 hour. Structural, Optical, Electrical and topographical properties of the prepared Thin Films were investigated by GIXRD, I-V Measurement System, UV-Visible Spectrophotometer and AFM respectively. Calculated lattice parameters are in good agreement with the standard JCPDS card (36-1451) values, exhibits Hexagonal Wurtzite crystal structure. I-V Measurement curve has shown ohmic nature in dark condition and responds to light illumination which reveals Photo sensor properties. After illumination of 60W light, decrease in resistance was observed from 110.9 KΩ to 104.4 KΩ. The change in current and calculated Photo sensitivity was found to be 3.51 µA and 6.3% respectively. Optical band gap was found to be 3.24 eV. AFM images revealed uniform deposition over entire glass substrate with 32.27 nm average roughness of the film.

  15. Fabrication of non-enzymatic sensor using Co doped ZnO nanoparticles as a marker of H2O2

    NASA Astrophysics Data System (ADS)

    Khan, Sher Bahadar; Rahman, Mohammed M.; Asiri, Abdullah M.; Asif, Safi Asim Bin; Al-Qarni, Sara Abdullah S.; Al-Sehemi, Abdullah G.; Al-Sayari, Saleh A.; Al-Assiri, Mohammad Sultan

    2014-08-01

    Co doped ZnO nanoparticles were prepared by a simple thermal method and their functional relationships with H2O2 sensing were investigated. The sensing potential of Co doped ZnO nanoparticles were investigated using cyclic voltammeter. Co doped ZnO nanoparticles were characterized by FESEM, EDS, XRD, FTIR and XPS. The data obtained from the sensing study showed that Co doped ZnO nanoparticles are more sensitive toward H2O2. The results suggested that Co doped ZnO nanoparticles displayed tremendous electro-catalytic property for the reduction of H2O2. The performance of the sensor was further optimized using various pH and different scan rates. The developed sensor displayed high sensitivity (92.4444 μA mM-1 cm-2) and lower limit of detection (14.3 μM). Thus Co doped ZnO nanoparticles could be potential material for the construction of sensitive and efficient hydrogen peroxide sensor.

  16. The Assessment for Sensitivity of a NO2 Gas Sensor with ZnGa2O4/ZnO Core-Shell Nanowires—a Novel Approach

    PubMed Central

    Chen, I-Cherng; Lin, Shiu-Shiung; Lin, Tsao-Jen; Hsu, Cheng-Liang; Hsueh, Ting Jen; Shieh, Tien-Yu

    2010-01-01

    The application of novel core-shell nanowires composed of ZnGa2O4/ZnO to improve the sensitivity of NO2 gas sensors is demonstrated in this study. The growth of ZnGa2O4/ZnO core-shell nanowires is performed by reactive evaporation on patterned ZnO:Ga/SiO2/Si templates at 600 °C. This is to form the homogeneous structure of the sensors investigated in this report to assess their sensitivity in terms of NO2 detection. These novel NO2 gas sensors were evaluated at working temperatures of 25 °C and at 250 °C, respectively. The result reveals the ZnGa2O4/ZnO core-shell nanowires present a good linear relationship (R2 > 0.99) between sensitivity and NO2 concentration at both working temperatures. These core-shell nanowire sensors also possess the highest response (<90 s) and recovery (<120 s) values with greater repeatability seen for NO2 sensors at room temperature, unlike traditional sensors that only work effectively at much higher temperatures. The data in this study indicates the newly-developed ZnGa2O4/ZnO core-shell nanowire based sensors are highly promising for industrial applications. PMID:22319286

  17. Enhancement of photo sensor properties of nanocrystalline ZnO thin film by swift heavy ion irradiation

    SciTech Connect

    Mahajan, S. V.; Upadhye, D. S.; Bagul, S. B.; Shaikh, S. U.; Birajadar, R. B.; Siddiqui, F. Y.; Huse, N. P.; Sharma, R. B. E-mail: rps.phy@gmail.com

    2015-06-24

    Nanocrystalline Zinc Oxide (ZnO) thin film prepared by Low cost Successive Ionic Layer Adsorption and Reaction (SILAR) method. This film was irradiated by 120 MeV Ni{sup 7+} ions with the fluence of 5x10{sup 12}ions/cm{sup 2}. The X-ray diffraction study was shows polycrystalline nature with wurtzite structure. The optical properties as absorbance were determined using UV-Spectrophotometer and band gap was also calculated. The Photo Sensor nature was calculated by I-V characteristics with different sources of light 40W, 60W and 100W.

  18. Optimized structure stability and electrochemical performance of LiNi0.8Co0.15Al0.05O2 by sputtering nanoscale ZnO film

    NASA Astrophysics Data System (ADS)

    Lai, Yan-Qing; Xu, Ming; Zhang, Zhi-An; Gao, Chun-Hui; Wang, Peng; Yu, Zi-Yang

    2016-03-01

    LiNi0.8Co0.15Al0.05O2 (NCA) is one of the most promising cathode material for lithium-ion batteries (LIBs) in electric vehicles, which is successfully adopted in Tesla. However, the dissolution of the cation into the electrolyte is still a one of the major challenges (fading capacity and poor cyclability, etc.) presented in pristine NCA. Herein, a homogeneous nanoscale ZnO film is directly sputtered on the surface of NCA electrode via the magnetron sputtering (MS). This ZnO film is evidenced by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results clearly demonstrate that ZnO film is fully and uniformly covered on the NCA electrodes. After 90 cycles at 1.0C, the optimized MS-2min coated NCA electrode delivers much higher discharge capacity with 169 mAh g-1 than that of the pristine NCA electrode with 127 mAh g-1. In addition, the discharge capacity also reaches 166 mAh g-1 at 3.0C, as compared to that of 125 mAh g-1 for the pristine electrode. The improved electrochemical performance can be ascribed to the superiority of the MS ZnO film that reduce charge transfer resistance and protect the NCA electrode from cation dissolution.

  19. A prototype Ultraviolet Light Sensor based on ZnO Nanoparticles/Graphene Oxide Nanocomposite Using Low Temperature Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Al-Fandi, M.; Oweis, R.; Albiss, B. A.; AlZoubi, T.; Al-Akhras, M.-Ali; Qutaish, H.; Khwailah, H.; Al-Hattami, S.; Al-Shawwa, E.

    2015-10-01

    A new prototype UV nanosensor using ZnO nanoparticles (NPs)/graphene oxide (GO) nanocomposite (ZnO-NP/GO) on silicon substrate is reported in this paper. The hybrid nanocomposite structure has been developed by an optimized hydrothermal process at low growth temperature (∼50 °C). In this hybrid nanosensor, the ZnO nanoparticles act as UV- absorbing and charge carrier generating material, while graphene with its superior electrical conductivity has been used as a charge transporting material. Various nanostructure characterization techniques were intensively utilized including SEM, EDX, XRD, FTIR and UV-VIS. Also, the I-V measurement was employed to evaluate the prototype sensor. The morphological SEM analysis showed that the ZnO-NPs (average diameter of 20 nm) were dispersed evenly on the GO sheets. As well, the EDX spectra confirmed the exact chemical composition of the intended structure. The room temperature UV-VIS measurement revealed an enhanced optical absorption of UV-light at an absorption band centered on 375 nm. The improved optical and electrical properties were observed at an optimum relative concentration of 1:10. Under UV light illumination, the measured I-V characteristic of the prototype detector exhibited a considerable photocurrent increase of the ZnO-NP/GO nanocomposite compared to pristine ZnO nanostructure. These results can be promising for future enhanced UV- sensing applications.

  20. Atomic Oxygen Sensors Based on Nanograin ZnO Films Prepared by Pulse Laser Deposition

    SciTech Connect

    Wang Yunfei; Chen Xuekang; Li Zhonghua; Zheng Kuohai; Wang Lanxi; Feng Zhanzu; Yang Shengsheng

    2009-01-05

    High-quality nanograin ZnO thin films were deposited on c-plane sapphire (Al{sub 2}O{sub 3}) substrates by pulse laser deposition (PLD). Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were used to characterize the samples. The structural and morphological properties of ZnO films under different deposition temperature have been investigated before and after atomic oxygen (AO) treatment. XRD has shown that the intensity of the (0 0 2) peak increases and its FWHM value decreases after AO treatment. The AO sensing characteristics of nano ZnO film also has been investigated in a ground-based atomic oxygen simulation facility. The results show that the electrical conductivity of nanograin ZnO films decreases with increasing AO fluence and that the conductivity of the films can be recovered by heating.

  1. A new method to integrate ZnO nano-tetrapods on MEMS micro-hotplates for large scale gas sensor production

    NASA Astrophysics Data System (ADS)

    Marasso, S. L.; Tommasi, A.; Perrone, D.; Cocuzza, M.; Mosca, R.; Villani, M.; Zappettini, A.; Calestani, D.

    2016-09-01

    A new method, which is easily scalable to large scale production, has been developed to obtain gas sensor devices based on zinc oxide (ZnO) nanostructures with a ‘tetrapod’ shape. The method can be easily extended to other kinds of nanostructures and is based on the deposition of ZnO nanostructures through polymeric masks by centrifugation, directly onto properly designed MEMS micro-hotplates. The micromachined devices, after the mask is peeled off, are ready for electrical bonding and sensing test. Sensor response has been successfully measured for some gases and volatile organic compounds with different chemical properties (ethanol, methane, nitrogen dioxide, hydrogen sulfide).

  2. Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor

    NASA Astrophysics Data System (ADS)

    Shimpi, Navinchandra G.; Jain, Shilpa; Karmakar, Narayan; Shah, Akshara; Kothari, D. C.; Mishra, Satyendra

    2016-12-01

    ZnO nanopencils (NPCs) were prepared by a novel wet chemical process, using triethanolamine (TEA) as a mild base, which is relatively simple and cost effective method as compared to hydrothermal method. ZnO NPCs were characterized using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy in mid-IR and far-IR regions, X-ray Photoelectron Spectroscopy (XPS), UV-vis (UV-vis) absorption spectroscopy, room temperature Photoluminescence (PL) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). ZnO NPCs obtained, were highly pure, uniform and monodispersed.XRD pattern indicated hexagonal unit cell structure with preferred orientation along the c-axis. Sensing behaviour of ZnO NPCs was studied towards Liquefied Petroleum Gas (LPG) at different operating temperatures. The study shows that ZnO NPCs were most sensitive and promising candidate for detection of LPG at 250 °C with gas sensitivity > 60%. The high response towards LPG is due to high surface area of ZnO NPCs and their parallel alignment.

  3. Fabrication of ZnO nanoparticles based sensitive methanol sensor and efficient photocatalyst

    NASA Astrophysics Data System (ADS)

    Faisal, M.; Khan, Sher Bahadar; Rahman, Mohammed M.; Jamal, Aslam; Abdullah, M. M.

    2012-07-01

    ZnO nanoparticles (NPs) were prepared by hydrothermal treatment with starting materials (zinc chloride and urea) in the presence of ammonium hydroxide and characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and UV-vis spectroscopy. The synthesized nanoparticles are crystalline with wurtzite hexagonal phase having average particle size in the range of 80-130 nm. Photocatalytic activity of the prepared ZnO NPs was evaluated by the degradation of methylene blue and almost complete degradation (91.0%) takes place within 85 min of irradiation time. Prepared ZnO nanostructures possessed high photocatalytic activity when compared with TiO2-UV100. Additionally, the sensing properties of the ZnO films were investigated for various concentrations of methanol in liquid phase by simple I-V technique at room conditions. It was observed that ZnO thin film exhibits good sensitivity (0.9554 μA cm-2 mM-1) towards detection of methanol at room conditions.

  4. Study on Ni-doped ZnO films as gas sensors

    NASA Astrophysics Data System (ADS)

    Rambu, A. P.; Ursu, L.; Iftimie, N.; Nica, V.; Dobromir, M.; Iacomi, F.

    2013-09-01

    Ni doped ZnO films were obtained by spin coating, using zinc acetate and nickel acetate as starting materials and N,N-dimethylformamide as solvent. The X-ray diffraction (XRD) analysis indicates that, spin coated films posses a polycrystalline structure. Ni doped ZnO films are single phase and no trace of nickel metal or binary zinc nickel phases are observed. The values of some structural parameters (crystallite size, surface roughness) are varying with the variation of Ni concentration. The sensitivity of Ni:ZnO films, at three different gasses (ammonia, liquefied petroleum gas and ethanol) was investigated. Obtained results indicate that our films are most sensitive to ammonia, the operating temperature was found to be 190 °C and the response time is 35 s. The gas sensitivity was found to depend on the Ni concentration in ZnO films.

  5. Smart chemical sensors using ZnO semiconducting thin films for freshness detection of foods and beverages

    NASA Astrophysics Data System (ADS)

    Nanto, Hidehito; Kobayashi, Toshiki; Dougami, Naganori; Habara, Masaaki; Yamamoto, Hajime; Kusano, Eiji; Kinbara, Akira; Douguchi, Yoshiteru

    1998-07-01

    The sensitivity of the chemical sensor, based on the resistance change of Al2O3-doped and SnO2-doped ZnO (ZnO:Al and ZnO:SnO2) thin film, is studied for exposure to various gases. It is found that the ZnO:Al and ZnO:Sn thin film chemical sensor has a high sensitivity and excellent selectivity for amine (TMA and DMA) gas and ethanol gas, respectively. The ZnO:Al (5.0 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to odors from rotten sea foods, such as salmon, sea bream, oyster, squid and sardine, responds to the freshness change of these sea foods. The ZnO:SnO2 (78 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to aroma from alcohols, such as wine, Japanese sake, and whisky, responds to the freshness change of these alcohols.

  6. Hierarchical ZnO Nanosheet-Nanorod Architectures for Fabrication of Poly(3-hexylthiophene)/ZnO Hybrid NO2 Sensor.

    PubMed

    Wang, Jing; Li, Xian; Xia, Yi; Komarneni, Sridhar; Chen, Haoyuan; Xu, Jianlong; Xiang, Lan; Xie, Dan

    2016-04-06

    A facile one-step solution method has been developed here to fabricate hierarchical ZnO nanosheet-nanorod architectures for compositing with poly(3-hexylthiophene) (P3HT) for fabricating a hybrid NO2 sensor. The hierarchical ZnO nanosheet-nanorod architectures were controllably synthesized by aging the solutions containing 0.05 mol·L(-1) Zn(2+) and 0.33 mol·L(-1) OH(-) at 60 °C through a metastable phase-directed mechanism. The concentration of OH(-) played a huge role on the morphology evolution. When the [OH(-)] concentration was decreased from 0.5 to 0.3 mol·L(-1), the morphology of the ZnO nanostructures changed gradually from monodispersed nanorods (NR) to nanorod assemblies (NRA), and then to nanosheet-nanorod architectures (NS-NR) and nanosheet assemblies (NSA), depending on the formation of various metastable, intermediate phases. The formation of NS-NR included the initial formation of ZnO nanosheets/γ-Zn(OH)2 mixed intermediates, followed by the dissolution of Zn(OH)2, which served as soluble zinc source. Soluble Zn(OH)2 facilitated the dislocation-driven secondary growth of ZnO nanorod arrays on the primary defect-rich nanosheet substrates. Hybrid sensors based on composite films composed of P3HT and the as-prepared ZnO nanostructures were fabricated for the detection of NO2 at room temperature. The P3HT/ZnO NS-NR bilayer film exhibited not only the highest sensitivity but also good reproducibility and selectivity to NO2 at room temperature. The enhanced sensing performance was attributed to the formation of the P3HT/ZnO heterojunction in addition to the enhanced adsorption of NO2 by NS-NR ZnO rich in oxygen-vacancy defects.

  7. Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques

    NASA Astrophysics Data System (ADS)

    Bhatia, Sonik; Verma, Neha; Bedi, R. K.

    Nowadays, applications of nanosized materials have been an important issue in basic and applied sciences. In this investigation, Zinc Oxide (ZnO) nanoparticles were prepared by two different techniques (simple heat treatment, thermal evaporation-two zone furnaces). In order to control shape and size - ZnO nanoparticles prepared from heat treatment were used as a source for thermal evaporation method by using two zone split furnace by varying zone temperature (Zone 1-800 °C and Zone 2-400 °C). For both techniques 0.17 M of Zn acetate dihydrate is used as main precursor and film is deposited on glass substrate. Synthesized ZnO were characterized for XRD, FESEM, FTIR and UV-Vis spectrophotometer and LCR meter. XRD revealed hexagonal wurtzite structure with preferential orientation along (1 0 1) plane. FESEM observed that grain size in the range of range of ∼50 ± 5 nm. FTIR spectra showed that the peaks between 400 and 500 cm-1 for ZnO stretching modes. Optical properties has been studied and found that the observed band gap lies in the range of 3.32-3.36 eV. The higher value of capacitance is observed at lower frequency. Gas sensing properties showed the higher response in case of thermal evaporation as compared to simple heat treatment at an operating temperature of 250 °C.

  8. Solution synthesis of one-dimensional ZnO nanomaterials and their applications.

    PubMed

    Weintraub, Benjamin; Zhou, Zhengzhi; Li, Yinhua; Deng, Yulin

    2010-09-01

    Recently, one-dimensional (1D) ZnO nanomaterials (NMs) have been extensively studied because both their functional properties and highly controllable morphology make them important building blocks for understanding nanoscale phenomena and realizing nanoscale devices. Compared with high temperature (>450 degrees C) vapor phase methods, solution-based synthesis methods can be conducted at low temperatures (25-200 degrees C) allowing for compatibility with many organic substrate materials and offer additional advantages such as straightforward processing, low cost, and ease of scale up. Although there exist several review articles in the literature regarding the synthesis and applications of 1D ZnO NMs, those focusing on solution-based synthesis methods are lacking. Thus, this review focuses mainly on 1D ZnO NMs synthesized by solution-based processing. Firstly, 1D ZnO non-patterned, nanoparticle-seeded synthesis and its associated solution growth kinetics are discussed. Next, synthesis of vertically-aligned ZnO nanorod arrays with controlled pattern and density on various substrates is reviewed. Finally, important applications of 1D ZnO NMs are highlighted including sensors, field emission devices, photodetectors, optical switches, and solar cells.

  9. Chloroplasts-mediated biosynthesis of nanoscale Au-Ag alloy for 2-butanone assay based on electrochemical sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Yixia; Gao, Guo; Qian, Qirong; Cui, Daxiang

    2012-08-01

    We reported a one-pot, environmentally friendly method for biosynthesizing nanoscale Au-Ag alloy using chloroplasts as reducers and stabilizers. The prepared nanoscale Au-Ag alloy was characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). Fourier transform infrared spectroscopy (FTIR) analysis was further used to identify the possible biomolecules from chloroplasts that are responsible for the formation and stabilization of Au-Ag alloy. The FTIR results showed that chloroplast proteins bound to the nanoscale Au-Ag alloy through free amino groups. The bimetallic Au-Ag nanoparticles have only one plasmon band, indicating the formation of an alloy structure. HR-TEM images showed that the prepared Au-Ag alloy was spherical and 15 to 20 nm in diameter. The high crystallinity of the Au-Ag alloy was confirmed by SAED and XRD patterns. The prepared Au-Ag alloy was dispersed into multiwalled carbon nanotubes (MWNTs) to form a nanosensing film. The nanosensing film exhibited high electrocatalytic activity for 2-butanone oxidation at room temperature. The anodic peak current (Ip) has a linear relationship with the concentrations of 2-butanone over the range of 0.01% to 0.075% (v/v), when analyzed by cyclic voltammetry. The excellent electronic catalytic characteristics might be attributed to the synergistic electron transfer effects of Au-Ag alloy and MWNTs. It can reasonably be expected that this electrochemical biosensor provided a promising platform for developing a breath sensor to screen and pre-warn of early cancer, especially gastric cancer.

  10. Quantum dots as a sensor for quantitative visualization of surface charges on single living cells with nano-scale resolution.

    PubMed

    Huang, Yao-Xiong; Zheng, Xin-Jing; Kang, Li-Li; Chen, Xing-Yao; Liu, Wen-Jing; Huang, Bao-Tian; Wu, Zheng-Jie

    2011-01-15

    We developed a technique using quantum dot (QD) as a sensor for quantitative visualization of the surface charge on biological cells with nano-scale resolution. The QD system was designed and synthesized using amino modified CdSe/ZnS nanoparticles. In a specially designed buffer solution, they are positively charged and can homogeneously disperse in the aqueous environment to label all the negative charges on the surfaces of living cells. Using a wide-field optical sectioning microscopy to achieve 2D/3D imaging of the QD-labeled cells, we determined the charge densities of different kinds of cells from normal to mutant ones. The information about the surface charge distribution is significant in evaluating the structure, function, biological behavior and even malignant transformation of cells.

  11. Selective response inversion to NO2 and acetic acid in ZnO and CdS nanocomposite gas sensor

    NASA Astrophysics Data System (ADS)

    Calestani, D.; Villani, M.; Mosca, R.; Lazzarini, L.; Coppedè, N.; Dhanabalan, S. C.; Zappettini, A.

    2014-09-01

    High sensitivity zinc oxide (ZnO) tetrapods (TPs) have been functionalized by nucleating cadmium sulphide (CdS) nanoparticles (NPs) directly on their surface with a spotted coverage thanks to an optimized synthesis in dimethylformamide (DMF). The obtained hybrid coupled material has been used to realize a gas sensing device with a highly porous nanostructured network, in which the proper alternation of ZnO-TPs and CdS-NPs gives rise to unconventional chemoresistive behaviours. Among the different tested gases and vapours, the sensor showed a unique fingerprint response-inversion between 300 °C and 400 °C only for nitrogen dioxide (NO2) and acetic acid (CH3COOH).

  12. Selective response inversion to NO₂ and acetic acid in ZnO and CdS nanocomposite gas sensor.

    PubMed

    Calestani, D; Villani, M; Mosca, R; Lazzarini, L; Coppedè, N; Dhanabalan, S C; Zappettini, A

    2014-09-12

    High sensitivity zinc oxide (ZnO) tetrapods (TPs) have been functionalized by nucleating cadmium sulphide (CdS) nanoparticles (NPs) directly on their surface with a spotted coverage thanks to an optimized synthesis in dimethylformamide (DMF). The obtained hybrid coupled material has been used to realize a gas sensing device with a highly porous nanostructured network, in which the proper alternation of ZnO-TPs and CdS-NPs gives rise to unconventional chemoresistive behaviours. Among the different tested gases and vapours, the sensor showed a unique fingerprint response-inversion between 300 °C and 400 °C only for nitrogen dioxide (NO2) and acetic acid (CH3COOH).

  13. A lateral field excited ZnO film bulk acoustic wave sensor working in viscous environments

    NASA Astrophysics Data System (ADS)

    Chen, Da; Wang, Jingjing; Xu, Yan; Li, Dehua; Zhang, Liuyin; Liu, Weihui

    2013-09-01

    We present a lateral field excited ZnO film bulk acoustic resonator (FBAR) operated in pure-shear mode and analyze its performances in viscous liquids. The electrodes of the device are located on the film surface and normal to the c-axis of the ZnO film. The proposed device works near 1.44 GHz with a Q-factor up to 360 in air and 310 in water, which are higher than those of the quasi-shear thickness field excited FBAR. The resonant frequency is decreased with the increasing square root of the product of the viscosity and density with a linear dependence in the viscosity below 148.7 mPa s. The mass sensitivity of 670 Hz cm2 ng-1 was measured by monitoring the frequency change during the volatilization of saline solution loaded on the resonator. In addition, the levels of the noise and the mass resolutions were measured in various viscous environments. The proposed device yields the mass resolution of 670 Hz cm2 ng-1 and the high mass resolution of 0.06 ng cm-2. These results indicated that the lateral field excited ZnO FBAR had superior sensitivity for the bio-sensing applications in viscous biological liquids.

  14. Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase.

    PubMed

    Ibupoto, Zafar Hussain; Shah, Syed Muhammad Usman Ali; Khun, Kimleang; Willander, Magnus

    2012-01-01

    In this work, fabrication of gold coated glass substrate, growth of ZnO nanorods and potentiometric response of lactic acid are explained. The biosensor was developed by immobilizing the lactate oxidase on the ZnO nanorods in combination with glutaraldehyde as a cross linker for lactate oxidase enzyme. The potentiometric technique was applied for the measuring the output (EMF) response of l-lactic acid biosensor. We noticed that the present biosensor has wide linear detection range of concentration from 1 × 10(-4)-1 × 10(0) mM with acceptable sensitivity about 41.33 ± 1.58 mV/decade. In addition, the proposed biosensor showed fast response time less than 10 s, a good selectivity towards l-lactic acid in presence of common interfering substances such as ascorbic acid, urea, glucose, galactose, magnesium ions and calcium ions. The present biosensor based on immobilized ZnO nanorods with lactate oxidase sustained its stability for more than three weeks.

  15. Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications

    NASA Astrophysics Data System (ADS)

    Maruthupandy, Muthuchamy; Zuo, Yong; Chen, Jing-Shuai; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua

    2017-03-01

    The present study is focused on employing Camellia japonica leaf extract as inductive and stabilizing agent to synthesis CuO and ZnO nanoparticles (NPs). The chemicals, such as (Cu(NO3)2·3H2O) and (Zn(NO3)2·6H2O) were converted into copper and zinc ions, respectively because of the different natural products present in the C. japonica leaf extract. The UV-vis spectra of CuO and ZnO NPs showed absorption peak at 290 nm and 301 nm, respectively. The XRD result revealed crystalline nature of the metal oxide NPs and the TEM images indicated that average sizes of the synthesized CuO and ZnO NPs were ∼17 nm and ∼20 nm, respectively. The FTIR spectra of C. japonica leaf extract showed the presence of organic groups, such as, sbnd OH, sbnd Csbnd N, and N-H, which would be responsible for forming CuO and ZnO NPs. The synthesized CuO and ZnO NPs were tested for the optical sensing of metal ions, viz. Li+ and Ag+ that illustrated excellent outcome and hence this method offers a novel lane for the synthesis of metal oxide NPs, which can be used as optical sensor for the detection of metal ions.

  16. CuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas Sensors

    PubMed Central

    Vuong, Nguyen Minh; Chinh, Nguyen Duc; Huy, Bui The; Lee, Yong-Ill

    2016-01-01

    Highly sensitive hydrogen sulfide (H2S) gas sensors were developed from CuO-decorated ZnO semiconducting hierarchical nanostructures. The ZnO hierarchical nanostructure was fabricated by an electrospinning method following hydrothermal and heat treatment. CuO decoration of ZnO hierarchical structures was carried out by a wet method. The H2S gas-sensing properties were examined at different working temperatures using various quantities of CuO as the variable. CuO decoration of the ZnO hierarchical structure was observed to promote sensitivity for H2S gas higher than 30 times at low working temperature (200 °C) compared with that in the nondecorated hierarchical structure. The sensing mechanism of the hybrid sensor structure is also discussed. The morphology and characteristics of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis absorption, photoluminescence (PL), and electrical measurements. PMID:27231026

  17. Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method

    SciTech Connect

    Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N.

    2015-08-15

    Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use of a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.

  18. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor

    NASA Astrophysics Data System (ADS)

    Pelliccione, Matthew; Jenkins, Alec; Ovartchaiyapong, Preeti; Reetz, Christopher; Emmanuelidu, Eve; Ni, Ni; Bleszynski Jayich, Ania

    The nitrogen vacancy (NV) defect in diamond has emerged as a promising candidate for high resolution magnetic imaging based on its atomic size and quantum-limited sensing capabilities afforded by long spin coherence times. Although the NV center has been successfully implemented as a nanoscale scanning magnetic probe at room temperature, it has remained an outstanding challenge to extend this capability to cryogenic temperatures, where many solid-state systems exhibit non-trivial magnetic order. In this talk, we present NV magnetic imaging at T = 6 K, first benchmarking the technique with a magnetic hard disk sample, then utilizing the technique to image vortices in the iron pnictide superconductor BaFe2(As0.7P0.3)2 with Tc = 30 K. In addition, we discuss other candidate solid-state systems that can benefit from the high spatial resolution and field sensitivity of the scanning NV magnetometer.

  19. Silicon cantilever sensor for micro-/nanoscale dimension and force metrology

    NASA Astrophysics Data System (ADS)

    Peiner, Erwin; Doering, Lutz; Balke, Michael; Christ, Andreas

    2007-05-01

    A piezoresistive silicon cantilever-type tactile sensor was described as well as its application for dimensional metrology with micro components and as a transferable force standard in the micro-to-nano Newton range. As an example for tactile probing metrology the novel cantilever sensor was used for surface scanning with calibrated groove and roughness artifacts. Force metrology was addressed based on calibration procedures which were developed for commercial stylus instruments as well as for glass pipettes designed for the characterization of the vital forces of isolated cells.

  20. A flexible field-limited ordered ZnO nanorod-based self-powered tactile sensor array for electronic skin.

    PubMed

    Deng, W; Jin, L; Zhang, B; Chen, Y; Mao, L; Zhang, H; Yang, W

    2016-09-15

    A tactile sensor is an essential component for realizing biomimetic robots, while the flexibility of the tactile sensor is a pivotal feature for its application, especially for electronic skin. In this work, a flexible self-powered tactile sensor array was designed based on the piezoelectricity of ZnO nanorods (NRs). The field-limited ordered ZnO NRs were synthesized on a flexible Kapton substrate to serve as the functional layer of the tactile sensor. The electrical output performances of the as-fabricated tactile sensor were measured under pressing and bending forces. Moreover, we measured the human-finger pressure detection performance of the tactile sensor array, suggesting that the corresponding mapping figure of finger pressure could be displayed on the monitor of a personal computer (PC) in the form of lighted LED and color density through a LabVIEW system. This as-grown sensory feedback system should be of potential valuable assistance for the users of hand prostheses to reduce the risk and obtain a greater feeling of using the prostheses.

  1. Chlorine Gas Sensing Performance of On-Chip Grown ZnO, WO3, and SnO2 Nanowire Sensors.

    PubMed

    Tran, Van Dang; Nguyen, Duc Hoa; Nguyen, Van Duy; Nguyen, Van Hieu

    2016-02-01

    Monitoring toxic chlorine (Cl2) at the parts-per-billion (ppb) level is crucial for safe usage of this gas. Herein, ZnO, WO3, and SnO2 nanowire sensors were fabricated using an on-chip growth technique with chemical vapor deposition. The Cl2 gas-sensing characteristics of the fabricated sensors were systematically investigated. Results demonstrated that SnO2 nanowires exhibited higher sensitivity to Cl2 gas than ZnO and WO3 nanowires. The response (RCl2/Rair) of the SnO2 nanowire sensor to 50 ppb Cl2 at 50 °C was about 57. Hence, SnO2 nanowires can be an excellent sensing material for detecting Cl2 gas at the ppb level under low temperatures. Abnormal sensing characteristics were observed in the WO3 and SnO2 nanowire sensors at certain temperatures; in particular, the response level of these sensors to 5 ppm of Cl2 was lower than that to 2.5 ppm of Cl2. The sensing mechanism of the SnO2 nanowire sensor was also elucidated by determining Cl2 responses under N2 and dry air as carrier gases. We proved that the Cl2 molecule was first directly adsorbed on the metal oxide surface and was then substituted for pre-adsorbed oxygen, followed by lattice oxygen.

  2. Nanoscale sensor analysis using the immersed molecular electrokinetic finite element method

    NASA Astrophysics Data System (ADS)

    Kopacz, Adrian M.; Yeo, Woon-Hong; Chung, Jae-Hyun; Liu, Wing Kam

    2012-07-01

    The concentration and detection of molecular biomarkers remain as a challenge to develop point-of-care diagnostic devices. An electric field induced concentration has been studied for such purposes but with limited success due to limited efficacy. This paper presents a computational study for investigating the molecular concentration and retention efficacy of single nanowire (SNW) and dendritic nanotip (DNT) sensors. Our computational results indicate that compared to a DNT, the SNW sensor produces higher dielectrophoretic (DEP) forces in the vicinity of the terminal end of the tip. Furthermore, the magnitude of the DEP force increases exponentially as the diameter of the SNW is decreased, resulting in a further improved retention efficacy of NPs. However, the SNW sensor's concentration efficacy was not much improved for NPs smaller than 10 nm diameter when the nanowire diameter was reduced from 500 to 50 nm. Compared to the SNW, the DNT sensor showed improved concentration efficacy due to multiple points of electric field concentrations, which retard the exponential decay of the DEP force resulting in a greater widespread region where the DEP force dominates the Brownian motion forces. When oligonucleotides are used as a target particle, the DEP force can be used to elongate oligonucleotides to further enhance the concentration and retention efficacy.

  3. Epitaxial ZnO/LiNbO{sub 3}/ZnO stacked layer waveguide for application to thin-film Pockels sensors

    SciTech Connect

    Akazawa, Housei Fukuda, Hiroshi

    2015-05-15

    We produced slab waveguides consisting of a LiNbO{sub 3} (LN) core layer that was sandwiched with Al-doped ZnO cladding layers. The ZnO/LN/ZnO stacked layers were grown on sapphire C-planes by electron cyclotron resonance (ECR) plasma sputtering and were subjected to structural, electrical, and optical characterizations. X-ray diffraction confirmed that the ZnO and LN layers were epitaxial without containing misoriented crystallites. The presence of 60°-rotational variants of ZnO and LN crystalline domains were identified from X-ray pole figures. Cross-sectional transmission electron microscopy images revealed a c-axis orientated columnar texture for LN crystals, which ensured operation as electro-optic sensors based on optical anisotropy along longitudinal and transversal directions. The interfacial roughness between the LN core and ZnO bottom layers as well as that between the ZnO top and the LN core layers was less than 20 nm, which agreed with surface images observed with atomic force microscopy. Outgrowth of triangular LN crystalline domains produced large roughness at the LN film surface. The RMS roughness of the LN film surface was twice that of the same structure grown on sapphire A-planes. Vertical optical transmittance of the stacked films was higher than 85% within the visible and infrared wavelength range. Following the approach adopted by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)], ac Pockels coefficients of r{sub 33} = 24-28 pm/V were derived for c-axis oriented LN films grown on low-resistive Si substrates. Light propagation within a ZnO/LN/ZnO slab waveguide as well as within a ZnO single layer waveguide was confirmed. The birefringence of these waveguides was 0.11 for the former and 0.05 for the latter.

  4. Contact-independent measurement of electrical conductance of a thin film with a nanoscale sensor.

    PubMed

    Mentzel, Tamar S; Maclean, Kenneth; Kastner, Marc A

    2011-10-12

    Contact effects are a common impediment to electrical measurements throughout the fields of nanoelectronics, organic electronics, and the emerging field of graphene electronics. We demonstrate a novel method of measuring electrical conductance in a thin film of amorphous germanium that is insensitive to contact effects. The measurement is based on the capacitive coupling of a nanoscale metal-oxide-semiconductor field-effect transistor (MOSFET) to the thin film so that the MOSFET senses charge diffusion in the film. We tune the contact resistance between the film and contact electrodes and show that our measurement is unaffected. With the MOSFET, we measure the temperature and field dependence of the conductance of the amorphous germanium, which are fit to a model of variable-range hopping. The device structure enables both a contact-independent and a conventional, contact-dependent measurement, which makes it possible to discern the effect of the contacts in the latter measurement. This measurement method can be used for reliable electrical characterization of new materials and to determine the effect of contacts on conventional electron transport measurements, thus guiding the choice of optimal contact materials.

  5. Engineering efficient thermoelectrics from large-scale assemblies of doped ZnO nanowires: nanoscale effects and resonant-level scattering.

    PubMed

    Brockway, Lance; Vasiraju, Venkata; Sunkara, Mahendra K; Vaddiraju, Sreeram

    2014-09-10

    Recent studies focusing on enhancing the thermoelectric performance of metal oxides were primarily motivated by their low cost, large availability of the component elements in the earth's crust, and their high stability. So far, these studies indicate that n-type materials, such as ZnO, have much lower thermoelectric performance than their p-type counterparts. Overcoming this limitation requires precisely tuning the thermal and electrical transport through n-type metal oxides. One way to accomplish this is through the use of optimally doped bulk assemblies of ZnO nanowires. In this study, the thermoelectric properties of n-type aluminum and gallium dually doped bulk assembles of ZnO nanowires were determined. The results indicated that a high zT of 0.6 at 1000 °C, the highest experimentally observed for any n-type oxide, is possible. The high performance is attributed to the tailoring of the ZnO phase composition, nanostructuring of the material, and Zn-III band hybridization-based resonant scattering.

  6. Nanoscale thermal probing

    PubMed Central

    Yue, Yanan; Wang, Xinwei

    2012-01-01

    Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface imaging and temperature measurement. To overcome the restriction of the conventional methods, the scanning thermal microscopy technique is widely used. From the perspective of measuring target, the optical feature size method can be applied by using either Raman or fluorescence thermometry. The near-field optical method that measures nanoscale temperature by focusing the optical field to a nano-sized region provides a non-contact and non-destructive way for nanoscale thermal probing. Although the resistance thermometry based on nano-sized thermal sensors is possible for nanoscale thermal probing, significant effort is still needed to reduce the size of the current sensors by using advanced fabrication techniques. At the same time, the development of nanoscale imaging techniques, such as fluorescence imaging, provides a great potential solution to resolve the nanoscale thermal probing problem. PMID:22419968

  7. Properties of high sensitivity ZnO surface acoustic wave sensors on SiO 2/(1 0 0) Si substrates

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Soumya; Iliadis, Agis A.

    2008-11-01

    The properties of ZnO/SiO2/Si surface acoustic wave (SAW) Love mode sensors were examined and optimized to achieve high mass sensitivity. SAW devices A and B, were designed and fabricated to operate at resonant frequencies around 0.7 and 1.5 GHz. The ZnO films grown by pulsed laser deposition on SiO2/Si demonstrated c-axis growth and the fabricated devices showed guided shear horizontal surface acoustic wave (or Love mode) propagation. Acoustic phase velocity in the ZnO layer was measured in both devices A and B and theoretical and experimental evaluation of the mass sensitivity showed that the maximum sensitivity is obtained for devices with ZnO guiding layer thicknesses of 340 nm and 160 nm for devices A and B, respectively. The performance of the SAW sensors was validated by measuring the mass of a well-characterized polystyrene-polyacrylic acid diblock copolymer film. For the optimized sensors, maximum mass sensitivity values were as high as 4.309 μm2/pg for device A operating at 0.7477 GHz, and 8.643 μm2/pg for device B operating at 1.5860 GHz. The sensors demonstrated large frequency shifts per applied mass (0.1-4 MHz), excellent linearity, and extended range in the femto-gram region. The large frequency shifts indicated that these sensors have the potential to measure mass two to three orders of magnitude lower in the atto-gram range.

  8. ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Senesky, Debbie G.

    2016-11-01

    Rapid, cost-effective, and simple fabrication/packaging of microscale gallium nitride (GaN) ultraviolet (UV) sensors are demonstrated using zinc oxide nanorod arrays (ZnO NRAs) as an antireflective layer and direct bonding of aluminum wires to the GaN surface. The presence of the ZnO NRAs on the GaN surface significantly reduced the reflectance to less than 1% in the UV and 4% in the visible light region. As a result, the devices fabricated with ZnO NRAs and mechanically stable aluminum bonding wires (pull strength of 3-5 gf) showed higher sensitivity (136.3% at room temperature and 148.2% increase at 250 °C) when compared with devices with bare (uncoated) GaN surfaces. In addition, the devices demonstrated reliable operation at high temperatures up to 300 °C, supporting the feasibility of simple and cost-effective UV sensors operating with higher sensitivity in high-temperature conditions, such as in combustion, downhole, and space exploration applications.

  9. Imaging the operation of a carbon nanotube charge sensor at the nanoscale.

    PubMed

    Brunel, David; Mayer, Alexandre; Mélin, Thierry

    2010-10-26

    Carbon nanotube field effect transistors (CNTFETs) are of great interest for nanoelectronics applications such as nonvolatile memory elements (NVMEs) or charge sensors. In this work, we use a scanning-probe approach based on a local charge perturbation of CNTFET-based NVMEs and investigate their fundamental operation from combined transport, electrostatic scanning probe techniques and atomistic simulations. We experimentally demonstrate operating devices with threshold voltages shifts opposite to conventional gating and with almost unchanged hysteresis. The former effect is quantitatively understood as the emission of a delocalized image charge pattern in the nanotube environment, in response to local charge storage, while the latter effect points out the dominant dipolar nature of hysteresis in CNTFETs. We propose a simple model for charge sensing using CNTFETs, based on the redistribution of the nanotube image charges. This model could be extended to gas or biosensing, for example.

  10. Scanning pyroelectric microscopy for characterizing large-area printed ferroelectric sensors on the nanoscale

    NASA Astrophysics Data System (ADS)

    Stadlober, Barbara; Groten, Jonas; Zirkl, Martin; Haase, Anja; Sawatdee, A.; Scheipl, G.

    2012-10-01

    This work demonstrates a novel surface scanning method for the quantitative determination of the local pyroelectric coefficient in ferroelectric thin films. Such films find application in flexible and large-area printed ferroelectric sensors for gesture-controlled non-touch human-machine interface devices. The method is called Pyroelectric Scanning Probe Microscopy (PyroSPM)[1] and allows generating a map of the pyroelectric response with very high spatial resolution. In domains of previously aligned dipole moments small heat fluctuations are achieved by laser diode excitation from the bottom side thus inducing changes in the surface potential due to the pyroelectric effect. Simultaneously, the surface potential variations are detected by scanning surface potential microscopy thus forming the base for the pyroelectric coefficient map. The potential of the method is demonstrated on the basis of ferroelectric semi-crystalline copolymer thin films yielding local maxima of the pyroelectric coefficients around 40µC/m2K. Another promising feature of PyroSPM is the ability to visualize "screened" polarization thus enabling in-depth profiling of polarization distributions and domain formation and to study the composition dependence and the time and frequency behavior of ferroelectric nano-domains.

  11. Sensing at the nanoscale

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    The merits of nanostructures in sensing may seem obvious, yet playing these attributes to their maximum advantage can be a work of genius. As fast as sensing technology is improving, expectations are growing, with demands for cheaper devices with higher sensitivities and an ever increasing range of functionalities and compatibilities. At the same time tough scientific challenges like low power operation, noise and low selectivity are keeping researchers busy. This special issue on sensing at the nanoscale with guest editor Christofer Hierold from ETH Zurich features some of the latest developments in sensing research pushing at the limits of current capabilities. Cheap and easy fabrication is a top priority. Among the most popular nanomaterials in sensing are ZnO nanowires and in this issue Dario Zappa and colleagues at Brescia University in Italy simplify an already cheap and efficient synthesis method, demonstrating ZnO nanowire fabrication directly onto silicon substrates [1]. Meanwhile Nicolae Barson and colleagues in Germany point out the advantages of flame spray pyrolysis fabrication in a topical review [2] and, maximizing on existing resources, researchers in Denmark and Taiwan report cantilever sensing using a US20 commercial DVD-ROM optical pickup unit as the readout source [3]. The sensor is designed to detect physiological concentrations of soluble urokinase plasminogen activator receptor, a protein associated with inflammation due to HIV, cancer and other infectious diseases. With their extreme properties carbon nanostructures feature prominently in the issue, including the demonstration of a versatile and flexible carbon nanotube strain sensor [4] and a graphene charge sensor with sensitivities of the order of 1.3 × 10-3 e Hz-1/2 [5]. The issue of patterning for sensing devices is also tackled by researchers in the US who demonstrate a novel approach for multicomponent pattering metal/metal oxide nanoparticles on graphene [6]. Changes in electrical

  12. ZnO Quantum Dot Decorated Zn2SnO4 Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors.

    PubMed

    Li, Ludong; Gu, Leilei; Lou, Zheng; Fan, Zhiyong; Shen, Guozhen

    2017-03-27

    Here we report the fabrication of high-performance ultraviolet photodetectors based on a heterojunction device structure in which ZnO quantum dots were used to decorate Zn2SnO4 nanowires. Systematic investigations have shown their ultrahigh light-to-dark current ratio (up to 6.8 × 10(4)), specific detectivity (up to 9.0 × 10(17) Jones), photoconductive gain (up to 1.1 × 10(7)), fast response, and excellent stability. Compared with a pristine Zn2SnO4 nanowire, a quantum dot decorated nanowire demonstrated about 10 times higher photocurrent and responsivity. Device physics modeling showed that their high performance originates from the rational energy band engineering, which allows efficient separation of electron-hole pairs at the interfaces between ZnO quantum dots and a Zn2SnO4 nanowire. As a result of band engineering, holes migrate to ZnO quantum dots, which increases electron concentration and lifetime in the nanowire conduction channel, leading to significantly improved photoresponse. The enhancement mechanism found in this work can also be used to guide the design of high-performance photodetectors based on other nanomaterials. Furthermore, flexible ultraviolet photodetectors were fabricated and integrated into a 10 × 10 device array, which constitutes a high-performance flexible ultraviolet image sensor. These intriguing results suggest that the band alignment engineering on nanowires can be rationally achieved using compound semiconductor quantum dots. This can lead to largely improved device performance. Particularly for ZnO quantum dot decorated Zn2SnO4 nanowires, these decorated nanowires may find broad applications in future flexible and wearable electronics.

  13. Gas sensors based on polyaniline/zinc oxide hybrid film for ammonia detection at room temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Guotao; Zhang, Qiuping; Xie, Guangzhong; Su, Yuanjie; Zhao, Kang; Du, Hongfei; Jiang, Yadong

    2016-11-01

    Polyaniline/zinc oxide (PANI/ZnO) hybrid film based sensors have been developed for ammonia (NH3) detection at room temperature (RT). Results shows that hybrid film sensor exhibits a p-type semiconductor behavior and larger response than that of pure PANI film sensor. In the system, ZnO nanorod arrays can not only create nanoscale gap for gas diffusion but also provide abundant adsorption sites, thus leading to enhancement of response. Besides, hydrothermal time is proportional to the length of nanorods, Longer nanorods will provide efficient gap for gas diffusion, which leads to better sensitivity. This work offers a promising way to optimize sensor performance.

  14. Tunable nanoscale graphene magnetometers.

    PubMed

    Pisana, Simone; Braganca, Patrick M; Marinero, Ernesto E; Gurney, Bruce A

    2010-01-01

    The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin-torque instability. These limitations do not affect Hall sensors consisting of high mobility semiconductors or metal thin films, but the loss of magnetic flux throughout the sensor's thickness greatly limits spatial resolution and sensitivity. Here we demonstrate graphene extraordinary magnetoresistance devices that combine the Hall effect and enhanced geometric magnetoresistance, yielding sensitivities rivaling that of state of the art sensors but do so with subnanometer sense layer thickness at the sensor surface. Back-gating provides the ability to control sensor characteristics, which can mitigate both inherent variations in material properties and fabrication-induced device-to-device variability that is unavoidable at the nanoscale.

  15. Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases.

    PubMed

    Dilonardo, Elena; Penza, Michele; Alvisi, Marco; Di Franco, Cinzia; Palmisano, Francesco; Torsi, Luisa; Cioffi, Nicola

    2016-01-01

    A one-step electrochemical method based on sacrificial anode electrolysis (SAE) was used to deposit stabilized gold nanoparticles (Au NPs) directly on the surface of nanostructured ZnO powders, previously synthesized through a sol-gel process. The effect of thermal annealing temperatures (300 and 550 °C) on chemical, morphological, and structural properties of pristine and Au-doped ZnO nancomposites (Au@ZnO) was investigated. Transmission and scanning electron microscopy (TEM and SEM), as well as X-ray photoelectron spectroscopy (XPS), revealed the successful deposition of nanoscale gold on the surface of spherical and rod-like ZnO nanostructures, obtained after annealing at 300 and 550 °C, respectively. The pristine ZnO and Au@ZnO nanocomposites are proposed as active layer in chemiresistive gas sensors for low-cost processing. Gas-sensing measurements towards NO2 were collected at 300 °C, evaluating not only the Au-doping effect, but also the influence of the different ZnO nanostructures on the gas-sensing properties.

  16. Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes

    PubMed Central

    2013-01-01

    Background Semiconductor doped nanostructure materials have attained considerable attention owing to their electronic, opto-electronic, para-magnetic, photo-catalysis, electro-chemical, mechanical behaviors and their potential applications in different research areas. Doped nanomaterials might be a promising owing to their high-specific surface-area, low-resistances, high-catalytic activity, attractive electro-chemical and optical properties. Nanomaterials are also scientifically significant transition metal-doped nanostructure materials owing to their extraordinary mechanical, optical, electrical, electronic, thermal, and magnetic characteristics. Recently, it has gained significant interest in manganese oxide doped-semiconductor materials in order to develop their physico-chemical behaviors and extend their efficient applications. It has not only investigated the basic of magnetism, but also has huge potential in scientific features such as magnetic materials, bio- & chemi-sensors, photo-catalysts, and absorbent nanomaterials. Results The chemical sensor also displays the higher-sensitivity, reproducibility, long-term stability, and enhanced electrochemical responses. The calibration plot is linear (r2 = 0.977) over the 0.1 nM to 50.0 μM 4-nitrophenol concentration ranges. The sensitivity and detection limit is ~4.6667 μA cm-2 μM-1 and ~0.83 ± 0.2 nM (at a Signal-to-Noise-Ratio, SNR of 3) respectively. To best of our knowledge, this is the first report for detection of 4-nitrophenol chemical with doped Mn2O3-ZnO NPs using easy and reliable I-V technique in short response time. Conclusions As for the doped nanostructures, NPs are introduced a route to a new generation of toxic chemo-sensors, but a premeditate effort has to be applied for doped Mn2O3-ZnO NPs to be taken comprehensively for large-scale applications, and to achieve higher-potential density with accessible to individual chemo-sensors. In this report, it is also discussed the prospective

  17. A flexible sensor based on polyaniline hybrid using ZnO as template and sensing properties to triethylamine at room temperature

    NASA Astrophysics Data System (ADS)

    Quan, Le; Sun, Jianhua; Bai, Shouli; Luo, Ruixian; Li, Dianqing; Chen, Aifan; Liu, Chung Chiun

    2017-03-01

    A network structure of PANI/SnO2 hybrid was synthesized by an in situ chemical oxidative polymerization using cheaper ZnO nanorods as sacrificial template and the hybrid was loaded on a flexible polyethylene terephthalate (PET) thin film to construct a flexible smart sensor. The sensor not only exhibits high sensitivity which is 20 times higher than that of pure PANI to 10 ppm triethylamine, good selectivity and linear response at room temperature but also has flexible, structure simple, economical and portable characters compared with recently existing sensors. Room temperature operating of the sensor is also particularly interesting, which leads to low power consumption, environmental safety and long life times. The improvement of sensing properties is attributed to the network structure of hybrid and formation of p-n heterojunction at the interface between the PANI and SnO2. The research is expected to open a new window for development of a kind of wearable electronic devices based on the hybrid of conducting polymer and metal oxides.

  18. Green material: ecological importance of imperative and sensitive chemi-sensor based on Ag/Ag2O3/ZnO composite nanorods

    PubMed Central

    2013-01-01

    In this report, we illustrate a simple, easy, and low-temperature growth of Ag/Ag2O3/ZnO composite nanorods with high purity and crystallinity. The composite nanorods were structurally characterized by field emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy which confirmed that synthesized product have rod-like morphology having an average cross section of approximately 300 nm. Nanorods are made of silver, silver oxide, and zinc oxide and are optically active having absorption band at 375 nm. The composite nanorods exhibited high sensitivity (1.5823 μA.cm−2.mM−1) and lower limit of detection (0.5 μM) when applied for the recognition of phenyl hydrazine utilizing I-V technique. Thus, Ag/Ag2O3/ZnO composite nanorods can be utilized as a redox mediator for the development of highly proficient phenyl hydrazine sensor. PMID:24011288

  19. Green material: ecological importance of imperative and sensitive chemi-sensor based on Ag/Ag2O3/ZnO composite nanorods

    NASA Astrophysics Data System (ADS)

    Asiri, Abdullah M.; Khan, Sher Bahadar; Rahman, Mohammed M.; Al-Sehemi, Abdullah G.; Al-Sayari, Saleh A.; Al-Assiri, Mohammad Sultan

    2013-09-01

    In this report, we illustrate a simple, easy, and low-temperature growth of Ag/Ag2O3/ZnO composite nanorods with high purity and crystallinity. The composite nanorods were structurally characterized by field emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy which confirmed that synthesized product have rod-like morphology having an average cross section of approximately 300 nm. Nanorods are made of silver, silver oxide, and zinc oxide and are optically active having absorption band at 375 nm. The composite nanorods exhibited high sensitivity (1.5823 μA.cm-2.mM-1) and lower limit of detection (0.5 μM) when applied for the recognition of phenyl hydrazine utilizing I-V technique. Thus, Ag/Ag2O3/ZnO composite nanorods can be utilized as a redox mediator for the development of highly proficient phenyl hydrazine sensor.

  20. A 128×96 Pixel Stack-Type Color Image Sensor: Stack of Individual Blue-, Green-, and Red-Sensitive Organic Photoconductive Films Integrated with a ZnO Thin Film Transistor Readout Circuit

    NASA Astrophysics Data System (ADS)

    Seo, Hokuto; Aihara, Satoshi; Watabe, Toshihisa; Ohtake, Hiroshi; Sakai, Toshikatsu; Kubota, Misao; Egami, Norifumi; Hiramatsu, Takahiro; Matsuda, Tokiyoshi; Furuta, Mamoru; Hirao, Takashi

    2011-02-01

    A color image was produced by a vertically stacked image sensor with blue (B)-, green (G)-, and red (R)-sensitive organic photoconductive films, each having a thin-film transistor (TFT) array that uses a zinc oxide (ZnO) channel to read out the signal generated in each organic film. The number of the pixels of the fabricated image sensor is 128×96 for each color, and the pixel size is 100×100 µm2. The current on/off ratio of the ZnO TFT is over 106, and the B-, G-, and R-sensitive organic photoconductive films show excellent wavelength selectivity. The stacked image sensor can produce a color image at 10 frames per second with a resolution corresponding to the pixel number. This result clearly shows that color separation is achieved without using any conventional color separation optical system such as a color filter array or a prism.

  1. Conductivity and touch-sensor application for atomic layer deposition ZnO and Al:ZnO on nylon nonwoven fiber mats

    SciTech Connect

    Sweet, William J.; Oldham, Christopher J.; Parsons, Gregory N.

    2015-01-15

    Flexible electronics and wearable technology represent a novel and growing market for next generation devices. In this work, the authors deposit conductive zinc oxide films by atomic layer deposition onto nylon-6 nonwoven fiber mats and spun-cast films, and quantify the impact that deposition temperature, coating thickness, and aluminum doping have on the conductivity of the coated substrates. The authors produce aluminum doped zinc oxide (AZO) coated fibers with conductivity of 230 S/cm, which is ∼6× more conductive than ZnO coated fibers. Furthermore, the authors demonstrate AZO coated fibers maintain 62% of their conductivity after being bent around a 3 mm radius cylinder. As an example application, the authors fabricate an “all-fiber” pressure sensor using AZO coated nylon-6 electrodes. The sensor signal scales exponentially under small applied force (<50 g/cm{sup 2}), yielding a ∼10{sup 6}× current change under 200 g/cm{sup 2}. This lightweight, flexible, and breathable touch/force sensor could function, for example, as an electronically active nonwoven for personal or engineered system analysis and diagnostics.

  2. Dancing the tight rope on the nanoscale--Calibrating a heat flux sensor of a scanning thermal microscope.

    PubMed

    Kloppstech, K; Könne, N; Worbes, L; Hellmann, D; Kittel, A

    2015-11-01

    We report on a precise in situ procedure to calibrate the heat flux sensor of a near-field scanning thermal microscope. This sensitive thermal measurement is based on 1ω modulation technique and utilizes a hot wire method to build an accessible and controllable heat reservoir. This reservoir is coupled thermally by near-field interactions to our probe. Thus, the sensor's conversion relation V(th)(Q(GS)*) can be precisely determined. V(th) is the thermopower generated in the sensor's coaxial thermocouple and Q(GS)* is the thermal flux from reservoir through the sensor. We analyze our method with Gaussian error calculus with an error estimate on all involved quantities. The overall relative uncertainty of the calibration procedure is evaluated to be about 8% for the measured conversion constant, i.e., (2.40 ± 0.19) μV/μW. Furthermore, we determine the sensor's thermal resistance to be about 0.21 K/μW and find the thermal resistance of the near-field mediated coupling at a distance between calibration standard and sensor of about 250 pm to be 53 K/μW.

  3. Nanoscale TiO₂-coated LPGs as radiation-tolerant humidity sensors for high-energy physics applications.

    PubMed

    Consales, Marco; Berruti, Gaia; Borriello, Anna; Giordano, Michele; Buontempo, Salvatore; Breglio, Giovanni; Makovec, Alajos; Petagna, Paolo; Cusano, Andrea

    2014-07-15

    This Letter deals with a feasibility analysis for the development of radiation-tolerant fiber-optic humidity sensors based on long-period grating (LPG) technology to be applied in high-energy physics (HEP) experiments currently running at the European Organization for Nuclear Research (CERN). In particular, here we propose a high-sensitivity LPG sensor coated with a finely tuned titanium dioxide (TiO₂) thin layer (~100 nm thick) through the solgel deposition method. Relative humidity (RH) monitoring in the range 0%-75% and at four different temperatures (in the range -10°C-25°C) was carried out to assess sensor performance in real operative conditions required in typical experiments running at CERN. Experimental results demonstrate the very high RH sensitivities of the proposed device (up to 1.4 nm/% RH in correspondence to very low humidity levels), which turned out to be from one to three orders of magnitude higher than those exhibited by fiber Bragg grating sensors coated with micrometer-thin polyimide overlays. The radiation tolerance capability of the TiO₂-coated LPG sensor is also investigated by comparing the sensing performance before and after its exposure to a 1 Mrad dose of γ-ionizing radiation. Overall, the results collected demonstrate the strong potential of the proposed technology with regard to its future exploitation in HEP applications as a robust and valid alternative to the commercial (polymer-based) hygrometers currently used.

  4. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Picotto, G. B.; Koenders, L.; Wilkening, G.

    2009-08-01

    characterization. The papers in the first part report on new or improved instrumentation, details of developments of metrology SFM, improvements to SFM, probes and scanning methods in the direction of nanoscale coordinate measuring machines and true 3D measurements as well as of progress of a 2D encoder based on a regular crystalline lattice. To ensure traceability to the SI unit of length many highly sophisticated instruments are equipped with laser interferometers to measure small displacements in the nanometre range very accurately. Improving these techniques is still a challenge and therefore new interferometric techniques are considered in several papers as well as improved sensors for nanodisplacement measurements or the development of a deep UV microscope for micro- and nanostructures. The tactile measurement of small structures also calls for a better control of forces in the nano- and piconewton range. A nanoforce facility, based on a disk-pendulum with electrostatic stiffness reduction and electrostatic force compensation, is presented for the measurement of small forces. In the second part the contributions are related to calibration and correction strategies and standards such as the development of test objects based on 3D silicon structures, and of samples with irregular surface profiles, and their use for calibration. The shape of the tip and its influence on measurements is still a contentious issue and addressed in several papers: use of nanospheres for tip characterization, a geometrical approach for reconstruction errors by tactile probing. Molecular dynamical calculations, classical as well as ab initio (based on density functional theory), are used to discuss effects of tip-sample relaxation on the topography and to have a better base from which to estimate uncertainties in measurements of small particles or features. Some papers report about measurements of air refractivity fluctuations by phase modulation interferometry, angle-scale traceability by laser

  5. Nanoscale 2013

    NASA Astrophysics Data System (ADS)

    Koenders, Ludger; Ducourtieux, Sebastien

    2014-04-01

    The accurate determination of the properties of micro- and nano-structures is essential in research and development. It is also a prerequisite in process control and quality assurance in industry. In most cases, especially at the nanometer range, knowledge of the dimensional properties of structures is the fundamental base, to which further physical properties are linked. Quantitative measurements presuppose reliable and stable instruments, suitable measurement procedures as well as calibration artifacts and methods. This special issue of Measurement Science and Technology presents selected contributions from the NanoScale 2013 seminar held in Paris, France, on 25 and 26 April. It was the 6th Seminar on NanoScale Calibration Standards and Methods and the 10th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized with the Nanometrology Group of the Technical Committee-Length of EURAMET, the Physikalisch-Technische Bundesanstalt and the Laboratoire National de Métrologie et d'Essais. Three satellite meetings related to nanometrology were coupled to the seminar. The first one was an open Symposium on Scanning Probe Microscopy Standardization organized by the ISO/TC 201/SC9 technical committee. The two others were specific meetings focused on two European Metrology Research Projects funded by the European Association of National Metrology Institutes (EURAMET) (see www.euramet.org), the first one focused on the improvement of the traceability for high accuracy devices dealing with sub-nm length measurement and implementing optical interferometers or capacitive sensors (JRP SIB08 subnano), the second one aiming to develop a new metrological traceability for the measurement of the mechanical properties of nano-objects (JRP NEW05 MechProNo). More than 100 experts from industry, calibration laboratories and metrology institutes from around the world joined the NanoScale 2013 Seminar to attend 23 oral and 64 poster

  6. A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule.

    PubMed

    Lawson, Latevi S; Chan, James W; Huser, Thomas

    2014-07-21

    Chemical sensing on the nanoscale has been breaking new ground since the discovery of surface enhanced Raman scattering (SERS). For nanoparticles, controlled particle aggregation is necessary to achieve the largest SERS enhancements. Therefore, aggregating agents such as salts or linker molecules are used in conjunction with chemically sensitive reporters in order to develop robust environmentally sensitive SERS probes. While salt-induced colloidal nanosphere aggregates have produced robust SERS signals, their variability in aggregate size contributes significantly to poor SERS signal reproducibility, which can complicate their use in in vitro cellular studies. Such systems often also lack reproducibility in spectral measurements between different nanoparticle clusters. Preaggregation of colloids via linkers followed by surface functionalization with reporter molecules results in the linker occupying valuable SERS hotspot volume which could otherwise be utilized by additional reporter molecules. Ideally, both functionalities should be obtained from a single molecule. Here, we report the use of 3,5-dimercaptobenzoic acid, a single multifunctional molecule that creates SERS hotspots via the controlled aggregation of nanoparticles, and also reports pH values. We show that 3,5-dimercaptobenzoic acid bound to Au nanospheres results in an excellent pH nanoprobe, producing very robust, and highly reproducible SERS signals that can report pH across the entire physiological range with excellent pH resolution. To demonstrate the efficacy of our novel pH reporters, these probes were also used to image both the particle and pH distribution in the cytoplasm of human induced pluripotent stem cells (hiPSCs).

  7. Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS(en)0.5 (en = ethylenediamine) precursor. Application in a gas sensor for indoor air contaminant detection.

    PubMed

    Liu, Jinyun; Guo, Zheng; Meng, Fanli; Luo, Tao; Li, Minqiang; Liu, Jinhuai

    2009-03-25

    Novel single-crystalline ZnO nanosheets with porous structure have been fabricated by annealing ZnS(en)(0.5) (en = ethylenediamine) complex precursor. The morphology and structure observations performed by field emission scanning electronic microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) indicate that numerous mesopores with a diameter of about 26.1 nm distribute all through each nanosheet with a high density. The transformation of structure and composition of samples obtained during thermal treatment processes were investigated by x-ray diffraction (XRD), x-ray photoelectron spectrometry (XPS), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) absorption spectroscopy. The formation mechanism of the porous structure is proposed. For indoor air contaminant detection in which formaldehyde and ammonia are employed as target gases, the as-prepared ZnO nanosheets were applied for the fabrication of gas sensors. It was found that the as-fabricated sensors not only exhibit highly sensitive performance, e.g., high gas-sensing responses, short response and recovery time, but also possess significant long-term stability. It is indicated that these ZnO nanostructures could promisingly be applied in electronic devices for environmental evaluation.

  8. Multiscale Modeling of Nano-scale Phenomena: Towards a Multiphysics Simulation Capability for Design and Optimization of Sensor Systems

    SciTech Connect

    Becker, R; McElfresh, M; Lee, C; Balhorn, R; White, D

    2003-12-01

    In this white paper, a road map is presented to establish a multiphysics simulation capability for the design and optimization of sensor systems that incorporate nanomaterials and technologies. The Engineering Directorate's solid/fluid mechanics and electromagnetic computer codes will play an important role in both multiscale modeling and integration of required physics issues to achieve a baseline simulation capability. Molecular dynamic simulations performed primarily in the BBRP, CMS and PAT directorates, will provide information for the construction of multiscale models. All of the theoretical developments will require closely coupled experimental work to develop material models and validate simulations. The plan is synergistic and complimentary with the Laboratory's emerging core competency of multiscale modeling. The first application of the multiphysics computer code is the simulation of a ''simple'' biological system (protein recognition utilizing synthesized ligands) that has a broad range of applications including detection of biological threats, presymptomatic detection of illnesses, and drug therapy. While the overall goal is to establish a simulation capability, the near-term work is mainly focused on (1) multiscale modeling, i.e., the development of ''continuum'' representations of nanostructures based on information from molecular dynamics simulations and (2) experiments for model development and validation. A list of LDRDER proposals and ongoing projects that could be coordinated to achieve these near-term objectives and demonstrate the feasibility and utility of a multiphysics simulation capability is given.

  9. Pure and Sn-, Ga- and Mn-doped ZnO gas sensors working at different temperatures for formaldehyde, humidity, NH3, toluene and CO

    NASA Astrophysics Data System (ADS)

    Han, Ning; Liu, Haidi; Wu, Xiaofeng; Li, Dongyan; Chai, Linyu; Chen, Yunfa

    2011-08-01

    ZnO and Sn-, Ga- and Mn-doped ZnO nanoparticles were prepared by a coprecipitation method, and characterized by scanning electron microscopy (SEM), energy dispersive spectra (EDS), X-ray diffraction (XRD) and Raman spectra. The gas sensing properties were studied using formaldehyde, relative humidity, NH3, toluene and CO as the probes. The results show that all particles have wurtzite ZnO phase, though Sn-ZnO has a relatively smaller particle (and crystallite) size than the other three samples. Gas sensing property tests reveal that the temperature where the gas sensing maximum is gained ( T M) is changed by different dopants: Sn-ZnO and Mn-ZnO have relatively lower T M (˜100°C lower) compared with that of pure ZnO, while Ga-ZnO has the same T M as pure ZnO except in CO sensing. Thermoluminescence (TL) spectra were used to investigate the mechanism of T M change. The peak positions of Ga-ZnO and ZnO are the same at 300-350°C, while that of Sn-ZnO shifts to 250-300°C, which might contribute to the same T M of Ga-ZnO and pure ZnO and relatively lower T M of Sn-ZnO. In the case of Mn-ZnO, the luminescence emission is evidently limited by its black color.

  10. Effect of deposition times on structure of Ga-doped ZnO thin films as humidity sensor

    SciTech Connect

    Khalid, Faridzatul Shahira; Awang, Rozidawati

    2014-09-03

    Gallium doped zinc oxide (GZO) has good electrical property. It is widely used as transparent electrode in photovoltaic devices, and sensing element in gas and pressure sensors. GZO thin film was prepared using magnetron sputtering. Film deposition times were set at 10, 15, 20, 25 and 30 minutes to get samples of different thickness. X-ray diffraction (XRD) was used to determine the structure of GZO thin films. Structure for GZO thin film is hexagonal wurtzite structure. Morphology and thickness of GZO thin films was observed from FESEM micrographs. Grain size and thickness of thin films improved with increasing deposition times. However, increasing the thickness of thin films occur below 25 minutes only. Electrical properties of GZO thin films were studied using a four-point probe technique. The changes in the structure of the thin films lead to the changed of their electrical properties resulting in the reduction of the film resistance. These thin films properties significantly implying the potential application of the sample as a humidity sensor.

  11. Nanoscale Wicking

    NASA Astrophysics Data System (ADS)

    Zhou, Jijie; Sansom, Elijah; Gharib, Mory; Noca, Flavio

    2003-11-01

    A wick is a bundle of fibers that by capillary attraction draws up to be burned a steady supply of the oil in lamps. In textile research, wicking is the process by which liquids are transported across or along fibers by capillary action (of relevance to perspiration). A similar phenomenon was recently discovered in our lab with mats of nanoscale fibers. A droplet containing a surfactant solution was placed on top of a well-aligned mat of carbon nanotubes: wicking was then observed as a film of liquid propagating within the nanocarpet, such as a stain or drop absorbed into a textile fabric. The nanoscale wicking process in carbon nano-arrays offers a simple and enabling technology for the processing (transport, mixing, filtering) of picoliters of fluids without any need for confinement (nanochannel) or bulky driving pressure apparatus. In this work, nanoscale wicking properties are quantified as a function of surfactant activity and carbon nanoarray geometry. The biomolecular sieving capability of the nanotube arrays is also put to test by the addition of biomolecules, while using the wicking process as the fluid driving force.

  12. Feasibility study of ZnO nanowire made accelerometer

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Chan; Ko, Hyun-U.; Song, Sangho; Yun, Youngmin; Kim, Jaehwan

    2016-04-01

    Vertically aligned arrays of ZnO nanowire can be used for many applications such as energy harvesters, UV sensors and mechanical sensors. Here we report the feasibility of a miniaturized accelerometer made with ZnO nanowire. For improving the sensitivity of miniaturized piezoelectric accelerometer, size of piezoelectric ceramic should be large which results in heavy accelerometer and low resonance frequency. To resolve the problem for the miniaturized accelerometer fabrication, ZnO nanowire is chosen. ZnO nanowire, which has piezoelectric property with Wurtzite structure. Since it has high aspect ratio, the use of ZnO nanowire leads to increase deformation and piezoelectric response output. The vertically ZnO nanowire array is grown on a copper substrate by hydrothermal synthesis process. Detail Fabrication process of the miniaturized accelerometer is illustrated. To prove the feasibility of the fabricated accelerometer, dynamic response test is performed in comparison with a commercial accelerometer.

  13. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  14. Nanoscale Proteomics

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Masselon, Christophe D.; Pasa-Tolic, Liljiana; Camp, David G.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-02-01

    This paper describes efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies, i.e. nanoscale proteomics. The approach combines high-efficiency nano-scale LC with advanced MS, including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology developed enables large-scale protein identification from nanogram size proteomic samples and characterization of more abundant proteins from sub-picogram size complex samples. Protein identification in such studies using MS is feasible from <75 zeptomole of a protein, and the average proteome measurement throughput is >200 proteins/h and ~3 h/sample. Higher throughput (>1000 proteins/h) and more sensitive detection limits can be obtained using a “accurate mass and time” tag approach developed at our laboratory. These capabilities lay the foundation for studies from single or limited numbers of cells.

  15. Nanoscale flexoelectricity.

    PubMed

    Nguyen, Thanh D; Mao, Sheng; Yeh, Yao-Wen; Purohit, Prashant K; McAlpine, Michael C

    2013-02-20

    Electromechanical effects are ubiquitous in biological and materials systems. Understanding the fundamentals of these coupling phenomena is critical to devising next-generation electromechanical transducers. Piezoelectricity has been studied in detail, in both the bulk and at mesoscopic scales. Recently, an increasing amount of attention has been paid to flexoelectricity: electrical polarization induced by a strain gradient. While piezoelectricity requires crystalline structures with no inversion symmetry, flexoelectricity does not carry this requirement, since the effect is caused by inhomogeneous strains. Flexoelectricity explains many interesting electromechanical behaviors in hard crystalline materials and underpins core mechanoelectric transduction phenomena in soft biomaterials. Most excitingly, flexoelectricity is a size-dependent effect which becomes more significant in nanoscale systems. With increasing interest in nanoscale and nano-bio hybrid materials, flexoelectricity will continue to gain prominence. This Review summarizes work in this area. First, methods to amplify or manipulate the flexoelectric effect to enhance material properties will be investigated, particularly at nanometer scales. Next, the nature and history of these effects in soft biomaterials will be explored. Finally, some theoretical interpretations for the effect will be presented. Overall, flexoelectricity represents an exciting phenomenon which is expected to become more considerable as materials continue to shrink.

  16. Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties.

    PubMed

    Park, Sunghoon; An, Soyeon; Ko, Hyunsung; Jin, Changhyun; Lee, Chongmu

    2012-07-25

    Polycrystalline ZnO nanowires with grain sizes ranging from 20 to 100 nm were synthesized using a newly designed two-step process: (first step) synthesis of ZnSe nanowires by vapor transportation of a mixture of ZnSe powders; and (second step) thermal oxidation of the ZnSe nanowires at 650 °C. Compared to the single-crystal ZnO nanowire gas sensors and other nanomaterial gas sensors reported previously, the multiple networked nanowire gas sensors fabricated from the nanograined ZnO nanowires showed substantially enhanced electrical responses to NO2 gas at 300 °C. The NO2 gas sensing properties of the nanograined ZnO nanowires increased dramatically with increasing NO2 concentration. The multiple-networked nanograined ZnO nanowire sensor showed a response value of 237,263% at 10 ppm NO2 and 300 °C, whereas the single-crystal ZnO nanowire sensors showed a response of only 6.5% under the same conditions. The recovery time of the nanograined ZnO nanowire sensor was much shorter than that of the normal ZnO nanowire sensor over the NO2 concentration range of 1-10 ppm, even though the response time of the former was somewhat longer than that of the latter. The origin of the enhanced NO2 gas sensing properties of the nanograined ZnO nanowire sensor is discussed.

  17. Hierarchical Carbon Fibers with ZnO Nanowires for Volatile Sensing in Composite Curing (Postprint)

    DTIC Science & Technology

    2014-07-01

    AFRL-RX-WP-JA-2014-0171 HIERARCHICAL CARBON FIBERS WITH ZnO NANOWIRES FOR VOLATILE SENSING IN COMPOSITE CURING (POSTPRINT) Gregory...REPORT TYPE Interim 3. DATES COVERED (From – To) 16 April 2012 – 02 June 2014 4. TITLE AND SUBTITLE HIERARCHICAL CARBON FIBERS WITH ZnO NANOWIRES ...needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a volatile sensor. ZnO nanowires are demonstrated to function as

  18. Effects of Palladium Loading on the Response of a Thick Film Flame-made ZnO Gas Sensor for Detection of Ethanol Vapor

    PubMed Central

    Liewhiran, Chaikarn; Phanichphant, Sukon

    2007-01-01

    ZnO nanoparticles doped with 0-5 mol% Pd were successfully produced in a single step by flame spray pyrolysis (FSP) using zinc naphthenate and palladium (II) acetylacetonate dissolved in toluene-acetonitrile (80:20 vol%) as precursors. The effect of Pd loading on the ethanol gas sensing performance of the ZnO nanoparticles and the crystalline sizes were investigated. The particle properties were analyzed by XRD, BET, AFM, SEM (EDS line scan mode), TEM, STEM, EDS, and CO-pulse chemisorption measurements. A trend of an increase in specific surface area of samples and a decrease in the dBET with increasing Pd concentrations was noted. ZnO nanoparticles were observed as particles presenting clear spheroidal, hexagonal and rod-like morphologies. The sizes of ZnO spheroidal and hexagonal particle crystallites were in the 10-20 nm range. ZnO nanorods were in the range of 10-20 nm in width and 20-50 nm in length. The size of Pd nanoparticles increased and Pd-dispersion% decreased with increasing Pd concentrations. The sensing films were produced by mixing the particles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed onto Al2O3 substrates interdigitated with Au electrodes. The film morphology was analyzed by SEM and EDS analyses. The gas sensing of ethanol (25-250 ppm) was studied in dry air at 400°C. The oxidation of ethanol on the sensing surface of the semiconductor was confirmed by MS. A well-dispersed of 1 mol%Pd/ZnO films showed the highest sensitivity and the fastest response time (within seconds).

  19. UV response of cellulose ZnO hybrid nanocomposite

    NASA Astrophysics Data System (ADS)

    Mun, Seongcheol; Ko, Hyun-U.; Min, Seung-Ki; Kim, Hyun-Chan; Kim, Jaehwan

    2016-04-01

    ZnO nanorods grown cellulose film is a fascinating inorganic-organic hybrid nanocomposite in terms of synergistic properties with semiconductive functionality of ZnO and renewability and flexibility of cellulose film. This paper reports the fabrication and evaluation of cellulose ZnO hybrid nanocomposite (CEZOHN). ZnO nanorod is well grown on a cellulose film by simple chemical reaction with direct seeding and hydrothermal growing. CEZOHN has unique electric, electro-mechanical and photo-electrical behaviors. The performance of CEZOHN is estimated by measuring induced photocurrent under UV exposure. Mechanism of UV sensing and its possible applications for flexible and wearable UV sensor are addressed.

  20. Quantum resonance of nanometre-scale metal-ZnO-metal structure and its application in sensors

    SciTech Connect

    Li, Lijie Rees, Paul

    2016-01-15

    Analysis of the thickness dependence of the potential profile of the metal-ZnO-metal (MZM) structure has been conducted based on Poisson’s equation and Schottky theory. Quantum scattering theory is then used to calculate the transmission probability of an electron passing through the MZM structure. Results show that the quantum resonance (QR) effect becomes pronounced when the thickness of the ZnO film reaches to around 6 nm. Strain induced piezopotentials are considered as biases to the MZM, which significantly changes the QR according to the analysis. This effect can be potentially employed as nanoscale strain sensors.

  1. Nanostructured ZnO - its challenging properties and potential for device applications

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, D.

    2017-01-01

    Nanostructured ZnO possessing interesting structural and optical properties offers challenging opportunities for innovative applications. In this lecture the review of the optical and structural properties of ZnO nanostructured layers is presented. It is shown that they have a direct impact on the parameters of devices involving ZnO. An analysis of current trends in the photovoltaic (PV) field shows that improved light harvesting and efficiency of solar cells can be obtained by implementing nanostructured ZnO layers to process advanced solar cell structures. Because of amenability to doping, high chemical stability, sensitivity to different adsorbed gases, nontoxicity and low cost ZnO attracted much attention for application as gas sensors. The sensitivity of nano-grain ZnO gas elements is comparatively high because of the grain-size effect. Application of nanostructured ZnO for gas sensors and for increasing of light harvesting in solar cells is demonstrated.

  2. Spectroscopic studies on photoelectron transfer from 2-(furan-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole to ZnO, Cu-doped ZnO and Ag-doped ZnO.

    PubMed

    Thanikachalam, V; Arunpandiyan, A; Jayabharathi, J; Karunakaran, C; Ramanathan, P

    2014-09-01

    The 2-(furan-2-yl)-1-phenyl-1H-phenanthro[9,10-d]imidazole [FPI] has been designed and synthesized as fluorescent sensor for nanoparticulate ZnO. The present work investigates the photoelectron transfer (PET) from FPI to ZnO, Cu-doped ZnO and Ag- doped ZnO nanoparticles using electronic and life time spectral measurements. Broad absorption along with red shift indicates the formation of charge-transfer complex [FPI-Nanoparticles]. The photophysical studies indicate lowering of HOMO and LUMO energy levels of FPI on adsorption on ZnO due to FPI- ZnO interaction. The obtained binding constant implies that the binding of FPI with nanoparticles was influenced by the surface modification of ZnO nanoparticles with Cu and Ag.

  3. Functionalised zinc oxide nanowire gas sensors: Enhanced NO(2) gas sensor response by chemical modification of nanowire surfaces.

    PubMed

    Waclawik, Eric R; Chang, Jin; Ponzoni, Andrea; Concina, Isabella; Zappa, Dario; Comini, Elisabetta; Motta, Nunzio; Faglia, Guido; Sberveglieri, Giorgio

    2012-01-01

    Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO(2) produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO(2) down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO(2) compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO(2) target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

  4. Atomic layer deposition of ZnO: a review

    NASA Astrophysics Data System (ADS)

    Tynell, Tommi; Karppinen, Maarit

    2014-04-01

    Due to the unique set of properties possessed by ZnO, thin films of ZnO have received more and more interest in the last 20 years as a potential material for applications such as thin-film transistors, light-emitting diodes and gas sensors. At the same time, the increasingly stringent requirements of the microelectronics industry, among other factors, have led to a dramatic increase in the use of atomic layer deposition (ALD) technique in various thin-film applications. During this time, the research on ALD-grown ZnO thin films has developed from relatively simple deposition studies to the fabrication of increasingly intricate nanostructures and an understanding of the factors affecting the fundamental properties of the films. In this review, we give an overview of the current state of ZnO ALD research including the applications that are being considered for ZnO thin films.

  5. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics.

    PubMed

    McLeod, Euan; Wei, Qingshan; Ozcan, Aydogan

    2015-07-07

    Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future.

  6. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics

    PubMed Central

    2015-01-01

    Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future. PMID:26068279

  7. Atom probe microscopy of zinc isotopic enrichment in ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Ironside, C. N.; Saxey, D. W.; Rickard, W. D. A.; Gray, C.; McGlynn, E.; Reddy, S. M.; Marks, N. A.

    2017-02-01

    We report on atomic probe microscopy (APM) of isotopically enriched ZnO nanorods that measures the spatial distribution of zinc isotopes in sections of ZnO nanorods for natural abundance natZnO and 64Zn and 66Zn enriched ZnO nanorods. The results demonstrate that APM can accurately quantify isotopic abundances within these nanoscale structures. Therefore the atom probe microscope is a useful tool for characterizing Zn isotopic heterostructures in ZnO. Isotopic heterostructures have been proposed for controlling thermal conductivity and also, combined with neutron transmutation doping, they could be key to a novel technology for producing p-n junctions in ZnO thin films and nanorods.

  8. Electronic nose based on multipatterns of ZnO nanorods on a quartz resonator with remote electrodes.

    PubMed

    Ko, Wooree; Jung, Namchul; Lee, Moonchan; Yun, Minhyuk; Jeon, Sangmin

    2013-08-27

    An electrodeless monolithic multichannel quartz crystal microbalance (MQCM) sensor was developed via the direct growth of ZnO nanorod patterns of various sizes onto an electrodeless quartz crystal plate. The patterned ZnO nanorods acted as independent resonators with different frequencies upon exposure to an electric field. The added mass of ZnO nanostructures was found to significantly enhance the quality factor (QF) of the resonator in electrodeless QCM configuration. The QF increased with the length of the ZnO nanorods; ZnO nanorods 5 μm in length yielded a 7-fold higher QF compared to the QF of a quartz plate without ZnO nanorods. In addition, the ZnO nanorods offered enhanced sensitivity due to the enlarged sensing area. The developed sensor was used as an electronic nose for detection of vapor mixtures with impurities.

  9. Synthesis of ZnO nanorods and their application in the construction of a nanostructure-based electrochemical sensor for determination of levodopa in the presence of carbidopa.

    PubMed

    Molaakbari, Elahe; Mostafavi, Ali; Beitollahi, Hadi; Alizadeh, Reza

    2014-09-07

    A novel carbon paste electrode modified with ZnO nanorods and 5-(4'-amino-3'-hydroxy-biphenyl-4-yl)-acrylic acid (3,4'-AAZCPE) was fabricated. The electrochemical study of the modified electrode, as well as its efficiency for the electrocatalytic oxidation of levodopa, is described. The electrode was employed to study the electrocatalytic oxidation of levodopa, using cyclic voltammetry (CV), chronoamperometry (CHA), and square-wave voltammetry (SWV) as diagnostic techniques. It has been found that the oxidation of levodopa at the surface of the modified electrode occurs at a potential of about 370 mV less positive than that of an unmodified carbon paste electrode. The SWV results exhibit a linear dynamic range from 1.0 × 10(-7) M to 7.0 × 10(-5) M and a detection limit of 3.5 × 10(-8) M for levodopa. In addition, this modified electrode was used for the simultaneous determination of levodopa and carbidopa. Finally, the modified electrode was used for the determination of levodopa and carbidopa in some real samples.

  10. Design of a nanoscale time-of-flight sensor and an integrated multiscale module for the point-of-care diagnosis of stroke

    NASA Astrophysics Data System (ADS)

    Andrus, Matthew

    Stroke is a leading cause of death and disability in the United States, however, there remains no rapid diagnostic test for differentiating between ischemic and hemorrhagic stroke within the three-hour treatment window. Here we describe the design of a multiscale microfluidic module with an embedded time-of-flight nanosensor for the clinical diagnosis of stroke. The nanosensor described utilizes two synthetic pores in series, relying on resistive pulse sensing (RPS) to measure the passage of molecules through the time-of-flight tube. Once the nanosensor design was completed, a multiscale module to process patient samples and house the sensors was designed in a similar iterative process. This design utilized pillar arrays, called "pixels" to immobilize oligonucleotides from patient samples for ligase detection reactions (LDR) to be carried out. COMSOL simulations were performed to understand the operation and behavior of both the nanosensor and the modular chip once the designs were completed.

  11. Pulsed laser deposition of ZnO thin films decorated with Au and Pd nanoparticles with enhanced acetone sensing performance

    NASA Astrophysics Data System (ADS)

    Alexiadou, M.; Kandyla, M.; Mousdis, G.; Kompitsas, M.

    2017-04-01

    We fabricate and compare nanocomposite thin-film ZnO chemoresistive acetone sensors with gold or palladium nanoparticles on the surface, at low operating temperatures. The sensors are fabricated by pulsed laser deposition and operate in the temperature range 159-200 °C. The ZnO films are polycrystalline, crystallizing mainly at the (002) and (101) orientations of the hexagonal phase. The nanocomposite ZnO:Au and ZnO:Pd sensors have a lower detection limit and show a response enhancement factor between 2 and 7, compared with pure ZnO sensors. The ZnO:Pd sensor performs better than the ZnO:Au sensor. The ZnO:Pd sensor sensitivity increases with the amount of palladium on the surface, while it remains roughly unchanged with the ZnO thickness. The lowest acetone concentration we detect is 26 ppm for the operating temperature of 200 °C.

  12. MoS2-modified ZnO quantum dots nanocomposite: Synthesis and ultrafast humidity response

    NASA Astrophysics Data System (ADS)

    Ze, Lu; Yueqiu, Gong; Xujun, Li; Yong, Zhang

    2017-03-01

    In this work, ZnO quantum dots (QDs), layered MoS2 and MoS2-modified ZnO QDs (MoS2@ZnO QDs) nanocomposite were synthesized and then applied as humidity sensor. The crystal structure, morphology and element distribution of ZnO QDs, MoS2 and MoS2@ZnO QDs were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectrometry, respectively. The humidity sensing characteristics of the MoS2 and MoS2@ZnO QDs against various relative humidity were measured at room temperature. The results show that the MoS2@ZnO QDs sensor exhibits high sensitivity with an impedance variation of three or four orders of magnitude to relative humidity range of 11-95% and it exhibits a short response-recovery time (1 s for adsorption and 20 s for desorption) and excellent repeatability. The mechanisms of the excellent performance for humidity sensing of MoS2@ZnO QDs sensor were discussed based on its impedance properties. Our work could offer guidelines to design higher performance especially ultrafast humidity response sensor utilizing the nanocomposite structure with two dimensional material and QDs.

  13. The effect of cations on the aggregation of commercial ZnO nanoparticle suspension

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Szu; Peng, Yu-Huei; Shiung, Chia-En; Shih, Yang-hsin

    2012-12-01

    Nanoscale ZnO materials have been largely used in many products due to their distinct properties. However, ZnO nanoparticles (NPs) are hazardous to human health and the ecosystem. The characteristics and the stability of ZnO NPs are relevant to their fate in the environment and their potential toxicities. In this study, a stable commercial ZnO NP suspension was chosen to investigate its aggregation under various salt additions. Different concentrations of NaCl, KCl and CaCl2 were chosen to represent various environmental conditions. Under pH 8-9, the surface charge of commercial ZnO NPs was negative. The behavior of the stabilized ZnO NPs in water was affected by ionic combinations and ionic strength; that is, divalent cations were more effective than monovalent ones in promoting aggregation formation. The attachment efficiencies of ZnO aggregates were calculated based upon the aggregation kinetics. The critical coagulation concentration values for this commercial ZnO NPs were higher than previous reported for ZnO NPs, indicating this ZnO NP could be stable in the aquatic environment and might have increased hazardous potentials. Based upon the Derjaguin-Landau-Verwey-Overbeek theory, interactions between ZnO NPs in the presence of different ions were evaluated to illustrate the aggregation mechanism. Our results indicated that critical ionic type and concentration promote the aggregation of stable ZnO NPs. These understandings also can facilitate the design of the precipitation treatment to remove NPs from water.

  14. Traceable nanoscale measurement at NML-SIRIM

    SciTech Connect

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-06-29

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  15. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method.

    PubMed

    Fang, F; Futter, J; Markwitz, A; Kennedy, J

    2009-06-17

    The UV and humidity sensing properties of ZnO nanorods prepared by arc discharge have been studied. Scanning electron microscopy and photoluminescence spectroscopy were carried out to analyze the morphology and optical properties of the as-synthesized ZnO nanorods. Proton induced x-ray emission was used to probe the impurities in the ZnO nanorods. A large quantity of high purity ZnO nanorod structures were obtained with lengths of 0.5-1 microm. The diameters of the as-synthesized ZnO nanorods were found to be between 40 and 400 nm. The nanorods interlace with each other, forming 3D networks which make them suitable for sensing application. The addition of a polymeric film-forming agent (BASF LUVISKOL VA 64) improved the conductivity, as it facilitates the construction of conducting networks. Ultrasonication helped to separate the ZnO nanorods and disperse them evenly through the polymeric agent. Improved photoconductivity was measured for a ZnO nanorod sensor annealed in air at 200 degrees C for 30 min. The ZnO nanorod sensors showed a UV-sensitive photoconduction, where the photocurrent increased by nearly four orders of magnitude from 2.7 x 10(-10) to 1.0 x 10(-6) A at 18 V under 340 nm UV illumination. High humidity sensitivity and good stability were also measured. The resistance of the ZnO nanorod sensor decreased almost linearly with increasing relative humidity (RH). The resistance of the ZnO nanorods changed by approximately five orders of magnitude from 4.35 x 10(11) Omega in dry air (7% RH) to about 4.95 x 10(6) Omega in 95% RH air. It is experimentally demonstrated that ZnO nanorods obtained by the arc discharge method show excellent performance and promise for applications in both UV and humidity sensors.

  16. Nanoscale Materials? What They Could Do for Sensing Technology

    SciTech Connect

    Sliman, Ginny M.

    2006-02-01

    The unique characteristics of nanoscale materials make them a perfect fit for the sensor world. Integrating these materials into existing sensors can increase the sensitivity, selectivity and speed of the sensor—all of which could translate into enormous leaps in sensor performance. In addition, their high surface area and low volume provide a perfect setup for sensor miniaturization. Researchers at the Department of Energy’s Pacific Northwest National Laboratory are integrating functionalized nanoporous silica and carbon nanotubes—both nanoscale materials—into a variety of sensor applications to meet urgent needs in fields ranging from biomedicine and environmental remediation to national security. The scientists’ goal is to set the stage for developing a miniaturized sensor that uses the smallest sample possible to detect the smallest concentration possible of molecules of interest.

  17. Improvement in LPG sensing response by surface activation of ZnO thick films with Cr2O3

    NASA Astrophysics Data System (ADS)

    Hastir, Anita; Virpal, Kaur, Jasmeet; Singh, Gurpreet; Kohli, Nipin; Singh, Onkar; Singh, Ravi Chand

    2015-05-01

    Liquefied Petroleum Gas (LPG) sensing response of pure and Cr2O3 activated ZnO has been investigated in this study. Zinc oxide was synthesized by co-precipitation route and deposited as a thick film on an alumina substrate. The surface of ZnO sensor was activated by chromium oxide on surface oxidation by chromium chloride. The concentration of chromium chloride solution used to activate the ZnO sensor surface has been varied from 0 to 5 %. It is observed that response to LPG has improved as compared to pure ZnO.

  18. Synthesis of ordered large-scale ZnO nanopore arrays

    NASA Astrophysics Data System (ADS)

    Ding, G. Q.; Shen, W. Z.; Zheng, M. J.; Fan, D. H.

    2006-03-01

    An effective approach is demonstrated for growing ordered large-scale ZnO nanopore arrays through radio-frequency magnetron sputtering deposition on porous alumina membranes (PAMs). The realization of highly ordered hexagonal ZnO nanopore arrays benefits from the unique properties of ZnO (hexagonal structure, polar surfaces, and preferable growth directions) and PAMs (controllable hexagonal nanopores and localized negative charges). Further evidence has been shown through the effects of nanorod size and thermal treatment of PAMs on the yielded morphology of ZnO nanopore arrays. This approach opens the possibility of creating regular semiconducting nanopore arrays for the application of filters, sensors, and templates.

  19. AlGaN/GaN HEMT And ZnO nanorod-based sensors for chemical and bio-applications

    NASA Astrophysics Data System (ADS)

    Chu, B. H.; Kang, B. S.; Wang, H. T.; Chang, C. Y.; Lele, T.,; Tseng, Y.; Goh, A.; Sciullo, A.; Wu, W. S.; Lin, J. N.; Gila, B. P.; Pearton, S. J.; Johnson, J. W.; Piner, E. L.; Linthicum, K. J.; Ren, F.

    2009-02-01

    Chemical sensors can be used to analyze a wide variety of environmental and biological gases and liquids and may need to be able to selectively detect a target analyte. Different methods, including gas chromatography (GC), chemiluminescence, selected ion flow tube (SIFT), and mass spectroscopy (MS) have been used to measure biomarkers. These methods show variable results in terms of sensitivity for some applications and may not meet the requirements for a handheld biosensor. A promising sensing technology utilizes AlGaN/GaN high electron mobility transistors (HEMTs). HEMT structures have been developed for use in microwave power amplifiers due to their high two dimensional electron gas (2DEG) mobility and saturation velocity. The conducting 2DEG channel of GaN/AlGaN HEMTs is very close to the surface and extremely sensitive to adsorption of analytes. HEMT sensors can be used for detecting gases, ions, pH values, proteins, and DNA. In this paper we review recent progress on functionalizing the surface of HEMTs for specific detection of glucose, kidney marker injury molecules, prostate cancer and other common substances of interest in the biomedical field.

  20. Nanostructured ZnO Films for Room Temperature Ammonia Sensing

    NASA Astrophysics Data System (ADS)

    Dhivya Ponnusamy; Sridharan Madanagurusamy

    2014-09-01

    Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV-Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (˜30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.

  1. Frictional Properties of UV illuminated ZnO Thin Films Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Chiu, Hsiang-Chih; Chang, Huan-Pu; Lo, Fang-Yu; Yeh, Yu-Ting; Department of Physics, National Taiwan Normal University Collaboration

    Zinc Oxide (ZnO) nanostructures have potential applications in nano-electro-mechanical systems (NEMS) due to their unique physical properties. ZnO is also an excellent lubricant and hence a promising candidate for protective coatings in NEMS. By means of atomic force microscopy (AFM), we have investigated the frictional properties of ZnO thin films prepared by pulsed laser deposition technique. In addition, UV illumination is used to convert the surface wettability of ZnO thin films from being more hydrophobic to superhydrophilic via the photo-catalyst effect. We found that the frictional properties of the UV illuminated, superhydrophilic ZnO surface are strongly dependent on the environment humidity. While for hydrophobic ZnO, no such dependence is found. The observed frictional behaviors can be explained by the interplay between the surface roughness, environmental humidity and the presence of nanoscale capillary condensation forming between surface asperities at the tip-ZnO contact. Our results might find applications in future ZnO related NEMS. Frictional Properties of UV illuminated ZnO Thin Films Grown by Pulsed Laser Deposition.

  2. Nitrogen oxides and ammonia sensing characteristics of SILAR deposited ZnO thin film

    NASA Astrophysics Data System (ADS)

    Lupan, O. I.; Shishiyanu, S. T.; Shishiyanu, T. S.

    2007-07-01

    Pure and Sn, Ni doped ZnO thin films were deposited on glass substrates using a novel successive ionic layer adsorption and reaction (SILAR) method at room temperature. Microstructures of the deposited films were optimized by adjusting growth parameters. The variation in resistivity of the ZnO film sensors was performed with rapid photothermal processing (RPP). The effect of rapid photothermal processing was found to have an important role in ZnO based sensor sensitivity to NO 2, NH 3. While the undoped ZnO film surface exhibited higher NH 3 sensitivity than that of NO 2, an enhanced NO 2 sensitivity was noticed for the ZnO films doped with Sn and higher NH 3 sensitivity was obtained by Ni doping.

  3. A nanoscale probe for fluidic and ionic transport

    NASA Astrophysics Data System (ADS)

    Bourlon, Bertrand; Wong, Joyce; Mikó, Csilla; Forró, László; Bockrath, Marc

    2007-02-01

    Surface science and molecular biology are often concerned with systems governed by fluid dynamics at the nanoscale, where different physical behaviour is expected. With advances in nanofabrication techniques, the study of fluid dynamics around a nano-object or in a nano channel is now more accessible experimentally and has become an active field of research. However, developing nanoscale probes that can act as flow sensors and that can be easily integrated remains difficult. Many studies demonstrate that carbon nanotubes (CNTs) have outstanding potential for nanoscale sensing, acting as strain or charge sensors in chemical and biological environments. Although nanotube flow sensors composed of bulk nanotubes have been demonstrated, they are not readily miniaturized to nanoscale dimensions. Here we report that individual carbon nanotube transistors of ~2 nm diameter, incorporated into microfluidic channels, locally sense the change in electrostatic potential induced by the flow of an ionic solution. We demonstrate that the nanotube conductance changes in response to the flow rate, functioning as a nanoscale flow sensor.

  4. Organic solvent wetting properties of UV and plasma treated ZnO nanorods: printed electronics approach

    NASA Astrophysics Data System (ADS)

    Sliz, Rafal; Suzuki, Yuji; Nathan, Arokia; Myllyla, Risto; Jabbour, Ghassan

    2012-09-01

    Due to low manufacturing costs, printed organic solar cells are on the short-list of renewable and environmentally- friendly energy production technologies of the future. However, electrode materials and each photoactive layer require different techniques and approaches. Printing technologies have attracted considerable attention for organic electronics due to their potentially high volume and low cost processing. A case in point is the interface between the substrate and solution (ink) drop, which is a particularly critical issue for printing quality. In addition, methods such as UV, oxygen and argon plasma treatments have proven suitable to increasing the hydrophilicity of treated surfaces. Among several methods of measuring the ink-substrate interface, the simplest and most reliable is the contact angle method. In terms of nanoscale device applications, zinc oxide (ZnO) has gained popularity, owing to its physical and chemical properties. In particular, there is a growing interest in exploiting the unique properties that the so-called nanorod structure exhibits for future 1-dimensional opto-electronic devices. Applications, such as photodiodes, thin-film transistors, sensors and photo anodes in photovoltaic cells have already been demonstrated. This paper presents the wettability properties of ZnO nanorods treated with UV illumination, oxygen and argon plasma for various periods of time. Since this work concentrates on solar cell applications, four of the most common solutions used in organic solar cell manufacture were tested: P3HT:PCBM DCB, P3HT:PCBM CHB, PEDOT:PSS and water. The achieved results prove that different treatments change the contact angle differently. Moreover, solvent behaviour varied uniquely with the applied treatment.

  5. Reducing ZnO nanoparticle cytotoxicity by surface modification

    NASA Astrophysics Data System (ADS)

    Luo, Mingdeng; Shen, Cenchao; Feltis, Bryce N.; Martin, Lisandra L.; Hughes, Anthony E.; Wright, Paul F. A.; Turney, Terence W.

    2014-05-01

    Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than altering either intracellular or extracellular Zn dissolution.Nanoparticulate zinc oxide (ZnO) is one of the most widely used engineered nanomaterials and its toxicology has gained considerable recent attention. A key aspect for controlling biological interactions at the nanoscale is understanding the relevant nanoparticle surface chemistry. In this study, we have determined the disposition of ZnO nanoparticles within human immune cells by measurement of total Zn, as well as the proportions of extra- and intracellular dissolved Zn as a function of dose and surface coating. From this mass balance, the intracellular soluble Zn levels showed little difference in regard to dose above a certain minimal level or to different surface coatings. PEGylation of ZnO NPs reduced their cytotoxicity as a result of decreased cellular uptake arising from a minimal protein corona. We conclude that the key role of the surface properties of ZnO NPs in controlling cytotoxicity is to regulate cellular nanoparticle uptake rather than

  6. ZnO Thin Film Electronics for More than Displays

    NASA Astrophysics Data System (ADS)

    Ramirez, Jose Israel

    discharging time constants. Finally, to circumvent fabrication challenges on predetermined complex shapes, like curved mirror optics, a technique to transfer electronics from a rigid substrate to a flexible substrate is used. This technique allows various thin films, regardless of their deposition temperature, to be transferred to flexible substrates. Finally, ultra-low power operation of ZnO TFT gas sensors was demonstrated. The ZnO ozone sensors were optimized to operate with excellent electrical stability in ambient conditions, without using elevated temperatures, while still providing good gas sensitivity. This was achieved by using a post-deposition anneal and by partially passivating the contact regions while leaving the semiconductor sensing area open to the ambient. A novel technique to reset the gas sensor using periodic pulsing of a UV light over the sensor results in less than 25 milliseconds recovery time. A pathway to achieve gas selectivity by using organic thin-film layers as filters deposited over the gas sensors tis demonstrated. The ZnO ozone sensor TFTs and the UV light operate at room temperature with an average power below 1 muW.

  7. Highly efficient excitonic emission of CBD grown ZnO micropods (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Aad, Roy; Gokarna, Anisha; Nomenyo, Komla; Miska, Patrice; Geng, Wei; Couteau, Christophe; Lérondel, Gilles

    2015-10-01

    Due to its wide direct band gap and large exciton binding energy allowing for efficient excitonic emission at room temperature, ZnO has attracted attention as a luminescent material in various applications such as UV-light emitting diodes, chemical sensors and solar cells. While low-cost growth techniques, such as chemical bath deposition (CBD), of ZnO thin films and nanostructures have been already reported; nevertheless, ZnO thin films and nanostructures grown by costly techniques, such as metalorganic vapour phase epitaxy, still present the most interesting properties in terms of crystallinity and internal quantum efficiency. In this work, we report on highly efficient and highly crystalline ZnO micropods grown by CBD at a low temperature (< 90°C). XRD and low-temperature photoluminescence (PL) investigations on as-grown ZnO micropods revealed a highly crystalline ZnO structure and a strong UV excitonic emission with internal quantum efficiency (IQE) of 10% at room temperature. Thermal annealing at 900°C of the as-grown ZnO micropods leads to further enhancement in their structural and optical properties. Low-temperature PL measurements on annealed ZnO micropods showed the presence of phonon replicas, which was not the case for as-grown samples. The appearance of phonon replicas provides a strong proof of the improved crystal quality of annealed ZnO micropods. Most importantly, low-temperature PL reveals an improved IQE of 15% in the excitonic emission of ZnO micropods. The ZnO micropods IQE reported here are comparable to IQEs reported on ZnO structures obtained by costly and more complex growth techniques. These results are of great interest demonstrating that high quality ZnO microstructures can be obtained at low temperatures using a low-cost CBD growth technique.

  8. Electrochemical route to the synthesis of ZnO microstructures: its nestlike structure and holding of Ag particles

    PubMed Central

    2013-01-01

    Abstract A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO. PACS 81 Materials science 81.07.-b nanoscale materials and structures Fabrication Characterization 81.15.-z Methods of deposition of films Coatings Film growth and epitaxy. PMID:23414592

  9. Electrochemical route to the synthesis of ZnO microstructures: its nestlike structure and holding of Ag particles.

    PubMed

    Ding, Ling; Zhang, Ruixue; Fan, Louzhen

    2013-02-15

    A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO. PACS: 81 Materials science 81.07.-b nanoscale materials and structures Fabrication Characterization 81.15.-z Methods of deposition of films Coatings Film growth and epitaxy.

  10. Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors.

    PubMed

    Dilonardo, Elena; Penza, Michele; Alvisi, Marco; Cassano, Gennaro; Di Franco, Cinzia; Palmisano, Francesco; Torsi, Luisa; Cioffi, Nicola

    2017-01-01

    Pristine and electrochemically Pd-modified ZnO nanorods (ZnO NRs) were proposed as active sensing layers in chemiresistive gas sensors for hydrocarbon (HC) gas detection (e.g., CH4, C3H8, C4H10). The presence of Pd nanoparticles (NPs) on the surface of ZnO NRs, obtained after the thermal treatment at 550 °C, was revealed by morphological and surface chemical analyses, using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The effect of the Pd catalyst on the performance of the ZnO-based gas sensor was evaluated by comparing the sensing results with those of pristine ZnO NRs, at an operating temperature of 300 °C and for various HC gas concentrations in the range of 30-1000 ppm. The Pd-modified ZnO NRs showed a higher selectivity and sensitivity compared to pristine ZnO NRs. The mean sensitivity of Pd-modified ZnO NRs towards the analyzed HCs gases increased with the length of the hydrocarbon chain of the target gas molecule. Finally, the evaluation of the selectivity revealed that the presence or the absence of metal nanoparticles on ZnO NRs improves the selectivity in the detection of specific HCs gaseous molecules.

  11. Hydrothermal synthesis of various hierarchical ZnO nanostructures and their methane sensing properties.

    PubMed

    Zhou, Qu; Chen, Weigen; Xu, Lingna; Peng, Shudi

    2013-05-10

    Hierarchical flower-like ZnO nanorods, net-like ZnO nanofibers and ZnO nanobulks have been successfully synthesized via a surfactant assisted hydrothemal method. The synthesized products were characterized by X-ray powder diffraction and field emission scanning electron microscopy, respectively. A possible growth mechanism of the various hierarchical ZnO nanostructures is discussed in detail. Gas sensors based on the as-prepared ZnO nanostructures were fabricated by screen-printing on a flat ceramic substrate. Furthermore, their gas sensing characteristics towards methane were systematically investigated. Methane is an important characteristic hydrocarbon contaminant found dissolved in power transformer oil as a result of faults. We find that the hierarchical flower-like ZnO nanorods and net-like ZnO nanofibers samples show higher gas response and lower operating temperature with rapid response-recovery time compared to those of sensors based on ZnO nanobulks. These results present a feasible way of exploring high performance sensing materials for on-site detection of characteristic fault gases dissolved in transformer oil.

  12. Hydrothermal Synthesis of Various Hierarchical ZnO Nanostructures and Their Methane Sensing Properties

    PubMed Central

    Zhou, Qu; Chen, Weigen; Xu, Lingna; Peng, Shudi

    2013-01-01

    Hierarchical flower-like ZnO nanorods, net-like ZnO nanofibers and ZnO nanobulks have been successfully synthesized via a surfactant assisted hydrothemal method. The synthesized products were characterized by X-ray powder diffraction and field emission scanning electron microscopy, respectively. A possible growth mechanism of the various hierarchical ZnO nanostructures is discussed in detail. Gas sensors based on the as-prepared ZnO nanostructures were fabricated by screen-printing on a flat ceramic substrate. Furthermore, their gas sensing characteristics towards methane were systematically investigated. Methane is an important characteristic hydrocarbon contaminant found dissolved in power transformer oil as a result of faults. We find that the hierarchical flower-like ZnO nanorods and net-like ZnO nanofibers samples show higher gas response and lower operating temperature with rapid response-recovery time compared to those of sensors based on ZnO nanobulks. These results present a feasible way of exploring high performance sensing materials for on-site detection of characteristic fault gases dissolved in transformer oil. PMID:23666136

  13. Sensitive detection of hydrocarbon gases using electrochemically Pd-modified ZnO chemiresistors

    PubMed Central

    Alvisi, Marco; Cassano, Gennaro; Di Franco, Cinzia; Palmisano, Francesco; Torsi, Luisa

    2017-01-01

    Pristine and electrochemically Pd-modified ZnO nanorods (ZnO NRs) were proposed as active sensing layers in chemiresistive gas sensors for hydrocarbon (HC) gas detection (e.g., CH4, C3H8, C4H10). The presence of Pd nanoparticles (NPs) on the surface of ZnO NRs, obtained after the thermal treatment at 550 °C, was revealed by morphological and surface chemical analyses, using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The effect of the Pd catalyst on the performance of the ZnO-based gas sensor was evaluated by comparing the sensing results with those of pristine ZnO NRs, at an operating temperature of 300 °C and for various HC gas concentrations in the range of 30–1000 ppm. The Pd-modified ZnO NRs showed a higher selectivity and sensitivity compared to pristine ZnO NRs. The mean sensitivity of Pd-modified ZnO NRs towards the analyzed HCs gases increased with the length of the hydrocarbon chain of the target gas molecule. Finally, the evaluation of the selectivity revealed that the presence or the absence of metal nanoparticles on ZnO NRs improves the selectivity in the detection of specific HCs gaseous molecules. PMID:28144567

  14. (Al, Er) co-doped ZnO nanoparticles for photodegradation of rhodamine blue

    NASA Astrophysics Data System (ADS)

    Ghomri, R.; Shaikh, M. Nasiruzzaman; Ahmed, M. I.; Bououdina, M.; Ghers, M.

    2016-10-01

    Pure and co-doped (Al, Er) ZnO nanoparticles (NPs) have been synthesized by hydrothermal method using (Zn, Er and Al) nitrates. X-ray diffraction patterns reveal the formation of single phase of ZnO würtzite-type structure. The crystallite size for pure ZnO is in the order of 26.5 nm which decreases up to the range 14.2-22.0 nm after (Al, Er) co-doping. SEM micrographs show that the specimen is composed of regular spherical particles in the nanoscale regime with homogeneous size distribution and high tendency to agglomeration. FTIR spectra exhibit absorption lines located at wavenumbers corresponding to vibration modes between the constituent atoms. Raman spectra recorded under excitation ( λ exc = 632.8 nm) reveal peaks related to modes of transverse and longitudinal optical phonons of the würtzite ZnO structure. The energy band gap E g of ZnO:(Al, Er) NPs ranges in 3.264-3.251 eV. The photocatalytic activity of pure and co-doped (Al, Er) ZnO NPs was evaluated by the photodegradation of rhodamine blue under an irradiation of wavelength 554 nm. It is found that a photodegradation rate above 90 % could be achieved for a period of time of 40 min for pure ZnO and 120 min for (Al, Er) co-doped ZnO. A photodegradation mechanism is proposed.

  15. Self-Assembled 3D ZnO Porous Structures with Exposed Reactive {0001} Facets and Their Enhanced Gas Sensitivity

    PubMed Central

    Chang, Jin; Ahmad, Muhammad Z.; Wlodarski, Wojtek; Waclawik, Eric R.

    2013-01-01

    Complex three-dimensional structures comprised of porous ZnO plates were synthesized in a controlled fashion by hydrothermal methods. Through subtle changes to reaction conditions, the ZnO structures could be self-assembled from 20 nm thick nanosheets into grass-like and flower-like structures which led to the exposure of high proportions of ZnO {0001} crystal facets for both these materials. The measured surface area of the flower-like and the grass, or platelet-like ZnO samples were 72.8 and 52.4 m2·g−1, respectively. Gas sensing results demonstrated that the porous, flower-like ZnO structures exhibited enhanced sensing performance towards NO2 gas compared with either grass-like ZnO or commercially sourced ZnO nanoparticle samples. The porous, flower-like ZnO structures provided a high surface area which enhanced the ZnO gas sensor response. X-ray photoelectron spectroscopy characterization revealed that flower-like ZnO samples possessed a higher percentage of oxygen vacancies than the other ZnO sample-types, which also contributed to their excellent gas sensing performance. PMID:23820747

  16. Self-assembled 3D ZnO porous structures with exposed reactive {0001} facets and their enhanced gas sensitivity.

    PubMed

    Chang, Jin; Ahmad, Muhammad Z; Wlodarski, Wojtek; Waclawik, Eric R

    2013-07-02

    Complex three-dimensional structures comprised of porous ZnO plates were synthesized in a controlled fashion by hydrothermal methods. Through subtle changes to reaction conditions, the ZnO structures could be self-assembled from 20 nm thick nanosheets into grass-like and flower-like structures which led to the exposure of high proportions of ZnO {0001} crystal facets for both these materials. The measured surface area of the flower-like and the grass, or platelet-like ZnO samples were 72.8 and 52.4 m2∙g-1, respectively. Gas sensing results demonstrated that the porous, flower-like ZnO structures exhibited enhanced sensing performance towards NO2 gas compared with either grass-like ZnO or commercially sourced ZnO nanoparticle samples. The porous, flower-like ZnO structures provided a high surface area which enhanced the ZnO gas sensor response. X-ray photoelectron spectroscopy characterization revealed that flower-like ZnO samples possessed a higher percentage of oxygen vacancies than the other ZnO sample-types, which also contributed to their excellent gas sensing performance.

  17. ZnO Functionalization of Multi-walled Carbon Nanotubes for Methane Sensing at Single Parts Per Million Concentration Levels

    EPA Science Inventory

    This paper presents a novel atomic layer deposition (ALD) based ZnO functionalization of surface pre-treated multi-walled carbon nanotubes (MWCNTs) for highly sensitive methane chemoresistive sensors. The temperature optimization of the ALD process leads to enhanced ZnO nanopart...

  18. Toward nanoscale genome sequencing.

    PubMed

    Ryan, Declan; Rahimi, Maryam; Lund, John; Mehta, Ranjana; Parviz, Babak A

    2007-09-01

    This article reports on the state-of-the-art technologies that sequence DNA using miniaturized devices. The article considers the miniaturization of existing technologies for sequencing DNA and the opportunities for cost reduction that 'on-chip' devices can deliver. The ability to construct nano-scale structures and perform measurements using novel nano-scale effects has provided new opportunities to identify nucleotides directly using physical, and not chemical, methods. The challenges that these technologies need to overcome to provide a US$1000-genome sequencing technology are also presented.

  19. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    SciTech Connect

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Mohamed, Azman Seeni; Saifuddin, Siti Nazmin; Masudi, Sam’an Malik; Mohamad, Dasmawati

    2015-04-24

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  20. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    NASA Astrophysics Data System (ADS)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Mohamed, Azman Seeni; Saifuddin, Siti Nazmin; Masudi, Sam'an Malik; Mohamad, Dasmawati

    2015-04-01

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  1. LED-controlled tuning of ZnO nanowires’ wettability for biosensing applications

    PubMed Central

    Bhavsar, Kaushalkumar; Ross, Duncan; Prabhu, Radhakrishna; Pollard, Pat

    2015-01-01

    Background Wettability is an important property of solid materials which can be controlled by surface energy. Dynamic control over the surface wettability is of great importance for biosensing applications. Zinc oxide (ZnO) is a biocompatible material suitable for biosensors and microfluidic devices. Nanowires of ZnO tend to show a hydrophobic nature which decelerates the adhesion or adsorption of biomolecules on the surface and, therefore, limits their application. Methods Surface wettability of the ZnO nanowires can be tuned using light irradiation. However, the control over wettability using light-emitting diodes (LEDs) and the role of wavelength in controlling the wettability of ZnO nanowires are unclear. This is the first report on LED-based wettability control of nanowires, and it includes investigations on tuning the desired wettability of ZnO nanowires using LEDs as a controlling tool. Results The investigations on spectral properties of the LED emission on ZnO nanowires’ wettability have shown strong dependency on the spectral overlap of LED emission on ZnO absorption spectra. Results indicate that LEDs offer an advanced control on dynamically tuning the wettability of ZnO nanowires. Conclusion The spectral investigations have provided significant insight into the role of irradiating wavelength of light and irradiation time on the surface wettability of ZnO nanowires. This process is suitable to realize on chip based integrated sensors and has huge potential for eco-friendly biosensing and environmental sensing applications. PMID:25855065

  2. Oxygen sensing characteristics of individual ZnO nanowire transistors

    SciTech Connect

    Li, Q.H.; Liang, Y.X.; Wan, Q.; Wang, T.H.

    2004-12-27

    Individual ZnO nanowire transistors are fabricated, and their sensing properties are investigated. The transistors show a carrier density of 2300 {mu}m{sup -1} and mobility up to 6.4 cm{sup 2}/V s, which are obtained from the I{sub SD}-V{sub G} curves. The threshold voltage shifts in the positive direction and the source-drain current decreases as ambient oxygen concentration increases. However, the opposite occurs when the transistors are under illumination. Surface adsorbates on the ZnO nanowires affect both the mobility and the carrier density. Our data are helpful in understanding the sensing mechanism of the gas sensors.

  3. Nanoscale Ionic Liquids

    DTIC Science & Technology

    2006-11-01

    management applications, electrolytes for high-temperature fuel cells/batteries, ferrofluids for actuators, compliant electrodes, zero VOC inks for...high- temperature fuel cells/batteries, zero VOC inks for microfabrication, compliant electrodes, ferrofluids for actuators or high refractive index...40,) [1] carbon nanotubes [9] and metals [10]. Since y-Fe 20 3 is magnetic, solvent- less ferrofluids are now possible. The ZnO fluids combine fluidity

  4. Multi-Frequency Band Pyroelectric Sensors

    PubMed Central

    Hsiao, Chun-Ching; Liu, Sheng-Yi

    2014-01-01

    A methodology is proposed for designing a multi-frequency band pyroelectric sensor which can detect subjects with various frequencies or velocities. A structure with dual pyroelectric layers, consisting of a thinner sputtered ZnO layer and a thicker aerosol ZnO layer, proved helpful in the development of the proposed sensor. The thinner sputtered ZnO layer with a small thermal capacity and a rapid response accomplishes a high-frequency sensing task, while the thicker aerosol ZnO layer with a large thermal capacity and a tardy response is responsible for low-frequency sensing tasks. A multi-frequency band pyroelectric sensor is successfully designed, analyzed and fabricated in the present study. The range of the multi-frequency sensing can be estimated by means of the proposed design and analysis to match the thicknesses of the sputtered and the aerosol ZnO layers. The fabricated multi-frequency band pyroelectric sensor with a 1 μm thick sputtered ZnO layer and a 20 μm thick aerosol ZnO layer can sense a frequency band from 4000 to 40,000 Hz without tardy response and low voltage responsivity. PMID:25429406

  5. Pulsed laser deposition of two-dimensional ZnO nanocrystals on Au(111): growth, surface structure and electronic properties

    NASA Astrophysics Data System (ADS)

    Tumino, F.; Casari, C. S.; Passoni, M.; Bottani, C. E.; Li Bassi, A.

    2016-11-01

    Two-dimensional (2D) ZnO structures have been deposited on the Au(111) surface by means of the pulsed laser deposition technique. In situ scanning tunneling microscopy and scanning tunneling spectroscopy measurements have been performed to characterize morphological, structural and electronic properties of 2D ZnO at the nanoscale. Starting from a sub-monolayer coverage, we investigated the growth of ZnO, identifying different atomic layers (up to the fifth). At low coverage, we observed single- and bi-layer nanocrystals, characterized by a surface moiré pattern that is associated to a graphene-like ZnO structure. By increasing the coverage, we revealed a morphological change starting from the fourth layer, which was attributed to a transition toward a bulk-like structure. Investigation of the electronic properties revealed the semiconducting character of 2D ZnO. We observed a dependence of the density of states (DOS) and, in particular, of the conduction band (CB) on the ZnO thickness, with a decreasing of the CB onset energy for increasing thickness. The CB DOS of 2D ZnO shows a step-like behaviour which may be interpreted as due to a 2D quantum confinement effect in ZnO atomic layers.

  6. Nanoscale Semiconductor Devices as New Biomaterials

    PubMed Central

    Zimmerman, John; Parameswaran, Ramya; Tian, Bozhi

    2016-01-01

    Research on nanoscale semiconductor devices will elicit a novel understanding of biological systems. First, we discuss why it is necessary to build interfaces between cells and semiconductor nanoelectronics. Second, we describe some recent molecular biophysics studies with nanowire field effect transistor sensors. Third, we present the use of nanowire transistors as electrical recording devices that can be integrated into synthetic tissues and targeted intra- or extracellularly to study single cells. Lastly, we discuss future directions and challenges in further developing this area of research, which will advance biology and medicine. PMID:27213041

  7. Nanoscale Semiconductor Devices as New Biomaterials.

    PubMed

    Zimmerman, John; Parameswaran, Ramya; Tian, Bozhi

    2014-05-01

    Research on nanoscale semiconductor devices will elicit a novel understanding of biological systems. First, we discuss why it is necessary to build interfaces between cells and semiconductor nanoelectronics. Second, we describe some recent molecular biophysics studies with nanowire field effect transistor sensors. Third, we present the use of nanowire transistors as electrical recording devices that can be integrated into synthetic tissues and targeted intra- or extracellularly to study single cells. Lastly, we discuss future directions and challenges in further developing this area of research, which will advance biology and medicine.

  8. Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity

    NASA Astrophysics Data System (ADS)

    Liang, Xu; Hu, Shuling; Shen, Shengping

    2017-03-01

    Due to the electromechanical coupling effect, mechanical energy can be converted into electrical energy in certain materials. A theoretical framework is established to investigate the circuit voltage, electric power of nanoscale mechanical energy harvesting, in which the mechanical vibration energy was converted into electrical energy by piezoelectric and flexoelectric effects. Analytical solutions for the maximum electric potential, circuit voltage and electric power generated in bent BaTiO3 (BT), ZnO nanowires (NWs) and Pb(Mg1/3Nb2/3)O3 (PMN) nanofilms (NFs) were derived. Static and dynamic analyses are conducted to obtain the fundamental information of these mechanical energy harvestings. Different from the previous studies, the flexoelectric-mechanism are included in the fundamental mechanical frameworks. The maximum electric potential generated in the BT, ZnO NWs and PMN NF is found to be enhanced by flexoelectricity in the static case, meanwhile the circuit voltage and electric power are dramatic enhanced by flexoelectricity when the geometric dimensions shrinks to dozens of nanometers. The mechanical limitation condition is employed to calculate the practical maximum electric potential, circuit voltage and electric power. This work tries to provide a comprehensive understanding of the mechanical energy harvesting capability of these nanoscale structures and provide valuable information for designing flexoelectricity-based nanogenerator devices.

  9. Mapping nanoscale light fields

    NASA Astrophysics Data System (ADS)

    Rotenberg, N.; Kuipers, L.

    2014-12-01

    The control of light fields on subwavelength scales in nanophotonic structures has become ubiquitous, driven by both curiosity and a multitude of applications in fields ranging from biosensing to quantum optics. Mapping these fields in detail is crucial, as theoretical modelling is far from trivial and highly dependent on nanoscale geometry. Recent developments of nanoscale field mapping, particularly with near-field microscopy, have not only led to a vastly increased resolution, but have also resulted in increased functionality. The phase and amplitude of different vector components of both the electric and magnetic fields are now accessible, as is the ultrafast temporal or spectral evolution of propagating pulses in nanostructures. In this Review we assess the current state-of-the-art of subwavelength light mapping, highlighting the new science and nanostructures that have subsequently become accessible.

  10. Optical and morphological properties of graphene sheets decorated with ZnO nanowires via polyol enhancement

    SciTech Connect

    Sharma, Vinay Rajaura, Rajveer Singh; Sharma, Preetam K.; Srivastava, Subodh; Vijay, Y. K.; Sharma, S. S.

    2014-04-24

    Graphene-ZnO nanocomposites have proven to be very useful materials for photovoltaic and sensor applications. Here, we report a facile, one-step in situ polymerization method for synthesis of graphene sheets randomly decorated with zinc oxide nanowires using ethylene glycol as solvent. We have used hydrothermal treatment for growth of ZnO nanowires. UV-visible spectra peak shifting around 288nm and 307 nm shows the presence of ZnO on graphene structure. Photoluminiscence spectra (PL) in 400nm-500nm region exhibits the luminescence quenching effect. Scanning electron microscopy (SEM) image confirms the growth of ZnO nanowires on graphene sheets.

  11. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  12. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  13. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    NASA Astrophysics Data System (ADS)

    Shafura, A. K.; Sin, N. D. Md.; Azhar, N. E. I.; Saurdi, I.; Uzer, M.; Mamat, M. H.; Shuhaimi, A.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    CH4 gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10-3 S/cm and 11.5%, respectively.

  14. Impact of nanostructured thin ZnO film in ultraviolet protection.

    PubMed

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field.

  15. Impact of nanostructured thin ZnO film in ultraviolet protection

    PubMed Central

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field. PMID:28096668

  16. Cytotoxic effects of ZnO hierarchical architectures on RSC96 Schwann cells

    PubMed Central

    2012-01-01

    The alteration in intracellular Zn2+ homeostasis is attributed to the generation of intracellular reactive oxygen species, which subsequently results in oxidative damage of organelles and cell apoptosis. In this work, the neurotoxic effects of ZnO hierarchical architectures (nanoparticles and microspheres, the prism-like and flower-like structures) were evaluated through the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay using RSC96 Schwann cells as the model. Cell apoptosis and cell cycle were detected using flow cytometry. The concentration of Zn2+ in the culture media was monitored using atomic absorption spectrometry. The results show that ZnO nanoparticles and microspheres displayed significant cytotoxic effects on RSC96 Schwann cells in dose- and time-dependent manners, whereas no or low cytotoxic effect was observed when the cells were treated with the prism-like and flower-like ZnO. A remarkable cell apoptosis and G2/M cell cycle arrest were observed when RSC96 Schwann cells were exposed to ZnO nanoparticles and microspheres at a dose of 80 μg/mL for 12 h. The time-dependent increase of Zn2+ concentration in the culture media suggests that the cytotoxic effects were associated with the decomposition of ZnO hierarchical architecture and the subsequent release of Zn2+. These results provide new insights into the cytotoxic effects of complex ZnO architectures, which could be prominently dominated by nanoscale building blocks. PMID:22873432

  17. Synthesis of ZnO nanowires and their applications as an ultraviolet photodetector.

    PubMed

    Lin, Chih-Cheng; Lin, Wang-Hua; Li, Yuan-Yao

    2009-05-01

    High purity ZnO nanowire arrays were synthesized uniformly on a 1.5 cm x 2 cm tin-doped indium oxide (ITO) glass substrate. The ZnO nanowire arrays were formed with a uniform diameter distribution of 30-50 nm and a length of about 5 microm, synthesized via thermal decomposition of zinc acetate at 300 degrees C in air. Analysis by X-ray diffraction and transmission electron microscopy showed that the ZnO nanowires are of single crystal structure with a preferred growth orientation of [001]. A study of the growth mechanism showed that it is a vapor-solid (VS) growth process. The synthesis of these nanowires begins with the processes of dehydration, vaporization, decomposition, and oxidation of the zinc acetate. Next, the ZnO clusters are deposited to form seeds that give rise to selective epitaxial growth of the ZnO nanowires. Optical analysis of ZnO nanowires was performed by UV-visible and fluorescence spectrophotometry, investigating both the photocurrent characteristics and UV photoresponse of the ZnO nanowire photodetectors. A study of optical properties showed that the as-produced ZnO nanowires have great potential as UV photodetectors/sensors.

  18. Fabrication of ZnO nanostructures and their application in biomedicine

    NASA Astrophysics Data System (ADS)

    Dikovska, A. Og.; Tsankov, N. Ts.; Toshkova, R.; Gardeva, E.; Yossifova, L.; Nedyalkov, N. N.; Atanasov, P. A.

    2012-04-01

    In this study, we synthesized different types of ZnO samples (thin and nanostructured films) and investigated their potential application in biomedicine. The properties of ZnO films are strongly dependent on the synthesis process and the experimental conditions. Thus, the samples were prepared by pulsed laser deposition (PLD), which allows excellent control over the stoichiometry and surface morphology. Cell suspensions of the same concentration and volume (i.e. same number of cells) were seeded on each sample. The subjects of interest were 3T3 fibroblast, MCF-7 and HeLa cancer cells. The influence of the ZnO surface morphology on the viability of these three different cell cultures was studied. The cell type defines the appropriate surface morphology for cell culturing. The nanoscale morphology of the samples supports the HeLa cell viability, while only a small quantity of MCF-7 cells are able to adhere, spread and survive on them.

  19. "High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires"

    SciTech Connect

    GARGAS, DANIEL; GAO, HANWEI; WANG, HUNGTA; PEIDONG, YANG

    2010-12-01

    External quantum efficiency (EQE) of photoluminescence as high as 20 percent from isolated ZnO nanowires were measured at room temperature. The EQE was found to be highly dependent on photoexcitation density, which underscores the importance of uniform optical excitation during the EQE measurement. An integrating sphere coupled to a microscopic imaging system was used in this work, which enabled the EQE measurement on isolated ZnO nanowires. The EQE values obtained here are significantly higher than those reported for ZnO materials in forms of bulk, thin films or powders. Additional insight on the radiative extraction factor of one-dimensional nanostructures was gained by measuring the internal quantum efficiency of individual nanowires. Such quantitative EQE measurements provide a sensitive, noninvasive method to characterize the optical properties of low-dimensional nanostructures and allow tuning of synthesis parameters for optimization of nanoscale materials.

  20. Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition

    NASA Astrophysics Data System (ADS)

    Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D.; Renevier, Hubert; Consonni, Vincent

    2017-03-01

    The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol–gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.

  1. Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition.

    PubMed

    Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D; Renevier, Hubert; Consonni, Vincent

    2017-03-03

    The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol-gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 10(7) nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.

  2. Development and Evaluation of Nanoscale Sorbents for Mercury Capture from Warm Fuel Gas

    SciTech Connect

    Raja A. Jadhav; Howard Meyer; Slawomir Winecki

    2006-03-01

    Several nanocrystalline sorbents were synthesized by GTI's subcontractor NanoScale Materials, Inc. (NanoScale) and submitted to GTI for evaluation. A total of seventeen sorbent formulations were synthesized and characterized by NanoScale, including four existing sorbent formulations (NanoActive{trademark} TiO{sub 2}, NanoActive CeO{sub 2}, NanoActive ZnO, and NanoActive CuO), three developmental nanocrystalline metal oxides (MnO{sub 2}, MoO{sub 3}, and Cr{sub 2}O{sub 3}), and ten supported forms of metal oxides. These sorbents were characterized for physical and chemical properties using a variety of analytical equipments, which confirmed their nanocrystalline structure.

  3. Gas sensing properties of Al-doped ZnO for UV-activated CO detection

    NASA Astrophysics Data System (ADS)

    Dhahri, R.; Hjiri, M.; El Mir, L.; Bonavita, A.; Iannazzo, D.; Latino, M.; Donato, N.; Leonardi, S. G.; Neri, G.

    2016-04-01

    Al-doped ZnO (AZO) samples were prepared using a modified sol-gel route and charaterized by means of trasmission electron microscopy, x-ray diffraction and photoluminescence analysis. Resistive planar devices based on thick films of AZO deposited on interdigitated alumina substrates were fabricated and investigated as UV light activated CO sensors. CO sensing tests were performed in both dark and illumination condition by exposing the samples to UV radiation (λ  =  400 nm).Under UV light, Al-doped ZnO gas sensors operated at lower temperature than in dark. Furthermore, by photoactivation we also promoted CO sensitivity and made signal recovery of AZO sensors faster. Results demonstrate that Al-doped ZnO might be a promising sensing material for the detection of CO under UV illumination.

  4. Nanoscale Semiconductor Electronics

    DTIC Science & Technology

    2015-02-25

    MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV-PS-TR-2014-0202 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release...Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSE/Jesse Mee 1 cy ... AFRL -RV-PS- AFRL -RV-PS- TR-2014-0202 TR-2014-0202 NANOSCALE SEMICONDUCTOR ELECTRONICS Steven R. J. Brueck and Ganesh Balakrishnan University of New

  5. Nanotribology and Nanoscale Friction

    SciTech Connect

    Guo, Yi; Qu, Zhihua; Braiman, Yehuda; Zhang, Zhenyu; Barhen, Jacob

    2008-01-01

    Tribology is the science and technology of contacting solid surfaces in relative motion, including the study of lubricants, lubrication, friction, wear, and bearings. It is estimated that friction and wear cost the U.S. economy 6% of the gross national product (Persson, 2000). For example, 5% of the total energy generated in an automobile engine is lost to frictional resistance. The study of nanoscale friction has a technological impact in reducing energy loss in machines, in microelectromechanical systems (MEMS), and in the development of durable, low-friction surfaces and ultra-thin lubrication films.

  6. Nanoscale subsurface imaging.

    PubMed

    Soliman, Mikhael; Ding, Yi; Tetard, Laurene

    2017-01-31

    The ability to probe structures and functional properties of complex systems at the nanoscale, both at their surface and in their volume, has drawn substantial attention in recent years. Besides detecting heterogeneities, cracks and defects below the surface, more advanced explorations of chemical or electrical properties are of great interest. In this review article, we review some approaches developed to explore heterogeneities below the surface, including recent progress in the different aspects of metrology in optics, electron microscopy, and scanning probe microscopy. We discuss the principle and mechanisms of image formation associated with each technique, including data acquisition, data analysis and modeling for nanoscale structural and functional imaging. We highlight the advances based on atomic force microscopy (AFM). Our discussion first introduces methods providing structural information of the buried structures, such as position in the volume and geometry. Next we present how functional properties including conductivity, capacitance, and composition can be extracted from the modalities available to date and how they could eventually enable tomography reconstructions of systems such as overlay structures in transistors or living systems. Finally we propose a perspective regarding the outstanding challenges and needs to push the field forward.

  7. Nanoscale relaxation oscillator

    DOEpatents

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  8. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  9. A high power ZnO thin film piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Qin, Weiwei; Li, Tao; Li, Yutong; Qiu, Junwen; Ma, Xianjun; Chen, Xiaoqiang; Hu, Xuefeng; Zhang, Wei

    2016-02-01

    A highly efficient and large area piezoelectric ZnO thin film nanogenerator (NG) was fabricated. The ZnO thin film was deposited onto a Si substrate by pulsed laser ablation at a substrate temperature of 500 °C. The deposited ZnO film exhibited a preferred c-axis orientation and a high piezoelectric value of 49.7 pm/V characterized using Piezoelectric Force Microscopy (PFM). Thin films of ZnO were patterned into rectangular power sources with dimensions of 0.5 × 0.5 cm2 with metallic top and bottom electrodes constructed via conventional semiconductor lithographic patterning processes. The NG units were subjected to periodic bending/unbending motions produced by mechanical impingement at a fixed frequency of 100 Hz at a pressure of 0.4 kg/cm2. The output electrical voltage, current density, and power density generated by one ZnO NG were recorded. Values of ∼95 mV, 35 μA cm-2 and 5.1 mW cm-2 were recorded. The level of power density is typical to that produced by a PZT NG on a flexible substrate. Higher energy NG sources can be easily created by adding more power units either in parallel or in series. The thin film ZnO NG technique is highly adaptable with current semiconductor processes, and as such, is easily integrated with signal collecting circuits that are compatible with mass production. A typical application would be using the power harvested from irregular human foot motions to either to operate blue LEDs directly or to drive a sensor network node in mille-power level without any external electric source and circuits.

  10. A Rapid Process for Fabricating Gas Sensors

    PubMed Central

    Hsiao, Chun-Ching; Luo, Li-Siang

    2014-01-01

    Zinc oxide (ZnO) is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD) was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (ΔR/R) of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost. PMID:25010696

  11. Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability.

    PubMed

    Stassi, Stefano; Chiadò, Alessandro; Cauda, Valentina; Palmara, Gianluca; Canavese, Giancarlo; Laurenti, Marco; Ricciardi, Carlo

    2017-04-01

    An efficient way to increase the binding capability of microcantilever biosensors is here demonstrated by growing zinc oxide nanowires (ZnO NWs) on their active surface. A comprehensive evaluation of the chemical compatibility of ZnO NWs brought to the definition of an innovative functionalization method able to guarantee the proper immobilization of biomolecules on the nanostructured surface. A noteworthy higher amount of grafted molecules was evidenced with colorimetric assays on ZnO NWs-coated devices, in comparison with functionalized and activated silicon flat samples. ZnO NWs grown on silicon microcantilever arrays and activated with the proposed immobilization strategy enhanced the sensor binding capability (and thus the dynamic range) of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices. Graphical Abstract An efficient way to increase the binding capability of microcantilever biosensors is represented by growing zinc oxide nanowires (ZnO NWs) on their active surface. ZnO NWs grown on silicon microcantilever arrays and activated with an innovative immobilization strategy enhanced the sensor binding capability of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices.

  12. Selective growth of hierarchical ZnO nanorod arrays on the graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Li, Lan; Li, Jinliang; Mo, Zhaojun

    2016-01-01

    We report directly selective-area grown (SAG) high-quality hierarchical ZnO nanorod arrays on the graphene nanosheets without invoking damage or introducing a catalyst. The SAG behavior in the non-catalytic growth mechanism is attributed to dangling bonds on the boundary edges of graphene nanosheets, which serve as the preferential adsorption and nucleation sites of ZnO nanorod. High densities of hierarchical ZnO nanorods show single-crystalline hexagonal wurtzite structure and are vertically well-aligned on the graphene nanosheets, with the diameter and the density strongly dependent on the growth temperature. Furthermore, no carbon impurity can be seen in the tips of the ZnO nanorods and also no carbon-related defect peak in the 10 K PL spectrum of ZnO nanorods. Our approach using a graphene-nanosheet substrate provides an efficient route for the growth of high-quality ZnO with a one-dimensional (1D) hierarchical nanostructure, which is highly desirable for fabricating 1D ZnO hybrid optoelectronic devices, particularly for a fast-response UV photodetector and highly-sensitive gas sensor.

  13. Enhanced Gas Sensing Properties of Spin-coated Na-doped ZnO Nanostructured Films

    PubMed Central

    Basyooni, Mohamed A.; Shaban, Mohamed; El Sayed, Adel M.

    2017-01-01

    In this report, the structures, morphologies, optical, electrical and gas sensing properties of ZnO and ZnO: Na spin-coated films are studied. X-ray diffraction (XRD) results reveal that the films are of a single phase wurtzite ZnO with a preferential orientation along (002) direction parallel to c-axis. Na doping reduces the crystalline quality of the films. The plane surface of ZnO film turned to be wrinkle net-work structure after doping. The reflectance and the optical band gap of the ZnO film decreased after Na doping. The wrinkle net-work nanostructured Na-doped film shows an unusually sensitivity, 81.9% @ 50 sccm, for CO2 gas at room temperature compared to 1.0% for the pure ZnO film. The signals to noise ratio (SNR) and detection limit of Na-doped ZnO sensor are 0.24 and 0.42 sccm, respectively. These enhanced sensing properties are ascribed to high surface-to-volume ratio, hoping effect, and the increase of O- vacancies density according to Kroger VinK effect. The response time increased from 179 to 240 s by the incorporation of Na atoms @50 sccm. This response time increased as the CO2 concentration increased. The recovery time is increased from 122 to 472 s by the incorporation of Na atoms @50 sccm. PMID:28145506

  14. Enhanced Gas Sensing Properties of Spin-coated Na-doped ZnO Nanostructured Films.

    PubMed

    Basyooni, Mohamed A; Shaban, Mohamed; El Sayed, Adel M

    2017-02-01

    In this report, the structures, morphologies, optical, electrical and gas sensing properties of ZnO and ZnO: Na spin-coated films are studied. X-ray diffraction (XRD) results reveal that the films are of a single phase wurtzite ZnO with a preferential orientation along (002) direction parallel to c-axis. Na doping reduces the crystalline quality of the films. The plane surface of ZnO film turned to be wrinkle net-work structure after doping. The reflectance and the optical band gap of the ZnO film decreased after Na doping. The wrinkle net-work nanostructured Na-doped film shows an unusually sensitivity, 81.9% @ 50 sccm, for CO2 gas at room temperature compared to 1.0% for the pure ZnO film. The signals to noise ratio (SNR) and detection limit of Na-doped ZnO sensor are 0.24 and 0.42 sccm, respectively. These enhanced sensing properties are ascribed to high surface-to-volume ratio, hoping effect, and the increase of O- vacancies density according to Kroger VinK effect. The response time increased from 179 to 240 s by the incorporation of Na atoms @50 sccm. This response time increased as the CO2 concentration increased. The recovery time is increased from 122 to 472 s by the incorporation of Na atoms @50 sccm.

  15. Enhanced Gas Sensing Properties of Spin-coated Na-doped ZnO Nanostructured Films

    NASA Astrophysics Data System (ADS)

    Basyooni, Mohamed A.; Shaban, Mohamed; El Sayed, Adel M.

    2017-02-01

    In this report, the structures, morphologies, optical, electrical and gas sensing properties of ZnO and ZnO: Na spin-coated films are studied. X-ray diffraction (XRD) results reveal that the films are of a single phase wurtzite ZnO with a preferential orientation along (002) direction parallel to c-axis. Na doping reduces the crystalline quality of the films. The plane surface of ZnO film turned to be wrinkle net-work structure after doping. The reflectance and the optical band gap of the ZnO film decreased after Na doping. The wrinkle net-work nanostructured Na-doped film shows an unusually sensitivity, 81.9% @ 50 sccm, for CO2 gas at room temperature compared to 1.0% for the pure ZnO film. The signals to noise ratio (SNR) and detection limit of Na-doped ZnO sensor are 0.24 and 0.42 sccm, respectively. These enhanced sensing properties are ascribed to high surface-to-volume ratio, hoping effect, and the increase of O- vacancies density according to Kroger VinK effect. The response time increased from 179 to 240 s by the incorporation of Na atoms @50 sccm. This response time increased as the CO2 concentration increased. The recovery time is increased from 122 to 472 s by the incorporation of Na atoms @50 sccm.

  16. Multianalyte biosensor based on pH-sensitive ZnO electrolyte–insulator–semiconductor structures

    SciTech Connect

    Haur Kao, Chyuan; Chun Liu, Che; Ueng, Herng-Yih; Chen, Hsiang Cheng Chu, Yu; Jie Chen, Yu; Ling Lee, Ming; Ming Chang, Kow

    2014-05-14

    Multianalyte electrolyte–insulator–semiconductor (EIS) sensors with a ZnO sensing membrane annealed on silicon substrate for use in pH sensing were fabricated. Material analyses were conducted using X-ray diffraction and atomic force microscopy to identify optimal treatment conditions. Sensing performance for various ions of Na{sup +}, K{sup +}, urea, and glucose was also tested. Results indicate that an EIS sensor with a ZnO membrane annealed at 600 °C exhibited good performance with high sensitivity and a low drift rate compared with all other reported ZnO-based pH sensors. Furthermore, based on well-established pH sensing properties, pH-ion-sensitive field-effect transistor sensors have also been developed for use in detecting urea and glucose ions. ZnO-based EIS sensors show promise for future industrial biosensing applications.

  17. Multianalyte biosensor based on pH-sensitive ZnO electrolyte-insulator-semiconductor structures

    NASA Astrophysics Data System (ADS)

    Haur Kao, Chyuan; Chen, Hsiang; Ling Lee, Ming; Chun Liu, Che; Ueng, Herng-Yih; Cheng Chu, Yu; Jie Chen, Yu; Ming Chang, Kow

    2014-05-01

    Multianalyte electrolyte-insulator-semiconductor (EIS) sensors with a ZnO sensing membrane annealed on silicon substrate for use in pH sensing were fabricated. Material analyses were conducted using X-ray diffraction and atomic force microscopy to identify optimal treatment conditions. Sensing performance for various ions of Na+, K+, urea, and glucose was also tested. Results indicate that an EIS sensor with a ZnO membrane annealed at 600 °C exhibited good performance with high sensitivity and a low drift rate compared with all other reported ZnO-based pH sensors. Furthermore, based on well-established pH sensing properties, pH-ion-sensitive field-effect transistor sensors have also been developed for use in detecting urea and glucose ions. ZnO-based EIS sensors show promise for future industrial biosensing applications.

  18. Synthesis of Fe Doped ZnO Nanowire Arrays that Detect Formaldehyde Gas.

    PubMed

    Jeon, Yoo Sang; Seo, Hyo Won; Kim, Su Hyo; Kim, Young Keun

    2016-05-01

    Owing to their chemical and thermal stability and doping effects on providing electrons to the conduction band, doped ZnO nanowires have generated interest for use in electronic devices. Here we report hydrothermally grown Fe-doped ZnO nanowires and their gas-sensing properties. The synthesized nanowires have a high crystallinity and are 60 nm in diameter and 1.7 μm in length. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are employed to understand the doping effects on the microstructures and gas sensing properties. When the Fe-doped ZnO nanowire arrays were evaluated for gas sensing, responses were recorded through changes in temperature and gas concentration. Gas sensors consisting of ZnO nanowires doped with 3-5 at.% Fe showed optimum formaldehyde (HCHO) sensing performance at each working temperature.

  19. Structure and opto-electrochemical properties of ZnO nanowires grown on n-Si substrate.

    PubMed

    Ladanov, Mikhail; Ram, Manoj K; Matthews, Garrett; Kumar, Ashok

    2011-07-19

    Zinc oxide (ZnO) nanostructures have attracted great attention as a promising functional material with unique properties suitable for applications in UV lasers, light emitting diodes, field emission devices, sensors, field effect transistors, and solar cells. In the present work, ZnO nanowires have been synthesized on an n-type Si substrate using a hydrothermal method where surfactant acted as a modifying and protecting agent. The surface morphology, electrochemical properties, and opto-electrochemical properties of ZnO nanowires are investigated by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), cyclic voltammetry, and impedance spectroscopy techniques. The cycling characteristics and rate capability of the ZnO nanowires are explored through electrochemical studies performed under varying electrolytes. The photo response is observed using UV radiation. It is demonstrated that crystallinity, particle size, and morphology all play significant roles in the electrochemical performance of the ZnO electrodes.

  20. Photoluminescence and field emission of 1D ZnO nanorods fabricated by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Wang, B.; Jin, X.; Ouyang, Z. B.; Xu, P.

    2012-07-01

    Four kinds of new one-dimensional nanostructures, celery-shaped nanorods, needle-shaped nanorods, twist fold-shaped nanorods, and awl-shaped nanorods of ZnO, have been grown on single silicon substrates by an Au catalyst assisted thermal evaporation of ZnO and active carbon powders. The morphology and structure of the prepared nanorods are determined on the basis of field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The photoluminescence spectra (PL) analysis noted that UV emission band is the band-to-band emission peak and the emission bands in the visible range are attributed to the oxygen vacancies, Zn interstitials, or impurities. The field-emission properties of four kinds of ZnO nanorods have been invested and the awl-shaped nanorods of ZnO have preferable characteristics due to the smallest emitter radius on the nanoscale in the tip in comparison with other nanorods. The growth mechanism of the ZnO nanorods can be explained on the basis of the vapor-liquid-solid (VLS) processes.

  1. Tailored functionalization of ZnO nanoparticle via reactive cyclodextrin and its bionanocomposite synthesis.

    PubMed

    Abdolmaleki, Amir; Mallakpour, Shadpour; Borandeh, Sedigheh

    2014-03-15

    β-cyclodextrin was grafted onto the surface of ZnO nanoparticles via efficient, simple and fast technique through nucleophilic substitution reaction of OH groups on ZnO nanoparticle surface with reactive cyclic oligosaccharide, Monochlorotriazinyl-β-cyclodextrin (MCT-β-CD). Characterization of functionalized ZnO nanoparticles were carried out by Fourier transform infrared spectra (FT-IR), elemental analysis (CHN), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The amount of MCT-β-CD bonded to the ZnO surface was determined by CHN and TGA analysis. Followed by, innovative poly(ester-amide)/ZnO bionanocomposites (PEA/ZnO BNCs) were fabricated through solution mixing method. Due to using biodegradable amino acid containing polymer, the synthesized nanocomposites are expected to classify as biologically active materials. Morphological studies of prepared BNC proved good distribution of modified ZnO in PEA matrix with nanoscale size. Good dispersion and less aggregation, indicate the effect of functionalization on preventing nanoparticles to aggregate.

  2. The interplay of structural and optical properties in individual ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Brewster, Megan M.; Zhou, Xiang; Lu, Ming-Yen; Gradečak, Silvija

    2012-02-01

    Semiconductor nanostructures exhibit unique properties distinct from their bulk counterparts by virtue of nanoscale dimensions; in particular, exceptionally large surface area-to-volume ratios relative to that of the bulk produce variations in surface state populations that have numerous consequences on materials properties. Of the low-dimensional semiconductor nanostructures, nanowires offer a unique prospect in nanoscale optoelectronics due to their one-dimensional architecture. Already, many devices based upon individual nanowires have been demonstrated, but questions about how nano-size and structural variations affect the underlying materials properties still remain unanswered. Here, we focus on understanding the growth mechanism and kinetics of ZnO nanowires and related nanowalls, and their effects on nanoscale structural and optical properties.Semiconductor nanostructures exhibit unique properties distinct from their bulk counterparts by virtue of nanoscale dimensions; in particular, exceptionally large surface area-to-volume ratios relative to that of the bulk produce variations in surface state populations that have numerous consequences on materials properties. Of the low-dimensional semiconductor nanostructures, nanowires offer a unique prospect in nanoscale optoelectronics due to their one-dimensional architecture. Already, many devices based upon individual nanowires have been demonstrated, but questions about how nano-size and structural variations affect the underlying materials properties still remain unanswered. Here, we focus on understanding the growth mechanism and kinetics of ZnO nanowires and related nanowalls, and their effects on nanoscale structural and optical properties. This article was submitted as part of a collection highlighting papers on the `Recent Advances in Semiconductor Nanowires Research' from ICMAT 2011.

  3. ZnO nanowire lasers.

    PubMed

    Vanmaekelbergh, Daniël; van Vugt, Lambert K

    2011-07-01

    The pathway towards the realization of optical solid-state lasers was gradual and slow. After Einstein's paper on absorption and stimulated emission of light in 1917 it took until 1960 for the first solid state laser device to see the light. Not much later, the first semiconductor laser was demonstrated and lasing in the near UV spectral range from ZnO was reported as early as 1966. The research on the optical properties of ZnO showed a remarkable revival since 1995 with the demonstration of room temperature lasing, which was further enhanced by the first report of lasing by a single nanowire in 2001. Since then, the research focussed increasingly on one-dimensional nanowires of ZnO. We start this review with a brief description of the opto-electronic properties of ZnO that are related to the wurtzite crystal structure. How these properties are modified by the nanowire geometry is discussed in the subsequent sections, in which we present the confined photon and/or polariton modes and how these can be investigated experimentally. Next, we review experimental studies of laser emission from single ZnO nanowires under different experimental conditions. We emphasize the special features resulting from the sub-wavelength dimensions by presenting our results on single ZnO nanowires lying on a substrate. At present, the mechanism of lasing in ZnO (nanowires) is the subject of a strong debate that is considered at the end of this review.

  4. Toward understanding the electrical properties of metal/semiconductor Schottky contacts: The effects of barrier inhomogeneities and geometry in bulk and nanoscale structures

    NASA Astrophysics Data System (ADS)

    Sarpatwari, Karthik

    The work presented in this thesis comprises of two parts. Part I deals with Schottky contacts to the wide bandgap (WBG) semiconductors SiC, GaN and ZnO. These semiconductors offer great promise for a wide variety of electronic and optoelectronic applications. Schottky barriers to WBG semiconductors are attractive in particular for high temperature/high power diodes, photodetectors, and gas sensors. However, the Schottky barriers exhibit non-ideal behavior, due in part to inhomogeneities originating from immature crystal growth and device processing technologies. Apart from being a versatile electronic component, the Schottky diode is a valuable test structure. The Schottky contact is routinely used to probe substrate and epilayer quality by different electrical characterization techniques. It is well established that the current-voltage-temperature ( I-V-T) characteristics of Schottky contacts are routinely affected by the presence of barrier height inhomogeneities (BHI). Consequently, Schottky diode parameters such as the Schottky barrier height and the Richardson constant extracted using the I-V-T measurements can deviate from their actual values. The effects of BHI on the extracted Schottky barrier height have been studied in the literature. However, the effects of BHI on the Richardson constant have not been thoroughly explored and are the focus of the first part of this thesis. Based on the inhomogeneous Schottky barrier model provided by Tung, a new method for the extraction of the Richardson constant is developed. The new method is applied to the Richardson constant determination of n-type ZnO and GaN. Excellent agreement with the theoretical value is obtained in both cases. The advent of the nanoelectronics era has resulted in the Schottky contact evolving from the relatively simple, planar structure into a more complex structure. Compared to bulk Schottky contacts, the Schottky barrier properties are expected to be widely different at the nanoscale. For

  5. Ag-doped ZnO nanoellipsoids: potential scaffold for photocatalytic and sensing applications.

    PubMed

    Kumar, Ramesh; Rana, Dilbag; Umar, Ahmad; Sharma, Pankaj; Chauhan, Suvarcha; Chauhan, Mohinder Singh

    2015-05-01

    Well-crystalline Ag-doped ZnO nanoellipsoids (NEs) were synthesized in large quantity and used as effective photocatalyst for the photocatalytic degradation of methyl orange (MO) and efficient electron mediator for the fabrication of highly sensitive, reliable and robust hydrazine chemical sensor. The Ag-doped NEs were synthesized by facile low-temperature (~60°C) solution process and characterized in detail using various characterization techniques. The characterizations revealed that the synthesized nanostructures are well-crystalline, possessing ellipsoidal shapes and were grown in very high density. The photocatalytic activities of these Ag-doped NEs were evaluated by measuring the rate of photodegradation reaction of hazardous methyl orange (MO) dye under UV light irradiation. By comparing the photocatalytic performance of Ag-doped ZnO NEs with those of ZnO nanoflowers, the former was found to be a much superior photocatalyst than the later. Further, Ag-doped ZnO NEs based hydrazine sensor exhibited a high sensitivity of ~9.46 µA/cm(2)µM and detection limit of 0.07 µM in a response time of <10s. Thus we find that Ag-doped ZnO nanomaterials synthesized by simple solution process holds potential as efficient photocatalysts and efficient electron mediators for the fabrication of robust and highly sensitive chemical sensors.

  6. Controllable synthesis of branched hierarchical ZnO nanorod arrays for highly sensitive hydrazine detection

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Zhao, Zhenting; Sun, Yongjiao; Wang, Ying; Li, Pengwei; Zhang, Wendong; Lian, Kun

    2016-02-01

    In this paper, three different kinds of ZnO nanostructures were successfully synthesized on Au/Glass (Au/G) substrate by electrochemical deposition method. The morphology and crystalline structures of the obtained samples were characterized using SEM, XRD and HRTEM. Electrochemical responses of the as-prepared ZnO based sensors to hydrazine in 0.1 M phosphate buffer solution (PBS, pH 7.4) were analyzed by cyclic voltammetry and single-potential amperometry. The results confirmed that the electrochemical performances of ZnO sensors are strongly dependent on the specific surface area. Especially, the branched hierarchical ZnO nanorod arrays shows the highest sensitivity of 5.35 μA μM-1 cm-2, a short response time of 3 s, a low detection limit of 0.08 μM with a linear hydrazine concentration response range from 0.8 μM to 101 μM, and it also exhibits excellent anti-interference, stability and reproducibility abilities, which provide great potential method of ZnO branched hierarchical structures in the development of high-performance electrochemical sensor.

  7. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer.

    PubMed

    Thiel, L; Rohner, D; Ganzhorn, M; Appel, P; Neu, E; Müller, B; Kleiner, R; Koelle, D; Maletinsky, P

    2016-08-01

    Microscopic studies of superconductors and their vortices play a pivotal role in understanding the mechanisms underlying superconductivity. Local measurements of penetration depths or magnetic stray fields enable access to fundamental aspects such as nanoscale variations in superfluid densities or the order parameter symmetry of superconductors. However, experimental tools that offer quantitative, nanoscale magnetometry and operate over large ranges of temperature and magnetic fields are still lacking. Here, we demonstrate the first operation of a cryogenic scanning quantum sensor in the form of a single nitrogen-vacancy electronic spin in diamond, which is capable of overcoming these existing limitations. To demonstrate the power of our approach, we perform quantitative, nanoscale magnetic imaging of Pearl vortices in the cuprate superconductor YBa2Cu3O7-δ. With a sensor-to-sample distance of ∼10 nm, we observe striking deviations from the prevalent monopole approximation in our vortex stray-field images, and find excellent quantitative agreement with Pearl's analytic model. Our experiments provide a non-invasive and unambiguous determination of the system's local penetration depth and are readily extended to higher temperatures and magnetic fields. These results demonstrate the potential of quantitative quantum sensors in benchmarking microscopic models of complex electronic systems and open the door for further exploration of strongly correlated electron physics using scanning nitrogen-vacancy magnetometry.

  8. Gas sensing based on detection of light radiation from a region of modified cladding (nanocrystalline ZnO) of an optical fiber

    NASA Astrophysics Data System (ADS)

    Devendiran, S.; Sastikumar, D.

    2017-03-01

    A new type of fiber optic gas sensor is proposed by detecting a light radiated from a region of cladding modified with metal oxide (nanocrystalline ZnO). The intensity of radiated light is found to vary with different gasses and concentrations. Sensing characteristics are studied for ammonia, methanol, ethanol and acetone gasses. Gas sensitivity of the proposed sensor is compared with clad-modified fiber optic gas sensor. The new sensor exhibits enhanced sensitivity. Time response characteristics of the sensor are reported.

  9. Charge transport in nanoscale junctions.

    PubMed

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-03

    the molecular level. Nanoscale charge transport experiments in ionic liquids extend the field to high temperatures and to systems with intriguing interfacial potential distributions. Other directions may include dye-sensitized solar cells, new sensor applications and diagnostic tools for the study of surface-bound single molecules. Another motivation for this special issue is thus to highlight activities across different research communities with nanoscale charge transport as a common denominator. This special issue gathers 27 articles by scientists from the United States, Germany, the UK, Denmark, Russia, France, Israel, Canada, Australia, Sweden, Switzerland, the Netherlands, Belgium and Singapore; it gives us a flavour of the current state-of-the-art of this diverse research area. While based on contributions from many renowned groups and institutions, it obviously cannot claim to represent all groups active in this very broad area. Moreover, a number of world-leading groups were unable to take part in this project within the allocated time limit. Nevertheless, we regard the current selection of papers to be representative enough for the reader to draw their own conclusions about the current status of the field. Each paper is original and has its own merit, as all papers in Journal of Physics: Condensed Matter special issues are subjected to the same scrutiny as regular contributions. The Guest Editors have deliberately not defined the specific subjects covered in this issue. These came out logically from the development of this area, for example: 'Traditional' solid state nanojunctions based on adsorbed layers, oxide films or nanowires sandwiched between two electrodes: effects of molecular structure (aromaticity, anchoring groups), symmetry, orientation, dynamics (noise patterns) and current-induced heating. Various 'physical effects': inelastic tunnelling and Coulomb blockade, polaron effects, switching modes, and negative differential resistance; the role of

  10. Giant piezoelectric resistance effect of nanoscale zinc oxide tunnel junctions: first principles simulations.

    PubMed

    Zhang, Genghong; Luo, Xin; Zheng, Yue; Wang, Biao

    2012-05-21

    Based on first principles simulations and quantum transport calculations, we have investigated in the present work the effect of the mechanical load on transport characteristics and the relative physical properties of nanoscale zinc oxide (ZnO) tunnel junctions, and verified an intrinsic giant piezoelectric resistance (GPR) effect. Our results show that the transport-relevant properties, e.g., the piezoelectric potential (piezopotential), built-in electric field, conduction band offset and electron transmission probability of the junction etc., can obviously be tuned by the applied strain. Accordingly, it is inspiring to find that the current-voltage characteristics and tunneling electro-resistance of the ZnO tunnel junction can significantly be adjusted with the strain. When the applied strain switches from -5% to 5%, an increase of more than 14 times in the tunneling current at a bias voltage of 1.1 V can be obtained. Meanwhile, an increase of up to 2000% of the electro-resistance ratio with respect to the zero strain state can be reached at the same bias voltage and with a 5% compression. According to our investigations, the giant piezoelectric resistance effect of nanoscale ZnO tunnel junctions exhibits great potential in exploiting tunable electronic devices. Furthermore, the methodology of strain engineering revealed in this work may shed light on the mechanical manipulations of electronic devices.

  11. Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods.

    PubMed

    Fulati, Alimujiang; Ali, Syed M Usman; Riaz, Muhammad; Amin, Gul; Nur, Omer; Willander, Magnus

    2009-01-01

    ZnO nanotubes and nanorods grown on gold thin film were used to create pH sensor devices. The developed ZnO nanotube and nanorod pH sensors display good reproducibility, repeatability and long-term stability and exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl reference electrode over a large dynamic pH range. We found the ZnO nanotubes provide sensitivity as high as twice that of the ZnO nanorods, which can be ascribed to the fact that small dimensional ZnO nanotubes have a higher level of surface and subsurface oxygen vacancies and provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods, thus affording the ZnO nanotube pH sensor a higher sensitivity. Experimental results indicate ZnO nanotubes can be used in pH sensor applications with improved performance. Moreover, the ZnO nanotube arrays may find potential application as a novel material for measurements of intracellular biochemical species within single living cells.

  12. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules.

    PubMed

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-08

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (R air/R gas = 12.8) compared to that (R air/R gas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors.

  13. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    PubMed Central

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors. PMID:26743814

  14. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    NASA Astrophysics Data System (ADS)

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors.

  15. Detecting nanoscale vibrations as signature of life.

    PubMed

    Kasas, Sandor; Ruggeri, Francesco Simone; Benadiba, Carine; Maillard, Caroline; Stupar, Petar; Tournu, Hélène; Dietler, Giovanni; Longo, Giovanni

    2015-01-13

    The existence of life in extreme conditions, in particular in extraterrestrial environments, is certainly one of the most intriguing scientific questions of our time. In this report, we demonstrate the use of an innovative nanoscale motion sensor in life-searching experiments in Earth-bound and interplanetary missions. This technique exploits the sensitivity of nanomechanical oscillators to transduce the small fluctuations that characterize living systems. The intensity of such movements is an indication of the viability of living specimens and conveys information related to their metabolic activity. Here, we show that the nanomotion detector can assess the viability of a vast range of biological specimens and that it could be the perfect complement to conventional chemical life-detection assays. Indeed, by combining chemical and dynamical measurements, we could achieve an unprecedented depth in the characterization of life in extreme and extraterrestrial environments.

  16. Controllable synthesis of hierarchical flower-like ZnO nanostructures assembled by nanosheets and its optical properties

    NASA Astrophysics Data System (ADS)

    Ma, Qun; Wang, Yongqian; Kong, Junhan; Jia, Hanxiang; Wang, Zhengshu

    2015-08-01

    The uniform and regular hierarchical flower-like ZnO nanostructures assembled by nanosheets have been controllably synthesized by a facile and efficient solution route on a large scale without using any templates, substrate or seed layers. The results of the experiment indicated that reaction temperature, time and the molar ratio of Zn2+/OH- had a strong influence on the formation of the hierarchical flower-like ZnO nanostructures. ZnO with flower-like nanostructures can be controllable synthesized with appropriate temperature, time and the molar ratio of Zn2+/OH-. The optical properties of the as-synthesized ZnO were investigated by UV-Vis absorption and photoluminescence. Consequently, the value of the band gap for this kind of ZnO crystals was calculated to be 3.26 eV and the ZnO nanostructures possess a relatively strong UV emission, violet emission and a blue emission. Moreover, The ZnO may be tempting for further application such as photocatalyst, gas sensors and UV lasers. The facile and efficient solution route has high potentials to synthesize ZnO crystals on a large scale for industry application.

  17. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  18. Persistent photoconductivity in highly porous ZnO films

    NASA Astrophysics Data System (ADS)

    Reemts, Jens; Kittel, Achim

    2007-01-01

    ZnO and ZnO-dye hybrid films prepared by electrochemical deposition are highly porous if fabricated in the presence of structure directing agents and they can easily be sensitized by various molecules. If the material is sensitized with the appropriate molecules, it becomes interesting for various sensor applications, i.e., gas sensors and biosensors, or as an electrode material for solar energy conversion in dye sensitized solar cells. In the present work, the focus is on dye sensitized ZnO as a model system. The long term photoconductivity transients have been investigated in such kind of material. Upon excitation with different wavelengths, the conductivity increases already under sub-band-gap illumination due to widely distributed trap states within the band gap. The slow photoconductivity transients follow a stretched exponential law if the illumination is rapidly changing in a dry atmosphere. The underlying mechanism of persistent photoconductivity can be attributed to a lattice relaxation process of surface states, immediately after electrons have been photoexcited into distributed surface states located inside the band gap of the ZnO thin film.

  19. Fabrication and characterization of ZnO nanowires grown on Ti substrate

    NASA Astrophysics Data System (ADS)

    Meng, Gang; Fang, Xiaodong; Tao, Ruhua; Dong, Weiwei; Deng, Zanhong; Zhou, Shu

    2009-07-01

    Zinc oxide (ZnO) with a wide band gap of 3.37 eV, and a large exciton binding energy of 60 mV at room temperature, is one of the most important n-type semiconductor, that has potential applications in the area of short-wavelength optoelectronic devices, gas sensors, solar cells, and field emitters. Some advanced nanodevices based on one-dimensional (1-D) ZnO nanomaterials have been successfully demonstrated in the past few years. The types of substrate have a great influence on the properties of ZnO nanostrctural devices. Semiconductor substrates such as Si and Al2O3 were widely used for the collection or epitaxial growth of ZnO nanostructures, for metal substrate, Fe and Cu foil has also been used as substrate, there are few reports on ZnO nanowires grown on Ti foil, Ti is an important electrode metal that ohmic contact can be appropriately achieved, which is critical for semiconductor device application. Besides, both Ti and ZnO show good biocompatibility, it is expected that ZnO nanowires/ Ti show good performance on bio-sensors. In this paper, 1-D ZnO nanostructures have been successfully fabricated on the conductive Ti substrate via a vapor phase transport (VPT) method by carbothermal reduction of ZnO and graphite powder mixture in a tube furnace at 850°C. The final products were characterized by means of field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), high-solution transmission electron microscope (HRTEM) (equipped with selected area electron diffraction, SAED), and photoluminescence (PL) spectroscopy. FE SEM results show that dense, ultra-long (>10μm), and locally aligned ZnO nanowire arrays were grown on the Ti foil. The diameter of nanowires exhibits a wide range from 150 nm to about 500nm. Structural characterizations (XRD, SAED, HRTEM) indicate the as synthesized nanostructures have a ZnO wurtzite structure and are perfect single crystalline without any defects or impurities. The growth direction is [0001]. Optical

  20. Nanoscale Electrostatics in Mitosis

    NASA Astrophysics Data System (ADS)

    Gagliardi, L. John; West, Patrick Michael

    2001-04-01

    Primitive biological cells had to divide with very little biology. This work simulates a physicochemical mechanism, based upon nanoscale electrostatics, which explains the anaphase A poleward motion of chromosomes. In the cytoplasmic medium that exists in biological cells, electrostatic fields are subject to strong attenuation by Debye screening, and therefore decrease rapidly over a distance equal to several Debye lengths. However, the existence of microtubules within cells changes the situation completely. Microtubule dimer subunits are electric dipolar structures, and can act as intermediaries that extend the reach of the electrostatic interaction over cellular distances. Experimental studies have shown that intracellular pH rises to a peak at mitosis, and decreases through cytokinesis. This result, in conjunction with the electric dipole nature of microtubule subunits and the Debye screened electrostatic force is sufficient to explain and unify the basic events during mitosis and cytokinesis: (1) assembly of asters, (2) motion of the asters to poles, (3) poleward motion of chromosomes (anaphase A), (4) cell elongation, and (5) cytokinesis. This paper will focus on a simulation of the dynamics if anaphase A motion based on this comprehensive model. The physicochemical mechanisms utilized by primitive cells could provide important clues regarding our understanding of cell division in modern eukaryotic cells.

  1. Capillarity at the nanoscale.

    PubMed

    van Honschoten, Joost W; Brunets, Nataliya; Tas, Niels R

    2010-03-01

    In this critical review we treat the phenomenon of capillarity in nanoscopic confinement, based on application of the Young-Laplace equation. In classical capillarity the curvature of the meniscus is determined by the confining geometry and the macroscopic contact angle. We show that in narrow confinement the influence of the disjoining pressure and the related wetting films have to be considered as they may significantly change the meniscus curvature. Nanochannel based static and dynamic capillarity experiments are reviewed. A typical effect of nanoscale confinement is the appearance of capillarity induced negative pressure. Special attention is paid to elasto-capillarity and electro-capillarity. The presence of electric fields leads to an extra stress term to be added in the Young-Laplace equation. A typical example is the formation of the Taylor cone, essential in the theory of electrospray. Measurements of the filling kinetics of nanochannels with water and aqueous salt solutions are discussed. These experiments can be used to characterize viscosity and apparent viscosity effects of water in nanoscopic confinement. In the final section we show four examples of appearances of capillarity in engineering and in nature (112 references).

  2. Electrostatics at the nanoscale.

    PubMed

    Walker, David A; Kowalczyk, Bartlomiej; de la Cruz, Monica Olvera; Grzybowski, Bartosz A

    2011-04-01

    Electrostatic forces are amongst the most versatile interactions to mediate the assembly of nanostructured materials. Depending on experimental conditions, these forces can be long- or short-ranged, can be either attractive or repulsive, and their directionality can be controlled by the shapes of the charged nano-objects. This Review is intended to serve as a primer for experimentalists curious about the fundamentals of nanoscale electrostatics and for theorists wishing to learn about recent experimental advances in the field. Accordingly, the first portion introduces the theoretical models of electrostatic double layers and derives electrostatic interaction potentials applicable to particles of different sizes and/or shapes and under different experimental conditions. This discussion is followed by the review of the key experimental systems in which electrostatic interactions are operative. Examples include electroactive and "switchable" nanoparticles, mixtures of charged nanoparticles, nanoparticle chains, sheets, coatings, crystals, and crystals-within-crystals. Applications of these and other structures in chemical sensing and amplification are also illustrated.

  3. Direct-write fabrication of a nanoscale digital logic element on a single nanowire

    NASA Astrophysics Data System (ADS)

    Roy, Somenath; Gao, Zhiqiang

    2010-06-01

    In this paper we report on the 'direct-write' fabrication and electrical characteristics of a nanoscale logic inverter, integrating enhancement-mode (E-mode) and depletion-mode (D-mode) field-effect transistors (FETs) on a single zinc oxide (ZnO) nanowire. 'Direct-writing' of platinum metal electrodes and a dielectric layer is executed on individual single-crystalline ZnO nanowires using either a focused electron beam (FEB) or a focused ion beam (FIB). We fabricate a top-gate FET structure, in which the gate electrode wraps around the ZnO nanowire, resulting in a more efficient gate response than the conventional back-gate nanowire transistors. For E-mode device operation, the gate electrode (platinum) is deposited directly onto the ZnO nanowire by a FEB, which creates a Schottky barrier and in turn a fully depleted channel. Conversely, sandwiching an insulating layer between the FIB-deposited gate electrode and the nanowire channel makes D-mode operation possible. Integrated E- and D-mode FETs on a single nanowire exhibit the characteristics of a direct-coupled FET logic (DCFL) inverter with a high gain and noise margin.

  4. Enhanced electromechanical behaviors of cellulose ZnO hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Mun, Seongchoel; Min, Seung-Ki; Kim, Hyun Chan; Im, Jongbeom; Geddis, Demetris L.; Kim, Jaehwan

    2015-04-01

    Inorganic-organic hybrid composite has attracted as its combined synergistic properties. Cellulose based inorganicorganic hybrid composite was fabricated with semiconductive nanomaterials which has functionality of nanomaterial and biocompatibility piezoelectricity, high transparency and flexibility of cellulose electro active paper namely EAPap. ZnO is providing semiconductive functionality to EAPap for hybrid nanocomposite by simple chemical reaction. Cellulose- ZnO hybrid nanocomposite (CEZOHN) demonstrates novel electrical, photoelectrical and electromechanical behaviors. This paper deals with methods to improve electromechanical property of CEZOHN. The fabrication process is introduced briefly, charging mechanism and evaluation is studied with measured piezoelectric constant. And its candidate application will be discussed such as artificial muscle, energy harvester, strain sensor, flexible electrical device.

  5. Nanoscale NMR spectroscopy and imaging of multiple nuclear species

    NASA Astrophysics Data System (ADS)

    Devience, Stephen J.; Pham, Linh M.; Lovchinsky, Igor; Sushkov, Alexander O.; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L.

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ˜100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species (1H, 19F, 31P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (˜20 mT) using two complementary sensor modalities.

  6. Enhanced Photocatalytic Performance of ZnO Nanorods Coupled by Two-Dimensional α-MoO3 Nanoflakes under UV and Visible Light Irradiation.

    PubMed

    Hang, Da-Ren; Sharma, Krishna Hari; Chen, Chun-Hu; Islam, Sk Emdadul

    2016-08-26

    We exploit the utilization of two-dimensional (2D) molybdenum oxide nanoflakes as a co-catalyst for ZnO nanorods (NRs) to enhance their photocatalytic performance. The 2D nanoflakes of orthorhombic α-MoO3 were synthesized through a sonication-aided exfoliation technique. The 2D MoO3 nanoflakes can be further converted to substoichiometric quasi-metallic MoO3-x by using UV irradiation. Subsequently, 1D-2D MoO3 /ZnO NR and MoO3-x /ZnO NR composite photocatalysts have been successfully synthesized. The photocatalytic performances of the novel nanosystems in the decomposition of methylene blue are studied by using UV- and visible-illumination setup. The incorporated 2D nanoflakes show a positive influence on the photocatalytic activity of the ZnO. The obtained rate constant values follow the order of pristine ZnO NRZnO NRZnO NR composites. The enhancement of the photocatalytic efficiency can be ascribed to a fast charge carrier separation and transport within the heterojunctions of the MoO3 /ZnO NRs. In particular, the best photocatalytic performance of the MoO3-x /ZnO NR composite can be additionally attributed to a quasi-metallic conductivity and substoichiometry-induced mid-gap states, which extend the light absorption range. A tentative photocatalytic degradation mechanism was proposed. The strategy presented in this work not only demonstrates that coupling with nanoscale molybdenum oxide nanoflakes is a promising approach to significantly enhance the photocatalytic activity of ZnO but also hints at new type of composite catalyst with extended applications in energy conversion and environmental purification.

  7. Effects of synthesizing parameters on surface roughness and contact angles of ZnO nanowire films.

    PubMed

    Jing, Weixuan; Wang, Bing; Niu, Lingling; Jiang, Zhuangde; Qi, Han; Chen, Lujia; Zhou, Fan

    2014-06-01

    Effects of the synthesizing parameters on the surface roughness and the contact angles of ZnO nanowire films were studied in this paper. ZnO nanowire films were synthesized with the hydrothermal method on glass substrates, and the synthesizing parameters include the concentrations of the growth solution and the seed layer solution, the growth time span as well as the temperature. Atomic force microscopy and scanning electron microscopy were employed respectively to characterize the surface and the profile roughness of ZnO nanowire films. The measurement results by atomic force microscopy were in agreement with that by scanning electron microscopy, hence the former was used for the investigation of aforementioned effects. Relationships between the synthesizing parameters, the surface roughness and the contact angles of ZnO nanowire films were established, revealing that the synthesizing parameters affected significantly not only the surface roughness but also the contact angles of ZnO nanowire films. The results can be used for batch fabrication of ZnO nanowire-based structures and these structures-based sensors in a wide variety of applications.

  8. Porous ZnO nanonetworks grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, W. C. T.; Kendrick, C. E.; Millane, R. P.; Liu, Z.; Ringer, S. P.; Washburn, K.; Callaghan, P. T.; Durbin, S. M.

    2012-04-01

    Plasma-assisted molecular beam epitaxy was employed to create porous nanonetworks of ZnO directly on GaN epilayers without the use of catalysts or templates. Detailed analysis of scanning electron microscopy (SEM) images of both as-grown and etched samples reveals that the typical porous nanonetwork structure is multilayered, and suggests that dislocations originating at the GaN/sapphire heterointerface and/or defects characterizing an unusually rough GaN surface are responsible. The pore size distribution of the nanonetwork was measured using nuclear magnetic resonance (NMR) cryoporometry. A bimodal pore size distribution centred at 4 nm and 70 nm, respectively, was observed, consistent with the existence of small nanoscale pores in the bulk of the sample, and large open pores on the surface of the porous nanonetwork as observed by SEM.

  9. Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method.

    PubMed

    Park, Geun Chul; Hwang, Soo Min; Lim, Jun Hyung; Joo, Jinho

    2014-01-01

    The incorporation of foreign elements into ZnO nanostructures is of significant interest for tuning the structure and optical and electrical properties in nanoscale optoelectronic devices. In this study, Ga-doped 1-D ZnO nanorods were synthesized using a hydrothermal route, in which the doping content of Ga was varied from 0% to 10%. The pn heterojunction diodes based on the n-type Ga-doped ZnO nanorod/p-type Si substrates were constructed, and the effect of the Ga doping on the morphology, chemical bonding structure, and optical properties of the ZnO nanorods was systematically investigated as well as the diode performance. With increasing Ga content, the average diameter of the ZnO nanorods was increased, whereas the amount of oxygen vacancies was reduced. In addition, the Ga-doped ZnO nanorod/p-Si diodes showed a well-defined rectifying behavior in the I-V characteristics and an improvement in the electrical conductivity (diode performance) by the Ga doping, which was attributed to the increased charge carrier (electron) concentration and the reduced defect states in the nanorods by incorporating Ga. The results suggest that Ga doping is an effective way to tailor the morphology, optical, electronic, and electrical properties of ZnO nanorods for various applications such as field-effect transistors (FETs), light-emitting diodes (LEDs), and laser diodes (LDs).

  10. Nanoscale Test Strips for Multiplexed Blood Analysis

    NASA Technical Reports Server (NTRS)

    Chan, Eugene

    2015-01-01

    A critical component of the DNA Medicine Institute's Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) sensor are nanoscale test strips, or nanostrips, that enable multiplexed blood analysis. Nanostrips are conceptually similar to the standard urinalysis test strip, but the strips are shrunk down a billionfold to the microscale. Each nanostrip can have several sensor pads that fluoresce in response to different targets in a sample. The strips carry identification tags that permit differentiation of a specific panel from hundreds of other nanostrip panels during a single measurement session. In Phase I of the project, the company fabricated, tested, and demonstrated functional parathyroid hormone and vitamin D nanostrips for bone metabolism, and thrombin aptamer and immunoglobulin G antibody nanostrips. In Phase II, numerous nanostrips were developed to address key space flight-based medical needs: assessment of bone metabolism, immune response, cardiac status, liver metabolism, and lipid profiles. This unique approach holds genuine promise for space-based portable biodiagnostics and for point-of-care (POC) health monitoring and diagnostics here on Earth.

  11. Thermoelectric effects in nanoscale junctions.

    PubMed

    Dubi, Yonatan; Di Ventra, Massimiliano

    2009-01-01

    Despite its intrinsic nonequilibrium origin, thermoelectricity in nanoscale systems is usually described within a static scattering approach which disregards the dynamical interaction with the thermal baths that maintain energy flow. Using the theory of open quantum systems, we show instead that unexpected properties, such as a resonant structure and large sign sensitivity, emerge if the nonequilibrium nature of this problem is considered. Our approach also allows us to define and study a local temperature, which shows hot spots and oscillations along the system according to the coupling of the latter to the electrodes. This demonstrates that Fourier's lawa paradigm of statistical mechanicsis generally violated in nanoscale junctions.

  12. Fabrication of nanoscale electrostatic lenses

    NASA Astrophysics Data System (ADS)

    Sinno, I.; Sanz-Velasco, A.; Kang, S.; Jansen, H.; Olsson, E.; Enoksson, P.; Svensson, K.

    2010-09-01

    The fabrication of cylindrical multi-element electrostatic lenses at the nanoscale presents a challenge; they are high-aspect-ratio structures that should be rotationally symmetric, well aligned and freestanding, with smooth edges and flat, clean surfaces. In this paper, we present the fabrication results of a non-conventional process, which uses a combination of focused gallium ion-beam milling and hydrofluoric acid vapor etching. This process makes it possible to fabricate nanoscale electrostatic lenses down to 140 nm in aperture diameter and 4.2 µm in column length, with a superior control of the geometry as compared to conventional lithography-based techniques.

  13. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    EPA Science Inventory

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  14. Fabrication and characterization of nano-gas sensor arrays

    SciTech Connect

    Hassan, H. S. Kashyout, A. B.; Morsi, I. Nasser, A. A. A. Raafat, A.

    2015-03-30

    A novel structures of Nanomaterials gas sensors array constructed using ZnO, and ZnO doped with Al via sol-gel technique. Two structure arrays are developed; the first one is a double sensor array based on doping with percentages of 1% and 5%. The second is a quadrature sensor array based on several doping ratios concentrations (0%, 1%, 5% and 10%). The morphological structures of prepared ZnO were revealed using scanning electron microscope (SEM). X-ray diffraction (XRD) patterns reveal a highly crystallized wurtzite structure and used for identifying phase structure and chemical state of both ZnO and ZnO doped with Al under different preparation conditions and different doping ratios. Chemical composition of Al-doped ZnO nanopowders was performed using energy dispersive x-ray (EDS) analysis. The electrical characteristics of the sensor are determined by measuring the two terminal sensor’s output resistance for O{sub 2}, H{sub 2} and CO{sub 2} gases as a function of temperature.

  15. Characterizations of Ohmic and Schottky-behaving contacts of a single ZnO nanowire.

    PubMed

    Bercu, Bogdan; Geng, Wei; Simonetti, Olivier; Kostcheev, Sergei; Sartel, Corinne; Sallet, Vincent; Lérondel, Gilles; Molinari, Michaël; Giraudet, Louis; Couteau, Christophe

    2013-10-18

    Current-voltage and Kelvin probe force microscopy (KPFM) measurements were performed on single ZnO nanowires. Measurements are shown to be strongly correlated with the contact behavior, either Ohmic or diode-like. The ZnO nanowires were obtained by metallo-organic chemical vapor deposition (MOCVD) and contacted using electronic-beam lithography. Depending on the contact geometry, good quality Ohmic contacts (linear I-V behavior) or non-linear (diode-like) contacts were obtained. Current-voltage and KPFM measurements on both types of contacted ZnO nanowires were performed in order to investigate their behavior. A clear correlation could be established between the I-V curve, the electrical potential profile along the device and the nanowire geometry. Some arguments supporting this behavior are given based on technological issues and on depletion region extension. This work will help to better understand the electrical behavior of Ohmic contacts on single ZnO nanowires, for future applications in nanoscale field-effect transistors and nano-photodetectors.

  16. Quantifying the barrier lowering of ZnO Schottky nanodevices under UV light

    PubMed Central

    Lu, Ming-Yen; Lu, Ming-Pei; You, Shuen-Jium; Chen, Chieh-Wei; Wang, Ying-Jhe

    2015-01-01

    In this study we measured the degrees to which the Schottky barrier heights (SBHs) are lowered in ZnO nanowire (NW) devices under illumination with UV light. We measured the I–V characteristics of ZnO nanowire devices to confirm that ZnO is an n-type semiconductor and that the on/off ratio is approximately 104. From temperature-dependent I–V measurements we obtained a SBH of 0.661 eV for a ZnO NW Schottky device in the dark. The photosensitivity of Schottky devices under UV illumination at a power density of 3 μW/cm2 was 9186%. Variations in the SBH account for the superior characteristics of n-type Schottky devices under illumination with UV light. The SBH variations were due to the coupled mechanism of adsorption and desorption of O2 and the increase in the carrier density. Furthermore, through temperature-dependent I–V measurements, we determined the SBHs in the dark and under illumination with UV light at power densities of 0.5, 1, 2, and 3 μW/cm2 to be 0.661, 0.216, 0.178, 0.125, and 0.068 eV, respectively. These findings should be applicable in the design of highly sensitive nanoscale optoelectronic devices. PMID:26456370

  17. Power generation from base excitation of a Kevlar composite beam with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Hwang, Hyun-Sik; Sodano, Henry A.

    2015-04-01

    One-dimensional nanostructures such as nanowires, nanorods, and nanotubes with piezoelectric properties have gained interest in the fabrication of small scale power harvesting systems. However, the practical applications of the nanoscale materials in structures with true mechanical strengths have not yet been demonstrated. In this paper, piezoelectric ZnO nanowires are integrated into the fiber reinforced polymer composites serving as an active phase to convert the induced strain energy from ambient vibration into electrical energy. Arrays of ZnO nanowires are grown vertically aligned on aramid fibers through a low-cost hydrothermal process. The modified fabrics with ZnO nanowires whiskers are then placed between two carbon fabrics as the top and the bottom electrodes. Finally, vacuum resin transfer molding technique is utilized to fabricate these multiscale composites. The fabricated composites are subjected to a base excitation using a shaker to generate charge due to the direct piezoelectric effect of ZnO nanowires. Measuring the generated potential difference between the two electrodes showed the energy harvesting application of these multiscale composites in addition to their superior mechanical properties. These results propose a new generation of power harvesting systems with enhanced mechanical properties.

  18. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhao, Minggang; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang

    2016-07-01

    ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  19. Investigation of sol-gel yttrium doped ZnO thin films: structural and optical properties

    NASA Astrophysics Data System (ADS)

    Ivanova, T.; Harizanova, A.; Koutzarova, T.; Vertruyen, B.

    2016-02-01

    Nanostructured metal oxide films are extensively studied due to their numerous applications such as optoelectronic devices, sensors. In this work, we report the Y-Zn-O nanostructured films prepared by sol-gel technology from sols with different concentration of yttrium precursor, followed by post-annealing treatment. The Y doped ZnO thin films have been deposited on Si and quartz substrates by spin coating method, then treated at temperatures ranging from 300-800oC. XRD analysis reveals modification of the film structure and phases in the doped ZnO films.

  20. Catalyst-Free Synthesis of ZnO Nanowires on Oxidized Silicon Substrate for Gas Sensing Applications.

    PubMed

    Behera, B; Chandra, S

    2015-06-01

    In the present work, we report the synthesis of nanostructured ZnO by oxidation of zinc film without using a seed or catalyst layer. The zinc films were deposited on oxidized Si substrates by RF magnetron sputtering process. These were oxidized in dry and wet air/oxygen ambient. The optimized process yielded long nanowires of ZnO having diameter of around 60-70 nm and spread uniformly over the surface. The effect of oxidation temperature, time, Zn film thickness and the ambient has strong influence on the morphology of resulting nanostruxctured ZnO film. The films were characterized by scanning electron microscopy for morphological studies and X-ray diffraction (XRD) analysis to study the phase of the nanostructured ZnO. Room temperature photoluminescence (PL) measurements of the nanowires show UV and green emission. A sensor was designed and fabricated using nanostructured ZnO film, incorporating inter-digital-electrode (IDE) for the measurement of resistance of the sensing layer. The gas sensing properties were investigated from the measurement of change in resistance when exposed to vapours of different volatile organic compound (VOC) such as acetone, ethanol, methanol and 2-propanol. The results suggest that ZnO nanowires fabricated by this method have potential application in gas sensors.

  1. ZnO thin film as MSG for sensitive biosensor

    NASA Astrophysics Data System (ADS)

    Iftimie, N.; Savin, A.; Steigmann, R.; Faktorova, D.; Salaoru, I.

    2016-08-01

    In this paper, we investigate the cholesterol sensors consisting of a mixture of cholesterol oxidase (ChOx) and zinc oxide (ZnO) nanoparticles were grown on ITO/glass substrates by vacuum thermal evaporation method and their sensing characteristics are examined in air. Also, the interest in surface waves appeared due to evanescent waves in the metallic strip grating in sub-wavelength regime. Before testing the transducer with metamaterials lens in the sub-wavelength regime, a simulation of the evanescent wave's formation has been performed at the edge of Ag strips, with thicknesses in the range of micrometers.

  2. Nanoscale wicking methods and devices

    NASA Technical Reports Server (NTRS)

    Zhou, Jijie (Inventor); Bronikowski, Michael (Inventor); Noca, Flavio (Inventor); Sansom, Elijah B. (Inventor)

    2011-01-01

    A fluid transport method and fluid transport device are disclosed. Nanoscale fibers disposed in a patterned configuration allow transport of a fluid in absence of an external power source. The device may include two or more fluid transport components having different fluid transport efficiencies. The components may be separated by additional fluid transport components, to control fluid flow.

  3. A Comparison of ZnO and ZnO(-)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James (Technical Monitor)

    1998-01-01

    Ab initio electronic structure calculations are performed to support and to help interpret the experimental work reported in the proceeding manuscript. The CCSD(T) approach, in conjunction with a large basis set, is used to compute spectroscopic constants for the X(exp 1)Epsilon(+) and (3)II states of ZnO and the X(exp 2)Epsilon(+) state of ZnO(-). The spectroscopic constants, including the electron affinity, are in good agreement with experiment. The ZnO EA is significantly larger than that of O, thus relative to the atomic ground state asymptotes, ZnO(-) has a larger D(sub o) than the (1)Epsilon(+) state, despite the fact that the extra electron goes into an antibonding orbital. The changes in spectroscopic constants can be understood in terms of the X(exp 1)Epsilon(+) formally dissociating to Zn (1)S + O (1)D while the (3)II and (2)Epsilon(+) states dissociate to Zn (1)S + O (3)P and Zn (1) and O(-) (2)P, respectively.

  4. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate.

    PubMed

    Hong, Sukjoon; Yeo, Junyeob; Manorotkul, Wanit; Kang, Hyun Wook; Lee, Jinhwan; Han, Seungyong; Rho, Yoonsoo; Suh, Young Duk; Sung, Hyung Jin; Ko, Seung Hwan

    2013-05-07

    We develop a digital direct writing method for ZnO NW micro-patterned growth on a large scale by selective laser decomposition of zinc acetate. For ZnO NW growth, by replacing the bulk heating with the scanning focused laser as a fully digital local heat source, zinc acetate crystallites can be selectively activated as a ZnO seed pattern to grow ZnO nanowires locally on a larger area. Together with the selective laser sintering process of metal nanoparticles, more than 10,000 UV sensors have been demonstrated on a 4 cm × 4 cm glass substrate to develop all-solution processible, all-laser mask-less digital fabrication of electronic devices including active layer and metal electrodes without any conventional vacuum deposition, photolithographic process, premade mask, high temperature and vacuum environment.

  5. Evaluation of Alternative Atomistic Models for the Incipient Growth of ZnO by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Chu, Manh-Hung; Tian, Liang; Chaker, Ahmad; Skopin, Evgenii; Cantelli, Valentina; Ouled, Toufik; Boichot, Raphaël; Crisci, Alexandre; Lay, Sabine; Richard, Marie-Ingrid; Thomas, Olivier; Deschanvres, Jean-Luc; Renevier, Hubert; Fong, Dillon; Ciatto, Gianluca

    2017-03-01

    ZnO thin films are interesting for applications in several technological fields, including optoelectronics and renewable energies. Nanodevice applications require controlled synthesis of ZnO structures at nanometer scale, which can be achieved via atomic layer deposition (ALD). However, the mechanisms governing the initial stages of ALD had not been addressed until very recently. Investigations into the initial nucleation and growth as well as the atomic structure of the heterointerface are crucial to optimize the ALD process and understand the structure-property relationships for ZnO. We have used a complementary suite of in situ synchrotron x-ray techniques to investigate both the structural and chemical evolution during ZnO growth by ALD on two different substrates, i.e., SiO2 and Al2O3, which led us to formulate an atomistic model of the incipient growth of ZnO. The model relies on the formation of nanoscale islands of different size and aspect ratio and consequent disorder induced in the Zn neighbors' distribution. However, endorsement of our model requires testing and discussion of possible alternative models which could account for the experimental results. In this work, we review, test, and rule out several alternative models; the results confirm our view of the atomistic mechanisms at play, which influence the overall microstructure and resulting properties of the final thin film.

  6. Lasing mode regulation and single-mode realization in ZnO whispering gallery microcavities by the Vernier effect.

    PubMed

    Wang, Y Y; Xu, C X; Jiang, M M; Li, J T; Dai, J; Lu, J F; Li, P L

    2016-10-07

    The wide direct bandgap and strong exciton binding energy of ZnO have inspired examinations of ultraviolet lasing over the previous decades. However, regulation of the lasing mode, especially the realization of single mode lasing, is still a challenge. In this study, a ZnO comb-like structure with an array of microrods was selected to design coupled whispering-gallery-mode cavities, wherein the naturally varied air-gap between the adjacent microrods created a flexible condition for optical field coupling without any complicated micromanipulation. Spectral behaviour of lasing and coupling interaction between coupled ZnO microrods were systematically investigated. By regulating the nano-scale inter-space of dual coupled microrods, stable single-mode lasing with a higher Q factor and lower threshold was obtained successfully based on the Vernier effect. The formation conditions and the mechanism of single-mode lasing derived from the coupled ZnO microrods were discussed in detail. It also demonstrated an approach to construct high quality single-mode lasing by tuning the diameters of the coupled ZnO microrods.

  7. The use of novel biodegradable, optically active and nanostructured poly(amide-ester-imide) as a polymer matrix for preparation of modified ZnO based bionanocomposites

    SciTech Connect

    Abdolmaleki, Amir; Mallakpour, Shadpour; Borandeh, Sedigheh

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A novel biodegradable and nanostructured PAEI based on two amino acids, was synthesized. Black-Right-Pointing-Pointer ZnO nanoparticles were modified via two different silane coupling agents. Black-Right-Pointing-Pointer PAEI/modified ZnO BNCs were synthesized through ultrasound irradiation. Black-Right-Pointing-Pointer ZnO particles were dispersed homogeneously in PAEI matrix on nanoscale. Black-Right-Pointing-Pointer The effect of ZnO nanoparticles on the properties of synthesized polymer was examined. -- Abstract: A novel biodegradable and nanostructured poly(amide-ester-imide) (PAEI) based on two different amino acids, was synthesized via direct polycondensation of biodegradable N,N Prime -bis[2-(methyl-3-(4-hydroxyphenyl)propanoate)]isophthaldiamide and N,N Prime -(pyromellitoyl)-bis-L-phenylalanine diacid. The resulting polymer was characterized by FT-IR, {sup 1}H NMR, specific rotation, elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized polymer showed good thermal stability with nano and sphere structure. Then PAEI/ZnO bionanocomposites (BNCs) were fabricated via interaction of pure PAEI and ZnO nanoparticles. The surface of ZnO was modified with two different silane coupling agents. PAEI/ZnO BNCs were studied and characterized by FT-IR, XRD, UV/vis, FE-SEM and TEM. The TEM and FE-SEM results indicated that the nanoparticles were dispersed homogeneously in PAEI matrix on nanoscale. Furthermore the effect of ZnO nanoparticle on the thermal stability of the polymer was investigated with TGA and DSC technique.

  8. High Temperature Langasite SAW Oxygen Sensor

    SciTech Connect

    Zheng, Peng; Chin, Tao-Lun; Greve, David; Oppenheim, Irving; Malone, Vanessa; Cao, Limin

    2011-08-01

    High-temperature langasite SAW oxygen sensors using sputtered ZnO as a resistive gas-sensing layer were fabricated and tested. Sensitivity to oxygen gas was observed between 500°C to 700°C, with a sensitivity peak at about 625°C, consistent with the theoretical predictions of the acoustoelectric effect.

  9. Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/TiO2 nanoparticles heterojunction composites.

    PubMed

    Zou, C W; Wang, J; Xie, W

    2016-09-15

    ZnO nanorods/TiO2 nanoparticles composites were synthesized and the effects of TiO2 concentrations on the NO2 sensing properties were studied in detail. The as-prepared composites were characterized by XRD, SEM, TEM, PL, I-V and gas sensing measurements. The gas sensing results demonstrated that all the sensors based on ZnO/TiO2 nanocomposites exhibited much higher response than that of sensors based on pure ZnO nanorods. At the optimum operating temperature of 180°C, the response values of the sensors based on ZnO/TiO2 nanocomposites decorated with TiO2 concentrations of 0, 3, 5, 8 and 10wt% were 50, 140, 310, 350 and 258, respectively. The PL and I-V results indicated that the increased charge transfer between the ZnO nanorods mediated by TiO2 nanoparticles enhanced the conductivity of the ZnO/TiO2 nanocomposites. The gas sensing mechanism was also carefully analyzed. The attachment of TiO2 nanoparticles onto ZnO nanorods induced more active sites for the adsorption of oxygen molecules (O(2)) and O(2) which can be more easily adsorbed on the surface of ZnO nanorods. Furthermore, the conduction channel of ZnO/TiO2 was much narrower as a result of the formation of heterojunction which may further contribute to the enhanced NO2 sensing properties.

  10. Synthesis and photocatalytic properties of multi-morphological AuCu3-ZnO hybrid nanocrystals

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Chen, Yuanzhi; Peng, Jian; Xie, Qingshui; Peng, Dong-Liang

    2015-10-01

    Noble metal-semiconductor hybrid nanocrystals represent an important class of materials for many potential applications, especially for photocatalysis. The utilization of transition metals to form alloys with noble metals can not only reduce the preparation costs, but may also offer tunable optical and catalytic properties for a broader range of applications. In this study, we report on the solution synthesis of AuCu3-ZnO hybrid nanocrystals with three interesting morphologies, including urchin-like, flower-like and multipod-like nanocrystals. In the synthetic strategy, Au-Cu bimetallic alloy seeds formed in situ are used to induce the heteroepitaxial growth of ZnO nanocrystals on the surface of bimetallic alloy cores; thus different types of morphologies can be achieved by controlling the reaction conditions. Through high-resolution transmission electron microscopy observations, well-defined interfaces between ZnO and AuCu3 are observed, which indicate that ZnO has a (0001) orientation and prefers to grow on AuCu3 {111} facets. The as-prepared hybrid nanocrystals demonstrate morphology- and composition-dependent surface plasmon resonance (SPR) absorption bands. In addition, much higher photocatalytic efficiency than pure ZnO nanocrystals is observed for the hybrid nanocrystals in the degradation of methylene blue. In particular, the multipod-like AuCu3-ZnO hybrid nanocrystals show the highest catalytic performance, as well as more than three times higher photocurrent density than the pure ZnO sample. The reported synthetic strategy provides a facile route to the effective combination of a plasmonic alloy with semiconductor components at the nanoscale in a controlled manner.

  11. Tailoring oxygen vacancies at ZnO( 1 1 ¯ 00 ) surface: An ab initio study

    NASA Astrophysics Data System (ADS)

    Korir, K. K.; Catellani, A.; Cicero, G.

    2016-09-01

    Oxygen vacancies in ZnO crystals have significant impacts on its properties and applications. On the basis of ab initio results, we describe the oxygen vacancy distribution and diffusion paths away from the ZnO( 1 1 ¯ 00 ) surface, aiming to elucidate thermodynamics and kinetic stability of the vacancies and a possible control mechanism. In view of defect engineering and sensor applications, we propose efficient routes to chemically control the equilibrium concentration of the oxygen vacancies at ZnO surfaces by exposure to specific reactive gases: we show that the oxygen vacancy concentration can be increased using sulfur oxide as post-growth treatment, while under exposure to ozone, no significant amount of oxygen vacancies can be sustained on the surface.

  12. Phase transition induced strain in ZnO under high pressure

    NASA Astrophysics Data System (ADS)

    Yan, Xiaozhi; Dong, Haini; Li, Yanchun; Lin, Chuanlong; Park, Changyong; He, Duanwei; Yang, Wenge

    2016-05-01

    Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strength decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. These findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.

  13. Spectroscopic and fiber optic ethanol sensing properties Gd doped ZnO nanoparticles.

    PubMed

    Noel, J L; Udayabhaskar, R; Renganathan, B; Muthu Mariappan, S; Sastikumar, D; Karthikeyan, B

    2014-11-11

    We report the structural, optical and gas sensing properties of prepared pure and Gd doped ZnO nanoparticles through solgel method at moderate temperature. Structural studies are carried out by X-ray diffraction method confirms hexagonal wurtzite structure and doping induced changes in lattice parameters is observed. Optical absorption spectral studies shows red shift in the absorption peak corresponds to band-gap from 3.42 eV to 3.05 eV and broad absorption in the visible range after Gd doping is observed. Scanning electron microscopic studies shows increase in particle size where the particle diameters increase from few nm to micrometers after Gd doping. The clad modified ethanol fiber-optic sensor studies for ethanol sensing exhibits best sensitivity for the 3% Gd doped ZnO nanoparticles and the sensitivity get lowered incase of higher percentage of Gd doped ZnO sample.

  14. Ethanol-Sensing Characteristics of Nanostructured ZnO: Nanorods, Nanowires, and Porous Nanoparticles

    NASA Astrophysics Data System (ADS)

    Quy, Chu Thi; Hung, Chu Manh; Van Duy, Nguyen; Hoa, Nguyen Duc; Jiao, Mingzhi; Nguyen, Hugo

    2017-01-01

    The morphology and crystalline size of metal oxide-sensing materials are believed to have a strong influence on the performance of gas sensors. In this paper, we report a comparative study on the ethanol-sensing characteristics of ZnO nanorods, nanowires, and porous nanoparticles. The porous ZnO nanoparticles were prepared using a simple thermal decomposition of a sheet-like hydrozincite, whereas the nanorods and nanowires were grown by hydrothermal and chemical vapor deposition methods, respectively. The morphology and crystal structure of the synthesized materials were characterized by field-emission scanning electron microscopy and x-ray diffraction. Ethanol gas-sensing characteristics were systematically studied at different temperatures. Our findings show that for ethanol gas-sensing applications, ZnO porous nanoparticles exhibited the best sensitivity, followed by the nanowires and nanorods. Gas-sensing properties were also examined with respect to the role of crystal growth orientation, crystal size, and porosity.

  15. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  16. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  17. Homoepitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C-H; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; McCarty, P.; George, M. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    ZnO films have high potential for many applications, such as surface acoustic wave filters, UV detectors, and light emitting devices due to its structural, electrical, and optical properties. High quality epitaxial films are required for these applications. The Al2O3 substrate is commonly used for ZnO heteroepitaxial growth. Recently, high quality ZnO single crystals are available for grow homoepitaxial films. Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films were also deposited on (0001) Al2O3 substrates. It was found that the two polar ZnO surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which strongly influence the epitaxial film growth. The morphology and structure of homoepitaxial films grown on the ZnO substrates were different from heteroepitaxial films grown on the Al2O3. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  18. UV and visible light controllable depletion zone of ZnO-polyaniline p-n junction and its application in a photoresponsive sensor.

    PubMed

    Gong, Jian; Li, Yinhua; Deng, Yulin

    2010-12-07

    In this communication, we report that the depletion zone thickness of the p-n junction between an n-type ZnO and a p-type polyaniline could be controlled by UV and visible light illumination. Based on this princile, photoresponsive sensors were constructed by combining polyaniline thin film and ZnO nanorods. Different from pure ZnO nanomaterials whose conductivity increases when they are exposed to UV illumination, the conductivity of the photoresponsive sensor studied in this communication decreased when the UV light was turned on. The surface modification of ZnO could switch the wavelength of the response light from UV to visible light.

  19. Preparation of new morphological ZnO and Ce-doped ZnO

    SciTech Connect

    Chelouche, A.; Djouadi, D.; Aksas, A.

    2013-12-16

    ZnO micro-tori and cerium doped hexangulars ZnO have been prepared by the sol-gel method under methanol hypercritical conditions of temperature and pressure. X-ray diffraction (XRD) measurement has revealed the high crystalline quality and the nanometric size of the samples. Scanning electron microscopy (SEM) has shown that the ZnO powder has a torus-like shape while that of ZnO:Ce has a hexangular-like shape, either standing free or inserted into the cores of ZnO tori. Transmission electron microscopy (TEM) has revealed that the ZnO particles have sizes between 25 and 30 nm while Ce-doped ZnO grains have diameters ranging from 75 nm to 100 nm. Photoluminescence spectra at room temperature of the samples have revealed that the introduction of cerium in ZnO reduces the emission intensity lines, particularly the ZnO red and green ones.

  20. Impact of biogenic nanoscale metals Fe, Cu, Zn and Se on reproductive LV chickens

    NASA Astrophysics Data System (ADS)

    Khiem Nguyen, Quy; Dieu Nguyen, Duy; Kien Nguyen, Van; Thinh Nguyen, Khac; Chau Nguyen, Hoai; Tin Tran, Xuan; Nguyen, Huu Cuong; Tien Phung, Duc

    2015-09-01

    Using biogenic nanoscale metals (Fe, Cu, ZnO, Se) to supplement into diet premix of reproductive LV (a Vietnamese Luong Phuong chicken breed) chickens resulted in certain improvement of poultry farming. The experimental data obtained showed that the farming indices depend mainly on the quantity of nanocrystalline metals which replaced the inorganic mineral component in the feed premix. All four experimental groups with different quantities of the replacement nano component grew and developed normally with livability reaching 91 to 94%, hen’s bodyweight at 38 weeks of age and egg weight ranged from 2.53-2.60 kg/hen and 50.86-51.55 g/egg, respectively. All these farming indices together with laying rate, egg productivity and chick hatchability peaked at group 5 with 25% of nanoscale metals compared to the standard inorganic mineral supplement, while feed consumption was lowest. The results also confirmed that nanocrystalline metals Fe, Cu, ZnO and Se supplemented to chicken feed were able to decrease inorganic minerals in the diet premixes at least four times, allowing animals to more effectively absorb feed minerals, consequently decreasing environmental pollution risks.

  1. Sensitized ZnO nanorod assemblies to detect heavy metal contaminated phytomedicines: spectroscopic and simulation studies.

    PubMed

    Bagchi, Damayanti; Maji, Tuhin Kumar; Sardar, Samim; Lemmens, Peter; Bhattacharya, Chinmoy; Karmakar, Debjani; Pal, Samir Kumar

    2017-01-18

    The immense pharmacological relevance of the herbal medicine curcumin including anti-cancer and anti-Alzheimer effects, suggests it to be a superior alternative to synthesised drugs. The diverse functionalities with minimal side effects intensify the use of curcumin not only as a dietary supplement but also as a therapeutic agent. Besides all this effectiveness, some recent literature reported the presence of deleterious heavy metal contaminants from various sources in curcumin leading to potential health hazards. In this regard, we attempt to fabricate ZnO based nanoprobes to detect metal conjugated curcumin. We have synthesized and structurally characterized the ZnO nanorods (NR). Three samples namely curcumin (pure), Zn-curcumin (non-toxic metal attached to curcumin) and Hg-curcumin (toxic heavy metal attached to curcumin) were prepared for consideration. The samples were electrochemically deposited onto ZnO surfaces and the attachment was confirmed by cyclic voltammetry experiments. Moreover, to confirm a molecular level interaction picosecond-resolved PL-quenching of ZnO NR due to Förster Resonance Energy Transfer (FRET) from donor ZnO NR to the acceptor curcumin moieties was employed. The attachment proximity of ZnO NR and curcumin moieties depends on the size of metals. First principles analysis suggests a variance of attachment sites and heavy metal Hg conjugated curcumin binds through a peripheral hydroxy group to NR. We fabricated a facile photovoltaic device consisting of ZnO NR as the working electrode with Pt counter electrode and iodide-triiodide as the electrolyte. The trend in photocurrent under visible light illumination suggests an enhancement in the case of heavy metal ions due to long range interaction and greater accumulation of charge at the active electrode. Our results provide a detailed physical insight into interfacial processes that are crucial for detecting heavy-metal attached phytomedicines and are thus expected to find vast

  2. Laser ablated ZnO thin film for amperometric detection of urea

    NASA Astrophysics Data System (ADS)

    Batra, Neha; Tomar, Monika; Jain, Prateek; Gupta, Vinay

    2013-09-01

    Zinc oxide (ZnO) thin films deposited onto indium tin oxide (ITO) coated corning glass substrates using pulsed laser deposition (PLD) technique at two different oxygen pressures (50 mT and 100 mT) have been used as efficient matrix for realization of efficient urea biosensors after immobilization of urease (Urs) enzyme onto ZnO film surface. The bioelectrode Urs/ZnO/ITO/glass having ZnO matrix grown at 100 mT is found to be exhibiting an enhanced sensitivity of 36 μΑ mΜ-1 cm-2 for urea over a wide detection range of 5-200 mg/dl. The relatively low value of Michaelis-Menten constant (Km = 0.82 mM) indicates high affinity of the immobilized urease towards the analyte (urea). The prepared sensor exhibits high selectivity towards detection of urea and retains 90% of its activity for more than 12 weeks. The observed enhanced response characteristics of bioelectrode is attributed to the growth of highly c-axis oriented ZnO thin film by PLD at 100 mT oxygen pressure with desired rough and porous surface morphology besides high electron communication feature. The results confirm the promising application of PLD grown ZnO thin film as an efficient matrix for urea detection.

  3. Optical antennas as nanoscale resonators.

    PubMed

    Agio, Mario

    2012-02-07

    Recent progress in nanotechnology has enabled us to fabricate sub-wavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review the designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interactions, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.

  4. Systems engineering at the nanoscale

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason J.; Breidenich, Jennifer L.; Wei, Michael C.; Clatterbaughi, Guy V.; Keng, Pei Yuin; Pyun, Jeffrey

    2012-06-01

    Nanomaterials have provided some of the greatest leaps in technology over the past twenty years, but their relatively early stage of maturity presents challenges for their incorporation into engineered systems. Perhaps even more challenging is the fact that the underlying physics at the nanoscale often run counter to our physical intuition. The current state of nanotechnology today includes nanoscale materials and devices developed to function as components of systems, as well as theoretical visions for "nanosystems," which are systems in which all components are based on nanotechnology. Although examples will be given to show that nanomaterials have indeed matured into applications in medical, space, and military systems, no complete nanosystem has yet been realized. This discussion will therefore focus on systems in which nanotechnology plays a central role. Using self-assembled magnetic artificial cilia as an example, we will discuss how systems engineering concepts apply to nanotechnology.

  5. Biosafe Nanoscale Pharmaceutical Adjuvant Materials

    PubMed Central

    Jin, Shubin; Li, Shengliang; Wang, Chongxi; Liu, Juan; Yang, Xiaolong; Wang, Paul C.; Zhang, Xin; Liang, Xing-Jie

    2014-01-01

    Thanks to developments in the field of nanotechnology over the past decades, more and more biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical research. Nanomaterials possess unique properties which could be employed to develop drug carriers with longer circulation time, higher loading capacity, better stability in physiological conditions, controlled drug release, and targeted drug delivery. In this review article, we will review recent progress in the application of representative organic, inorganic and hybrid biosafe nanoscale materials in pharmaceutical research, especially focusing on nanomaterial-based novel drug delivery systems. In addition, we briefly discuss the advantages and notable functions that make these nanomaterials suitable for the design of new medicines; the biosafety of each material discussed in this article is also highlighted to provide a comprehensive understanding of their adjuvant attributes. PMID:25429253

  6. Metal Structural Environment in ZnxNi1-xO Macroscale and Nanoscale Solid Solutions

    SciTech Connect

    Peck, Matthea A.; Langell, Marjorie A.

    2014-08-21

    The metal structural environments in macroscale and nanoscale ZnxNi1–xO solid solutions were examined using X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS). XRD demonstrates that solid solutions form for both macroscale (bulk) and nanoscale crystallites, and that the lattice parameter increases linearly as the amount of zinc increases, an indication of a homogeneous solid solution. XAS for both the bulk material and the nanoparticles reveals that the zinc atoms are incorporated into the rocksalt lattice and do not form zinc oxide clusters. The X-ray absorption near edge spectroscopy (XANES) of the Zn k-edge region in the solid solution is similar to the Ni k-edge region of NiO, and not the Zn k-edge region of ZnO. XPS confirms that solid solutions are formed; Auger parameters for zinc are consistent with a different geometry than the tetrahedral coordination of wurtzite ZnO. Nanoscaled solid solutions show evidence of a lattice contraction relative to macroscale solutions of the same concentration. While the contraction persists across the entire concentration range, the nanoparticle lattice parameter approaches the bulk ZnxNi1–xO value as the concentration of zinc increases to predict ZnO rocksalt lattice parameters that are in agreement with observed ZnO data.

  7. Cavitation dynamics on the nanoscale

    SciTech Connect

    Kotaidis, Vassilios; Plech, Anton

    2005-11-21

    The ultrafast excitation of gold nanoparticle sols causes a strong nonequilibrium heating of the particle lattice and subsequently of the water shell close to the particle surface. Above a threshold in laser fluence, which is defined by the onset of homogeneous nucleation, nanoscale vapor bubbles develop around the particles, expand and collapse again within the first nanosecond after excitation. We show the existence of cavitation on the nanometer and subnanosecond time scale, described within the framework of continuum thermodynamics.

  8. Cavitation dynamics on the nanoscale

    NASA Astrophysics Data System (ADS)

    Kotaidis, Vassilios; Plech, Anton

    2005-11-01

    The ultrafast excitation of gold nanoparticle sols causes a strong nonequilibrium heating of the particle lattice and subsequently of the water shell close to the particle surface. Above a threshold in laser fluence, which is defined by the onset of homogeneous nucleation, nanoscale vapor bubbles develop around the particles, expand and collapse again within the first nanosecond after excitation. We show the existence of cavitation on the nanometer and subnanosecond time scale, described within the framework of continuum thermodynamics.

  9. Nanoscale deformation mechanisms in bone.

    PubMed

    Gupta, Himadri S; Wagermaier, Wolfgang; Zickler, Gerald A; Raz-Ben Aroush, D; Funari, Sérgio S; Roschger, Paul; Wagner, H Daniel; Fratzl, Peter

    2005-10-01

    Deformation mechanisms in bone matrix at the nanoscale control its exceptional mechanical properties, but the detailed nature of these processes is as yet unknown. In situ tensile testing with synchrotron X-ray scattering allowed us to study directly and quantitatively the deformation mechanisms at the nanometer level. We find that bone deformation is not homogeneous but distributed between a tensile deformation of the fibrils and a shearing in the interfibrillar matrix between them.

  10. An enzyme free Vitamin C augmented sensing with different ZnO morphologies on SnO2/F transparent glass electrode: A comparative study.

    PubMed

    Singhal, Chaitali; Malhotra, Nitesh; Pundir, C S; Deepshikha; Narang, Jagriti

    2016-12-01

    Three types of Zinc oxide (ZnO) nanostructures viz. ZnO nanocrystals (ZnONCs), ZnO nanoparticles (ZnONPs) and ZnO nanobelts (ZnONBs) were synthesized and characterized by UV-Vis, FTIR and SEM. A comparison of signal amplification by these ZnO nanostructures as judged by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Linear Sweep Voltammetry (LSV) revealed that ZnONCs are better sensing interface for electrochemical detection. When these ZnO nanostructure were compared electrochemically for sensing Vitamin C, ZnONC's sensor outperformed the ZnONP and ZnONB sensor and previously reported sensors. The ZnONCs/MB/FTO electrode showed a wide linear sensing range (0.001μM to 4000μM), low detection limit (0.0001μM), a small response time (5s) and a storage stability of 6months. To the best of our knowledge, this elevated sensitivity and remarkable stability for electrochemical Vitamin C detection using ZnONC's have not been reported so far.

  11. Improvement of Flame-made ZnO Nanoparticulate Thick Film Morphology for Ethanol Sensing

    PubMed Central

    Liewhiran, Chaikarn; Phanichphantandast, Sukon

    2007-01-01

    ZnO nanoparticles were produced by flame spray pyrolysis using zinc naphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%). The particles properties were analyzed by XRD, BET. The ZnO particle size and morphology was observed by SEM and HR-TEM revealing spheroidal, hexagonal, and rod-like morphologies. The crystallite sizes of ZnO spheroidal and hexagonal particles ranged from 10-20 nm. ZnO nanorods were ranged from 10-20 nm in width and 20-50 nm in length. Sensing films were produced by mixing the nanoparticles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed onto Al2O3 substrates interdigitated with Au electrodes. The morphology of the sensing films was analyzed by optical microscopy and SEM analysis. Cracking of the sensing films during annealing process was improved by varying the heating conditions. The gas sensing of ethanol (25-250 ppm) was studied at 400 °C in dry air containing SiC as the fluidized particles. The oxidation of ethanol on the surface of the semiconductor was confirmed by mass spectroscopy (MS). The effect of micro-cracks was quantitatively accounted for as a provider of extra exposed edges. The sensitivity decreased notably with increasing crack of sensing films. It can be observed that crack widths were reduced with decreasing heating rates. Crack-free of thick (5 μm) ZnO films evidently showed higher sensor signal and faster response times (within seconds) than cracked sensor. The sensor signal increased and the response time decreased with increasing ethanol concentration.

  12. Non-resonant Nanoscale Extreme Light Confinement

    SciTech Connect

    Subramania, Ganapathi Subramanian; Huber, Dale L.

    2014-09-01

    A wide spectrum of photonics activities Sandia is engaged in such as solid state lighting, photovoltaics, infrared imaging and sensing, quantum sources, rely on nanoscale or ultrasubwavelength light-matter interactions (LMI). The fundamental understanding in confining electromagnetic power and enhancing electric fields into ever smaller volumes is key to creating next generation devices for these programs. The prevailing view is that a resonant interaction (e.g. in microcavities or surface-plasmon polaritions) is necessary to achieve the necessary light confinement for absorption or emission enhancement. Here we propose new paradigm that is non-resonant and therefore broadband and can achieve light confinement and field enhancement in extremely small areas [~(λ/500)^2 ]. The proposal is based on a theoretical work[1] performed at Sandia. The paradigm structure consists of a periodic arrangement of connected small and large rectangular slits etched into a metal film named double-groove (DG) structure. The degree of electric field enhancement and power confinement can be controlled by the geometry of the structure. The key operational principle is attributed to quasistatic response of the metal electrons to the incoming electromagnetic field that enables non-resonant broadband behavior. For this exploratory LDRD we have fabricated some test double groove structures to enable verification of quasistatic electronic response in the mid IR through IR optical spectroscopy. We have addressed some processing challenges in DG structure fabrication to enable future design of complex sensor and detector geometries that can utilize its non-resonant field enhancement capabilities.].

  13. ZnO nano-array-based EGFET biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Qi, Junjie; Zhang, Huihui; Ji, Zhaoxia; Xu, Minxuan; Zhang, Yue

    2015-06-01

    Electrochemical biosensors are normally based on enzymatic catalysis of a reaction that produces or consumes electrons and the sensing membranes dominate the performance. In this work, ZnO nano-array-based EGFETs were fabricated for pH and glucose detection. The ZnO nano-arrays prepared via low-temperature hydrothermal method were well-aligned, with an average length of 2 μm and diameter of 100-150 nm, and have a typical hexagonal wurtzite structure. The sensor performed with a sensitivity of 45 mV/pH and response time of about 6-7 s from pH = 4-12. UV irradiation can improve the Vref response as a result of the formation of a depletion region at the surface of ZnO nanomaterials. Due to its high specific surface area, the ZnO nano-array EGFET sensor showed a sensitivity of -0.395 mV/μM to the glucose detection in a concentration range between 20 and 100 μM. These EGFET glucose biosensors demonstrate a low detectable concentration (20 μM) with good linearity, therefore may be used to detect glucose in saliva and tears at much lower concentrations than that in blood.

  14. Enhanced formaldehyde gas sensing properties of ZnO nanosheets modified with graphene

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Wei; Hong, Yu-Yuan; Lin, Zhi-Dong; Liu, Li-Ming; Zhang, Xiao-Wen

    2017-02-01

    In this study, pure ZnO (ZnO-1, ZnO-2) with two different morphologies, and graphene doped ZnO-2 (G-ZnO-2) were synthesized using a simple hydrothermal process at 150 °C. The formaldehyde gas sensing performance of the G-ZnO-2 composite, synthesized by an in-situ method was investigated. The morphologies and the structures of the nanomaterials were characterized by X-ray diffraction, field emission scanning electronic microscopy, and transmission electron microscopy. The experimental results indicate that the G-ZnO-2 based sensor exhibits unique advantages for the sensing of formaldehyde gas at concentrations in the range of 2 to 2000 ppm, such as fast response/recovery time and good selectivity, at an optimal working temperature of 200 °C. The improved sensing performance of the G-ZnO-2 composite indicates that the addition of graphene is effective in improving the formaldehyde sensing performance of ZnO-based sensors. [Figure not available: see fulltext.

  15. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  16. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  17. Photocatalytic degradation of carbamazepine in wastewater by using a new class of whey-stabilized nanocrystalline TiO2 and ZnO.

    PubMed

    Mohapatra, D P; Brar, S K; Daghrir, R; Tyagi, R D; Picard, P; Surampalli, R Y; Drogui, P

    2014-07-01

    Nanoscale photocatalysts have attracted much attention due to their high surface area to volume ratios. However, due to extremely high reactivity, TiO2 and ZnO nanoparticles prepared using different methods tend to either react with surrounding media or agglomerate, resulting in the formation of much larger flocs and significant loss in reactivity. This work investigates the photocatalytic degradation of carbamazepine (CBZ), a persistent pharmaceutical compound from wastewater (WW) using TiO2 and ZnO nanoparticles prepared in the presence of a water-soluble whey powder as stabilizer. The TiO2 and ZnO nanoparticles prepared in the presence of whey stabilizer displayed much less agglomeration and greater degradation power than those prepared without a stabilizer. Higher photocatalytic degradation of carbamazepine was observed (100%) by using whey stabilized TiO2 nanoparticles with 55 min irradiation time as compared to ZnO nanoparticles (92%). The higher degradation of CBZ in wastewater by using TiO2 nanoparticles as compared to ZnO nanoparticles was due to formation of higher photo-generated holes with high oxidizing power of TiO2. The photocatalytic capacity of ZnO anticipated as similar to that of TiO2 as it has the same band gap energy (3.2 eV) as TiO2. However, in the case of ZnO, photocorrosion frequently occurs with the illumination of UV light and this phenomenon is considered as one of the main reasons for the decrease of ZnO photocatalytic activity in aqueous solutions. Further, the estrogenic activity of photocatalyzed WW sample with CBZ and its by-products was carried out by yeast estrogen screen (YES) assay method. Based upon the YES test results, none of the samples showed estrogenic activity.

  18. Flexible piezoelectric nanogenerators based on a transferred ZnO nanorod/Si micro-pillar array.

    PubMed

    Baek, Seong-Ho; Park, Il-Kyu

    2017-03-03

    Flexible piezoelectric nanogenerators (PNGs) based on a composite of ZnO nanorods (NRs) and an array of Si micro-pillars (MPs) are demonstrated by a transfer process. The flexible composite structure was fabricated by hydrothermal growth of ZnO NRs on an electrochemically etched Si MP array with various lengths followed by mechanically delaminating the Si MP arrays from the Si substrate after embedding them in a polydimethylsiloxane matrix. Because the Si MP arrays act as a supporter to connect the ZnO NRs electrically and mechanically, verified by capacitance measurement, the output voltage from the flexible PNGs increased systematically with the increased density ZnO NRs depending on the length of the Si MPs. The flexible PNGs showed 3.2 times higher output voltage with a small change in current with increasing Si MP length from 5 to 20 μm. The enhancement of the output voltage is due to the increased number of series-connected ZnO NRs and the beneficial effect of a ZnO NR/Si MP heterojunction on reducing free charge screening effects. The flexible PNGs can be attached on fingers as a wearable electrical power source or motion sensor.

  19. Flexible piezoelectric nanogenerators based on a transferred ZnO nanorod/Si micro-pillar array

    NASA Astrophysics Data System (ADS)

    Baek, Seong-Ho; Park, Il-Kyu

    2017-03-01

    Flexible piezoelectric nanogenerators (PNGs) based on a composite of ZnO nanorods (NRs) and an array of Si micro-pillars (MPs) are demonstrated by a transfer process. The flexible composite structure was fabricated by hydrothermal growth of ZnO NRs on an electrochemically etched Si MP array with various lengths followed by mechanically delaminating the Si MP arrays from the Si substrate after embedding them in a polydimethylsiloxane matrix. Because the Si MP arrays act as a supporter to connect the ZnO NRs electrically and mechanically, verified by capacitance measurement, the output voltage from the flexible PNGs increased systematically with the increased density ZnO NRs depending on the length of the Si MPs. The flexible PNGs showed 3.2 times higher output voltage with a small change in current with increasing Si MP length from 5 to 20 μm. The enhancement of the output voltage is due to the increased number of series-connected ZnO NRs and the beneficial effect of a ZnO NR/Si MP heterojunction on reducing free charge screening effects. The flexible PNGs can be attached on fingers as a wearable electrical power source or motion sensor.

  20. Scanning Nanospin Ensemble Microscope for Nanoscale Magnetic and Thermal Imaging.

    PubMed

    Tetienne, Jean-Philippe; Lombard, Alain; Simpson, David A; Ritchie, Cameron; Lu, Jianing; Mulvaney, Paul; Hollenberg, Lloyd C L

    2016-01-13

    Quantum sensors based on solid-state spins provide tremendous opportunities in a wide range of fields from basic physics and chemistry to biomedical imaging. However, integrating them into a scanning probe microscope to enable practical, nanoscale quantum imaging is a highly challenging task. Recently, the use of single spins in diamond in conjunction with atomic force microscopy techniques has allowed significant progress toward this goal, but generalization of this approach has so far been impeded by long acquisition times or by the absence of simultaneous topographic information. Here, we report on a scanning quantum probe microscope which solves both issues by employing a nanospin ensemble hosted in a nanodiamond. This approach provides up to an order of magnitude gain in acquisition time while preserving sub-100 nm spatial resolution both for the quantum sensor and topographic images. We demonstrate two applications of this microscope. We first image nanoscale clusters of maghemite particles through both spin resonance spectroscopy and spin relaxometry, under ambient conditions. Our images reveal fast magnetic field fluctuations in addition to a static component, indicating the presence of both superparamagnetic and ferromagnetic particles. We next demonstrate a new imaging modality where the nanospin ensemble is used as a thermometer. We use this technique to map the photoinduced heating generated by laser irradiation of a single gold nanoparticle in a fluid environment. This work paves the way toward new applications of quantum probe microscopy such as thermal/magnetic imaging of operating microelectronic devices and magnetic detection of ion channels in cell membranes.

  1. Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances.

    PubMed

    Wang, Liwei; Li, Jintao; Wang, Yinghui; Yu, Kefu; Tang, Xingying; Zhang, Yuanyuan; Wang, Shaopeng; Wei, Chaoshuai

    2016-10-13

    One-dimensional (1D) SnO2-coated ZnO nanowire (SnO2/ZnO NW) N-N heterojunctions were successfully constructed by an effective solvothermal treatment followed with calcination at 400 °C. The obtained samples were characterized by means of XRD, SEM, TEM, Scanning TEM coupled with EDS and XPS analysis, which confirmed that the outer layers of N-type SnO2 nanoparticles (avg. 4 nm) were uniformly distributed onto our pre-synthesized n-type ZnO nanowire supports (diameter 80~100 nm, length 12~16 μm). Comparisons of the gas sensing performances among pure SnO2, pure ZnO NW and the as-fabricated SnO2/ZnO NW heterojunctions revealed that after modification, SnO2/ZnO NW based sensor exhibited remarkably improved response, fast response and recovery speeds, good selectivity and excellent reproducibility to n-butylamine gas, indicating it can be used as promising candidates for high-performance organic amine sensors. The enhanced gas-sensing behavior should be attributed to the unique 1D wire-like morphology of ZnO support, the small size effect of SnO2 nanoparticles, and the semiconductor depletion layer model induced by the strong interfacial interaction between SnO2 and ZnO of the heterojunctions. The as-prepared SnO2/ZnO NW heterojunctions may also supply other novel applications in the fields like photocatalysis, lithium-ion batteries, waste water purification, and so on.

  2. Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances

    NASA Astrophysics Data System (ADS)

    Wang, Liwei; Li, Jintao; Wang, Yinghui; Yu, Kefu; Tang, Xingying; Zhang, Yuanyuan; Wang, Shaopeng; Wei, Chaoshuai

    2016-10-01

    One-dimensional (1D) SnO2-coated ZnO nanowire (SnO2/ZnO NW) N-N heterojunctions were successfully constructed by an effective solvothermal treatment followed with calcination at 400 °C. The obtained samples were characterized by means of XRD, SEM, TEM, Scanning TEM coupled with EDS and XPS analysis, which confirmed that the outer layers of N-type SnO2 nanoparticles (avg. 4 nm) were uniformly distributed onto our pre-synthesized n-type ZnO nanowire supports (diameter 80~100 nm, length 12~16 μm). Comparisons of the gas sensing performances among pure SnO2, pure ZnO NW and the as-fabricated SnO2/ZnO NW heterojunctions revealed that after modification, SnO2/ZnO NW based sensor exhibited remarkably improved response, fast response and recovery speeds, good selectivity and excellent reproducibility to n-butylamine gas, indicating it can be used as promising candidates for high-performance organic amine sensors. The enhanced gas-sensing behavior should be attributed to the unique 1D wire-like morphology of ZnO support, the small size effect of SnO2 nanoparticles, and the semiconductor depletion layer model induced by the strong interfacial interaction between SnO2 and ZnO of the heterojunctions. The as-prepared SnO2/ZnO NW heterojunctions may also supply other novel applications in the fields like photocatalysis, lithium-ion batteries, waste water purification, and so on.

  3. Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances

    PubMed Central

    Wang, Liwei; Li, Jintao; Wang, Yinghui; Yu, Kefu; Tang, Xingying; Zhang, Yuanyuan; Wang, Shaopeng; Wei, Chaoshuai

    2016-01-01

    One-dimensional (1D) SnO2-coated ZnO nanowire (SnO2/ZnO NW) N-N heterojunctions were successfully constructed by an effective solvothermal treatment followed with calcination at 400 °C. The obtained samples were characterized by means of XRD, SEM, TEM, Scanning TEM coupled with EDS and XPS analysis, which confirmed that the outer layers of N-type SnO2 nanoparticles (avg. 4 nm) were uniformly distributed onto our pre-synthesized n-type ZnO nanowire supports (diameter 80~100 nm, length 12~16 μm). Comparisons of the gas sensing performances among pure SnO2, pure ZnO NW and the as-fabricated SnO2/ZnO NW heterojunctions revealed that after modification, SnO2/ZnO NW based sensor exhibited remarkably improved response, fast response and recovery speeds, good selectivity and excellent reproducibility to n-butylamine gas, indicating it can be used as promising candidates for high-performance organic amine sensors. The enhanced gas-sensing behavior should be attributed to the unique 1D wire-like morphology of ZnO support, the small size effect of SnO2 nanoparticles, and the semiconductor depletion layer model induced by the strong interfacial interaction between SnO2 and ZnO of the heterojunctions. The as-prepared SnO2/ZnO NW heterojunctions may also supply other novel applications in the fields like photocatalysis, lithium-ion batteries, waste water purification, and so on. PMID:27734963

  4. Synthesis of ZnO nanostructures for low temperature CO and UV sensing.

    PubMed

    Amin, Muhammad; Manzoor, Umair; Islam, Mohammad; Bhatti, Arshad Saleem; Shah, Nazar Abbas

    2012-10-16

    In this paper, synthesis and results of the low temperature sensing of carbon monoxide (CO) gas and room temperature UV sensors using one dimensional (1-D) ZnO nanostructures are presented. Comb-like structures, belts and rods, and needle-shaped nanobelts were synthesized by varying synthesis temperature using a vapor transport method. Needle-like ZnO nanobelts are unique as, according to our knowledge, there is no evidence of such morphology in previous literature. The structural, morphological and optical characterization was carried out using X-ray diffraction, scanning electron microscopy and diffused reflectance spectroscopy techniques. It was observed that the sensing response of comb-like structures for UV light was greater as compared to the other grown structures. Comb-like structure based gas sensors successfully detect CO at 75 °C while other structures did not show any response.

  5. Preparation of ZnO nanoparticles by combustion method and their gas sensing properties

    NASA Astrophysics Data System (ADS)

    Lian, Xiaoxue; Li, Yan; Lv, Tan; Zou, Yunling; An, Dongmin; Zhang, Nan

    2016-01-01

    In this study, ZnO nanoparticles were fabricated using a simple and novel combustion method without calcination. The sensor material was structurally and morphologically characterized using simultaneous differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), x-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and transmission electron microscopy (TEM). The sample containing 3 mol tartaric acid (ZTC-3) exhibited excellent ethanol sensing properties at the optimum temperature of 330°C. The relationships among the gas response, temperature, response time (recovery time), concentration, and gas species were investigated. The ZTC-3 exhibited response and recovery times of 7 and 38 s to 100 ppm ethanol, as well as excellent response and good selectivity to ethanol gas. Such a ZnO nanoparticle structure could be potentially use for fabricating ethanol sensors. [Figure not available: see fulltext.

  6. Toward hydrogen detection at room temperature with printed ZnO nanoceramics films activated with halogen lighting

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Son; Jubera, Véronique; Garcia, Alain; Debéda, Hélène

    2015-12-01

    Though semiconducting properties of ZnO have been extensively investigated under hazardous gases, research is still necessary for low-cost sensors working at room temperature. Study of printed ZnO nanopowders-based sensors has been undertaken for hydrogen detection. A ZnO paste made with commercial nanopowders is deposited onto interdigitated Pt electrodes and sintered at 400 °C. The ZnO layer structure and morphology are first examined by XRD, SEM, AFM and emission/excitation spectra prior to the study of the effect of UV-light on the electrical conduction of the semiconductor oxide. The response to hydrogen exposure is subsequently examined, showing that low UV-light provided by halogen lighting enhances the gas response and allows detection at room temperature with gas responses similar to those obtained in dark conditions at 150 °C. A gas response of 44% (relative change in current) under 300 ppm is obtained at room temperature. Moreover, it is demonstrated that very low UV-light power (15 μW/mm2) provided by the halogen lamp is sufficient to give sensitivities as high as those for much higher powers obtained with a UV LED (7.7 mW/mm2). These results are comparable to those obtained by others for 1D or 2D ZnO nanostructures working at room temperature or at temperatures up to 250 °C.

  7. Magnetoresistive phenomena in nanoscale magnetic systems

    NASA Astrophysics Data System (ADS)

    Burton, John D.

    Nanomagnetic materials are playing an increasingly important role in modern technologies. A particular area of interest involves the interplay between magnetism and electric transport, i.e. magnetoresistive properties. Future generations of field sensors and memory elements will have to be on a length scale of a few nanometers or smaller. Magnetoresistive properties of such nanoscale objects exhibit novel features due to reduced dimensionality, complex surfaces and interfaces, and quantum effects. In this dissertation theoretical aspects of three such nanoscale magnetoresistive phenomena are discussed. Very narrow magnetic domain walls can strongly scatter electrons leading to an increased resistance. Specifically, this dissertation will cover the newly predicted effect of magnetic moment softening in magnetic nanocontacts or nanowires. Atomically thin domain walls in Ni exhibit a reduction, or softening, of the local magnetic moments due to the noncollinearity of the magnetization. This effect leads to a strong enhancement of the resistance of a domain wall. Magnetic tunnel junctions (MTJs) consist of two ferromagnetic electrodes separated by a thin layer of insulating material through which current can be carried by electron tunneling. The resistance of an MTJ depends on the relative orientation of the magnetization of the two ferromagnetic layers, an effect known as tunneling magnetoresistance (TMR). A first-principles analysis of CoFeB|MgO|CoFeB MTJs will be presented. Calculations reveal that it is energetically favorable for interstitial boron atoms to reside at the interface between the electrode and MgO tunneling barrier, which can be detrimental to the TMR effect. Anisotropic magnetoresistance (AMR) is the change in resistance of a ferromagnetic system as the orientation of the magnetization is altered. In this dissertation, the focus will be on AMR in the tunneling regime. Specifically we will present new theoretical results on tunneling AMR (TAMR) in two

  8. Fabrication of ZnO nanorods and assessment of changes in optical and gas sensing properties by increasing their lengths

    NASA Astrophysics Data System (ADS)

    Mehrabian, Masood; Mirabbaszadeh, Kavoos; Afarideh, Hossein

    2013-12-01

    We report a low-temperature process to synthesize highly oriented arrays of ZnO nanorods, based on the epitaxial growth of the ZnO seed layer at a low temperature of 70 °C. The ZnO seed layer was deposited by sol-gel process under mild conditions on the glass substrates. The morphologies and crystal structures of the film and nanorods were characterized by x-ray diffraction and scanning electron microscopy, respectively. ZnO nanorods were grown on ZnO seed layers by hydrothermal method. The effect of growth period on the morphology and optical characteristics (e.g. optical transmission and band-gap energy), hydrophilicity and gas sensing properties of the grown ZnO seed layer (film) and nanorods were investigated. The long nanorods on the seed layer were observed. The increase in the length of the nanorods resulted in a significant reduction in the optical band-gap energy of the nanorods, which was attributed to the formation of further defects in the nanorods during their fast growth. The surface of the ZnO nanorods grown for 6 h was relatively hydrophilic (with a water contact angle of 18°). The fabricated sensors were used to gauge different concentrations of ethanol vapor in the air at different temperatures and evaluated the surface resistance of the sensors as a function of operating temperature and ethanol concentrations. The results showed that the sensitivity of the nanorods changed from 1.3 to 6 (at 300 °C) by increasing the growth period.

  9. A contemporary approach for design and characterization of fiber-optic-cortisol sensor tailoring LMR and ZnO/PPY molecularly imprinted film.

    PubMed

    Usha, Sruthi P; Shrivastav, Anand M; Gupta, Banshi D

    2017-01-15

    A fiber optic salivary cortisol sensor using a contemporary approach of lossy mode resonance and molecular imprinting of nanocomposites of zinc oxide (ZnO) and polypyrrole (PPY) is structured and depicted for the concentration range of 0-10(-6)g/ml of cortisol prepared in artificial saliva. Components of polymer preparation and the nanocomposite of polymer with ZnO are optimized for realizing the molecular imprinted layer of the sensor. Nanocomposite having 20% of ZnO in PPY is found to give highest sensitivity of the sensor. The sensor reports the best limit of detection ever reported with better stability, repeatability and response time. Lossy mode resonance based salivary cortisol sensor using nanocomposite molecular imprinted layer reported first time boosts the specificity of the sensor. The implementation of sensor over optical fiber adds up other advantages such as real time and online monitoring along with remote sensing abilities which makes the sensor usable for nonintrusive clinical applications.

  10. Fabrication of high performance field-effect transistors and practical Schottky contacts using hydrothermal ZnO nanowires.

    PubMed

    Opoku, Charles; Dahiya, Abhishek Singh; Oshman, Christopher; Daumont, Christophe; Cayrel, Frederic; Poulin-Vittrant, Guylaine; Alquier, Daniel; Camara, Nicolas

    2015-09-04

    The production of large quantities of single crystalline semiconducting ZnO nanowires (NWs) at low cost can offer practical solutions to realizing several novel electronic/optoelectronic and sensor applications on an industrial scale. The present work demonstrates high-density single crystalline NWs synthesized by a multiple cycle hydrothermal process at ∼100 °C. The high carrier concentration in such ZnO NWs is greatly suppressed by a simple low cost thermal annealing step in ambient air at ∼450 °C. Single ZnO NW FETs incorporating these modified NWs are characterized, revealing strong metal work function-dependent charge transport, unobtainable with as-grown hydrothermal ZnO NWs. Single ZnO NW FETs with Al as source and drain (s/d) contacts show excellent performance metrics, including low off-state currents (fA range), high on/off ratio (10(5)-10(7)), steep subthreshold slope (<600 mV/dec) and excellent field-effect carrier mobility (5-11 cm(2)/V-s). Modified ZnO NWs with platinum s/d contacts demonstrate excellent Schottky transport characteristics, markedly different from a reference ZnO NW device with Al contacts. This included abrupt reverse bias current-voltage saturation characteristics and positive temperature coefficient (∼0.18 eV to 0.13 eV). This work is envisaged to benefit many areas of hydrothermal ZnO NW research, such as NW FETs, piezoelectric energy recovery, piezotronics and Schottky diodes.

  11. Spin manipulation in nanoscale superconductors.

    PubMed

    Beckmann, D

    2016-04-27

    The interplay of superconductivity and magnetism in nanoscale structures has attracted considerable attention in recent years due to the exciting new physics created by the competition of these antagonistic ordering phenomena, and the prospect of exploiting this competition for superconducting spintronics devices. While much of the attention is focused on spin-polarized supercurrents created by the triplet proximity effect, the recent discovery of long range quasiparticle spin transport in high-field superconductors has rekindled interest in spin-dependent nonequilibrium properties of superconductors. In this review, the experimental situation on nonequilibrium spin injection into superconductors is discussed, and open questions and possible future directions of the field are outlined.

  12. Young's Equation at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Seveno, David; Blake, Terence D.; De Coninck, Joël

    2013-08-01

    In 1805, Thomas Young was the first to propose an equation to predict the value of the equilibrium contact angle of a liquid on a solid. Today, the force exerted by a liquid on a solid, such as a flat plate or fiber, is routinely used to assess this angle. Moreover, it has recently become possible to study wetting at the nanoscale using an atomic force microscope. Here, we report the use of molecular-dynamics simulations to investigate the force distribution along a 15 nm fiber dipped into a liquid meniscus. We find very good agreement between the measured force and that predicted by Young’s equation.

  13. Electronic transport in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Lagerqvist, Johan

    In this dissertation electronic transport in nanoscale structures is discussed. An expression for the shot noise, a fluctuation in current due to the discreteness of charge, is derived directly from the wave functions of a nanoscale system. Investigation of shot noise is of particular interest due to the rich fundamental physics involved. For example, the study of shot noise can provide fundamental insight on the nature of electron transport in a nanoscale junction. We report calculations of the shot noise properties of parallel wires in the regime in which the interwire distance is much smaller than the inelastic mean free path. The validity of quantized transverse momenta in a nanoscale structure and its effect on shot noise is also discussed. We theoretically propose and show the feasibility of a novel protocol for DNA sequencing based on the electronic signature of single-stranded DNA while it translocates through a nanopore. We find that the currents for the bases are sufficiently different to allow for efficient sequencing. Our estimates reveal that sequencing of an entire human genome could be done with very high accuracy in a matter of hours, e.g., orders of magnitude faster than present techniques. We also find that although the overall magnitude of the current may change dramatically with different detection conditions, the intrinsic distinguishability of the bases is not significantly affected by pore size and transverse field strength. Finally, we study the ability of water to screen charges in nanopores by using all-atom molecular dynamics simulations coupled to electrostatic calculations. Due to the short length scales of the nanopore geometry and the large local field gradient of a single ion, the energetics of transporting an ion through the pore is strongly dependent on the microscopic details of the electric field. We show that as long as the pore allows the first hydration shell to stay intact, e.g., ˜6 nearby water molecules, the electric field

  14. Time-dependent mechanical-electrical coupled behavior in single crystal ZnO nanorods

    PubMed Central

    Kim, Yong-Jae; Yun, Tae Gwang; Choi, In-Chul; Kim, Sungwoong; Park, Won Il; Han, Seung Min; Jang, Jae-il

    2015-01-01

    Nanoscale time-dependent mechanical-electrical coupled behavior of single crystal ZnO nanorods was systematically explored, which is essential for accessing the long-term reliability of the ZnO nanorod-based flexible devices. A series of compression creep tests combined with in-situ electrical measurement was performed on vertically-grown single crystal ZnO nanorods. Continuous measurement of the current (I)-voltage (V) curves before, during, after the creep tests revealed that I is non-negligibly increased as a result of the time-dependent deformation. Analysis of the I-V curves based on the thermionic emission-diffusion theory allowed extraction of nanorod resistance, which was shown to decrease as time-dependent deformation. Finally, based on the observations in this study, a simple analytical model for predicting the reduction in nanorod resistance as a function of creep strain that is induced from diffusional mechanisms is proposed, and this model was demonstrated to be in an excellent agreement with the experimental results. PMID:25982962

  15. Transient, biocompatible electronics and energy harvesters based on ZnO.

    PubMed

    Dagdeviren, Canan; Hwang, Suk-Won; Su, Yewang; Kim, Stanley; Cheng, Huanyu; Gur, Onur; Haney, Ryan; Omenetto, Fiorenzo G; Huang, Yonggang; Rogers, John A

    2013-10-25

    The combined use of ZnO, Mg, MgO, and silk provides routes to classes of thin-film transistors and mechanical energy harvesters that are soluble in water and biofluids. Experimental and theoretical studies of the operational aspects and dissolution properties of this type of transient electronics technology illustrate its various capabilities. Application opportunities range from resorbable biomedical implants, to environmentally dissolvable sensors, and degradable consumer electronics.

  16. Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells

    SciTech Connect

    Jenekhe, Samson A.; Ginger, David S.; Cao, Guozhong

    2016-01-15

    We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigate charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.

  17. A nanoscale shape memory oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Jinxing; Ke, Xiaoxing; Gou, Gaoyang; Seidel, Jan; Xiang, Bin; Yu, Pu; Liang, Wen-I.; Minor, Andrew M.; Chu, Ying-Hao; van Tendeloo, Gustaaf; Ren, Xiaobing; Ramesh, Ramamoorthy

    2013-11-01

    Stimulus-responsive shape-memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechanical devices, materials with large mechanical strain, particularly at nanoscale level, are therefore desired. Here we report on the discovery of a large shape-memory effect in bismuth ferrite at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density of ~600±90 J cm-3 can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, microcracking and so on have to be taken into consideration for real devices, the large shape-memory effect in this oxide surpasses most alloys and, therefore, demonstrates itself as an extraordinary material for potential use in state-of-art nanosystems.

  18. Properties of nanoscale metal hydrides.

    PubMed

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  19. Gas sensing performance of nano zinc oxide sensors

    NASA Astrophysics Data System (ADS)

    Sharma, Shiva; Chauhan, Pratima

    2016-04-01

    We report nano Zinc Oxide (ZnO) synthesized by sol-gel method possessing the crystallite size which varies from 25.17 nm to 47.27 nm. The Scanning electron microscope (SEM) image confirms the uniform distribution of nanograins with high porosity. The Energy dispersion X-ray (EDAX) spectrum gives the atomic composition of Zn and O in ZnO powders and confirms the formation of nano ZnO particles. These factors reveals that Nano ZnO based gas sensors are highly sensitive to Ammonia gas (NH3) at room temperature, indicating the maximum response 86.8% at 800 ppm with fast response time and recovery time of 36 sec and 23 sec respectively.

  20. Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides

    NASA Astrophysics Data System (ADS)

    Shiau, Yu-Jeng; Chiang, Kai-Ming; Lin, Hao-Wu

    2015-07-01

    Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (<50 °C), and thus low energy consumption, are required for ZnO nucleation. This made the use of substrates with very low operating temperatures, such as PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq-1), a high transmission (92% at 550 nm), a high figure of merit (FOM; up to σDC/σOp = 340) and can be applied to wide range of next-generation flexible optoelectronic devices.Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (<50 °C), and thus

  1. Enhanced Dibutyl Phthalate Sensing Performance of a Quartz Crystal Microbalance Coated with Au-Decorated ZnO Porous Microspheres

    PubMed Central

    Zhang, Kaihuan; Fan, Guokang; Hu, Ruifen; Li, Guang

    2015-01-01

    Noble metals addition on nanostructured metal oxides is an attractive way to enhance gas sensing properties. Herein, hierarchical zinc oxide (ZnO) porous microspheres decorated with cubic gold particles (Au particles) were synthesized using a facile hydrothermal method. The as-prepared Au-decorated ZnO was then utilized as the sensing film of a gas sensor based on a quartz crystal microbalance (QCM). This fabricated sensor was applied to detect dibutyl phthalate (DBP), which is a widely used plasticizer, and its coating load was optimized. When tested at room temperature, the sensor exhibited a high sensitivity of 38.10 Hz/ppb to DBP in a low concentration range from 2 ppb to 30 ppb and the calculated theoretical detection limit is below 1 ppb. It maintains good repeatability as well as long-term stability. Compared with the undecorated ZnO based QCM, the Au-decorated one achieved a 1.62-time enhancement in sensitivity to DBP, and the selectivity was also improved. According to the experimental results, Au-functionalized ZnO porous microspheres displayed superior sensing performance towards DBP, indicating its potential use in monitoring plasticizers in the gaseous state. Moreover, Au decoration of porous metal oxide nanostructures is proved to be an effective approach for enhancing the gas sensing properties and the corresponding mechanism was investigated. PMID:26343661

  2. Charge-Separation Kinetics of Photoexcited Oxygen Vacancies in ZnO Nanowire Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Pei; Chen, Chieh-Wei; Lu, Ming-Yen

    2016-11-01

    Photoinduced atomic structural transitions of negative-U defects: neutral oxygen vacancies (VO 0 ), accompanied by lattice relaxation, can form ionized 1 + and 2 + vacancy defects in ZnO materials, giving rise to an optoelectronic phenomenon named "persistent photoconductivity," thereby limiting the applications of ZnO materials in optoelectronic fields. Nevertheless, very little is known about the kinetics of the separation-recombination interactions between an electron and an ionized oxygen vacancy, constituting a photoexcited charge pair, in nanoscale ZnO material systems, especially when considering the effect of electric fields. In this report, we describe the charge-separation kinetics of photoexcited VO 0 defects in ZnO nanowire (NW) field-effect transistor (FET) systems, examined through modulation of the surface electric field of the ZnO NW. We apply oxygen plasma treatment to tailor the doping concentration within the ZnO NWs with the goal of modulating the electric field within their surface space-charge layers. X-ray photoelectron spectroscopy and low-frequency current-noise spectroscopy are applied to identify the change in the density of oxygen-vacancy defects near the NW surface after oxygen plasma treatment. A model describing the initial stage of the photoconductance responses associated with the formation of the photoinduced ionized 1 + state of the oxygen-vacancy defects (VO + ) in the fully depleted ZnO NW FETs in the low-photoconductance regime upon UV excitation is proposed to extract the charge-separation probabilities of the photoexcited electron/VO + pair. Accordingly, the charge-separation probability increases from approximately 0.0012 to 0.042 upon increasing the electric field at the NW surface from approximately 7.5 ×106 to 5.0 ×107 V m-1 . Moreover, we employ modified Braun empirical theory to model the effect of the electric field on the charge-separation behavior of photoexcited electron/VO + pairs in ZnO NWs, obtaining a

  3. Nanoscale Electric Field Sensor-Development and Testing

    NASA Astrophysics Data System (ADS)

    Brame, Jon; Woods, Nathan

    2008-10-01

    The goal of this project is to test a carbon nanotube based electric field sensing device. The device consists of a miniature gold needle suspended on a mat of carbon nanotubes over a trench on a Si/Si02 substrate. Field tests were made by recording the electric field inside dust devils in a Nevada desert, and those electric fields were simulated in a lab environment. Further tests to determine the device sensitivity were performed by manually manipulating the gold needle with an Atomic Force Microscope (AFM) tip. We report on fabrication techniques, field and lab test results and AFM testing results.

  4. Nanoscale thermal and thermoelectric transport in silicon

    NASA Astrophysics Data System (ADS)

    Ryu, Hyuk Ju

    Hotspots on microchips are a major challenge for the semiconductor industry. To understand heat conduction from hotspots on silicon, measurements of the thermal resistance and transfer function have been performed using patterned nanoheater/sensor pairs with width from 100 nm up to 5000 nm at temperature range of 30 ˜ 300 K. Calculations of the thermal resistance based on a simple thermal model, considering resistances by spreading, interface, and localized heating match with the measurements. The results reveal several important trends indicating the prevalence of localized heating or sub-continuum transport phenomena in the vicinity of a nanoscale hotspot. Thermoelectric cooling is a possible solution to cope with the hotspot issue. Silicon, in a nanostructured form, is an interesting thermoelectric material, because of significantly reduced thermal conductivity. However, further improvement in thermoelectric efficiency is highly desirable. Thermopower measurements of silicon nanoribbons with an integrated gate have been performed. The gate in the device is used to provide strong carrier confinement and enable tunability of the carrier density over a wide range, which is fully compatible with conventional silicon processing and microelectronics. It therefore offers a promising alternative to doping when considering the thermoelectric engineering of nanostructures. An enhancement of thermoelectric power factor has been observed in silicon nanoribbons. This enhancement can be understood by considering its behavior as a function of carrier density. We identify the underlying mechanisms for the power factor in the nanoribbon, which include quantum confinement, low scattering due to the absence of dopants, and, at low temperatures, a significant phonon drag contribution.

  5. Multiwalled carbon nanotubes-zinc oxide nanocomposites as low temperature toluene gas sensor

    NASA Astrophysics Data System (ADS)

    Septiani, Ni Luh Wulan; Yuliarto, Brian; Nugraha; Dipojono, Hermawan Kresno

    2017-03-01

    The performance of nanocomposite MWCNT-ZnO thin films was investigated as toluene gas sensor. The nanocomposites MWCNT-ZnO thin films were synthesized by reflux method with the variation of MWCNT:ZnO ratio on 1:0, 3:1, 1:1, 1:3, and 0:1. Crystallinity and morphology characterization show that the crystal structure was not influenced by the presence of MWCNT, and the presence of MWCNTs could prevent the agglomeration of ZnO nanostructure. The dynamic response curve of nanocomposites MWCNT-ZnO thin films shows two different patterns at low temperature region and high temperature region. At low temperature region, the sensor response decreases as the increasing operating temperature and increasing the concentration of ZnO. On the other hand, at high temperature region, the sensor response increases as the increasing operating temperature and increasing the concentration of ZnO. Moreover, the variation concentration of MWCNT and ZnO can decrease the operating temperature of the sensors. The sensor with the ratio of MWCNT:ZnO at 1:3 show highest sensor response that reaches 17% at 150 °C of operating temperature, while the pure MWCNTs and pure ZnO show no response at that temperature.

  6. Fluorescent Dye Encapsulated ZnO Particles with Cell-specific Toxicity for Potential use in Biomedical Applications

    SciTech Connect

    Wang, Hua; Wingett, Denise; Engelhard, Mark H.; Feris, Kevin; Reddy, K. M.; Turner, Paul; Layne, Janet; Hanley, Cory; Bell, Jason; Tenne, Dmitri; Wang, Chong M.; Punnoose, Alex

    2008-07-24

    Fluorescein isothiocyanate (FITC)-encapsulated core-shell particles with a nanoscale ZnO finishing layer have been synthesized for the first time as multifunctional “smart” nanostructures for particle tracking and cell imaging using the visible fluorescence emission of the dye or UV fluorescence emission of ZnO, and anti-cancer/antibacterial treatments using the selective toxicity of the nanoscale ZnO outer surface. The chemical phase composition, morphology, size, and the layered core-shell architecture of the particles were characterized using detailed transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis-NIR spectrophotometry. Systematic XPS studies after removing nanometer thick layers confirmed the expected layered structure in the order ZnO-SiO2-APTMS-FITC proceeding from the surface to the core of the ~200 nm sized particles. Detailed investigation of the fluorescence properties of these hydrophilic particles in bio-compatible media using fluorescence spectroscopy, flow cytometry and fluorescence confocal microscopy demonstrated that the silica/ZnO outer layer offers considerable protection to the encapsulated dye molecules from photobleaching and quenching due to reactive species such as oxygen in the solvent. These particles showed promise toward cell imaging, for example when the bacterium Escherichia coli was used as a test system, the green fluorescence of the particles allowed confocal microscopy to image the cells. The FITC encapsulated ZnO (FITC-ZnO) particles demonstrated excellent selectivity in preferentially killing Jurkat cancer cells (18% cell viability) without any significant toxicity to normal primary immune cells (75% cell viability) at 60 μg/mL concentrations and inhibited the growth of both gram-positive and gram negative bacteria at concentrations ≥ 250-500 μg/mL (for Staphylococcus aureus and Escherichia coli, respectively). These results indicate that the

  7. Decontamination of chemical warfare sulfur mustard agent simulant by ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Sadeghi, Meysam; Yekta, Sina; Ghaedi, Hamed

    2016-07-01

    In this study, zinc oxide nanoparticles (ZnO NPs) have been surveyed to decontaminate the chloroethyl phenyl sulfide as a sulfur mustard agent simulant. Prior to the reaction, ZnO NPs were successfully prepared through sol-gel method in the absence and presence of polyvinyl alcohol (PVA). PVA was utilized as a capping agent to control the agglomeration of the nanoparticles. The formation, morphology, elemental component, and crystalline size of nanoscale ZnO were certified and characterized by SEM/EDX, XRD, and FT-IR techniques. The decontamination (adsorption and destruction) was tracked by the GC-FID analysis, in which the effects of polarity of the media, such as isopropanol, acetone and n-hexane, reaction time intervals from 1 up to 18 h, and different temperatures, including 25, 35, 45, and 55 °C, on the catalytic/decontaminative capability of the surface of ZnO NPs/PVA were investigated and discussed, respectively. Results demonstrated that maximum decontamination (100 %) occurred in n-hexane solvent at 55 °C after 1 h. On the other hand, the obtained results for the acetone and isopropanol solvents were lower than expected. GC-MS chromatograms confirmed the formation of hydroxyl ethyl phenyl sulfide and phenyl vinyl sulfide as the destruction reaction products. Furthermore, these chromatograms proved the role of hydrolysis and elimination mechanisms on the catalyst considering its surface Bronsted and Lewis acid sites. A non-polar solvent aids material transfer to the reactive surface acid sites without blocking these sites.

  8. Nanoscale materials for hyperthermal theranostics

    PubMed Central

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.

    2016-01-01

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. This mini-review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reduce angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods. PMID:25816102

  9. Nanoscale Engineering of Designer Cellulosomes.

    PubMed

    Gunnoo, Melissabye; Cazade, Pierre-André; Galera-Prat, Albert; Nash, Michael A; Czjzek, Mirjam; Cieplak, Marek; Alvarez, Beatriz; Aguilar, Marina; Karpol, Alon; Gaub, Hermann; Carrión-Vázquez, Mariano; Bayer, Edward A; Thompson, Damien

    2016-07-01

    Biocatalysts showcase the upper limit obtainable for high-speed molecular processing and transformation. Efforts to engineer functionality in synthetic nanostructured materials are guided by the increasing knowledge of evolving architectures, which enable controlled molecular motion and precise molecular recognition. The cellulosome is a biological nanomachine, which, as a fundamental component of the plant-digestion machinery from bacterial cells, has a key potential role in the successful development of environmentally-friendly processes to produce biofuels and fine chemicals from the breakdown of biomass waste. Here, the progress toward so-called "designer cellulosomes", which provide an elegant alternative to enzyme cocktails for lignocellulose breakdown, is reviewed. Particular attention is paid to rational design via computational modeling coupled with nanoscale characterization and engineering tools. Remaining challenges and potential routes to industrial application are put forward.

  10. Nanoscale materials for hyperthermal theranostics

    NASA Astrophysics Data System (ADS)

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.

    2015-04-01

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. This mini-review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reduce angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.

  11. Nanoscale materials for hyperthermal theranostics

    DOE PAGES

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; ...

    2015-03-18

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. Our mini review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reducemore » angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.« less

  12. Nanoscale materials for hyperthermal theranostics

    SciTech Connect

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.

    2015-03-18

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. Our mini review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reduce angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.

  13. Nanoscale metal-organic materials.

    PubMed

    Carné, Arnau; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel

    2011-01-01

    Metal-organic materials are found to be a fascinating novel class of functional nanomaterials. The limitless combinations between inorganic and organic building blocks enable researchers to synthesize 0- and 1-D metal-organic discrete nanostructures with varied compositions, morphologies and sizes, fabricate 2-D metal-organic thin films and membranes, and even structure them on surfaces at the nanometre length scale. In this tutorial review, the synthetic methodologies for preparing these miniaturized materials as well as their potential properties and future applications are discussed. This review wants to offer a panoramic view of this embryonic class of nanoscale materials that will be of interest to a cross-section of researchers working in chemistry, physics, medicine, nanotechnology, materials chemistry, etc., in the next years.

  14. Optical Spectroscopy at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Hong, Xiaoping

    Recent advances in material science and fabrication techniques enabled development of nanoscale applications and devices with superior performances and high degree of integration. Exotic physics also emerges at nanoscale where confinement of electrons and phonons leads to drastically different behavior from those in the bulk materials. It is therefore rewarding and interesting to investigate and understand material properties at the nanoscale. Optical spectroscopy, one of the most versatile techniques for studying material properties and light-matter interactions, can provide new insights into the nanomaterials. In this thesis, I explore advanced laser spectroscopic techniques to probe a variety of different nanoscale phenomena. A powerful tool in nanoscience and engineering is scanning tunneling microscopy (STM). Its capability in atomic resolution imaging and spectroscopy unveiled the mystical quantum world of atoms and molecules. However identification of molecular species under investigation is one of the limiting functionalities of the STM. To address this need, we take advantage of the molecular `fingerprints' - vibrational spectroscopy, by combining an infrared light sources with scanning tunneling microscopy. In order to map out sharp molecular resonances, an infrared continuous wave broadly tunable optical parametric oscillator was developed with mode-hop free fine tuning capabilities. We then combine this laser with STM by shooting the beam onto the STM substrate with sub-monolayer diamondoids deposition. Thermal expansion of the substrate is detected by the ultrasensitive tunneling current when infrared frequency is tuned across the molecular vibrational range. Molecular vibrational spectroscopy could be obtained by recording the thermal expansion as a function of the excitation wavelength. Another interesting field of the nanoscience is carbon nanotube, an ideal model of one dimensional physics and applications. Due to the small light absorption with

  15. Nanoscale cryptography: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Masoumi, Massoud; Shi, Weidong; Xu, Lei

    2015-11-01

    While most of the electronics industry is dependent on the ever-decreasing size of lithographic transistors, this scaling cannot continue indefinitely. To improve the performance of the integrated circuits, new emerging and paradigms are needed. In recent years, nanoelectronics has become one of the most important and exciting forefront in science and engineering. It shows a great promise for providing us in the near future with many breakthroughs that change the direction of technological advances in a wide range of applications. In this paper, we discuss the contribution that nanotechnology may offer to the evolution of cryptographic hardware and embedded systems and demonstrate how nanoscale devices can be used for constructing security primitives. Using a custom set of design automation tools, it is demonstrated that relative to a conventional 45-nm CMOS system, performance gains can be obtained up to two orders of magnitude reduction in area and up to 50 % improvement in speed.

  16. Nanoscale cryptography: opportunities and challenges.

    PubMed

    Masoumi, Massoud; Shi, Weidong; Xu, Lei

    2015-01-01

    While most of the electronics industry is dependent on the ever-decreasing size of lithographic transistors, this scaling cannot continue indefinitely. To improve the performance of the integrated circuits, new emerging and paradigms are needed. In recent years, nanoelectronics has become one of the most important and exciting forefront in science and engineering. It shows a great promise for providing us in the near future with many breakthroughs that change the direction of technological advances in a wide range of applications. In this paper, we discuss the contribution that nanotechnology may offer to the evolution of cryptographic hardware and embedded systems and demonstrate how nanoscale devices can be used for constructing security primitives. Using a custom set of design automation tools, it is demonstrated that relative to a conventional 45-nm CMOS system, performance gains can be obtained up to two orders of magnitude reduction in area and up to 50 % improvement in speed.

  17. High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer.

    PubMed

    Grinblat, Gustavo; Rahmani, Mohsen; Cortés, Emiliano; Caldarola, Martín; Comedi, David; Maier, Stefan A; Bragas, Andrea V

    2014-11-12

    We introduce a plasmonic-semiconductor hybrid nanosystem, consisting of a ZnO nanowire coupled to a gold pentamer oligomer by crossing the hot-spot. It is demonstrated that the hybrid system exhibits a second harmonic (SH) conversion efficiency of ∼3 × 10(-5)%, which is among the highest values for a nanoscale object at optical frequencies reported so far. The SH intensity was found to be ∼1700 times larger than that from the same nanowire excited outside the hot-spot. Placing high nonlinear susceptibility materials precisely in plasmonic confined-field regions to enhance SH generation opens new perspectives for highly efficient light frequency up-conversion on the nanoscale.

  18. Localized States and Charge Transfer at ZnO Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    Brillson, Leonard

    2006-03-01

    With the advent of techniques to probe semiconductor electronic properties in the near-interface region on a nanometer scale, it is now possible to understand and control the mechanisms playing a role in localized state formation and charge transfer at ZnO interfaces. While world-wide research activity into this major new semiconductor has increased dramatically, the ability to control ZnO interfaces has been a major challenge to their opto- and microelectronic applications. Nanoscale depth-resolved cathodoluminescence and x-ray photoemission spectroscopies reveal the segregation of point defects and the donor character of hydrogen in the near-surface region. A conversion from ohmic to rectifying behavior is observed for gold contacts on atomically ordered polar ZnO surfaces following remote oxygen plasma treatment. This transition is accompanied by reduction of the well-known ``green'' deep level emission, suppression of the hydrogen donor-bound exciton photoluminescence and a large increase in n-type band bending. These results demonstrate that the contact type conversion involves more than one mechanism, specifically, removal of the adsorbate-induced accumulation layer plus lowered tunneling due to reduction of near-surface donor density and defect-assisted hopping transport. Schottky barriers for a wide array of metals on ZnO reveal that the strength of interface reaction plays a dominant role in forming near-interface defects and the resultant Schottky barriers. Similar correlations for other compound semiconductors indicate that the impact of near-interface native defects on Schottky barriers is more general in nature. [1] H.L. Mosbacker, Y.M. Strzhemechny, B.D. White, P.E. Smith, D.C. Look, D.C. Reynolds, C.W. Litton, and L.J. Brillson, ``Role of Near-Surface States in Ohmic-Schottky Conversion of Au Contacts to ZnO,'' Appl. Phys. Lett. 87, 012102 (2005). [2] Y.M. Strzhemechny, H.L. Mosbacker, D.C. Look, D.C. Reynolds, C.W. Litton, N.Y.Garces, NC. Giles, L

  19. Light-Induced Peroxide Formation in ZnO: Origin of Persistent Photoconductivity

    NASA Astrophysics Data System (ADS)

    Kang, Youngho; Nahm, Ho-Hyun; Han, Seungwu

    2016-10-01

    The persistent photoconductivity (PPC) in ZnO has been a critical problem in opto-electrical devices employing ZnO such as ultraviolet sensors and thin film transistors for the transparent display. While the metastable state of oxygen vacancy (VO) is widely accepted as the microscopic origin of PPC, recent experiments on the influence of temperature and oxygen environments are at variance with the VO model. In this study, using the density-functional theory calculations, we propose a novel mechanism of PPC that involves the hydrogen-zinc vacancy defect complex (2H-VZn). We show that a substantial amount of 2H-VZn can exist during the growth process due to its low formation energy. The light absorption of 2H-VZn leads to the metastable state that is characterized by the formation of (peroxide) around the defect, leaving the free carriers in the conduction band. Furthermore, we estimate the lifetime of photo-electrons to be ~20 secs, which is similar to the experimental observation. Our model also explains the experimental results showing that PPC is enhanced (suppressed) in oxygen-rich (low-temperature) conditions. By revealing a convincing origin of PPC in ZnO, we expect that the present work will pave the way for optimizing optoelectronic properties of ZnO.

  20. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection

    NASA Astrophysics Data System (ADS)

    Panigrahi, Shrabani; Basak, Durga

    2011-05-01

    Core-shell TiO2@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC3H7)4] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO2 shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO2 coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors.

  1. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection.

    PubMed

    Panigrahi, Shrabani; Basak, Durga

    2011-05-01

    Core-shell TiO(2)@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC(3)H(7))(4)] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO(2) shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO(2) coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors.

  2. Light-Induced Peroxide Formation in ZnO: Origin of Persistent Photoconductivity

    PubMed Central

    Kang, Youngho; Nahm, Ho-Hyun; Han, Seungwu

    2016-01-01

    The persistent photoconductivity (PPC) in ZnO has been a critical problem in opto-electrical devices employing ZnO such as ultraviolet sensors and thin film transistors for the transparent display. While the metastable state of oxygen vacancy (VO) is widely accepted as the microscopic origin of PPC, recent experiments on the influence of temperature and oxygen environments are at variance with the VO model. In this study, using the density-functional theory calculations, we propose a novel mechanism of PPC that involves the hydrogen-zinc vacancy defect complex (2H-VZn). We show that a substantial amount of 2H-VZn can exist during the growth process due to its low formation energy. The light absorption of 2H-VZn leads to the metastable state that is characterized by the formation of (peroxide) around the defect, leaving the free carriers in the conduction band. Furthermore, we estimate the lifetime of photo-electrons to be ~20 secs, which is similar to the experimental observation. Our model also explains the experimental results showing that PPC is enhanced (suppressed) in oxygen-rich (low-temperature) conditions. By revealing a convincing origin of PPC in ZnO, we expect that the present work will pave the way for optimizing optoelectronic properties of ZnO. PMID:27748378

  3. Non-enzymatic Fluorescent Biosensor for Glucose Sensing Based on ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Mai, Hong Hanh; Pham, Van Thanh; Nguyen, Viet Tuyen; Sai, Cong Doanh; Hoang, Chi Hieu; Nguyen, The Binh

    2017-02-01

    We have developed a non-enzymatic fluorescent biosensor for glucose sensing based on ZnO nanorods. ZnO nanorods of high density, high crystallinity, and good alignment were grown on low-cost industrial copper substrates at low temperature. To grow them directly on the substrates without using a seed layer, we utilized a simple one-step seedless hydrothermal method, which is based on galvanic cell structure. Herein, the glucose-treated ZnO nanorods together with the ultraviolet (UV) irradiation of the sample during the photoluminescent measurement played the role of a catalyst. They decomposed glucose into hydrogen peroxide (H2O2) and gluconic acid, which is similar to the glucose oxidase enzyme (GOx) used in enzymatic sensors. Due to the formation of H2O2, the photoluminescence intensity of the UV emission peak of ZnO nanorods decreased as the glucose concentration increased from 1 mM to 100 mM. In comparison with glucose concentration of a normal human serum, which is in the range of 4.4-6.6 mM, the obtained results show potential of non-enzymatic fluorescent biosensors in medical applications.

  4. Solid State oxygen Sensor Development

    NASA Technical Reports Server (NTRS)

    Cheung, Jeffery T.; Johnson, Scott R.

    1994-01-01

    To anticipate future long-duration mission needs for life support sensors, we explored the feasibility of using thin-film metal-oxide semiconductors. The objective of this task was to develop gas sensors for life support applications which would be suitable for long-duration missions. Metal oxides, such as ZnO, SnO2, and TiO2 have been shown to react with oxygen molecules. Oxygen lowers the metal oxide's electrical resistance. Critical to the performance is the application of the oxide in a thin film on an inert substrate: the thinner the film, the more readily the oxygen penetration and hence the more rapid and sensitive the sensor. Metal oxides are not limited to oxygen detection, rather, oxides offer detection and quantification applications to the complete range of gases of interest, not only for life support systems, but for propellants as well.

  5. Toluene sensing properties of SnO 2-ZnO hollow nanofibers fabricated from single capillary electrospinning

    NASA Astrophysics Data System (ADS)

    Wei, Shaohong; Zhang, Yan; Zhou, Meihua

    2011-06-01

    SnO 2-ZnO hollow nanofibers were fabricated through a facile single capillary electrospinning technology. The structure and toluene sensing properties of the hollow fibers were investigated. The results indicated that the fibers possess a hollow structure, a rough porous surface after being annealed at 600 °C and the diameters are in the range of 80-160 nm. A sensor fabricated from these fibers exhibits considerable sensitivity and good stability against toluene at 190 °C, which can be attributed to the special 1D hollow structure and the promoting effect of the SnO 2/ZnO heterojunction. The formation mechanism and toluene sensing mechanism of SnO 2-ZnO hollow nanofibers were also discussed.

  6. Nanoscale interface engineering in ZnO twin nanorods for proposed phonon tunnel devices.

    PubMed

    Singh, Avanendra; Senapati, Kartik; Satpati, Biswarup; Kumar, Mohit; Sahoo, Pratap K

    2015-02-14

    Zinc oxide twin nanorods, with two identical crystalline sections connected by an amorphous layer, were reproducibly grown using a simple one-step hydrothermal technique. The thickness of the amorphous layer between the crystalline segments was tunable with growth parameters, as confirmed by high resolution transmission electron microscopy. The photoluminescence spectra of these twin nanorods exhibit strong near band edge emission in the UV range, with convoluted phonon sidebands. De-convolution analyses of these spectra showed that the amorphous interlayers act as effective phonon barriers beyond a certain thickness. Such oriented grown individual crystalline-amorphous-crystalline structures may be a suitable test system for fundamental studies of phonon tunneling in the nanostructure. While physical vapor deposition techniques are seriously constrained in realizing crystalline-amorphous-crystalline structures, our results show the viability of engineering embedded interfaces via chemical routes.

  7. Atom Probe Tomography of Nanoscale Electronic Materials

    SciTech Connect

    Larson, David J.; Prosa, Ty J.; Perea, Daniel E.; Inoue, Hidekazu; Mangelinck, D.

    2016-01-01

    Atom probe tomography (APT) is a mass spectrometry based on time-of-flight measurements which also concurrently produces 3D spatial information. The reader is referred to any of the other papers in this volume or to the following references for further information 4–8. The current capabilities of APT, such as detecting a low number of dopant atoms in nanoscale devices or segregation at a nanoparticle interface, make this technique an important component in the nanoscale metrology toolbox. In this manuscript, we review some of the applications of APT to nanoscale electronic materials, including transistors and finFETs, silicide contact microstructures, nanowires, and nanoparticles.

  8. ZnO based light emitting diodes growth and fabrication

    NASA Astrophysics Data System (ADS)

    Pan, M.; Rondon, R.; Cloud, J.; Rengarajan, V.; Nemeth, W.; Valencia, A.; Gomez, J.; Spencer, N.; Nause, J.

    2006-02-01

    ZnO and N-doped ZnO thin films were grown by MOCVD on sapphire and ZnO substrates. Diethyl zinc and O II were used as sources for Zn and O, respectively. A specially designed plasma system was employed to produce atomic N dopant for in-situ doping. Proper disk rotation speeds were found for ZnO growth on different size wafers. High crystal quality N-doped ZnO films were grown based on optimized growth conditions. Wet chemical etch of ZnO was investigated by using NH 4Cl, and etch activation energy was calculated to be 463meV. Ohmic contact on N-doped ZnO film was achieved by using Ni/Au/Al multiple layers. ZnO based p-n junction has demonstrated rectification. Electroluminescence at about 384nm was obtained from ZnO based LED.

  9. Evaluation of transverse piezoelectric coefficient of ZnO thin films deposited on different flexible substrates: a comparative study on the vibration sensing performance.

    PubMed

    Joshi, Sudeep; Nayak, Manjunatha M; Rajanna, K

    2014-05-28

    We report on the systematic comparative study of highly c-axis oriented and crystalline piezoelectric ZnO thin films deposited on four different flexible substrates for vibration sensing application. The flexible substrates employed for present experimental study were namely a metal alloy (Phynox), metal (aluminum), polyimide (Kapton), and polyester (Mylar). ZnO thin films were deposited by an RF reactive magnetron sputtering technique. ZnO thin films of similar thicknesses of 700 ± 30 nm were deposited on four different flexible substrates to have proper comparative studies. The crystallinity, surface morphology, chemical composition, and roughness of ZnO thin films were evaluated by respective material characterization techniques. The transverse piezoelectric coefficient (d31) value for assessing the piezoelectric property of ZnO thin films on different flexible substrates was measured by a four-point bending method. ZnO thin films deposited on Phynox alloy substrate showed relatively better material characterization results and a higher piezoelectric d31 coefficient value as compared to ZnO films on metal and polymer substrates. In order to experimentally verify the above observations, vibration sensing studies were performed. As expected, the ZnO thin film deposited on Phynox alloy substrate showed better vibration sensing performance. It has generated the highest peak to peak output voltage amplitude of 256 mV as compared to that of aluminum (224 mV), Kapton (144 mV), and Mylar (46 mV). Therefore, metal alloy flexible substrate proves to be a more suitable, advantageous, and versatile choice for integrating ZnO thin films as compared to metal and polymer flexible substrates for vibration sensing applications. The present experimental study is extremely important and helpful for the selection of a suitable flexible substrate for various applications in the field of sensor and actuator technology.

  10. 1D versus 3D quantum confinement in 1-5 nm ZnO nanoparticle agglomerations for application in charge-trapping memory devices

    NASA Astrophysics Data System (ADS)

    El-Atab, Nazek; Nayfeh, Ammar

    2016-07-01

    ZnO nanoparticles (NPs) have attracted considerable interest from industry and researchers due to their excellent properties with applications in optoelectronic devices, sunscreens, photocatalysts, sensors, biomedical sciences, etc. However, the agglomeration of NPs is considered to be a limiting factor since it can affect the desirable physical and electronic properties of the NPs. In this work, 1-5 nm ZnO NPs deposited by spin- and dip-coating techniques are studied. The electronic and physical properties of the resulting agglomerations of NPs are studied using UV-vis-NIR spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM), and their application in metal-oxide-semiconductor (MOS) memory devices is analyzed. The results show that both dip- and spin-coating techniques lead to agglomerations of the NPs mostly in the horizontal direction. However, the width of the ZnO clusters is larger with dip-coating which leads to 1D quantum confinement, while the smaller ZnO clusters obtained by spin-coating enable 3D quantum confinement in ZnO. The ZnO NPs are used as the charge-trapping layer of a MOS-memory structure and the analysis of the high-frequency C-V measurements allow further understanding of the electronic properties of the ZnO agglomerations. A large memory window is achieved in both devices which confirms that ZnO NPs provide large charge-trapping density. In addition, ZnO confined in 3D allows for a larger memory window at lower operating voltages due to the Poole-Frenkel charge-emission mechanism.

  11. Nano-scale displacement sensing based on van der Waals interactions.

    PubMed

    Hu, Lin; Zhao, Jin; Yang, Jinlong

    2015-05-21

    We propose that a nano-scale displacement sensor with high resolution in weak-force systems can be realized based on vertically stacked two-dimensional (2D) atomic corrugated layer materials bound through van der Waals (vdW) interactions. Using first-principles calculations, we found that the electronic structures of bi-layer blue phosphorus (BLBP) vary appreciably with lateral and vertical interlayer displacements. The variation of the electronic structure is attributed to the change of the interlayer distance dz for both the lateral and vertical displacement. For lateral displacement, the change of dz is induced by atomic layer corrugation. Despite the different stacking configurations of BLBP, we find that the change of the indirect band gap is proportional to dz(-2). Furthermore, this dz(-2) dependence is found to be applicable to other graphene-like corrugated bi-layer materials such as MoS2. BLBP represents a large family of bi-layer 2D atomic corrugated materials for which the electronic structure is sensitive to the interlayer vertical and lateral displacement, and thus could be used for a nano-scale displacement sensor. This can be done by monitoring the tunable electronic structure using absorption spectroscopy. Because this type of sensor is established on atomic layers coupled through vdW interactions, it provides unique applications in the measurements of nano-scale displacement induced by tiny external forces.

  12. Nanoporous ZnO prepared by electrochemical anodization deposition

    NASA Astrophysics Data System (ADS)

    Chuah, L. S.; Hassan, Z.; Mohd Bakhori, S. K.

    2012-04-01

    Anodic physical deposition is a method that joins technical simplicity, environment friendly, non-toxic, low investment cost, and ease in morphology control. Nanoporous ZnO with high internal rough surface and polycrystalline nature has been prepared via a simple chemical technique. Anodization of Znic (Zn) foil was studied in a mixed of ammonium sulfate and sodium hydroxide solution under the affect of various anodization durations. The as-prepared samples were studied by X-ray diffraction (XRD), and energy dispersive analysis of X-rays (EDX). An optical characterization by a Raman spectrometer was performed to investigate their optical properties. The PL and Raman results revealed both good compromise with the features of our samples and dormant for forthcoming utilizations for example smart sensors system and other modern solid state technologies. The formation of porous structures has been confirmed by Raman spectroscopy and scanning electron microscopy investigations.

  13. Nanoporous ZnO prepared by electrochemical anodization deposition

    NASA Astrophysics Data System (ADS)

    Chuah, L. S.; Hassan, Z.; Mohd Bakhori, S. K.

    2011-11-01

    Anodic physical deposition is a method that joins technical simplicity, environment friendly, non-toxic, low investment cost, and ease in morphology control. Nanoporous ZnO with high internal rough surface and polycrystalline nature has been prepared via a simple chemical technique. Anodization of Znic (Zn) foil was studied in a mixed of ammonium sulfate and sodium hydroxide solution under the affect of various anodization durations. The as-prepared samples were studied by X-ray diffraction (XRD), and energy dispersive analysis of X-rays (EDX). An optical characterization by a Raman spectrometer was performed to investigate their optical properties. The PL and Raman results revealed both good compromise with the features of our samples and dormant for forthcoming utilizations for example smart sensors system and other modern solid state technologies. The formation of porous structures has been confirmed by Raman spectroscopy and scanning electron microscopy investigations.

  14. Preface: Charge transport in nanoscale junctions

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    the molecular level. Nanoscale charge transport experiments in ionic liquids extend the field to high temperatures and to systems with intriguing interfacial potential distributions. Other directions may include dye-sensitized solar cells, new sensor applications and diagnostic tools for the study of surface-bound single molecules. Another motivation for this special issue is thus to highlight activities across different research communities with nanoscale charge transport as a common denominator. This special issue gathers 27 articles by scientists from the United States, Germany, the UK, Denmark, Russia, France, Israel, Canada, Australia, Sweden, Switzerland, the Netherlands, Belgium and Singapore; it gives us a flavour of the current state-of-the-art of this diverse research area. While based on contributions from many renowned groups and institutions, it obviously cannot claim to represent all groups active in this very broad area. Moreover, a number of world-leading groups were unable to take part in this project within the allocated time limit. Nevertheless, we regard the current selection of papers to be representative enough for the reader to draw their own conclusions about the current status of the field. Each paper is original and has its own merit, as all papers in Journal of Physics: Condensed Matter special issues are subjected to the same scrutiny as regular contributions. The Guest Editors have deliberately not defined the specific subjects covered in this issue. These came out logically from the development of this area, for example: 'Traditional' solid state nanojunctions based on adsorbed layers, oxide films or nanowires sandwiched between two electrodes: effects of molecular structure (aromaticity, anchoring groups), symmetry, orientation, dynamics (noise patterns) and current-induced heating. Various 'physical effects': inelastic tunnelling and Coulomb blockade, polaron effects, switching modes, and negative differential resistance; the role of

  15. Fluorescence ratiometric properties induced by nanoparticle plasmonics and nanoscale dye dynamics.

    PubMed

    Hakonen, Aron

    2013-01-01

    Nanoscale transport of merocyanine 540 within/near the plasmon field of gold nanoparticles was recognized as an effective inducer of single-excitation dual-emission ratiometric properties. With a high concentration of the signal transducer (ammonium), a 700% increase in fluorescence was observed at the new red-shifted emission maximum, compared to a nanoparticle free sensor membrane. A previously nonrecognized isosbestic point is demonstrated at 581.4 ± 0.1 nm. The mechanism can be utilized for enhanced and simplified ratiometric optical chemical sensors and potentially for thin film engineering to make solar cells more effective and stable by a broader and more regulated absorption.

  16. Ammonia sensors based on metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Sekhar Rout, Chandra; Hegde, Manu; Govindaraj, A.; Rao, C. N. R.

    2007-05-01

    Ammonia sensing characteristics of nanoparticles as well as nanorods of ZnO, In2O3 and SnO2 have been investigated over a wide range of concentrations (1 800 ppm) and temperatures (100 300 °C). The best values of sensitivity are found with ZnO nanoparticles and SnO2 nanostructures. Considering all the characteristics, the SnO2 nanostructures appear to be good candidates for sensing ammonia, with sensitivities of 222 and 19 at 300 °C and 100 °C respectively for 800 ppm of NH3. The recovery and response times are respectively in the ranges 12 68 s and 22 120 s. The effect of humidity on the performance of the sensors is not marked up to 60% at 300 °C. With the oxide sensors reported here no interference for NH3 is found from H2, CO, nitrogen oxides, H2S and SO2.

  17. PREFACE: Nanoscale science and technology

    NASA Astrophysics Data System (ADS)

    Bellucci, Stefano

    2008-11-01

    realization of the vertical and horizontal integration recognized as a condition for nanotehnology application to industry and society, including the definition and development of integrated methodologies and environments to study, design, develop and test nanotechnology based metamaterials, devices, sensors and systems. F Canganella presented research activities concerning the biofilm properties of some reference bacteria on materials commonly used for the aerospace industry. His group evaluated the effect on these materials on a mixture of biosurfactants produced by the Pseudomonas strain AD1 recently isolated by the research group. The following materials were investigated: Kevlar, Nomex, Betacloth, aluminized Kapton, conventional Kapton, Combitherm, Mylar, copper foil, Teflon, aluminum, carbon fiber composite, aluminum thermo-dissipating textile and aluminum tape. Results showed a diverse affinity of materials for the bacterial biofilm development and in some cases sessile colonization was rejected. Pre-conditioning with biosurfactants led, in some cases, to a diminish of biofilm development compared to untreated materials, taking into account both concentrations and experimental conditions. Obtained data may be useful to screen and select appropriate material to be used for life support hardware to avoid or decrease the risk of surface biocontamination. M Chiaretti reported on the biological effects of multi-wall carbon nanotubes (MWCNTs, CNT for short) on laboratory animals in vivo, on the immunological effects and the effects on three different cell types. Large numbers of researchers are directly involved in the handling of nanomaterials such as CNT, nanoparticles. It is important to assess the potential health risks related to their daily exposure to nanoparticles. The administration of sterilized nanosamples has been performed on laboratory animals in acute and chronic administration and the pathological effects on the parenchymal tissues have been studied. The

  18. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects

    DOE PAGES

    Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki

    2015-06-02

    In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al2O3, ZnO, TiO2 etc.) material coatings also improve the interfacial stabilitymore » and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.« less

  19. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects

    SciTech Connect

    Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki

    2015-06-02

    In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al2O3, ZnO, TiO2 etc.) material coatings also improve the interfacial stability and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.

  20. Optical properties of ZnO nanostructures.

    PubMed

    Djurisić, Aleksandra B; Leung, Yu Hang

    2006-08-01

    We present a review of current research on the optical properties of ZnO nanostructures. We provide a brief introduction to different fabrication methods for various ZnO nanostructures and some general guidelines on how fabrication parameters (temperature, vapor-phase versus solution-phase deposition, etc.) affect their properties. A detailed discussion of photoluminescence, both in the UV region and in the visible spectral range, is provided. In addition, different gain (excitonic versus electron hole plasma) and feedback (random lasing versus individual nanostructures functioning as Fabry-Perot resonators) mechanisms for achieving stimulated emission are described. The factors affecting the achievement of stimulated emission are discussed, and the results of time-resolved studies of stimulated emission are summarized. Then, results of nonlinear optical studies, such as second-harmonic generation, are presented. Optical properties of doped ZnO nanostructures are also discussed, along with a concluding outlook for research into the optical properties of ZnO.

  1. A computational study on the experimentally observed sensitivity of Ga-doped ZnO nanocluster toward CO gas

    NASA Astrophysics Data System (ADS)

    Derakhshandeh, Maryam; Anaraki-Ardakani, Hossein

    2016-10-01

    Metal doped ZnO nanostructures have attracted extensive attention as chemical sensors for toxic gases. An experimental study has previously shown that Ga-doped ZnO nanostructures significantly show a higher electronic response than the undoped sample toward CO gas. Here, the electronic sensitivity of pristine and Ga-doped ZnO nanoclusters to CO gas is explored using density functional theory computations (at B3LYP, PBE, M06-2X, and ωB97XD levels). Our results reproduce and clarify the electrical behavior which has been observed experimentally from the ZnO nanoparticles after the exposure to CO gas. We showed that the calculated change of HOMO-LUMO gap may be a proper index for the change of electrical conductance which is measurable experimentally. It was found that, in contrast to the pristine ZnO nanocluster, the electronic properties of Ga-doped cluster are sharply sensitive to the presence of CO gas which is in good accordance with the results of the experimental study.

  2. Sputtering temperature dependent growth kinetics and CO2 sensing properties of ZnO deposited over porous silicon

    NASA Astrophysics Data System (ADS)

    Martínez, L.; Holguín-Momaca, J. T.; Karthik, T. V. K.; Olive-Méndez, S. F.; Campos-Alvarez, J.; Agarwal, V.

    2016-10-01

    We report the growth kinetics and sensing properties of ZnO deposited over macro-porous silicon substrates at 400 and 600 °C using magnetron-sputtering technique. Scanning electron microscopy was employed to investigate the morphology and the particle size of the ZnO nanoparticles (NPs). The grain growth kinetics was analyzed with the help of the phenomenological equation rn =k0 texp(- Q / RT) finding an activation energy Q = 13.92 kJ/mol. The grain growth exponent (n = 2.85) for the growth at 400 °C corresponds to an Ostwald ripening process, while the growth at 600 °C is described by n = 1.66 implying a higher growth rate attributed to a high surface diffusion of add-atoms contributing to the formation of larger grains. The sensing response of the complete structure has been tested at different temperatures. The highest sensitivity, S ∼10, was obtained at a sensor temperature of 300 °C on the ZnO NPs sputtered on to the porous silicon substrate at 400 °C. The high response is attributed to the infiltration, uniform and homogenous distribution of the ZnO NPs into the pores. ZnO NPs sputtered at 400 °C are found to be smaller than those grown at 600 °C, exhibiting a larger surface-area/volume ratio and hence increasing the oxygen adsorption resulting in an enhanced CO2 sensitivity.

  3. Nanoscale Substances on the TSCA Inventory

    EPA Pesticide Factsheets

    This document is to help the regulated community comply with the requirements of the Toxic Substances Control Act (TSCA) Section 5 Premanufacturing Notice (PMN) Program for nanoscale chemical substances.

  4. Nanoscale Periodic Modulations on Sodium Chloride Induced by Surface Charges

    SciTech Connect

    Clark, Kendal W; Qin, Shengyong; Zhang, Xiaoguang; Li, An-Ping

    2012-01-01

    The sodium chloride surface is one of the most common platforms for the study of catalysts, thin film growth, and atmospheric aerosols. Here we report a nanoscale periodic modulation pattern on the surface of a cleaved NaCl single crystal, revealed by non-contact atomic force microscopy with a tuning fork sensor. The surface pattern shows two orthogonal domains, extending over the entire cleavage surface. The spatial modulations exhibit a characteristic period of 5.4 nm, along 110 crystallographic directions of the NaCl. The modulations are robust in vacuum, not affected by the tip-induced electric field or gentle annealing (<300 C); however, they are eliminated after exposure to water and an atomically flat surface can be recovered by subsequent thermal annealing after water exposure. A strong electrostatic charging is revealed on the cleavage surface which may facilitate the formation of the observed metastable surface reconstruction.

  5. Nanoscale thermometer based on color defects in diamond

    NASA Astrophysics Data System (ADS)

    Kucsko, Georg; Maurer, Peter; Kubo, Minako; Yao, Norman; Park, Hongkun; Lukin, Mikhail; Lukin Group/Park Group Collaboration

    2013-05-01

    Measuring local temperature changes with confocal spatial resolution is of great interest to an array of scientific disciplines. Here we demonstrate a novel nanoscale temperature sensor with remarkable sensitivity by taking advantage of the quantum mechanical spin properties of nitrogen-vacancy color centers in diamond. This approach enables us to sense temperature variations with a sensitivity down to a few milli-kelvin and a spatial resolution of ~ 200 nm. This remarkable sensitivity is achieved by using dynamical decoupling techniques in combination with the long spin coherence properties of our systems. We also demonstrate local temperature control on a sub-cellular level by laser heating of individual gold nanoparticles and measuring the local temperature using individual nanodiamonds induced into the cytoplasm of single biological cells. These results pave the way for a variety of potential applications ranging from physical to life sciences.

  6. Structural transitions in nanoscale systems

    NASA Astrophysics Data System (ADS)

    Yoon, Mina

    In this work I investigate three different materials: nanoscale carbon systems, ferrofluid systems, and molecular-electronic devices. In particular, my study is focused on the theoretical understanding of structural changes and the associated electronic, mechanical, and magnetic properties of these materials. To study the equilibrium packing of fullerenes in carbon nanotube peapods optimization techniques were applied. In agreement with experimental measurements, my results for nanotubes containing fullerenes with 60--84 atoms indicate that the axial separation between the fullerenes is smaller than in the bulk crystal. The reduction of the inter-fullerene distance and also the structural relaxation of fullerenes result from a large internal pressure within the peapods. This naturally induced "static" pressure may qualify nanotubes as nanoscale autoclaves for chemical reactions. Combining total energy calculations with a search of phase space, I investigated the microscopic fusion mechanism of C60 fullerenes. I show that the (2+2) cycloaddition reaction, a necessary precursor for fullerene fusion, can be accelerated inside a nanotube. Fusion occurs along the minimum energy path as a finite sequence of Stone-Wales (SW) transformations. A detailed analysis of the transition states shows that Stone-Wales transformations are multi-step processes. I propose a new microscopic mechanism to explain the unusually fast fusion process of carbon nanotubes. The detailed pathway for two adjacent (5, 5) nanotubes to gradually merge into a (10, 10) tube, and the transition states have been identified. The propagation of the fused region is energetically favorable and proceeds in a morphology reminiscent of a Y-junction via a so called zipper mechanism, involving only SW bond rearrangements with low activation barriers. Using density functional theory, the equilibrium structure, stability, and electronic properties of nanostructured, hydrogen terminated diamond fragments have been

  7. Shear piezoelectricity in bone at the nanoscale

    NASA Astrophysics Data System (ADS)

    Minary-Jolandan, Majid; Yu, Min-Feng

    2010-10-01

    Recent demonstration of shear piezoelectricity in an isolated collagen fibril, which is the origin of piezoelectricity in bone, necessitates investigation of shear piezoelectric behavior in bone at the nanoscale. Using high resolution lateral piezoresponse force microcopy (PFM), shear piezoelectricity in a cortical bone sample was studied at the nanoscale. Subfibrillar structure of individual collagen fibrils with a periodicity of 60-70 nm were revealed in PFM map, indicating the direct contribution of collagen fibrils to the shear piezoelectricity of bone.

  8. A fiber optics system for monitoring utilization of ZnO adsorbent beds during desulfurization for logistic fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sujan, Achintya; Yang, Hongyun; Dimick, Paul; Tatarchuk, Bruce J.

    2016-05-01

    An in-situ fiber optic based technique for direct measurement of capacity utilization of ZnO adsorbent beds by monitoring bed color changes during desulfurization for fuel cell systems is presented. Adsorbents composed of bulk metal oxides (ZnO) and supported metal oxides (ZnO/SiO2 and Cusbnd ZnO/SiO2) for H2S removal at 22 °C are examined. Adsorbent bed utilization at breakthrough is determined by the optical sensor as the maximum derivative of area under UV-vis spectrum from 250 to 800 nm observed as a function of service time. Since the response time of the sensor due to bed color change is close to bed breakthrough time, a series of probes along the bed predicts utilization of the portion of bed prior to H2S breakthrough. The efficacy of the optical sensor is evaluated as a function of inlet H2S concentration, H2S flow rate and desulfurization in presence of CO, CO2 and moisture in feed. A 6 mm optical probe is employed to measure utilization of a 3/16 inch ZnO extrudate bed for H2S removal. It is envisioned that with the application of the optical sensor, desulfurization can be carried out at high adsorbent utilization and low operational costs during on-board miniaturized fuel processing for logistic fuel cell power systems.

  9. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature.

    PubMed

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-12-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  10. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

    NASA Astrophysics Data System (ADS)

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-03-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  11. Growth of vertically aligned ZnO nanorods using textured ZnO films

    PubMed Central

    2011-01-01

    A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.) PMID:21899743

  12. Low temperature sensing properties of a nano hybrid material based on ZnO nanotetrapods and titanyl phthalocyanine.

    PubMed

    Coppedè, Nicola; Villani, Marco; Mosca, Roberto; Iannotta, Salvatore; Zappettini, Andrea; Calestani, Davide

    2013-03-13

    ZnO nanotetrapods have recently been exploited for the realization of high-sensitivity gas sensors, but they are affected by the typical drawbacks of metal-oxides, i.e., poor selectivity and a relatively high working temperature. On the other hand, it has been also demonstrated that the combined use of nanostructured metal oxides and organic molecules can improve the gas sensing performance sensitivity or selectivity, even at lower temperatures. A gas sensor device, based on films of interconnected ZnO nanotetrapods properly functionalized by titanyl phthalocyanine (TiOPc), has been realized in order to combine the high surface to volume ratio and structural stability of the crystalline ZnO nanostructures with the enhanced sensitivity of the semiconducting TiOPc molecule, especially at low temperature. The electronic properties of the resulting nanohybrid material are different from those of each single component. The response of the hybrid nanostructure towards different gases has been compared with that of ZnO nanotetrapod without functionalization in order to highlight the peculiar properties of the hybrid interaction(s). The dynamic response in time has been studied for different gases and temperatures; in particular, an increase in the response to NO2 has been observed, even at room temperature. The formation of localized p-n heterojunctions and the possibility of exchanging charge carriers at the hybrid interface is shown to be crucial for the sensing mechanism.

  13. Low Temperature Sensing Properties of a Nano Hybrid Material Based on ZnO Nanotetrapods and Titanyl Phthalocyanine

    PubMed Central

    Coppedè, Nicola; Villani, Marco; Mosca, Roberto; Iannotta, Salvatore; Zappettini, Andrea; Calestani, Davide

    2013-01-01

    ZnO nanotetrapods have recently been exploited for the realization of high-sensitivity gas sensors, but they are affected by the typical drawbacks of metal-oxides, i.e., poor selectivity and a relatively high working temperature. On the other hand, it has been also demonstrated that the combined use of nanostructured metal oxides and organic molecules can improve the gas sensing performance sensitivity or selectivity, even at lower temperatures. A gas sensor device, based on films of interconnected ZnO nanotetrapods properly functionalized by titanyl phthalocyanine (TiOPc), has been realized in order to combine the high surface to volume ratio and structural stability of the crystalline ZnO nanostructures with the enhanced sensitivity of the semiconducting TiOPc molecule, especially at low temperature. The electronic properties of the resulting nanohybrid material are different from those of each single component. The response of the hybrid nanostructure towards different gases has been compared with that of ZnO nanotetrapod without functionalization in order to highlight the peculiar properties of the hybrid interaction(s). The dynamic response in time has been studied for different gases and temperatures; in particular, an increase in the response to NO2 has been observed, even at room temperature. The formation of localized p-n heterojunctions and the possibility of exchanging charge carriers at the hybrid interface is shown to be crucial for the sensing mechanism. PMID:23486215

  14. Deposition of cocoon-like ZnO on graphene sheets for improving gas-sensing properties to ethanol

    NASA Astrophysics Data System (ADS)

    Liang, Shiming; Zhu, Junwu; Ding, Jing; Bi, Huiping; Yao, Pengcheng; Han, Qiaofeng; Wang, Xin

    2015-12-01

    Developing an efficient gas sensor device with high sensitivity and selectivity still remains a challenge for its practical application. Herein, we demonstrated a facile one-step hydrothermal method to deposit cocoon-like ZnO nanoparticles onto surfaces of graphene sheets, leading to the formation of ZnO/graphene composite. The structural characterization confirmed the successful deposition of ZnO nanocrystals with hexagonal wurtzite on graphene sheets, which further facilitated the exfoliation of graphene sheets. The gas sensing performances of as-prepared ZnO/graphene composites were investigated towards a series of typical organic vapors. The results showed that the ZnO/graphene composite exhibited significantly higher performance than that of pure ZnO nanoparticles. Especially, the ZnO/graphene could offer a high gas response value of 513 towards 1000 ppm of ethanol, which is nearly 5.0 times higher than that of pure ZnO, indicating the potential application as a sensor material towards enhanced gas detection.

  15. Sensors as probes for the environmental dynamics of nanostructured materials

    NASA Astrophysics Data System (ADS)

    Sadik, Wunmi

    2012-02-01

    The last decade has witnessed an explosion of interests in the science and technology of engineered nanomaterials. The primary drive for most nanotechnology research and development is to synthesize new nanomaterials and to identify novel applications for them. Nanomaterials offer new possibilities for the development of novel sensing and monitoring technologies. Nanosensors can be classified under two main categories: (1) sensors that are used to measure nanoscale properties; and (2) sensors that are themselves nanoscale or have nanoscale materials or components. The first category can enhance our understanding of the fate and transport of engineered nanomaterials in environmental and biological systems. This is an area of critical interest in risk assessment. The second category can eventually result in lower material cost, reduced weight and power consumption. This presentation will focus on category 1 sensor for fullerenes and metal nanoparticles.

  16. Molecular Photovoltaics in Nanoscale Dimension

    PubMed Central

    Burtman, Vladimir; Zelichonok, Alexander; Pakoulev, Andrei V.

    2011-01-01

    This review focuses on the intrinsic charge transport in organic photovoltaic (PVC) devices and field-effect transistors (SAM-OFETs) fabricated by vapor phase molecular self-assembly (VP-SAM) method. The dynamics of charge transport are determined and used to clarify a transport mechanism. The 1,4,5,8-naphthalene-tetracarboxylic diphenylimide (NTCDI) SAM devices provide a useful tool to study the fundamentals of polaronic transport at organic surfaces and to discuss the performance of organic photovoltaic devices in nanoscale. Time-resolved photovoltaic studies allow us to separate the charge annihilation kinetics in the conductive NTCDI channel from the overall charge kinetic in a SAM-OFET device. It has been demonstrated that tuning of the type of conductivity in NTCDI SAM-OFET devices is possible by changing Si substrate doping. Our study of the polaron charge transfer in organic materials proposes that a cation-radical exchange (redox) mechanism is the major transport mechanism in the studied SAM-PVC devices. The role and contribution of the transport through delocalized states of redox active surface molecular aggregates of NTCDI are exposed and investigated. This example of technological development is used to highlight the significance of future technological development of nanotechnologies and to appreciate a structure-property paradigm in organic nanostructures. PMID:21339983

  17. Nanoscale pillar arrays for separations

    DOE PAGES

    Kirchner, Teresa; Strickhouser, Rachel; Hatab, Nahla; ...

    2015-04-01

    The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2μm and pillar diameters are typically in the 200- 400nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-rangingmore » lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.« less

  18. Nanoscale Mixing of Soft Solids

    SciTech Connect

    Choi, Soo-Hyung; Lee, Sangwoo; Soto, Haidy E.; Lodge, Timothy P.; Bates, Frank S.

    2013-03-07

    Assessing the state of mixing on the molecular scale in soft solids is challenging. Concentrated solutions of micelles formed by self-assembly of polystyrene-block-poly(ethylene-alt-propylene) (PS-PEP) diblock copolymers in squalane (C{sub 30}H{sub 62}) adopt a body-centered cubic (bcc) lattice, with glassy PS cores. Utilizing small-angle neutron scattering (SANS) and isotopic labeling ({sup 1}H and {sup 2}H (D) polystyrene blocks) in a contrast-matching solvent (a mixture of squalane and perdeuterated squalane), we demonstrate quantitatively the remarkable fact that a commercial mixer can create completely random mixtures of micelles with either normal, PS(H), or deuterium-labeled, PS(D), cores on a well-defined bcc lattice. The resulting SANS intensity is quantitatively modeled by the form factor of a single spherical core. These results demonstrate both the possibility of achieving complete nanoscale mixing in a soft solid and the use of SANS to quantify the randomness.

  19. Nanoscale pillar arrays for separations

    SciTech Connect

    Kirchner, Teresa; Strickhouser, Rachel; Hatab, Nahla; Charlton, Jennifer; Kravchenko, Ivan I.; Lavrik, Nickolay V.; Sepaniak, Michael J.

    2015-04-01

    The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2μm and pillar diameters are typically in the 200- 400nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-ranging lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.

  20. Nanoscale pillar arrays for separations.

    PubMed

    Kirchner, Teresa B; Strickhouser, Rachel B; Hatab, Nahla A; Charlton, Jennifer J; Kravchenko, Ivan I; Lavrik, Nickolay V; Sepaniak, Michael J

    2015-05-21

    The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2 μm and pillar diameters are typically in the 200-400 nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-ranging lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.

  1. ZnO buffer layer for metal films on silicon substrates

    DOEpatents

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  2. Enhanced performance of triboelectric nanogenerators integrated with ZnO nanowires.

    PubMed

    Lee, Sanghyo; Ko, Wonbae; Hong, Jinpyo

    2014-12-01

    We report a hybrid nanogenerator matrix integrated with ZnO nanowires (NWs) for the use of combined triboelectric and piezoelectric features, where the ZnO NWs are grown on bottom electrodes via a hydrothermal method. Along with structural properties analyzed by scanning electron microscopy, the hybrid nanogenerator displayed an output power density of 0.21 mW/cm2, which was higher than that of the triboelectric nanogenerator without NWs. Therefore, our approach can allow for the enhancement of electrical output, with a view toward the realization of functional and self-powered devices of high performance in portable electronics, such as power source and electric self-powered sensor systems.

  3. Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition

    PubMed Central

    Abou Chaaya, Adib; Alute, Zanda; Erts, Donats; Zalesskaya, Anastasiya; Kovalevskis, Kristaps; Rouessac, Vincent; Smyntyna, Valentyn; Miele, Philippe

    2013-01-01

    Summary A study of transmittance and photoluminescence spectra on the growth of oxygen-rich ultra-thin ZnO films prepared by atomic layer deposition is reported. The structural transition from an amorphous to a polycrystalline state is observed upon increasing the thickness. The unusual behavior of the energy gap with thickness reflected by optical properties is attributed to the improvement of the crystalline structure resulting from a decreasing concentration of point defects at the growth of grains. The spectra of UV and visible photoluminescence emissions correspond to transitions near the band-edge and defect-related transitions. Additional emissions were observed from band-tail states near the edge. A high oxygen ratio and variable optical properties could be attractive for an application of atomic layer deposition (ALD) deposited ultrathin ZnO films in optical sensors and biosensors. PMID:24205465

  4. Nanoscale order in ZnSe:(Mg, O)

    SciTech Connect

    Elyukhin, Vyacheslav A.

    2014-02-21

    Self-assembling of 1O4Mg identical tetrahedral clusters resulting in the nanoscale order in ZnSe:(Mg, O) is presented. Co-doping transforms ZnSe into Mg{sub x}Zn{sub 1−x}O{sub y}Se{sub 1−y} alloy of MgO, MgSe, ZnO and ZnSe. The decrease of a sum of the enthalpies of the constituent compounds and diminution of the strain energy are the causes of this phenomenon. The self-assembling conditions are obtained from the free energy minimum when magnesium and oxygen are in the dilute and ultra dilute limits, correspondingly. The occurrence of 1O4Mg clusters and completion of self-assembling when all oxygen atoms are in clusters are results of the continuous phase transitions. The self-assembling occurrence temperature does not depend on the oxygen content and it is a function of magnesium concentration. Mg{sub x}Zn{sub 1−x}O{sub y}Se{sub 1−y} with all oxygen atoms in clusters can be obtained in temperature ranges from T = 206 °C (x = 0.001, y = 1×10{sup −4}) to T = 456 °C (x = 0.01, y = 1×10{sup −4}) and from T = 237 °C (x = 0.001, y = 1×10{sup −6}) to T = 462 °C (x = 0.01, y = 1×10{sup −6})

  5. Hierarchical ZnO Nanowire Growth with Tunable Orientations on Versatile Substrates Using Atomic Layer Deposition Seeding

    SciTech Connect

    Bielinski, Ashley R.; Kazyak, Eric; Schleputz, Christian M.; Jung, Hee Joon; Wood, Kevin N.; Dasgupta, Neil P.

    2015-07-14

    The ability to synthesize semiconductor nanowires with deterministic and tunable control of orientation and morphology on a wide range of substrates, while high precision and repeatability are maintained, is a challenge currently faced for the development of many nanoscale material systems. Here we show that atomic layer deposition (ALD) presents a reliable method of surface and interfacial modification to guide nanowire orientation on a variety of substrate materials and geometries, including high-aspect-ratio, three-dimensional templates. We demonstrate control of the orientation and geometric properties of hydrothermally grown single crystalline ZnO nanowires via the deposition of a ZnO seed layer by ALD. The crystallographic texture and roughness of the seed layer result in tunable preferred nanowire orientations and densities for identical hydrothermal growth conditions. The structural and chemical relationship between the ALD layers and nanowires was investigated with synchrotron X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy to elucidate the underlying mechanisms of orientation and morphology control. The resulting control parameters were utilized to produce hierarchical nanostructures with tunable properties on a wide range of substrates, including vertical micropillars, paper fibers, porous polymer membranes, and biological substrates. This illustrates the power of ALD for interfacial engineering of heterogeneous material systems at the nanoscale, to provide a highly controlled and scalable seeding method for bottom-up synthesis of integrated nanosystems.

  6. Ammonia plasma modification towards a rapid and low temperature approach for tuning electrical conductivity of ZnO nanowires on flexible substrates.

    PubMed

    Ong, Wei Li; Zhang, Chun; Ho, Ghim Wei

    2011-10-05

    Though the fabrication of ZnO nanostructures is economical and low temperature, the lack of a facile, reliable and low temperature methodology to tune its electrical conductivity has prevented it from competing with other semiconductors. Here, we carried out surface modification of ZnO nanowires using ammonia plasma with no heat treatment, and studied their electrical properties over an extended time frame of more than a year. The fabrication of flexible devices was demonstrated via various methods of transferring and aligning as-synthesized ZnO nanowires onto plastic substrates. Hall measurements of the plasma modified ZnO nanowires revealed p-type conductivity. The N1s peak was present in the X-ray photoelectron spectrum of the surface modified ZnO, showing the presence of ammonia complexes. Low temperature photoluminescence showed evidence of acceptor-bound exciton emission. The resulting electrical devices, a chemical sensor and p-n homojunction, show the tunable electrical response of the surface modified ZnO nanowires.

  7. Morphology engineering of ZnO nanostructures for high performance supercapacitors: Enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires.

    PubMed

    He, Xiaoli; Yoo, Joung; Lee, Min; Bae, Joonho

    2017-04-06

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kind of electrodes in three electrode cell confirms that ZnO NCs exhibit high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and EIS measurements also clearly results in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric spuercapacitors are fabricated using activated carbon (AC) as negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC//AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW//AC displays 63% of capacitance obtained from ZnO NC//AC supercapacitor. The enhanced performances of NCs are attributed to higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  8. Solution-processed Ag-doped ZnO nanowires grown on flexible polyester for nanogenerator applications

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyo; Lee, Junseok; Ko, Wonbae; Cha, Seungnam; Sohn, Junginn; Kim, Jongmin; Park, Jaegun; Park, Youngjun; Hong, Jinpyo

    2013-09-01

    The integration of ZnO nanowire-based energy harvesting devices into flexible polyesters or clothes would have a significant effect on the energy harvesting building block for harvesting the mechanical energy from human motions. Moreover, the demonstration of high output power via a doping process opens an important method for enhancing the output power. Here, we report solution-based synthesis of Ag-doped ZnO nanowires on flexible polyester substrates without using any high temperature annealing processes. Along with the structural and optical characteristics of the Ag-doped ZnO nanowires, we demonstrate the efficient features of Ag-doped nanogenerators through the measurement of a sound-driven piezoelectric energy device with an output power of 0.5 μW, which is nearly 2.9 times that of a nanogenerator with un-doped ZnO NWs. This finding could provide the possibility of high output nanogenerators for practical applications in future portable/wearable personal displays and motion sensors.The integration of ZnO nanowire-based energy harvesting devices into flexible polyesters or clothes would have a significant effect on the energy harvesting building block for harvesting the mechanical energy from human motions. Moreover, the demonstration of high output power via a doping process opens an important method for enhancing the output power. Here, we report solution-based synthesis of Ag-doped ZnO nanowires on flexible polyester substrates without using any high temperature annealing processes. Along with the structural and optical characteristics of the Ag-doped ZnO nanowires, we demonstrate the efficient features of Ag-doped nanogenerators through the measurement of a sound-driven piezoelectric energy device with an output power of 0.5 μW, which is nearly 2.9 times that of a nanogenerator with un-doped ZnO NWs. This finding could provide the possibility of high output nanogenerators for practical applications in future portable/wearable personal displays and motion

  9. Orienting Periodic Organic-Inorganic Nanoscale Domains Through One-Step Electrodeposition

    PubMed Central

    Herman, David J.; Goldberger, Joshua E.; Chao, Stephen; Martin, Daniel T.; Stupp, Samuel I

    2011-01-01

    One of the challenges in the synthesis of hybrid materials with nanoscale structure is to precisely control morphology across length scales. Using a one-step electrodeposition process on indium tin oxide (ITO) substrates followed by annealing, we report here the preparation of materials with preferentially oriented lamellar domains of electron donor surfactants and the semiconductor ZnO. We found that either increasing the concentration of surfactant or the water to dimethyl sulfoxide ratio of solutions used resulted in the suppression of bloom-like morphologies and enhanced the density of periodic domains on ITO substrates. Furthermore, by modifying the surface of the ITO substrate with the conductive polymer blend poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), we were able to alter the orientation of these electrodeposited lamellar domains to be perpendicular to the substrate. The long-range orientation achieved was characterized by 2D grazing incidence small angle X-ray scattering. This high degree of orientation in electronically active hybrids with alternating nanoscale p-type and n-type domains is of potential interest in photovoltaics or thermoelectric materials. PMID:21142087

  10. Effects of nanoscale morphology and defects in oxide: optoelectronic functions of zinc oxide nanowires

    NASA Astrophysics Data System (ADS)

    Nagao, Tadaaki; Duy Dao, Thang; Sugavaneshwar, R. P.; Chen, Kai; Nanda, K. K.

    2016-02-01

    Oxide nanomaterials have been attracting growing interest for both fundamental research and industrial applications ranging from gas sensors, light-emitting devices, to photocatalysts, and solar cells. The optical and electronic properties of oxide nanomaterials are strongly dependent on their surface morphologies as well as defects, such as surface areas, aspect ratios, foreign atom impurities, and oxygen vacancies. In this review, we describe some examples of our recent contributions to the nanomaterials and devices that exhibit remarkable functionalities based on one-dimensional nanostructures of ZnO and their hetero junctions as well as their variants with appropriately incorporated dopants.

  11. Mapping nanoscale thermal transfer in-liquid environment-immersion scanning thermal microscopy.

    PubMed

    Tovee, Peter D; Kolosov, Oleg V

    2013-11-22

    Nanoscale heat transport is of increasing importance as it often defines performance of modern processors and thermoelectric nanomaterials, and affects functioning of chemical sensors and biosensors. Scanning thermal microscopy (SThM) is the leading tool for nanoscale mapping of thermal properties, but it is often negatively affected by unstable tip-surface thermal contacts. While operating SThM in-liquid environment may allow unimpeded thermal contact and open new application areas, it has so far been regarded as impossible due to increased heat dissipation into the liquid, and the perceived reduced spatial thermal resolution. Nevertheless, in this paper we show that such liquid immersion SThM (iSThM) is fully feasible and, while its thermal sensitivity and spatial resolution is somewhat below that of in-air SThM, it has sufficient thermal contrast to detect thermal conductivity variations in few tens of nm thick graphite nanoflake and metal-polymer nanostructured interconnects. Our results confirm that thermal sensing in iSThM can provide nanoscale resolution on the order of 30 nm, that, coupled with the absence of tip snap-in due to the elimination of capillary forces, opens the possibility for nanoscale thermal mapping in liquids, including thermal phenomena in energy storage devices, catalysts and biosystems.

  12. Attosecond physics at the nanoscale.

    PubMed

    Ciappina, M F; Pérez-Hernández, J A; Landsman, A S; Okell, W A; Zherebtsov, S; Förg, B; Schötz, J; Seiffert, L; Fennel, T; Shaaran, T; Zimmermann, T; Chacón, A; Guichard, R; Zaïr, A; Tisch, J W G; Marangos, J P; Witting, T; Braun, A; Maier, S A; Roso, L; Krüger, M; Hommelhoff, P; Kling, M F; Krausz, F; Lewenstein, M

    2017-01-06

    Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds (1 attosecond  =  1 as  =  10(-18) s), which is comparable with the optical field. For comparison, the revolution of an electron on a 1s orbital of a hydrogen atom is  ∼152 as. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this report on progress we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as above-threshold ionization and high-order harmonic generation. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nanophysics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the

  13. Nanoscale optimization of quantum dot solar sells

    NASA Astrophysics Data System (ADS)

    Li, Yanshu; Sergeev, Andrei; Vagidov, Nizami; Mitin, Vladimir; Sablon, Kimberly; State Univ of NY-Buffalo Team; Army Research Laboratory Team

    2015-03-01

    Quantum dots (QDs) offer possibilities for nanoscale control of photoelectron processes via engineering the band structure and potential profile. Nanoscale potential profile (potential barriers) and nanoscale band engineering (AlGaAs atomically thin barriers) effectively suppress the photoelectron capture to QDs. QDs also increase conversion efficiency of the above-bandgap photons due to extraction of electrons from QDs via Coulomb interaction with hot electrons that excited by high-energy photons. To study the effects of the band structure engineering and nanoscale potential barriers on the photovoltaic performance we fabricated 3- μm base GaAs devices with various InAs quantum dot media and selective doping. All quantum dot devices show improvement in conversion efficiency compared with the reference cell. Quantum efficiency measurements allow us to associate the spectral characteristics of photoresponse enhancement with nanoscale structure of QD media. The dark current analysis provides valuable information about recombination in QD solar cells. The two-diode model well fit the scope of data and recovers the measured open circuit voltage.

  14. Fabrication and characterization of p-type SiNW/n-type ZnO heterostructure for optoelectronics application

    NASA Astrophysics Data System (ADS)

    Hazra, Purnima; Chakrabarti, P.; Jit, S.

    2015-02-01

    Semiconductor hybrid structure, known as core-shell heterostructures was fabricated and optical properties were analyzed to make it applicable in future optoelectronic and photonic devices. Large-area, high density, vertically oriented silicon nanowire arrays, synthesized by means of metal-assisted chemical etching of p-type silicon (100) substrate was used as the core and zinc oxide (ZnO) layer, deposited on the SiNW arrays by atomic layer deposition (ALD) was used as shell. The XRD peaks of the heterostructure confirmed the subsequent growth of ZnO film on the template of SiNW arrays having similar crystalline quality. The photoluminescence (PL) spectra showed a very sharp peak at 378 nm, corresponding to the band gap of ZnO material and another broad emission band almost throughout the entire visible range with a peak around 550 nm. The structure also showed a very good antireflection property. The results present that the SiNW/ZnO heterostructure can have potential application in future nanoscale electronic and photonic devices.

  15. Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator

    NASA Astrophysics Data System (ADS)

    Suto, Hirofumi; Nagasawa, Tazumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2014-06-01

    Technology for detecting the magnetization direction of nanoscale magnetic material is crucial for realizing high-density magnetic recording devices. Conventionally, a magnetoresistive device is used that changes its resistivity in accordance with the direction of the stray field from an objective magnet. However, when several magnets are near such a device, the superposition of stray fields from all the magnets acts on the sensor, preventing selective recognition of their individual magnetization directions. Here we introduce a novel readout method for detecting the magnetization direction of a nanoscale magnet by use of a spin-torque oscillator (STO). The principles behind this method are dynamic dipolar coupling between an STO and a nanoscale magnet, and detection of ferromagnetic resonance (FMR) of this coupled system from the STO signal. Because the STO couples with a specific magnet by tuning the STO oscillation frequency to match its FMR frequency, this readout method can selectively determine the magnetization direction of the magnet.

  16. Nanoscale layer-selective readout of magnetization direction from a magnetic multilayer using a spin-torque oscillator.

    PubMed

    Suto, Hirofumi; Nagasawa, Tazumi; Kudo, Kiwamu; Mizushima, Koichi; Sato, Rie

    2014-06-20

    Technology for detecting the magnetization direction of nanoscale magnetic material is crucial for realizing high-density magnetic recording devices. Conventionally, a magnetoresistive device is used that changes its resistivity in accordance with the direction of the stray field from an objective magnet. However, when several magnets are near such a device, the superposition of stray fields from all the magnets acts on the sensor, preventing selective recognition of their individual magnetization directions. Here we introduce a novel readout method for detecting the magnetization direction of a nanoscale magnet by use of a spin-torque oscillator (STO). The principles behind this method are dynamic dipolar coupling between an STO and a nanoscale magnet, and detection of ferromagnetic resonance (FMR) of this coupled system from the STO signal. Because the STO couples with a specific magnet by tuning the STO oscillation frequency to match its FMR frequency, this readout method can selectively determine the magnetization direction of the magnet.

  17. Morphology-controlled ZnO nanowire arrays for tailored hybrid composites with high damping.

    PubMed

    Malakooti, Mohammad H; Hwang, Hyun-Sik; Sodano, Henry A

    2015-01-14

    Hybrid fiber reinforced composites using a nanoscale reinforcement of the interface have not reached their optimal performance in practical applications due to their complex design and the challenging assembly of their multiscale components. One promising approach to the fabrication of hybrid composites is the growth of zinc oxide (ZnO) nanowire arrays on the surface of carbon fibers to provide improved interfacial strength and out of plane reinforcement. However, this approach has been demonstrated mainly on fibers and thus still requires complex processing conditions. Here we demonstrate a simple approach to the fabrication of such composites through the growth of the nanowires on the fabric. The fabricated composites with nanostructured graded interphase not only exhibit remarkable damping enhancement but also stiffness improvement. It is demonstrated that these two extremely important properties of the composite can be controlled by tuning the morphology of the ZnO nanowires at the interface. Higher damping and flexural rigidity of these composites over traditional ones offer practical high-performance composites.

  18. In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field.

    PubMed

    Zhang, Lichao; Dou, Xiujie; Min, Changjun; Zhang, Yuquan; Du, Luping; Xie, Zhenwei; Shen, Junfeng; Zeng, Yujia; Yuan, Xiaocong

    2016-05-14

    In general, when a semiconductor nanowire is trapped by conventional laser beam tweezers, it tends to be aligned with the trapping beam axis rather than confined in the horizontal plane, and this limits the application of these nanowires in many in-plane nanoscale optoelectronic devices. In this work, we achieve the in-plane trapping and manipulation of a single ZnO nanowire by a hybrid plasmonic tweezer system on a flat metal surface. The gap between the nanowire and the metallic substrate leads to an enhanced gradient force caused by deep subwavelength optical energy confinement. As a result, the nanowire can be securely trapped in-plane at the center of the excited surface plasmon polariton field, and can also be dynamically moved and rotated by varying the position and polarization direction of the incident laser beam, which cannot be performed using conventional optical tweezers. The theoretical results show that the focused plasmonic field induces a strong in-plane trapping force and a high rotational torque on the nanowire, while the focused optical field produces a vertical trapping force to produce the upright alignment of the nanowire; this is in good agreement with the experimental results. Finally, some typical ZnO nanowire structures are built based on this technique, which thus further confirms the potential of this method for precise manipulation of components during the production of nanoelectronic and nanophotonic devices.

  19. Rapid microwave synthesis of high aspect-ratio ZnO nanotetrapods for swift bisphenol A detection.

    PubMed

    Qurashi, Ahsanulhaq; Rather, Jahangir Ahmad; De Wael, Karolien; Merzougui, Belabbes; Tabet, Naour; Faiz, Mohammed

    2013-09-07

    Highly crystalline and high aspect-ratio ZnO nanotetrapods were grown by a novel and swift microwave synthesis. FESEM analysis revealed that each tetrapod has four thin arms and are derived from the midst of the crystal. The diameter of each arm is larger at the base and smaller at the tip. Structural analysis revealed that these nanotetrapods are single crystalline and have a wurtzite hexagonal crystal structure. These ZnO nanotetrapods were used for the detection of BPA. The electrochemical sensor based on the ZnO nanotetrapods modified electrode showed electrocatalytic activity in terms of significant improvement of the anodic current of BPA and lowering of the detection limit. Under optimized conditions, the squarewave oxidation peak current of BPA was linear over the concentration range of 12.4 nM to 1.2 μM with the detection limit of 1.7 nM and sensitivity of 5.0 μA nM(-1) cm(-2). This sensor showed high sensitivity and response compared with other electrochemical sensors reported for the detection of BPA.

  20. Multiscale modeling of nanostructured ZnO based devices for optoelectronic applications: Dynamically-coupled structural fields, charge, and thermal transport processes

    NASA Astrophysics Data System (ADS)

    Abdullah, Abdulmuin; Alqahtani, Saad; Nishat, Md Rezaul Karim; Ahmed, Shaikh; SIU Nanoelectronics Research Group Team

    Recently, hybrid ZnO nanostructures (such as ZnO deposited on ZnO-alloys, Si, GaN, polymer, conducting oxides, and organic compounds) have attracted much attention for their possible applications in optoelectronic devices (such as solar cells, light emitting and laser diodes), as well as in spintronics (such as spin-based memory, and logic). However, efficiency and performance of these hybrid ZnO devices strongly depend on an intricate interplay of complex, nonlinear, highly stochastic and dynamically-coupled structural fields, charge, and thermal transport processes at different length and time scales, which have not yet been fully assessed experimentally. In this work, we study the effects of these coupled processes on the electronic and optical emission properties in nanostructured ZnO devices. The multiscale computational framework employs the atomistic valence force-field molecular mechanics, models for linear and non-linear polarization, the 8-band sp3s* tight-binding models, and coupling to a TCAD toolkit to determine the terminal properties of the device. A series of numerical experiments are performed (by varying different nanoscale parameters such as size, geometry, crystal cut, composition, and electrostatics) that mainly aim to improve the efficiency of these devices. Supported by the U.S. National Science Foundation Grant No. 1102192.

  1. Screen-Printing of ZnO Nanostructures from Sol-Gel Solutions for Their Application in Dye-Sensitized Solar Cells.

    PubMed

    Sarkar, Kuhu; Braden, Erik V; Bonke, Shannon A; Bach, Udo; Müller-Buschbaum, Peter

    2015-08-24

    Diblock copolymers have been used in sol-gel synthesis to successfully tailor the nanoscale morphology of thin ZnO films. As the fabrication of several-micron-thick mesoporous films such as those required in dye-sensitized solar cells (DSSCs) was difficult with this approach, we exploited the benefits of diblock-copolymer-directed synthesis that made it compatible with screen printing. The simple conversion of the diblock copolymer ZnO precursor sol to a screen-printing paste was not possible as it resulted in poor film properties. To overcome this problem, an alternative route is proposed in which the diblock copolymer ZnO precursor sol is first blade coated and calcined, then converted to a screen-printing paste. This allows the benefits of diblock-copolymer-directed particle formation to be compatible with printing methods. The morphologies of the ZnO nanostructures were studied by SEM and correlated with the current density-voltage characteristics.

  2. Bench-scale synthesis of nanoscale materials

    NASA Technical Reports Server (NTRS)

    Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.

    1994-01-01

    A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.

  3. Nanoscale assemblies and their biomedical applications

    PubMed Central

    Doll, Tais A. P. F.; Raman, Senthilkumar; Dey, Raja; Burkhard, Peter

    2013-01-01

    Nanoscale assemblies are a unique class of materials, which can be synthesized from inorganic, polymeric or biological building blocks. The multitude of applications of this class of materials ranges from solar and electrical to uses in food, cosmetics and medicine. In this review, we initially highlight characteristic features of polymeric nanoscale assemblies as well as those built from biological units (lipids, nucleic acids and proteins). We give special consideration to protein nanoassemblies found in nature such as ferritin protein cages, bacterial microcompartments and vaults found in eukaryotic cells and designed protein nanoassemblies, such as peptide nanofibres and peptide nanotubes. Next, we focus on biomedical applications of these nanoscale assemblies, such as cell targeting, drug delivery, bioimaging and vaccine development. In the vaccine development section, we report in more detail the use of virus-like particles and self-assembling polypeptide nanoparticles as new vaccine delivery platforms. PMID:23303217

  4. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  5. Systematic synthesis of ZnO nanostructures.

    PubMed

    Li, Peng; Wang, Dingsheng; Wei, Zhe; Peng, Qing; Li, Yadong

    2013-03-11

    In this study, we report a simple solution-phase method to prepare ZnO nanostructures with controllable morphologies. By using oleylamine (OAm) and dodecanol (DDL) as solvents, zinc oxide nanocrystals with tunable sizes and diverse shapes (hexagonal pyramids, bulletlike, and pencil-like shapes) have been obtained under mild conditions. At the same time, the introduction of presynthesized gold nanocrystals can also lead to the hybrid nanostructures of gold-zinc oxide hexagonal nanopyramids. In addition, the possible formation mechanism of the as-prepared ZnO nanostructures has been investigated. Notably, the unique optical properties of the ZnO nanostructures with different sizes and shapes have also been discussed. We hope that this strategy will be a general and effective method for fabricating other metal oxide nanocrystals.

  6. High-performance planar nanoscale dielectric capacitors

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Ciraci, S.

    2015-05-01

    We propose a model for planar nanoscale dielectric capacitors consisting of a single layer, insulating hexagonal boron nitride (BN) stripe placed between two metallic graphene stripes, all forming commensurately a single atomic plane. First-principles density functional calculations on these nanoscale capacitors for different levels of charging and different widths of graphene-BN stripes mark high gravimetric capacitance values, which are comparable to those of supercapacitors made from other carbon-based materials. Present nanocapacitor models allow the fabrication of series, parallel, and mixed combinations which offer potential applications in two-dimensional flexible nanoelectronics, energy storage, and heat-pressure sensing systems.

  7. Nanoscale chirality in metal and semiconductor nanoparticles.

    PubMed

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  8. Nanoscale chirality in metal and semiconductor nanoparticles

    PubMed Central

    Thomas, K. George

    2016-01-01

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided. PMID:27752651

  9. Functionalising surfaces at the nanoscale using plasma technology.

    PubMed

    Moore, R

    2009-01-01

    Plasma technology offers a highly effective toolbox for nanoscale surface engineering of materials. The potential variety of nanoscale features and new properties that can be achieved are reviewed here.

  10. Nanoscale tensile stress approach for the direct writing of plasmonic nanostructures.

    PubMed

    Zhai, Tianrui; Lin, Yuanhai; Liu, Hongmei; Feng, Shengfei; Zhang, Xinping

    2013-10-21

    One- and two-dimensional plasmonic nanostructures can be fabricated using nanoscale tensile stress. A polymer layer, coated with a thin metal film, is exposed to an interference pattern produced by ultraviolet laser beams. Crosslinking is induced between the polymeric molecules located within the bright fringes. This process not only increases the refractive index but also reduces the polymer layer thickness. Corrugations occur on the continuous thin metal film due to the nanoscale stress in the polymer layer. Thus, a periodic nanostructure of area 3 × 3 mm and depth 50 nm is created both in the polymer and metal films with excellent homogeneity and reproducibility. This method enables direct writing of a large-area plasmonic nanostructure at low cost which can be used in the design of optoelectronic devices and sensors.

  11. Nanofabrication on ZnO nanowires

    SciTech Connect

    Zhan Jinhua; Bando, Yoshio; Hu, Junqing; Golberg, Dmitri

    2006-12-11

    ZnO nanowires were subjected to convergent electron beam irradiation in a 300 kV transmission electron microscope. The size of perforated hexagonal pores generated by irradiation can vary with the beam size. An irradiated area is denuded layer by layer via removal of Zn and O atoms. The polar ZnO surfaces have a higher resistance to irradiation than the unpolar ones. Ultrathin nanobridges, {approx}1 nm thick or less, were generated through deliberate removal of Zn and O atomic monolayers.

  12. Magnetic properties of ZnO nanoparticles.

    PubMed

    Garcia, M A; Merino, J M; Fernández Pinel, E; Quesada, A; de la Venta, J; Ruíz González, M L; Castro, G R; Crespo, P; Llopis, J; González-Calbet, J M; Hernando, A

    2007-06-01

    We experimentally show that it is possible to induce room-temperature ferromagnetic-like behavior in ZnO nanoparticles without doping with magnetic impurities but simply inducing an alteration of their electronic configuration. Capping ZnO nanoparticles ( approximately 10 nm size) with different organic molecules produces an alteration of their electronic configuration that depends on the particular molecule, as evidenced by photoluminescence and X-ray absorption spectroscopies and altering their magnetic properties that varies from diamagnetic to ferromagnetic-like behavior.

  13. Superhydrophobicity of Hierarchical and ZNO Nanowire Coatings

    DTIC Science & Technology

    2014-01-01

    constructed by growing various lengths of ZnO nanowires on micro- scale Si pyramids produced by chemical etching. The nano-size effect on wettability of...Chemistry A PAPER Pu bl is he d on 1 8 D ec em be r 20 13 . D ow nl oa de d by A ir F or ce B as e R es ea rc h L ab or at or y (A FR L ) D...The nano-size effect on wettability of nano/micro complex structures has been investigated by adjusting the ZnO nanowire length. As the nanowire

  14. Atomistic Design and Simulations of Nanoscale Machines and Assembly

    NASA Technical Reports Server (NTRS)

    Goddard, William A., III; Cagin, Tahir; Walch, Stephen P.

    2000-01-01

    Over the three years of this project, we made significant progress on critical theoretical and computational issues in nanoscale science and technology, particularly in:(1) Fullerenes and nanotubes, (2) Characterization of surfaces of diamond and silicon for NEMS applications, (3) Nanoscale machine and assemblies, (4) Organic nanostructures and dendrimers, (5) Nanoscale confinement and nanotribology, (6) Dynamic response of nanoscale structures nanowires (metals, tubes, fullerenes), (7) Thermal transport in nanostructures.

  15. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  16. Handheld Universal Diagnostic Sensor

    NASA Technical Reports Server (NTRS)

    Chan, Eugene

    2012-01-01

    The rHEALTH technology is designed to shrink an entire hospital testing laboratory onto a handheld device. A physician or healthcare provider performs the test by collecting a fingerstick of blood from a patient. The tiny volume of blood is inserted into the rHEALTH device. Inside the device is a microfluidic chip that contains small channels about the width of a human hair. These channels help move the blood and analyze the blood sample. The rHEALTH sensor uses proprietary reagents called nanostrips, which are nanoscale test strips that enable the clinical assays. The readout is performed by laser-induced fluorescence. Overall, the time from blood collection through analysis is less than a minute.

  17. Oxygen vacancies induced DX center and persistent photoconductivity properties of high quality ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Xie, Yong; Madel, Manfred; Feneberg, Martin; Neuschl, Benjamin; Jie, Wanqi; Hao, Yue; Ma, Xiaohua; Thonke, Klaus

    2016-04-01

    Ultraviolet sensors based on homoepitaxially grown ZnO nanorods were fabricated using clean room technology. We study the spectral dependence and frequency dependence of the photoresponse of these rods at different temperatures and ambient conditions. Whereas the response for above-bandgap light is fast, we find a slow response to light below band gap and clear signatures of persistent photoconductivity. These findings are explained by switching oxygen vacancies by light from nonconductive to conductive state, whereas the oxygen vacancies undergo a large lattice relaxation. The threshold photon energy for this process is found to be 2.6 eV at room temperature.

  18. ZnO wide bandgap semiconductors preparation for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Ramelan, A. H.; Wahyuningsih, S.; Munawaroh, H.; Narayan, R.

    2017-02-01

    ZnO nanoparticles were successfully synthesized by sol-gel method. According to unique structural and optical properties of ZnO semiconductor material, there are many potential important applications based on that material, including as an anti-reflection coating (ARC) in solar cells. Antireflective coatings (ARC) made of ZnO on top to improve the optical properties of the coating. TiO2 layer have been coated on a ZnO nanoparticle layer. ZnO nanoparticle was characterized by X-ray diffraction (XRD), Scanning electron Microscopy (SEM) and UV-Vis spectroscopy. ZnO annealed at a temperature of 600 °C have the greatest crystalinity and crystal size than that at a temperature of 400 °C and 500 °C. SEM images of ZnO shown agglomeration and grain size increases with increasing annealed temperature. While, the optical properties of ZnO increase with increasing annealed temperature. The optical transmittance spectra of the ZnO are shown that the increasing annealing temperature had effectively improved the optical transmittance of the films. While, reflectance (%R) properties shows that, the higher annealing temperature of ZnO preparations can decrease of %R value of ZnO thin layer. The difference properties of ZnO are due to differences of light scattering resulting from the crystal size effect. The ZnO prepared by annealed at 600 °C gain a good performance of the lowest reflectance value and highest size crystal. By the addition of ARC ZnO 600 °C we have been capable improve cell performance so that that cells achieve an efficiency of 0.27%.

  19. Intrinsic and extrinsic doping of ZnO and ZnO alloys

    NASA Astrophysics Data System (ADS)

    Ellmer, Klaus; Bikowski, André

    2016-10-01

    In this article the doping of the oxidic compound semiconductor ZnO is reviewed with special emphasis on n-type doping. ZnO naturally exhibits n-type conductivity, which is used in the application of highly doped n-type ZnO as a transparent electrode, for instance in thin film solar cells. For prospective application of ZnO in other electronic devices (LEDs, UV photodetectors or power devices) p-type doping is required, which has been reported only minimally. Highly n-type doped ZnO can be prepared by doping with the group IIIB elements B, Al, Ga, and In, which act as shallow donors according to the simple hydrogen-like substitutional donor model of Bethe (1942 Theory of the Boundary Layer of Crystal Rectifiers (Boston, MA: MIT Rad Lab.)). Group IIIA elements (Sc, Y, La etc) are also known to act as shallow donors in ZnO, similarly explainable by the shallow donor model of Bethe. Some reports showed that even group IVA (Ti, Zr, Hf) and IVB (Si, Ge) elements can be used to prepare highly doped ZnO films—which, however, can no longer be explained by the simple hydrogen-like substitutional donor model. More probably, these elements form defect complexes that act as shallow donors in ZnO. On the other hand, group V elements on oxygen lattice sites (N, P, As, and Sb), which were viewed for a long time as typical shallow acceptors, behave instead as deep acceptors, preventing high hole concentrations in ZnO at room temperature. Also, ‘self’-compensation, i.e. the formation of a large number of intrinsic donors at high acceptor concentrations seems to counteract the p-type doping of ZnO. At donor concentrations above about 1020 cm-3, the electrical activation of the dopant elements is often less than 100%, especially in polycrystalline thin films. Reasons for the electrical deactivation of the dopant atoms are (i) the formation of dopant-defect complexes, (ii) the compensation of the electrons by acceptors (Oi, VZn) or (iii) the formation of secondary phases, for

  20. Preface: Friction at the nanoscale

    NASA Astrophysics Data System (ADS)

    Fusc, Claudio; Smith, Roger; Urbakh, Michael; Vanossi, Andrea

    2008-09-01

    Interfacial friction is one of the oldest problems in physics and chemistry, and certainly one of the most important from a practical point of view. Everyday operations on a broad range of scales, from nanometer and up, depend upon the smooth and satisfactory functioning of countless tribological systems. Friction imposes serious constraints and limitations on the performance and lifetime of micro-machines and, undoubtedly, will impose even more severe constraints on the emerging technology of nano-machines. Standard lubrication techniques used for large objects are expected to be less effective in the nano-world. Novel methods for control and manipulation are therefore needed. What has been missing is a molecular level understanding of processes occurring between and close to interacting surfaces to help understand, and later manipulate friction. Friction is intimately related to both adhesion and wear, and all three require an understanding of highly non-equilibrium processes occurring at the molecular level to determine what happens at the macroscopic level. Due to its practical importance and the relevance to basic scientific questions there has been major increase in activity in the study of interfacial friction on the microscopic level during the last decade. Intriguing structural and dynamical features have been observed experimentally. These observations have motivated theoretical efforts, both numerical and analytical. This special issue focusses primarily on discussion of microscopic mechanisms of friction and adhesion at the nanoscale level. The contributions cover many important aspects of frictional behaviour, including the origin of stick-slip motion, the dependence of measured forces on the material properties, effects of thermal fluctuations, surface roughness and instabilities in boundary lubricants on both static and kinetic friction. An important problem that has been raised in this issue, and which has still to be resolved, concerns the

  1. Phase transition induced strain in ZnO under high pressure

    SciTech Connect

    Yan, Xiaozhi; Dong, Haini; Li, Yanchun; Lin, Chuanlong; Park, Changyong; He, Duanwei; Yang, Wenge

    2016-05-13

    Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strength decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. Ultimately, these findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.

  2. Phase transition induced strain in ZnO under high pressure

    DOE PAGES

    Yan, Xiaozhi; Dong, Haini; Li, Yanchun; ...

    2016-05-13

    Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strengthmore » decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. Ultimately, these findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.« less

  3. Phase transition induced strain in ZnO under high pressure

    PubMed Central

    Yan, Xiaozhi; Dong, Haini; Li, Yanchun; Lin, Chuanlong; Park, Changyong; He, Duanwei; Yang, Wenge

    2016-01-01

    Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strength decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. These findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure. PMID:27173609

  4. Observation of low field microwave absorption in co-doped ZnO system

    NASA Astrophysics Data System (ADS)

    Mahule, Tebogo S.; Srinivasu, Vijaya V.; Das, Jayashree

    2016-10-01

    Room temperature low field microwave absorption (LFMA) in magnetic materials find application in microwave absorbers and low field sensors. However not all the magnetic materials show LFMA and the phenomenon is not fully understood. We report on the observation of low field microwave absorption (LFMA) or the non-resonant microwave absorption (NRMA) in the transition metal (TM) co-doped ZnO samples of the composition Zn1-x(TM:TM)xO synthesized by solid state reaction technique. LFMA peaks and hysteresis matches very well with that of the magnetization hysteresis loop and the anisotropy fields at room temperature similar to the reports in the literature for other magnetic systems. However we show through our careful experiments that such a correlation between LFMA and the magnetization does not survive at low temperatures and particularly at 10 K the LFMA hysteresis collapses in our TM co-doped ZnO system; whereas the magnetization hysteresis loop becomes very big and anisotropy field becomes bigger in the range of kOe. We interpret the LFMA as field dependent surface impedance or eddy current losses, in terms of a possible role of anomalous hall resistivity that follows magnetization and the ordinary hall resistivity that only follows the applied field. We then argue that LFMA accordingly follows magnetization or applied field when AHE or OHE dominates respectively. Also we confirm the absence of LFMA signals in the rare earth co-doped ZnO system.

  5. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device.

    PubMed

    Tran, Van-Thai; Wei, Yuefan; Yang, Hongyi; Zhan, Zhaoyao; Du, Hejun

    2017-03-03

    Fabrication of small-sized patterns of inorganic semiconductor onto flexible substrates is a major concern when manufacturing wearable devices for measuring either biometric or environmental parameters. In this study, micro-sized flexible ZnO UV photodetectors have been thoroughly prepared by a facile inkjet printing technology and followed with heat treatments. A simple ink recipe of zinc acetate precursor solution was investigated. It is found that the substrate temperature during zinc precursor ink depositing has significant effects on ZnO pattern shape, film morphology, and crystallization. The device fabricated from the additive manufacturing approach has good bendability, Ohmic contact, short response time as low as 0.3 s, and high on/off ratio of 3525. We observed the sensor's dependence of response/decay time by the illuminating UV light intensity. The whole process is based on additive manufacturing which has many benefits such as rapid prototyping, saving material, being environmentally friendly, and being capable of creating high-resolution patterns. In addition, this method can be applied to flexible substrates, which makes the device more applicable for applications requiring flexibility such as wearable devices. The proposed all-inkjet-printing approach for a micro-sized ZnO UV photodetector would significantly simplify the fabrication process of micro-sized inorganic semiconductor-based devices. A potential application is real-time monitoring of UV light exposure to warn users about unsafe direct sunlight to implement suitable avoidance solutions.

  6. The role of Zn vacancies in UV sensing with ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Barbagiovanni, E. G.; Strano, V.; Franzò, G.; Mirabella, S.

    2016-10-01

    The UV sensing properties of ZnO nanorods (NRs) fabricated by a chemical bath deposition using two different hexamethylenetetramine (HMTA) concentrations, 25 mM and 50 mM, are studied in this work. The NRs are investigated by scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy, and photoconductivity measurements. The SEM images indicate that 25 mM HMTA NRs exhibit merging that increases the growth induced defects in this sample with respect to the 50 mM sample. PL measurements demonstrate a higher optical transition from the doubly ionized Zn vacancy ( VZ n 2 - ) at 2.52 eV in the 50 mM ZnO NRs due to the reduced growth defect density. The photoconductivity measurements indicate better sensitivity and spectral selectivity in the 50 mM NRs, which we present as a result of the VZ n 2 - state. These results are summarised with a UV sensing model based on the optical properties of ZnO NRs, which provides a route for the development of improved sensors.

  7. Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage

    PubMed Central

    2014-01-01

    Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy layer over hydrothermally synthesized vertical ZnO nanorod array by controlled pulsed current electropolymerization of pyrrole monomer under surfactant action. The vertical PPy nanotube arrays of different tube diameter are created by selective etching of the ZnO nanorod core in ammonia solution for different periods. Cyclic voltammetry studies show high areal-specific capacitance approximately 240 mF.cm-2 for open pore and approximately 180 mF.cm-2 for narrow 30-to-36-nm diameter PPy nanotube arrays attributed to intensive faradic processes arising from enhanced access of electrolyte ions through nanotube interior and exterior. Impedance spectroscopy studies show that capacitive response extends over larger frequency domain in electrodes with PPy nanotube structure. Simulation of Nyquist plots by electrical equivalent circuit modeling establishes that 3-D nanostructure is better represented by constant phase element which accounts for the inhomogeneous electrochemical redox processes. Charge-discharge studies at different current densities establish that kinetics of the redox process in PPy nanotube electrode is due to the limitation on electron transport rather than the diffusive process of electrolyte ions. The PPy nanotube electrodes show deep discharge capability with high coulomb efficiency and long-term charge-discharge cyclic studies show nondegrading performance of the specific areal capacitance tested for 5,000 cycles. PMID:25246867

  8. Dynamic structural disorder in supported nanoscale catalysts

    NASA Astrophysics Data System (ADS)

    Rehr, J. J.; Vila, F. D.

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  9. Direct temperature mapping of nanoscale plasmonic devices.

    PubMed

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2014-02-12

    Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography.

  10. Nanoscale spectroscopy and imaging of hemoglobin.

    PubMed

    Kennedy, Eamonn; Yarrow, Fiona; Rice, James H

    2011-09-01

    Sub diffraction limited infrared absorption imaging of hemoglobin was performed by coupling IR optics with an atomic force microscope. Comparisons between the AFM topography and IR absorption images of micron sized hemoglobin features are presented, along with nanoscale IR spectroscopic analysis of the metalloprotein.

  11. Powdered Hexagonal Boron Nitride Reducing Nanoscale Wear

    NASA Astrophysics Data System (ADS)

    Chkhartishvili, L.; Matcharashvili, T.; Esiava, R.; Tsagareishvili, O.; Gabunia, D.; Margiev, B.; Gachechiladze, A.

    2013-05-01

    A morphology model is suggested for nano-powdered hexagonal boron nitride that can serve as an effective solid additive to liquid lubricants. It allows to estimate the specific surface, that is a hard-to-measure parameter, based on average size of powder particles. The model can be used also to control nanoscale wear processes.

  12. Adsorption Kinetics in Nanoscale Porous Coordination Polymers

    SciTech Connect

    Nune, Satish K.; Thallapally, Praveen K.; McGrail, Benard Peter; Annapureddy, Harsha V. R.; Dang, Liem X.; Mei, Donghai; Karri, Naveen; Alvine, Kyle J.; Olszta, Matthew J.; Arey, Bruce W.; Dohnalkova, Alice

    2015-10-07

    Nanoscale porous coordination polymers were synthesized using simple wet chemical method. The effect of various polymer surfactants on colloidal stability and shape selectivity was investigated. Our results suggest that the nanoparticles exhibited significantly improved adsorption kinetics compared to bulk crystals due to decreased diffusion path lengths and preferred crystal plane interaction.

  13. Fats, Oils, & Colors of a Nanoscale Material

    ERIC Educational Resources Information Center

    Lisensky, George C.; Horoszewski, Dana; Gentry, Kenneth L.; Zenner, Greta M.; Crone, Wendy C .

    2006-01-01

    Phase changes and intermolecular forces are important physical science concepts but are not always easy to present in an active learning format. This article presents several interactive activities in which students plot the melting points of some fatty acids and explore the effect that the nanoscale size and shape of molecules have on the…

  14. Benchtop Nanoscale Patterning Using Soft Lithography

    ERIC Educational Resources Information Center

    Meenakshi, Viswanathan; Babayan, Yelizaveta; Odom, Teri W.

    2007-01-01

    This paper outlines several benchtop nanoscale patterning experiments that can be incorporated into undergraduate laboratories or advanced high school chemistry curricula. The experiments, supplemented by an online video lab manual, are based on soft lithographic techniques such as replica molding, micro-molding in capillaries, and micro-contact…

  15. Dynamic structural disorder in supported nanoscale catalysts

    SciTech Connect

    Rehr, J. J.; Vila, F. D.

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  16. Role of strain relaxation in exciton resonance energies of ZnO epitaxial layers grown on SiC substrates

    NASA Astrophysics Data System (ADS)

    Almamun Ashrafi, Abm

    2004-03-01

    The wide bandgap ZnO semiconductor is currently the subject of interest for the study of physics as well as investigations in response to the industrial demand for applications in optoelectronics devices. The most exciting physical properties of ZnO are the largest exciton binding energy of 60 meV and this can be tuned up to 120 meV by controlling the ZnO active layers1. Towards these goals, a great deal of efforts has been made on ZnO layers grown mostly on Al2O3 substrates. It is noted that the lattice mismatch in ZnO/Al2O3 is 18structural defects, and higher residual carrier concentration. To overcome these basic but unavoidable problems for crystalline quality, nearly-matched SiC substrate may play a role including reproducible p-type conductivity in ZnO layers2. Considering the ZnO lattice constant, the estimated lattice mismatch between the ZnO and SiC is to be 5may explore the ZnO epitaxy with the superior crystalline as well as optical properties towards the study of quantum physics in nanoscale level where strain governs the local atomic mechanisms in principle. Recently, we have reported the superior ZnO crystalline quality grown on SiC substrates compared to the ZnO/Al2O3 samples by MOCVD3. In progress to these results, strain relaxation effects in exciton resonance energies of ZnO layers have been addressed in this letter. The surface morphology of ZnO layers grown on SiC exhibited hexagons geometry for the VI/II falux raio of 4 by reflecting the +c ZnO surface. From these layers, therefore, free exciton (FX) emission was appeared with A and B bands to the corresponding energies of 3.377 and 3.390 eV4. With the increase of temperature, however, the FXs emission showed the quenching of excitons energy as well as intensity which may be a subject of overlapping the A and donor-bound (D0X) excitons4. The deduced activation energies of A and D0X exciton emissions suggested a consistency with an inclusion of exciton-defect binding energy in optical bands. The

  17. CO and NO2 Selective Monitoring by ZnO-Based Sensors

    PubMed Central

    Hjiri, Mokhtar; El Mir, Lassaad; Leonardi, Salvatore Gianluca; Donato, Nicola; Neri, Giovanni

    2013-01-01

    ZnO nanomaterials with different shapes were synthesized, characterized and tested in the selective monitoring of low concentration of CO and NO2 in air. ZnO nanoparticles (NPs) and nanofibers (NFs) were synthesized by a modified sol-gel method in supercritical conditions and electrospinning technique, respectively. CO and NO2 sensing tests have demonstrated that the annealing temperature and shape of zinc oxide nanomaterials are the key factors in modulating the electrical and sensing properties. Specifically, ZnO NPs annealed at high temperature (700 °C) have been found sensitive to CO, while they displayed negligible response to NO2. The opposite behavior has been registered for the one-dimensional ZnO NFs annealed at medium temperature (400 °C). Due to their adaptable sensitivity/selectivity characteristics, the developed sensors show promising applications in dual air quality control systems for closed ambient such as automotive cabin, parking garage and tunnels. PMID:28348340

  18. Fano resonances in nanoscale structures

    SciTech Connect

    Miroshnichenko, Andrey E.; Flach, Sergej; Kivshar, Yuri S.

    2010-07-15

    Modern nanotechnology allows one to scale down various important devices (sensors, chips, fibers, etc.) and thus opens up new horizons for their applications. The efficiency of most of them is based on fundamental physical phenomena, such as transport of wave excitations and resonances. Short propagation distances make phase-coherent processes of waves important. Often the scattering of waves involves propagation along different paths and, as a consequence, results in interference phenomena, where constructive interference corresponds to resonant enhancement and destructive interference to resonant suppression of the transmission. Recently, a variety of experimental and theoretical work has revealed such patterns in different physical settings. The purpose of this review is to relate resonant scattering to Fano resonances, known from atomic physics. One of the main features of the Fano resonance is its asymmetric line profile. The asymmetry originates from a close coexistence of resonant transmission and resonant reflection and can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes. The basic concepts of Fano resonances are introduced, their geometrical and/or dynamical origin are explained, and theoretical and experimental studies of light propagation in photonic devices, charge transport through quantum dots, plasmon scattering in Josephson-junction networks, and matter-wave scattering in ultracold atom systems, among others are reviewed.

  19. Optical characterization of pure and Al-doped ZnO prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Belka, Radosław; Keczkowska, Justyna; Kasińska, Justyna

    2016-09-01

    In this paper the preparation process and optical characterization of pure and Al3+ doped zinc oxide (Al:ZnO) coatings will be presented. ZnO based materials have been studied extensively due to their potential applications in optoelectronic devices as conductive gas sensors, transparent conductive, electrodes, solar cell windows, varistors, UVfilters or photovoltaic cells. It is II-VI semiconductor with wide-band gap of 3.37 eV and large exciton binding energy of 60meV. It is possible to improve the conductivity of ZnO coating by intentionally doping ZnO with aluminium ions during preparation process. Such transparent and conducting thin films, known as AZO (Aluminium Zinc Oxide) films, are very good candidate for application as transparent conducting materials in many optoelectronic devices. The well-known sol-gel method is used for preparation of solution, coated on glass substrates by dip coating process. Prepared samples were investigated by Raman and UV-VIS spectroscopy. Transmittance as well as specular and diffuse reflectance spectroscopy methods were used for studies of optical parameters. We found that Al admixture influences on optical bandgap of ZnO.

  20. Nanoscale precipitation in hot rolled sheet steel

    NASA Astrophysics Data System (ADS)

    Sun, Jun

    Some newer hot rolled high strength low alloy (HSLA) steels with a single phase ferrite matrix have obtained substantial strengthening from nanoscale precipitation. These HSLA are reported to have a good combination of strength, ductility and hole-expansion ability. In the current work, Gleeble ® 3500 torsion testing was employed to simulate the hot rolling process with varying run-out table cooling rates and coiling temperatures on five microalloyed steels with additions of Ti, Nb, Mo, Cr and V, to investigate the effects of microalloy additions and processing conditions on microstructures as well as mechanical properties. Subsized tensile specimens obtained from as-twisted torsion samples were used to evaluate mechanical properties. The precipitation states of the five steels with different processing conditions were characterized using extraction replica TEM. Comparison of microstructures and mechanical properties was discussed. Characterization of the microstructure via light optical microscopy showed the matrix microstructure was mainly influenced by coiling temperature, which indicates that the transformation from austenite to ferrite occurred during the coiling period. A higher Ti content was shown to reduce the second constituent fractions. Investigation of carbon extraction replica specimens via TEM revealed the presence of nanoscale precipitation. Extensive nanoscale precipitation was observed in most of the specimens having a polygonal ferrite matrix, while in the granular bainite/ferrite microstructure at lower temperatures, fewer microalloy carbides were present. The specimens with polygonal ferrite had similar or higher yield strength than the specimens with granular bainite microstructure, which suggests the effectiveness of precipitation strengthening from extensive nanoscale precipitates. In the Nb-Mo steel, more significant strengthening due to grain refinement was evident. Yield strength values were less than reported for JFE's "NANOHITEN

  1. Nano-scale displacement sensing based on van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Hu, Lin; Zhao, Jin; Yang, Jinlong

    2015-05-01

    We propose that a nano-scale displacement sensor with high resolution in weak-force systems can be realized based on vertically stacked two-dimensional (2D) atomic corrugated layer materials bound through van der Waals (vdW) interactions. Using first-principles calculations, we found that the electronic structures of bi-layer blue phosphorus (BLBP) vary appreciably with lateral and vertical interlayer displacements. The variation of the electronic structure is attributed to the change of the interlayer distance dz for both the lateral and vertical displacement. For lateral displacement, the change of dz is induced by atomic layer corrugation. Despite the different stacking configurations of BLBP, we find that the change of the indirect band gap is proportional to dz-2. Furthermore, this dz-2 dependence is found to be applicable to other graphene-like corrugated bi-layer materials such as MoS2. BLBP represents a large family of bi-layer 2D atomic corrugated materials for which the electronic structure is sensitive to the interlayer vertical and lateral displacement, and thus could be used for a nano-scale displacement sensor. This can be done by monitoring the tunable electronic structure using absorption spectroscopy. Because this type of sensor is established on atomic layers coupled through vdW interactions, it provides unique applications in the measurements of nano-scale displacement induced by tiny external forces.We propose that a nano-scale displacement sensor with high resolution in weak-force systems can be realized based on vertically stacked two-dimensional (2D) atomic corrugated layer materials bound through van der Waals (vdW) interactions. Using first-principles calculations, we found that the electronic structures of bi-layer blue phosphorus (BLBP) vary appreciably with lateral and vertical interlayer displacements. The variation of the electronic structure is attributed to the change of the interlayer distance dz for both the lateral and vertical

  2. Hierarchically assembled ZnO nanoparticles on high diffusion coefficient ZnO nanowire arrays for high efficiency dye-sensitized solar cells.

    PubMed

    Chen, Liang-Yih; Yin, Yu-Tung

    2013-03-07

    In this study, ZnO nanoparticles (ZnO NPs) were conformally covered on the surfaces of ZnO nanowires (ZnO NWs) with high diffusion coefficient (1.2 × 10(-2) cm(2) s(-1)) to make a composite photoanode. By using N719 to sensitize the composite photoanode, the conversion efficiency can reach 7.14%.

  3. Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors.

    PubMed

    Huang, Heh-Chang; Hsieh, Tsung-Eong

    2010-07-23

    ZnO particles with an average size of about 5 nm were prepared via a sol-gel chemical route and the silane coupling agent, (3-glycidyloxypropyl)-trimethoxysilane (GPTS), was adopted to enhance the dispersion of the ZnO nanoparticles in ethyl glycol (EG) solution. A ZnO surface potential as high as 66 mV was observed and a sedimentation test showed that the ZnO precursor solution remains transparent for six months of storage, elucidating the success of surface modification on ZnO nanoparticles. The ZnO thin films were then prepared by spin coating the precursor solution on a Si wafer and annealing treatments at temperatures up to 500 degrees C were performed for subsequent preparation of ZnO thin film transistors (TFTs). Microstructure characterization revealed that the coalescence of ZnO nanoparticles occurs at temperatures as low as 200 degrees C to result in a highly uniform, nearly pore-free layer. However, annealing at higher temperatures was required to remove organic residues in the ZnO layer for satisfactory device performance. The 500 degrees C-annealed ZnO TFT sample exhibited the best electrical properties with on/off ratio = 10(5), threshold voltage = 17.1 V and mobility (micro) = 0.104 cm(2) V(-1) s(-1).

  4. Detecting Nano-Scale Vibrations in Rotating Devices by Using Advanced Computational Methods

    PubMed Central

    del Toro, Raúl M.; Haber, Rodolfo E.; Schmittdiel, Michael C.

    2010-01-01

    This paper presents a computational method for detecting vibrations related to eccentricity in ultra precision rotation devices used for nano-scale manufacturing. The vibration is indirectly measured via a frequency domain analysis of the signal from a piezoelectric sensor attached to the stationary component of the rotating device. The algorithm searches for particular harmonic sequences associated with the eccentricity of the device rotation axis. The detected sequence is quantified and serves as input to a regression model that estimates the eccentricity. A case study presents the application of the computational algorithm during precision manufacturing processes. PMID:22399918

  5. ZnO quantum dots-decorated ZnO nanowires for the enhancement of antibacterial and photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Wu, Jyh Ming; Tsay, Li-Yi

    2015-10-01

    We demonstrate highly antibacterial activities for killing off Staphylococcus aureus and Escherichia coli using ZnO nanowires decorated with ZnO quantum dots (so-called ZnO QDs/NWs) under visible-light irradiation and dark conditions. The average size of the ZnO QDs is in the range of 3-5 nm; these were uniformly dispersed on the ZnO nanowires’ surface to form the ZnO QDs/NWs. A significant blue-shift effect was observed using photoluminescence (PL) spectra. The size of the ZnO QDs is strongly dependent on the material’s synthesis time. The ZnO QDs/NWs exhibited an excellent photocatalytic activity under visible-light irradiation. The ZnO QDs’ active sites (i.e. the O-H bond and Zn2+) accelerate the photogenerated-carrier migration from the QDs to the NWs. As a consequence, the electrons reacted with the dissolved oxygen to form oxygen ions and produced hydroperoxyl radicals to enhance photocatalytic activity. The antibacterial activities (as indicated by R-factor-inhibiting activity) of the ZnO QDs/NWs for killing off Staphylococcus aureus and Escherichia coli is around 4.9 and 5.5 under visible-light irradiation and dark conditions, respectively. The hydroxyl radicals served as an efficient oxidized agent for decomposing the organic dye and microorganism species. The antibacterial activities of the ZnO QDs/NWs in the dark may be attributed to the Zn2+ ions that were released from the ZnO QDs and infused into the microbial solution against the growth of bacteria thus disrupting the microorganism. The highly antibacterial and photocatalytic activity of the ZnO QDs/NWs can be well implanted on a screen window, thus offering a promising solution to inhibit the spread of germs under visible-light and dark conditions.

  6. Growth of a Novel Nanostructured ZnO Urchin: Control of Cytotoxicity and Dissolution of the ZnO Urchin.

    PubMed

    Imani, Roghayeh; Drašler, Barbara; Kononenko, Veno; Romih, Tea; Eleršič, Kristina; Jelenc, Janez; Junkar, Ita; Remškar, Maja; Drobne, Damjana; Kralj-Iglič, Veronika; Iglič, Aleš

    2015-12-01

    The applications of zinc oxide (ZnO) nanowires (NWs) in implantable wireless devices, such as diagnostic nanobiosensors and nanobiogenerators, have recently attracted enormous attention due to their unique properties. However, for these implantable nanodevices, the biocompatibility and the ability to control the behaviour of cells in contact with ZnO NWs are demanded for the success of these implantable devices, but to date, only a few contrasting results from their biocompatibility can be found. There is a need for more research about the biocompatibility of ZnO nanostructures and the adhesion and viability of cells on the surface of ZnO nanostructures. Here, we introduce synthesis of a new nature-inspired nanostructured ZnO urchin, with the dimensions of the ZnO urchin's acicula being controllable. To examine the biocompatibility and behaviour of cells in contact with the ZnO urchin, the Madin-Darby canine kidney (MDCK) epithelial cell line was chosen as an in vitro experimental model. The results of the viability assay indicated that, compared to control, the number of viable cells attached to the surface of the ZnO urchin and its surrounding area were reduced. The measurements of the Zn contents of cell media confirmed ZnO dissolution, which suggests that the ZnO dissolution in cell culture medium could lead to cytotoxicity. A purposeful reduction of ZnO cytotoxicity was achieved by surface coating of the ZnO urchin with poly(vinylidene fluorid-co-hexafluoropropylene) (PVDF-HFP), which changed the material matrix to slow the Zn ion release and consequently reduce the cytotoxicity of the ZnO urchin without reducing its functionality.

  7. Porous and single-crystalline ZnO nanobelts: fabrication with annealing precursor nanobelts, and gas-sensing and optoelectronic performance.

    PubMed

    Jin, Xiao-Bo; Li, Yi-Xiang; Su, Yao; Guo, Zheng; Gu, Cui-Ping; Huang, Jia-Rui; Meng, Fan-Li; Huang, Xing-Jiu; Li, Min-Qiang; Liu, Jin-Huai

    2016-09-02

    Porous and single-crystalline ZnO nanobelts have been prepared through annealing precursors of ZnSe · 0.5N2H4 well-defined and smooth nanobelts, which have been synthesized via a simple hydrothermal method. The composition and morphology evolutions with the calcination temperatures have been investigated in detail for as-prepared precursor nanobelts, suggesting that they can be easily transformed into ZnO nanobelts by preserving their initial morphology via calcination in air. In contrast, the obtained ZnO nanobelts are densely porous, owing to the thermal decomposition and oxidization of the precursor nanobelts. More importantly, the achieved porous ZnO nanobelts are single-crystalline, different from previously reported ones. Motivated by the intrinsic properties of the porous structure and good electronic transporting ability of single crystals, their gas-sensing performance has been further explored. It is demonstrated that porous ZnO single-crystalline nanobelts exhibit high response and repeatability toward volatile organic compounds, such as ethanol and acetone, with a short response/recovery time. Furthermore, their optoelectronic behaviors indicate that they can be promisingly employed to fabricate photoelectrochemical sensors.

  8. Porous and single-crystalline ZnO nanobelts: fabrication with annealing precursor nanobelts, and gas-sensing and optoelectronic performance

    NASA Astrophysics Data System (ADS)

    Jin, Xiao-Bo; Li, Yi-Xiang; Su, Yao; Guo, Zheng; Gu, Cui-Ping; Huang, Jia-Rui; Meng, Fan-Li; Huang, Xing-Jiu; Li, Min-Qiang; Liu, Jin-Huai

    2016-09-01

    Porous and single-crystalline ZnO nanobelts have been prepared through annealing precursors of ZnSe · 0.5N2H4 well-defined and smooth nanobelts, which have been synthesized via a simple hydrothermal method. The composition and morphology evolutions with the calcination temperatures have been investigated in detail for as-prepared precursor nanobelts, suggesting that they can be easily transformed into ZnO nanobelts by preserving their initial morphology via calcination in air. In contrast, the obtained ZnO nanobelts are densely porous, owing to the thermal decomposition and oxidization of the precursor nanobelts. More importantly, the achieved porous ZnO nanobelts are single-crystalline, different from previously reported ones. Motivated by the intrinsic properties of the porous structure and good electronic transporting ability of single crystals, their gas-sensing performance has been further explored. It is demonstrated that porous ZnO single-crystalline nanobelts exhibit high response and repeatability toward volatile organic compounds, such as ethanol and acetone, with a short response/recovery time. Furthermore, their optoelectronic behaviors indicate that they can be promisingly employed to fabricate photoelectrochemical sensors.

  9. Effect of annealing atmosphere on photoluminescence and gas sensing of solution-combustion-synthesized Al, Pd co-doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Min; Lv, Tan; Wang, Qiong; Zou, Yun-ling; Lian, Xiao-xue; Liu, Hong-peng

    2015-11-01

    Al, Pd co-doped ZnO nanoparticles (NPs) synthesized using a solution combustion method and subsequent annealing process under various atmospheres, including air, nitrogen, and hydrogen, were characterized using x-ray diffraction, energy-dispersive x-ray spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The gas-sensing properties of the sensors based on the NPs were also examined. The results indicated that the Al, Pd co-doped ZnO NPs, with an average crystallite size of 10 nm, exhibited enhanced gas-sensing performance compared with that of pure ZnO and Al-doped ZnO. The response of the Al, Pd co-doped ZnO NPs annealed in N2 to ethanol (49.22) was nearly 5.7 times higher than that to acetone (8.61) and approximately 20 - 27 times higher than that to benzene (2.38), carbon monoxide (2.23), and methane (1.78), which demonstrates their excellent selectivity to ethanol versus other gases. This high ethanol response can be attributed to the combined effects of the small size, Schottky barrier, lattice defects, and catalysis. [Figure not available: see fulltext.

  10. Synthesis of Highly Stable Silver-Loaded Vertical ZnO Nanowires Array and its Acetylene Sensing Properties

    NASA Astrophysics Data System (ADS)

    Uddin, Abu Sadat Mohammad Iftekhar; Chung, Gwiy-Sang

    2016-09-01

    A silver-loaded one-dimensional (1D) vertical ZnO nanowires (NWs) array synthesized by a facile seed mediated hydrothermal-RF magnetron sputtering method has been investigated for the fabrication of a highly stable and reproducible acetylene (C2H2) gas sensor. Successful immobilization of silver nanoparticles (NPs) as a sensitizer on the ZnO NWs array significantly enhanced the C2H2 sensing properties and showed a stable sensing performance. The grown structure exhibited high response magnitude (30.8 at 1000ppm), short response time (43s) and excellent selectivity at 220∘C. The enhanced performance can probably be accounted for the effect of combining the highly orientated ZnO NWs and catalytically active silver-based network. The superior sensing features toward C2H2 along with broad detection range (1-1000ppm), outstanding stability and excellent reproducibility indicate that the sensor is a promising candidate for practical applications.

  11. Ultra-Low Level Detection of L-Histidine Using Solution-Processed ZnO Nanorod on Flexible Substrate.

    PubMed

    Sasmal, Milan; Maiti, Tapas Kumar; Bhattacharyya, Tarun Kanti

    2015-09-01

    This work demonstrates a novel label free and sensitive approach for the detection of L-histidine. This is a simple and reliable method for ultra-low level detection of L-histidine. All solution processed synthesizing technique was utilized to develop such type of detection scheme. Silicon substrate was replaced by normal transparent sheet to make it more facile and cost-effective detection technique. Fabricated device for L-histidine detection works upon the variation of current through the ZnO nanorod with L-histidine concentration. Operation principle strongly depends upon the electron charge transfer between metal cation and L-histidine inside the chelating complex. Morphological, structural and optical characterization of solution processed synthesized ZnO nanorod (ZnO NR) was carried out prior to sensor device fabrication. Our sensor device exhibits the sensitivity around 0.86 nA/fM and lower limit of detection (LOD) ∼ 0.1 fM(S/N=3).

  12. Synthesis and characterization of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Anilkumar T., S.; Girija M., L.; Venkatesh, J.

    2016-05-01

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivity of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.

  13. Growing ZnO crystals on magnetite nanoparticles.

    PubMed

    Turgeman, Rachel; Tirosh, Shay; Gedanken, Aharon

    2004-04-02

    We report herein on the oriented growth of ZnO crystals on magnetite nanoparticles. The ZnO crystals were grown by hydrolyzing a supersaturated aqueous solution of zinc nitrate. The seeds for the growth were magnetite nanoparticles with a diameter of 5.7 nm and a narrow size distribution. Hollowed ZnO hexagons of 0.15 microm width and 0.5 microm length filled with Fe(3)O(4) particles were obtained. HR-TEM (high-resolution transmission electron microscopy) and selected-area EDS (energy-dispersive spectroscopy) show that the nanoparticles are homogenously spread in the ZnO tubes. Zeta potential measurements were employed to understand the relationship between the nanoparticles and the oriented growth of the ZnO crystals. The results show that the surfactants induced the directional growth of the ZnO crystals.

  14. Development and characterization of a novel ZnO nanorods-SnO2:F nanoflakes thin film for room-temperature ammonia and humidity sensing

    NASA Astrophysics Data System (ADS)

    Calaque, Precy Mae; Vergara, Christopher Jude; Ballesteros, Laureen Ida; Somintac, Armando

    2017-03-01

    A unique and novel thin film of fluorine-doped tin oxide (SnO2:F) nanoflakes on ZnO nanorods were fabricated using nebulized spray pyrolysis technique (NSPT) and hydrothermal growth method, respectively, for ammonia and humidity sensing applications. XRD studies confirm the growth of a hexagonal wurtzite ZnO and a tetragonal SnO2:F. SEM images of the film fabricated for preliminary studies evidently revealed ZnO nanorods and SnO2:F nanoflakes. The response of the fabricated ZnO-SnO2:F nanostructure thin film sensor on varying concentrations of water vapor and ammonia at room temperature were investigated. Results have shown that it had higher sensor response to ammonia than to water vapor. Moreover, it was observed to have a higher sensor response on ammonia and humidity compared to the fabricated sensor of SnO2:F thin film alone. The films could detect humidity and ammonia even at a low level of 9 ppm and 5 ppm, respectively, showing its potential use for various fields such as environmental monitoring and chemical industries.

  15. Developing high-sensitivity ethanol liquid sensors based on ZnO/porous Si nanostructure surfaces using an electrochemical impedance technique

    NASA Astrophysics Data System (ADS)

    Husairi, Mohd; Rouhi, Jalal; Alvin, Kevin; Atikah, Zainurul; Rusop, Muhammad; Abdullah, Saifollah

    2014-07-01

    ZnO nanostructures were synthesized on porous Si (PSi) substrates using the thermal catalytic-free immersion method. Crack-like ZnO nanostructures were formed on the bare, sponge-like PSi structures. An approach to fabricate chemical sensors based on the ZnO/PSi nanostructure arrays that uses an electrochemical impedance technique is reported. Sensor performance was evaluated for ethanol solutions by the morphology and defect structures of the ZnO nanostructure layer. Results indicate that the ZnO/PSi nanostructure chemical sensor exhibits rapid and high response to ethanol compared with a PSi nanostructure sensor because of its small particle size and an oxide layer acting as a capacitive layer on the PSi nanostructure surface.

  16. Nanoscale segregation at a metal surface

    NASA Astrophysics Data System (ADS)

    Igata, N.

    1996-03-01

    The properties of a surface are fundamentally controlled by the chemical composition of the nanoscale surface layer. Therefore nanoscale segregation at the surface is one of the most important problems in surface science and technology. The chemical analysis of the surface layer and the study of segregation have been developed by various methods, but mainly by AES and TOFAP since 0957-4484/7/1/003/img1. Surface segregation under irradiation is also an urgent problem to be solved and the same methods have been applied. In this paper, the results from TOFAP for segregation both under thermal equilibrium and under irradiation are introduced. As for theoretical aspects, both thermal segregation and segregation under irradiation are interpreted by atomistic theory.

  17. Trapping atoms using nanoscale quantum vacuum forces.

    PubMed

    Chang, D E; Sinha, K; Taylor, J M; Kimble, H J

    2014-07-10

    Quantum vacuum forces dictate the interaction between individual atoms and dielectric surfaces at nanoscale distances. For example, their large strengths typically overwhelm externally applied forces, which makes it challenging to controllably interface cold atoms with nearby nanophotonic systems. Here we theoretically show that it is possible to tailor the vacuum forces themselves to provide strong trapping potentials. Our proposed trapping scheme takes advantage of the attractive ground-state potential and adiabatic dressing with an excited state whose potential is engineered to be resonantly enhanced and repulsive. This procedure yields a strong metastable trap, with the fraction of excited-state population scaling inversely with the quality factor of the resonance of the dielectric structure. We analyse realistic limitations to the trap lifetime and discuss possible applications that might emerge from the large trap depths and nanoscale confinement.

  18. Programmed assembly of nanoscale structures using peptoids.

    SciTech Connect

    Ren, Jianhua; Russell, Scott; Morishetti, Kiran; Robinson, David B.; Zuckermann, Ronald N.; Buffleben, George M.; Hjelm, Rex P.; Kent, Michael Stuart

    2011-02-01

    Sequence-specific polymers are the basis of the most promising approaches to bottom-up programmed assembly of nanoscale materials. Examples include artificial peptides and nucleic acids. Another class is oligo(N-functional glycine)s, also known as peptoids, which permit greater sidegroup diversity and conformational control, and can be easier to synthesize and purify. We have developed a set of peptoids that can be used to make inorganic nanoparticles more compatible with biological sequence-specific polymers so that they can be incorporated into nucleic acid or other biologically based nanostructures. Peptoids offer degrees of modularity, versatility, and predictability that equal or exceed other sequence-specific polymers, allowing for rational design of oligomers for a specific purpose. This degree of control will be essential to the development of arbitrarily designed nanoscale structures.

  19. Light-driven nanoscale plasmonic motors

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Zentgraf, Thomas; Liu, Yongmin; Bartal, Guy; Zhang, Xiang

    2010-08-01

    When Sir William Crookes developed a four-vaned radiometer, also known as the light-mill, in 1873, it was believed that this device confirmed the existence of linear momentum carried by photons, as predicted by Maxwell's equations. Although Reynolds later proved that the torque on the radiometer was caused by thermal transpiration, researchers continued to search for ways to take advantage of the momentum of photons and to use it for generating rotational forces. The ability to provide rotational force at the nanoscale could open up a range of applications in physics, biology and chemistry, including DNA unfolding and sequencing and nanoelectromechanical systems. Here, we demonstrate a nanoscale plasmonic structure that can, when illuminated with linearly polarized light, generate a rotational force that is capable of rotating a silica microdisk that is 4,000 times larger in volume. Furthermore, we can control the rotation velocity and direction by varying the wavelength of the incident light to excite different plasmonic modes.

  20. Nanoscale Surface Modification of Layered Materials

    NASA Astrophysics Data System (ADS)

    O'Shea, Aaron

    2011-11-01

    A scanning electron microscope can magnify a sample many times greater than a standard microscope, down to nanoscale dimensions. It can also be used to form patterns on the surfaces of certain materials, a technique used to create microchips. We have developed a technique that simplifies and expedites this process using an unmodified scanning electron microscope. Using this technique, we are able to alter the surface chemistry in a controlled pattern on a special class of materials called transition metal dichalcogenides. These materials have many useful applications: industrial lubricants; high strength nanocomposites; advanced solar cells; and next generation electronics. Altering the surface chemistry of these materials at the nanoscale results in unusual quantum behavior, which is useful in nanotechnology.

  1. Controlling carrier dynamics at the nanoscale

    NASA Astrophysics Data System (ADS)

    Cánovas, Enrique; Bonn, Mischa

    2016-10-01

    This Special issue is motivated by the occasion of the International Conference on Charge Carrier Dynamics at the Nanoscale (CCDNano), held in Santiago de Compostela (Spain) in September 2015. As chairs for the CCDNano meeting, we aimed at bringing together experts from different scientific fields in order to trigger interdisciplinary discussions and collaborations; the ultimate goal of the conference was to serve as a platform to advance and help unifying methodologies and theories from different research sub-fields. We also aimed at a deeper understanding of charge dynamics to contribute to the development of improved or novel nanostructured devices. This special issue keeps that spirit, and intends to provide an overview of ongoing research efforts regarding charge carrier dynamics at the nanoscale.

  2. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    PubMed

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  3. Nanoscale Deformation and Toughening Mechanisms of Nacre

    DTIC Science & Technology

    2011-03-31

    graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale ): Number of graduating undergraduates funded by a DoD funded Center of Excellence grant...design principle down to atomic scale with a purpose to fight against foreign attacks, which has opened up a new opportunity to unravel the...deformation mechanism of unique mechanical performance at the atomic scale . Technology Transfer 1 Nanoscale Deformation and Toughening Mechanisms of Nacre

  4. A new relaxation mechanism in nanoscale films

    NASA Astrophysics Data System (ADS)

    Ovid'ko, I. A.; Sheinerman, A. G.

    2007-02-01

    A new mechanism of stress relaxation in heteroepitaxial films of nanoscale thickness is suggested and theoretically described. The mechanism represents nucleation of a 'non-crystallographic' partial dislocation (at the film-substrate interface) whose Burgers vector magnitude continuously grows during the nucleation process. It is shown that the new mechanism effectively competes with the standard nucleation of a perfect misfit dislocation at the free surface of the film and its further glide towards the film-substrate interface.

  5. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  6. DOE - BES Nanoscale Science Research Centers (NSRCs)

    SciTech Connect

    Beecher, Cathy Jo

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  7. Nanoscale molecularly imprinted polymers and method thereof

    DOEpatents

    Hart, Bradley R.; Talley, Chad E.

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  8. Nanoscale thermal transport. II. 2003–2012

    SciTech Connect

    Cahill, David G. Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-15

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ∼1 nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and

  9. Nanoscale thermal transport. II. 2003-2012

    NASA Astrophysics Data System (ADS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal

  10. Mesoscale metallic pyramids with nanoscale tips.

    PubMed

    Henzie, Joel; Kwak, Eun-Soo; Odom, Teri W

    2005-07-01

    We report a simple procedure that can generate free-standing mesoscale metallic pyramids composed of one or more materials and having nanoscale tips (radii of curvature of less than 2 nm). Mesoscale holes (100-300 nm) in a chromium film are used as an etch mask to fabricate pyramidal pits and then as a deposition mask to form the metallic pyramids. We have fabricated two- and three-layered pyramids with control over their materials and chemical functionality.

  11. Substrate Preparations in Epitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; George, M. A.

    2000-01-01

    Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. Annealing-temperature dependence of ZnO substrates was studied. ZnO films grown on sapphire substrates have also been investigated for comparison purposes and the annealing temperature of A1203 substrates is 1000 C. Substrates and films were characterized using photoluminescence (PL) spectrum, x-ray diffraction, atomic force microscope, energy dispersive spectrum, and electric transport measurements. It has been found that the ZnO film properties were different when films were grown on the two polarity surfaces of ZnO substrates and the A1203 substrates. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of homoepitaxial ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  12. Development of latent fingerprint by ZnO deposition.

    PubMed

    Yu, I-Heng; Jou, Shyankay; Chen, Chin-Min; Wang, Kuang-Chuan; Pang, Lei-Jang; Liao, Jeh Shane

    2011-04-15

    Vacuum metal deposition (VMD) utilizing sequential Au and Zn depositions has been an effective technique to develop latent fingerprint on plastic surfaces. A simplified vacuum deposition process was conducted to develop fingerprint in this study. While pure ZnO was thermally evaporated in a vacuum system, ZnO could condense on polyethylene terephthalate (PET) surface. Direct deposition of ZnO, without applying Au seeding, yielded normal development of latent fingerprint. The development of aged fingerprint by ZnO deposition was more effective than that by Au/Zn VMD.

  13. Enhanced thermoelectric performance in graphitic ZnO (0001) nanofilms

    NASA Astrophysics Data System (ADS)

    Li, Yan-Li; Fan, Zheyong; Zheng, Jin-Cheng

    2013-02-01

    We investigate the thermoelectric properties of ultrathin graphitic ZnO (0001) nanofilms based on first-principles calculations and Boltzmann transport theory. Staircase-like densities of states induced by quantum confinement in the nanofilms give rise to improved Seebeck coefficients and electrical conductivities. The optimized figure of merit for the single-layer graphitic ZnO (0001) nanofilm is estimated to be 0.6 at 300 K, which is about 120 times larger than that of bulk ZnO (0.005). Our results suggest that the graphitic ZnO (0001) nanofilms can be designed for high performance thermoelectric applications.

  14. Photophysics and photochemistry of quantized ZnO colloids

    SciTech Connect

    Kamat, P.V.; Patrick, B.

    1992-08-06

    The photophysical and photochemical behavior of quantized ZnO colloids in ethanol has been investigated by time-resolved transient absorption and emission measurements. Trapping of electrons at the ZnO surface resulted in broad absorption in the red region. The green emission of ZnO colloids was readily quenched by hole scavengers such as SCN{sup -} and I{sup -}. The photoinduced charge transfer to these hole scavengers was studied by laser flash photolysis. The yield of oxidized product increased considerably when ZnO colloids were coupled with ZnSe. 36 refs., 11 figs., 1 tab.

  15. Strong circular photogalvanic effect in ZnO epitaxial films

    SciTech Connect

    Zhang, Q.; Wang, X. Q.; Yin, C. M.; Shen, B.; Chen, Y. H.; Chang, K.; Ge, W. K.

    2011-12-23

    A strong circular photogalvanic effect (CPGE) in ZnO epitaxial films was reported under interband excitation. It was observed that CPGE current is as large as 100 nA/W in ZnO, which is about one order in magnitude higher than that in InN film while the CPGE currents in GaN films are not detectable. The possible reasons for the above observations are the strong spin orbit coupling in ZnO or the inversed valence band structure of ZnO.

  16. Strong circular photogalvanic effect in ZnO epitaxial films

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Wang, X. Q.; Yin, C. M.; Shen, B.; Chen, Y. H.; Chang, K.; Ge, W. K.

    2011-12-01

    A strong circular photogalvanic effect (CPGE) in ZnO epitaxial films was reported under interband excitation. It was observed that CPGE current is as large as 100 nA/W in ZnO, which is about one order in magnitude higher than that in InN film while the CPGE currents in GaN films are not detectable. The possible reasons for the above observations are the strong spin orbit coupling in ZnO or the inversed valence band structure of ZnO.

  17. Strong circular photogalvanic effect in ZnO epitaxial films

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Wang, X. Q.; Yin, C. M.; Xu, F. J.; Tang, N.; Shen, B.; Chen, Y. H.; Chang, K.; Ge, W. K.; Ishitani, Y.; Yoshikawa, A.

    2010-07-01

    We report a strong circular photogalvanic effect (CPGE) in ZnO epitaxial films under interband excitation. It is observed that CPGE current is as large as 100 nA/W in ZnO, which is about one order in magnitude higher than that in InN film while the CPGE currents in GaN films are not detectable. The possible reasons for the above observations are the strong spin orbit coupling in ZnO or the inversed valence band structure of ZnO.

  18. Mapping photovoltaic performance with nanoscale resolution

    SciTech Connect

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; Cruz-Campa, Jose L.; Zubia, David; Huey, Bryan D.

    2015-10-16

    Photo-conductive AFM spectroscopy (‘pcAFMs’) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximum powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.

  19. Mapping photovoltaic performance with nanoscale resolution

    DOE PAGES

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; ...

    2015-10-16

    Photo-conductive AFM spectroscopy (‘pcAFMs’) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximummore » powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.« less

  20. Static electric field enhancement in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Lepetit, Bruno; Lemoine, Didier; Márquez-Mijares, Maykel

    2016-08-01

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.