Science.gov

Sample records for nanosecond pulse discharges

  1. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    SciTech Connect

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-11-15

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  2. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    NASA Astrophysics Data System (ADS)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  3. Numerical simulation of nanosecond-pulse electrical discharges

    NASA Astrophysics Data System (ADS)

    Poggie, J.; Adamovich, I.; Bisek, N.; Nishihara, M.

    2013-02-01

    Recent experiments with a nanosecond-pulse, dielectric barrier discharge at the stagnation point of a Mach 5 cylinder flow have demonstrated the formation of weak shock waves near the electrode edge, which propagate upstream and perturb the bow shock. This is a promising means of flow control, and understanding the detailed physics of the conversion of electrical energy into gas motion will aid in the design of efficient actuators based on the concept. In this work, a simplified configuration with planar symmetry was chosen as a vehicle to develop a physics-based model of nanosecond-pulse discharges, including realistic air kinetics, electron energy transport, and compressible bulk gas flow. A reduced plasma kinetic model (23 species and 50 processes) was developed to capture the dominant species and reactions for energy storage and thermalization in the discharge. The kinetic model included electronically and vibrationally excited species, and several species of ions and ground state neutrals. The governing equations included the Poisson equation for the electric potential, diffusion equations for each neutral species, conservation equations for each charged species, and mass-averaged conservation equations for the bulk gas flow. The results of calculations with this model highlighted the path of energy transfer in the discharge. At breakdown, the input electrical energy was transformed over a time scale on the order of 1 ns into chemical energy of ions, dissociation products, and vibrationally and electronically excited particles. About 30% of this energy was subsequently thermalized over a time scale of 10 µs. Since the thermalization time scale was faster than the acoustic time scale, the heat release led to the formation of weak shock waves originating near the sheath edge, consistent with experimental observations. The computed translational temperature rise (40 K) and nitrogen vibrational temperature rise (370 K) were of the same order of magnitude as

  4. Characteristics of Nanosecond Pulsed Discharges in Atmospheric Helium Microplasmas

    NASA Astrophysics Data System (ADS)

    Manish, Jugroot

    2016-10-01

    Microplasmas are very interesting due to their unique properties and achievable regimes maintained at atmospheric pressures. Due to the small scales, numerical modeling could contribute to the understanding of underlying phenomena as it provides access to local parameters—and complements experimental global characteristics. A self-consistent formalism, applied to nanosecond pulsed atmospheric non-equilibrium helium plasmas, reveals that several successive discharges can persist as a result of a combined volume and dielectric surface effects. The valuable insights provided by the spatiotemporal simulation results show the critical importance of coupled gas and plasma dynamics—namely gas heating and electric field reversals. supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) — Discovery Grant (No. 342369)

  5. Energy balance in nanosecond pulse discharges in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Shkurenkov, Ivan; Adamovich, Igor V.

    2016-02-01

    Kinetic modeling is used to analyze energy partition and energy transfer in nanosecond pulse discharges sustained between two spherical electrodes in nitrogen and air. The modeling predictions are compared with previous time-resolved temperature and {{\\text{N}}2}≤ft(X {}1Σ\\text{g}+,v=0-9\\right) vibrational population measurements by picosecond broadband coherent anti-Stokes Raman spectroscopy (CARS) and phase-locked Schlieren imaging. The model shows good agreement with experimental data, reproducing experimental discharge current pulse waveforms, as well as dominant processes of energy transfer in the discharge and the afterglow. Specifically, the results demonstrate that the temperature rise in the plasma occurs in two stages, (i) ‘rapid’ heating on sub-acoustic time scale, dominated by {{\\text{N}}2}≤ft(A {}3Σ\\text{u}+\\right) energy pooling processes, N2(B 3Πg) and N(2P,2D) quenching (in nitrogen), and by quenching of excited electronic states of N2 molecules by O2 (in air), and (ii) ‘slow’ heating due to N2 vibrational relaxation by O atoms (in air), nearly completely missing in nitrogen. Comparison of the model predictions with N2 vibrational level populations confirms that the N2 vibrational temperature rises after the discharge pulse is caused by the ‘downward’ vibrational-vibrational exchange depopulating higher vibrational levels and populating vibrational level v  =  1. The model reproduces temporal dynamics of vibrational level populations and temperature in the discharge and the afterglow, indicating that energy partition among different modes (vibrational, electronic, dissociation, and ionization) is predicted accurately. At the present conditions, energy fraction coupled to the positive column of the discharge filament in air is approximately 50%, with the rest coupled to the cathode layer. Nearly 10% of the total pulse energy is spent on O atom generation, and about 10% is thermalized on a sub-acoustic time scale

  6. Nanosecond Pulse Discharges and Fast Ionization Wave Discharges: Fundamental Kinetic Processes and Applications

    NASA Astrophysics Data System (ADS)

    Adamovich, Igor

    2011-10-01

    Over the last two decades, nanosecond pulse discharges and Fast Ionization Wave (FIW) discharges have been studied extensively, both theoretically and experimentally. Current interest in characterization of these discharges is driven mainly by their potential for applications such as plasma chemical fuel reforming, plasma-assisted combustion, high-speed flow control, pumping of electric discharge excited lasers, and generation of high-energy electrons. A unique capability of FIW discharges to generate significant ionization and high concentrations of excited species at high pressures and over large distances, before ionization instabilities have time to develop, is very attractive for these applications. Recent advances in laser optical diagnostics offer an opportunity of making non-intrusive, spatially and time-resolved measurements of electron density and electric field distributions in high-speed ionization wave discharges, on nanosecond time scale. Insight into FIW formation and propagation dynamics also requires development of predictive kinetic models, and their experimental validation. Although numerical kinetic models may incorporate detailed kinetics of charged and neutral species in the propagating ionization wave front (including non-local electron kinetics), analytic models are also attractive due to their capability of elucidating fundamental trends of discharge development. The talk gives an overview of recent progress in experimental characterization and kinetic modeling of nanosecond pulse and fast ionization wave discharges in nitrogen and air over a wide range of pulse repetition rates, 0.1-40 kHz. FIW discharge plasmas sustained at high pulse repetition rates are diffuse and volume filling, with most of the power coupled to the plasma behind the wave, at E/N = 200-300 Td and energy loading of 1-2 meV/molecule/pulse. The results demonstrate significant potential of large volume, diffuse, high pulse repetition rate FIW discharges for novel plasma

  7. Electric field in an AC dielectric barrier discharge overlapped with a nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.

    2016-08-01

    The effect of ns discharge pulses on the AC barrier discharge in hydrogen in plane-to-plane geometry is studied using time-resolved measurements of the electric field in the plasma. The AC discharge was operated at a pressure of 300 Torr at frequencies of 500 and 1750 Hz, with ns pulses generated when the AC voltage was near zero. The electric field vector is measured by ps four-wave mixing technique, which generates coherent IR signal proportional to the square of electric field. Absolute calibration was done using an electrostatic (sub-breakdown) field applied to the discharge electrodes, when no plasma was generated. The results are compared with one-dimensional kinetic modeling of the AC discharge and the nanosecond pulse discharge, predicting behavior of both individual micro-discharges and their cumulative effect on the electric field distribution in the electrode gap, using stochastic averaging based on the experimental micro-discharge temporal probability distribution during the AC period. Time evolution of the electric field in the AC discharge without ns pulses, controlled by a superposition of random micro-discharges, exhibits a nearly ‘flat top’ distribution with the maximum near breakdown threshold, reproduced quite well by kinetic modeling. Adding ns pulse discharges on top of the AC voltage waveform changes the AC discharge behavior in a dramatic way, inducing transition from random micro-discharges to a more regular, near-1D discharge. In this case, reproducible volumetric AC breakdown is produced at a well-defined moment after each ns pulse discharge. During the reproducible AC breakdown, the electric field in the plasma exhibits a sudden drop, which coincides in time with a well-defined current pulse. This trend is also predicted by the kinetic model. Analysis of kinetic modeling predictions shows that this effect is caused by large-volume ionization and neutralization of surface charges on the dielectrics by ns discharge pulses. The present

  8. Spontaneous Raman Scattering Measurements of Nitrogen Vibrational Distribution Function in Nanosecond Pulsed Discharge

    NASA Astrophysics Data System (ADS)

    Roettgen, A.; Adamovich, I. V.; Lempert, W. R.

    2013-06-01

    Fundamental energy storage and transfer characteristics of nanosecond pulsed, non-equilibrium discharge plasmas is an area of continuing interest. These discharge environments have a wide range of potential applications, including plasma assisted combustion, plasma flow control, and electrically-excited discharge laser development. Despite this potential, fundamental understanding of these plasmas remains uncertain, particularly, time-resolved energy partition among vibrational and electronic states of nitrogen and oxygen during and after the discharge pulse. In the present work, spontaneous Raman spectroscopy has been utilized in the study of vibrational energy loading and relaxation of nitrogen in mixtures containing pure nitrogen and air (P=100 torr) in a pin-to-pin, nanosecond pulsed electric discharge. A highly non-equilibrium vibrational distribution was observed for various gas mixtures and discharge pulse characteristics. Experimental data was analyzed with the assistance of a master equation kinetic model.

  9. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge

    SciTech Connect

    Nishihara, M.; Takashima, K.; Rich, J. W.; Adamovich, I. V.

    2011-06-15

    Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 {+-} 30 K. Phase-locked Schlieren images are used to detect compression waves generated by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.

  10. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Nishihara, M.; Takashima, K.; Rich, J. W.; Adamovich, I. V.

    2011-06-01

    Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 ± 30 K. Phase-locked Schlieren images are used to detect compression waves generated by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.

  11. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    SciTech Connect

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  12. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  13. Plasma-Assisted Flame Ignition and Stabilization using Nanosecond Repetitively Pulsed Discharges

    NASA Astrophysics Data System (ADS)

    Laux, Christophe

    2007-10-01

    Ever more stringent environmental regulations are providing impetus for reducing pollutant emissions, in particular nitric oxides and soot, in internal combustion and aircraft engines. Lean or diluted combustible mixtures are of particular interest because they burn at lower flame temperatures than stoichiometric mixtures and thus produce lesser amounts of thermal nitric oxides. Over the past decade, high voltage nanosecond pulsed discharges have been demonstrated as energy efficient way to ignite such mixtures. However, the practical application of these discharges for ignition purposes is limited by the very high electric fields required, especially in high pressure combustion chambers. Moreover, stabilization requires a steady-state addition of energy that cannot be achieved with single or low repetition frequency pulses. In the present work, we investigate the applicability and effectiveness of high voltage nanosecond discharges with high pulse repetition frequencies, typically up to 100 kHz. The high repetition frequencies are chosen to exceed the recombination rate of chemically active species. In this way, the concentration of active species can build up between consecutive pulses, thus yielding significantly higher concentrations than with low frequency pulses. These discharges are investigated for two applications, the ignition of diluted air/propane mixtures at pressures up to several bars in a constant volume chamber, and the stabilization of atmospheric pressure lean premixed air/propane flames. Time-resolved electric and spectroscopic measurements are presented to analyze the discharge regimes, the energy deposition, the gas temperature evolution, the electron number density, and the production of excited species. The results show that nanosecond repetitive pulses produce ultrafast gas heating and atomic oxygen generation, both on nanosecond time scales, via excitation of molecular nitrogen followed by dissociative quenching of molecular oxygen. These

  14. Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses

    SciTech Connect

    Likhanskii, Alexandre V.; Shneider, Mikhail N.; Macheret, Sergey O.; Miles, Richard B.

    2007-07-15

    A detailed physical model for an asymmetric dielectric barrier discharge (DBD) in air driven by repetitive nanosecond voltage pulses is developed. In particular, modeling of DBD with high voltage repetitive negative and positive nanosecond pulses combined with positive dc bias is carried out. Operation at high voltage is compared with operation at low voltage, highlighting the advantage of high voltages, however the effect of backward-directed breakdown in the case of negative pulses results in a decrease of the integral momentum transferred to the gas. The use of positive repetitive pulses with dc bias is demonstrated to be promising for DBD performance improvement. The effects of the voltage waveform not only on force magnitude, but also on the spatial profile of the force, are shown. The crucial role of background photoionization in numerical modeling of ionization waves (streamers) in DBD plasmas is demonstrated.

  15. Electron density and electron temperature measurements in nanosecond pulse discharges over liquid water surface

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, M.; Roettgen, A.; Petrishchev, V.; Frederickson, K.; Adamovich, I. V.

    2016-12-01

    Time-resolved electron density, electron temperature, and gas temperature in nanosecond pulse discharges in helium and O2-He mixtures near liquid water surface are measured using Thomson/pure rotational Raman scattering, in two different geometries, (a) ‘diffuse filament’ discharge between a spherical high-voltage electrode and a grounded pin electrode placed in a reservoir filled with distilled water, with the tip exposed, and (b) dielectric barrier discharge between the high-voltage electrode and the liquid water surface. A diffuse plasma filament generated between the electrodes in helium during the primary discharge pulse exhibits noticeable constriction during the secondary discharge pulse several hundred ns later. Adding oxygen to the mixture reduces the plasma filament diameter and enhances constriction during the secondary pulse. In the dielectric barrier discharge, diffuse volumetric plasma occupies nearly the entire space between the high voltage electrode and the liquid surface, and extends radially along the surface. In the filament discharge in helium, adding water to the container results in considerable reduction of plasma lifetime compared to the discharge in dry helium, by about an order of magnitude, indicating rapid electron recombination with water cluster ions. Peak electron density during the pulse is also reduced, by about a factor of two, likely due to dissociative attachment to water vapor during the discharge pulse. These trends become more pronounced as oxygen is added to the mixture, which increases net rate of dissociative attachment. Gas temperature during the primary discharge pulse remains near room temperature, after which it increases up to T ~ 500 K over 5 µs and decays back to near room temperature before the next discharge pulse several tens of ms later. As expected, electron density and electron temperature in diffuse DBD plasmas are considerably lower compared to peak values in the filament discharge. Use of Thomson

  16. Verification of antitumor effect in vivo using nanosecond pulsed streamer discharge

    NASA Astrophysics Data System (ADS)

    Yonetamari, Kenta; Shirakawa, Yuki; Akiyama, Taketoshi; Mizuno, Kazue; Ono, Ryo

    2015-09-01

    Cancer treatment using plasma has intensively studied these days. In this work, antitumor effect by nanosecond pulsed streamer discharge was investigated. Nanosecond pulsed streamer plasma was used as a plasma source, which can generate stable streamer discharge by using a nanosecond pulsed power supply. The rod electrode of 3 mm diameter is made of copper. Its end is formed into a semispherical shape of 1.5 mm curvature. The electrode is inserted into a quartz tube (inner diameter: 4 mm, thickness: 1 mm) concentrically, so any gas can be introduced. B16F10 cells were selected to perform in vivo antitumor study. These cells were injected under the skin of leg of mice to make cancer tumor. One week later from injections, plasma was applied to the cancer tumor. Mice were randomly assigned into three groups which were one control group and two plasma treatment groups. In the control group, mice were not treated. In the plasma treatment groups, plasma with dry N2 and wet O2 as a working gas were irradiated for 5 consecutive days. Processing time was 10 min and the gap distance between the electrode and tumor was 4 mm. After 5 days plasma treatment, antitumor effect was observed. The result indicates that the streamer discharge has a potential for cancer treatment.

  17. Experimental Investigation of Pulsed Nanosecond Streamer Discharges for CO2 Reforming

    NASA Astrophysics Data System (ADS)

    Pachuilo, Michael; Levko, Dima; Raja, Laxminarayan; Varghese, Philip

    2016-09-01

    Rapid global industrialization has led to an increase in atmospheric greenhouse gases, specifically carbon dioxide levels. Plasmas present a great potential for efficient reforming of greenhouse gases. There are several plasma discharges which have been reported for reforming process: dielectric barrier discharges (DBD), microwave discharges, and glide-arcs. Microwave discharges have CO2 conversion energy efficiency of up to 40% at atmospheric conditions, while glide-arcs have 43% and DBD 2-10%. In our study, we analyze a single nanosecond pulsed cathode directed streamer discharge in CO2 at atmospheric pressure and temperature. We have conducted time resolved imaging with spectral bandpass filters of a streamer discharge with an applied negative polarity pulse. The image sequences have been correlated to the applied voltage and current pulses. From the spectral filters we can determine where spatially and temporally excited species are formed. In this talk we report on spectroscopic studies of the discharge and estimate plasma properties such as temperature and density of excited species and electrons. Furthermore, we report on the effects of pulse polarity as well as anodic streamer discharges on the CO2 conversion efficiency. Finally, we will focus on the effects of vibrational excitation on carbon dioxide reforming efficiency for streamer discharges. Our experimental results will be compared with an accompanying plasma computational model studies.

  18. Pulsed picosecond and nanosecond discharge development in liquids with various dielectric permittivity constants

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey

    2016-09-01

    The dynamics of pulsed picosecond and nanosecond discharge development in liquid water, ethanol and hexane were investigated experimentally. It is shown that the dynamics of discharge formation fundamentally differ between liquids with low and high dielectric permittivity coefficients. The difference in the nanosecond discharge development in liquid dielectrics may be explained by the formation of micro-discontinuities in the media during the electrostriction compression/rarefaction stage in liquids with high dielectric permittivity. Three possible mechanisms for the propagation of discharge in liquids play a different role depending on the pulse duration. The first is the formation of low density channels in liquid. In the second case the electrostatic forces support the expansion of nanoscale voids behind the front of the ionization wave; in the wave front the extreme electric field provides a strong negative pressure in the dielectric fluid due to the presence of electrostriction forces, forming the initial micro-voids in the continuous medium. Finally, in the third case, when a picosecond electric pulse is utilized, the ionization in the liquid phase occurs as a result of direct electron impact without undergoing a phase transition.

  19. Characteristics of moderate current vacuum discharge triggered by multipicosecond and nanosecond duration laser pulses

    SciTech Connect

    Moorti, A.; Kumbhare, S.R.; Naik, P.A.; Gupta, P.D.; Romanov, I.V.; Korobkin, Yu.V.; Rupasov, A.A.; Shikanov, A.S.

    2005-02-15

    A comparative study of the characteristics of moderate-current ({approx}10 kA), low-energy ({<=}20 J) vacuum discharge triggered by multipicosecond and nanosecond duration laser pulses is performed. Temporal profiles of the x-ray emission, discharge current, and anode voltage measured in vacuum discharge created between a planar titanium cathode and a conical point-tip anode are observed to be quite different for the two regimes of the laser pulse duration. While cathode plasma jet pinching is clearly observed in the discharge created by low-energy ({approx}5 mJ), 27 ps full width at half-maximum (FWHM) laser pulses, a feeble pinching occurred for 4 ns (FWHM) laser pulses only above a threshold energy of {approx}250 mJ. In addition to the multiple K-shell x-ray pulses emitted from the titanium anode up to 100 ns, evidence of a much harder x-ray component (h{nu}>100 keV) is also seen in the discharge triggered by picosecond laser pulses.

  20. Diffuse discharge produced by repetitive nanosecond pulses in open air, nitrogen, and helium

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Baksht, Evgeni Kh.; Zhang, Dongdong; Erofeev, Mikhail V.; Ren, Chengyan; Shutko, Yuliya V.; Yan, Ping

    2013-03-01

    Atmospheric-pressure gas discharge driven by high voltage pulses with fast rise-time and short duration has attracted significant attention for various plasma applications. In this paper, discharges were generated in a highly non-uniform electric field by point-plane gaps in open air by four repetitive nanosecond-pulse generators with repetition rate up to 1 kHz. The rise time of generators was 25 (generator #1), 15 (generator #2), 3 (generator #3), and 0.2 ns (generator #4) and a full width at half maximum was 40, 30-40, 5, and 1 ns, respectively. The experimental results show that there were typical discharge fashions, i.e., corona, diffuse, spark, or arc modes. The variables affecting the discharge characteristics, including the gap spacing and applied pulse parameters, were investigated. Especially, the diffuse discharges were investigated and discussed. With generator #1 at voltage 70-120 kV, characteristics of measured x-rays on the discharge modes were studied, and it indicates that counts of x-rays in a diffuse discharge are up to a peak value under the experimental conditions. With amplitude of voltage pulses in incident wave up to 18 (generator #3) and 12.5 kV (generator #4), runaway electron beam in low pressure helium, nitrogen, and air in a pulse-periodic mode of discharge with repetition rate up to 1 kHz was obtained. Electron beam was registered behind a thin foil in a pressure range from several to tens of Torr. X-ray radiation was obtained in a wide range of pressures, as well as at atmospheric pressure of helium, nitrogen, and air. Voltage pulses of positive and negative polarities were used. Generation of runaway electrons with pulses of positive polarity appeared because of reflected voltage pulses of reverse polarity.

  1. Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V.

    2014-12-01

    Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100-500 Hz, with a pulse peak voltage and current of 10-15 kV and 7-20 A, respectively, a pulse FWHM of ˜100 ns, and a coupled pulse energy of 2-9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol-saturated butanol vapor interface, as well as over the distilled water-saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge removal from the

  2. The impacts of magnetic field on repetitive nanosecond pulsed dielectric barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Liu, Yidi; Qi, Haicheng; Fan, Zhihui; Yan, Huijie; Ren, ChunSheng

    2016-11-01

    In this paper, the impacts of the parallel magnetic field on the repetitive nanosecond pulsed dielectric barrier discharge (DBD) are experimentally investigated by optical and electrical measurements. The DBD is generated between two parallel-plate electrodes in the ambient air with the stationary magnetic field on the order of 1 T. The experimental results show that additional microdischarge channels are generated and the photocurrent intensity of the plasma is increased by the magnetic field. The microdischarge channels develop along the magnetic field lines and the diffuse background emission of the discharge is stronger in the DBD with the magnetic field. As the pulse repetition frequency decreases from 1200 Hz to 100 Hz, only the photocurrent intensity of the third discharge that occurred at about 500 ns is noticeably increased by the additional magnetic field. It is believed that the enhancement of the memory effect and the confinement of the magnetic field on electrons are the main reasons.

  3. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Shao, Tao; Tarasenko, Victor; Ma, Hao; Ren, Chengyan; Kostyrya, Igor D.; Zhang, Dongdong; Yan, Ping

    2012-12-01

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  4. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    SciTech Connect

    Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong; Tarasenko, Victor; Kostyrya, Igor D.; Ma Hao; Yan Ping

    2012-12-15

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  5. Electric field measurements in a nanosecond pulse discharge by picosecond CARS/4-wave mixing

    NASA Astrophysics Data System (ADS)

    Goldberg, Ben; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved electric field measurements in hydrogen by picosecond CARS/4-wave mixing are presented. Measurements are carried out in a high voltage nanosecond pulse discharge in hydrogen in plane-to-plane geometry, at pressures of up to several hundred Torr, and with a time resolution of 0.2 ns. Absolute calibration of the diagnostics is done using a sub-breakdown high voltage pulse of 12 kV/cm. A diffuse discharge is obtained by applying a peak high voltage pulse of 40 kV/cm between the electrodes. It is found that breakdown occurs at a lower field, 15--20 kV/cm, after which the field in the plasma is reduced rapidly due to plasma self shielding The experimental results are compared with kinetic modeling calculations, showing good agreement between the measured and the predicted electric field.

  6. Dissociation of carbon-dioxide at high-pressure using nanosecond-pulsed dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Yong, Taemin; Cappelli, Mark

    2016-10-01

    This study investigates the efficiency of the conversion of CO2 into CO and O2 using nanosecond repetitively pulsed discharges in a high pressure reactor capable of exceeding the supercritical point. The electrode configuration consists of a pin-to-plane geometry with the plane electrode covered by dielectric material (SiO2) . The products of CO2 splitting are measured using mass spectrometry. The energy efficiency is determined for a range of residence times, pulse frequency and energy, and reactor pressures. The extent of CO2 conversion is found to be dependent on the duration of the processing time, reaching an equilibrium level that is linearly-dependent on the discharge pulse energy. The results are compared with our previous experiment conducted in the absence of the dielectric layer.

  7. Evolution of nanosecond surface dielectric barrier discharge for negative polarity of a voltage pulse

    NASA Astrophysics Data System (ADS)

    Soloviev, V. R.; Krivtsov, V. M.; Shcherbanev, S. A.; Starikovskaia, S. M.

    2017-01-01

    Surface dielectric barrier discharge, initiated by a high-voltage pulse of negative polarity in atmospheric pressure air, is studied numerically and experimentally. At a pulse duration of a few tens of nanoseconds, two waves of optical emission propagate from the high-voltage electrode corresponding to the leading and trailing edges of the high-voltage pulse. It is shown by means of numerical modeling that a glow-like discharge slides along the surface of the dielectric at the leading edge of the pulse, slowing down on the plateau of the pulse. When the trailing edge of the pulse arrives to the high-voltage electrode, a second discharge starts and propagates in the same direction. The difference is that the discharge corresponding to the trailing edge is not diffuse and demonstrates a well-pronounced streamer-like shape. The 2D (in numerical modeling) streamer propagates above the dielectric surface, leaving a gap of about 0.05 mm between the streamer and the surface. The calculated and experimentally measured emission picture, waveform of the electrical current, and deposited energy, qualitatively coincide. The sensitivity of the numerical solution to unknown physical parameters of the model is discussed.

  8. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.

    2011-10-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  9. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  10. Electron emission mechanism during the nanosecond high-voltage pulsed discharge in pressurized air

    NASA Astrophysics Data System (ADS)

    Levko, D.; Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-02-01

    A comparison between the results of x-ray absorption spectroscopy of runaway electrons (RAEs) generated during nanosecond timescale high-voltage (HV) gas discharge and the simulated attenuation of the x-ray flux produced by the runaway electron spectrum calculated using particle-in-cell numerical modeling of such a type of discharge is presented. The particle-in-cell simulation considered the field and explosive emissions (EEs) of the electrons from the cathode. It is shown that the field emission is the dominant emission mechanism for the short-duration (<2.5 ns) high-voltage pulses, while for the long-duration (>5 ns) high-voltage pulses, the explosive emission is likely to play a significant role.

  11. Time-resolved imaging of nanosecond-pulsed micro-discharges in heptane

    NASA Astrophysics Data System (ADS)

    Hamdan, A.; Marinov, I.; Rousseau, A.; Belmonte, T.

    2014-02-01

    Nanosecond-pulsed micro-discharges in heptane are studied by time-resolved imaging in pin-to-plate configuration. When a voltage of +5 kV is applied to the pin electrode, the discharge exhibits one maximum in light intensity. At +15 kV, filtered images show that up to three maxima can be identified. These maxima are associated with local electron-ion recombination and bremsstrahlung emission and attributed to the development of a complex space-charge field. In the post-discharge, the dynamics of the gas bubble can be simulated by the Gilmore model, and the pressure evolution in this bubble is predicted. From our results, it seems reasonable to think that the gas bubble develops from the post-discharge of the spark. Results obtained by using the double-pulse technique show that light emission during the post-discharge of the second discharge lasts 10 times longer than the post-discharge of the first spark. The pressure drop in the gas bubble, predicted by the Gilmore model, is used to explain this result and it provides a control method by optical diagnostics in liquids.

  12. Streamer-to-spark transition initiated by a nanosecond overvoltage pulsed discharge in air

    NASA Astrophysics Data System (ADS)

    Lo, A.; Cessou, A.; Lacour, C.; Lecordier, B.; Boubert, P.; Xu, D. A.; Laux, C. O.; Vervisch, P.

    2017-04-01

    This study is focused on the streamer-to-spark transition generated by an overvoltage nanosecond pulsed discharge under atmospheric pressure air in order to provide a quantitative insight into plasma-assisted ignition. The discharge is generated in atmospheric pressure air by the application of a positive high voltage pulse of 35 kV to pin-to-pin electrodes and a rise time of 5 ns. The generated discharge consists of a streamer phase with high voltage and high current followed by a spark phase characterized by a low voltage and a decreasing current in several hundreds of nanosecond. During the streamer phase, the gas temperature measured by optical emission spectroscopy related to the second positive system of nitrogen shows an ultra-fast gas heating up to 1200 K at 15 ns after the current rise. This ultra-fast gas heating, due to the quenching of electronically excited species by oxygen molecules, is followed by a quick dissociation of molecules and then the discharge transition to a spark. At this transition, the discharge contracts toward the channel axis and evolves into a highly conducting thin column. The spark phase is characterized by a high degree of ionization of nitrogen and oxygen atoms shown by the electron number density and temperature measured from optical emission spectroscopy measurements of N+ lines. Schlieren imaging and optical emission spectroscopy techniques provide the time evolution of the spark radius, from which the initial pressure in the spark is estimated. The expansion of the plasma is adiabatic in the early phase. The electronic temperature and density during this phase allows the determination of the isentropic coefficient. The value around 1.2–1.3 is coherent with the high ionization rate of the plasma in the early phase. The results obtained in this study provide a database and the initial conditions for the validation of numerical simulations of the ignition by plasma discharge.

  13. The formation of diffuse discharge by short-front nanosecond voltage pulses and the modification of dielectrics in this discharge

    NASA Astrophysics Data System (ADS)

    Orlovskii, V. M.; Panarin, V. A.; Shulepov, M. A.

    2014-07-01

    The dynamics of diffuse discharge formation under the action of nanosecond voltage pulses with short fronts (below 1 ns) in the absence of a source of additional preionization and the influence of a dielectric film on this process have been studied. It is established that the diffuse discharge is induced by the avalanche multiplication of charge initiated by high-energy electrons and then maintained due to secondary breakdowns propagating via ionized gas channels. If a dielectric film (polyethylene, Lavsan, etc.) is placed on the anode, then multiply repeated discharge will lead to surface and bulk modification of the film material. Discharge-treated polyethylene film exhibits a change in the optical absorption spectrum in the near-IR range.

  14. Discharge and optical characterizations of nanosecond pulse sliding dielectric barrier discharge plasma for volatile organic compound degradation

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Guo, Lianjie; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2017-04-01

    In this work, a nanosecond bipolar pulsed voltage coupled with a negative DC component is employed to generate sliding dielectric barrier discharge (DBD) plasma in a three-electrode geometry reactor and improve volatile organic compound (VOC) degradation at room temperature. The effects of the bipolar pulsed voltage (U ±pulse) and negative DC voltage (U ‑DC) on the discharge characteristic, optical characteristic, plasma gas temperature (T gas), and vibrational temperature (T vib) are discussed. The horizontal distribution characteristics of the N2(C3Πu  →  B3Πg) emission intensity, T gas, and T vib are also investigated to understand the propagation mechanism of sliding DBD along the dielectric surface. The experimental results reveal that a negative DC component applied to a third electrode can extend the plasma extension region, indicating that the gas ionization is ignited by the nanosecond high-voltage pulse, while charge drift is forced by the surface potential difference caused by the negative high-voltage DC. The T gas is measured by optical emission spectroscopy related to the rotational bands of N2(C3 Πu  →  B3Πg), and is approximately 375  ±  5 K under the condition of U ±pulse  =  20 kV and U ‑DC  =  ‑20 kV. Compared with typical surface DBD plasma, sliding DBD plasma is quasi-diffusive and distributed more uniformly within the whole discharge gap. Furthermore, both surface DBD and sliding DBD are used for removing toluene from flowing air. It is found that sliding DBD has higher toluene degradation efficiency and energy yield than surface DBD when they are excited by the positive pulsed voltage (U +pulse).

  15. Optical study of diffuse bi-directional nanosecond pulsed dielectric barrier discharge in nitrogen.

    PubMed

    Nie, Dongxia; Wang, Wenchun; Yang, Dezheng; Shi, Hengchao; Huo, Yan; Dai, Leyang

    2011-09-01

    In this study, a bi-directional high voltage pulse with 20 ns rising time is employed to generate diffuse glow-like dielectric barrier discharge plasma with very low gas temperature in N2 using needle-plate electrode configuration at atmospheric pressure. Both the diffuse nanosecond pulsed dielectric barrier discharge images and the optical emission spectra of the discharge are recorded successfully under severe electromagnetic interference. The effects of pulse peak voltage, pulse repetition rate, and the concentrations of Ar and O2 on the emission intensities of NO (A2Σ→X2Π), OH (A2Σ→X2Π, 0-0), N2 (C3Πu→B3Πg, 0-0, 337.1 nm), and N2+ (B2Σu+→X2Σg+, 0-0, 391.4 nm) are investigated. The effects of the concentrations of Ar and O2 on the discharge diffuse performance are also studied. It is found that the emission intensities of NO (A2Σ→X2Π), OH (A2Σ→X2Π, 0-0), N2 (C3Πu→B3Πg, 0-0, 337.1 nm), and N2+ (B2Σu+→X2Σg+, 0-0, 391.4 nm) rise with increasing pulse peak voltage, pulse repetition rate, and the concentration of Ar, but decrease with increasing the concentration of O2. The main physicochemical processes involved are also discussed.

  16. Conversion of CH4 /CO2 by a nanosecond repetitively pulsed discharge

    NASA Astrophysics Data System (ADS)

    Scapinello, M.; Martini, L. M.; Dilecce, G.; Tosi, P.

    2016-02-01

    A possible way to store both renewable energy and CO2 in chemical energy is to produce value-added chemicals and fuels starting from CO2 and green electricity. This can be done by exploiting the non-equilibrium properties of gaseous electrical discharges. Discharges, in addition, can be switched on and off quickly, thus being suitable to be coupled with an intermittent energy source. In this study, we have used a nanosecond pulsed discharge to dissociate CO2 and CH4 in a 1:1 mixture at atmospheric pressure, and compared our results with literature data obtained by other discharges. The main products are CO, H2, C2H2, water and solid carbon. We estimate an energy efficiency of 40% for syngas (CO and H2) production, higher if other products are also considered. Such values are among the highest compared to other discharges, and, although not very high on an absolute scale, are likely improvable via possible routes discussed in the paper and by coupling to the discharge a heterogeneous catalysis stage.

  17. Nanosecond-timescale high-pressure gas discharge in a microwave pulse compressor

    NASA Astrophysics Data System (ADS)

    Shlapakovski, Anatoli; Beilin, Leonid; Krasik, Yakov

    2016-09-01

    The results of experimental and numerical studies of the microwave plasma discharge initiated by a nanosecond laser pulse are presented. The discharge is ignited in the pressurized gas filling the switch, which opens the charged resonant cavity, so that the accumulated microwave energy is rapidly released into a load. Fast-framing optical imaging showed that the plasma in the switch appears as filaments expanding along the RF electric field. The temporal evolution of the plasma density was derived from time-resolved spectroscopic measurements. With increasing microwave energy in the cavity, the plasma appears earlier in time after the laser beam enters the switch and its density rises more steeply reaching values which exceed 1016 cm-3 at a gas pressure of 2 .105 Pa. Numerical simulations were conducted using the gas conductivity model of plasma and representation of discharge origin by setting initial population of seed electrons treated by PIC algorithm. The results showed good agreement with the experiments and explained how the self-consistent dynamics of the plasma and RF fields determines the quality of microwave output pulses. In addition, the dynamics of the microwave energy absorption in the discharge plasma was studied. It was shown that at a high pressure, even with an unlimited rate of ionization, a significant portion of the stored energy, 20%, is lost. This work was partially supported by the BSF Grant No. 2012038.

  18. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    NASA Astrophysics Data System (ADS)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  19. Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge

    PubMed Central

    Lefkowitz, Joseph K; Guo, Peng; Rousso, Aric; Ju, Yiguang

    2015-01-01

    Speciation and temperature measurements of methane oxidation during a nanosecond repetitively pulsed discharge in a low-temperature flow reactor have been performed. Measurements of temperature and formaldehyde during a burst of pulses were made on a time-dependent basis using tunable diode laser absorption spectroscopy, and measurements of all other major stable species were made downstream of a continuously pulsed discharge using gas chromatography. The major species for a stoichiometric methane/oxygen/helium mixture with 75% dilution are H2O, CO, CO2, H2, CH2O, CH3OH, C2H6, C2H4 and C2H2. A modelling tool to simulate homogeneous plasma combustion kinetics is assembled by combining the ZDPlasKin and CHEMKIN codes. In addition, a kinetic model for plasma-assisted combustion (HP-Mech/plasma) of methane, oxygen and helium mixtures has been assembled to simulate the measurements. Predictions can accurately capture reactant consumption as well as production of the major product species. However, significant disagreement is found for minor species, particularly CH2O and CH3OH. Further analysis revealed that the plasma-activated low-temperature oxidation pathways, particularly those involving CH3O2 radical reactions and methane reactions with O(1D), are responsible for this disagreement. PMID:26170433

  20. Anti-tumor immune response induced by nanosecond pulsed streamer discharge in mice

    NASA Astrophysics Data System (ADS)

    Mizuno, Kazue; Yonetamari, Kenta; Shirakawa, Yuki; Akiyama, Taketoshi; Ono, Ryo

    2017-03-01

    Plasma is known to activate immune cells in vitro; however, its effect on cancer immunotherapy is not well understood in vivo. In this study, we report B16–F10 tumor growth suppression at a non-irradiated site on a mouse leg after a nanosecond pulsed streamer discharge was applied to the tumor on the other leg. The tumor growth suppression at non-irradiated remote sites was observed from the day next to that of plasma irradiation: the rapid abscopal effect suggests innate immune response activation. Additionally, the production of inflammatory cytokines from splenocytes was enhanced after plasma irradiation. This suggests the activation of adaptive immune response specific to B16–F10 melanoma by plasma irradiation.

  1. Experimental study and numerical simulation of flow separation control with pulsed nanosecond discharge actuator

    NASA Astrophysics Data System (ADS)

    Correale, Guiseppe; Popov, Ilya; Nikipelov, Andrey; Pancheshnyi, Sergey; Hulshoff, Seo; Veldhuis, Leo; Starikovskiy, Andrey; neqlab Team; TUDelft Team

    2011-10-01

    Active flow separation control with a nanosecond pulse plasma actuator, which is essentially a simple electrode system on the surface of an airfoil, introducing low-energy gas discharge into the boundary layer, with little extra weight and no mechanical parts, was performed in wind-tunnel experiments on various airfoil models. In stall conditions the significant lift increase up to 30% accompanied by drag reduction (up to 3 times) was observed. The critical angle of attack shifted up to 5{7 degrees. Schlieren imaging shown the shock wave propagation and formation of large-scale vortex structure in the separation zone, which led to separation elimination. The experimental work is supported by numerical simulations of the phenomena. The formation of vortex similar to that observed in experiments was simulated in the case of laminar leading edge separation. Model simulations of free shear layer shown intensification of shear layer instabilities due to shock wave to shear layer interaction.

  2. Time-resolved temperature and O atom measurements in nanosecond pulse discharges in combustible mixtures

    NASA Astrophysics Data System (ADS)

    Lanier, Suzanne; Bowman, Sherrie; Burnette, David; Adamovich, Igor V.; Lempert, Walter R.

    2014-11-01

    The paper presents results of time-resolved rotational temperature measurements, by pure rotational coherent anti-Stokes Raman spectroscopy and absolute O atom number density measurements, by two-photon absorption laser induced fluorescence. The experiments were conducted in nanosecond pulse discharges in H2-O2-Ar and C2H4-O2-Ar mixtures, initially at room temperature, operated at a high pulse repetition rate of 40 kHz, in a plane-to-plane double dielectric barrier geometry at a pressure of 40 Torr. Intensified charge-coupled device images show that O2-Ar and H2-O2-Ar plasmas remain diffuse and volume-filling during the entire burst. Images taken in C2H4-O2-Ar plasma demonstrate significant discharge filamentation and constriction along the center plane and in the corners of the test section. The experimental results demonstrate high accuracy of pure rotational psec CARS for thermometry measurements at low partial pressures of oxygen in nonequilibrium plasmas. The results are compared with kinetic modeling calculations, using two different H2-O2 chemistry and C2H4-O2 chemistry mechanisms. In H2-O2-Ar mixtures, the kinetic modeling predictions are in fairly good agreement with the data, predicting temperature rise and O atom accumulation in long discharge bursts, up to 450 pulses. The results show that adding hydrogen to the mixture results in an additional temperature rise, due to its partial oxidation by radicals generated in the plasma, essentially without chain branching. In C2H4-O2-Ar mixtures, the model consistently underpredicts both temperature and O atom number density. The most likely reason for the difference between the experimental data and model predictions is discharge filamentation developing when ethylene is added to the O2-Ar mixture, at fairly low temperatures.

  3. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-01

    In this study, a bipolar nanosecond pulse with 20 ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390 K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency.

  4. Nanosecond Pulsed Discharges in Liquid Phase: Optical diagnostics of positive versus negative modes of initiation in water

    NASA Astrophysics Data System (ADS)

    Seepersad, Yohan; Fridman, Alexander; Dobrynin, Danil; Applied Physics Group Team

    2013-09-01

    Recent work on nanosecond pulsed discharges in liquids has shown the possibility of producing plasma directly in the liquid phase without bubble formation or heating of the liquid. Paramount to understanding the physical processes leading to this phenomenon is a thorough understanding of the way these discharges behave under various conditions. This work explores the development of nanosecond pulsed discharges in water, for both positively and negatively applied pulses in a pin-to-plane configuration. Time resolved nanosecond ICCD imaging is used to trace the development of the discharge for applied voltages up to 24 kV. From the results we are able to identify breakdown thresholds at which discharge is initiated for both modes. At voltages below the critical breakdown value, Schlieren and shadowgraphy techniques are used to investigate perturbations in the liquid layers near the electrode tip as a consequence of these fat rising pulses. This work was supported by Defense Advanced Research Projects Agency (grant #DARPA-BAA-11-31).

  5. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.

    2006-02-01

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was ˜100ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  6. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    SciTech Connect

    Tarasenko, Victor F.

    2006-02-20

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3 kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was {approx}100 ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  7. Time-resolved electron density and electron temperature measurements in nanosecond pulse discharges in helium

    NASA Astrophysics Data System (ADS)

    Roettgen, A.; Shkurenkov, I.; Simeni Simeni, M.; Petrishchev, V.; Adamovich, I. V.; Lempert, W. R.

    2016-10-01

    Thomson scattering is used to study temporal evolution of electron density and electron temperature in nanosecond pulse discharges in helium sustained in two different configurations, (i) diffuse filament discharge between two spherical electrodes, and (ii) surface discharge over plane quartz surface. In the diffuse filament discharge, the experimental results are compared with the predictions of a 2D plasma fluid model. Electron densities are put on an absolute scale using pure rotational Raman spectra in nitrogen, taken without the plasma, for calibration. In the diffuse filament discharge, electron density and electron temperature increase rapidly after breakdown, peaking at n e  ≈  3.5 · 1015 cm-3 and T e  ≈  4.0 eV. After the primary discharge pulse, both electron density and electron temperature decrease (to n e ~ 1014 cm-3 over ~1 µs and to T e ~ 0.5 eV over ~200 ns), with a brief transient rise produced by the secondary discharge pulse. At the present conditions, the dominant recombination mechanism is dissociative recombination of electrons with molecular ions, \\text{He}2+ . In the afterglow, the electron temperature does not relax to gas temperature, due to superelastic collisions. Electron energy distribution functions (EEDFs) inferred from the Thomson scattering spectra are nearly Maxwellian, which is expected at high ionization fractions, when the shape of EEDF is controlled primarily by electron-electron collisions. The kinetic model predictions agree well with the temporal trends detected in the experiment, although peak electron temperature and electron density are overpredicted. Heavy species temperature predicted during the discharge and the early afterglow remains low and does not exceed T  =  400 K, due to relatively slow quenching of metastable He* atoms in two-body and three-body processes. In the surface discharge, peak electron density and electron temperature are n e  ≈  3 · 1014 cm3 and T e

  8. Ultrashort Two-Photon-Absorption Laser-Induced Fluorescence in Nanosecond-Duration, Repetitively Pulsed Discharges

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob Brian

    Absolute number densities of atomic species produced by nanosecond duration, repetitively pulsed electric discharges are measured by two-photon absorption laser-induced fluorescence (TALIF). Relatively high plasma discharge pulse energies (=1 mJ/pulse) are used to generate atomic hydrogen, oxygen, and nitrogen in a variety of discharge conditions and geometries. Unique to this work is the development of femtosecond-laser-based TALIF (fs-TALIF). Fs-TALIF offers a number of advantages compared to more conventional ns-pulse-duration laser systems, including better accuracy of direct quenching measurements in challenging environments, significantly reduced photolytic interference including photo-dissociation and photo-ionization, higher signal and increased laser-pulse bandwidth, the ability to collect two-dimensional images of atomic species number densities with far greater spatial resolution compared with more conventional diagnostics, and much higher laser repetition rates allowing for more efficient and accurate measurements of atomic species number densities. In order to fully characterize the fs-TALIF diagnostic and compare it with conventional ns-TALIF, low pressure (100 Torr) ns-duration pulsed discharges are operated in mixtures of H2, O2, and N2 with different buffer gases including argon, helium, and nitrogen. These discharge conditions are used to demonstrate the capability for two-dimensional imaging measurements. The images produced are the first of their kind and offer quantitative insight into spatially and temporally resolved kinetics and transport in ns-pulsed discharge plasmas. The two-dimensional images make possible comparison with high-fidelity plasma kinetics models of the presented data. The comparison with the quasi-one-dimensional kinetic model show good spatial and temporal agreement. The same diagnostics are used at atmospheric pressure, when atomic oxygen fs-TALIF is performed in an atmospheric-pressure plasma jet (APPJ). Here, the

  9. Nitric Oxide Studies in Low Temperature Plasmas Generated with a Nanosecond Pulse Sphere Gap Electrical Discharge

    NASA Astrophysics Data System (ADS)

    Burnette, David Dean

    This dissertation presents studies of NO kinetics in a plasma afterglow using various nanosecond pulse discharges across a sphere gap. The discharge platform is developed to produce a diffuse plasma volume large enough to allow for laser diagnostics in a plasma that is rich in vibrationally-excited molecules. This plasma is characterized by current and voltage traces as well as ICCD and NO PLIF images that are used to monitor the plasma dimensions and uniformity. Temperature and vibrational loading measurements are performed via coherent anti-Stokes Raman spectroscopy (CARS). Absolute NO concentrations are obtained by laser-induce fluorescence (LIF) measurements, and N and O densities are found using two photon absorption laser-induced fluorescence (TALIF). For all dry air conditions studied, the NO behavior is characterized by a rapid rate of formation consistent with an enhanced Zeldovich process involving electronically-excited nitrogen species that are generated within the plasma. After several microseconds, the NO evolution is entirely controlled by the reverse Zeldovich process. These results show that under the chosen range of conditions and even in extreme instances of vibrational loading, there is no formation channel beyond ~2 musec. Both the NO formation and consumption mechanisms are strongly affected by the addition of fuel species, producing much greater NO concentrations in the afterglow.

  10. Optical emission characteristics of surface nanosecond pulsed dielectric barrier discharge plasma

    SciTech Connect

    Wu Yun; Li Yinghong; Jia Min; Song Huimin; Liang Hua

    2013-01-21

    This paper reports an experimental study of the optical emission characteristics of the surface dielectric barrier discharge plasma excited by nanosecond pulsed voltage. N{sub 2}(C{sup 3}{Pi}{sub u}) rotational and vibrational temperatures are almost the same with upper electrode powered with positive polarity and lower electrode grounded or upper electrode grounded and lower electrode powered with positive polarity. While the electron temperature is 12% higher with upper electrode powered with positive polarity and lower electrode grounded. When the frequency is below 2000 Hz, there is almost no influence of applied voltage amplitude and frequency on N{sub 2}(C{sup 3}{Pi}{sub u}) rotational, vibrational temperature and electron temperature. As the pressure decreases from 760 Torr to 5 Torr, N{sub 2}(C{sup 3}{Pi}{sub u}) rotational temperature remains almost unchanged, while its vibrational temperature decreases initially and then increases. The discharge mode changes from a filamentary type to a glow type around 80 Torr. In the filamentary mode, the electron temperature remains almost unchanged. In the glow mode, the electron temperature increases while the pressure decreases.

  11. Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes

    SciTech Connect

    Li, Lee Liu, Yun-Long; Teng, Yun; Liu, Lun; Pan, Yuan

    2014-07-15

    In room-temperature atmospheric air, the large-scale diffuse plasmas can be generated via high-voltage nanosecond pulses with short rise-time and wire electrodes. Diffuse discharge with the wire electrode length up to 110.0 cm and the discharge spacing of several centimeters has been investigated in this paper. Electrical characteristics of diffuse discharge have been analyzed by their optical photographs and measuring of the voltage and current waveforms. Experimental results show the electrode spacing, and the length of wire electrodes can influence the intensity and mode transition of diffuse discharge. The characteristic of current waveforms is that there are several current oscillation peaks at the time of applied pulsed voltage peak, and at the tail of applied pulse, the conduction current component will compensate the displacement one so that the measured current is unidirectional in diffuse discharge mode. The transition from diffuse discharge to arc discharge is always with the increasing of conduction current density. As for nanosecond pulses with long tail, the long wire electrodes are help for generating non-equilibrium diffuse plasmas.

  12. Determination of space-time resolved electron temperature in nanosecond pulsed longitudinal discharge in various noble gases and discharge tube constructions

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Slaveeva, S. I.; Chernogorova, T. P.

    2016-03-01

    Using our results obtained by the analytical solution of the steady-state heat conduction equation for electrons and deriving a new thermal conductivity, 2D (r, t) numerical solution of nonstationary heat conduction, an equation for electrons is found for nanosecond pulsed longitudinal discharge in helium for two different pressures and in neon.

  13. Nanosecond Pulsed Discharge in Water without Bubbles: A Fundamental Study of Initiation, Propagation and Plasma Characteristics

    NASA Astrophysics Data System (ADS)

    Seepersad, Yohan

    The state of plasma is widely known as a gas-phase phenomenon, but plasma in liquids have also received significant attention over the last century. Generating plasma in liquids however is theoretically challenging, and this problem is often overcome via liquid-gas phase transition preceding the actual plasma formation. In this sense, plasma forms in gas bubbles in the liquid. Recent work at the Drexel Plasma Institute has shown that nanosecond pulsed electric fields can initiate plasma in liquids without any initial cavitation phase, at voltages below theoretical direct-ionization thresholds. This unique regime is poorly understood and does not fit into any current descriptive mechanisms. As with all new phenomena, a complete fundamental description is paramount to understanding its usefulness to practical applications. The primary goals of this research were to qualitatively and quantitatively understand the phenomenon of nanosecond pulsed discharge in liquids as a means to characterizing properties that may open up niche application possibilities. Analysis of the plasma was based on experimental results from non-invasive, sub-nanosecond time-resolved optical diagnostics, including direct imaging, transmission imaging (Schlieren and shadow), and optical emission spectroscopy. The physical characteristics of the plasma were studied as a function of variations in the electric field amplitude and polarity, liquid permittivity, and pulse duration. It was found that the plasma size and emission intensity was dependent on the permittivity of the liquid, as well as the voltage polarity, and the structure and dynamics were explained by a 'cold-lightning' mechanism. The under-breakdown dynamics at the liquid-electrode interface were investigated by transmission imaging to provide evidence for a novel mechanism for initiation based on the electrostriction. This mechanism was proposed by collaborators on the project and developed alongside the experimental work in this

  14. Multi-scale modelling of pulsed nanosecond dielectric barrier plasma discharges in plane-to-plane geometry

    NASA Astrophysics Data System (ADS)

    Nagaraja, Sharath; Yang, Vigor; Adamovich, Igor

    2013-04-01

    An integrated theoretical and numerical framework is developed to study the dynamics of energy coupling, gas heating and generation of active species by repetitively pulsed nanosecond dielectric barrier discharges (NS DBDs) in air. The work represents one of the first attempts to simulate, in a self-consistent manner, multiple (more than 100) nanosecond pulses. Detailed information is obtained about the electric-field transients during each voltage pulse, and accumulation of plasma generated species and gas heating over ms timescales. The plasma is modelled using a two-temperature, detailed chemistry scheme, with ions and neutral species in thermal equilibrium at the gas temperature, and electrons in thermal nonequilibrium. The analysis is conducted with pressures and pulsing frequency in the range 40-100 Torr and 1-105 Hz, respectively. The input electrical energy is directly proportional to the number density, and remains fairly constant on a per molecule basis from pulse to pulse. Repetitive pulsing results in uniform production of atomic oxygen in the discharge volume via electron-impact dissociation during voltage pulses, and through quenching of excited nitrogen molecules in the afterglow. The ion Joule effect causes rapid gas heating of ˜40 K/pulse in the cathode sheath and generates weak acoustic waves. Conductive heat loss to the walls during the time interval between voltage pulses prevents overheating of the cathode layer and development of ionization instabilities. A uniform ‘hat-shaped’ temperature profile develops in the discharge volume after multiple pulses, due to chemical heat release from quenching of excited species. This finding may explain experimentally observed volumetric ignition (as opposed to hot-spot ignition) in fuel-air mixtures subject to NS DBD.

  15. Hypersonic Flow over a Cylinder with a Nanosecond Pulse Electrical Discharge

    DTIC Science & Technology

    2014-03-01

    nanosecond pulsedielectric barrier discharge (ns- DBD ) in a Mach 5 flow demonstrated the feasibility of a plasma-based supersonic flow controller. In the...generated, due to rapid localized heating from the DBD , which propagated upstream from the cylinder surface and interacted with the standing bow shock. This...demonstrations using the ns- DBD have included separated flow reattachment in airflows [3] up to Mach 0.85, characterization of compression wave propagation in

  16. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  17. Separation Control with Nanosecond Pulse Driven Dielectric Barrier Discharge Plasma Actuators

    DTIC Science & Technology

    2011-01-01

    Institute of Aeronautics and Astronautics 41 5Forte, M ., Jolibois, J., Pons, J., Moreau, E., Touchard, G . and Cazalens, M ., "Optimization of a...of Applied Physics, Vol. 103, No. 053305, 2008, pp. 1-13. 11Opaits, D., Likhanskii, A., Neretti, G ., Zaidi, S., Shneider, M ., Miles, R. and Macheret...control is investigated experimentally on an airfoil leading edge up to Re=1x106 (62 m /s). Unlike AC- DBDs, the nanosecond pulse driven DBD plasma

  18. A large-area diffuse air discharge plasma excited by nanosecond pulse under a double hexagon needle-array electrode.

    PubMed

    Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao

    2014-01-01

    A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size.

  19. Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production

    NASA Astrophysics Data System (ADS)

    Popov, N. A.

    2016-08-01

    The results of a numerical study on kinetic processes initiated by a pulsed nanosecond discharge in air at high specific deposited energy, when the dissociation degree of oxygen molecules is high, are presented. The calculations of the temporal dynamics of the electron concentration, density of atomic oxygen, vibrational distribution function of nitrogen molecules, and gas temperature agree with the experimental data. It is shown that quenching of electronically excited states of nitrogen N2(B3Πg), N2(C3Πu), N2(a‧1 Σ \\text{u}- ) by oxygen molecules leads to the dissociation of O2. This conclusion is based on the comparison of calculated dynamics of atomic oxygen in air, excited by a pulsed nanosecond discharge, with experimental data. In air plasma at a high dissociation degree of oxygen molecules ([O]/[O2] > 10%), relaxation of the electronic energy of atoms and molecules in reactions with O atoms becomes extremely important. Active production of NO molecules and fast gas heating in the discharge plasma due to the quenching of electronically excited N2(B3Πg, C3Πu, a‧1 Σ \\text{u}- ) molecules by oxygen atoms is notable. Owing to the high O atom density, electrons are effectively detached from negative ions in the discharge afterglow. As a result, the decay of plasma in the afterglow is determined by electron-ion recombination, and the electron density remains relatively high between the pulses. An increase in the vibrational temperature of nitrogen molecules at the periphery of the plasma channel at time delay t = 1-30 μs after the discharge is obtained. This is due to intense gas heating and, as a result, gas-dynamic expansion of a hot gas channel. Vibrationally excited N2(v) molecules produced near the discharge axis move from the axial region to the periphery. Consequently, at the periphery the vibrational temperature of nitrogen molecules is increased.

  20. Schlieren Imaging and Pulsed Detonation Engine Testing of Ignition by a Nanosecond Repetitively Pulsed Discharge

    DTIC Science & Technology

    2016-05-16

    CHEMKIN II [31] are coupled together to efficiently model species evolution in 0-dimensional plasma-as- sisted combustion (PAC). Gas heating during the...of Mechanical and Aerospace Engineering, Princeton University, NJ 08544, USA bAerospace Systems Directorate, Wright-Patterson AFB, OH 45433, USA c...quenched in-between pulses, resulting in a building up of heat and radicals in the center of the ignition kernel. Optical emission spectra revealed

  1. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  2. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    NASA Astrophysics Data System (ADS)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  3. Measurement of Absolute Hydroxyl Radical Concentration in Lean Fuel-Air Mixtures Excited by Nanosecond Pulsed Discharge.

    NASA Astrophysics Data System (ADS)

    Yin, Z.; Lempert, W. R.; Adamovich, I. V.

    2013-06-01

    The focus in plasma assisted combustion research has been on the evaluation of conventional plasma/combustion mechanisms in predicting oxidation and ignition processes initiated and/or sustained by non-equilibrium, nanosecond discharges. Accurate quantitative data such as temperature and species concentration are needed for assessing and improving numerical modeling. As an important intermediate species, the concentration of hydroxyl radical (OH) is very sensitive to the combustion environment (e.g., temperature, equivalence ratio), and therefore is of great interest to kinetic study. In this work, Laser-Induced Fluorescence (LIF) was used for time-resolved temperature and OH number density measurements in lean H_2-, CH_4-, C_2H_4-, and C_3H_8- air mixtures in a plasma flow reactor inside a tube furnace. The premixed fuel-air flow in the reactor, initially at T_0=500 K and P=100 torr, was excited by a burst of repetitive nanosecond electric pulses in a dielectric-barrier plane-to-plane geometry (˜28 kV peak voltage and ˜5 nsec pulse width, estimated 1.25 mJ/pulse coupled energy). Laser was timed to probe after the discharge burst was over to avoid strong plasma emission interference. Relative fluorescence signal was put on an absolute scale by calibrating against Rayleigh scattering signal in the same flow reactor. Experimental results were compared to predictions from a 0-D plasma/combustion chemistry model employing several well-established combustion mechanisms. 2-D temperature and OH concentration distributions in the discharge volume were obtained by planar LIF and was used to quantitatively evaluate plasma uniformity in the reactor. These results were used to determine the validity of the 0-D model. thanks

  4. Sub-nanosecond time resolved light emission study for diffuse discharges in air under steep high voltage pulses

    NASA Astrophysics Data System (ADS)

    Tardiveau, P.; Magne, L.; Marode, E.; Ouaras, K.; Jeanney, P.; Bournonville, B.

    2016-10-01

    Pin-to-plane discharges in centimetre air gaps and standard conditions of pressure and temperature are generated under very high positive nanosecond scale voltage pulses. The experimental study is based on recordings of sub-nanosecond time resolved and Abel-processed light emission profiles and their complete correlation to electrical current waveforms. The effects of the voltage pulse features (amplitude between 20 and 90 kV, rise time between 2 and 5.2 ns, and time rate between 4 and 40 kV · ns-1) and the electrode configuration (gap distance between 10 and 30 mm, pin radius between 10 and 200 µm, copper, molybdenum or tungsten pin material) are described. A three time period development can be found: a glow-like structure with monotonic light profiles during the first 1.5 ns whose size depends on time voltage rate, a shell-like structure with bimodal profiles whose duration and extension in space depends on rise time, and either diffuse or multi-channel regime for the connection to the cathode plane according to gap distance. The transition of the light from monotonic to bimodal patterns reveals the relative effects and dynamics of streamer space charge and external laplacian field. A classical 2D-fluid model for streamer propagation has been used and adapted for very high and steep voltage pulses. It shows the formation of a strong space charge (streamer) very close to the pin, but also a continuity of emission between the pin and the streamer, and electric fields higher than the critical ionization field (28 kV · cm-1 in air) almost in the whole gap and very early in the discharge propagation.

  5. Kinetics of excited states and radicals in a nanosecond pulse discharge and afterglow in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Shkurenkov, Ivan; Burnette, David; Lempert, Walter R.; Adamovich, Igor V.

    2014-12-01

    The present kinetic modelling calculation results provide key new insights into the kinetics of vibrational excitation of nitrogen and plasma chemical reactions in nanosecond pulse, ‘diffuse filament’ discharges in nitrogen and dry air at a moderate energy loading per molecule, ˜0.1 eV per molecule. It is shown that it is very important to take into account Coulomb collisions between electrons because they change the electron energy distribution function and, as a result, strongly affect populations of excited states and radical concentrations in the discharge. The results demonstrate that the apparent transient rise of N2 ‘first level’ vibrational temperature after the discharge pulse, as detected in the experiments, is due to the net downward V-V energy transfer in N2-N2 collisions, which increases the N2(X 1Σ, v = 1) population. Finally, a comparison of the model's predictions with the experimental data shows that NO formation in the afterglow occurs via reactive quenching of multiple excited electronic levels of nitrogen molecule, N2\\ast , by O atoms. ) published in this volume, which focuses on the kinetic modelling of the experiments. This paper presents the results of the experiments.

  6. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field

    PubMed Central

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-01-01

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294

  7. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    NASA Astrophysics Data System (ADS)

    Heitz, Sylvain A.; Moeck, Jonas P.; Schuller, Thierry; Veynante, Denis; Lacoste, Deanna A.

    2016-04-01

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region.

  8. Dependence of MnOx Catalyst Position on Toluene Decomposition using Nanosecond Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Han, Junkai; Ogasawara, Akihiko; Wang, Jinlong; Wang, Douyan; Namihira, Takao; Sasaki, Mitsuru; Akiyama, Hidenori; Zhang, Pengyi; Kumamoto University Collaboration; Tsinghua University Collaboration

    2015-09-01

    Plasma catalysis, which combines advantages of high selectivity due to the catalysis and with fast ignition and response due to plasma technique, appears to be a promising technology to simultaneously resolve both efficiency and workability issues. In practice, a catalyst can be combined with NTP in two ways: by introducing the catalyst in the discharge zone (in-plasma catalytic reactor) or by placing the catalyst after the discharge zone (post-plasma catalytic reactor). This work aims to clarify combined effects by coupling MnOx catalyst with ns pulsed discharge system for decomposition of 100 ppm toluene utilizing three methods: plasma alone, in-plasma catalytic and post-plasma catalytic methods, in atmospheric pressure at room temperature. As the results, toluene removal ratio reached 100% at approximately 50 J/L under the in-plasma catalytic and post-plasma catalytic methods, while it was 70% under the plasma alone method. The concentrations of O3, HCOOH, and CO under the plasma alone method were higher compared with the in-plasma catalytic or post-plasma catalytic methods. CO2 selectivity under the post-plasma catalytic method was the highest of these three methods when toluene removal ratio exceeded 80%.

  9. Modeling and simulation of plasma gas flow driven by a single nanosecond-pulsed dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Xu, S. Y.; Cai, J. S.; Li, J.

    2016-10-01

    A simplified (7 species and 9 processes) plasma kinetic model is proposed to investigate the mechanism of the plasma aerodynamic actuation driven by nanosecond-pulsed dielectric barrier discharge (NS-DBD). The governing equations include conservation equations for each species, the Poisson equation for the electric potential, and Navier-Stokes equations for the gas dynamic flow. Numerical simulations of plasma discharge and flow actuation on NS-DBD plasma actuators have been carried out. Key discharge characteristics and the responses of the quiescent air were reproduced and compared to those obtained in experiments and numerical simulations. Results demonstrate that the reduced plasma kinetic model is able to capture the dominant species and reactions to predict the actuation in complicated hydrodynamics. For the one-dimensional planar and two-dimensional symmetric NS-DBD, the forming of the sheath collapse is mainly due to the charge accumulation and secondary emission from the grounded electrode. Rapid species number density rise and electric field drop occur at the edge of the plasma sheath, where the space charge density gradient peaks. For the aerodynamic actuation with typical asymmetry electrodes, discharge characteristics have a core area on the right edge of the upper electrode, where the value can be much higher. The formation and propagation of the compression waves generated through rapid heating have also been performed and compared to those measured in a recent experiment. Energy release leads to gas expansion and forms a cylindrical shock wave, centering at the upper electrode tip with low gas acceleration. For the present single pulsed 12 kV case, the mean temperature of gas heating reaches about 575 K at 1 μs and decreases to about 460 K at 10 μs.

  10. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  11. Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid / vapor interface

    NASA Astrophysics Data System (ADS)

    Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.

    2015-10-01

    The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.

  12. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma.

    PubMed

    Park, Ji Hoon; Kumar, Naresh; Park, Dae Hoon; Yusupov, Maksudbek; Neyts, Erik C; Verlackt, Christof C W; Bogaerts, Annemie; Kang, Min Ho; Uhm, Han Sup; Choi, Eun Ha; Attri, Pankaj

    2015-09-09

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG.

  13. Influence of pulsed nanosecond volume discharge in atmospheric-pressure air on the electrical characteristics of MCT epitaxial films

    NASA Astrophysics Data System (ADS)

    Grigoryev, Denis V.; Voitsekhovskii, Alexandr V.; Lozovoy, Kirill A.; Nesmelov, Sergey N.; Dzyadukh, Stanislav M.; Tarasenko, Viktor F.; Shulepov, Michail A.; Dvoretskii, Sergei A.

    2015-12-01

    The purpose of this paper was investigating the effect of volume nanosecond discharge in air at atmospheric pressure on the electro-physical properties of the HgCdTe (MCT) epitaxial films grown by molecular beam epitaxy. Hall measurements of electro-physical parameters of MCT samples after irradiation have shown that there is a layer of epitaxial films exhibiting n-type conductivity that is formed in the near-surface area. After more than 600 pulses of influence parameters and thickness of the resulting n-layer is such that the measured field dependence of Hall coefficient corresponds to the material of n-type conductivity. Also it is shown that the impact of the discharge leads to significant changes in electro-physical characteristics of MIS structures. This fact is demonstrated by increase in density of positive fixed charge, change in the hysteresis type of the capacitance-voltage characteristic, an increase in density of surface states. The preliminary results show that it is possible to use such actions in the development of technologies of the controlled change in the properties of MCT.

  14. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma

    PubMed Central

    Hoon Park, Ji; Kumar, Naresh; Hoon Park, Dae; Yusupov, Maksudbek; Neyts, Erik C.; Verlackt, Christof C. W.; Bogaerts, Annemie; Ho Kang, Min; Sup Uhm, Han; Ha Choi, Eun; Attri, Pankaj

    2015-01-01

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132

  15. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor

    PubMed Central

    Barbosa, S.; Pilla, G.; Lacoste, D. A.; Scouflaire, P.; Ducruix, S.; Laux, C. O.; Veynante, D.

    2015-01-01

    This paper reports on an experimental study of the influence of a nanosecond repetitively pulsed spark discharge on the stability domain of a propane/air flame. This flame is produced in a lean premixed swirled combustor representative of an aeronautical combustion chamber. The lean extinction limits of the flame produced without and with plasma are determined and compared. It appears that only a low mean discharge power is necessary to increase the flame stability domain. Lastly, the effects of several parameters (pulse repetition frequency, global flowrate, electrode location) are studied. PMID:26170424

  16. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, Sizhe; Lu, Xinpei

    2016-09-01

    We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.

  17. A simple method for experimental determination of electron temperature and electron density in a nanosecond pulsed longitudinal discharge used for excitation of high-power atomic and ionic metal and metal halide vapour lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Vuchkov, N. K.

    2016-05-01

    A simple method based on the time-resolved measurement of electrical discharge parameters, such as tube voltage and discharge current, is developed and applied for determination of electron temperature and electron density in the discharge period of a nanosecond pulsed longitudinal discharge, exciting high-power DUV Cu+ Ne-CuBr, He-Hg+ and He-Sr+ lasers.

  18. Decomposition of three volatile organic compounds by nanosecond pulsed corona discharge: Study of by-product formation and influence of high voltage pulse parameters

    SciTech Connect

    Jarrige, Julien; Vervisch, Pierre

    2006-06-01

    Increasing concerns over atmospheric pollution has motivated research into technologies able to remove volatile organic compounds (VOC's) from gas streams. The aim of this paper is to understand the chemical and physical mechanisms implied in the decomposition of VOC's in a filamentary nonthermal plasma discharge. Experiments have been carried out on three pollutants (propane, propene, and isopropyl alcohol) in dry air at atmospheric pressure using a wire to cylinder corona discharge generated by a homemade nanosecond rise time high voltage pulse generator. The resulting plasma efficiently destructs propane, propene, or isopropyl alcohol at a concentration of 500 ppm with low specific input energies (less than 500 J/L), but the poor oxidation rate leads to the formation of numerous by-products (acetone, formaldehyde, formic acid, and methyl nitrate) whose concentration can reach some hundreds of ppm. We also investigated the effect of pulse parameters on VOC removal efficiency. Neither pulse peak value nor rise time (in the range of 4-12 ns) appears to have a significant influence on the VOC decomposition rates. Therefore, we believe that the way the energy is deposited in the plasma does not modify the density of active species (radicals, ions) in the streamers. The production of energetic electrons is not enhanced by the external applied field, and the only effective parameter may be the local field in the streamer head, which is almost the same (around 500 Td) whatever the voltage (above the inception value)

  19. Subnanosecond pulsed X-ray source based on nanosecond discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.

    2009-06-01

    We have studied the characteristics of an X-ray source based on a gas diode filled with air at atmospheric pressure. Driven by a SLEP-150 pulser with a maximum voltage amplitude of ˜140 kV, a pulse full width at half maximum (FWHM) of ˜1 ns, and a leading front width of ˜0.3 ns, a soft X-ray source produces subnanosecond pulses with an FWHM not exceeding 600 ps and an exposure dose of ˜3 mR per pulse. It is shown that the main contribution to the measured exposure dose is due to X-ray quanta with an effective energy of ˜7.5 keV.

  20. An investigation of CO2 splitting using nanosecond pulsed corona discharge: effect of argon addition on CO2 conversion and energy efficiency

    NASA Astrophysics Data System (ADS)

    Moss, M. S.; Yanallah, K.; Allen, R. W. K.; Pontiga, F.

    2017-03-01

    The plasma chemical splitting of carbon dioxide (CO2) to produce carbon monoxide (CO) in a pulsed corona discharge was investigated from both an experimental and a numerical standpoint. High voltage nanosecond pulses were applied to a stream of pure CO2 and its mixture with argon, and the gaseous products were identified using Fourier transform infrared spectroscopy. Due to the shape of pulses, the process of CO2 splitting was found to proceed in two phases. The first phase is dominated by ionization, which generates a high electron density. Then, during the second phase, direct electron impact dissociation of CO2 contributes to a large portion of CO production. Conversion and energy efficiency were calculated for the tested conditions. The conversions achieved are comparable to those obtained using other high pressure non-thermal discharges, such as dielectric barrier discharge. However, the energy efficiencies were considerably higher, which are favorable to industrial applications that require atmospheric conditions and elevated gas flow rates.

  1. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    DOE PAGES

    Bak, Moon Soo; Cappelli, Mark A.

    2012-01-01

    Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronicmore » states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.« less

  2. Evolution of metastable state molecules N2(A3 Σu+) in a nanosecond pulsed discharge: A particle-in-cell/Monte Carlo collisions simulation

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Sun, Jizhong; Feng, Chunlei; Bai, Jing; Ding, Hongbin

    2012-01-01

    A particle-in-cell plus Monte Carlo collisions method has been employed to investigate the nitrogen discharge driven by a nanosecond pulse power source. To assess whether the production of the metastable state N2(A3 Σu+) can be efficiently enhanced in a nanosecond pulsed discharge, the evolutions of metastable state N2(A3 Σu+) density and electron energy distribution function have been examined in detail. The simulation results indicate that the ultra short pulse can modulate the electron energy effectively: during the early pulse-on time, high energy electrons give rise to quick electron avalanche and rapid growth of the metastable state N2(A3 Σu+) density. It is estimated that for a single pulse with amplitude of -9 kV and pulse width 30 ns, the metastable state N2(A3 Σu+) density can achieve a value in the order of 109 cm-3. The N2(A3 Σu+) density at such a value could be easily detected by laser-based experimental methods.

  3. 2D numerical modelling of gas temperature in a nanosecond pulsed longitudinal He-SrBr2 discharge excited in a high temperature gas-discharge tube for the high-power strontium laser

    NASA Astrophysics Data System (ADS)

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2016-05-01

    An active volume scaling in bore and length of a Sr atom laser excited in a nanosecond pulse longitudinal He-SrBr2 discharge is carried out. Considering axial symmetry and uniform power input, a 2D model (r, z) is developed by numerical methods for determination of gas temperature in a new large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge free zone, in order to find out the optimal thermal mode for achievement of maximal output laser parameters. A 2D model (r, z) of gas temperature is developed by numerical methods for axial symmetry and uniform power input. The model determines gas temperature of nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  4. [A Time-Spatial Resolvable High Speed Spectrograph and Its Application on Spectrum Measurement of a Nanosecond Pulsed Underwater Spark Discharge].

    PubMed

    Niu, Zhi-wen; Yan, Xian-feng; Li, Shu-han; Wen, Xiao-qiong; Liu, Jin-yuan

    2015-10-01

    Recently, the diagnosis of the characteristic of pulsed underwater electrical discharges plasma have received significant attention. The measurement of a time-spatial resolved spectrum emitted from a single discharge pulse is important for understanding the time-spatial evolution characteristics of plasma generated by a pulsed high-voltage discharge in water. In this paper, a high speed time-spatial resolvable spectrograph for measuring the emission spectrum of a single electrical discharge pulse was reported. The high speed time-spatial resolvable spectrograph has been constructed by combining an ultrahigh-speed frame camera system with monochromator. Software for the spectral analyzing was also developed. The performance of the spectrograph was tested by using a 632.8 nm He-Ne laser beam at a 1 200 g x mm(-1) grating. The pixel resolution for 632.8 nm spectra is 0.013 nm. The instrument broadening for 632.8 nm spectra is (0.150 ± 0.009)nm when the exposure.time of the camera is 20 ns and the width of entrance slit is 0.2 mm, and increases with increasing the slit width. The change of exposure time of the camera has no influence on the instrument broadening, ensuring the spectrograph in a steady performance while adjusting the exposure time of the camera. With the spectrograph, time-spatial resolved spectra emitted from a single discharge pulse of an underwater nanoseconds spark discharge were obtained. It provides good data for investigating the time-spatial evolution characteristics of the discharge plasma during a single discharge pulse. The spectrograph developed in this work provides a technical approach for studying the time-spatial evolution characteristic of, plasma generated by a single electrical discharge pulse.

  5. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  6. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  7. High Voltage Nanosecond Pulse Generator.

    DTIC Science & Technology

    1978-11-01

    trigger generator used to gate charging SCR1 and discharge SCR2. In order to pro- vide time for discharge SCR2 to recover after completion of the...discharge cycle, the trigger pulse to the gate of SCR1 was delayed approximately 20usec relative to the trigger pulse to the gate of SCR2. With a single

  8. Peculiarities of detecting pulses of runaway electrons and X-rays generated by high-voltage nanosecond discharges in open atmosphere

    SciTech Connect

    Babich, L. P.; Loiko, T. V.

    2010-03-15

    Peculiarities of detecting pulses of high-energy runaway electrons and the accompanying X-rays generated by high-voltage nanosecond discharges at high overvoltages in dense gases are discussed. Methods for overcoming difficulties encountered in such measurements are demonstrated. Different techniques for detecting runaway electrons and X-rays generated by discharges in open atmosphere are described, and typical errors that may be done when interpreting measurement results are considered. Experiments with the use of a small-size generator of nanosecond pulses with the idle-running voltage of 250-270 kV and stored energy of {approx}0.5 J have been carried out. It is shown that, in measuring runaway electron pulses by using an experimental configuration with a grid anode, a major portion of the recorded signal is attributed to electromagnetic disturbances. It is found that X-rays are mainly generated due to the deceleration of runaway electrons in the anode, rather than in gas. The number of runaway electrons with energies {approx}300 keV does not exceed 10{sup 9} per shot, and the X-ray dose is 60-200 {mu}R/shot, depending on the anode material.

  9. Experimental investigation of dielectric barrier discharge plasma actuators driven by repetitive high-voltage nanosecond pulses with dc or low frequency sinusoidal bias

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry F.; Likhanskii, Alexandre V.; Neretti, Gabriele; Zaidi, Sohail; Shneider, Mikhail N.; Miles, Richard B.; Macheret, Sergey O.

    2008-08-01

    Experimental studies were conducted of a flow induced in an initially quiescent room air by a single asymmetric dielectric barrier discharge driven by voltage waveforms consisting of repetitive nanosecond high-voltage pulses superimposed on dc or alternating sinusoidal or square-wave bias voltage. To characterize the pulses and to optimize their matching to the plasma, a numerical code for short pulse calculations with an arbitrary impedance load was developed. A new approach for nonintrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the schlieren technique, burst mode of plasma actuator operation, and two-dimensional numerical fluid modeling. The force and heating rate calculated by a plasma model was used as an input to two-dimensional viscous flow solver to predict the time-dependent dielectric barrier discharge induced flow field. This approach allowed us to restore the entire two-dimensional unsteady plasma induced flow pattern as well as characteristics of the plasma induced force. Both the experiments and computations showed the same vortex flow structures induced by the actuator. Parametric studies of the vortices at different bias voltages, pulse polarities, peak pulse voltages, and pulse repetition rates were conducted experimentally. The significance of charge buildup on the dielectric surface was demonstrated. The charge buildup decreases the effective electric field in the plasma and reduces the plasma actuator performance. The accumulated surface charge can be removed by switching the bias polarity, which leads to a newly proposed voltage waveform consisting of high-voltage nanosecond repetitive pulses superimposed on a high-voltage low frequency sinusoidal voltage. Advantages of the new voltage waveform were demonstrated experimentally.

  10. Recent studies on nanosecond-timescale pressurized gas discharges

    NASA Astrophysics Data System (ADS)

    Yatom, S.; Shlapakovski, A.; Beilin, L.; Stambulchik, E.; Tskhai, S.; Krasik, Ya E.

    2016-12-01

    The results of recent experimental and numerical studies of nanosecond high-voltage discharges in pressurized gases are reviewed. The discharges were ignited in a diode filled by different gases within a wide range of pressures by an applied pulsed voltage or by a laser pulse in the gas-filled charged resonant microwave cavity. Fast-framing imaging of light emission, optical emission spectroscopy, x-ray foil spectrometry and coherent anti-Stokes Raman scattering were used to study temporal and spatial evolution of the discharge plasma density and temperature, energy distribution function of runaway electrons and dynamics of the electric field in the plasma channel. The results obtained allow a deeper understanding of discharge dynamical properties in the nanosecond timescale, which is important for various applications of these types of discharges in pressurized gases.

  11. Recent studies on nanosecond-timescale pressurized gas discharges

    SciTech Connect

    Yatom, S.; Shlapakovski, A.; Beilin, L.; Stambulchik, E.; Tskhai, S.; Krasik, Ya E.

    2016-10-05

    The results of recent experimental and numerical studies of nanosecond high-voltage discharges in pressurized gases are reviewed. The discharges were ignited in a diode filled by different gases within a wide range of pressures by an applied pulsed voltage or by a laser pulse in the gas-filled charged resonant microwave cavity. Fast-framing imaging of light emission, optical emission spectroscopy, X-ray foil spectrometry and coherent anti-Stokes Raman scattering were used to study temporal and spatial evolution of the discharge plasma density and temperature, energy distribution function of runaway electrons and dynamics of the electric field in the plasma channel. The results obtained allow a deeper understanding of discharge dynamical properties in the nanosecond timescale, which is important for various applications of these types of discharges in pressurized gases.

  12. Recent studies on nanosecond-timescale pressurized gas discharges

    DOE PAGES

    Yatom, S.; Shlapakovski, A.; Beilin, L.; ...

    2016-10-05

    The results of recent experimental and numerical studies of nanosecond high-voltage discharges in pressurized gases are reviewed. The discharges were ignited in a diode filled by different gases within a wide range of pressures by an applied pulsed voltage or by a laser pulse in the gas-filled charged resonant microwave cavity. Fast-framing imaging of light emission, optical emission spectroscopy, X-ray foil spectrometry and coherent anti-Stokes Raman scattering were used to study temporal and spatial evolution of the discharge plasma density and temperature, energy distribution function of runaway electrons and dynamics of the electric field in the plasma channel. The resultsmore » obtained allow a deeper understanding of discharge dynamical properties in the nanosecond timescale, which is important for various applications of these types of discharges in pressurized gases.« less

  13. Effect of Airflows on Repetitive Nanosecond Volume Discharges

    NASA Astrophysics Data System (ADS)

    Tang, Jingfeng; Wei, Liqiu; Huo, Yuxin; Song, Jian; Yu, Daren; Zhang, Chaohai

    2016-03-01

    Atmospheric pressure discharges excited by repetitive nanosecond pulses have attracted significant attention for various applications. In this paper, a plate-plate discharge with airflows is excited by a repetitive nanosecond pulse generator. Under different experiment conditions, the applied voltages, discharge currents, and discharge images are recorded. The plasma images presented here indicate that the volume discharge modes vary with airflow speeds, and a diffuse and homogeneous volume discharge occurs at the speed of more than 35 m/s. The role of airflows provides different effects on the 2-stage pulse discharges. The 1st pulse currents nearly maintain consistency for different airflow speeds. However, the 2nd pulse current has a change trend of first decreasing and then rapidly increasing, and the value difference for 2nd pulse currents is about 20 A under different airflows. In addition, the experimental results are discussed according to the electrical parameters and discharge images. supported by National Natural Science Foundation of China (Nos. 51006027, 51437002, and 51477035)

  14. Time-resolved investigation of nanosecond discharge in dense gas sustained by short and long high-voltage pulse

    NASA Astrophysics Data System (ADS)

    Yatom, S.; Gleizer, J. Z.; Levko, D.; Vekselman, V.; Gurovich, V.; Hupf, E.; Hadas, Y.; Krasik, Ya. E.

    2011-12-01

    The results of experimental and numerical studies of the generation of runaway electrons (RAE) in a pressurized air-filled diode under the application of 20 ns, 5 ns and 1 ns duration high-voltage pulses with an amplitude up to 160 kV are presented. It is shown that with a 1 ns pulse, RAE with energy >=20 keV reach the anode prior to the formation of the plasma channel between the cathode and anode. Conversely, with 20 ns or 5 ns pulses, RAE with energy >=20 keV were obtained at the anode only after the formation of the plasma channel. In addition, the high- and low-impedance stages of the development of the discharge were found. Finally, a comparison between experimental and numerical simulation results is presented.

  15. Plasma assisted ignition with nanosecond surface dielectric barrier discharge. Two modes of nanosecond surface discharge

    NASA Astrophysics Data System (ADS)

    Shcherbanev, Sergey; Popov, Nikolay; Starikovskaia, Svetlana; LPP Team; LIA France-Russia Collaboration

    2016-09-01

    Nanosecond surface dielectric barrier discharge (nSDBD) is an efficient tool for a multi-point plasma-assisted ignition of combustible mixtures at elevated pressures. In combustible mixtures, nSDBD initiates numerous combustion waves propagating from the electrode. This work presents a comparative experimental study of the surface dielectric barrier discharge initiated by high voltage pulses (U =+/-(20-60) kV) of different polarities in air at elevated pressures (P =1 -12 bar). Discharge morphology, deposited energy, and spectroscopy of the discharges are analyzed. Differences between the discharges of the different polarity, as well as the changes in the discharge morphology with changing of a gas mixture composition, are discussed. The initiation of combustion with nSDBD was studied experimentally at high initial pressures up to 6 bar on the example of lean H2/Air. The ignition is initiated with two different discharge modes: streamer and filamentary. The influence of the discharge structure and energy deposition on the ignition is demonstrated. Three regimes of multi-point ignition were observed: ignition with a few kernels, quasi-uniform ignition along the edge of high voltage electrodes and ignition along the plasma channels.

  16. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure.

    PubMed

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C(3)Πu→B(3)Πg 1-3) and N2 (C(3)Πu→B(3)Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material.

  17. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  18. Measurement of OH, O, and NO densities and their correlations with mouse melanoma cell death rate treated by a nanosecond pulsed streamer discharge

    NASA Astrophysics Data System (ADS)

    Yagi, Ippei; Shirakawa, Yuki; Hirakata, Kenta; Akiyama, Taketoshi; Yonemori, Seiya; Mizuno, Kazue; Ono, Ryo; Oda, Tetsuji

    2015-10-01

    Mouse melanoma cells in a culture medium are treated using a nanosecond pulsed streamer discharge plasma and the correlations between the rate of cell death and the densities of reactive species (OH, O, and NO) in the plasma are measured. The plasma is irradiated onto the culture medium surface with a vertical gas flow of an O2/N2 mixture from a glass tube at various gas flow rates and O2 concentrations. The densities of the reactive species are measured very close to the culture medium surface, where the reactive species interact with the culture medium, using laser-induced fluorescence. In the case of the N2 discharge (O2 = 0%), an increase in gas flow rate decreases OH density because it lowers the water vapor concentration by diluting the vapor, which is required for OH production. The increase in gas flow rate also leads to a decreased cell death rate. In the case of the O2/N2 discharge, on the other hand, an increase in O2 concentration at a fixed flow rate does not affect the rate of cell death, although it considerably changes the O and NO densities. These findings indicate that some reactive species derived from water vapor such as OH are responsible for the melanoma cell death, whereas those from O2, such as O and NO, are less likely responsible. They also indicate the importance of water evaporation from the culture medium surface in cell treatment.

  19. Time-resolved electron temperature and electron density measurements in a nanosecond pulse filament discharge in H2-He and O2-He mixtures

    NASA Astrophysics Data System (ADS)

    Roettgen, A.; Shkurenkov, I.; Simeni Simeni, M.; Adamovich, I. V.; Lempert, W. R.

    2016-10-01

    Time evolution of electron density and electron temperature in a nanosecond pulse, diffuse filament electric discharge in H2-He and O2-He mixtures at a pressure of 100 Torr is studied by Thomson/pure rotational Raman scattering and kinetic modeling. The discharge is sustained between two spherical electrodes separated by a 1 cm gap and powered by high voltage pulses ~150 ns duration. Discharge energy coupled to the plasma filament 2-3 mm in diameter is 4-5 mJ/pulse, with specific energy loading of up to ~0.3 eV/molecule. At all experimental conditions, a rapid initial rise of electron temperature and electron density during the discharge pulse is observed, followed by the decay in the afterglow, over ~100 ns-1 µs. Electron density in the afterglow decays more rapidly as H2 or O2 fraction in the mixture is increased. In He/H2 mixtures, this is likely due to more rapid recombination of electrons in collisions with \\text{H}2+ and \\text{H}3+ ions, compared to recombination with \\text{He}2+ ions. In O2/He mixtures, electron density decay in the afterglow is affected by recombination with \\text{O}2+ and \\text{O}4+ ions, while the effect of three-body attachment is relatively minor. Peak electron number densities and electron temperatures are n e  =  (1.7-3.1) · 1014 cm-3 and T e  =  2.9-5.5 eV, depending on gas mixture composition. Electron temperature in the afterglow decays to approximately T e  ≈  0.3 eV, considerably higher compared to the gas temperature of T  =  300-380 K, inferred from O2 pure rotational Raman scattering spectra, due to superelastic collisions. The experimental results in helium and O2-He mixtures are compared with kinetic modeling predictions, showing good agreement.

  20. NO density and gas temperature measurements in atmospheric pressure nanosecond repetitively pulsed (NRP) discharges by Mid-IR QCLAS

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Stancu, Gabi-Daniel; Laux, Christophe

    2014-10-01

    Nitric oxide is a key species for many processes: in combustion, in human skin physiology... Recently, NO-ground state absolute density measurements produced by atmospheric pressure NRP discharges were carried out in air as a function of the discharge parameters, using Quantum Cascade Laser Absorption Spectroscopy. These measurements were space averaged and performed in the post-discharge region in a large gas volume. Here we present radial profiles of NO density and temperature measured directly in the discharge for different configurations. Small plasma volume and species densities, high temperature and EM noise environment make the absorption diagnostic challenging. For this purpose the QCLAS sensitivity was improved using a two-detector system. We conducted lateral absorbance measurements with a spatial resolution of 300 μm for two absorption features at 1900.076 and 1900.517 cm-1. The radial temperature and NO density distributions were obtained from the Abel inverted lateral measurements. Time averaged NO densities of about 1.E16 cm-3 and gas temperature of about 1000K were obtained in the center of the discharge. PLASMAFLAME Project (Grant No ANR-11-BS09-0025).

  1. Nanosecond component in a femtosecond laser pulse

    SciTech Connect

    Shneider, M. N.; Semak, V. V.; Zhang Zhili

    2012-11-15

    Experimental and computational results show that the coherent microwave scattering from a laser-induced plasma can be used for measuring the quality of a fs laser pulse. The temporal dynamics of the microwave scattered signal from the fs-laser induced plasma can be related to the effect of nanosecond tail of the fs laser pulse.

  2. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge

    NASA Astrophysics Data System (ADS)

    Zhu, Yifei; Wu, Yun; Cui, Wei; Li, Yinghong; Jia, Min

    2013-09-01

    A two-dimensional air plasma kinetics model (16 species and 44 processes) for nanosecond discharge under atmospheric pressure was developed to reveal the spatial and temporal distribution of discharge characteristics of a surface dielectric barrier discharge (SDBD) actuator. An energy transfer model, including two channels for energy release from external power source to gas, was developed to couple plasma with hydrodynamics directly in the same dimension. The governing equations included the Poisson equation for the electric potential, continuity equations for each species, electron energy equations for electrons taking part in reactions, and Navier-Stokes equations for non-isothermal fluid. The model was validated through current-voltage profile and electron temperature obtained from experiments. Calculations for discharge characteristics as well as the responses of fluid field from tens of nanoseconds to tens of seconds were performed. Results have shown that local air is heated to 1170 K within tens of nanoseconds and then decreases to 310 K at the end of a discharge period. 30% of the total power is transferred from electric field to electrons while only 20% of this energy is then released to gas through quenching processes. 9% of the total energy is released through ion collision. A micro-shock wave is formed and propagates at the speed of sound. High local density gradient and dynamic viscosity induces vortexes which whirl the heated air downstream. The combined effects of heating convection and vortexes in repetitive pulse discharges lead to the formation of a steady jet, in agreement with experimental results.

  3. Enhanced window breakdown dynamics in a nanosecond microwave tail pulse

    SciTech Connect

    Chang, Chao; Zhu, Meng; Li, Shuang; Xie, Jialing; Yan, Kai; Luo, Tongding; Zhu, Xiaoxin; Verboncoeur, John

    2014-06-23

    The mechanisms of nanosecond microwave-driven discharges near a dielectric/vacuum interface were studied by measuring the time- and space-dependent optical emissions and pulse waveforms. The experimental observations indicate multipactor and plasma developing in a thin layer of several millimeters above interface. The emission brightness increases significantly after main pulse, but emission region widens little. The mechanisms are studied by analysis and simulation, revealing intense ionization concentrated in a desorbed high-pressure layer, leading to a bright light layer above surface; the lower-voltage tail after main pulse contributes to heat electron energy tails closer to excitation cross section peaks, resulting in brighter emission.

  4. Mitochondrial membrane permeabilization with nanosecond electric pulses.

    PubMed

    Vernier, P Thomas

    2011-01-01

    Ultra-short, high-field electric pulses permeabilize plasma and intracellular membranes. We report here nanosecond pulse-induced permeabilization of mitochondrial membranes in living cells. Using four independent methods based on fluorescent dyes--JC-1, rhodamine 123, tetramethyl rhodamine ethyl ester, and cobalt-quenched calcein--we show that as few as five, 4 ns, 10 MV/m pulses delivered at 1 kHz cause an increase of the inner mitochondrial membrane permeability and an associated loss of mitochondrial membrane potential. The most likely interpretation of these results is a pulse-induced permeabilization of the inner mitochondrial membrane.

  5. Effect of Pulse Nanosecond Volume Discharge in Air at Atmospheric Pressure on Electrical Properties of Mis Structures Based on p-HgCdTe Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Grigor'ev, D. V.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    The effect of the pulse nanosecond volume discharge in air at atmospheric pressure on the admittance of MIS structures based on MBE graded-gap p-Hg0.78Cd0.22Te is studied in a wide range of frequencies and temperatures. It is shown that the impact of the discharge leads to significant changes in electrical characteristics of MIS structures (the density of positive fixed charge increases), to the changes in the nature of the hysteresis of capacitance-voltage characteristics, and to an increase in the density of surface states. A possible reason for the changes in the characteristics of MIS structures after exposure to the discharge is substantial restructuring of the defect-impurity system of the semiconductor near the interface.

  6. A Nanosecond Pulse Generator for Spark Chambers,

    DTIC Science & Technology

    1979-12-04

    nsec. The generator consists of an Arkad’yev- Marx generator (impulse voltage generator - GIN), a stor- age capacitor and discharge chamber (nanosecond...the generator is given in fig. 2. El. Fig. 1. Generator circuit diagram. 1 - NOM-10 transformer; 2 - filament transformer; 3 - Arkad’yev- Marx ...charge circuit abcd, the primary current will initially be given to the load by Cg, not by the surge capacitance of the Arkad’yev- Marx generator. The

  7. Cell electrofusion using nanosecond electric pulses

    NASA Astrophysics Data System (ADS)

    Rems, Lea; Ušaj, Marko; Kandušer, Maša; Reberšek, Matej; Miklavčič, Damijan; Pucihar, Gorazd

    2013-11-01

    Electrofusion is an efficient method for fusing cells using short-duration high-voltage electric pulses. However, electrofusion yields are very low when fusion partner cells differ considerably in their size, since the extent of electroporation (consequently membrane fusogenic state) with conventionally used microsecond pulses depends proportionally on the cell radius. We here propose a new and innovative approach to fuse cells with shorter, nanosecond (ns) pulses. Using numerical calculations we demonstrate that ns pulses can induce selective electroporation of the contact areas between cells (i.e. the target areas), regardless of the cell size. We then confirm experimentally on B16-F1 and CHO cell lines that electrofusion of cells with either equal or different size by using ns pulses is indeed feasible. Based on our results we expect that ns pulses can improve fusion yields in electrofusion of cells with different size, such as myeloma cells and B lymphocytes in hybridoma technology.

  8. Optical emission spectrum of filamentary nanosecond surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Shcherbanev, S. A.; Khomenko, A. Yu; Stepanyan, S. A.; Popov, N. A.; Starikovskaia, S. M.

    2017-02-01

    Streamer-to-filament transition is a general feature of high pressure high voltage (HV) nanosecond surface dielectric barrier discharges. The transition was studied experimentally using time- and space-resolved optical emission in UV and visible parts of spectra. The discharge was initiated by HV pulses 20 ns in duration and 2 ns rise time, positive or negative polarity, 20-60 kV in amplitude on the HV electrode. The experiments were carried out in a single-shot regime at initial pressures P  >  3 bar and ambient initial temperature in air, N2, H2:N2 and O2:Ar mixtures. It was shown that the transition to filamentary mode is accompanied by the appearance of intense continuous radiation and broad atomic lines. Electron density calculated from line broadening is characterized by high absolute values and long decay in the afterglow. The possible reasons for the continuous spectra were analyzed.

  9. Deflagration-to-Detonation Transition Control by Nanosecond Gas Discharges

    DTIC Science & Technology

    2008-04-07

    Report 3. DATES COVERED (From – To) 1 April 2007 - 18 August 09 4. TITLE AND SUBTITLE Deflagration-To- Detonation Transition Control By Nanosecond...SUPPLEMENTARY NOTES 14. ABSTRACT During the current project, an extensive experimental study of detonation initiation by high{voltage...nanosecond gas discharges has been performed in a smooth detonation tube with different discharge chambers and various discharge cell numbers. The chambers

  10. Nanosecond discharge in sulfur hexafluoride and the generation of an ultrashort avalanche electron beam

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Lomaev, M. I.; Rybka, D. V.; Sorokin, D. A.; Tarasenko, V. F.

    2008-06-01

    A discharge in the presence of a nonuniform electric field and the generation of an ultrashort avalanche electron beam (UAEB) are studied in the insulating gas SF6 at the pressures 0.01 2.50 atm. High-voltage nanosecond pulses (about 150 and 250 kV) and the voltage pulses with an amplitude of 25 kV and a duration of tens of nanoseconds are applied across the gap. An electron beam is obtained behind the AlBe foil with a thickness of 45 μm at a sulfur hexafluoride pressure in a gas-filled diode of up to 2 atm. It is demonstrated that, at relatively high pressures (greater than 1 atm) and in the presence of high-voltage nanosecond pulses across the gap, the UAEB pulse FWHM increases. The spectra of the diffuse and contracted discharges in sulfur hexafluoride are measured.

  11. Nanosecond pulsed laser blackening of copper

    NASA Astrophysics Data System (ADS)

    Tang, Guang; Hourd, Andrew C.; Abdolvand, Amin

    2012-12-01

    Nanosecond (12 ns) pulsed laser processing of copper at 532 nm resulted in the formation of homogenously distributed, highly organized microstructures. This led to the fabrication of large area black copper substrates with absorbance of over 97% in the spectral range from 250 nm to 750 nm, and a broadband absorbance of over 80% between 750 nm and 2500 nm. Optical and chemical analyses of the fabricated black metal are presented and discussed. The employed laser is an industrially adaptable source and the presented technique for fabrication of black copper could find applications in broadband thermal radiation sources, solar energy absorbers, irradiative heat transfer devices, and thermophotovoltaics.

  12. Current self-limitation in a transverse nanosecond discharge with a slotted cathode

    NASA Astrophysics Data System (ADS)

    N, A. ASHURBEKOV; K, O. IMINOV; O, A. POPOV; G, S. SHAKHSINOV

    2017-03-01

    A high-voltage transverse pulsed nanosecond discharge with a slotted hollow cathode was found to be a source of high-energy (few kV) ribbon electron beams. Conditions for the formation and extinction of electron beams were experimentally studied in discharges in helium at pressures of 1–100 Torr. It was found that interaction of fast electrons with a non-uniform electric field near the slotted cathode led to limitation of the magnitude of the discharge current. A physical model was developed to describe the discharge current self-limitation that was in satisfactory agreement with the experimental results. Some technical solutions that are expected to increase the upper current limits in transverse nanosecond discharge are discussed.

  13. Nanosecond pulsed laser texturing of optical diffusers

    NASA Astrophysics Data System (ADS)

    Alqurashi, Tawfiq; Sabouri, Aydin; Yetisen, Ali K.; Butt, Haider

    2017-02-01

    High-quality optical glass diffusers have applications in aerospace, displays, imaging systems, medical devices, and optical sensors. The development of rapid and accurate fabrication techniques is highly desirable for their production. Here, a micropatterning method for the fast fabrication of optical diffusers by means of nanosecond pulsed laser ablation is demonstrated (λ=1064 nm, power=7.02, 9.36 and 11.7 W and scanning speed=200 and 800 mm s-1). The experiments were carried out by point-to-point texturing of a glass surface in spiral shape. The laser machining parameters, the number of pulses and their power had significant effect on surface features. The optical characteristics of the diffusers were characterized at different scattering angles. The features of the microscale structures influenced average roughness from 0.8 μm to 1.97 μm. The glass diffusers scattered light at angles up to 20° and their transmission efficiency were measured up to ˜97% across the visible spectrum. The produced optical devices diffuse light less but do so with less scattering and energy losses as compared to opal diffusing glass. The presented fabrication method can be applied to any other transparent material to create optical diffusers. It is anticipated that the optical diffusers presented in this work will have applications in the production of LED spotlights and imaging devices.

  14. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    PubMed Central

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  15. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality.

    PubMed

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-04-29

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed.

  16. Spontaneous Raman scattering: a useful tool for investigating the afterglow of nanosecond scale discharges in air

    NASA Astrophysics Data System (ADS)

    Lo, A.; Cléon, G.; Vervisch, P.; Cessou, A.

    2012-04-01

    Nanosecond scale discharges are considered an interesting way for assisting combustion by enhancing either flame stabilization or ignition. Better understanding of energy deposit and radical species production processes is still required under pressure conditions normally encountered in combustion. The purpose of the present paper is to show that spontaneous Raman scattering, seldom used to investigate nanosecond pulsed discharges, is a useful measurement method for investigating the energy deposit of these discharges. The advantage of spontaneous Raman scattering is described by analyzing N2 and O2 spectra during the post-discharge of a filamentary nanosecond air discharge under atmospheric pressure, using phase-locked average spectra. The main advantages of spontaneous Raman scattering measurements are that they allow line-wise probing of different species with the same experimental setup and the determination of vibrational distribution by comparison with theoretical modeling over a wide range of vibrational levels (from v=0 to v=20 for N2). The model proposed takes into account the high level of vibrational excitation and the strong non-equilibrium observed, allowing the characterization of the vibrational relaxation over the complete post-discharge duration. Although the rotational structure is not resolved, the rotational temperature and thus translational temperature are determined with a moderate uncertainty for T above 500 K.

  17. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  18. Capacitor discharge pulse analysis.

    SciTech Connect

    Baker, Michael Sean; Griffiths, Stewart K.; Tanner, Danelle Mary

    2013-08-01

    Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.

  19. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  20. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-15

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of {approx}0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  1. Optical emission spectroscopy of nanosecond repetitively pulsed microplasmas generated in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Orriere, Thomas; Moreau, Eric; Benard, Nicolas; Pai, David

    2015-09-01

    Nanosecond repetitively pulsed (NRP) microplasmas are generated in room temperature air at atmospheric pressure, in order to investigate the enhanced control of discharge properties via the combined effects of spatial confinement and nanosecond repetitive pulsing. Discharges were generated using high-voltage pulses of 15-ns duration applied to a tungsten pin-to-pin reactor, with inter-electrode gap distances (d) from 2 mm down to 0.2 mm. Optical emission spectroscopy and electrical characterization performed on the discharge indicate that heat transfer and plasma chemistry are influenced by the microplasma geometry. Ultrafast gas heating is observed upon deducing the rotational temperature of N2 from the measured emission spectrum of the N2 (C -->B) (0, 2) and (1, 3) transition bands, but use of the microplasma geometry (d = 0.2 mm) results in lower gas temperatures than in larger discharge gaps (d = 2 mm), including at high pulse repetition frequency (30 kHz) where substantial steady-state gas heating can occur. The measured Stark broadening of the Hα transition is significantly greater than for previously studied NRP discharges in air at atmospheric pressure, indicating that the maximum electron number density may be correspondingly much greater, up to 1018 cm-3. Furthermore, for NRP microplasmas, the intensities of emission from excited atomic ions (O+ and N+) are much higher than those of excited neutral atoms (O and N), in contrast to NRP discharges generated in larger discharge gaps.

  2. LabView Program tor Deconvolution of Nanosecond Heat Pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Quan; Wilson, Thomas E.

    2003-10-01

    Heat (acoustic phonon) pulses have been of great value in studying high-frequency phonon transport in solids at low temperature. A need has emerged to generate and detect broadband phonon pulses on a nanosecond time scale or shorter. Superconducting edge bolometers can be used for detecting heat pulses in the regime in which pulse lengths are shorter than the bolometer response time. We report on the development of a LabView (1) implementation of an algorithm, developed by Edwards et al (2), that deconvolves the bolometer signal to obtain the incident phonon flux with enhanced temporal resolution. (1) National Instruments Corporation, 11500 N Mopac Expwy, Austin, TX 78759-3504, (2) S C Edwards, Hamid bin Rani and J K Wigmore, "The use of superconducting bolometers for detecting nanosecond heat pulses', J. Phys. E: Scientific Instruments 22, 582 (1989).

  3. Characterization of atmospheric nanosecond discharge under highly inhomogeneous and transient electric field in air/water mixture

    NASA Astrophysics Data System (ADS)

    Ouaras, Karim; Tardiveau, Pierre; Magne, Lionel; Jeanney, Pascal; Bournonville, Blandine

    2016-09-01

    We report the studies of a centimeter range pin-to-plane nanosecond repetitively discharge (<30 ns and 10 Hz) in standard conditions of pressure and temperature under very high positive voltage pulses (20 to 100 kV). In these typical conditions, plasma exhibit unusual diffuse and large structure. This kind of discharge is not well understood and in first approach, it requires (i) a description of plasma dynamic and (ii) behavior under relevant context (environmental issues ...) using pertinent gas (humid air). Thus, we will first present sub-nanosecond imaging of the discharge obtained for typical conditions of stabilized plasma. Then we will focus on determination of rotational and vibrational temperature (OES) and preliminary results concerning the production and evolution of OH radical in temporal post-discharge in air/water mixture (PLIF). Theses spectroscopic measurements are undertaken as function of most influent parameters, i . e . voltage pulses features (amplitude, rise time and length) and water concentration.

  4. Characterization of a DBD-Based Plasma Jet Using a Variable Pulse Width Nanosecond Pulser

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Picard, Julian; Prager, James; Miller, Kenneth; Carscadden, John

    2015-11-01

    Most high voltage pulsers used to drive dielectric barrier discharges (DBDs), produce a single pulse shape (width and voltage), thus making it challenging to assess the effect of pulse shape on the production of different chemical species during a discharge. Eagle Harbor Technologies, Inc. (EHT) has developed a high voltage nanosecond pulser that enables independent control of the output voltage, pulse width, and pulse repetition frequency. This pulser has been specifically designed to drive dielectric barrier discharges (DBD). EHT has used this pulser to conduct a parametric investigation of a DBD-based jet utilizing spectroscopic diagnostics. A better understanding of this parameter dependency can allow for more targeted and effective application of plasma in medical, environmental, industrial, and other applications. Results comparing DBD voltage and current waveforms with plasma spectrographic measurements will be presented.

  5. Atmospheric air homogenous DBD plasma excited by bipolar nanosecond pulse used for improving the hydrophilic property of polypropylene

    NASA Astrophysics Data System (ADS)

    Yang, Dezheng; Wang, Wenchun; Zhang, Shuai; Liu, Zhijie; Jia, Li; Dai, Leyang

    2013-06-01

    In this paper, an air homogenous dielectric barrier discharge excited by bipolar nanosecond pulse voltage is obtained and used for the surface modification of polypropylene non-woven fabric at atmospheric pressure. Compared with the DBD plasma excited by sine alternating current (AC) voltage, nanosecond pulsed dielectric barrier discharge exhibits obvious advantages, e.g., better discharge homogeneity, lower energy cost, and lower plasma gas temperature etc. Hence it presents the potential application in improving the hydrophilic property of polypropylene non-woven fabric with high energy efficiency and without surface damage. To reduce the water contact angle of the polypropylene surface from 145° to 110°, the average energy cost of the nanosecond pulsed dielectric barrier discharge is only about 0.1 J/cm2, which is about 1/20 of AC dielectric barrier discharge. On the other hand, the surface damage of non-woven fabric induced by nanosecond pulsed dielectric barrier discharge plasma cannot be distinguished by SEM photographs.

  6. Study of nanosecond discharges in different H2 air mixtures at atmospheric pressure for plasma-assisted applications

    NASA Astrophysics Data System (ADS)

    Bourdon, Anne; Kobayashi, Sumire; Bonaventura, Zdenek; Tholin, Fabien; Popov, Nikolay

    2016-09-01

    This paper presents 2D simulations of nanosecond pulsed discharges between two point electrodes in different H2/air mixtures and in air at atmospheric pressure. A fluid model is coupled with detailed kinetic schemes for air and different H2/air mixtures to simulate the discharge dynamics. First, as the positive and negative ionization waves propagate in the interelectrode gap, it has been observed that in H2/air mixtures with equivalence ratios between 0.3 and 2, major positive ions produced by the nanosecond discharge are N2+,O2+and HN2+.The discharge dynamics is shown to vary only slightly for equivalence ratios of the H2/air mixture between 0.3 and 2. Then, as the discharge transits to a nanosecond spark discharge, we have studied the different chemical reactions that lead to fast gas heating and to the production of radicals, as O,H and OH. Both thermal and chemical effects of the nanosecond spark discharge are of interest for plasma assisted combustion applications. This work has been supported by the project DRACO (Grant No. ANR-13-IS09-0004) and the french russian LIA Kappa.

  7. Supershort avalanche electron beams and x-ray in high-pressure nanosecond discharges

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. H.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.

    2008-10-01

    The properties of a supershort avalanche electron beam (S AEB) and X-ray radiation produced using a nanosecond volume discharge are examined. An electron beam of the runaway electrons with amplitude of ~ 50 A has been obtained in air atmospheric pressure. It is reported that S AEB is formed in the angle above 2π sr. Three groups of the runaway electrons are formed in a gas diode under atmospheric air pressure, when nanosecond voltage pulses with amplitude of hundreds of kilovolts are applied. The electron beam has been generated behind a 45 μm thick AlBe foil in SF6 and Xe under the pressure of 2 arm, and in He under the pressure of about 12 atm. The paper gives the analysis of a generation mechanism of SAEB.

  8. Fast magneto-optic switch based on nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Weng, Zi-Hua; Ruan, Jian-Jian; Lin, Shao-Han; Chen, Zhi-Min

    2011-09-01

    The paper studies an all fiber high-speed magneto-optic switch which includes an optical route, a nanosecond pulse generator, and a magnetic field module in order to reduce the switching time of the optical switch in the all optical network. A compact nanosecond pulse generator can be designed based on the special character of the avalanche transistor. The output current pulse of the nanosecond pulse generator is less than 5 ns, while the pulse amplitude is more than 100 V and the pulse width is about 10 to 20 ns, which is able to drive a high-speed magnetic field. A solenoid is used as the magnetic field module, and a bismuth-substituted rare-earth iron garnet single crystal is chosen as the Faraday rotator. By changing the direction of current in the solenoid quickly, the magnetization of the magneto-optic material is reversed, and the optical beam can be rapidly switched. The experimental results indicate that the switching time of the device is about 100 to 400 ns, which can partially meet the demand of the rapid development of the all optical network.

  9. Double nanosecond pulses generation in ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Lednev, V. N.; Pershin, S. M.; Samokhvalov, A. A.; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N.

    2016-06-01

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential "opening" radio pulses with a delay of 0.2-1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  10. Subcellular Biological Effects of Nanosecond Pulsed Electric Fields

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen F.; Stacey, Michael

    Membranes of biological cells can be charged by exposure to pulsed electric fields. After the potential difference across the barrier reaches critical values on the order of 1 V, pores will form. For moderate pulse parameters of duration and amplitude, the effect is limited to the outer cell membrane. With the exposure to nanosecond pulses of several tens of kilovolts per centimeter, a similar effect is also expected for subcellular membranes and structures. Cells will respond to the disruption by different biochemical processes. This offers possibilities for the development of novel medical therapies, the manipulation of cells and microbiological decontamination.

  11. Nanosecond electric pulses trigger actin responses in plant cells

    SciTech Connect

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-09-25

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  12. Skyrmion Creation and Manipulation by Nano-Second Current Pulses

    PubMed Central

    Yuan, H. Y.; Wang, X. R.

    2016-01-01

    Easy creation and manipulation of skyrmions is important in skyrmion based devices for data storage and information processing. We show that a nano-second current pulse alone is capable of creating/deleting and manipulating skyrmions in a spin valve with a perpendicularly magnetized free layer and broken chiral symmetry. Interestingly, for an in-plane magnetized fixed layer, the free layer changes from a single domain at zero current to a Neel wall at an intermediate current density. Reverse the current polarity, the Neel wall changes to its image inversion. A properly designed nano-second current pulse, that tends to convert one type of Neel walls to its image inversion, ends up to create a stable skyrmion without assistance of external fields. For a perpendicularly magnetized fixed layer, the skyrmion size can be effectively tuned by a current density. PMID:26934954

  13. Nanosecond Glow and Spark Discharges in Ambient Air and in Water Vapor

    NASA Astrophysics Data System (ADS)

    Laux, Christophe; Rusterholtz, Diane; Sainct, Florent; Xu, Da; Lacoste, Deanna; Stancu, Gabi; Pai, David

    2013-09-01

    Nanosecond repetitively pulsed (NRP) discharges are one of the most energy efficient ways to produce active species in atmospheric pressure gases. In both air and water vapor, three discharge regimes can be obtained: 1) corona, with light emission just around the anode, 2) glow, corresponding to a diffuse nonequilibrium plasma, and 3) spark, characterized by higher temperatures and higher active species densities. The glow regime was initially obtained in air preheated at 2000 K. Based on a model defining the transition between glow and spark, we recently succeeded in obtaining a stable glow in ambient air at 300 K, using a judicious combination of electrode geometry, pulse duration, pulse frequency, and applied voltage. We will present these results and describe the characteristics of the discharge obtained in room air. The spark regime was also studied. NRP sparks induce ultrafast gas heating (about 1000 K in 20 ns) and high oxygen dissociation (up to 50% dissociation of O2) . This phenomenon can be explained by a two-step process involving the excitation of molecular nitrogen followed by exothermic dissociative quenching of molecular oxygen. The characteristics of NRP discharges in water vapor will also be discussed. This work is supported by the ANR PREPA program (grant number ANR-09-BLAN-0043).

  14. Nanosecond electric pulses penetrate the nucleus and enhance speckle formation.

    PubMed

    Chen, Nianyong; Garner, Allen L; Chen, George; Jing, Yu; Deng, Yuping; Swanson, R James; Kolb, Juergen F; Beebe, Stephen J; Joshi, Ravindra P; Schoenbach, Karl H

    2007-12-14

    Nanosecond electric pulses generate nanopores in the interior membranes of cells and modulate cellular functions. Here, we used confocal microscopy and flow cytometry to observe Smith antigen antibody (Y12) binding to nuclear speckles, known as small nuclear ribonucleoprotein particles (snRNPs) or intrachromatin granule clusters (IGCs), in Jurkat cells following one or five 10ns, 150kV/cm pulses. Using confocal microscopy and flow cytometry, we observed changes in nuclear speckle labeling that suggested a disruption of pre-messenger RNA splicing mechanisms. Pulse exposure increased the nuclear speckled substructures by approximately 2.5-fold above basal levels while the propidium iodide (PI) uptake in pulsed cells was unchanged. The resulting nuclear speckle changes were also cell cycle dependent. These findings suggest that 10ns pulses directly influenced nuclear processes, such as the changes in the nuclear RNA-protein complexes.

  15. Nanosecond electric pulses penetrate the nucleus and enhance speckle formation

    SciTech Connect

    Chen Nianyong Garner, Allen L.; Chen, George; Jing Yu; Deng Yuping; Swanson, R. James; Kolb, Juergen F.; Beebe, Stephen J.; Joshi, Ravindra P.; Schoenbach, Karl H.

    2007-12-14

    Nanosecond electric pulses generate nanopores in the interior membranes of cells and modulate cellular functions. Here, we used confocal microscopy and flow cytometry to observe Smith antigen antibody (Y12) binding to nuclear speckles, known as small nuclear ribonucleoprotein particles (snRNPs) or intrachromatin granule clusters (IGCs), in Jurkat cells following one or five 10 ns, 150 kV/cm pulses. Using confocal microscopy and flow cytometry, we observed changes in nuclear speckle labeling that suggested a disruption of pre-messenger RNA splicing mechanisms. Pulse exposure increased the nuclear speckled substructures by {approx}2.5-fold above basal levels while the propidium iodide (PI) uptake in pulsed cells was unchanged. The resulting nuclear speckle changes were also cell cycle dependent. These findings suggest that 10 ns pulses directly influenced nuclear processes, such as the changes in the nuclear RNA-protein complexes.

  16. Four-wave mixing in nanosecond pulsed fiber amplifiers.

    PubMed

    Fève, Jean-Philippe; Schrader, Paul E; Farrow, Roger L; Kliner, Dahv A V

    2007-04-16

    We present an experimental and theoretical analysis of four-wave mixing in nanosecond pulsed amplifiers based on double-clad ytterbium-doped fibers. This process leads to saturation of the amplified pulse energy at 1064 nm and to distortion of the spectral and temporal profiles. These behaviours are well described by a simple model considering both Raman and four-wave-mixing contributions. The role of seed laser polarization in birefringent fibers is also presented. These results point out the critical parameters and possible tradeoffs for optimization.

  17. Portable nanosecond pulsed air plasma jet

    SciTech Connect

    Walsh, J. L.; Kong, M. G.

    2011-08-22

    Low-temperature atmospheric pressure plasmas are of great importance in many emerging biomedical and materials processing applications. The redundancy of a vacuum system opens the gateway for highly portable plasma systems, for which air ideally becomes the plasma-forming gas and remote plasma processing is preferred to ensure electrical safety. Typically, the gas temperature observed in air plasma greatly exceeds that suitable for the processing of thermally liable materials; a large plasma-sample distance offers a potential solution but suffers from a diluted downstream plasma chemistry. This Letter reports a highly portable air plasma jet system which delivers enhanced downstream chemistry without compromising the low temperature nature of the discharge, thus forming the basis of a powerful tool for emerging mobile plasma applications.

  18. Investigation of breakdown in porous ceramics initiated by nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Punanov, I. F.; Emlin, R. V.; Morozov, P. A.; Cholakh, S. O.

    2012-07-01

    Breakdown delay times are measured and velocities of forming a conductive channel in aluminum oxide based porous ceramic materials impregnated with transformer oil are determined for pulsed electrical breakdown initiated by nanosecond pulses at a voltage of 140 kV. The breakdown delay times are also measured in monolithic aluminum oxide ceramics and leuco-sapphire single crystals. It is demonstrated that in porous ceramics, the average velocity of breakdown channel propagation decreases with increasing volume of the sample occupied by the liquid dielectric in comparison with single crystal and monolythic ceramics; it makes 50% of the velocity of breakdown channel propagation in leuco-sapphire and exceeds 3 times the corresponding value in transformer oil measured at the same voltage and pulse duration.

  19. Evaluation of material dispersion using a nanosecond optical pulse radiator.

    PubMed

    Horiguchi, M; Ohmori, Y; Miya, T

    1979-07-01

    To study the material dispersion effects on graded-index fibers, a method for measuring the material dispersion in optical glass fibers has been developed. Nanosecond pulses in the 0.5-1.7-microm region are generated by a nanosecond optical pulse radiator and grating monochromator. These pulses are injected into a GeO(2)-P(2)0(5)-doped silica graded-index fiber. Relative time delay changes between different wavelengths are used to determine material dispersion, core glass refractive index, material group index, and optimum profile parameter of the graded-index fiber. From the measured data, the optimum profile parameter on the GeO(2)-P(2)O(5)-doped silica graded-index fiber could be estimated to be 1.88 at 1.27 microm of the material dispersion free wavelength region and 1.82 at 1.55 microm of the lowest-loss wavelength region in silica-based optical fiber waveguides.

  20. Pulsed COIL initiated by discharge

    NASA Astrophysics Data System (ADS)

    Yuryshev, Nikolai N.

    2004-06-01

    Pulsed mode makes COIL possible to produce pulses which power can significantly exceed that of CW COIL mode at the same flowrate of chemicals. Such a mode can find application in material treatment, in drilling for oil wells, as an optical locator, in laser frequency conversion via non-linear processes, in laser propulsion, etc. The method of volume generation of iodine atoms was shown to be the most effective one in generation of high power pulses. The base of method is substitution of molecular iodine in operation mixture for iodide which is stable in the mixture with singlet oxygen, and subsequent forced dissociation of iodide. In this approach the advantage of direct I-atom injection in laser active medium is demonstrated. The comparison of experimental results obtained with different sources used for iodide dissociation shows the electric discharge provides significantly higher electrical laser efficiency in comparison with photolysis initiation. At the same time, the specific energy of the electric discharge initiated COIL is at disadvantage in relation with that obtained with photolysis initiation. This fact is a result of active medium temperature increase due to insufficient initiation selectivity of electric discharge. Both longitudinal and transverse electric discharges were investigated as possible sources for laser initiation. The transverse discharge is more promising for increased operation pressure of active medium. The operation pressure is limited by dark reaction of iodide with singlet delta oxygen. The repetitively pulsed operation with repetition rate of up to 75 Hz of pulsed COIL is demonstrated.

  1. Dynamical propagation of nanosecond pulses in Naphthalocyanines and Phthalocyanines

    NASA Astrophysics Data System (ADS)

    Miao, Quan; Liang, Min; Liu, Qixin; Wang, Jing-Jing; Sun, Erping; Xu, Yan

    2016-11-01

    Dynamical propagation and optical limiting of nanosecond pulses in peripherally substituted Naphthalocyanines (Npcs) and Phthalocyanines (Pcs) with central metals gallium and indium were theoretically studied using paraxial field and rate equations. The results demonstrated that both Npcs and Pcs have good optical limiting performances, and Npc with heavier central mental indium shows better optical limiting properities due to the stronger reverse saturable absorption, which is mainly strengthened by the larger one-photo absorption cross section of excited state and the faster intersystem crossing rate.

  2. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.

    2016-05-01

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  3. Impact of nanosecond pulsed electric fields on primary hippocampal neurons

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Kuipers, Marjorie A.; Thompson, Gary L.; Wilmink, Gerald J.; Ibey, Bennett L.

    2012-02-01

    Cellular exposure to nanosecond pulsed electric fields (nsPEF) are believed to cause immediate creation of nanopores in the plasma membrane. These nanopores enable passage of small ions, but remain impermeable to larger molecules like propidium iodide. Previous work has shown that nanopores are stable for minutes after exposure, suggesting that formation of nanopores in excitable cells could lead to prolonged action potential inhibition. Previously, we measured the formation of nanopores in neuroblastoma cells by measuring the influx of extracellular calcium by preloading cells with Calcium Green-AM. In this work, we explored the impact of changing the width of a single nsPEF, at constant amplitude, on uptake of extracellular calcium ions by primary hippocampal neurons (PHN). Calcium Green was again used to measure the influx of extracellular calcium and FM1-43 was used to monitor changes in membrane conformation. The observed thresholds for nanopore formation in PHN by nsPEF were comparable to those measured in neuroblastoma. This work is the first study of nsPEF effects on PHN and strongly suggests that neurological inhibition by nanosecond electrical pulses is highly likely at doses well below irreversible damage.

  4. Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges

    NASA Astrophysics Data System (ADS)

    Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.

    2017-04-01

    This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s‑1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.

  5. Production of Picosecond, Kilojoule, and Petawatt Laser Pulses via Raman Amplification of Nanosecond Pulses

    SciTech Connect

    Trines, R. M. G. M.; Bingham, R.; Norreys, P. A.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.

    2011-09-02

    Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion.

  6. Ablation of Myocardial Tissue With Nanosecond Pulsed Electric Fields

    PubMed Central

    Xie, Fei; Varghese, Frency; Pakhomov, Andrei G.; Semenov, Iurii; Xiao, Shu; Philpott, Jonathan; Zemlin, Christian

    2015-01-01

    Background Ablation of cardiac tissue is an essential tool for the treatment of arrhythmias, particularly of atrial fibrillation, atrial flutter, and ventricular tachycardia. Current ablation technologies suffer from substantial recurrence rates, thermal side effects, and long procedure times. We demonstrate that ablation with nanosecond pulsed electric fields (nsPEFs) can potentially overcome these limitations. Methods We used optical mapping to monitor electrical activity in Langendorff-perfused New Zealand rabbit hearts (n = 12). We repeatedly inserted two shock electrodes, spaced 2–4 mm apart, into the ventricles (through the entire wall) and applied nanosecond pulsed electric fields (nsPEF) (5–20 kV/cm, 350 ns duration, at varying pulse numbers and frequencies) to create linear lesions of 12–18 mm length. Hearts were stained either with tetrazolium chloride (TTC) or propidium iodide (PI) to determine the extent of ablation. Some stained lesions were sectioned to obtain the three-dimensional geometry of the ablated volume. Results In all animals (12/12), we were able to create nonconducting lesions with less than 2 seconds of nsPEF application per site and minimal heating (< 0.2°C) of the tissue. The geometry of the ablated volume was smoother and more uniform throughout the wall than typical for RF ablation. The width of the lesions could be controlled up to 6 mm via the electrode spacing and the shock parameters. Conclusions Ablation with nsPEFs is a promising alternative to radiofrequency (RF) ablation of AF. It may dramatically reduce procedure times and produce more consistent lesion thickness than RF ablation. PMID:26658139

  7. Generation of nanosecond neutron pulses in vacuum accelerating tubes

    NASA Astrophysics Data System (ADS)

    Didenko, A. N.; Shikanov, A. E.; Rashchikov, V. I.; Ryzhkov, V. I.; Shatokhin, V. L.

    2014-06-01

    The generation of neutron pulses with a duration of 1-100 ns using small vacuum accelerating tubes is considered. Two physical models of acceleration of short deuteron bunches in pulse neutron generators are described. The dependences of an instantaneous neutron flux in accelerating tubes on the parameters of pulse neutron generators are obtained using computer simulation. The results of experimental investigation of short-pulse neutron generators based on the accelerating tube with a vacuum-arc deuteron source, connected in the circuit with a discharge peaker, and an accelerating tube with a laser deuteron source, connected according to the Arkad'ev-Marx circuit, are given. In the experiments, the neutron yield per pulse reached 107 for a pulse duration of 10-100 ns. The resultant experimental data are in satisfactory agreement with the results of computer simulation.

  8. Spectroscopic and electrical characters of SBD plasma excited by bipolar nanosecond pulse in atmospheric air

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Lu; Yang, De-Zheng; Wang, Wen-Chun; Yuan, Hao; Zhang, Li; Wang, Sen; Liu, Zhi-Jie; Zhang, Shuai

    2016-05-01

    In this paper, an atmospheric surface barrier discharge (SBD) generated by annular electrodes in quartz tube is presented through employing bipolar nanosecond pulse voltage in air. The discharge images, waveforms of pulse voltage and discharge current, and optical emission spectra emitted from the discharges are recorded and calculated. A spectra simulation method is developed to separate the overlap of the secondary diffraction spectra which are produced by grating in monochromator, and N2 (B3Πg → A3Σu+) and O (3p5P → 3s5S2o) are extracted. The effects of pulse voltage and discharge power on the emission intensities of OH (A2Σ+ → X2Пi), N2+ (B2Σu+ → X2Σg+), N2 (C3Πu → B3Πg), N2 (B3Πg → A3Σu+), and O (3p5P → 3s5S2o) are investigated. It is found that increasing the pulse peak voltage can lead to an easier formation of N2+ (B2Σu+) than that of N2 (C3Πu). Additionally, vibrational and rotational temperatures of the plasma are determined by comparing the experimental and simulated spectra of N2+ (B2Σu+ → X2Σg+), and the results show that the vibrational and rotational temperatures are 3250 ± 20 K and 350 ± 5 K under the pulse peak voltage of 28 kV, respectively.

  9. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    SciTech Connect

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystal Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.

  10. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    DOE PAGES

    Persaud, A.; Barnard, J. J.; Guo, H.; ...

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less

  11. Space and time analysis of the nanosecond scale discharges in atmospheric pressure air: I. Gas temperature and vibrational distribution function of N2 and O2

    NASA Astrophysics Data System (ADS)

    Lo, A.; Cessou, A.; Boubert, P.; Vervisch, P.

    2014-03-01

    Reliable experimental data on nanosecond discharge plasmas in air become more and more crucial considering their interest in a wide field of applications. However, the investigations on such nonequilibrium plasmas are made difficult by the spatial non-homogeneities, in particular under atmospheric pressure, the wide range of time scales, and the complexity of multi-physics processes involved therein. In this study, we report spatiotemporal experimental analysis on the gas temperature and the vibrational excitation of N2 and O2 in their ground electronic state during the post-discharge of an overvoltage nanosecond-pulsed discharge generated in a pin-to-plane gap of air at atmospheric pressure. The gas temperature during the pulsed discharge is measured by optical emission spectroscopy related to the rotational bands of the 0-0 vibrational transition N2(C 3 Πu, v = 0) → N2(B3 Πg, v = 0) of nitrogen. The results show a rapid gas heating up to 700 K in tens of nanoseconds after the current rise. This fast gas heating leads to a high gas temperature up to 1000 K measured at 150 ns in the first stages of the post-discharge using spontaneous Raman scattering (SRS). The spatiotemporal measurements of the gas temperature and the vibrational distribution function of N2 and O2, also obtained by SRS, over the post-discharge show the spatial expansion of the high vibrational excitation of N2, and the gas heating during the post-discharge. The present measurements, focused on thermal and energetic aspect of the discharge, provide a base for spatiotemporal analysis of gas number densities of N2, O2 and O atoms and hydrodynamic effects achieved during the post-discharge in part II of this investigation. All these results provide space and time database for the validation of plasma chemical models for nanosecond-pulsed discharges at atmospheric pressure air.

  12. Fluorescence of silicon nanoparticles prepared by nanosecond pulsed laser

    SciTech Connect

    Liu, Chunyang Sui, Xin; Yang, Fang; Ma, Wei; Li, Jishun; Xue, Yujun; Fu, Xing

    2014-03-15

    A pulsed laser fabrication method is used to prepare fluorescent microstructures on silicon substrates in this paper. A 355 nm nanosecond pulsed laser micromachining system was designed, and the performance was verified and optimized. Fluorescence microscopy was used to analyze the photoluminescence of the microstructures which were formed using the pulsed laser processing technique. Photoluminescence spectra of the microstructure reveal a peak emission around 500 nm, from 370 nm laser irradiation. The light intensity also shows an exponential decay with irradiation time, which is similar to attenuation processes seen in porous silicon. The surface morphology and chemical composition of the microstructure in the fabricated region was also analyzed with multifunction scanning electron microscopy. Spherical particles are produced with diameters around 100 nm. The structure is compared with porous silicon. It is likely that these nanoparticles act as luminescence recombination centers on the silicon surface. The small diameter of the particles modifies the band gap of silicon by quantum confinement effects. Electron-hole pairs recombine and the fluorescence emission shifts into the visible range. The chemical elements of the processed region are also changed during the interaction between laser and silicon. Oxidation and carbonization play an important role in the enhancement of fluorescence emission.

  13. Mechanism study of skin tissue ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin

    Understanding the fundamental mechanisms in laser tissue ablation is essential to improve clinical laser applications by reducing collateral damage and laser pulse energy requirement. The motive of this dissertation is to study skin tissue ablation by nanosecond laser pulses in a wide spectral region from near-infrared to ultraviolet for a clear understanding of the mechanism that can be used to improve future design of the pulsed lasers for dermatology and plastic surgery. Multiple laser and optical configurations have been constructed to generate 9 to 12ns laser pulses with similar profiles at 1064. 532, 266 and 213nm for this study of skin tissue ablation. Through measurements of ablation depth as a function cf laser pulse energy, the 589nm spectral line in the secondary radiation from ablated skin tissue samples was identified as the signature of the occurrence of ablation. Subsequently, this spectral signature has been used to investigate the probabilistic process of the ablation near the threshold at the four wavelengths. Measurements of the ablation probability were conducted as a function of the electrical field strength of the laser pulse and the ablation thresholds in a wide spectral range from 1064nm to 213nm were determined. Histology analysis and an optical transmission method were applied in assessing of the ablation depth per pulse to study the ablation process at irradiance levels higher than threshold. Because more than 70% of the wet weight of the skin tissue is water, optical breakdown and backscattering in water was also investigated along with a nonlinear refraction index measurement using a z-scan technique. Preliminary studies on ablation of a gelatin based tissue phantom are also reported. The current theoretical models describing ablation of soft tissue ablation by short laser pulses were critically reviewed. Since none of the existing models was found capable of explaining the experimental results, a new plasma-mediated model was developed

  14. Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Xu, D. A.; Shneider, M. N.; Lacoste, D. A.; Laux, C. O.

    2014-06-01

    We present quantitative schlieren measurements and numerical analyses of the thermal and hydrodynamic effects of a nanosecond repetitively pulsed (NRP) discharge in atmospheric pressure air at 300 and 1000 K. The plasma is created by voltage pulses at an amplitude of 10 kV and a duration of 10 ns, applied at a frequency of 1-10 kHz between two pin electrodes separated by 2 or 4 mm. The electrical energy of each pulse is of the order of 1 mJ. We recorded single-shot schlieren images starting from 50 ns to 3 µs after the discharge. The time-resolved images show the shock-wave propagation and the expansion of the heated gas channel. Gas density profiles simulated in 1D cylindrical coordinates have been used to reconstruct numerical schlieren images for comparison with experimental ones. We propose an original method to determine the initial gas temperature and the fraction of energy transferred into ultrafast gas heating, using a comparison of the contrast profiles obtained from experimental and numerical schlieren images. This method is found to be much more sensitive to these parameters than the direct comparison of measured and predicted shock-wave and heated channel radii. The results show that a significant fraction of the electric energy is converted into gas heating within a few tens of ns. The values range from about 25% at a reduced electric field of 164 Td to about 75% at 270 Td, with a strong dependance on the initial gas temperature. These experiments support the fast heating processes via dissociative quenching of N2(B3 Πg, C3 Πu) by molecular oxygen.

  15. Nanosecond laser ablation for pulsed laser deposition of yttria

    NASA Astrophysics Data System (ADS)

    Sinha, Sucharita

    2013-09-01

    A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

  16. Effects of nanosecond pulse electric fields on cellular elasticity

    PubMed Central

    Dutta, Diganta; Asmar, Anthony; Stacey, Michael

    2015-01-01

    We investigated the effects of a single 60 nanosecond pulsed electric field (nsPEF) of low (15kV/cm) and high (60 kV/cm) field strengths on cellular morphology and membrane elasticity in Jurkat cells using fluorescent microscopy and atomic force microscopy (AFM). We performed force displacement measurements on cells using AFM and calculated the Young’s modulus for membrane elasticity. Differential effects were observed dependent upon pulsing conditions. We found that a single nsPEF of low field strength did not induce any apparent cytoskeletal breakdown and had minor morphological changes. Interestingly, force measurements and calculation of Young’s modulus showed a significant decrease in membrane elasticity. A single nsPEF of high field strength induced stark morphological changes due to disruption of the actin cytoskeleton and a marked decrease in elasticity likely caused by irreversible membrane damage. We suggest that the cellular morphology is mainly dependent on stabilization by the actin cytoskeleton, while the elasticity changes are partially dependent on the cytoskeletal integrity. PMID:25732004

  17. An investigation into the cumulative breakdown process of polymethylmethacrylate in quasi-uniform electric field under nanosecond pulses

    SciTech Connect

    Zhao, Liang; Cang Su, Jian; Bo Zhang, Xi; Feng Pan, Ya; Min Wang, Li; Peng Fang, Jin; Sun, Xu; Lui, Rui

    2013-08-15

    A group of complete images on the discharge channel developed in PMMA in quasi-uniform electric field under nanosecond pulses are observed with an on-line transmission microscope. The characteristics of the cumulative breakdown process are also generalized, which include initiating from the vicinity of the cathode, developing to the anode with a branch-like shape, and taking on a wormhole appearance when final breakdown occurs. The concluded characteristics are explained by referring to the conceptions of “low density domain” and “free radical” and considering the initial discharge channel as a virtual needle. The characteristics are helpful for designers to enhance the lifetime of insulators employed on a nanosecond time scale.

  18. Nanosecond-pulsed plasma actuation in quiescent air and laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Correale, G.; Michelis, T.; Ragni, D.; Kotsonis, M.; Scarano, F.

    2014-03-01

    An experimental investigation of the working principles of a nanosecond-pulsed dielectric barrier discharge (ns-DBD) plasma actuator has been conducted. Special emphasis is given on the thermal effects accompanying the rapid deposition of energy associated with this kind of actuation. A ns-DBD plasma actuator has been operated in quiescent air conditions as well as in a flat plate laminar boundary layer, with external flow velocity of 5 and 10 m s-1. Schlieren imaging and particle image velocimetry have been used to characterize the actuation. Additionally, the back-current shunt technique has been used for current measurements, from which energy input (per pulse) is calculated. Cases of 10-, 20- and 50-pulse bursts are tested. Schlieren imaging in still air conditions shows the formation of a high-temperature region in the vicinity of the discharge volume. The spatial extent of the visible ‘hot spot’ depends upon the number of pulses within the burst, following a power law. Schlieren imaging of the span-wise effect of the plasma actuator reveals weak compression waves originating from the loci of discharge filaments. The thermal ‘hot spots’ exhibit significant three-dimensionality. Particle image velocimetry is used to measure the velocity field resulting from the ns-DBDs acting on a laminar boundary layer. The disturbance leads to formation of a Tollmien-Schlichting wave train, with spectral content in good agreement with linear stability theory. It is observed that the group length of the wave train is proportional to the number of pulses within the burst.

  19. Bipolar nanosecond electric pulses are less efficient at electropermeabilization and killing cells than monopolar pulses

    PubMed Central

    Ibey, Bennett L.; Ullery, Jody; Pakhomova, Olga N.; Roth, Caleb C.; Semenov, Iurri; Beier, Hope T.; Tarango, Melissa; Xiao, Shu; Schoenbach, Karl; Pakhomov, Andrei G.

    2014-01-01

    Multiple studies have shown that bipolar (BP) electric pulses in the microsecond range are more effective at permeabilizing cells while maintaining similar cell survival rates as compared to monopolar (MP) pulse equivalents. In this paper, we investigated whether the same advantage existed for BP nanosecond-pulsed electric fields (nsPEF) as compared to MP nsPEF. To study permeabilization effectiveness, MP or BP pulses were delivered to single Chinese hamster ovary (CHO) cells and the response of three dyes, Calcium Green-1, Propidium Iodide (PI), and FM1-43, was measured by confocal microscopy. Results show that BP pulses were less effective at increasing intracellular calcium concentration or PI uptake and cause less membrane reorganization (FM1-43) than MP pulses. Twenty-four hour survival was measured in three cell lines (Jurkat, U937, CHO) and over ten times more BP pulses were required to induce death as compared to MP pulses of similar magnitude and duration. Flow cytometry analysis of CHO cells after exposure (15 minutes) revealed that to achieve positive FITC-Annexin V and PI expression, ten times more BP pulses were required than MP pulses. Overall, unlike longer pulse exposures, BP nsPEF exposures proved far less effective at both membrane permeabilization and cell killing than MP nsPEF. PMID:24332942

  20. A high voltage nanosecond pulser with independently adjustable output voltage, pulse width, and pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Carscadden, John; Slobodov, Ilia

    2014-10-01

    Eagle Harbor Technologies (EHT) is developing a high voltage nanosecond pulser capable of generating microwaves and non-equilibrium plasmas for plasma medicine, material science, enhanced combustion, drag reduction, and other research applications. The EHT nanosecond pulser technology is capable of producing high voltage (up to 60 kV) pulses (width 20-500 ns) with fast rise times (<10 ns) at high pulse repetition frequency (adjustable up to 100 kHz) for CW operation. The pulser does not require the use of saturable core magnetics, which allows for the output voltage, pulse width, and pulse repetition frequency to be fully adjustable, enabling researchers to explore non-equilibrium plasmas over a wide range of parameters. A magnetic compression stage can be added to improve the rise time and drive lower impedance loads without sacrificing high pulse repetition frequency operation. Work supported in part by the US Navy under Contract Number N00014-14-P-1055 and the US Air Force under Contract Number FA9550-14-C-0006.

  1. The influence of the repetition rate on the nanosecond pulsed pin-to-pin microdischarges

    NASA Astrophysics Data System (ADS)

    Huang, Bang-Dou; Takashima, Keisuke; Zhu, Xi-Ming; Pu, Yi-Kang

    2014-10-01

    The effect of repetition rate on a nanosecond atmospheric pressure discharge is investigated. The discharge is generated between two pins in a mixture of Ne and Ar. The voltage, current, power waveforms and the temporally and spatially resolved electron density and an ‘effective’ electron temperature are measured, with a pulse interval between 1.5 and 200 µs. It is found that not only does the repetition rate have a strong influence on the breakdown voltage and the peak discharge power, but it can also affect the rise rate of the volume averaged electron density and its peak value. Temporally and spatially resolved measurement of the electron density and the effective electron temperature show that the spatial distributions of both quantities are also influenced by the repetition rate. In the initial discharge period of all cases, the sharp rise of the electron density correlates with the drastic drop of the effective electron temperature. It is suggested that the residual charges have a strong impact on the axial distribution of the electric field and energetic electrons between the electrodes during the breakdown period, as illustrated by a simple sheath model.

  2. Assessment of cytoplasm conductivity by nanosecond pulsed electric fields.

    PubMed

    Denzi, Agnese; Merla, Caterina; Palego, Cristiano; Paffi, Alessandra; Ning, Yaqing; Multari, Caroline R; Cheng, Xuanhong; Apollonio, Francesca; Hwang, James C M; Liberti, Micaela

    2015-06-01

    The aim of this paper is to propose a new method for the better assessment of cytoplasm conductivity, which is critical to the development of electroporation protocols as well as insight into fundamental mechanisms underlying electroporation. For this goal, we propose to use nanosecond electrical pulses to bypass the complication of membrane polarization and a single cell to avoid the complication of the application of the "mixing formulas." Further, by suspending the cell in a low-conductivity medium, it is possible to force most of the sensing current through the cytoplasm for a more direct assessment of its conductivity. For proof of principle, the proposed technique was successfully demonstrated on a Jurkat cell by comparing the measured and modeled currents. The cytoplasm conductivity was best assessed at 0.32 S/m and it is in line with the literature. The cytoplasm conductivity plays a key role in the understanding of the basis mechanism of the electroporation phenomenon, and in particular, a large error in the cytoplasm conductivity determination could result in a correspondingly large error in predicting electroporation. Methods for a good estimation of such parameter become fundamental.

  3. Ultrafast imaging of nanosecond pulse x-ray simulators

    NASA Astrophysics Data System (ADS)

    Smith, Graham W.; George, David S.; Harrison, David; Hill, Stephen; Hohlfelder, Robert J.; Harper-Slaboszewicz, Victor; Gallegos, Roque R.; Ingle, Martin B.; Simpson, Peter

    2008-11-01

    Ultra fast X-ray imaging has been undertaken upon AWE's and Sandia National Laboratories' radiation effects x-ray simulators. These simulators typically yield a single very short (<20ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad (Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The paper highlights the new ULTRA fast framing camera, developed by Photek Ltd. in-conjunction with AWE, which is capable of imaging up to 500 Million frames per second. Unique sequences of time resolved high spatial resolution images, have been captured in the nanosecond timeframe with zero interframe time, of the source x-rays, utilising our novel configurations. Further, a dedicated diagnostic experiment capturing time resolved x-ray phenomenon, utilising a customised streak tomographic technique, with a multi-billion frames per second recording and 2048 frames capture sequence capability, is described. The fundamental principles of our imaging systems can be applied to other visible and x-ray imaging scenarios.

  4. Stratification of the plasma column in transverse nanosecond gas discharges with a hollow cathode

    NASA Astrophysics Data System (ADS)

    Ashurbekov, N. A.; Iminov, K. O.

    2015-10-01

    Electric and optical characteristics and the structure of spatial distribution of optical radiation from a transverse nanosecond discharge with a hollow cathode in inert gases are systematically studied experimentally. It is found that for moderate working gas pressures in nanosecond discharges with extended electrodes, a periodic plasma structure appears in the form of standing strata. The strata formation boundaries and the critical values of the discharge voltage and current are determined from the gas pressure in helium, neon, and argon under experimental conditions. It is found that the most probable mechanisms of strata formation are the direct ionization of atoms by an electron impact and electron drift in an electric field. The smearing of the plasma structure upon an increase in the voltage applied to electrodes is explained by the emergence of accelerated electrons in the discharge gap.

  5. Physical and biological mechanisms of nanosecond- and microsecond-pulsed FE-DBD plasma interaction with biological objects

    NASA Astrophysics Data System (ADS)

    Dobrynin, Danil

    2013-09-01

    Mechanisms of plasma interaction with living tissues and cells can be quite complex, owing to the complexity of both the plasma and the tissue. Thus, unification of all the mechanisms under one umbrella might not be possible. Here, analysis of interaction of floating electrode dielectric barrier discharge (FE-DBD) with living tissues and cells is presented and biological and physical mechanisms are discussed. In physical mechanisms, charged species are identified as the major contributors to the desired effect and a mechanism of this interaction is proposed. Biological mechanisms are also addressed and a hypothesis of plasma selectivity and its effects is offered. Spatially uniform nanosecond and sub-nanosecond short-pulsed dielectric barrier discharge plasmas are gaining popularity in biological and medical applications due to their increased uniformity, lower plasma temperature, lower surface power density, and higher concentration of the active species produced. In this presentation we will compare microsecond pulsed plasmas with nanosecond driven systems and their applications in biology and medicine with specific focus on wound healing and tissue regeneration. Transition from negative to positive streamer will be discussed with proposed hypothesis of uniformity mechanisms of positive streamer and the reduced dependence on morphology and surface chemistry of the second electrode (human body) being treated. Uniform plasma offers a more uniform delivery of active species to the tissue/surface being treated thus leading to better control over the biological results.

  6. Diamondoid synthesis by nanosecond pulsed microplasmas generated in He at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Shizuno, Tomoki; Oshima, Fumito; Pai, David Z.; Terashima, Kazuo

    2012-10-01

    Diamondoids are sp^3 hybridized carbon nanomaterials that possess interesting properties making them attractive for biotechnology, medicine, and opto- and nanoelectronics. So far, larger diamondoids have been synthesized using the smallest diamondoid (adamantane) as a precursor. For this electric discharges and pulsed laser plasmas generated in supercritical fluids, and hot filament chemical vapor deposition have been used, but these methods are difficult to realize or very time-consuming. We have developed a more convenient approach where diamondoids are synthesized by high-voltage nanosecond pulsed microplasmas (voltage 15 kVp-p, frequency 1 Hz, pulse width 10 ns) generated in He at atmospheric pressure using point-to-plane tungsten electrodes. Adamantane was used as a precursor, and synthesis was conducted for 10^5 pulses at gas temperatures of 297, 373 and 473 K. Energy dispersive X-ray and micro-Raman spectroscopy were conducted to determine the composition of the products, and gas chromatography - mass spectra indicated the formation of diamantane. It was found that synthesis is more efficient at room temperature than at higher temperatures, and time-resolved optical emission spectroscopy suggest that the chemical reactions take place in the afterglow.

  7. Damage to dry plasmid DNA induced by nanosecond XUV-laser pulses

    NASA Astrophysics Data System (ADS)

    Nováková, Eva; Davídková, Marie; Vyšín, Ludék; Burian, Tomáš; Grisham, Michael E.; Heinbuch, Scott; Rocca, Jorge J.; Juha, Libor

    2011-06-01

    Ionizing radiation induces a variety of DNA damages including single-strand breaks (SSBs), double-strand breaks (DSBs), abasic sites, modified sugar and bases. Most theoretical and experimental studies have been focused on DNA strand scissions, in particular production of DNA double-strand breaks. DSBs have been proven to be a key damage at a molecular level responsible for the formation of chromosomal aberrations, leading often to cell death. The complexity of lesions produced in DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. We have studied the nature of DNA damage induced directly by the pulsed 46.9 nm radiation provided by a capillary-discharge Ne-like Ar laser (CDL). Different surface doses were delivered with a repetition rate of a few Hz and an average pulse energy ~ 1 μJ. A simple model DNA molecule, i.e., dried closed-circular plasmid DNA (pBR322), was irradiated. The agarose gel electrophoresis method was used for determination of both SSB and DSB yields. Results are compared with a previous study of plasmid DNA irradiated with a single sub-nanosecond 1-keV X-ray pulse produced by a large-scale, double-stream gas puff target, illuminated by sub-kJ, near-infrared (NIR) focused laser pulses at the PALS facility (Prague Asterix Laser System).

  8. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    NASA Astrophysics Data System (ADS)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  9. Coupled gas discharge and pulse circuit analysis

    NASA Astrophysics Data System (ADS)

    von Dadelszen, Michael; Rothe, Dietmar E.

    1991-04-01

    Two examples of the importance of accurate coupling of driving electric circuits to discharge models, when simulating fast pulse discharges, are presented. The first example uses a commercial electric field analysis code, TETRAelf, to simulate a pulsed discharge TEA CO2 laser and demonstrates the value of including displacement current effects in the modeling of the avalanche phase of the discharge. The second example uses a commercial electric circuit analysis package, ECA, to simulate a three-electrode, long-pulse, 2-J, XeCl excimer laser. Both the saturable magnetic cores and the discharge kinetics are included in the simulation. Comparisons are made between the numerical results and experimental data.

  10. Conditions for uniform impact of the plasma of a runaway-electron-induced pulsed diffuse discharge on an anode

    NASA Astrophysics Data System (ADS)

    Erofeev, M. V.; Baksht, E. Kh.; Burachenko, A. G.; Tarasenko, V. F.

    2015-09-01

    The subject matters in this work are (i) the spatial structure of a volume (diffuse) discharge initiated in atmospheric-pressure air in a heavily nonuniform electric field by nanosecond voltage pulses and (ii) the influence of its plasma on the surface of a plane aluminum anode. It is shown that a diffuse discharge initiated by nanosecond voltage pulses makes it possible to uniformly process the anode's surface in atmospheric-pressure air in contrast to a spark discharge, which results in microcracking, locally changes the surface properties, and thereby degrades the surface.

  11. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum

    SciTech Connect

    Xu, Yuntao; Dibble, Collin J.; Petrik, Nikolay G.; Smith, R. Scott; Joly, Alan G.; Tonkyn, Russell G.; Kay, Bruce D.; Kimmel, Greg A.

    2016-04-26

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond timescale in ultrahigh vacuum (UHV). Details of the design, implementation and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ~1010 K/s for temperature increases of ~100 – 200 K are obtained. Subsequent rapid cooling (~5 × 109 K/s) quenches the film, permitting in-situ, post-mortem analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ~ ± 3% leading to a temperature uncertainty of ~ ± 5 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.

  12. Effect of Pulse Length on Engraving Efficiency in Nanosecond Pulsed Laser Engraving of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Manninen, Matti; Hirvimäki, Marika; Poutiainen, Ilkka; Salminen, Antti

    2015-10-01

    Dependency of laser pulse length on the effectiveness of laser engraving 304 stainless steel with nanosecond pulses was investigated. Ytterbium fiber laser with pulse lengths from 4 to 200 ns was used at a constant average power of 20 W. Measured criteria for effective laser engraving were high material removal rate (MRR), good visual quality of the engraved surface, and low processing temperature. MRR was measured by weighing the samples prior and after the engraving process. Visual quality was evaluated from magnified images. Surface temperature of the samples was measured by two laser spot-welded K-type thermocouples near the laser-processed area. It was noticed that MRR increases significantly with longer pulse lengths, while the quality decreases and processing temperature increases. Some peculiar process behavior was noticed. With short pulses (<20 ns), the process temperature steadily increased as the engraving process continued, whereas with longer pulses the process temperature started to decrease after initially jumping to a specific level. From visually analyzing the samples, it was noticed that the melted and resolidified bottom structure had cracks and pores on the surface when 50 ns or longer pulse lengths were used.

  13. Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier

    NASA Astrophysics Data System (ADS)

    Koyama, Mio; Hirose, Tetsuya; Okida, Masahito; Miyamoto, Katsuhiko; Omatsu, Takashige

    2011-07-01

    Nanosecond vortex pulses were generated using a stressed, large-mode-area, Yb-doped, fiber amplifier with an off-axis coupling technique for the first time. A pulse energy of 0.83 mJ (corresponding to a peak power of 59 kW) was achieved at a pump power of 25.7 W. The optical-optical efficiency was measured to be 31%. The millijoule nanosecond vortex pulses will be potentially applied to novel material processing, such as metal microneedle fabrication.

  14. Pulsed Corona Discharge Generated By Marx Generator

    NASA Astrophysics Data System (ADS)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  15. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    NASA Astrophysics Data System (ADS)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  16. Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure

    SciTech Connect

    Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-12-15

    Time- and space-resolved fast framing photography was employed to study the discharge initiated by runaway electrons in air and He gas at atmospheric pressure. Whereas in the both cases, the discharge occurs in a nanosecond time scale and its front propagates with a similar velocity along the cathode-anode gap, the later stages of the discharge differ significantly. In air, the main discharge channels develop and remain in the locations with the strongest field enhancement. In He gas, the first, diode 'gap bridging' stage, is similar to that obtained in air; however, the development of the discharge that follows is dictated by an explosive electron emission from micro-protrusions on the edge of the cathode. These results allow us to draw conclusions regarding the different conductivity of the plasma produced in He and air discharges.

  17. Processes of carbon disulfide degradation under the action of a pulsed corona discharge

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. L.; Filatov, I. E.; Uvarin, V. V.

    2016-08-01

    Experiments on decomposition of carbon disulfide CS2 in air under the action of a pulsed nanosecond corona discharge have been carried out. The energetic efficiency of the degradation amounted to 290-340 g (kW h)-1, which is significantly higher than with the use of a corona discharge at a constant voltage. The main degradation products are sulfur dioxide SO2, carbonyl sulfide COS, sulfuric acid, and carbon dioxide. Processes occurring in pulsed corona discharge plasma and leading to carbon disulfide degradation are considered. Different methods of air purification from carbon disulfide are compared.

  18. Nanosecond pulsed electric fields and the cell cycle

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.

    Exposure to nanosecond pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. The phase of the cell cycle at the time of exposure is linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Additionally, nsPEFs are capable of activating cell cycle checkpoints, which could lead to apoptosis or slow population growth. NsPEFs are emerging as a method for treating tumors via apoptotic induction; therefore, investigating the relevance of nsPEFs and the cell cycle could translate into improved efficacy in tumor treatment. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate the role of cell cycle phase in survival of nsPEFs. CHO populations appeared similar to sham populations post-nsPEFs but exhibited arrest in the G1 phase at 6h after exposure. Jurkat cells exhibited increased cell death after nsPEFs compared to CHO cells but did not exhibit checkpoint arrest at any observed time point. The G1/S phase checkpoint is partially controlled by the action of p53; the lack of an active p53 response in Jurkat cells could contribute to their ability to pass this checkpoint and resist cell cycle arrest. Both cell lines exhibited increased sensitivity to nsPEFs in G2/M phase. Live imaging of CHO cells after nsPEF exposure supports the theory of G1/S phase arrest, as a reduced number of cells undergo mitosis within 24 h when

  19. Experimental study of plume induced by nanosecond repetitively pulsed spark microdischarges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Orriere, Thomas; Benard, Nicolas; Moreau, Eric; Pai, David

    2016-09-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been widely studied due to their high chemical reactivity, low gas temperature, and high ionization efficiency. They are useful in many research areas: nanomaterials synthesis, combustion, and aerodynamic flow control. In all of these fields, particular attention has been devoted to chemical species transport and/or hydrodynamic and thermal effects for applications. The aim of this study is to generate an electro-thermal plume by combining an NRP spark microdischarge in a pin-to-pin configuration with a third DC-biased electrode placed a few centimeters away. First, electrical characterization and optical emission spectroscopy were performed to reveal important plasma processes. Second, particle image velocimetry was combined with schlieren photography to investigate the main characteristics of the generated flow. Heating processes are measured by using the N2(C ->B) (0,2) and (1,3) vibrational bands, and effects due to the confinement of the discharge are described. Moreover, the presence of atomic ions N+ and O+ is discussed. Finally, the electro-thermal plume structure is characterized by a flow velocity around 1.8 m.s-1, and the thermal kernel has a spheroidal shape.

  20. Supershort avalanche electron beams and x-ray in high-pressure nanosecond discharges

    NASA Astrophysics Data System (ADS)

    Tarasenko, V.

    2008-07-01

    Since 2003, an interest to investigation of e-beams generation in gas-filled diodes with high pressures has been rekindled. In 2005, the advanced recording methods of electron beams and the use of digital oscilloscopes with wide bandwidth provided the measurements of the beam current duration with time resolution of sim 100 ps. In this paper, the recent measurement results on duration and amplitude of a beam, generated at a nanosecond discharge in different gases have been summarized (Tarasenko et al. 2005, Baksht et al. 2007, Tarasenko et al. 2008). Voltage pulses sim 25, sim 150 and sim 250 kV in amplitude were applied to the gas gap with inhomogeneous electric field. It is presented that the current of supershort avalanche electrons beam (SAEB) recording through a area with a small diameter the pulse duration behind a foil from the gas diode with air at atmospheric pressure is no more than 90 ps. For recording, the pulse shape it is necessary to use a small-sized coaxial collector, loaded to a high-frequency cable, and the same collector is used for taking the charge density distribution over the foil surface in order to determine the SAEB amplitude. The electron distribution over the foil section should be compared with a per pulse distribution. In these experiments, we have compared the distributions obtained per pulse on a RF-3 and luminophore films, placed behind a foil. Besides that, intensity distribution of X-ray radiation at the gas diode output was recorded by using a multi-channel detection device based on microstrip arsenide-gallium detectors of ionizing radiation. An analysis of those data shows that at the beam current duration (FWHM) of sim 90 ps the beam current amplitude behind the 10- mu m thickness Al-foil at atmospheric pressure of air is sim 50 A. Discharge formation and SAEB generation in sulfur hexafluoride and xenon at pressure of 0.01-2.5 atm and helium of 10^-4 - 12 atm have been investigated. The beam of runaway electrons behind 45 mu m

  1. Compact nanosecond pulsed power technology with applications to biomedical engineering, biology, and medicine

    NASA Astrophysics Data System (ADS)

    Gu, Xianyue

    Pulsed power refers to a technology that is suited to drive applications requiring very large power pulses in short bursts. Its recent emerging applications in biology demand compact systems with high voltage electric pulses in nanosecond time range. The required performance of a pulsed power system is enabled by the combined efforts in its design at three levels: efficient and robust devices at the component level, novel circuits and architecture at the system level, and effective interface techniques to deliver fast pulses at the application level. At the component level we are concerned with the power capability of switches and the energy storage density of capacitors. We compare semiconductor materials - Si, GaAs, GaN and SiC - for high voltage, high current, fast FET-type switches, and study the effects of their intrinsic defects on electrical characteristics. We present the fabrication of BST film capacitors on silicon substrates by pulsed laser deposition, and investigate their potential application to high voltage, high energy density capacitors. At the system level, a nanosecond pulse generator is developed for electroperturbation of biological cells. We model and design a Blumlein PFN (Pulse Forming Network) to deliver nanosecond pulses to a cuvette load. The resonant circuit employs four parallel 100 A MOSFET switches and charges the PFN to 8 kV within 350 ns. At the application level, in order to controllably deliver nanosecond electric pulses into tumors, we have designed, fabricated, and tested impulse catheter devices. Frequency responds, breakdown voltages and effective volumes of catheters are evaluated. With comparison of simulation and experimental results, we further develop dielectric dispersion models for RPMI. This thesis presents a set of strongly interdisciplinary studies based on pulsed power technology and towards biomedical applications. Addressed issues include from fundamental materials studies to application engineering designs that

  2. A Nanosecond Pulsed Plasma Brush for Surface Decontamination

    NASA Astrophysics Data System (ADS)

    Neuber, Johanna; Malik, Muhammad; Song, Shutong; Jiang, Chunqi

    2015-11-01

    This work optimizes a non-thermal, atmospheric pressure plasma brush for surface decontamination. The generated plasma plumes with a maximum length of 2 cm are arranged in a 5 cm long, brush-like array. The plasma was generated in ambient air with <= 10 kV, 200 ns pulses at a repetition rate of 1.5 kHz. The energy per pulse and average power are in the range of 1-3 mJ and 0.5-1.5 W, respectively. Helium containing varying concentrations of water vapor was evaluated as the carrier gas and was fed into the plasma chamber at a rate varying between 1 to 7 SLPM. Optimization of the cold plasma brush for surface decontamination was tested in a study of the plasma inactivation of two common pathogens, Staphylococcus aureus and Acinetobacter baumannii. Laminate surfaces inoculated with over-night cultured bacteria were subject to the plasma treatment for varying water concentrations in He, flow rates and discharge voltages. It was found that increasing the water content of the feed gas greatly enhanced the bactericidal effect. Emission spectroscopy was performed to identify the reactive plasma species that contribute to this variation. Additional affiliation: Frank Reidy Research Center for Bioelectrics

  3. Intense Nanosecond-Pulsed Cavity-Dumped Laser Radiation at 1.04 THz

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas

    2013-03-01

    We report first results of intense far-infrared (FIR) nanosecond-pulsed laser radiation at 1.04 THz from a previously described[2] cavity-dumped, optically-pumped molecular gas laser. The gain medium, methyl fluoride, is pumped by the 9R20 line of a TEA CO2 laser[3] with a pulse energy of 200 mJ. The THz laser pulses contain of 30 kW peak power in 5 nanosecond pulse widths at a pulse repetition rate of 10 Hz. The line width, measured by a scanning metal-mesh FIR Fabry-Perot interferometer, is 100 MHz. The novel THz laser is being used in experiments to resonantly excite coherent ns-pulsed 1.04 THz longitudinal acoustic phonons in silicon doping-superlattices. The research is supported by NASA EPSCoR NNX11AM04A and AFOSR FA9550-12-1-0100 awards.

  4. An uniform DBD plasma excited by bipolar nanosecond pulse using wire-cylinder electrode configuration in atmospheric air.

    PubMed

    Jiang, Peng-Chao; Wang, Wen-Chun; Zhang, Shuai; Jia, Li; Yang, De-Zheng; Tang, Kai; Liu, Zhi-Jie

    2014-03-25

    In this study, a bipolar nanosecond pulsed power supply with 15 ns rising time is employed to generate an uniform dielectric barrier discharge using the wire-cylinder electrode configuration in atmospheric air. The images, waveforms of pulse voltage and discharge current, and the optical emission spectra of the discharges are recorded. The rotational and vibrational temperatures of plasma are determined by comparing the simulated spectra with the experimental spectra. The effects of pulse peak voltage, pulse repetition rate and quartz tube diameter on the emission intensities of N2 (C(3)Πu→B(3)Πg, 0-0) and N2(+)B(2)Σu(+)→X(2)Σg(+),0-0 and the rotational and vibrational temperatures have been investigated. It is found that the uniform plasma with low gas temperature can be obtained, and the emission intensities of N2 (C(3)Πu→B(3)Πg, 0-0) and N2(+)B(2)Σu(+)→X(2)Σg(+),0-0 rise with increasing the pulse peak voltage and pulse repetition rate, while decrease as the increase of quartz tube diameter. In addition, under the condition of 28 kV pulse peak voltage, 150 Hz pulse repetition rate and 7 mm quartz tube diameter, the plasma gas temperature is determined to be 330 K. The results also indicate that the plasma gas temperature keep almost constant when increasing the pulse peak voltage and pulse repetition rate but increase with the increase of the quartz tube diameter.

  5. Investigation of capillary nanosecond discharges in air at moderate pressure: comparison of experiments and 2D numerical modelling

    NASA Astrophysics Data System (ADS)

    Klochko, Andrei V.; Starikovskaia, Svetlana M.; Xiong, Zhongmin; Kushner, Mark J.

    2014-09-01

    Nanosecond electrical discharges in the form of ionization waves are of interest for rapidly ionizing and exciting complex gas mixtures to initiate chemical reactions. Operating with a small discharge tube diameter can significantly increase the specific energy deposition and so enable optimization of the initiation process. Analysis of the uniformity of energy release in small diameter capillary tubes will aid in this optimization. In this paper, results for the experimentally derived characteristics of nanosecond capillary discharges in air at moderate pressure are presented and compared with results from a two-dimensional model. The quartz capillary tube, having inner and outer diameters of 1.5 and 3.4 mm, is about 80 mm long and filled with synthetic dry air at 27 mbar. The capillary tube with two electrodes at the ends is inserted into a break of the central wire of a long coaxial cable. A metal screen around the tube is connected to the cable ground shield. The discharge is driven by a 19 kV 35 ns voltage pulse applied to the powered electrode. The experimental measurements are conducted primarily by using a calibrated capacitive probe and back current shunts. The numerical modelling focuses on the fast ionization wave (FIW) and the plasma properties in the immediate afterglow after the conductive plasma channel has been established between the two electrodes. The FIW produces a highly focused region of electric field on the tube axis that sustains the ionization wave that eventually bridges the electrode gap. Results from the model predict FIW propagation speed and current rise time that agree with the experiment.

  6. Note: Liquid chemical sensing by emission spectroscopy with a nanosecond pin-hole discharge in water.

    PubMed

    Xia, H; Yang, Y

    2015-01-01

    This paper presents a simple yet effective method for chemical detection by emission spectroscopy using a nanosecond pin-hole discharge in water. The discharge was produced in a 200-μm-diameter microchannel in water without electrode contact. The simultaneous detection of multiple mineral ions was demonstrated by measuring the intensity of Na and Ca emission lines at different concentrations. The device can be further scaled down to be integrated with microfluidic systems for monitoring water contamination or hazardous materials in other aqueous solutions.

  7. Dynamics of a wire-to-cylinder atmospheric pressure high-voltage nanosecond discharge

    SciTech Connect

    Levko, Dmitry; Raja, Laxminarayan L.

    2015-08-15

    The dynamics of a wire-to-cylinder atmospheric pressure high-voltage nanosecond discharge is studied by the one-dimensional Particle-in-Cell Monte Carlo collisions model in cylindrical coordinates. The x-ray photons emitted from the anode are found to be inconsequential to the generation of dense plasma in the gap. Rather, the electron impact ionization resulting from acceleration of naturally occurring background electrons in the discharge gap are enough to explain the generation of high-density (∼10{sup 15 }cm{sup −3}) non-equilibrium plasma. The influence of the high-voltage rise time on the plasma parameters is discussed.

  8. Device for generation of pulsed corona discharge

    SciTech Connect

    Gutsol, Alexander F; Fridman, Alexander; Blank, Kenneth; Korobtsev, Sergey; Shiryaevsky, Valery; Medvedev, Dmitry

    2012-05-08

    The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

  9. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  10. Nanosecond responses of proteins to ultra-high temperature pulses.

    PubMed

    Steel, Bradley C; McKenzie, David R; Bilek, Marcela M M; Nosworthy, Neil J; dos Remedios, Cristobal G

    2006-09-15

    Observations of fast unfolding events in proteins are typically restricted to <100 degrees C. We use a novel apparatus to heat and cool enzymes within tens of nanoseconds to temperatures well in excess of the boiling point. The nanosecond temperature spikes are too fast to allow water to boil but can affect protein function. Spikes of 174 degrees C for catalase and approximately 290 degrees C for horseradish peroxidase are required to produce irreversible loss of enzyme activity. Similar temperature spikes have no effect when restricted to 100 degrees C or below. These results indicate that the "speed limit" for the thermal unfolding of large proteins is shorter than 10(-8) s. The unfolding rate at high temperature is consistent with extrapolation of low temperature rates over 12 orders of magnitude using the Arrhenius relation.

  11. The design of nanosecond high-voltage ultra wide band bipolar pulse generator

    NASA Astrophysics Data System (ADS)

    Shi, Jincheng; Liu, Baiyu; Gou, Yongsheng

    2015-10-01

    The design of nanosecond high-voltage ultra wide band bipolar pulse generator is shown in this paper. By analyzing the principle of the avalanche diode and doing the research of the related circuit acting on the pulse, this generator can generate a nanosecond high-voltage ultra wide band bipolar pulse, which its peak-to-peak voltage is about 400V and the pulse time width is 2ns. The experimental results showed a good agreement with the simulation results. A negative unipolar high-voltage pulse, having a fast falling-edge and a slowly exponential rising-edge, was firstly generated by the MARX circuit consist of the avalanche diodes. Then the use of the high speed avalanche diode could generate a negative unipolar high-voltage narrow Gaussian pulse, having a fast falling-edge and a fast rising-edge. In an attempt to cancel the reflection of the pulse made by the impedance mismatch, the circuit introduced the capacitor(C) and inductor(L) by calculating. Eventually a nanosecond high-voltage ultra wide band bipolar pulse could be got after going through the differentiator consist of introducing the right resistance, capacitance and inductance by calculation and experiment, and a filter with 2GHz bandwidth makes the bipolar smooth and perfect.

  12. Formation of carbon nanoparticle using Ar+CH4 high pressure nanosecond discharges

    NASA Astrophysics Data System (ADS)

    Koga, K.; Dong, X.; Iwashita, S.; Czarnetzki, U.; Shiratani, M.

    2014-06-01

    We have studied formation of carbon nanoparticles using Ar+CH4 high pressure nanosecond discharge non-thermal plasmas. Transition pressure from uniform glow discharges to filamentary ones was clarified to obtain conditions under which uniform glow discharges are sustained. We have produced nanoparticles using the glow discharges, and then we have collected nanoparticles on the grounded electrode by the filtered vacuum collection method. Size distribution analysis reveals that the CH4 concentration is an important parameter in controlling nanoparticle growth. We have also studied film deposition on the powered electrode and the grounded electrode. The deposition rate on the powered electrode is 7 times higher than that on the grounded electrode. Optical emission observations suggest that radical generation rate near the powered electrode is twice higher than that near the grounded electrode, leading to high deposition rate on the powered electrode.

  13. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Dibble, Collin J.; Petrik, Nikolay G.; Smith, R. Scott; Joly, Alan G.; Tonkyn, Russell G.; Kay, Bruce D.; Kimmel, Greg A.

    2016-04-01

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ˜1010 K/s for temperature increases of ˜100-200 K are obtained. Subsequent rapid cooling (˜5 × 109 K/s) quenches the film, permitting in-situ, post-heating analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ˜±2.7% leading to a temperature uncertainty of ˜±4.4 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.

  14. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    SciTech Connect

    Krastelev, E. G. Sedin, A. A.; Tugushev, V. I.

    2015-12-15

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.

  15. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    NASA Astrophysics Data System (ADS)

    Krastelev, E. G.; Sedin, A. A.; Tugushev, V. I.

    2015-12-01

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80-90 ns, and a pulse repetition rate of up to 16 Hz.

  16. Plasma in a Pulsed Discharge Environment

    NASA Technical Reports Server (NTRS)

    Remy, J.; Bienier, L.; Salama, F.

    2005-01-01

    The plasma generated in a pulsed slit discharge nozzle is used to form molecular ions in an astrophysically relevant environment. The plasma has been characterized as a glow discharge in the abnormal regime. Laboratory studies help understand the formation processes of polycyclic aromatic hydrocarbon (PAH) ions that are thought to be the source of the ubiquitous unidentified infrared bands.

  17. Explosive boiling of metals upon irradiation by a nanosecond laser pulse

    SciTech Connect

    Mazhukin, V I; Demin, M M; Shapranov, A V; Samokhin, A A

    2014-04-28

    A repeated effect of explosive boiling has been found in metals exposed to a nanosecond laser pulse in the framework of molecular dynamic simulations combined with a continuum description of a conduction band electrons system. This effect can be used, in particular, as a marker of approaching critical parameters of the region in the irradiated matter. (letters)

  18. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  19. Numerical simulation of nanosecond pulsed DBD in lean methane-air mixture for typical conditions in internal engines

    NASA Astrophysics Data System (ADS)

    Takana, Hidemasa; Nishiyama, Hideya

    2014-06-01

    Detailed two-dimensional numerical simulations of a high energy loading nanosecond dc pulse DBD in a lean methane-air mixture were conducted for plasma-assisted combustion by integrating individual models of plasma chemistry, photoionization and energy loading. The DBD streamer propagation process with radical productions was clarified at 10 atm and 600 K as under the condition of actual internal engines at ignition. Energy is loaded to the streamer first by the formation of plasma channel and then ceased due to the self-shielding effect. Because of the inversed electric field in a discharge space during decrease in applied voltage, energy is loaded to the discharge again. It was found that higher energy is loaded to the DBD streamer for larger dielectric constant even at lower applied voltage, and higher number density of oxygen radical is produced at almost the same radical production efficiency.

  20. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    NASA Astrophysics Data System (ADS)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  1. Permeabilization of yeast Saccharomyces cerevisiae cell walls using nanosecond high power electrical pulses

    NASA Astrophysics Data System (ADS)

    Stirke, A.; Zimkus, A.; Balevicius, S.; Stankevic, V.; Ramanaviciene, A.; Ramanavicius, A.; Zurauskiene, N.

    2014-12-01

    The electrical field-induced changes of the yeast Saccharomyces cerevisiae cells permeabilization to tetraphenylphosphonium (TPP+) ions were studied using square-shaped, nanosecond duration high power electrical pulses. It was obtained that pulses having durations ranging from 10 ns to 60 ns, and generating electric field strengths up to 190 kV/cm significantly (up to 65 times) increase the absorption rate of TPP+ ions without any detectible influence on the yeast cell viability. The modelling of the TPP+ absorption process using a second order rate equation demonstrates that depending on the duration of the pulses, yeast cell clusters of different sizes are homogeniously permeabilized. It was concluded, that nanosecond pulse-induced permeabilization can be applied to increase the operational speed of whole cell biosensors.

  2. OES characterization of streamers in a nanosecond pulsed SDBD using N2 and Ar transitions

    NASA Astrophysics Data System (ADS)

    Goekce, S.; Peschke, P.; Hollenstein, Ch; Leyland, P.; Ott, P.

    2016-08-01

    The characterization of non-thermal homogeneous plasmas is possible using optical emission spectroscopy (OES), notably by estimating the reduced electric field. This method was applied to characterize streamers generated by a nanosecond pulsed surface dielectric barrier discharge (SDBD) operated in quiescent air at atmospheric pressure and also at 0.5 atm. The average reduced electric field associated with the surface streamers was determined using four different sets of transitions occurring in air plasmas, the first negative system (FNS) of \\text{N}2+ , the first positive system (FPS) and second positive system (SPS) of {{\\text{N}}2} and argon transitions 2{{p}x}-1{{s}y} . The analysis of the results allowed to critically assess the validity of the estimated reduced electric field for the present conditions. It is shown experimentally that the inhomogeneous nature of the streamer head influences significantly the estimation of the reduced electric field. Moreover, the estimated reduced electric field is not sufficient to characterize the processes taking place in the streamer head, due to the steep variation of both the reduced electric field E/N and the electron density n e in space and time. To overcome this limitation, a new method is proposed to take into account the spatial structure of a streamer head. The applicability of the new method is demonstrated for these experimental conditions and shows a very good agreement for the transitions tested.

  3. Optical gain in Si/SiO2 lattice: Experimental evidence with nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Khriachtchev, Leonid; Räsänen, Markku; Novikov, Sergei; Sinkkonen, Juha

    2001-08-01

    Experimental evidence of population inversion and amplified spontaneous emission was found for Si nanocrystallites embedded in SiO2 surrounding under pumping with 5 ns light pulses at 380, 400, and 500 nm. As an important property, our experiments show a short lifetime of the population inversion allowing a generation of short (a few nanosecond) amplified light pulses in the Si/SiO2 lattice. The estimate for optical gain in the present samples is 6 cm-1 at 720 nm.

  4. Interaction Of CO2 Laser Nanosecond Pulse Train With The Metallic Targets In Optical Breakdown Regime

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Firsov, K. N.; Konov, V. I.; Nikitin, P. I.; Prokhorov, A. M.; Silenok, A. S.; Sorochenko, V. R.

    1986-11-01

    In the present paper the electric field and currents in the air-breakdown plasma, produced by the train of nanosecond pulses of TEA-002 - regenerative amplifier near the un-charged targets are studied. The breakdown thresholds and the efficiency of plasma-target heat transmission are also measured. The results of numerical calculations made for increasing of the pulse train contrast with respect to the background in a regenerative amplifier are advanced.

  5. An IGBT-based High Voltage, Variable Pulse Width Nanosecond Pulser for Plasma Creation Applications

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Carscadden, John

    2013-10-01

    Eagle Harbor Technologies (EHT) has developed a modular solid state power supply based on IGBT technology, which can support a wide array of applications. The EHT Integrated Power Module (IPM) incorporates fast gate drive technology, high voltage isolation (~30 kV), fiber optic control, and optional crowbar diodes into a single unit. The EHT IPM can be configured to produce variable pulsed width (20 to 1000 ns), high voltage (>20 kV) high repetition frequency (2 MHz) nanosecond pulser. Nanosecond pulser applications include plasma creation for drag reduction, medical applications, water decontamination, fuel mixing and control of flue gas emissions.

  6. Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings.

    PubMed

    Wei, Chaoyang; Shao, Jianda; He, Hongbo; Yi, Kui; Fan, Zhengxiu

    2008-03-03

    A model of plasma formation for UV nanosecond pulse-laser interaction with SiO(2) thin film based on nanoabsorber is proposed. The formalism considered the temperature dependence of band gap. The numerical results show that during the process of nanosecond pulsed-laser interaction with SiO(2) films, foreign inclusion absorbing a fraction of incident radiation heats the surrounding host material through heat conduction causing the decrease of the band gap and making the initial transparent matrix into an absorptive medium around the inclusion. During the remainder pulse, the abosorbing volume of the host material is effectively growed and lead to the formation of the damage craters. We investigated the experimental damage craters and compared with theoretical prediction. The pulselength dependence of damage threshold was also investigated.

  7. Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells

    PubMed Central

    Rettenmaier, Alexander; Lenarz, Thomas; Reuter, Günter

    2014-01-01

    Optical stimulation of the inner ear has recently attracted attention, suggesting a higher frequency resolution compared to electrical cochlear implants due to its high spatial stimulation selectivity. Although the feasibility of the effect is shown in multiple in vivo experiments, the stimulation mechanism remains open to discussion. Here we investigate in single-cell measurements the reaction of spiral ganglion neurons and model cells to irradiation with a nanosecond-pulsed laser beam over a broad wavelength range from 420 nm up to 1950 nm using the patch clamp technique. Cell reactions were wavelength- and pulse-energy-dependent but too small to elicit action potentials in the investigated spiral ganglion neurons. As the applied radiant exposure was much higher than the reported threshold for in vivo experiments in the same laser regime, we conclude that in a stimulation paradigm with nanosecond-pulses, direct neuronal stimulation is not the main cause of optical cochlea stimulation. PMID:24761285

  8. Experimental study of pulsed corona discharge in air at high pressures

    NASA Astrophysics Data System (ADS)

    Lin, Yunghsu; Singleton, Dan; Sanders, Jason; Kuthi, Andras; Gundersen, Martin A.

    2012-10-01

    Understanding of the dynamics of nanosecond scale pulse discharges in air at multiatmospheric pressure is essential for the development of transient plasma enhanced combustion in internal combustion engines. Here we report the result of our experimental investigation of cathode-directed streamer discharges in synthetic air at pressures ranging from 1 to 20 bar. Two pulse generators with maximum pulse amplitudes of 50 kV and 65 kV, pulse width of approximately 12 ns and 85 ns and pulse rise times of 5 ns and 50 ns are used to generate streamers. The electrodes are coaxial with various radial gaps up to 11.75 mm. The discharge chamber is evacuated and backfilled with synthetic dry air at room temperature. Optical data is obtained from PI-MAX 3 ICCD camera with 3 ns gate width. The streamer propagation velocity variation with applied voltage, different pressures and reduced electric field, E/P, will be shown. Preliminary results indicate that the (pd) similarity law is violated at high pressures in agreement with other recent experiments [1].[4pt] [1] ``Nanosecond Scale Discharge Dynamics in High Pressure Air,'' Pierre Tardiveau, Nicolas Moreau, Francois Jorand, Christian Postel, St'ephane Pasquiers, and Pierre Vervisch, IEEE Trans. on Plasma Sci., Vol. 36, No. 4, 2008.

  9. Capillary underwater discharges in repetitive pulse regime

    NASA Astrophysics Data System (ADS)

    de Baerdemaeker, F.; Monte, M.; Leys, C.

    2004-03-01

    In this study a capillary underwater discharge, that is sustained with AC (50 Hz) voltages up to 7.5 kV, is investigated. In a capillary discharge scheme, the current is, at some point along its path between two submerged electrodes, flowing through a narrow elongated bore in a dielectric material. When the current density is sufficiently high, local boiling and subsequent vapour breakdown results in the formation of a plasma within this capillary. At the same time the capillary emits an intense jet of vapour bubbles. Time-dependent electrical current, voltage and light emission curves are recorded for discharges in solutions of NaCl in distilled water and reveal different discharge regimes, depending on the conductivity and the excitation voltage, ranging from repetitive microsecond discharge pulses to a quasi-continuous discharge with a glow-like voltage-current characteristic.

  10. Mechanisms of deflagration-to-detonation transition under initiation by high-voltage nanosecond discharges

    SciTech Connect

    Rakitin, Aleksandr E.; Starikovskii, Andrei Yu.

    2008-10-15

    An experimental study of detonation initiation in a stoichiometric propane-oxygen mixture by a high-voltage nanosecond gas discharge was performed in a detonation tube with a single-cell discharge chamber. The discharge study performed in this geometry showed that three modes of discharge development were realized under the experimental conditions: a spark mode with high-temperature channel formation, a streamer mode with nonuniform gas excitation, and a transient mode. Under spark and transient initiation, simultaneous ignition inside the discharge channel occurred, forming a shock wave and leading to a conventional deflagration-to-detonation transition (DDT) via an adiabatic explosion. The DDT length and time at 1 bar of initial pressure in the square smooth tube with a 20-mm transverse size amounted to 50 mm and 50{mu}s, respectively. The streamer mode of discharge development at an initial pressure of 1 bar resulted in nonuniform mixture excitation and a successful DDT via a gradient mechanism, which was confirmed by high-speed time resolved ICCD imaging. The gradient mechanism implied a longer DDT time of 150{mu}s, a DDT run-up distance of 50 mm, and an initiation energy of 1 J, which is two orders of magnitude less than the direct initiation energy for a planar detonation under these conditions. (author)

  11. Spectroscopic Investigation of a Dielectric Barrier Discharge Over a Wide Range of Pulse Parameters

    NASA Astrophysics Data System (ADS)

    Picard, Julian; Prager, James; Ziemba, Timothy; Miller, Kenneth E.; Hashim, Akel

    2015-09-01

    Most high voltage pulser used to drive dielectric barrier discharges (DBDs), produce a single pulse shape (width and voltage), thus making it challenging to assess the effect of pulse shape on the production of different chemical species during a discharge. Eagle Harbor Technologies (EHT), Inc. has developed a nanosecond pulser that allows for independent control of the output voltage, pulse width, and pulse repetition frequency. Through the utilization of this technology, presented here is a precise characterization of reactive species generated by the DBD under the independent variation of voltage (0-20 kV), frequency (0-20 kHz) and pulse width (20-260 ns). A better understanding of this parameter dependency can allow for more targeted and effective application of plasma in medical, environmental, industrial, and other applications.

  12. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  13. Ion transport into cells exposed to monopolar and bipolar nanosecond pulses.

    PubMed

    Schoenbach, Karl H; Pakhomov, Andrei G; Semenov, Iurii; Xiao, Shu; Pakhomova, Olga N; Ibey, Bennett L

    2015-06-01

    Experiments with CHO cells exposed to 60 and 300 ns pulsed electric fields with amplitudes in the range from several kV/cm to tens of kV/cm showed a decrease of the uptake of calcium ions by more than an order of magnitude when, immediately after a first pulse, a second one of opposite polarity was applied. This effect is assumed to be due to the reversal of the electrophoretic transport of ions through the electroporated membrane during the second phase of the bipolar pulse. This assumption, however, is only valid if electrophoresis is the dominant transport mechanism, rather than diffusion. Comparison of calculated calcium ion currents with experimental results showed that for nanosecond pulses, electrophoresis is at least as important as diffusion. By delaying the second pulse with respect to the first one, the effect of reverse electrophoresis is reduced. Consequently, separating nanosecond pulses of opposite polarity by up to approximately hundred microseconds allows us to vary the uptake of ions from very small values to those obtained with two pulses of the same polarity. The measured calcium ion uptake obtained with bipolar pulses also allowed us to determine the membrane pore recovery time. The calculated recovery time constants are on the order of 10 μs.

  14. Ion transport into cells exposed to monopolar and bipolar nanosecond pulses

    PubMed Central

    Schoenbach, Karl H.; Pakhomov, Andrei G.; Semenov, Iurii; Xiao, Shu; Pakhomova, Olga N.; Ibey, Bennet L.

    2014-01-01

    Experiments with CHO cells exposed to 60 and 300 ns pulsed electric fields with amplitudes in the range from several kV/cm to tens of kV/cm, showed a decrease of the uptake of calcium ions by more than an order of magnitude when, immediately after a first pulse, a second one of opposite polarity was applied. This effect is assumed to be due to the reversal of the electrophoretic transport of ions through the electroporated membrane during the second phase of the bipolar pulse. This assumption, however, is only valid if electrophoresis is the dominant transport mechanism, rather than diffusion. Comparison of calculated calcium ion currents with experimental results showed that for nanosecond pulses, electrophoresis is at least as important as diffusion. By delaying the second pulse with respect to the first one, the effect of reverse electrophoresis is reduced. Consequently, separating nanosecond pulses of opposite polarity by up to approximately hundred microseconds allows us to vary the uptake of ions from very small values to that obtained with two pulses of the same polarity. The measured calcium ion uptake obtained with bipolar pulses also allowed us to determine the membrane pore recovery time. The calculated recovery time constants are on the order of ten microseconds. PMID:25212701

  15. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    NASA Astrophysics Data System (ADS)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  16. OH Production Enhancement in Bubbling Pulsed Discharges

    SciTech Connect

    Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut; Chiru, Petrica; Zaroschi, Valentin; Lungu, Ana M.; Saito, Nagahiro; Bratescu, Maria; Takai, Osamu; Velea, Theodor; Predica, Vasile

    2010-10-13

    The generation of active species, such as H{sub 2}O{sub 2}, O{sup *}, OH*, HO{sub 2}*, O{sub 3}, N{sub 2}{sup *}, etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active species were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).

  17. A Single Pulse Sub-Nanosecond Proton RFQ

    SciTech Connect

    Hamm, R W; Pearce-Percy, H; Pearson, D; Rougieri, M; Weir, J; Zografos, A; Guethlein, G; Hawkins, S; Falabella, S; Poole, B; Blackfield, D

    2011-03-29

    A Radio Frequency Quadrupole (RFQ) linac system has been developed to provide a single pulse of 2 MeV protons with a beam pulse width of {approx}300 ps and a charge of 30 pC, either for injection into a pulsed Dielectric Wall Accelerator or for bombardment of a target to produce a fast neutron pulse. The 1.2 m long RFQ structure operates at 425 MHz and bunches and accelerates a single 2.35 ns beam pulse injected into it at 35 keV using a parallel plate deflector placed directly in front of the RFQ entrance. The input acceptance properties of the RFQ allow a simple dc bias voltage on the plates to block acceleration of the unwanted beam, with a short rf voltage pulse applied to null the deflection field for the ions within the 8 mm 'kicker' plate length. The use of the RFQ as the accelerating structure allows one to efficiently produce a large charge in a single sub-ns bunch. In addition, the kicker can also be used without the dc bias voltage to produce a 'notch' in the normal RFQ output beam for synchrotron injection.

  18. Low-dielectric layer increases nanosecond electric discharges in distilled water

    NASA Astrophysics Data System (ADS)

    Hamdan, Ahmad; Cha, Min Suk

    2016-10-01

    Electric discharge in liquids is an emerging field of research, and is involved into various environmental applications (water purification, fuel reforming, nanomaterial synthesis, etc.). Increasing the treatment efficiency with simultaneous decreasing of the energy consumption are the main goals of today's research. Here we present an experimental study of nanosecond discharge in distilled water covered by a layer of dielectric material. We demonstrate through this paper that the discharge efficiency can be improved by changing the interface position regarding the anode tip. The efficiency increase is due to the increase of the discharge probability as well as the plasma volume. The understanding of the experimental results is brought and strengthened by simulating the electric field distribution, using Comsol Multiphysics software. Because the dielectric permittivity ( ɛ ) is discontinuous at the interface, the electric field is enhanced by a factor that depends on the relative value of ɛ of the two liquids. The present result is very promising in future: opportunities for potential applications as well as fundamental studies for discharges in liquid.

  19. Experimental method to quantify the efficiency of the first two operational stages of nanosecond dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Correale, G.; Avallone, F.; Starikovskiy, A. Yu

    2016-12-01

    A method to quantify the efficiency of the first two operational stages of a nanosecond dielectric barrier discharge (ns-DBD) plasma actuator is proposed. The method is based on the independent measurements of the energy of electrical pulses and the useful part of the energy which heats up the gas in the discharge region. Energy input is calculated via a back current shunt technique as the difference between the energy given and the energy reflected back. The ratio of the difference of the latter two quantities and the energy input gives the electrical efficiency (η E) of a ns-DBD. The extent of the energy deposited is estimated via Schlieren visualizations and infrared thermography measurements. Then, the ideal power flux obtained if all the inputted energy was converted into heat is calculated. Transient surface temperature was measured via infrared thermography and used to solve a 1D inverse heat transfer problem in a direction normal to the surface. It gives as output the actual power flux. The estimated ratio between the two power fluxes represents a quantification of the mechanical fluid efficiency (η FM) of a ns-DBD plasma actuator. Results show an inverse proportionality between η E, and η FM, and the thickness of the barrier. The efficiency of the first two operational stages of a ns-DBD is further defined as η  =  η E · η FM.

  20. Moveable wire electrode microchamber for nanosecond pulsed electric-field delivery.

    PubMed

    Wu, Yu-Hsuan; Arnaud-Cormos, Delia; Casciola, Maura; Sanders, Jason M; Leveque, Philippe; Vernier, P Thomas

    2013-02-01

    In this paper, an electromagnetic characterization of a moveable wire electrode microchamber for nanosecond pulse delivery is proposed. The characterization of the exposure system was carried out through experimental measurements and numerical simulations. The frequency and time domain analyses demonstrate the utility of the proposed assembly for delivering pulses as short as 2.5 ns. High-voltage measurements (~1.2 kV) were also performed using pulse generators based on two different technologies with applied pulse durations of 5.0 and 2.5 ns. Validation of the delivery system was accomplished with biological experiments involving cell electroporation with 2.5 and 5.0 ns, 10-MV/m pulsed electric fields. A dose-dependent area increase (osmotic swelling) of the Jurkat cells was observed with pulses as short as 2.5 ns.

  1. Nanosecond pulse pumped, narrow linewidth all-fiber Raman amplifier with stimulated Brillouin scattering suppression

    NASA Astrophysics Data System (ADS)

    Su, Rongtao; Zhou, Pu; Wang, Xiaolin; Lü, Haibin; Xu, Xiaojun

    2014-01-01

    We report on a narrow linewidth nanosecond all-fiber Raman amplifier core pumped by a pulsed laser at approximately 1030 nm. The Raman amplifier was based on a standard single-mode fiber with a length of ∼1 km, and stimulated Brillouin scattering (SBS) was suppressed by employing pulses with a short pulse width. 1083 nm pulses with an average power of 32.6 mW, a repetition rate of 2 MHz, and pulse widths of ∼7.2 ns were achieved. A maximum slope efficiency of 46.1% and a gain of 31 dB were obtained. The output Raman power can be scaled further by using fiber with shorter lengths and pump pulses with a higher power.

  2. Numerical Simulation of Nanosecond-Pulse Electrical Discharges

    DTIC Science & Technology

    2012-01-01

    Onda , K., Sakimoto, K., Takayanagi, K., Nakamura, M., Nishimura, M., and Takayanagi, T., \\Cross Sections for Collisions of Electrons and Photons with...Nitrogen Molecules," J. Phys. Chem. Ref. Data, Vol. 16, 1986, pp. 985{1010. 35Itikawa, Y., Ichimura, A., Onda , K., Sakimoto, K., Takayanagi, K., Hatano

  3. Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): A systematic review.

    PubMed

    Batista Napotnik, Tina; Reberšek, Matej; Vernier, P Thomas; Mali, Barbara; Miklavčič, Damijan

    2016-08-01

    For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects observed in eight main target areas (plasma membrane, intracellular, apoptosis, calcium level and distribution, survival, nucleus, mitochondria, stress) and an additional 107 detailed outcomes. We statistically analyzed effects of nsEP with respect to three pulse duration groups: A: 1-10ns, B: 11-100ns and C: 101-999ns. The analysis confirmed that the plasma membrane is more affected with longer pulses than with short pulses, seen best in uptake of dye molecules after applying single pulses. Additionally, we have reviewed measurements of nsEP and evaluations of the electric fields to which cells were exposed in these reports, and we provide recommendations for assessing nanosecond pulsed electric field effects in electroporation studies.

  4. Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion

    SciTech Connect

    Wu, Jian; Wei, Wenfu; Li, Xingwen; Jia, Shenli; Qiu, Aici

    2013-04-22

    We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag model was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.

  5. Wavelength conversion of nanosecond pulses to the mid-IR in photonic crystal fibers.

    PubMed

    Herzog, Amir; Shamir, Avishay; Ishaaya, Amiel A

    2012-01-01

    We investigate degenerate four wave mixing with nanosecond pulses in fused silica photonic crystal fibers. Phase-matching curves are calculated taking into account the material and waveguide dispersion. Experiments with a nanosecond pulsed Nd:YAG pump laser and relatively short fiber lengths show more than an octave spanning conversion to idler and signal wavelengths at 3.105 μm and 0.642 μm, respectively. Conversion efficiency depends on the fiber length and pump intensity and is limited in our experiments by damage of the fiber input facet. Our results represent a new stretch towards the limit of the silica transmission window in the mid-infrared (IR).

  6. Conversion of high explosive chemical energy into energy of powerful nanosecond high-current pulses

    NASA Astrophysics Data System (ADS)

    Gorbachev, K. V.; Mikhaylov, V. M.; Nesterov, E. V.; Stroganov, V. A.; Chernykh, E. V.

    2015-01-01

    This study is a contribution into the development of physicotechnical foundations for generation of powerful nanosecond high-current pulses on the basis of explosively driven magnetic flux compression generators. This problem is solved by using inductive storage of energy for matching comparatively low-voltage explosively driven magnetic flux compression generators and high-impedance loads; short forming lines and vacuum diodes. Experimental data of charging of forming lines are given.

  7. Pulse circuit apparatus for gas discharge laser

    DOEpatents

    Bradley, Laird P.

    1980-01-01

    Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.

  8. Investigation of Vacuum Insulator Surface Dielectric Strength with Nanosecond Pulses

    SciTech Connect

    Nunnally, W C; Krogh, M; Williams, C; Trimble, D; Sampayan, S; Caporaso, G

    2003-06-03

    The maximum vacuum insulator surface dielectric strength determines the acceleration electric field gradient possible in a short pulse accelerator. Previous work has indicated that higher electric field strengths along the insulator-vacuum interface might be obtained as the pulse duration is decreased. In this work, a 250 kV, single ns wide impulse source was applied to small diameter, segmented insulators samples in a vacuum to evaluate the multi-layer surface dielectric strength of the sample construction. Resonances in the low inductance test geometry were used to obtain unipolar, pulsed electric fields in excess of 100 MV/m on the insulator surface. The sample construction, experimental arrangement and experimental results are presented for the initial data in this work. Modeling of the multi-layer structure is discussed and methods of improving insulator surface dielectric strength in a vacuum are proposed.

  9. Electric Field in a Plasma Channel in a High-Pressure Nanosecond Discharge in Hydrogen: A Coherent Anti-Stokes Raman Scattering Study

    NASA Astrophysics Data System (ADS)

    Yatom, S.; Tskhai, S.; Krasik, Ya. E.

    2013-12-01

    Experimental results of a study of the electric field in a plasma channel produced during nanosecond discharge at a H2 gas pressure of (2-3)×105 Pa by the coherent anti-Stokes scattering method are reported. The discharge was ignited by applying a voltage pulse with an amplitude of ˜100 kV and a duration of ˜5 ns to a blade cathode placed at a distance of 10 and 20 mm from the anode. It was shown that this type of gas discharge is characterized by the presence of an electric field in the plasma channel with root-mean-square intensities of up to 30 kV/cm. Using polarization measurements, it was found that the direction of the electric field is along the cathode-anode axis.

  10. External focusing of nanosecond pulsed X-ray radiation

    NASA Astrophysics Data System (ADS)

    Begidov, A. A.; Fursey, G. N.; Polyakov, M. A.

    2016-02-01

    The feasibility of efficient focusing of high-power pulsed X-ray radiation generated by explosive electron emission from carbon nanoclusters is shown by direct experiments with the use of polycapillary X-ray optics. It is shown that the X-ray spot in the focus of the polycapillary lens can be reduced to 1/20 of its initial size.

  11. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material

    NASA Astrophysics Data System (ADS)

    Correale, G.; Winkel, R.; Kotsonis, M.

    2015-08-01

    An experimental study aimed at the characterization of energy deposition of nanosecond Dielectric Barrier Discharge (ns-DBD) plasma actuators was carried out. Special attention was given on the effect of the thickness and material used for dielectric barrier. The selected materials for this study were polyimide film (Kapton), polyamide based nylon (PA2200), and silicone rubber. Schlieren measurements were carried out in quiescent air conditions in order to observe density gradients induced by energy deposited. Size of heated area was used to qualify the energy deposition coupled with electrical power measurements performed using the back-current shunt technique. Additionally, light intensity measurements showed a different nature of discharge based upon the material used for barrier, for a fixed thickness and frequency of discharge. Finally, a characterisation study was performed for the three tested materials. Dielectric constant, volume resistivity, and thermal conductivity were measured. Strong trends between the control parameters and the energy deposited into the fluid during the discharge were observed. Results indicate that efficiency of energy deposition mechanism relative to the thickness of the barrier strongly depends upon the material used for the dielectric barrier itself. In general, a high dielectric strength and a low volumetric resistivity are preferred for a barrier, together with a high heat capacitance and a low thermal conductivity coefficient in order to maximize the efficiency of the thermal energy deposition induced by an ns-DBD plasma actuator.

  12. Nanosecond pulsed laser generation of holographic structures on metals

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  13. Pulsed electrical discharge in conductive solution

    NASA Astrophysics Data System (ADS)

    Panov, V. A.; Vasilyak, L. M.; Vetchinin, S. P.; Pecherkin, V. Ya; Son, E. E.

    2016-09-01

    Electrical discharge in a conductive solution of isopropyl alcohol in tap water (330 μ S cm-1) has been studied experimentally applying high voltage millisecond pulses (rise time  ˜0.4 μ \\text{s} , amplitude up to 15 kV, positive polarity) to a pin anode electrode. Dynamic current-voltage characteristics synchronized with high-speed images of the discharge were studied. The discharge was found to develop from high electric field region in the anode vicinity where initial conductive current with density  ˜100 A cm-2 results in fast heating and massive nucleation of vapor bubbles. Discharges in nucleated bubbles then produce a highly conductive plasma region and facilitate overheating instability development with subsequent formation of a thermally ionized plasma channel. The measured plasma channel propagation speed was 3-15 m s-1. A proposed thermal model of plasma channel development explains the low observed plasma channel propagation speed.

  14. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    SciTech Connect

    Zhang, Jie; Guo, Ying; Shi, Yuncheng; Zhang, Jing; Shi, J. J.

    2015-08-15

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  15. Nanosecond pulse electric field (nanopulse): a novel non-ligand agonist for platelet activation.

    PubMed

    Zhang, Jue; Blackmore, Peter F; Hargrave, Barbara Y; Xiao, Shu; Beebe, Stephen J; Schoenbach, Karl H

    2008-03-15

    Nanosecond pulse stimulation of a variety of cells produces a wide range of physiological responses (e.g., apoptosis, stimulation of calcium (Ca2+) fluxes, changes in membrane potential). In this study, we investigated the effect of nanosecond pulses, which generate intense electric fields (nsPEFs), on human platelet aggregation, intracellular free Ca2+ ion concentration ([Ca2+]i) and platelet-derived growth factor release. When platelet rich plasma was pulsed with one 300ns pulse with an electric field of 30kV/cm, platelets aggregated and a platelet gel was produced. Platelet aggregation was observed with pulses as low as 7kV/cm with maximum effects seen with approximately 30kV/cm. The increases in intracellular Ca2+ release and Ca2+ influx were dose dependent on the electrical energy density and were maximally stimulated with approximately 30kV/cm. The increases in [Ca2+]i induced by nsPEF were similar to those seen with thapsigargin but not thrombin. We postulate that nsPEF caused Ca2+ to leak out of intracellular Ca2+ stores by a process involving the formation of nanopores in organelle membranes and also caused Ca2+ influx through plasma membrane nanopores. We conclude that nsPEFs dose-dependently cause platelets to rapidly aggregate, like other platelet agonists, and this is most likely initiated by the nsPEFs increasing [Ca2+]i, however by a different mechanism.

  16. Study on Nonlinear Absorption Effect of Nanosecond Pulse Laser Irradiation for GaAs.

    PubMed

    Sun, Wenjun; Liu, Zhongyang; Zhou, Haijiao

    2016-04-01

    In order to research nonlinear absorption effect of pulse laser irradiation for GaAs, a physical model of Gaussian distribution pulse laser irradiation for semiconductor material was established by software COMSOL Multiphysics. The thermal effects of semiconductor material GaAs was analyzed under irradiation of nanosecond pulse laser with wavelength of 1064 nm. The radial and transverse temperature distribution of semiconductor material GaAs was calculated under irradiation of nanosecond pulse laser with different power density by solving the thermal conduction equations. The contribution of one-photon absorption, two-photon absorption and free carrier absorption to temperature of GaAs material were discussed. The results show that when the pulse laser power density rises to 10(10) W/cm2, free carrier absorption played a leading role and it was more than that of one-photon absorption of material. The temperature contribution of two-photon absorption and free carrier absorption could be ignored at laser power density lower than 10(8) W/cm2. The result is basically consistent with relevant experiments, which shows that physical model constructed is valid.

  17. A Tesla-type repetitive nanosecond pulse generator for solid dielectric breakdown research.

    PubMed

    Zhao, Liang; Pan, Ya Feng; Su, Jian Cang; Zhang, Xi Bo; Wang, Li Min; Fang, Jin Peng; Sun, Xu; Lui, Rui

    2013-10-01

    A Tesla-type repetitive nanosecond pulse generator including a pair of electrode and a matched absorption resistor is established for the application of solid dielectric breakdown research. As major components, a built-in Tesla transformer and a gas-gap switch are designed to boost and shape the output pulse, respectively; the electrode is to form the anticipated electric field; the resistor is parallel to the electrode to absorb the reflected energy from the test sample. The parameters of the generator are a pulse width of 10 ns, a rise and fall time of 3 ns, and a maximum amplitude of 300 kV. By modifying the primary circuit of the Tesla transformer, the generator can produce both positive and negative pulses at a repetition rate of 1-50 Hz. In addition, a real-time measurement and control system is established based on the solid dielectric breakdown requirements for this generator. With this system, experiments on test samples made of common insulation materials in pulsed power systems are conducted. The preliminary experimental results show that the constructed generator is capable to research the solid dielectric breakdown phenomenon on a nanosecond time scale.

  18. The effects of gaseous bubble composition and gap distance on the characteristics of nanosecond discharges in distilled water

    NASA Astrophysics Data System (ADS)

    Hamdan, Ahmad; Cha, Min Suk

    2016-06-01

    Electric discharge in liquids with bubbles can reduce the energy consumption, which increases treatment efficiency. We present an experimental study of nanosecond discharges in distilled water bubbled with the monoatomic gas argon and with the polyatomic gases methane, carbon dioxide, and propane. We monitor the time evolution of the voltage and current waveforms, and calculate the injected charges to characterize the discharge. We establish a relationship between the injected charges and the shape of the plasma by time-resolved imaging to find that increasing the size of the gap reduces the injected charges. Moreover, we determine the plasma characteristics, including electron density, excitation temperatures (for atoms and ions), and rotational temperature of the OH and C2 radicals found in the plasma. Our space- and time-averaged measurements allow us to propose a spatial distribution of the plasma that is helpful for understanding the plasma dynamics necessary to develop and optimize applications based on nanosecond discharges in bubbled liquids.

  19. Monopole patch antenna for in vivo exposure to nanosecond pulsed electric fields.

    PubMed

    Merla, C; Apollonio, F; Paffi, A; Marino, C; Vernier, P T; Liberti, M

    2016-07-15

    To explore the promising therapeutic applications of short nanosecond electric pulses, in vitro and in vivo experiments are highly required. In this paper, an exposure system based on monopole patch antenna is reported to perform in vivo experiments on newborn mice with both monopolar and bipolar nanosecond signals. Analytical design and numerical simulations of the antenna in air were carried out as well as experimental characterizations in term of scattering parameter (S 11) and spatial electric field distribution. Numerical dosimetry of the setup with four newborn mice properly placed in proximity of the antenna patch was carried out, exploiting a matching technique to decrease the reflections due to dielectric discontinuities (i.e., from air to mouse tissues). Such technique consists in the use of a matching dielectric box with dielectric permittivity similar to those of the mice. The average computed electric field inside single mice was homogeneous (better than 68 %) with an efficiency higher than 20 V m(-1) V(-1) for the four exposed mice. These results demonstrate the possibility of a multiple (four) exposure of small animals to short nanosecond pulses (both monopolar and bipolar) in a controlled and efficient way.

  20. Studies of nanosecond pulsed power for modifications of biomaterials and nanomaterials (SWCNT)

    NASA Astrophysics Data System (ADS)

    Chen, Meng-Tse

    This work investigates the modification of biological materials through the applications of modern nanosecond pulsed power, along with other forms of nanotechnologies. The work was initially envisaged as a study of the effect of intense nanosecond pulsed electric fields on cancer cells. As the work progressed, the studies suggested incorporation of additional technologies, in particular, cold plasmas, and carbon nanotubes. The reasons for these are discussed below, however, they were largely suggested by the systems that we were studying, and resulted in new and potentially important medical therapies. Using nanosecond cold plasmas powered with nanosecond pulses, collaboration with endodontists and biofilm experts demonstrated a killing effect on biofilms deep within root canals, suggesting a fundamentally new approach to an ongoing problem of root canal sterilization. This work derived from the application of nanosecond pulsed power, resulting in effective biofilm disinfection, without excessive heating, and is being investigated for additional dental and other medical applications. In the second area, collaboration with medical and nanotube experts, studies of gliomamultiforme (GBM) led to the incorporation of functionalized carbon nanotubes. Single-walled carbon nanotube-fluorescein carbazide (SWCNT-FC) conjugates demonstrated that the entry mechanism of the single-walled carbon nanotubes (SWCNTs) was through an energy-dependent endocytotic pathway. Finally, a monotonic pH sensitivity of the intracellular fluorescence emission of SWCNT-FC conjugates in human ovarian cancer cells suggests these conjugates may serve as intracellular pH sensors. Light-stimulated intracellular hydrolysis of the amide linkage and localized intracellular pH changes are proposed as mechanisms. The use of SWCNTs for cancer therapy of gliomas, resulting in hyperthermia effect after 808 nm infrared radiations, absorbed specifically by SWCNTs but not by biological tissue. Heat was only

  1. Effects of pulse-to-pulse residual species on discharges in repetitively pulsed discharges through packed bed reactors

    NASA Astrophysics Data System (ADS)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for conversion of toxic and waste gases, and CO2 removal. These discharges are repetitively pulsed having varying flow rates and internal geometries, which results in species from the prior pulse still being in the discharge zone at the time the following discharge pulse occurs. A non-negligible residual plasma density remains, which effectively acts as preionization. This residual charge changes the discharge properties of subsequent pulses, and may impact important PBR properties such as chemical selectivity. Similarly, the residual neutral reactive species produced during earlier pulses will impact the reaction rates on subsequent pulses. We report on results of a computational investigation of a 2D PBR using the plasma hydrodynamics simulator nonPDPSIM. Results will be discussed for air flowing though an array of dielectric rods at atmospheric pressure. The effects of inter-pulse residual species on PBR discharges will be quantified. Means of controlling the presence of residual species in the reactor through gas flow rate, pulse repetition, pulse width and geometry will be described. Comparisons will be made to experiments. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  2. Reliability performance of pulse discharge capacitors

    SciTech Connect

    Edwards, L.R.

    1997-02-01

    There is a void of public specifications for pulse discharge capacitor applications. Sandia National Laboratories has developed, over the past 25 years, specifications and test procedures for evaluating capacitor designs for this specialized use. There are three primary destructive tests that are used to assess the reliability potential of a given design at a required rated voltage. These are ultimate short time breakdown strength, life at voltage, and pulse discharge life. The strategy of the method is to accelerate the test conditions so that failures are observable and then extrapolate to the desired use conditions where the failure rates are low. This paper will present the statistical methodologies employed to analyze experimental data and to provide a point estimate of reliability with a lower confidence bound as a function of rated voltage. In addition, methods for establishing lot-acceptance-criteria specifications will be discussed. The techniques will be illustrated with actual data on a commercially available, low-inductance, pulse-discharge capacitor. The capacitor is an impregnated dual dielectric (mica-paper/polymer film), extended-foil type.

  3. Mechanical response of agar gel irradiated with Nd:YAG nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Pérez-Gutiérrez, Francisco G.; Evans, Rodger; Camacho-López, Santiago; Aguilar, Guillermo

    2010-02-01

    Nanosecond long laser pulses are used in medical applications where precise tissue ablation with minimal thermal and mechanical collateral damage is required. When a laser pulse is incident on a material, optical energy will be absorbed by a combination of linear and nonlinear absorption according to both: laser light intensity and material properties. In the case of water or gels, the first results in heat generation and thermoelastic expansion; while the second results in an expanding plasma formation that launches a shock wave and a cavitation/boiling bubble. Plasma formation due to nonlinear absorption of nanosecond laser pulses is originated by a combination of multiphoton ionization and thermionic emission of free electrons, which is enhanced when the material has high linear absorption coefficient. In this work, we present measurements of pressure transients originated when 6 ns laser pulses are incident on agar gels with varying linear absorption coefficient, mechanical properties and irradiation geometry using laser radiant exposures above threshold for bubble formation. The underlying hypothesis is that pressure transients are composed of the superposition of both: shock wave originated by hot expanding plasma resulting from nonlinear absorption of optical energy and, thermoelastic expansion originated by heat generation due to linear absorption of optical energy. The objective of this work is to evaluate the relative contribution of each absorption mechanism to mechanical effects in agar gel. Real time pressure transients are recorded with PVDF piezoelectric sensors and time-resilved imaging from 50 μm to 10 mm away from focal point.

  4. In vivo imaging rhodopsin distribution in the photoreceptors with nano-second pulsed scanning laser ophthalmoscopy

    PubMed Central

    Liu, Tan; Liu, Xiaojing; Wen, Rong; Lam, Byron L.

    2015-01-01

    Background Rhodopsin is a biomarker for the function of rod photoreceptors, the dysfunction of which is related to many blinding diseases like retinitis pigmentosa and age-related macular degeneration. Imaging rhodopsin quantitatively may provide a powerful clinical tool for diagnosis of these diseases. To map rhodopsin distribution accurately in the retina, absorption by rhodopsin intermediates need to be minimized. Methods and materials We developed nano-second pulsed scanning laser ophthalmoscopy (SLO) to image rhodopsin distribution in the retina. The system takes advantage of the light-induced shift of rhodopsin absorption spectra, which in turn affects the fundus spectral reflection before and after photo-bleaching. By imaging the retina twice, one in the dark-adapted state and the other one in the light-adapted state, the rhodopsin absorption change can be calculated from the differential image, which is a function of the rhodopsin concentration in the rod photoreceptors. Results The system was successfully applied to in vivo imaging of rat retina in different bleaching conditions to verify its feasibility. Our studies showed that the differential image between the dark- and light-adapted states represents rhodopsin distribution in the retina. We also conducted a dynamic bleaching experiment to prove the importance of reducing light absorption of rhodopsin intermediates. Conclusions The preliminary results showed that our nano-second pulsed-light SLO is promising in imaging the functional biomarker of the rod photoreceptors. By using nanosecond pulsed laser, in which one laser pulse generates one pixel of the image, the absorption of rhodopsin intermediates can be reduced. PMID:25694955

  5. Long-lived plasma and fast quenching of N2(C3Π u ) by electrons in the afterglow of a nanosecond capillary discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Lepikhin, N. D.; Klochko, A. V.; Popov, N. A.; Starikovskaia, S. M.

    2016-08-01

    Quenching of electronically excited nitrogen state, {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u},{{v}\\prime}=0\\right) , in the afterglow of nanosecond capillary discharge in pure nitrogen is studied. It is found experimentally that an additional collisional mechanism appears and dominates at high specific deposited energies leading to the anomalously fast quenching of the {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) in the afterglow. On the basis of obtained experimental data and of the analysis of possible quenching agents, it is concluded that the anomalously fast deactivation of the {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) can be explained by quenching by electrons. Long-lived plasma at time scale of hundreds nanoseconds after the end of the pulse is observed. High electron densities, about 1014 cm-3 at 27 mbar, are sustained by reactions of associative ionization. Kinetic 1D numerical modeling and comparison of calculated results with experimentally measured electric fields in the second high-voltage pulse 250 ns after the initial pulse, and electron density measurements in the afterglow confirm the validity of the suggested mechanism.

  6. Multipulse mode of heating nanoparticles by nanosecond, picosecond and femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Iversen, Christian B.; George, Thomas F.

    2010-02-01

    Nanoparticles are being researched as a noninvasive method for selectively killing cancer cells. With particular antibody coatings on nanoparticles, they attach to the abnormal cells of interest (cancer or otherwise). Once attached, nanoparticles can be heated with UV/visible/IR or RF pulses, heating the surrounding area of the cell to the point of death. Researchers often use single-pulse or multipulse lasers when conducting nanoparticle ablation research. In the present paper, we are conducting an analysis to determine if the multipulse mode has any advantage in heating of spherical metal nanoparticles (such as accumulative heating effect). The laser heating of nanoparticles is very sensitive to the time structure of the incident pulsed laser radiation, the time interval between the pulses, and the number of pulses used in the experiments. We perform time-dependent simulations and detailed analyses of the different nonstationary pulsed laser-nanoparticle interaction modes, and show the advantages and disadvantages of multipulse (set of short pulses) and single-pulse laser heating of nanoparticles. A comparative analysis for both radiation modes (single-pulse and multipulse) are discussed for laser heating of metal nanotargets on nanosecond, picosecond and femtosecond time scales to make recommendations for efficient laser heating of nanomaterials in the experiments.

  7. Radiative Characteristics of the Pulse-Periodic Discharge Plasma Initiated by Runaway Electrons

    NASA Astrophysics Data System (ADS)

    Lomaev, M. I.; Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.

    2016-07-01

    Results of experimental investigations of amplitude-temporal and spectral characteristics of radiation of a pulse-periodic discharge plasma initiated in nitrogen by runaway electrons are presented. The discharge was initiated by high-voltage nanosecond voltage pulses with repetition frequency of 60 Hz in a sharply inhomogeneous electric field in a gap between the conic potential cathode and the planar grounded aluminum anode. It is established that intensive lines of Al I atoms and Al II atomic ions, lines of N I atoms and N II ions, bands of the first (1+) and second positive (2+) nitrogen systems, as well as bands of cyanogen CN are observed in the emission spectrum of the discharge plasma under the given excitation conditions.

  8. Development of a Lumped Element Circuit Model for Approximation of Dielectric Barrier Discharges

    DTIC Science & Technology

    2011-08-01

    dielectric barrier discharge (DBD) plasmas. Based on experimental observations, it is assumed that nanosecond pulsed DBDs, which have been proposed...species for pulsed direct current (DC) dielectric barrier discharge (DBD) plasmas. Based on experimental observations, it is assumed that nanosecond...momentum-based approaches. Given the fundamental differences between the novel pulsed discharge approach and the more conventional momentum-based

  9. Measuring the effective pulse duration of nanosecond and femtosecond laser pulses for laser-induced damage experiments

    NASA Astrophysics Data System (ADS)

    Zorila, Alexandru; Rusen, Laurentiu; Stratan, Aurel; Nemes, George

    2013-05-01

    We report on our approach to measure the quantity named effective pulse duration as defined in the ISO 21254-1:2011 standard, which deals with laser-induced damage (LID) threshold measurements. The approach is applied to measure pulses from two laser sources: an injection-seeded electro-optically Q-switched Nd:YAG nanosecond system with 10-Hz pulse repetition frequency, and a fully integrated Ti:sapphire laser with 150-400 fs and 2-kHz pulse repetition frequency. For comparison, the full-width-half-maximum (FWHM) of the same pulses is also measured. The analysis and description of the measurement process, the experimental results, and the corresponding uncertainties are presented. A smaller combined uncertainty is obtained for the effective pulse duration than for the FWHM-defined pulse duration for each time scale involved in experiments. This suggests that the effective pulse duration is the appropriate parameter to characterize the pulse duration in LID experiments.

  10. Application of nanosecond pulsed electric fields into HeLa cells expressing enhanced green fluorescent protein and fluorescence lifetime microscopy.

    PubMed

    Awasthi, Kamlesh; Nakabayashi, Takakazu; Ohta, Nobuhiro

    2012-09-13

    An electrode microchamber has been constructed for applying nanosecond pulsed strong electric fields to living cells, and fluorescence lifetime microscopy (FLIM) has been used to investigate the effects of external electric fields on dynamics and function of HeLa cells expressing enhanced green fluorescent protein (EGFP). Both morphological change in cells and reduction of the fluorescence lifetime of EGFP have been observed after application of electric fields having a pulsed width of 50 ns and a strength of 4 MV m(-1), indicating that apoptosis, which is a programmed cell death, was induced by nanosecond pulsed electric fields and that fluorescence lifetime of EGFP decreased along with the induction of apoptosis. The reduction of the fluorescence lifetime occurred before the morphological change, indicating that FLIM provides a sensitive and noninvasive detection of the progress of apoptosis induced by application of nanosecond pulsed electric fields.

  11. Dynamics of the microstructure of current channels and the generation of high-energy electrons in nanosecond discharges in air

    SciTech Connect

    Karelin, V. I.; Trenkin, A. A. Fedoseev, I. G.

    2015-12-15

    The results of the three-dimensional numerical simulation of the dynamics of the microstructure of high-voltage nanosecond discharges in air at atmospheric pressure are presented. It is established that the fast (at a time of ≈10 ns) broadening and significant decrease in the gas concentration in the microchannels occur as a result of the ohmic heating of microchannels with the diameter of 1–30 μm. It was shown that the broadening of microchannels in a nanosecond diffusive discharge provides an increase in the ratio of the electric field strength to the gas concentration in microchannels to values sufficient for the generation highenergy electron beams and X-ray bremsstrahlung in them. Features of the dynamics of the system of microchannels and its effect on the efficiency of the generation of high-energy electrons in discharges developing in the microstructuring regime of the current channels are considered.

  12. Plasma decay in high-voltage nanosecond discharges in oxygen-containing mixtures

    SciTech Connect

    Anokhin, E. M.; Popov, M. A.; Kochetov, I. V.; Aleksandrov, N. L.; Starikovskii, A. Yu.

    2016-01-15

    Plasma decay in high-voltage nanosecond discharges in CO{sub 2}: O{sub 2} and Ar: O{sub 2} mixtures at room gas temperature and a pressure of 10 Torr is studied experimentally and theoretically. The time dependence of the electron density during plasma decay is measured using microwave interferometry. The time evolution of the charged particle density, ion composition, and electron temperature is simulated numerically. It is shown that, under the given conditions, the discharge plasma is dominated for the most time by O{sub 2}{sup +} ions and plasma decay is determined by dissociative and three-body electron−ion recombination. As in the previous studies performed for air and oxygen plasmas, agreement between measurements and calculations is achieved only under the assumption that the rate of three-body recombination of molecular ions is much greater than that for atomic ions. The values of the rate constant of three-body recombination of electrons with O{sub 2}{sup +} ions in a wide range of electron temperatures (500–5500 K), as well as for thermal (300 K) electrons, are obtained by processing the experimental results.

  13. Kinetic mechanism of plasma recombination in methane, ethane and propane after high-voltage nanosecond discharge

    NASA Astrophysics Data System (ADS)

    Anokhin, E. M.; Popov, M. A.; Kochetov, I. V.; Starikovskiy, A. Yu; Aleksandrov, N. L.

    2016-08-01

    The results of the experimental and numerical study of high-voltage nanosecond discharge afterglow in pure methane, ethane and propane are presented for room temperature and pressures from 2 to 20 Torr. Time-resolved electron density during the plasma decay was measured with a microwave interferometer for initial electron densities in the range between 5  ×  1010 and 3  ×  1012 cm-3 and the effective recombination coefficients were obtained. Measured effective recombination coefficients increased with gas pressure and were much higher than the recombination coefficients for simple molecular hydrocarbon ions. The properties of plasma in the discharge afterglow were numerically simulated by solving the balance equations for charged particles and electron temperature. Calculations showed that electrons had time to thermalize prior to the recombination. The measured data were interpreted under the assumption that cluster hydrocarbon ions are formed during the plasma decay that is controlled by the dissociative electron recombination with these ions at electron room temperature. Based on the analysis of the experimental data, the rates of three-body formation of cluster ions and recombination coefficients for these ions were estimated.

  14. Nanosecond pulse-width electron diode based on dielectric wall accelerator technology

    NASA Astrophysics Data System (ADS)

    Zhao, Quantang; Zhang, Z. M.; Yuan, P.; Cao, S. C.; Shen, X. K.; Jing, Y.; Yu, C. S.; Li, Z. P.; Liu, M.; Xiao, R. Q.; Zong, Y.; Wang, Y. R.; Zhao, H. W.

    2013-11-01

    An electron diode using a short section of dielectric wall accelerator (DWA) has been under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. Tests have been carried out with spark gap switches triggered by lasers. The stack voltage efficiency of a four-layer of Blumleins reached about 60-70% with gas filled spark gap switching. The generated pulse voltage of peak amplitude of 23 kV and pulse width of 5 ns is used to extract and accelerate an electron beam of 320 mA, measured by a fast current transformer. A nanosecond pulse width electron diode was achieved successfully. Furthermore, the principle of a DWA is well proven and the development details and discussions are presented in this article.

  15. Dynamics of optical breakdown in air induced by single and double nanosecond laser pulses

    SciTech Connect

    Mahdieh, Mohammad Hossein Akbari Jafarabadi, Marzieh

    2015-12-15

    In this paper, an optical breakdown in air induced by single and double nanosecond laser pulses was studied. A high power Nd:YAG laser beam was used for producing optical breakdown plasma in the air. The dynamics of breakdown plasma were studied using an optical probe beam. A portion of the laser beam was used, as the probe beam and was aligned to propagate (perpendicular to the pump beam) through the breakdown region. The transmission of the probe beam (through the breakdown region) was temporally measured for both single and double pulse irradiations. The results were used to describe the evolution of the induced plasma in both conditions. These results show that the plasma formation time and its absorptivity are strongly dependent on the single or double pulse configurations.

  16. Characterization of nanosecond, femtosecond and dual pulse laser energy deposition in air for flow control and diagnostic applications

    NASA Astrophysics Data System (ADS)

    Limbach, Christopher M.

    The non-resonant heating of gases by laser irradiation and plasma formation has been under investigation since the development of 100 megawatt peak power, Q-switched, nanosecond pulse duration lasers and the commensurate discovery of laser air sparks. More recently, advances in mode-locking and chirped pulse amplification have led to commercially available 100 gigawatt peak power, femtosecond pulse duration lasers with a rapidly increasing number of applications including remote sensing, laser spectroscopy, aerodynamic flow control, and molecular tagging velocimetry and thermometry diagnostics. This work investigates local energy deposition and gas heating produced by focused, non-resonant, nanosecond and femtosecond laser pulses in the context of flow control and laser diagnostic applications. Three types of pulse configurations were examined: single nanosecond pulses, single femtosecond pulses and a dual pulse approach whereby a femtosecond pre-ionizing pulse is followed by a nanosecond pulse. For each pulse configuration, optical and laser diagnostic techniques were applied in order to qualitatively and quantitatively measure the plasmadynamic and hydrodynamic processes accompanying laser energy deposition. Time resolved imaging of optical emission from the plasma and excited species was used to qualitatively examine the morphology and decay of the excited gas. Additionally, Thomson scattering and Rayleigh scattering diagnostics were applied towards measurements of electron temperature, electron density, gas temperature and gas density. Gas heating by nanosecond and dual pulse laser plasmas was found to be considerably more intense than femtosecond plasmas, irrespective of pressure, while the dual pulse approach provided substantially more controllability than nanosecond pulses alone. In comparison, measurements of femtosecond laser heating showed a strong and nonlinearly dependence on focusing strength. With comparable pulse energy, measurements of maximum

  17. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves.

    PubMed

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.

  18. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves

    NASA Astrophysics Data System (ADS)

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.

  19. Low-density plasma formation in aqueous biological media using sub-nanosecond laser pulses.

    PubMed

    Genc, Suzanne L; Ma, Huan; Venugopalan, Vasan

    2014-08-11

    We demonstrate the formation of low- and high-density plasmas in aqueous media using sub-nanosecond laser pulses delivered at low numerical aperture (NA = 0.25). We observe two distinct regimes of plasma formation in deionized water, phosphate buffered saline, Minimum Essential Medium (MEM), and MEM supplemented with phenol red. Optical breakdown is first initiated in a low-energy regime and characterized by bubble formation without plasma luminescence with threshold pulse energies in the range of Ep ≈ 4-5 μJ, depending on media formulation. The onset of this regime occurs over a very narrow interval of pulse energies and produces small bubbles (Rmax = 2-20 μm) due to a tiny conversion (η < 0.01%) of laser energy to bubble energy EB. The lack of visible plasma luminescence, sharp energy onset, and low bubble energy conversion are all hallmarks of low-density plasma (LDP) formation. At higher pulse energies (Ep = 11-20 μJ), the process transitions to a second regime characterized by plasma luminescence and large bubble formation. Bubbles formed in this regime are 1-2 orders of magnitude larger in size [Formula: see text] due to a roughly two-order-of-magnitude increase in bubble energy conversion (η ≳ 3%). These characteristics are consistent with high-density plasma formation produced by avalanche ionization and thermal runaway. Additionally, we show that supplementation of MEM with fetal bovine serum (FBS) limits optical breakdown to this high-energy regime. The ability to produce LDPs using sub-nanosecond pulses focused at low NA in a variety of cell culture media formulations without FBS can provide for cellular manipulation at high throughput with precision approaching that of femtosecond pulses delivered at high NA.

  20. Electrostatic diagnostics of nanosecond pulsed electron beams in a Malmberg-Penning trap

    SciTech Connect

    Paroli, B.; Bettega, G.; Maero, G.; Rome, M.; Norgia, M.; Pesatori, A.; Svelto, C.

    2010-06-15

    A fast electrostatic diagnostic and analysis scheme on nanosecond pulsed beams in the keV energy range has been developed in the Malmberg-Penning trap ELTRAP. Low-noise electronics has been used for the detection of small induced current signals on the trap electrodes. A discrete wavelet-based procedure has been implemented for data postprocessing. The development of an effective electrostatic diagnostics together with proper data analysis techniques is of general interest in view of deducing the beam properties through comparison of the postprocessed data with the theoretically computed signal shape, which contains beam radius, length, and average density as fit parameters.

  1. Nanosecond pulsed electric field generators for the study of subcellular effects.

    PubMed

    Kolb, Juergen F; Kono, Susumu; Schoenbach, Karl H

    2006-04-01

    Modeling and experimental studies have shown that pulsed electric fields of nanosecond duration and megavolt per meter amplitude affect subcellular structures but do not lead to the formation of large pores in the outer membrane. This "intracellular electromanipulation" requires the use of pulse generators which provide extremely high power but low energy pulses. In this study, we describe the concept of the required pulsed power sources, their design, operation, and the necessary diagnostics. Two types of pulse generators based on the Blumlein line principle have been developed and are described here. One system is designed to treat a large number of cells in cuvettes holding volumes from 0.1 to 0.8 ml. Pulses of up to 40 kV amplitude, with a duration of 10 ns and a rise time close to 1 ns can be applied to the cuvette. For an electrode gap of 1 mm this voltage corresponds to an average electric field of 40 MV/m. The second system allows for real time observation of individual cells under a microscope. It generates pulses of 10-300 ns duration with a rise time of 3.5 ns and voltage amplitudes up to 1 kV. Connected to a microreactor with an electrode gap of 100 microm, electric fields up to 10 MV/m are applied.

  2. Matching a (sub)nanosecond pulse source to a corona plasma reactor

    NASA Astrophysics Data System (ADS)

    Huiskamp, T.; Beckers, F. J. C. M.; Hoeben, W. F. L. M.; van Heesch, E. J. M.; Pemen, A. J. M.

    2016-10-01

    In this paper we investigate the energy transfer from the pulses of a (sub)nanosecond pulse source to the plasma in a corona-plasma reactor. This energy transfer (or ‘matching’) should be as high as possible. We studied the effect of multiple parameters on matching, such as the reactor configuration, the pulse duration and amplitude and the energy density. The pulse reflection on the reactor interface has a significant influence on matching, and should be as low as possible to transfer the most energy into the reactor. We developed a multiple-wire inner conductor for the reactor which decreases the vacuum impedance of the reactor to decrease the pulse reflection on the reactor interface while maintaining a high electric field on the wire. The results were very encouraging and showed an energy transfer efficiency of over 90 percent. The matching results further show that there is only a small effect on the matching between different wire diameters. In addition, a long reactor and a long pulse result in the best matching due to the more intense plasma that is generated in these conditions. Finally, even without the multiple-wire reactor, we are able to achieve a very good matching (over 80 percent) between our pulse source and the reactor.

  3. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  4. Adrenal chromaffin cells do not swell when exposed to nanosecond electric pulses.

    PubMed

    Craviso, Gale L; Fisher, Christa; Chatterjee, Indira; Vernier, P Thomas

    2015-06-01

    High intensity, nanosecond duration electric pulses (NEPs) permeabilize plasma membranes causing osmotic cell swelling that can elicit a wide variety of cellular effects. This study examined the possibility that cell swelling is the mechanism by which 5 ns NEPs trigger the release of catecholamines from neuroendocrine adrenal chromaffin cells. Swelling was assessed by comparing measurements of cell area obtained from bright field images of the cells before and at 10s intervals following exposure of the cells to 5 ns pulses at a field intensity of 5-6 MV/m. The results indicated that chromaffin cells do not swell in response to a single pulse or a train of ten pulses delivered at repetition frequencies of 10 Hz and 1 kHz. Swelling was also not observed in response to a train of 50 pulses whereas Jurkat T lymphoblast cell area increased 15% on average under the same NEP exposure conditions. These results demonstrating that chromaffin cells do not undergo swelling when exposed to 5 ns NEPs have important implications regarding the mechanism by which these pulses stimulate the release of catecholamines from these cells, namely that catecholamine secretion is most likely not caused by cell swelling.

  5. Transient elastic deformation detection on the metal surface induced by nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Tong, Yanqun; Huang, Jianyu; Wu, Xiaoyi; Shi, Lin

    2016-10-01

    It is difficult to detect the elastic deformation on the metal surface induced by nanosecond laser pulse. Optical fiber sensor system is suitable for detecting the elastic deformation, which has many advantages such as the high sensitivity, fast speed (GHz), non-contact, non-loss and point-measurement. We set up the measuring system to analyze the deformation mechanism firstly. Then, the elastic deformation on the metal surface was investigated. The relation between the shock-wave and elastic deformation was analyzed. The result of the present work implicated that as the nanosecond laser pulse radiated to the metal surface, elastic deformation had a delay time which was around 320ns. And the deformation presented the damped oscillation law. The data of laser-induced plasma shock wave were fitted and the fitting degree was 97.696%.The variation law of laser-induced plasma shock-wave was obtained. These results helped to make the laser removal applied to the manufacturing technique better.

  6. CONTROL OF LASER RADIATION PARAMETERS: Generation of diffraction-limited nanosecond and subnanosecond pulses in a XeCl laser

    NASA Astrophysics Data System (ADS)

    Panchenko, Yu N.; Losev, V. F.; Dudarev, V. V.

    2008-04-01

    The generation of nanosecond and subnanosecond pulses in a XeCl laser is studied. The short radiation pulses are generated in a resonator with a SBS mirror. By focusing laser radiation inside and on the surface of a nonlinear medium, it is possible to generate pulses of duration 3 ns and 150 ps, respectively. The laser beams obtained in this way contain more than 70% of energy within the diffraction angle and have the signal-to-noise ration exceeding 104.

  7. Novel passive element circuits for microdosimetry of nanosecond pulsed electric fields.

    PubMed

    Merla, C; Denzi, A; Paffi, A; Casciola, M; d'Inzeo, G; Apollonio, F; Liberti, M

    2012-08-01

    Microdosimetric models for biological cells have assumed increasing significance in the development of nanosecond pulsed electric field technology for medical applications. In this paper, novel passive element circuits, able to take into account the dielectric dispersion of the cell, are provided. The circuital analyses are performed on a set of input pulses classified in accordance with the current literature. Accurate data in terms of transmembrane potential are obtained in both time and frequency domains for different cell models. In addition, a sensitivity study of the transfer function for the cell geometrical and dielectric parameters has been carried out. This analysis offers a new, simple, and efficient tool to characterize the nsPEFs' action at the cellular level.

  8. Effect of nanosecond pulse laser ablation on the surface morphology of Zr-based metallic glass

    NASA Astrophysics Data System (ADS)

    Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong

    2016-09-01

    In this study, we investigated the ripple patterns formation on the surface of Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass using a nanosecond pulse laser ablation in air with a wavelength of 1064 nm. The strong thermal ablation phenomenon could be observed on vit1 BMG surface at laser energy of 200 mJ as a result of the adhibition of confining overlay. Many periodic ripples had formed on the edge of the ablated area at laser energy of 400 mJ because of the high intensity pulsed laser beam. The underlying mechanism of the periodic ripples formation could be explained by the K-H hydrodynamic instability theory. It had been shown that laser ablation with 600 mJ and 200 pulses results in the formation of many micro-cracks on the ablated area. Further analysis showed that the spatial occupation of the laser ablated area and the spacing between two adjacent ripples increased as the laser energy and the number of incident laser pulses increasing. The surface ripples feature on the edge of ablated area became more obvious with increasing laser pulses, but it was not correlated closely with the laser energies variation.

  9. High frequency application of nanosecond pulsed electric fields alters cellular membrane disruption and fluorescent dye uptake

    NASA Astrophysics Data System (ADS)

    Steelman, Zachary A.; Tolstykh, Gleb P.; Beier, Hope T.; Ibey, Bennett L.

    2016-03-01

    Cells exposed to nanosecond-pulsed electric fields (nsPEF) exhibit a wide variety of nonspecific effects, including blebbing, swelling, intracellular calcium bursts, apoptotic and necrotic cell death, formation of nanopores, and depletion of phosphatidylinositol 4,5-biphosphate (PIP2) to induce activation of the inositol trisphosphate/diacylglycerol pathway. While several studies have taken place in which multiple pulses were delivered to cells, the effect of pulse repetition rate (PRR) is not well understood. To better understand the effects of PRR, a laser scanning confocal microscope was used to observe CHO-K1 cells exposed to ten 600ns, 200V pulses at varying repetition rates (5Hz up to 500KHz) in the presence of either FM 1-43, YO-PRO-1, or Propidium Iodide (PI) fluorescent dyes, probes frequently used to indicate nanoporation or permeabilization of the plasma membrane. Dye uptake was monitored for 30 seconds after pulse application at a rate of 1 image/second. In addition, a single long pulse of equivalent energy (200V, 6 μs duration) was applied to test the hypothesis that very fast PRR will approximate the biological effects of a single long pulse of equal energy. Upon examination of the data, we found strong variation in the relationship between PRR and uptake in each of the three dyes. In particular, PI uptake showed little frequency dependence, FM 1-43 showed a strong inverse relationship between frequency and internal cell fluorescence, and YO-PRO-1 exhibited a "threshold" point of around 50 KHz, after which the inverse trend observed in FM 1-43 was seen to reverse itself. Further, a very high PRR of 500 KHz only approximated the biological effects of a single 6 μs pulse in cells stained with YO-PRO-1, suggesting that uptake of different dyes may proceed by different physical mechanisms.

  10. Properties of water surface discharge at different pulse repetition rates

    SciTech Connect

    Ruma,; Yoshihara, K.; Hosseini, S. H. R. Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  11. Development and Applications of discharges generated in liquids with short high voltage pulses

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen; Miron, Camelia; Kruth, Angela; Balcerak, Michal; Bonislawski, Michal; Holub, Marcin

    2016-09-01

    Discharges that are generated within a liquid have been of scientific interest for more than a century. The possibility for a breakdown development that is not mediated by an initial gaseous phase is still disputed. In this respect are especially discharges that are instigated with short high voltage pulses calling for attention. Associated with this specific excitation scheme is a change in plasma development, plasma parameters and reaction mechanisms in the liquid. We have compared discharges in a point-to-plane geometry that were generated with 50-us or 10-ns high voltage pulses. Time-resolved shadowgraphy and spectroscopy were performed to evaluate discharge structures, plasma parameter and reactive species that were formed in distilled water or ethanol. Different propagation modes, with velocities of 6.7 km/s for tree-like streamers and only 50 m/s for bush-like streamers, were observed. Optical emission spectroscopy has shown the formation of molecular bands of nitrogen, as well as strongly broadened atomic hydrogen and oxygen, which are likely to be responsible for the observed surface modifications of polymers. With nanosecond high voltage pulses we found an increase of unsaturated bondings for polyimide surfaces that were exposed in the discharge volume.

  12. Non-equilibrium nanosecond-pulsed plasma generation in the liquid phase (water, PDMS) without bubbles: fast imaging, spectroscopy and leader-type model

    NASA Astrophysics Data System (ADS)

    Dobrynin, Danil; Seepersad, Yohan; Pekker, Mikhail; Shneider, Mikhail; Friedman, Gary; Fridman, Alexander

    2013-03-01

    In this paper we report the results on study of the non-equilibrium nanosecond discharge generation in liquid media. Here we studied the discharge in both water and silicon transformer oil, and present our findings on discharge behaviour depending on global (applied) electric, discharge emission spectrum and shadow imaging of the discharge. We also discuss possible scenarios of non-equilibrium nanosecond discharge development and suggest that the discharge operates in a leader-type regime supported by the electrostriction effect—creation of nano-sized pores in liquid due to high local electric field.

  13. Investigation of a direct effect of nanosecond pulse electric fields on mitochondria

    NASA Astrophysics Data System (ADS)

    Estlack, Larry E.; Roth, Caleb C.; Cerna, Cesario Z.; Wilmink, Gerald J.; Ibey, Bennett L.

    2014-03-01

    The unique cellular response to nanosecond pulsed electric field (nsPEF) exposure, as compared to longer pulse exposure, has been theorized to be due to permeabilization of intracellular organelles including the mitochondria. In this investigation, we utilized a high-throughput oxygen and pH sensing system (Seahorse® XF24 extracellular flux analyzer) to assess the mitochondrial activity of Jurkat and U937 cells after nsPEF. The XF Analyzer uses a transient micro-chamber of only a few μL in specialized cell culture micro-plates to enable oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) to be monitored in real-time. We found that for nsPEF exposures of 10 pulses at 10-ns pulse width and at 50 kV/cm e-field, we were able to cause an increase in OCR in both U937 and Jurkat cells. We also found that high pulse numbers (>100) caused a significant decrease in OCR. Higher amplitude 150 kV/cm exposures had no effect on U937 cells and yet they had a deleterious effect on Jurkat cells, matching previously published 24 hour survival data. These results suggest that the exposures were modulating metabolic activity in cells possibly due to direct effects on the mitochondria themselves. To validate this hypothesis, we isolated mitochondria from U937 cells and exposed them similarly and found no significant change in metabolic activity for any pulse number. In a final experiment, we removed calcium from the buffer solution that the cells were exposed in and found that no significant enhancement in metabolic activity was observed. These results suggest that direct permeabilization of the mitochondria is unlikely a primary effect of nsPEF exposure and calcium-mediated intracellular pathway activation is likely responsible for observed pulse-induced mitochondrial effects.

  14. Pulsed-discharge carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Willetts, David V.

    1990-01-01

    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  15. Raising the avermectins production in Streptomyces avermitilis by utilizing nanosecond pulsed electric fields (nsPEFs)

    NASA Astrophysics Data System (ADS)

    Guo, Jinsong; Ma, Ruonan; Su, Bo; Li, Yinglong; Zhang, Jue; Fang, Jing

    2016-05-01

    Avermectins, a group of anthelmintic and insecticidal agents produced from Streptomyces avermitilis, are widely used in agricultural, veterinary, and medical fields. This study presents the first report on the potential of using nanosecond pulsed electric fields (nsPEFs) to improve avermectin production in S. avermitilis. The results of colony forming units showed that 20 pulses of nsPEFs at 10 kV/cm and 20 kV/cm had a significant effect on proliferation, while 100 pulses of nsPEFs at 30 kV/cm exhibited an obvious effect on inhibition of agents. Ultraviolet spectrophotometry assay revealed that 20 pulses of nsPEFs at 15 kV/cm increased avermectin production by 42% and reduced the time for reaching a plateau in fermentation process from 7 days to 5 days. In addition, the decreased oxidation reduction potential (ORP) and increased temperature of nsPEFs-treated liquid were evidenced to be closely associated with the improved cell growth and fermentation efficiency of avermectins in S. avermitilis. More importantly, the real-time RT-PCR analysis showed that nsPEFs could remarkably enhance the expression of aveR and malE in S. avermitilis during fermentation, which are positive regulator for avermectin biosynthesis. Therefore, the nsPEFs technology presents an alternative strategy to be developed to increase avermectin output in fermentation industry.

  16. Nanosecond pulsed electric field thresholds for nanopore formation in neural cells

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Tolstykh, Gleb P.; Payne, Jason A.; Kuipers, Marjorie A.; Thompson, Gary L.; DeSilva, Mauris N.; Ibey, Bennett L.

    2013-03-01

    The persistent influx of ions through nanopores created upon cellular exposure to nanosecond pulse electric fields (nsPEF) could be used to modulate neuronal function. One ion, calcium (Ca), is important to action potential firing and regulates many ion channels. However, uncontrolled hyper-excitability of neurons leads to Ca overload and neurodegeneration. Thus, to prevent unintended consequences of nsPEF-induced neural stimulation, knowledge of optimum exposure parameters is required. We determined the relationship between nsPEF exposure parameters (pulse width and amplitude) and nanopore formation in two cell types: rodent neuroblastoma (NG108) and mouse primary hippocampal neurons (PHN). We identified thresholds for nanoporation using Annexin V and FM1-43, to detect changes in membrane asymmetry, and through Ca influx using Calcium Green. The ED50 for a single 600 ns pulse, necessary to cause uptake of extracellular Ca, was 1.76 kV/cm for NG108 and 0.84 kV/cm for PHN. At 16.2 kV/cm, the ED50 for pulse width was 95 ns for both cell lines. Cadmium, a nonspecific Ca channel blocker, failed to prevent Ca uptake suggesting that observed influx is likely due to nanoporation. These data demonstrate that moderate amplitude single nsPEF exposures result in rapid Ca influx that may be capable of controllably modulating neurological function.

  17. Hysteresis-Free Nanosecond Pulsed Electrical Characterization of Top-Gated Graphene Transistors

    NASA Astrophysics Data System (ADS)

    Carrion, Enrique A.; Serov, Andrey Y.; Islam, Sharnali; Behnam, Ashkan; Malik, Akshay; Xiong, Feng; Bianchi, Massimiliano; Sordan, Roman; Pop, Eric

    2014-05-01

    We measure top-gated graphene field effect transistors (GFETs) with nanosecond-range pulsed gate and drain voltages. Due to high-k dielectric or graphene imperfections, the drain current decreases ~10% over time scales of ~10 us, consistent with charge trapping mechanisms. Pulsed operation leads to hysteresis-free I-V characteristics, which are studied with pulses as short as 75 ns and 150 ns at the drain and gate, respectively. The pulsed operation enables reliable extraction of GFET intrinsic transconductance and mobility values independent of sweep direction, which are up to a factor of two higher than those obtained from simple DC characterization. We also observe drain-bias-induced charge trapping effects at lateral fields greater than 0.1 V/um. In addition, using modeling and capacitance-voltage measurements we extract charge trap densities up to 10^12 1/cm^2 in the top gate dielectric (here Al2O3). Our study illustrates important time- and field-dependent imperfections of top-gated GFETs with high-k dielectrics, which must be carefully considered for future developments of this technology

  18. Raising the avermectins production in Streptomyces avermitilis by utilizing nanosecond pulsed electric fields (nsPEFs)

    PubMed Central

    Guo, Jinsong; Ma, Ruonan; Su, Bo; Li, Yinglong; Zhang, Jue; Fang, Jing

    2016-01-01

    Avermectins, a group of anthelmintic and insecticidal agents produced from Streptomyces avermitilis, are widely used in agricultural, veterinary, and medical fields. This study presents the first report on the potential of using nanosecond pulsed electric fields (nsPEFs) to improve avermectin production in S. avermitilis. The results of colony forming units showed that 20 pulses of nsPEFs at 10 kV/cm and 20 kV/cm had a significant effect on proliferation, while 100 pulses of nsPEFs at 30 kV/cm exhibited an obvious effect on inhibition of agents. Ultraviolet spectrophotometry assay revealed that 20 pulses of nsPEFs at 15 kV/cm increased avermectin production by 42% and reduced the time for reaching a plateau in fermentation process from 7 days to 5 days. In addition, the decreased oxidation reduction potential (ORP) and increased temperature of nsPEFs-treated liquid were evidenced to be closely associated with the improved cell growth and fermentation efficiency of avermectins in S. avermitilis. More importantly, the real-time RT-PCR analysis showed that nsPEFs could remarkably enhance the expression of aveR and malE in S. avermitilis during fermentation, which are positive regulator for avermectin biosynthesis. Therefore, the nsPEFs technology presents an alternative strategy to be developed to increase avermectin output in fermentation industry. PMID:27181521

  19. Temperature dependence of nanosecond laser pulse thresholds of melanosome and microsphere microcavitation

    NASA Astrophysics Data System (ADS)

    Schmidt, Morgan S.; Kennedy, Paul K.; Noojin, Gary D.; Thomas, Robert J.; Rockwell, Benjamin A.

    2016-01-01

    Melanosome microcavitation is the threshold-level retinal pigment epithelium (RPE) damage mechanism for nanosecond (ns) pulse exposures in the visible and near-infrared (NIR). Thresholds for microcavitation of isolated bovine RPE melanosomes were determined as a function of temperature (20 to 85°C) using single ns laser pulses at 532 and 1064 nm. Melanosomes were irradiated using a 1064-nm Q-switched Nd:YAG (doubled for 532-nm irradiation). For comparison to melanosome data, a similar temperature (20 to 65°C) dependence study was also performed for 532 nm, ns pulse exposures of black polystyrene microbeads. Results indicated a decrease in the microcavitation average radiant exposure threshold with increasing sample temperature for both 532- and 1064-nm single pulse exposures of melanosomes and microbeads. Threshold data and extrapolated nucleation temperatures were used to estimate melanosome absorption coefficients in the visible and NIR, and microbead absorption coefficients in the visible, indicating that melanin is a better absorber of visible light than black polystyrene. The NIR melanosome absorption coefficients ranged from 3713 cm-1 at 800 nm to 222 cm-1 at 1319 nm. These data represent the first temperature-dependent melanosome microcavitation study in the NIR and provide additional information for understanding melanosome microcavitation threshold dependence on wavelength and ambient temperature.

  20. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    SciTech Connect

    Grills, David C. Farrington, Jaime A.; Layne, Bobby H.; Preses, Jack M.; Wishart, James F.; Bernstein, Herbert J.

    2015-04-15

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of a unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330 to 1051 cm{sup −1}. The response time of the TRIR detection setup is ∼40 ns, with a typical sensitivity of ∼100 μOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. This new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.

  1. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    SciTech Connect

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; Preses, Jack M.; Bernstein, Herbert J.; Wishart, James F.

    2015-04-27

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of a unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm⁻¹. The response time of the TRIR detection setup is ~40 ns, with a typical sensitivity of ~100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. As a result, this new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.

  2. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    DOE PAGES

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; ...

    2015-04-27

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of amore » unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm⁻¹. The response time of the TRIR detection setup is ~40 ns, with a typical sensitivity of ~100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. As a result, this new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.« less

  3. Rhodamine B as an optical thermometer in cells focally exposed to infrared laser light or nanosecond pulsed electric fields

    PubMed Central

    Moreau, David; Lefort, Claire; Burke, Ryan; Leveque, Philippe; O’Connor, Rodney P.

    2015-01-01

    The temperature-dependent fluorescence property of Rhodamine B was used to measure changes in temperature at the cellular level induced by either infrared laser light exposure or high intensity, ultrashort pulsed electric fields. The thermal impact of these stimuli were demonstrated at the cellular level in time and contrasted with the change in temperature observed in the extracellular bath. The method takes advantage of the temperature sensitivity of the fluorescent dye Rhodamine B which has a quantum yield linearly dependent on temperature. The thermal effects of different temporal pulse applications of infrared laser light exposure and of nanosecond pulsed electric fields were investigated. The temperature increase due to the application of nanosecond pulsed electric fields was demonstrated at the cellular level. PMID:26504658

  4. Understanding the physics limitations of PFNA — the nanosecond pulsed fast neutron analysis

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    1995-05-01

    The PFNA was conceived by Sawa, Gozani and Ryge, in late 1987 as a means to achieve the highest possible sensitivity for detecting small amounts of explosives concealed in luggage. This could be attained because 1) all the elements present in explosives, i.e., O,N,C (and H, indirectly) can be measured via the (n,n'γ) process with fast neutrons, 2) using nanosecond pulses of neutrons and the time-of-flight (TOF) technique, a full direct imaging of the elements and hence all present materials can be obtained, and 3) the TOF assures the best signal to background ratio, as the signal-stimulated γ-rays are measured before the background — neutron interacting in the detector environment — arrives. The PFNA technology has made great strides since the autumn of 1987. It enables the detection of narcotics, explosives, many hazardous materials and most dutiable goods carried in trucks and containers.

  5. Explosive boiling of a metallic glass superheated by nanosecond pulse laser ablation

    SciTech Connect

    Jiang, M. Q. E-mail: lhdai@lnm.imech.ac.cn; Wei, Y. P.; Wilde, G.; Dai, L. H. E-mail: lhdai@lnm.imech.ac.cn

    2015-01-12

    We report an explosive boiling in a Zr-based (Vitreloy 1) bulk metallic glass irradiated by a nanosecond pulse laser with a single shot. This critical phenomenon is accompanied by the ejection of high-temperature matter from the target and the formation of a liquid-gas spinodal pattern on the irradiated area. An analytical model reveals that the glassy target experiences the normal heating (melting) and significant superheating, eventually culminating in explosive boiling near the spinodal limit. Furthermore, the time lag of nucleation and the critical radius of vapor bubbles are theoretically predicted, which are in agreement with the experimental observations. This study provides the investigation on the instability of a metallic glass liquid near the thermodynamic critical temperature.

  6. Magnetic properties on the surface of FeAl stripes induced by nanosecond pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Kaiju, H.; Yoshida, Y.; Watanabe, S.; Kondo, K.; Ishibashi, A.; Yoshimi, K.

    2014-05-01

    We demonstrate the formation of magnetic nanostripes on the surface of Fe52Al48 induced by nanosecond pulsed laser irradiation and investigate their magnetic properties. The magnetic stripe consists of a disordered A2 phase of Fe-Al alloys with Al-oxide along the [110] direction on the (111)-oriented plane. According to the focused magneto-optical Kerr effect measurement, the coercive force of the magnetic stripe obeys the 1/cos θ law, where θ is the field rotation angle estimated from the stripe direction. Also, the jump field can be observed in the magnetic hysteresis loop. These results indicate that the magnetization reversal in the magnetic stripe originates from the domain pinning, showing that the magnetization rotates incoherently.

  7. Solid-like ablation propulsion generation in nanosecond pulsed laser interaction with carbon-doped glycerol

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi-Yuan; Zhang, Si-Qi; Liang, Tian; Qi, Jing; Tang, Wei-Chong; Xiao, Ke; Gao, Lu; Gao, Hua; Zhang, Zi-Li

    2017-03-01

    A solid-like propellant of carbon-doped glycerol ablated by a nanosecond pulsed laser is investigated. The results show that the specific impulse increases with increasing carbon content, and a maximum value of 228 s is obtained. The high specific impulse is attributed to the low ablated mass loss that occurs at high carbon content. More importantly, with increasing carbon content, the properties of the doped glycerol approach to those of a solid. These results indicate that propulsion at the required coupling coefficient and specific impulse can be realized by doping a liquid propellant with an absorber. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. 53200859165 and 2562010050).

  8. Real temperature calculation of shock wave driven by sub-nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Mahdieh, M. H.; Hall, T. A.

    2003-05-01

    Time history of thermal band emission of a shock front, when breakout from aluminium target into vacuum, has been calculated numerically. It is assumed that the shock is produced by irradiation of high intensity sub-nanosecond pulsed laser on the surface of aluminium planar targets in vacuum. The opacity of dense plasma at the shock front and in the vacuum-aluminium interface, and its effects on thermal emissions was considered in these calculations. Using the results of an experiment that was recently reported and those of our model, the real temperature of the shock front was estimated. In that experiment simultaneous measurements of the colour temperature of dense plasma in a shock front, and the shock velocity at the time of shock breakout from the aluminium targets into the vacuum were reported for the study of the equation of state (EOS). The results of the model show a good agreement with the SESAME library EOS.

  9. Lysosomal exocytosis in response to subtle membrane damage following nanosecond pulse exposure

    NASA Astrophysics Data System (ADS)

    Dalzell, Danielle R.; Roth, Caleb C.; Bernhard, Joshua A.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    The cellular response to subtle membrane damage following exposure to nanosecond electric pulses (nsEP) is not well understood. Recent work has shown that when cells are exposed to nsEP, ion permeable nanopores (< 2nm) are created in the plasma membrane in contrast to larger diameter pores (> 2nm) created by longer micro and millisecond duration pulses. Macroscopic damage to a plasma membrane by a micropipette has been shown to cause internal vesicles (lysosomes) to undergo exocytosis to repair membrane damage, a calcium mediated process called lysosomal exocytosis. Formation of large pores in the plasma membrane by electrical pulses has been shown to elicit lysosomal exocytosis in a variety of cell types. Our research objective is to determine whether lysosomal exocytosis will occur in response to nanopores formed by exposure to nsEP. In this paper we used propidium iodide (PI) and Calcium Green-1 AM ester (CaGr) to differentiate between large and small pores formed in CHO-K1 cells following exposure to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm. This information was compared to changes in membrane organization observed by increases in FM1-43 fluorescence, both in the presence and absence of calcium ions in the outside buffer. In addition, we monitored the real time migration of lysosomes within the cell using Cellular Lights assay to tag LAMP-1, a lysosomal membrane protein. Both 1 and 20 pulses elicited a large influx of extracellular calcium, while little PI uptake was observed following a single pulse exposure. Statistically significant increases in FM1-43 fluorescence were seen in samples containing calcium suggesting that calcium-triggered membrane repair may be occurring. Lastly, density of lysosomes within cells, specifically around the nucleus, appeared to change rapidly upon nsEP stimulation suggesting lysosomal migration.

  10. Cutting and drilling of carbon fiber reinforced plastics (CFRP) by 70W short pulse nanosecond laser

    NASA Astrophysics Data System (ADS)

    Jaeschke, Peter; Stolberg, Klaus; Bastick, Stefan; Ziolkowski, Ewa; Roehner, Markus; Suttmann, Oliver; Overmeyer, Ludger

    2014-02-01

    Continuous carbon fibre reinforced plastics (CFRP) are recognized as having a significant lightweight construction potential for a wide variety of industrial applications. However, a today`s barrier for a comprehensive dissemination of CFRP structures is the lack of economic, quick and reliable manufacture processes, e.g. the cutting and drilling steps. In this paper, the capability of using pulsed disk lasers in CFRP machining is discussed. In CFRP processing with NIR lasers, carbon fibers show excellent optical absorption and heat dissipation, contrary to the plastics matrix. Therefore heat dissipation away from the laser focus into the material is driven by heat conduction of the fibres. The matrix is heated indirectly by heat transfer from the fibres. To cut CFRP, it is required to reach the melting temperature for thermoplastic matrix materials or the disintegration temperature for thermoset systems as well as the sublimation temperature of the reinforcing fibers simultaneously. One solution for this problem is to use short pulse nanosecond lasers. We have investigated CFRP cutting and drilling with such a laser (max. 7 mJ @ 10 kHz, 30 ns). This laser offers the opportunity of wide range parameter tuning for systematic process optimization. By applying drilling and cutting operations based on galvanometer scanning techniques in multi-cycle mode, excellent surface and edge characteristics in terms of delamination-free and intact fiber-matrix interface were achieved. The results indicate that nanosecond disk laser machining could consequently be a suitable tool for the automotive and aircraft industry for cutting and drilling steps.

  11. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    NASA Astrophysics Data System (ADS)

    Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.

    2015-07-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  12. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    SciTech Connect

    Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E.; Hadas, Y.; Schamiloglu, E.

    2015-07-15

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  13. Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure.

    PubMed

    Steuer, A; Wende, K; Babica, P; Kolb, J F

    2017-04-01

    Nanosecond pulsed electric fields (nsPEFs) applied to cells can induce different biological effects depending on pulse duration and field strength. One known process is the induction of apoptosis whereby nsPEFs are currently investigated as a novel cancer therapy. Another and probably related change is the breakdown of the cytoskeleton. We investigated the elasticity of rat liver epithelial cells WB-F344 in a monolayer using atomic force microscopy (AFM) with respect to the potential of cells to undergo malignant transformation or to develop a potential to metastasize. We found that the elastic modulus of the cells decreased significantly within the first 8 min after treatment with 20 pulses of 100 ns and with a field strength of 20 kV/cm but was still higher than the elasticity of their tumorigenic counterpart WB-ras. AFM measurements and immunofluorescent staining showed that the cellular actin cytoskeleton became reorganized within 5 min. However, both a colony formation assay and a cell migration assay revealed no significant changes after nsPEF treatment, implying that cells seem not to adopt malignant characteristics associated with metastasis formation despite the induced transient changes to elasticity and cytoskeleton that can be observed for up to 1 h.

  14. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure

    NASA Astrophysics Data System (ADS)

    Thompson, Gary Lee; Roth, Caleb C.; Dalzell, Danielle R.; Kuipers, Marjorie; Ibey, Bennett L.

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (<2 nm) are created in the plasma membrane in contrast to larger diameter pores (>2 nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  15. Role of cytoskeleton and elastic moduli in cellular response to nanosecond pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Thompson, Gary L.; Roth, Caleb; Tolstykh, Gleb; Kuipers, Marjorie; Ibey, Bennett L.

    2013-02-01

    Nanosecond pulsed electric fields (nsPEFs) are known to increase cell membrane permeability to small molecules in accordance with dosages. As previous work has focused on nsPEF exposures in whole cells, electrodeformation may contribute to this induced-permeabilization in addition to other biological mechanisms. Here, we hypothesize that cellular elasticity, based upon the cytoskeleton, affects nsPEF-induced decrease in cellular viability. Young's moduli of various types of cells have been calculated from atomic force microscopy (AFM) force curve data, showing that CHO cells are stiffer than non-adherent U937 and Jurkat cells, which are more susceptible to nsPEF exposure. To distinguish any cytoskeletal foundation for these observations, various cytoskeletal reagents were applied. Inhibiting actin polymerization significantly decreased membrane integrity, as determined by relative propidium uptake and phosphatidylserine externalization, upon exposure at 150 kV/cm with 100 pulses of 10 ns pulse width. Exposure in the presence of other drugs resulted in insignificant changes in membrane integrity and 24-hour viability. However, Jurkat cells showed greater lethality than latrunculin-treated CHO cells of comparable elasticity. From these results, it is postulated that cellular elasticity rooted in actin-membrane interaction is only a minor contributor to the differing responses of adherent and non-adherent cells to nsPEF insults.

  16. Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses.

    PubMed

    Duchateau, Guillaume; Dyan, Anthony

    2007-04-16

    By coupling statistics and heat transfer, we investigate numerically laser-induced crystal damage by multi-gigawatt nanosecond pulses. Our model is based on the heating of nanometric absorbing defects that may cooperate when sufficiently aggregated. In that configuration, they induce locally a strong increase of temperature that may lead to a subsequent damage. This approach allows to predict cluster size distribution and damage probabilities as a function of the laser fluence. By studying the influence of the pulse duration onto the laser-induced damage threshold, we have established scaling laws that link the critical laser fluence to its pulse duration tau. In particular, this approach provides an explanation to the deviation from the standard tau(1/2) scaling law that has been recently observed in laser-induced damage experiments with KH(2)PO(4) (KDP) crystals [J.J. Adams et al., Proc. of SPIE 5991, 5991R-1 (2005)]. In the present paper, despite the 3D problem is tackled, we focus our attention on a 1D modeling of thermal diffusion that is shown to provide more reliable predictions than the 3D one. These results indicate that absorbers involved in KDP damage may be associated with a collection of planar defects. First general comparisons with some experimental facts have been performed.

  17. Time-resolved study of the mechanical response of tissue phantoms to nanosecond laser pulses.

    PubMed

    Pérez-Gutiérrez, Francisco G; Camacho-López, Santiago; Aguilar, Guillermo

    2011-11-01

    We present a time-resolved study of the interaction of nanosecond laser pulses with tissue phantoms. When a laser pulse interacts with a material, optical energy is absorbed by a combination of linear (heat generation and thermoelastic expansion) and nonlinear absorption (expanding plasma), according to both the laser light irradiance and material properties. The objective is to elucidate the contribution of linear and nonlinear optical absorption to bubble formation. Depending on the local temperatures and pressures reached, both interactions may lead to the formation of bubbles. We discuss three experimental approaches: piezoelectric sensors, time-resolved shadowgraphy, and time-resolved interferometry, to follow the formation of bubbles and measure the pressure originated by 6 ns laser pulses interacting with tissue phantoms. We studied the bubble formation and pressure transients for varying linear optical absorption and for radiant exposures above and below threshold for bubble formation. We report a rapid decay (of 2 orders of magnitude) of the laser-induced mechanical pressure measured (by time-resolved shadowgraphy) very close to the irradiation spot and beyond 1 mm from the irradiation site (by the piezoelectric sensor). Through time-resolved interferometry measurements, we determined that bubble formation can occur at marginal temperature increments as low as 3°C.

  18. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Primo, Gastón A.; Alvarez Igarzabal, Cecilia I.; Pino, Gustavo A.; Ferrero, Juan C.; Rossa, Maximiliano

    2016-04-01

    This work reports an investigation of the surface modifications induced by irradiation with nanosecond laser pulses of ultraviolet and visible wavelengths on crosslinked hydrophilic co-polymeric materials, which have been functionalized with 1-vinylimidazole as a co-monomer. A comparison is made between hydrogels differing in the base co-monomer (N,N-dimethylaminoethyl methacrylate and N-[3-(dimethylamino)propyl] methacrylamide) and in hydration state (both swollen and dried states). Formation of craters is the dominant morphological change observed by ablation in the visible at 532 nm, whereas additional, less aggressive surface modifications, chiefly microfoams and roughness, are developed in the ultraviolet at 266 nm. At both irradiation wavelengths, threshold values of the incident laser fluence for the observation of the various surface modifications are determined under single-pulse laser irradiation conditions. It is shown that multiple-pulse irradiation at 266 nm with a limited number of laser shots can be used alternatively for generating a regular microfoam layer at the surface of dried hydrogels based on N,N-dimethylaminoethyl methacrylate. The observations are rationalized on the basis of currently accepted mechanisms for laser-induced polymer surface modification, with a significant contribution of the laser foaming mechanism. Prospective applications of the laser-foamed hydrogel matrices in biomolecule immobilization are suggested.

  19. Bacterial cells exposed to nanosecond pulsed electric fields show lethal and sublethal effects.

    PubMed

    Perni, S; Chalise, P R; Shama, G; Kong, M G

    2007-12-15

    Cell suspensions of Escherichia coli K12 and Salmonella typhimurium were exposed to electrical pulses of 32 ns duration at a field intensity of 100 kV/cm and a repetition rate of 30 pulses per second for a total of 300 s. Treated cells were plated onto Tryptone Soya Agar (TSA) and TSA supplemented with NaCl, and cell counts were monitored daily for 3 days. The concentrations of NaCl used were 3 and 4% (w/v) for E. coli and 4 and 5% (w/v) for S. typhimurium. Treatment under these conditions resulted in a 2 log(10) reduction for E. coli and approximately a single log(10) reduction for S. typhimurium. For both species of bacteria it was discovered that the surviving population was composed of only 1% of uninjured cells. Moreover, the proportion of sublethally injured cells increased more rapidly than the total recoverable population suggesting a process of injury accumulation culminating in death rather than an 'all or nothing' mechanism. Sublethal injury manifested itself in a proportion of the injured population of both species by an extended lag phase at longer treatment times. Finally, possible mechanisms by which nanosecond electric pulses inactivate bacteria are discussed.

  20. Calcium influx affects intracellular transport and membrane repair following nanosecond pulsed electric field exposure.

    PubMed

    Thompson, Gary Lee; Roth, Caleb C; Dalzell, Danielle R; Kuipers, Marjorie; Ibey, Bennett L

    2014-05-01

    The cellular response to subtle membrane damage following exposure to nanosecond pulsed electric fields (nsPEF) is not well understood. Recent work has shown that when cells are exposed to nsPEF, ion permeable nanopores (<2  nm) are created in the plasma membrane in contrast to larger diameter pores (>2  nm) created by longer micro- and millisecond duration pulses. Nanoporation of the plasma membrane by nsPEF has been shown to cause a transient increase in intracellular calcium concentration within milliseconds after exposure. Our research objective is to determine the impact of nsPEF on calcium-dependent structural and repair systems in mammalian cells. Chinese hamster ovary (CHO-K1) cells were exposed in the presence and absence of calcium ions in the outside buffer to either 1 or 20, 600-ns duration electrical pulses at 16.2  kV/cm, and pore size was determined using propidium iodide and calcium green. Membrane organization was observed with morphological changes and increases in FM1-43 fluorescence. Migration of lysosomes, implicated in membrane repair, was followed using confocal microscopy of red fluorescent protein-tagged LAMP1. Microtubule structure was imaged using mEmerald-tubulin. We found that at high 600-ns PEF dosage, calcium-induced membrane restructuring and microtubule depolymerization coincide with interruption of membrane repair via lysosomal exocytosis.

  1. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges

    NASA Astrophysics Data System (ADS)

    Sobral, H.; Robledo-Martinez, A.

    2016-10-01

    A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.

  2. Biophysical Studies of Nanosecond Pulsed Electric Field Induced Cell Membrane Permeabilization

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Hsuan

    Nanosecond megavolts-per-meter pulsed electric field (nsPEF) offers a non-invasive manipulation of intracellular organelles and functions of biological cells. Accordingly, nsPEF is a potential technique for biophysical research and cancer therapy, and is of growing interest. Although, the application of nsPEF has shown electroperturbation on cell plasma membranes and intracellular membranes as well, the mechanisms underlying the electropermeabilization are still not clear. In this thesis, we systematically study nsPEFs (5 and 30 ns) induced membrane permeability change in biological cell in-vitro with different pulse parameters. In Chapter 3, we investigate the nsPEF-induced intracellular membrane permeabilization of mitochondria which play key roles in activating apoptosis in mammalian cells. The results show the evidences of nsPEF-induced membrane permeability increase in mitochondria, and suggest that nsPEF is a potential technology for cancer cell ablation without delivery of drug or gene into cells. In Chapter 2, 4 and 6, we study the properties of nsPEF-induced plasma membrane permeabilization. In the beginning, the change of plasma membrane permeability is studied by uptake of YO-PRO-1 and propidium iodide, fluorescent dyes specifically used as indicators of plasma membrane permeabilization. However, the detection is limited by the fluorescent emission efficiency and detector capability. To increase the detection sensitivity, we later develop a method based on cell volume change due to regulation of osmotic balance that causes water and small ions transport through plasma membrane. We find that even a single 10 MV/m pulse of 5 ns duration produces measureable cell swelling. The results demonstrate that cell swelling is susceptible to nsPEF and can detect membrane permeabilization more easily and precisely than fluorescent dyes. We compare the effects of different pulse parameters (pulse duration, pulse number, electric field amplitude and pulse repetition

  3. Damage threshold and focusability of mid-infrared free-electron laser pulses gated by a plasma mirror with nanosecond switching pulses

    SciTech Connect

    Wang, Xiaolong; Nakajima, Takashi; Zen, Heishun; Kii, Toshiteru; Ohgaki, Hideaki

    2013-11-04

    The presence of a pulse train structure of an oscillator-type free-electron laser (FEL) results in the immediate damage of a solid target upon focusing. We demonstrate that the laser-induced damage threshold can be significantly improved by gating the mid-infrared FEL pulses with a plasma mirror. Although the switching pulses we employ have a nanosecond duration which does not guarantee the clean wavefront of the gated FEL pulses, the high focusability is experimentally confirmed through the observation of spectral broadening by a factor of 2.1 when we tightly focus the gated FEL pulses onto the Ge plate.

  4. 1D simulation of runaway electrons generation in pulsed high-pressure gas discharge

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. Yu.; Kozyrev, A. V.; Semeniuk, N. S.

    2015-10-01

    The results of theoretical modelling of runaway electron generation in the high-pressure nanosecond pulsed gas discharge are presented. A novel hybrid model of gas discharge has been successfully built. Hydrodynamic and kinetic approaches are used simultaneously to describe the dynamics of different components of low-temperature discharge plasma. To consider motion of ions and low-energy (plasma) electrons the corresponding equations of continuity with drift-diffusion approximation are used. To describe high-energy (runaway) electrons the Boltzmann kinetic equation is included. As a result of the simulation we obtained spatial and temporal distributions of charged particles and electric field in a pulsed discharge. Furthermore, the energy spectra calculated runaway electrons in different cross-sections, particularly, the discharge gap in the anode plane. It is shown that the average energy of fast electrons (in eV) in the anode plane is usually slightly higher than the instantaneous value of the applied voltage to the gap (in V).

  5. Soda-lime glass microlens arrays fabricated by laser: Comparison between a nanosecond and a femtosecond IR pulsed laser

    NASA Astrophysics Data System (ADS)

    Delgado, Tamara; Nieto, Daniel; Flores-Arias, María Teresa

    2016-11-01

    We present the manufacturing of microlens arrays on soda-lime glass substrates by using two different IR pulsed lasers: a nanosecond Nd:YVO4 laser (1064 nm) and a femtosecond laser based on Ytterbium crystal technology (1030 nm). In both cases, the fabrication technique consists of the combination of a direct-write laser process, followed by a post-thermal treatment assisted by a CO2 laser. Through the analysis of the morphological characteristics of the generated microlenses, the different physical mechanisms involved in the glass ablation process with a nanosecond and a femtosecond laser are studied. In addition, by analyzing the optical features of the microlenses, a better result in terms of the homogeneity and quality of the spot focuses are observed for those microlenses fabricated with the Nd:YVO4 nanosecond laser. Microlens arrays with a diameter of 80 and 90 μm were fabricated.

  6. Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge

    SciTech Connect

    Qin, Yu; Xie, Kan; Zhang, Yu; Ouyang, Jiting

    2016-02-15

    We investigate the self-pulsing phenomenon of a low current cavity discharge in a cylindrical hollow cathode in pure argon. The waveforms of pulsed current and voltage are measured, and the time-averaged and time-resolved images of hollow cathode discharge are recorded by using high-speed intensified charge coupled device camera. The results show that the self-pulsing is a mode transition between low-current stage of Townsend discharge and high-current stage of glow discharge. During the self-pulsing, the current rising time relates to the dissipation of space charges, and the decay time relates to the reconstruction of the virtual anode by the accumulation of positive ions. Whether or not space charges can form and keep the virtual anode is responsible for the discharge mode and hence plays an important role in the self-pulsing phenomenon in low current hollow cathode discharge.

  7. Inertial electrostatic confinement and DD fusion at interelectrode media of nanosecond vacuum discharge. PIC simulations and experiment

    NASA Astrophysics Data System (ADS)

    Kurilenkov, Yu K.; Tarakanov, V. P.; Skowronek, M.; Guskov, S. Yu; Dufty, J.

    2009-05-01

    The generation of energetic ions and DD neutrons from microfusion at the interelectrode space of a low-energy nanosecond vacuum discharge has been demonstrated recently [1, 2]. However, the physics of fusion processes and some results regarding the neutron yield from the database accumulated were poorly understood. The present work presents a detailed particle-in-cell (PIC) simulation of the discharge experimental conditions using a fully electrodynamic code. The dynamics of all charge particles was reconstructed in time and anode-cathode (AC) space. The principal role of a virtual cathode (VC) and the corresponding single and double potential wells formed in the interelectrode space are recognized. The calculated depth of the quasistationary potential well (PW) of the VC is about 50-60 keV, and the D+ ions being trapped by this well accelerate up to energy values needed to provide collisional DD nuclear synthesis. The correlation between the calculated potential well structures (and dynamics) and the neutron yield observed is discussed. In particular, ions in the potential well undergo high-frequency (~80 MHz) harmonic oscillations accompanied by a corresponding regime of oscillatory neutron yield. Both experiment and PIC simulations illustrate favorable scaling of the fusion power density for the chosen IECF scheme based on nanosecond vacuum discharge.

  8. The Nonlinear Behaviors in Atmospheric Dielectric Barrier Multi Pulse Discharges

    NASA Astrophysics Data System (ADS)

    Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen

    2016-08-01

    An in-depth and comprehensive understanding of the complex nonlinear behaviors in atmospheric dielectric barrier discharge is significant for the stable operation and effective control of the plasma. In this paper, we study the nonlinear behaviors in argon atmospheric dielectric barrier multi pulse discharges by a one-dimensional fluid model. Under certain conditions, the multi pulse discharge becomes very sensitive with the increase of frequency, and the multi pulse period-doubling bifurcation, inverse period-doubling bifurcation and chaos appear frequently. The discharge can reach a relatively steady state only when the discharges are symmetrical between positive and negative half cycle. In addition, the effects of the voltage on these nonlinear discharges are also studied. It is found that the amplitude of voltage has no effects on the number of discharge pulses in multi-pulse period-doubling bifurcation sequences; however, to a relatively stable periodic discharge, the discharge pulses are proportional to the amplitude of the applied voltage within a certain range. supported by National Natural Science Foundation of China (No. 11447244), the Science Foundation of Hengyang Normal University of China (No. 14B41), the Construct Program of the Key Discipline in Hunan Province, and the Hunan Provincial Applied Basic Research Base of Optoelectronic Information Technology of China (No. GDXX010)

  9. Dielectric Barrier Discharges: Pulsed Breakdown, Electrical Characterization and Chemistry

    DTIC Science & Technology

    2013-06-01

    for pulsed driven Dielectric Barrier Discharges ( DBDs ) in particular. Fast electrical, optical and spectroscopic methods enable the study of...ignition, breakdown statistics and spatio- temporally resolved development of pulsed DBD microdischarges. The determination of electrical parameters such...equivalent circuit which is consistent with sinusoidal- voltage driven or miniature pulsed driven DBDs . The characterization of the dominant chemical

  10. Thickness dependent self limiting 1-D tin oxide nanowire arrays by nanosecond pulsed laser irradiation

    SciTech Connect

    Shirato, N.; Strader, J.; Kumar, Amit; Vincent, A.; Zhang, P.; Karakoti, Ajay S.; Nachimuthu, Ponnusamy; Cho, H-J.; Seal, Sudipta; Kalyanaraman, R.

    2011-01-23

    Fast, sensitive and discriminating detection of hydrogen at room temperature is crucial for storage, transportation, and distribution of hydrogen as an energy source. One dimensional nanowires of SnO2 are potential candidates for improved H2 sensor performance. The single directional conducting continuous nanowires can decrease electrical noise, and their large active surface area could improve the response and recovery time of the sensor. In this work we discuss synthesis and characterization of nanowire arrays made using nanosecond ultraviolet wavelength (266 nm) laser interference processing of ultrathin SnO2 films on SiO2 substrates. The laser energy was chosen to be above the melting point of the films. The results show that the final nanowire formation is dominated by preferential evaporation as compared to thermocapillary flow. The nanowire height (and hence wire aspect ratio) increased with increasing initial film thickness ho and with increasing laser energy density Eo. Furthermore, a self-limiting effect was observed where-in the wire formation ceased at a specific final remaining thickness of SnO2 that was almost independent of ho for a given Eo. To understand these effects, finite element modeling of the nanoscale laser heating was performed. This showed that the temperature rise under laser heating was a strong non-monotonic function of film thickness. As a result, the preferential evaporation rate varies as wire formation occurs, eventually leading to a shut-off of evaporation at a characteristic thickness. This results in the stoppage of wire formation. This combination of nanosecond pulsed laser experiments and thermal modeling shows that several unique synthesis approaches can be utilized to control the nanowire characteristics.

  11. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity.

    PubMed

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-05

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment.

  12. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity

    PubMed Central

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-01

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment. PMID:26728251

  13. External stimulation by nanosecond pulsed electric fields to enhance cellular uptake of nanoparticles

    NASA Astrophysics Data System (ADS)

    Franklin, Samantha; Beier, Hope T.; Ibey, Bennett L.; Nash, Kelly

    2015-03-01

    As an increasing number of studies use gold nanoparticles (AuNPs) for potential medicinal, biosensing and therapeutic applications, the synthesis and use of readily functional, bio-compatible nanoparticles is receiving much interest. For these efforts, the particles are often taken up by the cells to allow for optimum sensing or therapeutic measures. This process typically requires incubation of the particles with the cells for an extended period. In an attempt to shorten and control this incubation, we investigated whether nanosecond pulsed electric field (nsPEF) exposure of cells will cause a controlled uptake of the particles. NsPEF are known to induce the formation of nanopores in the plasma membrane, so we hypothesized that by controlling the number, amplitude or duration of the nsPEF exposure, we could control the size of the nanopores, and thus control the particle uptake. Chinese hamster ovary (CHO-K1) cells were incubated sub-10 nm AuNPs with and without exposure to 600-ns electrical pulses. Contrary to our hypothesis, the nsPEF exposure was found to actually decrease the particle uptake in the exposed cells. This result suggests that the nsPEF exposure may be affecting the endocytotic pathway and processes due to membrane disruption.

  14. Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling.

    PubMed

    Pakhomov, Andrei G; Xiao, Shu; Pakhomova, Olga N; Semenov, Iurii; Kuipers, Marjorie A; Ibey, Bennett L

    2014-12-01

    Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PRO-1 dye uptake, gradual cell rounding and swelling. Concurrently, bright actin features were replaced by dimmer and uniform fluorescence of diffuse actin. To block the nsPEF-induced swelling, the bath buffer was isoosmotically supplemented with an electropore-impermeable solute (sucrose). A similar addition of a smaller, electropore-permeable solute (adonitol) served as a control. We demonstrated that sucrose efficiently blocked disassembly of actin features by nsPEF, whereas adonitol did not. Sucrose also attenuated bleaching of mApple-tagged actin in nsPEF-treated cells (as integrated over the cell volume), although did not fully prevent it. We conclude that disintegration of the actin cytoskeleton was a result of cell swelling, which, in turn, was caused by cell permeabilization by nsPEF and transmembrane diffusion of solutes which led to the osmotic imbalance.

  15. Infrared nanosecond pulsed laser irradiation of stainless steel: Micro iron-oxide zones generation

    NASA Astrophysics Data System (ADS)

    Ortiz-Morales, M.; Frausto-Reyes, C.; Soto-Bernal, J. J.; Acosta-Ortiz, S. E.; Gonzalez-Mota, R.; Rosales-Candelas, I.

    2014-07-01

    Nanosecond-pulsed, infrared (1064 nm) laser irradiation was used to create periodic metal oxide coatings on the surface of two samples of commercial stainless steel at ambient conditions. A pattern of four different metal oxide zones was created using a galvanometer scanning head and a focused laser beam over each sample. This pattern is related to traverse direction of the laser beam scanning. Energy-dispersive X-ray spectroscopy (EDS) was used to find the elemental composition and Raman spectroscopy to characterize each oxide zone. Pulsed laser irradiation modified the composition of the stainless steel samples, affecting the concentration of the main components within each heat affected zone. The Raman spectra of the generated oxides have different intensity profiles, which suggest different oxide phases such as magnetite and maghemite. In addition, these oxides are not sensible to the laser power of the Raman system, as are the iron oxide powders reported in the literature. These experiments show that it is possible to generate periodic patterns of various iron oxide zones by laser irradiation, of stainless steel at ambient conditions, and that Raman spectroscopy is a useful punctual technique for the analysis and inspection of small oxide areas.

  16. Laser welding of glasses using a nanosecond pulsed Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    de Pablos-Martín, A.; Höche, Th.

    2017-03-01

    This work reports on laser welding of two 1 mm thickness borosilicate glasses through the irradiation with a nanosecond pulsed laser, as a novel alternative to the use of ultrashort pulsed lasers for welding of transparent materials. Two different methodologies were investigated and compared in terms of interface quality. In a first approach, the glasses were joined without any absorbing intermediate layer. However, the bond interface possesses defects. To improve the resulting bond interface, the use of a titanium ultrathin intermediate layer was proposed to weld the glasses substrates, acting as a sealant between them. The laser parameters were optimized to achieve the best joining conditions of the Ti film. The use of the Ti layer gives rise to a bond interface more homogeneous and free of damages. As a further step, thin glasses of 86 μm thickness, of great technological value, were joined through the Ti film as well. The joined interfaces were inspected through optical microscopy and scanning electron microscopy (SEM) while the bond quality was evaluated by Scanning Acoustic Microscopy (SAM).

  17. Infrared nanosecond pulsed laser irradiation of stainless steel: micro iron-oxide zones generation.

    PubMed

    Ortiz-Morales, M; Frausto-Reyes, C; Soto-Bernal, J J; Acosta-Ortiz, S E; Gonzalez-Mota, R; Rosales-Candelas, I

    2014-07-15

    Nanosecond-pulsed, infrared (1064 nm) laser irradiation was used to create periodic metal oxide coatings on the surface of two samples of commercial stainless steel at ambient conditions. A pattern of four different metal oxide zones was created using a galvanometer scanning head and a focused laser beam over each sample. This pattern is related to traverse direction of the laser beam scanning. Energy-dispersive X-ray spectroscopy (EDS) was used to find the elemental composition and Raman spectroscopy to characterize each oxide zone. Pulsed laser irradiation modified the composition of the stainless steel samples, affecting the concentration of the main components within each heat affected zone. The Raman spectra of the generated oxides have different intensity profiles, which suggest different oxide phases such as magnetite and maghemite. In addition, these oxides are not sensible to the laser power of the Raman system, as are the iron oxide powders reported in the literature. These experiments show that it is possible to generate periodic patterns of various iron oxide zones by laser irradiation, of stainless steel at ambient conditions, and that Raman spectroscopy is a useful punctual technique for the analysis and inspection of small oxide areas.

  18. Environmental resistance of oxide tags fabricated on 304L stainless steel via nanosecond pulsed laser irradiation

    DOE PAGES

    Lawrence, Samantha Kay; Adams, David P.; Bahr, David F.; ...

    2015-11-14

    Nanosecond pulsed laser irradiation was used to fabricate colored, mechanically robust oxide “tags” on 304L stainless steel. Immersion in simulated seawater solution, salt fog exposure, and anodic polarization in a 3.5% NaCl solution were employed to evaluate the environmental resistance of these oxide tags. Single layer oxides outside a narrow thickness range (~ 100–150 nm) are susceptible to dissolution in chloride containing environments. The 304L substrates immediately beneath the oxides corrode severely—attributed to Cr-depletion in the melt zone during laser processing. For the first time, multilayered oxides were fabricated with pulsed laser irradiation in an effort to expand the protectivemore » thickness range while also increasing the variety of film colors attainable in this range. Layered films grown using a laser scan rate of 475 mm/s are more resistant to both localized and general corrosion than oxides fabricated at 550 mm/s. Furthermore, in the absence of pre-processing to mitigate Cr-depletion, layered films can enhance environmental stability of the system.« less

  19. The cytotoxic synergy of nanosecond electric pulses and low temperature leads to apoptosis

    PubMed Central

    Muratori, Claudia; Pakhomov, Andrei G.; Gianulis, Elena C.; Jensen, Sarah Damsbo; Pakhomova, Olga N.

    2016-01-01

    Electroporation by nanosecond electric pulses (nsEP) is an emerging modality for tumor ablation. Here we show the efficient induction of apoptosis even by a non-toxic nsEP exposure when it is followed by a 30-min chilling on ice. This chilling itself had no impact on the survival of U-937 or HPAF-II cells, but caused more than 75% lethality in nsEP-treated cells (300 ns, 1.8-7 kV/cm, 50-700 pulses). The cell death was largely delayed by 5-23 hr and was accompanied by a 5-fold activation of caspase 3/7 (compared to nsEP without chilling) and more than 60% cleavage of poly-ADP ribose polymerase (compared to less than 5% in controls or after nsEP or chilling applied separately). When nsEP caused a transient permeabilization of 83% of cells to propidium iodide, cells placed at 37 °C resealed in 10 min, whereas 60% of cells placed on ice remained propidium-permeable even in 30 min. The delayed membrane resealing caused cell swelling, which could be blocked by an isosmotic addition of a pore-impermeable solute (sucrose). However, the block of swelling did not prevent the delayed cell death by apoptosis. The potent enhancement of nsEP cytotoxicity by subsequent non-damaging chilling may find applications in tumor ablation therapies. PMID:27833151

  20. Inactivation of Ricin Toxin by Nanosecond Pulsed Electric Fields Including Evidences from Cell and Animal Toxicity

    NASA Astrophysics Data System (ADS)

    Wei, Kai; Li, Wei; Gao, Shan; Ji, Bin; Zang, Yating; Su, Bo; Wang, Kaile; Yao, Maosheng; Zhang, Jue; Wang, Jinglin

    2016-01-01

    Ricin is one of the most toxic and easily produced plant protein toxin extracted from the castor oil plant, and it has been classified as a chemical warfare agent. Here, nanosecond pulsed electric fields (nsPEFs) at 30 kV/cm (pulse durations: 10 ns, 100 ns, and 300 ns) were applied to inactivating ricin up to 4.2 μg/mL. To investigate the efficacy, cells and mice were tested against the ricin treated by the nsPEFs via direct intraperitoneal injection and inhalation exposure. Results showed that nsPEFs treatments can effectively reduce the toxicity of the ricin. Without the nsPEFs treatment, 100% of mice were killed upon the 4 μg ricin injection on the first day, however 40% of the mice survived the ricin treated by the nsPEFs. Compared to injection, inhalation exposure even with higher ricin dose required longer time to observe mice fatality. Pathological observations revealed damages to heart, lung, kidney, and stomach after the ricin exposure, more pronounced for lung and kidney including severe bleeding. Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE) and circular dichroism (CD) analyses revealed that although the primary structure of ricin was not altered, its secondary structures (beta-sheet and beta-turn) underwent transition upon the nsPEFs treatment.

  1. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    SciTech Connect

    Teng, Yun; Li, Lee Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-15

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm{sup 3}, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  2. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Teng, Yun; Li, Lee; Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-01

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm3, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  3. Ablation Study of WC and PCD Composites Using 10 Picosecond and 1 Nanosecond Pulse Durations at Green and Infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Eberle, Gregory; Wegener, Konrad

    An ablation study is carried out to compare 10 picosecond and 1 nanosecond pulse durations as well as 532 nanometre and 1064 nanometre wavelengths at each corresponding pulse duration. All laser parameters are kept constant in order to understand the influence of pulse duration and wavelength independently. The materials processed according to the electronic band structure are a metal and an insulator/metal composite, i.e. tungsten carbide and polycrystalline diamond composite respectively. After laser processing said materials, the ablation rate and surface roughness are determined. Analysis into the ablation behaviour between the various laser parameters and the materials processed is given, with a particular emphasis on the graphitisation of diamond.

  4. Process Performances of 2 ns Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  5. Discharge processes of UV pre-ionized electric-discharge pulsed DF laser

    NASA Astrophysics Data System (ADS)

    Pan, Qikun; Xie, Jijiang; Shao, Chunlei; Wang, Chunrui; Shao, Mingzhen; Guo, Jin

    2016-03-01

    The discharge processes of ultraviolet (UV) pre-ionized electric-discharge pulsed DF laser operating with a SF6-D2 gas mixture are studied. A mathematical model based on continuity equation of electrons and Kirchhoff equations for discharge circuit is established to describe the discharge processes. Voltage and current waveforms of main discharge and voltage waveforms of pre-ionization are solved numerically utilizing the model. The calculations correctly display some physical processes, such as the delay time between pre-ionization and main discharge, breakdown of the main electrode and self-sustained volume discharge (SSVD). The results of theory are consistent with the experiments, which are performed in our non-chain pulsed DF laser. Then the delay inductance and peak capacitance are researched to analyze their influences on discharge processes, and the circuit parameters of DF laser are given which is useful to improve the discharge stability.

  6. Fast pulse nonthermal plasma reactor

    DOEpatents

    Rosocha, Louis A.

    2005-06-14

    A fast pulsed nonthermal plasma reactor includes a discharge cell and a charging assembly electrically connected thereto. The charging assembly provides plural high voltage pulses to the discharge cell. Each pulse has a rise time between one and ten nanoseconds and a duration of three to twenty nanoseconds. The pulses create nonthermal plasma discharge within the discharge cell. Accordingly, the nonthermal plasma discharge can be used to remove pollutants from gases or break the gases into smaller molecules so that they can be more efficiently combusted.

  7. Laser damage properties of broadband low-dispersion mirrors in sub-nanosecond laser pulse.

    PubMed

    Zhang, Jinlong; Bu, Xiaoqing; Jiao, Hongfei; Ma, Bin; Cheng, Xinbin; Wang, Zhangshan

    2017-01-09

    Broadband low dispersion (BBLD) mirrors are an essential component in femto-second (fs) pulse laser systems. We designed and produced Ta2O5-HfO2/SiO2 composite quarter-wave and non-quarter-wave HfO2/SiO2 BBLD mirrors for the 30fs petawatt laser system. The laser damage properties of the BBLD mirrors were investigated in an uncompressed sub-nanosecond laser pulse. It showed that the Ta2O5-HfO2/SiO2 composite BBLD mirror possessed higher LIDT due to the low electric-field intensity (EFI) in the case of the coating without artificial nodules. Nevertheless, the LIDT of the composite mirror was significantly lower than the non-quarter-wave HfO2/SiO2 mirror when the nodules exist. The EFI simulation and damage morphology of the nodules analysis demonstrated that the nodule leading to the light intensification in the middle of the boundary between the nodular and the surrounding coating, thus the outermost HfO2/SiO2 layers cannot protect the Ta2O5/SiO2 layers, and resulting to the significantly low LIDT. This study shed some light on the development of high-laser-damage BBLD mirrors for pulse compression laser systems.

  8. A method for the formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting

    SciTech Connect

    Owusu-Ansah, Ebenezer; Horwood, Corie A.; Birss, Viola I.; Shi, Yujun J.; El-Sayed, Hany A.

    2015-05-18

    Nanosecond pulsed laser dewetting of Pt thin films, deposited on a dimpled Ta (DT) surface, has been studied here in order to form ordered Pt nanoparticle (NP) arrays. The DT substrate was fabricated via a simple electrochemical anodization process in a highly concentrated H{sub 2}SO{sub 4} and HF solution. Pt thin films (3–5 nm) were sputter coated on DT and then dewetted under vacuum to generate NPs using a 355 nm laser radiation (6–9 ns, 10 Hz). The threshold laser fluence to fully dewet a 3.5 nm thick Pt film was determined to be 300 mJ/cm{sup 2}. Our experiments have shown that shorter irradiation times (≤60 s) produce smaller nanoparticles with more uniform sizes, while longer times (>60 s) give large nanoparticles with wider size distributions. The optimum laser irradiation time of 1 s (10 pulses) has led to the formation of highly ordered Pt nanoparticle arrays with an average nanoparticle size of 26 ± 3 nm with no substrate deformation. At the optimum condition of 1 s and 500 mJ/cm{sup 2}, as many as 85% of the dewetted NPs were found neatly in the well-defined dimples. This work has demonstrated that pulsed laser dewetting of Pt thin films on a pre-patterned dimpled substrate is an efficient and powerful technique to produce highly ordered Pt nanoparticle arrays. This method can thus be used to produce arrays of other high-melting-point metal nanoparticles for a range of applications, including electrocatalysis, functionalized nanomaterials, and analytical purposes.

  9. A method for the formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting

    NASA Astrophysics Data System (ADS)

    Owusu-Ansah, Ebenezer; Horwood, Corie A.; El-Sayed, Hany A.; Birss, Viola I.; Shi, Yujun J.

    2015-05-01

    Nanosecond pulsed laser dewetting of Pt thin films, deposited on a dimpled Ta (DT) surface, has been studied here in order to form ordered Pt nanoparticle (NP) arrays. The DT substrate was fabricated via a simple electrochemical anodization process in a highly concentrated H2SO4 and HF solution. Pt thin films (3-5 nm) were sputter coated on DT and then dewetted under vacuum to generate NPs using a 355 nm laser radiation (6-9 ns, 10 Hz). The threshold laser fluence to fully dewet a 3.5 nm thick Pt film was determined to be 300 mJ/cm2. Our experiments have shown that shorter irradiation times (≤60 s) produce smaller nanoparticles with more uniform sizes, while longer times (>60 s) give large nanoparticles with wider size distributions. The optimum laser irradiation time of 1 s (10 pulses) has led to the formation of highly ordered Pt nanoparticle arrays with an average nanoparticle size of 26 ± 3 nm with no substrate deformation. At the optimum condition of 1 s and 500 mJ/cm2, as many as 85% of the dewetted NPs were found neatly in the well-defined dimples. This work has demonstrated that pulsed laser dewetting of Pt thin films on a pre-patterned dimpled substrate is an efficient and powerful technique to produce highly ordered Pt nanoparticle arrays. This method can thus be used to produce arrays of other high-melting-point metal nanoparticles for a range of applications, including electrocatalysis, functionalized nanomaterials, and analytical purposes.

  10. Theranostic system for drug delivery and pharmacokinetic imaging based on nanosecond pulsed light-induced photomechanical and photoacoustic effects

    NASA Astrophysics Data System (ADS)

    Tsunoi, Yasuyuki; Sato, Shunichi; Kawauchi, Satoko; Akutsu, Yusuke; Miyagawa, Yoshihiro; Araki, Koji; Shiotani, Akihiro; Terakawa, Mitsuhiro

    2015-11-01

    For efficient and side effects-free pharmacological treatment, we here propose a theranostic system that enables transvascular drug delivery by photomechanical waves (PMWs) and photoacoustic (PA) imaging of the drug distribution; both functions are based on nanosecond laser pulses and can therefore be integrated in one system. Through optical fibers arranged around an ultrasound sensor, low-energy and high-energy nanosecond light pulses were transmitted respectively for PA imaging and PMW-based drug delivery by temporal switching. With the system, we delivered a test drug (Evans blue) to tumors in mice and visualized distributions of both the blood vessels and drug in the tissue in vivo, showing the validity of the system.

  11. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K-1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  12. Self-pulsing of hollow cathode discharge in various gases

    SciTech Connect

    Qin, Y.; He, F. Jiang, X. X.; Ouyang, J. T.; Xie, K.

    2014-07-15

    In this paper, we investigate the self-pulsing phenomenon of cavity discharge in a cylindrical hollow cathode in various gases including argon, helium, nitrogen, oxygen, and air. The current-voltage characteristics of the cavity discharge, the waveforms of the self-pulsing current and voltage as well as the repetition frequency were measured. The results show that the pulsing frequency ranges from a few to tens kilohertz and depends on the averaged current and the pressure in all gases. The pulsing frequency will increase with the averaged current and decrease with the pressure. The rising time of the current pulse is nearly constant in a given gas or mixture. The self-pulsing does not depend on the external ballast but is affected significantly by the external capacitor in parallel with the discharge cell. The low-current self-pulsing in hollow cathode discharge is the mode transition between Townsend and glow discharges. It can be described by the charging-discharging process of an equivalent circuit consisting of capacitors and resistors.

  13. Transistorized Marx bank pulse circuit provides voltage multiplication with nanosecond rise-time

    NASA Technical Reports Server (NTRS)

    Jung, E. A.; Lewis, R. N.

    1968-01-01

    Base-triggered avalanche transistor circuit used in a Marx bank pulser configuration provides voltage multiplication with nanosecond rise-time. The avalanche-mode transistors replace conventional spark gaps in the Marx bank. The delay time from an input signal to the output signal to the output is typically 6 nanoseconds.

  14. Laser-induced damage of KDP crystals by 1omega nanosecond pulses: influence of crystal orientation.

    PubMed

    Reyné, Stéphane; Duchateau, Guillaume; Natoli, Jean-Yves; Lamaignère, Laurent

    2009-11-23

    We investigate the influence of THG-cut KDP crystal orientation on laser damage at 1064 nm under nanosecond pulses. Since laser damage is now assumed to initiate on precursor defects, this study makes a connection between these nanodefects (throughout a mesoscopic description) and the influence of their orientation on laser damage. Some investigations have already been carried out in various crystals and particularly for KDP, indicating propagation direction and polarization dependences. We performed experiments for two orthogonal positions of the crystal and results clearly indicate that KDP crystal laser damage depends on its orientation. We carried out further investigations on the effect of the polarization orientation, by rotating the crystal around the propagation axis. We then obtained the evolution of the damage probability as a function of the rotation angle. To account for these experimental res ts, we propose a laser damage model based on ellipsoid-shaped defects. This modeling is a refined implementation of the DMT model (Drude Mie Thermal) [Dyan et al., J. Opt. Soc. Am. B 25, 1087-1095 (2008)], by introducing absorption efficiency calculations for an ellipsoidal geometry. Modeling simulations are in good agreement with experimental results.

  15. Reflection of nanosecond Nd:YAG laser pulses in ablation of metals.

    PubMed

    Benavides, O; Lebedeva, O; Golikov, V

    2011-10-24

    Hemispherical total reflectivity of copper, nickel, and tungsten in ablation by nanosecond Nd:YAG laser pulses in air of atmospheric pressure is experimentally studied as a function of laser fluence in the range of 0.1-100 J/cm(2). Our experiment shows that at laser fluences below the plasma formation threshold the reflectivity of mechanically polished metals remains virtually equal to the table room-temperature reflectivity values. The hemispherical total reflectivity of the studied metals begins to drop at a laser fluence of the plasma formation threshold. With increasing laser fluence above the plasma formation threshold the reflectivity sharply decreases to a low value and then remains unchanged with further increasing laser fluence. Computation of the surface temperature at the plasma formation threshold fluence reveals that its value is substantially below the melting point that indicates an important role of the surface nanostructural defects in the plasma formation on a real sample due to their enhanced heating caused by both plasmonic absorption and plasmonic nanofocusing.

  16. Fast switching thyristor applied in nanosecond-pulse high-voltage generator with closed transformer core.

    PubMed

    Li, Lee; Bao, Chaobing; Feng, Xibo; Liu, Yunlong; Fochan, Lin

    2013-02-01

    For a compact and reliable nanosecond-pulse high-voltage generator (NPHVG), the specification parameter selection and potential usage of fast controllable state-solid switches have an important bearing on the optimal design. The NPHVG with closed transformer core and fast switching thyristor (FST) was studied in this paper. According to the analysis of T-type circuit, the expressions for the voltages and currents of the primary and secondary windings on the transformer core of NPHVG were deduced, and the theoretical maximum analysis was performed. For NPHVG, the rise-rate of turn-on current (di/dt) across a FST may exceed its transient rating. Both mean and maximum values of di/dt were determined by the leakage inductances of the transformer, and the difference is 1.57 times. The optimum winding ratio is helpful to getting higher voltage output with lower specification FST, especially when the primary and secondary capacitances have been established. The oscillation period analysis can be effectively used to estimate the equivalent leakage inductance. When the core saturation effect was considered, the maximum di/dt estimated from the oscillating period of the primary current is more accurate than one from the oscillating period of the secondary voltage. Although increasing the leakage inductance of NPHVG can decrease di/dt across FST, it may reduce the output peak voltage of the NPHVG.

  17. Breakdown in a bulk of transparent solids under irradiation of a nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Rehman, Z. U.; Grigorov, Y. V.; Tran, K. A.; Janulewicz, K. A.

    2014-10-01

    A single pulse of a nanosecond laser was tightly focused in the bulk of transparent materials (soda lime glass, borosilicate glass, fused silica , sapphire and Gorilla Glass) to a beam spot diameter of ~ 2.1μm. A value of the total energy absorbed in the materials was measured with corrections for the transmitted, scattered and reflected components of the incident energy. It was found that 3-11% of the incident radiation was scattered but the total absorption still achieved a very high level of up to 88%. Absorptance dependence on the incident fluence was reasonably approximated by the sigmoidal Hill function. Here we suggest using this analytical description to identify empirical intrinsic laser-induced breakdown threshold (LIBT). Optical damage threshold (ODT) was identified by optical inspection. The results for some materials suggest significantly lower breakdown threshold than that reported earlier for more loosely focused beams. A study of the damage area morphology with a scanning electron microscope (SEM) and a high resolution transmission microscope (HRTEM) revealed existence of the shock waves-affected area with a localized nano-crystallization. Spectroscopic study of the light emission accompanying breakdown showed typical quasi-continuum emission with temperature as high as 8917K (0.8 eV).

  18. Microdosimetry for nanosecond pulsed electric field applications: a parametric study for a single cell.

    PubMed

    Merla, Caterina; Paffi, Alessandra; Apollonio, Francesca; Leveque, Philippe; d'Inzeo, Guglielmo; Liberti, Micaela

    2011-05-01

    A microdosimetric study of nanosecond pulsed electric fields, including dielectric dispersivity of cell compartments, is proposed in our paper. A quasi-static solution based on the Laplace equation was adapted to wideband signals and used to address the problem of electric field estimation at cellular level. The electric solution was coupled with an asymptotic electroporation model able to predict membrane pore density. An initial result of our paper is the relevance of the dielectric dispersivity, providing evidence that both the transmembrane potential and the pore density are strongly influenced by the choice of modeling used. We note the crucial role played by the dielectric properties of the membrane that can greatly impact on the poration of the cell. This can partly explain the selective action reported on cancerous cells in mixed populations, if one considers that tumor cells may present different dielectric responses. Moreover, these kinds of studies can be useful to determine the appropriate setting of nsPEF generators as well as for the design and optimization of new-generation devices.

  19. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.

    PubMed

    Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D

    2015-10-09

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  20. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Barnes, Ronald A., Jr.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-10-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  1. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    PubMed Central

    Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-01-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165

  2. Decolorization of methylene blue in aqueous suspensions of gold nanoparticles using parallel nanosecond pulsed laser.

    PubMed

    Zong, Yan P; Liu, Xian H; Du, Xi W; Lu, Yi R; Wang, Mei Y; Wang, Guang Y

    2013-01-01

    Using 532 nm parallel nanosecond pulsed laser, the decolorization of methylene blue (MB) in aqueous suspensions of gold nanoparticles (GNPs) was studied. The effects of various experimental parameters, such as irradiation time, laser energy, and initial MB concentration on the decolorization rate were investigated. Experiments using real samples of textile dyeing wastewater were also carried out to examine the effectiveness of the method in more complex samples. From the results, the following conclusions may be drawn: (i) Under the optimum conditions (pH 7.19, 135 mJ laser energy, 4 mg/L MB concentration, and 11.6 mg/L GNP concentration), the rate of MB decolorization could reach 94% in 15 min. The decolorization follows pseudo-first-order kinetics; (ii) The amount of MB decreased rapidly during the decolorization. No intermediates of the decolorization could be detected by high-performance liquid chromatography. These observations indicate that MB was decolorized through a very rapid degradation mechanism; (iii) The rate of MB decolorization increased with the increase in laser energy (at laser energies of 0 to 135 mJ); and, (iv) The efficient decolorization of MB in real samples of textile dyeing wastewater was achieved at a decolorization rate of about 85% in 15 min.

  3. Fast switching thyristor applied in nanosecond-pulse high-voltage generator with closed transformer core

    NASA Astrophysics Data System (ADS)

    Li, Lee; Bao, Chaobing; Feng, Xibo; Liu, Yunlong; Fochan, Lin

    2013-02-01

    For a compact and reliable nanosecond-pulse high-voltage generator (NPHVG), the specification parameter selection and potential usage of fast controllable state-solid switches have an important bearing on the optimal design. The NPHVG with closed transformer core and fast switching thyristor (FST) was studied in this paper. According to the analysis of T-type circuit, the expressions for the voltages and currents of the primary and secondary windings on the transformer core of NPHVG were deduced, and the theoretical maximum analysis was performed. For NPHVG, the rise-rate of turn-on current (di/dt) across a FST may exceed its transient rating. Both mean and maximum values of di/dt were determined by the leakage inductances of the transformer, and the difference is 1.57 times. The optimum winding ratio is helpful to getting higher voltage output with lower specification FST, especially when the primary and secondary capacitances have been established. The oscillation period analysis can be effectively used to estimate the equivalent leakage inductance. When the core saturation effect was considered, the maximum di/dt estimated from the oscillating period of the primary current is more accurate than one from the oscillating period of the secondary voltage. Although increasing the leakage inductance of NPHVG can decrease di/dt across FST, it may reduce the output peak voltage of the NPHVG.

  4. Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Jia, Zhenyuan; Ma, Jianwei; Liu, Wei; Wang, Ling

    2014-12-01

    Metal coating with functional pattern on engineering plastics surface plays an important role in industry applications; it can be obtained by adding or removing certain area of metal coating on engineering plastics surface. However, the manufacturing requirements are improved continuously and the plastic substrate presents three-dimensional (3D) structure-many of these parts cannot be fabricated by conventional processing methods, and a new manufacturing method is urgently needed. As the laser-processing technology has many advantages like high machining accuracy and constraints free substrate structure, the machining of the parts is studied through removing certain area of metal coating based on the nanosecond multi-pulse laser milling. To improve the edge quality of the functional pattern, generation mechanism and corresponding avoidance strategy of the processing defects are studied. Additionally, a prediction model for the laser ablation depth is proposed, which can effectively avoid the existence of residual metal coating and reduces the damage of substrate. With the optimal machining parameters, an equiangular spiral pattern on copper-clad polyimide (CCPI) is machined based on the laser milling at last. The experimental results indicate that the edge of the pattern is smooth and consistent, the substrate is flat and without damage. The achievements in this study could be applied in industrial production.

  5. Nanosecond pulsed electric fields have differential effects on cells in the S-phase.

    PubMed

    Hall, Emily H; Schoenbach, Karl H; Beebe, Stephen J

    2007-03-01

    Nanosecond pulsed electric fields (nsPEFs) are a type of nonthermal, nonionizing radiation that exhibit intense electric fields with high power, but low energy. NsPEFs extend conventional electroporation (EP) to affect intracellular structures and functions and depending on the intensity, can induce lethal and nonlethal cell signaling. In this study, HCT116 human colon carcinoma cells were synchronized to the S-phase or remained unsynchronized, exposed to electric fields of 60 kV/cm with either 60-ns or 300-ns durations, and analyzed for apoptosis and proliferative markers. Several nsPEF structural and functional targets were identified. Unlike unsynchronized cells, S-phase cells under limiting conditions exhibited greater membrane integrity and caspase activation and maintained cytoskeletal structure. Regardless of synchronization, cells exposed to nsPEFs under these conditions primarily survived, but exhibited some turnover and delayed proliferation in cell populations, as well as reversible increases in phosphatidylserine externalization, membrane integrity, and nuclei size. These results show that nsPEFs can act as a nonligand agonist to modulate plasma membrane (PM) and intracellular structures and functions, as well as differentially affect cells in the S-phase, but without effect on cell survival. Furthermore, nsPEF effects on the nucleus and cytoskeleton may provide synergistic therapeutic actions with other agents, such as ionizing radiation or chemotherapeutics that affect these same structures.

  6. Mechanisms governing the interaction of metallic particles with nanosecond laser pulses.

    PubMed

    Demos, Stavros G; Negres, Raluca A; Raman, Rajesh N; Shen, Nan; Rubenchik, Alexander M; Matthews, Manyalibo J

    2016-04-04

    The interaction of nanosecond laser pulses at 1064- and 355-nm with micro-scale, nominally spherical metallic particles is investigated in order to elucidate the governing interaction mechanisms as a function of material and laser parameters. The experimental model used involves the irradiation of metal particles located on the surface of transparent plates combined with time-resolved imaging capable of capturing the dynamics of particle ejection, plume formation and expansion along with the kinetics of the dispersed material from the liquefied layer of the particle. The mechanisms investigated in this work are informative and relevant across a multitude of materials and irradiation geometries suitable for the description of a wide range of specific applications. The experimental results were interpreted using physical models incorporating specific processes to assess their contribution to the overall observed behaviors. Analysis of the experimental results suggests that the induced kinetic properties of the particle can be adequately described using the concept of momentum coupling introduced to explain the interaction of plane metal targets to large-aperture laser beams. The results also suggest that laser energy deposition on the formed plasma affects the energy partitioning and the material modifications to the substrate.

  7. Pulse volume discharges in high pressure gases

    NASA Astrophysics Data System (ADS)

    Yamshchikov, V. A.

    2015-11-01

    New approach for suppression of plasma inhomogeneities and instabilities in the volume self-sustained discharge is offered. The physical model is offered and conditions of obtaining extremely homogeneous self-sustained discharge are defined (with full suppression of plasma inhomogeneity and instability). Results of calculations agree with experiments.

  8. Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    PubMed Central

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Evans, Rodger; Guillén, Gabriel; Goldschmidt, Benjamin S.; Viator, John A.

    2010-01-01

    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation. PMID:20589533

  9. Changes in protein expression of U937 and Jurkat cells exposed to nanosecond pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Moen, Erick K.; Roth, Caleb C.; Cerna, Caesar; Estalck, Larry; Wilmink, Gerald; Ibey, Bennett L.

    2013-02-01

    Application of nanosecond pulsed electric fields (nsPEF) to various biological cell lines has been to shown to cause many diverse effects, including poration of the plasma membrane, depolarization of the mitochondrial membrane, blebbing, apoptosis, and intracellular calcium bursts. The underlying mechanism(s) responsible for these diverse responses are poorly understood. Of specific interest in this paper are the long-term effects of nsPEF on cellular processes, including the regulation of genes and production of proteins. Previous studies have reported transient activation of select signaling pathways involving mitogen-activated protein kinases (MAPKs), protein phosphorylation and downstream gene expression following nsPEF application. We hypothesize that nsPEF represents a unique stimulus that could be used to externally modulate cellular processes. To validate our hypothesis, we performed a series of cuvette-based exposures at 10 and 600ns pulse widths using a custom Blumlien line pulser system. We measured acute changes in the plasma membrane structure using flow cytometry by tracking phosphatidylserine externalization via FITC-Annexin V labeling and poration via propidium iodide uptake. We then compared these results to viability of the cells at 24 hours post exposure using MTT assay and changes in the MAPK family of proteins at 8 hours post-exposure using Luminex assay. By comparing exposures at 10 and 600ns duration, we found that most MAPK family-protein expression increased in Jurkat and U937 cell lines following exposure and compared well with drops in viability and changes in plasma membrane asymmetry. What proved interesting is that some MAPK family proteins (e.g. p53, STAT1), were expressed in one cell line, but not the other. This difference may point to an underlying mechanism for observed difference in cellular sensitivity to nsPEFinduced stresses.

  10. Dynamic effects and applications for nanosecond pulsed electric fields in cells and tissues

    NASA Astrophysics Data System (ADS)

    Beebe, Stephen J.; Blackmore, Peter F.; Hall, Emily; White, Jody A.; Willis, Lauren K.; Fauntleroy, Laura; Kolb, Juergen F.; Schoenbach, Karl H.

    2005-04-01

    Nanosecond, high intensity pulsed electric fields [nsPEFs] that are below the plasma membrane [PM] charging time constant have decreasing effects on the PM and increasing effects on intracellular structures and functions as the pulse duration decreases. When human cell suspensions were exposed to nsPEFs where the electric fields were sufficiently intense [10-300ns, <=300 kV/cm.], apoptosis signaling pathways could be activated in several cell models. Multiple apoptosis markers were observed in Jurkat, HL-60, 3T3L1-preadipocytes, and isolated rat adipocytes including decreased cell size and number, caspase activation, DNA fragmentation, and/or cytochrome c release into the cytoplasm. Phosphatidylserine externalization was observed as a biological response to nsPEFs in 3T3-L1 preadipocytes and p53-wildtype and -null human colon carcinoma cells. B10.2 mouse fibrosarcoma tumors that were exposed to nsPEFs ex vivo and in vivo exhibited DNA fragmentation, elevated caspase activity, and reduced size and weight compared to contralateral sham-treated control tumors. When nsPEF conditions were below thresholds for apoptosis and classical PM electroporation, non-apoptotic responses were observed similar to those initiated through PM purinergic receptors in HL-60 cells and thrombin in human platelets. These included Ca2+ mobilization from intracellular stores [endoplasmic reticulum] and subsequently through store-operated Ca2+ channels in the PM. In addition, platelet activation measured as aggregation responses were observed in human platelets. Finally, when nsPEF conditions followed classical electroporation-mediated transfection, the expression intensity and number of GFP-expressing cells were enhanced above cells exposed to electroporation conditions alone. These studies demonstrate that application of nsPEFs to cells or tissues can modulate cell-signaling mechanisms with possible applications as a new basic science tool, cancer treatment, wound healing, and gene therapy.

  11. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    NASA Astrophysics Data System (ADS)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1-10 Hz) at various laser fluences ranging from 0.2 to 11 J cm-2 is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He-Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm-2 and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm-2. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  12. Histopathology of normal skin and melanomas after nanosecond pulsed electric field treatment.

    PubMed

    Chen, Xinhua; James Swanson, R; Kolb, Juergen F; Nuccitelli, Richard; Schoenbach, Karl H

    2009-12-01

    Nanosecond pulsed electric fields (nsPEFs) can affect the intracellular structures of cells in vitro. This study shows the direct effects of nsPEFs on tumor growth, tumor volume, and histological characteristics of normal skin and B16-F10 melanoma in SKH-1 mice. A melanoma model was set up by injecting B16-F10 into female SKH-1 mice. After a 100-pulse treatment with an nsPEF (40-kV/cm field strength; 300-ns duration; 30-ns rise time; 2-Hz repetition rate), tumor growth and histology were studied using transillumination, light microscopy with hematoxylin and eosin stain and transmission electron microscopy. Melanin and iron within the melanoma tumor were also detected with specific stains. After nsPEF treatment, tumor development was inhibited with decreased volumes post-nsPEF treatment compared with control tumors (P<0.05). The nsPEF-treated tumor volume was reduced significantly compared with the control group (P<0.01). Hematoxylin and eosin stain and transmission electron microscopy showed morphological changes and nuclear shrinkage in the tumor. Fontana-Masson stain indicates that nsPEF can externalize the melanin. Iron stain suggested nsPEF caused slight hemorrhage in the treated tissue. Histology confirmed that repeated applications of nsPEF disrupted the vascular network. nsPEF treatment can significantly disrupt the vasculature, reduce subcutaneous murine melanoma development, and produce tumor cell contraction and nuclear shrinkage while concurrently, but not permanently, damaging peripheral healthy skin tissue in the treated area, which we attribute to the highly localized electric fields surrounding the needle electrodes.

  13. Pulsed submicrosecond multichannel sliding discharges of opposite polarities: Filling of the discharge gap with spark channels

    SciTech Connect

    Trusov, K. K.

    2012-05-15

    Results are presented from measurements of the discharge current and the factor of the discharge gap filling with spark channels during pulsed sliding discharges of opposite polarities in Ne, Ar, and Xe on an aluminum oxide ceramic surface. The measurements were performed in the regime of single pulses of submi-crosecond duration at discharge voltages of 0-12 kV with two discharge chambers with different thicknesses of the ceramic plate (0.4 and 0.17 cm) and different electrode gap lengths (4 and 10.3 cm) at gas pressures of 30 and 100 kPa. The results obtained for discharges of opposite polarities are compared with one another, and common features of discharges in three gases are revealed. It is shown that the filling of the discharge gap with spark channels in the gases under study is more efficient in the case of the positive polarity of the discharge voltage, except Xe at a pressure of 100 kPa in the electrode gap of length 10.3 cm. The quasi-homogeneous regime of discharge in each of the three gases is attained easier at lower gas pressures. Comparison of the data on the filling factors of the discharge gap and the peak currents of opposite-polarity discharges for each gas at a given pressure indicates that the higher the discharge current, the more densely the discharge gap is filled with spark channels.

  14. Cascaded Raman shifting of high-peak-power nanosecond pulses in As₂S₃ and As₂Se₃ optical fibers.

    PubMed

    White, Richard T; Monro, Tanya M

    2011-06-15

    We report efficient cascaded Raman scattering of near-IR nanosecond pulses in large-core (65 μm diameter) As₂S₃ and As₂Se₃ optical fibers. Raman scattering dominates other spectral broadening mechanisms, such as four-wave mixing, modulation instability, and soliton dynamics, because the fibers have large normal group-velocity dispersion in the spectral range of interest. With ~2 ns pump pulses at a wavelength of 1.9 μm, four Stokes peaks, all with peak powers greater than 1 kW, have been measured.

  15. Electron beam switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, Lyn D.; Murray, John R.; Goldhar, Julius; Bradley, Laird P.

    1981-01-01

    Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  16. Development of a stereo-symmetrical nanosecond pulsed power generator composed of modularized avalanche transistor Marx circuits

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Zhong, Xu; Cao, Hui; Zhao, Zheng; Xue, Jing; Li, Tao; Li, Zheng; Wang, Ya-Nan

    2015-09-01

    Avalanche transistors have been widely studied and used in nanosecond high voltage pulse generations. However, output power improvement is always limited by the low thermal capacities of avalanche transistors, especially under high repetitive working frequency. Parallel stacked transistors can effectively improve the output current but the controlling of trigger and output synchronism has always been a hard and complex work. In this paper, a novel stereo-symmetrical nanosecond pulsed power generator with high reliability was developed. By analyzing and testing the special performances of the combined Marx circuits, numbers of meaningful conclusions on the pulse amplitude, pulse back edge, and output impedance were drawn. The combining synchronism of the generator was confirmed excellent and lower conducting current through the transistors was realized. Experimental results showed that, on a 50 Ω resistive load, pulses with 1.5-5.2 kV amplitude and 5.3-14.0 ns width could be flexibly generated by adjusting the number of combined modules, the supply voltage, and the module type.

  17. DNA Electrophoretic Migration Patterns Change after Exposure of Jurkat Cells to a Single Intense Nanosecond Electric Pulse

    PubMed Central

    Romeo, Stefania; Zeni, Luigi; Sarti, Maurizio; Sannino, Anna; Scarfì, Maria Rosaria; Vernier, P. Thomas; Zeni, Olga

    2011-01-01

    Intense nanosecond pulsed electric fields (nsPEFs) interact with cellular membranes and intracellular structures. Investigating how cells respond to nanosecond pulses is essential for a) development of biomedical applications of nsPEFs, including cancer therapy, and b) better understanding of the mechanisms underlying such bioelectrical effects. In this work, we explored relatively mild exposure conditions to provide insight into weak, reversible effects, laying a foundation for a better understanding of the interaction mechanisms and kinetics underlying nsPEF bio-effects. In particular, we report changes in the nucleus of Jurkat cells (human lymphoblastoid T cells) exposed to single pulses of 60 ns duration and 1.0, 1.5 and 2.5 MV/m amplitudes, which do not affect cell growth and viability. A dose-dependent reduction in alkaline comet-assayed DNA migration is observed immediately after nsPEF exposure, accompanied by permeabilization of the plasma membrane (YO-PRO-1 uptake). Comet assay profiles return to normal within 60 minutes after pulse delivery at the highest pulse amplitude tested, indicating that our exposure protocol affects the nucleus, modifying DNA electrophoretic migration patterns. PMID:22164287

  18. Development of a stereo-symmetrical nanosecond pulsed power generator composed of modularized avalanche transistor Marx circuits.

    PubMed

    Li, Jiang-Tao; Zhong, Xu; Cao, Hui; Zhao, Zheng; Xue, Jing; Li, Tao; Li, Zheng; Wang, Ya-Nan

    2015-09-01

    Avalanche transistors have been widely studied and used in nanosecond high voltage pulse generations. However, output power improvement is always limited by the low thermal capacities of avalanche transistors, especially under high repetitive working frequency. Parallel stacked transistors can effectively improve the output current but the controlling of trigger and output synchronism has always been a hard and complex work. In this paper, a novel stereo-symmetrical nanosecond pulsed power generator with high reliability was developed. By analyzing and testing the special performances of the combined Marx circuits, numbers of meaningful conclusions on the pulse amplitude, pulse back edge, and output impedance were drawn. The combining synchronism of the generator was confirmed excellent and lower conducting current through the transistors was realized. Experimental results showed that, on a 50 Ω resistive load, pulses with 1.5-5.2 kV amplitude and 5.3-14.0 ns width could be flexibly generated by adjusting the number of combined modules, the supply voltage, and the module type.

  19. Experimental study of mechanical response of artificial tissue models irradiated with Nd:YAG nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Aguilar, Guillermo

    2011-07-01

    Nanosecond long laser pulses are used in medical applications where precise tissue ablation with minimal thermal and mechanical collateral damage is required. When a laser pulse is incident on a material, optical energy will be absorbed by a combination of linear and nonlinear absorption according to both: laser light irradiance and material properties. In the case of water or gels, the first results in heat generation and thermoelastic expansion; while the second results in an expanding plasma formation that launches a shock wave and a cavitation/boiling bubble. Plasma formation due to nonlinear absorption of nanosecond laser pulses is originated by a combination of multiphoton ionization and thermionic emission of free electrons, which is enhanced when the material has high linear absorption coefficient. In this work, we present three experimental approaches to study pressure transients originated when 6 ns laser pulses are incident on agar gels and water with varying linear absorption coefficient, using laser radiant exposures above and below threshold for bubble formation: (a) PVDF sensors, (b) Time-resolved shadowgraphy and (c) Time-resolved interferometry. The underlying hypothesis is that pressure transients are composed of the superposition of both: shock wave originated by hot expanding plasma resulting from nonlinear absorption of optical energy and, thermoelastic expansion originated by heat generation due to linear absorption of optical energy. The objective of this study is to carry out a comprehensive experimental analysis of the mechanical effects that result when tissue models are irradiated with nanosecond laser pulses to elucidate the relative contribution of linear and nonlinear absorption to bubble formation. Furthermore, we investigate cavitation bubble formation with temperature increments as low as 3 °C.

  20. Inductively stabilized, long pulse duration transverse discharge apparatus

    DOEpatents

    Sze, Robert C.

    1986-01-01

    An inductively stabilized, long pulse duration transverse discharge apparatus. The use of a segmented electrode where each segment is attached to an inductive element permits high energy, high efficiency, long-pulsed laser outputs to be obtained. The present apparatus has been demonstrated with rare-gas halide lasing media. Orders of magnitude increase in pulse repetition frequency are obtained in lasing devices that do not utilize gas flow.

  1. Simulation of nanosecond high voltage discharges in dense gases governed by runaway electrons

    SciTech Connect

    Babich, L.P.; Kutsyk, I.M.

    1995-12-31

    In the present communication results of the first attempt to simulate overall dynamics of high voltage discharge in dense gases at high overvoltages are presented. The model of energy group was adopted. On a large scale the population of free electrons was divided in three energy groups: low energy electrons, runaway electrons (REs) and electrons of intermediate energies. The conventional Lorentz approximation of electron distribution function is adequate to describe low energy electrons on the basis of the Boltzmann kinetic equation. A differential equation was deduced to simulate the evolution of low-energy electron number density. The upper boundary {epsilon}{sub max} of this energy domain was determined as the energy, where the approximation was violated. To pass from the differential description to discreet model it was convenient to introduce k{sub max} energy groups of smaller scale {triangle}{epsilon} << {epsilon}{sub max} and divide the space domain x {element_of} [0, d] on i{sub max} space zones {triangle}x{sub i}. Thus the overall description of low energy electron kinetics was reduced to a system of equations with [k{sub max}, i{sub max}] dimension. To simulate REs, beforehand an auxiliary calculations should have been carried out to determine a share of electrons {gamma} with the initial energy {epsilon}{sub max}, which in the course of some time t{sub r} achieved the runaway energy threshold {epsilon}{sub th}. This time was adopted 0.1 ns to be essentially less than a characteristic time of applied voltage pulse variation. Data on {gamma} as a function of E allowed to calculate a number of REs electrons in every space zone. It was assumed that at every time step the share 5 of low-energy electrons, obtained energy >{epsilon}{sub max}, instantiously achieved the threshold {epsilon}{sub th}, whereas the others returned back to low-energy domain.

  2. 90% pump depletion and good beam quality in a pulse-injection-seeded nanosecond optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Armstrong, D. J.; Smith, A. V.

    2006-02-01

    We measured 90% pump depletion in a singly resonant image-rotating nanosecond optical parametric oscillator that was pulse-injection seeded by a self-generated signal pulse. The oscillator was pumped by an 8 ns duration single-frequency 532 nm pulse from an injection-seeded Q-switched Nd:YAG laser and resonated an 803 nm signal. The pump and pulsed-seed beams had flat-topped spatial fluence profiles with diameters of approximately 6 mm, giving a cavity Fresnel number at 803 nm approaching 400. The beam cleanup effects of the image-rotating cavity produce a far-field signal spatial fluence profile with approximately 60% of its energy falling within the diffraction-limited spot size.

  3. Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications.

    PubMed

    Shephard, Jonathan D; Couny, Francois; Russell, Phillip St J; Jones, Julian D C; Knight, Jonathan C; Hand, Duncan P

    2005-07-20

    We report the delivery of high-energy nanosecond pulses (approximately 65 ns pulse width) from a high-repetition-rate (up to 100 kHz) Q-switched Nd:YAG laser through the fundamental mode of a hollow-core photonic crystal fiber (HC-PCF) at 1064 nm. The guided mode in the HC-PCF has a low overlap with the glass, allowing delivery of pulses with energies above those attainable with other fibers. Energies greater than 0.5 mJ were delivered in a single spatial mode through the hollow-core fiber, providing the pulse energy and high beam quality required for micromachining of metals. Practical micromachining of a metal sheet by fiber delivery has been demonstrated.

  4. Novel x-ray imaging diagnostics of high-energy nanosecond pulse accelerators

    NASA Astrophysics Data System (ADS)

    Smith, Graham W.; Beutler, David E.; Bell, John D.; Seymour, Calvin L. G.; Hohlfelder, Robert J.; Gallegos, Roque R.; Dudley, John

    2005-03-01

    Pioneering x-ray imaging has been undertaken on a number of AWE"s and Sandia National Laboratories" radiation effects x-ray simulators. These simulators typically yield a single very short (<50ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad(Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.1 to 2.5MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and a preliminary evaluation of the capability of the spectrometer are presented. Further, a novel time resolved imaging system is described that captures a sequence of high spatial resolution temporal images, with zero interframe time, in the nanosecond timeframe, of our source x-rays.

  5. Recent experimental study of DD fusion in the potential well of a virtual cathode at nanosecond vacuum discharge

    NASA Astrophysics Data System (ADS)

    Oginov, A. V.; Kurilenkov, Yu K.; Samoylov, I. S.; Shpakov, K. V.; Tarakanov, V. P.; Ostashev, V. E.; Rodionov, A. A.; Karpukhin, V. T.

    2016-11-01

    Processes of nuclear burning of various elements in the scheme of a compact inertial electrostatic confinement implemented on the basis of a nanosecond vacuum discharge (NVD) with low-energy hollow cathode were investigated experimentally earlier. This paper presents the results of a recent series of DD fusion experiments on the newly created experimental set-up NVD-2 combined with x-ray and neutron yield diagnostics. The voltage-current (VA) characteristics of the discharge, and the regimes of generation of x-ray and DD neutrons realized experimentally are presented and discussed. The experimental results are compared with the results of particle-in-cell simulation of the nuclear DD fusion processes in NVD using electrodynamic code KARAT. Recent series of DD fusion experiments have reproducing in TOF scheme some basic features of DD neutrons yield observed earlier. Meanwhile, the analysis of V-A characteristics and anode erosion shows that efficiency of energy deposition at initial stage of discharge is still insufficient, and the ways to optimize the electrophysical processes at NVD-2 are clarified.

  6. Sub-5-ps optical pulse generation from a 1.55-µm distributed-feedback laser diode with nanosecond electric pulse excitation and spectral filtering.

    PubMed

    Chen, Shaoqiang; Sato, Aya; Ito, Takashi; Yoshita, Masahiro; Akiyama, Hidefumi; Yokoyama, Hiroyuki

    2012-10-22

    This paper reports generation of sub-5-ps Fourier-transform limited optical pulses from a 1.55-µm gain-switched single-mode distributed-feedback laser diode via nanosecond electric excitation and a simple spectral-filtering technique. Typical damped oscillations of the whole lasing spectrum were observed in the time-resolved waveform. Through a spectral-filtering technique, the initial relaxation oscillation pulse and the following components in the output pulse can be well separated, and the initial short pulse can be selectively extracted by filtering out the short-wavelength components in the spectrum. Short pulses generated by this simple method are expected to have wide potential applications comparable to mode-locking lasers.

  7. Ultraviolet radiation from the pulsed corona discharge in water

    NASA Astrophysics Data System (ADS)

    Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Sunka, Pavel

    2008-05-01

    Quantitative analysis of ultraviolet radiation from the pulsed corona discharge in water with needle-plate electrode geometry (~1-3 J pulse-1) was performed using the potassium ferrioxalate actinometry. Photon flux J190-280 and radiant energy Q190-280 of the UV light emitted from the discharge at spectral region 190-280 nm was determined in dependence on the applied voltage (17-29 kV, positive polarity) and the solution conductivity (100-500 µS cm-1). The intensity of the UV radiation strongly increased with increasing water conductivity and applied voltage. Depending on the applied voltage the determined photon flux varied by more than two orders of magnitude within the range of solution conductivities 100-500 µS cm-1. It was found that photon flux from the discharge may be directly related to the discharge pulse mean power Pp as J190-280 = 44.33 P_p^{2.11} (quanta pulse-1). A significant role of UV radiation in the production of hydrogen peroxide and bacterial inactivation by the corona discharge in water has been identified. As the solution conductivity increased the yield of H2O2 produced by the discharge decreased due to increasing photolysis of H2O2 accounting for up to 14% of the total decomposition rate of H2O2. As regards bactericidal effects, it was estimated that the UV radiation contributes about 30% to the overall inactivation of Escherichia coli.

  8. Efficient neutron production from sub-nanosecond laser pulse accelerating deuterons on target front side

    SciTech Connect

    Klir, D.; Krasa, J.; Velyhan, A.; Cikhardt, J.; Rezac, K.; Dudzak, R.; Krousky, E.; Pfeifer, M.; Skala, J.; Ullschmied, J.; Sila, O.

    2015-09-15

    Neutron-producing experiments have been carried out on the Prague Asterix Laser System. At the fundamental wavelength of 1.315 μm, the laser pulse of a 600 J energy and 300 ps duration was focused on a thick deuterated-polyethylene target. Neutron yields reached (4.1 ± 0.8) × 10{sup 8} at the peak intensity of ≈3 × 10{sup 16 }W/cm{sup 2}. A more detailed analysis of neutron time-of-flight signals showed that a significant fraction of neutron yields was produced both by the {sup 2}H(d,n){sup 3}He reaction and by other neutron-producing reactions. Neutron energies together with delayed neutron and gamma emission showed that MeV deuterons escaped from a laser-produced plasma and interacted ≈50 ns later with a borosilicate blast-shield glass. In order to increase DD neutron yields and to characterize deuteron beams via nuclear reactions, a secondary deuterated polyethylene target was used in a pitcher-catcher scheme at the target front side. In this experimental arrangement, the neutron yield reached (2.0 ± 0.5) × 10{sup 9} with the peak neutron fluence of (2.5 ± 0.5) × 10{sup 8 }n/sr. From the neutron yield, it was calculated that the secondary target was bombarded by 2 × 10{sup 14} deuterons in the 0.5–2.0 MeV energy range. The neutron yield of 2 × 10{sup 9} at the laser energy of 600 J implied the production efficiency of 3 × 10{sup 6 }n/J. A very important result is that the efficient neutron production was achieved with the low contrast, sub-nanosecond laser pulse of the intensity of 10{sup 16 }W/cm{sup 2}. The latter parameters can be achieved in a rep-rate mode more easily than ultra-high intensities and contrasts.

  9. Pulsed Inductive Thruster (PIT) Clamped Discharge Evaluation

    DTIC Science & Technology

    1988-12-31

    Lovberg, "Pulsed Inductive Thruster Technology", AFAL TR-87-012, April 1987. [2] Lyman Spitzer , Jr . "The Physics of Fully Ionized Gases" Interscience, New...Plasma (electron-ion) resistivity has the Spitzer dependence on temperature, with the coulomb factor In A equal to approximately 5: r7P = 10-3T-1 1

  10. Optimized Nanosecond Pulsed Electric Field Therapy Can Cause Murine Malignant Melanomas to Self-Destruct with a Single Treatment

    PubMed Central

    Nuccitelli, Richard; Tran, Kevin; Sheikh, Saleh; Athos, Brian; Kreis, Mark; Nuccitelli, Pamela

    2010-01-01

    We have identified a new, nanosecond pulsed electric field (nsPEF) therapy capable of eliminating murine melanomas located in the skin with a single treatment. When these optimized parameters are used, nsPEFs initiate apoptosis without hyperthermia. We have developed new suction electrodes that are compatible with human skin and have applied them to a xenograft nude mouse melanoma model system to identify the optimal field strength, pulse frequency and pulse number for the treatment of murine melanomas. A single treatment using the optimal pulse parameters (2000 pulses, 100 ns in duration, 30 kV/cm in amplitude at a pulse frequency of 5–7 pulses/s) eliminated all 17 melanomas treated with those parameters in 4 mice. This was the highest pulse frequency that we could use without raising the treated skin tumor temperature above 40 °C. We also demonstrate that the effects of nsPEF therapy are highly localized to only cells located between electrodes and results in very little scarring of the nsPEF-treated skin. PMID:20473857

  11. Long-pulse plasma discharge on the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Kumazawa, R.; Mutoh, T.; Saito, K.; Seki, T.; Nakamura, Y.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ohkubo, K.; Takeiri, Y.; Oka, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Nagaoka, K.; Kaneko, O.; Miyazawa, J.; Morita, S.; Narihara, K.; Shoji, M.; Masuzaki, S.; Kobayashi, M.; Ogawa, H.; Goto, M.; Morisaki, T.; Peterson, B. J.; Sato, K.; Tokuzawa, T.; Ashikawa, N.; Nishimura, K.; Funaba, H.; Chikaraishi, H.; Watari, T.; Watanabe, T.; Sakamoto, M.; Ichimura, M.; Takase, Y.; Notake, T.; Takeuchi, N.; Torii, Y.; Shimpo, F.; Nomura, G.; Takahashi, C.; Yokota, M.; Kato, A.; Zhao, Y.; Kwak, J. G.; Yoon, J. S.; Yamada, H.; Kawahata, K.; Ohyabu, N.; Ida, K.; Nagayama, Y.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.; LHD experiment Group

    2006-03-01

    A long-pulse plasma discharge of more than 30 min duration was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8 × 1019 m-3 and Ti0 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. The total injected heating energy was 1.3 GJ. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by sweeping the magnetic axis inward and outward. Causes limiting the long pulse plasma discharge are discussed. An ion impurity penetration limited further long-pulse discharge in the 8th experimental campaign (2004).

  12. High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining.

    PubMed

    Jaworski, Piotr; Yu, Fei; Carter, Richard M; Knight, Jonathan C; Shephard, Jonathan D; Hand, Duncan P

    2015-04-06

    In this paper we present an anti-resonant guiding, low-loss Negative Curvature Fiber (NCF) for the efficient delivery of high energy short (ns) and ultrashort (ps) pulsed laser light in the green spectral region. The fabricated NCF has an attenuation of 0.15 dB/m and 0.18 dB/m at 532 nm and 515 nm respectively, and provided robust transmission of nanosecond and picosecond pulses with energies of 0.57 mJ (10.4 kW peak power) and 30 µJ (5 MW peak power) respectively. It provides single-mode, stable (low bend-sensitivity) output and maintains spectral and temporal properties of the source laser beam. The practical application of fiber-delivered pulses has been demonstrated in precision micro-machining and marking of metals and glass.

  13. Pulsed electrical discharge in gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia

    A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique

  14. Evaluating the generation efficiency of hydrogen peroxide in water by pulsed discharge over water surface and underwater bubbling pulsed discharge

    NASA Astrophysics Data System (ADS)

    Shang, Kefeng; Li, Jie; Wang, Xiaojing; Yao, Dan; Lu, Na; Jiang, Nan; Wu, Yan

    2016-01-01

    Pulsed electric discharge over water surface/in water has been used to generate reactive species for decomposing the organic compounds in water, and hydrogen peroxide (H2O2) is one of the strong reactive species which can be decomposed into another stronger oxidative species, hydroxyl radical. The production efficacy of H2O2 by a gas phase pulsed discharge over water surface and an underwater bubbling pulsed discharge was evaluated through diagnosis of H2O2 by a chemical probe method. The experimental results show that the yield and the production rate of H2O2 increased with the input energy regardless of the electric discharge patterns, and the underwater bubbling pulsed discharge was more advantageous for H2O2 production considering both the yield and the production rate of H2O2. Results also indicate that the electric discharge patterns also influenced the water solution properties including the conductivity, the pH value and the water temperature.

  15. Through nanohole formation in thin metallic film by single nanosecond laser pulses using optical dielectric apertureless probe.

    PubMed

    Kulchin, Y N; Vitrik, O B; Kuchmizhak, A A; Nepomnyashchii, A V; Savchuk, A G; Ionin, A A; Kudryashov, S I; Makarov, S V

    2013-05-01

    Separate nanoholes with the minimum size down to 35 nm (~λ/15) and nanohole arrays with the hole size about 100 nm (~λ/5) were fabricated in a 50 nm optically "thick" Au/Pd film, using single 532 nm pump nanosecond laser pulses focused to diffraction-limited spots by a specially designed apertureless dielectric fiber probe. Nanohole fabrication in the metallic film was found to result from lateral heat diffusion and center-symmetrical lateral expulsion of the melt by its vapor recoil pressure. The optimized apertureless dielectric microprobe was demonstrated to enable laser fabrication of deep through nanoholes.

  16. Possibility of applying a hydrodynamic model to describe the laser erosion of metals irradiated by high-intensity nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Kozadaev, K. V.

    2014-04-01

    We report the results of experimental investigations of the production and development of plasma-vapour plumes upon irradiation of metal targets by nanosecond (10-100 ns) pulses with a high (108-1010 W cm-2) power density under atmospheric conditions. The transition from a quasi-stationary thermal mechanism of metal erosion to an explosion hydrodynamic one takes place when the radiation power density increases from 108 to 109 W cm-2. The resultant experimental information is extremely important for the laser deposition of metal nanostructures under atmospheric conditions, which is possible only for power densities of 108-109 W cm-2.

  17. Upconversion emission from amorphous Y 2O 3:Tm 3+, Yb 3+ prepared by nanosecond pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Zheng, C. B.; Xia, Y. Q.; Qin, F.; Yu, Y.; Miao, J. P.; Zhang, Z. G.; Cao, W. W.

    2011-06-01

    Y 2O 3:Tm 3+, Yb 3+ was prepared by nanosecond pulsed laser irradiation. The X-ray diffraction pattern shows that the material produced by laser irradiation is amorphous, which presents strong blue upconversion emission under the excitation of 976 nm diode laser. The relative intensity of the blue emission to the infrared one is linearly dependent on the pump power and is an order of magnitude higher than that of the bulk material. The analyses of rate equations and the time-resolved spectroscopic results indicate that the enhancement of the blue upconversion is attributed to the longer lifetime of the levels of the Tm 3+ and Yb 3+ ions.

  18. White-light emission from solid carbon in aqueous solution during hydrogen generation induced by nanosecond laser pulse irradiation

    NASA Astrophysics Data System (ADS)

    Akimoto, Ikuko; Yamamoto, Shota; Maeda, Kosuke

    2016-07-01

    We previously discovered a novel method of hydrogen generation from high-grade charcoal in an aqueous solution using nanosecond laser pulse irradiation. In this paper, white-light emission during this reaction is reported: A broad spectrum over the visible range is observed above a threshold excitation energy density. The white-light emission is a simultaneous product of the hydrogen generation reaction and is attributed to blackbody radiation in accordance with Planck's Law at a temperature above 3800 K. Consequently, we propose that hydrogen generation induced by laser irradiation proceeds similarly to classical coal gasification, which features reactions at high pressure and high temperature.

  19. Gene transfer of human hepatocyte growth factor by the use of nanosecond pulsed laser-induced stress waves

    NASA Astrophysics Data System (ADS)

    Terakawa, Mitsuhiro; Sato, Shunichi; Saitoh, Daizoh; Hasegawa, Makoto; Ashida, Hiroshi; Okano, Hideyuki; Obara, Minoru

    2006-05-01

    We successfully delivered a therapeutic vector construct, which carries hepatocyte growth factor (HGF) gene, to rat skin in vivo. After HGF expression vector had been intradermally injected to rat skin, LISWs were generated by irradiating the laser target put on the rat skin with nanosecond pulses from the second harmonics (532 nm) of a Q-switched Nd:YAG laser. Concentration of HGF protein increased by a factor of four by the application of LISWs when compared with that of control samples without LISW application. We also investigated the effects of LISWs on the integrity of plasmid DNA.

  20. Condensation of ablation plumes in the irradiation of metals by high-intensity nanosecond laser pulses at atmospheric pressure

    SciTech Connect

    Kozadaev, K V

    2016-01-31

    The Anisimov–Luk'yanchuk model is adapted for describing the condensation of vapour-plasma plumes produced in the irradiation of metal targets by high-intensity (10{sup 8} – 10{sup 10} W cm{sup -2}) nanosecond (10 – 100 ns) pulses at atmospheric pressure. The resultant data suggest that the initial stages of the development of metal ablation plumes correspond with a high degree of accuracy to the Zel'dovich–Raizer theory of dynamic condensation; however, at the stage of the ablation plume decay, the liquid-droplet phase is formed primarily by coalescence of 'nuclei'. (interaction of laser radiation with matter. laser plasma)

  1. Simulating the inception of pulsed discharges near positive electrodes

    NASA Astrophysics Data System (ADS)

    Teunissen, Jannis; Ebert, Ute

    2013-09-01

    With 3D particle simulations we study the inception of pulsed discharges near positive electrodes. In different geometries, we first determine the breakdown voltage. Then we study the probability of inception for a fast voltage pulse. This probability mostly depends on the availability of seed electrons to generate the initial electron avalanches. These results are compared with experimental observations. Then we investigate how the shape of a starting discharge affects its further development. In particular, we discuss the formation of so-called ``inception clouds.'' JT was supported by STW-project 10755.

  2. Microsecond-scale electric field pulses in cloud lightning discharges

    NASA Technical Reports Server (NTRS)

    Villanueva, Y.; Rakov, V. A.; Uman, M. A.; Brook, M.

    1994-01-01

    From wideband electric field records acquired using a 12-bit digitizing system with a 500-ns sampling interval, microsecond-scale pulses in different stages of cloud flashes in Florida and New Mexico are analyzed. Pulse occurrence statistics and waveshape characteristics are presented. The larger pulses tend to occur early in the flash, confirming the results of Bils et al. (1988) and in contrast with the three-stage representation of cloud-discharge electric fields suggested by Kitagawa and Brook (1960). Possible explanations for the discrepancy are discussed. The tendency for the larger pulses to occur early in the cloud flash suggests that they are related to the initial in-cloud channel formation processes and contradicts the common view found in the atmospheric radio-noise literature that the main sources of VLF/LF electromagnetic radiation in cloud flashes are the K processes which occur in the final, or J type, part of the cloud discharge.

  3. Short-pulse CO₂ laser with longitudinal tandem discharge tube.

    PubMed

    Uno, K; Akitsu, T; Jitsuno, T

    2014-10-01

    We developed a longitudinally excited CO2 laser with a tandem discharge tube. The tandem scheme was constituted of two 30-cm long discharge tubes connected with an intermediate electrode. Two parts, each consisting of a charged capacitance and a 30-cm long discharge tube, were electrically connected in parallel and switched by a spark gap. The tandem scheme produced a short laser pulse like that of a TEA-CO2 laser with a charging voltage of -24.8 kV, which was smaller than the -40.0 kV charging voltage of our previous CO2 laser. At a gas pressure of 3.8 kPa, the spike pulse width was 145 ns, the pulse tail length was 58.8 μs, the output energy was 52.0 mJ, and the spike pulse energy was 2.4 mJ. We also investigated the dependence of the laser pulse and the discharge voltage on gas pressure.

  4. Electron beam-switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

    1979-12-11

    A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  5. Structure of diamondlike carbon films deposited by femtosecond and nanosecond pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Sikora, A.; Garrelie, F.; Donnet, C.; Loir, A. S.; Fontaine, J.; Sanchez-Lopez, J. C.; Rojas, T. C.

    2010-12-01

    The characterization of diamondlike carbon (DLC) films is a challenging subject, considering the diversity of carbon-based nanostructures depending on the deposition process. We propose to combine multiwavelength (MW) Raman spectroscopy and electron energy-loss spectroscopy (EELS) to probe the structural disorder and the carbon hybridizations of DLC films deposited by pulsed laser ablation performed either with a nanosecond laser (film labeled ns-DLC), either with a femtosecond laser (film labeled fs-DLC). Such deposition methods allow to reach a rather high carbon sp3 hybridization but with some significant differences in terms of structural disorder and carbonaceous chain configurations. MW Raman investigations, both in the UV and visible range, is a popular and nondestructive way to probe the structural disorder and the carbon hybridizations. EELS allows the determination of the carbon plasmon energy in the low-loss energy region of the spectra, as well as the fine structure of the ionization threshold in the high-loss energy region. The paper shows that the combination of MW Raman and EELS is a powerful way to elucidate the nanostructure of DLC films. Complementary nanoindentation investigations allow to correlate the analytical results with the mechanical properties of the films. The ns-DLC film presents a stronger sp3-bonded C character (74%-85%) with a significant content of sp2 chains, whereas the fs-DLC contains less sp3 bonds (35%-50%) with a significant content of sp2-bonded C rings. The ns-DLC film exhibits a higher proportion of disordered sp2 C mainly in the form of chains. Comparatively, the fs-DLC exhibits a predominance of more ordered sp2 C structures in the form of graphitic aggregates whose size has been estimated near three aromatic rings. The film characteristics are in agreement with their mechanical properties. We also propose a correlation between the nanostructure and composition of the films with the deposition mechanisms. The difference

  6. Selective removal of cholesterol ester in atherosclerotic plaque using nanosecond pulsed laser at 5.75 μm

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Tsukimoto, H.; Hazama, H.; Awazu, K.

    2008-02-01

    Laser angioplasty, for example XeCl excimer laser angioplasty, has gained more attention in addition to conventional methods of surgical and interventional treatment of atherosclerotic diseases such as bypass operation and balloon dilatation. Low degrees of thermal damage after ablation of atherosclerotic lesions have been achieved by XeCl excimer laser at 308 nm. However, in most cases, laser ablation is not selective and normal arterial wall is also damaged. To avoid complications such as severe dissections or perforation of the arterial wall in an angioplasty, a laser light source with high ablation efficiency but low arterial wall injury is desirable. At atherosclerotic lesions, cholesterol accumulates on the tunica intima by establishing an ester bond with fatty acids such as oleic acid, and thus cholesterol ester is the main component of atherosclerotic plaques. Mid-infrared pulsed laser at 5.75 μm is selectively well absorbed in C=O stretching vibration mode of ester bonds. The purpose of this study is to determine the effectiveness of nanosecond pulsed laser at 5.75 μm irradiation of cholesterol ester in atherosclerotic plaques. In this study, we used a mid-infrared tunable solid-state laser which is operated by difference frequency generation method, with a wavelength of 5.75 μm, a pulse width of 5 nsec and a pulse duration of 10 Hz. It was confirmed that non-invasive interaction to normal thoracic aortas could be induce by the parameters, the wavelength of 5.75 μm, the average power densities of 35 W/cm2 and the irradiation time under 10 sec. This study shows that nanosecond pulsed laser irradiations at 5.75 μm provide an alternative laser light source as an effectively cutting, less traumatic tool for removal of atherosclerotic plaque.

  7. Characteristics of the Plasma Environment and Discharge Process in a High-Pressure Pulsed Arc Discharge

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward

    2016-09-01

    The characteristics and properties of a plasma generated in a pulsed arc discharge are investigated. Arc discharge plasmas are prevalent in the production and treatment of materials. Photodetectors and optical emission spectroscopy (OES) are used to probe the plasmas and characterize their spectral responses. OES allows for species identification and provides information about the state of the plasma, such as the electron temperature. Discharges generated with inert gas such as argon, as well as with nitrogen and air, are studied and compared. In the case of reactive gases, OES also provides information on the possible reactions that took place. Microwave interferometry is used to measure the electron density to provide spatial information on the discharges. In addition, the measurement is synchronized with the discharge pulse to obtain temporal information, for instance, during the pulse initialization phase to investigate the arc discharge process prior to plasma generation, where optical information is absent. Together, this allows for the characterization of the pre-, during, and post-discharge processes.

  8. Radiation-induced insulator discharge pulses in the CRRES internal discharge monitor satellite experiment

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.

    1992-01-01

    The Internal Discharge Monitor (IDM) was designed to observe electrical pulses from common electrical insulators in space service. The sixteen insulator samples included twelve planar printed circuit boards and four cables. The samples were fully enclosed, mutually isolated, and space radiation penetrated 0.02 cm of aluminum before striking the samples. Pulsing began on the seventh orbit, the maximum pulse rate occurred on the seventeenth orbit when 13 pulses occurred, and the pulses slowly diminished to about one per 3 orbits six months later. After 8 months, the radiation belts abruptly increased and the pulse rates attained a new high. These pulse rates were in agreement with laboratory experience on shorter time scales. Several of the samples never pulsed. If the pulses were not confined within IDM, the physical processes could spread to become a full spacecraft anomaly. The IDM results indicate the rate at which small insulator pulses occur. Small pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on the Combined Release and Radiation Effects Satellite.

  9. Laser Thomson scattering in a pulsed atmospheric arc discharge

    NASA Astrophysics Data System (ADS)

    Sommers, Bradley; Adams, Steven

    2015-09-01

    Laser scattering measurements, including Rayleigh, Raman, and Thomson scattering have been performed on an atmospheric pulsed arc discharge. Such laser scattering techniques offer a non-invasive diagnostic to measure gas temperature, electron temperature, and electron density in atmospheric plasma sources, particularly those with feature sizes approaching 1 mm. The pulsed discharge is ignited in a pin to pin electrode geometry using a 6 kV pulse with 10 ns duration. The electrodes are housed in a glass vacuum chamber filled with argon gas. The laser signal is produced by a Nd:Yag laser supply, repetitively pulsed at 10 Hz and frequency quadrupled to operate at 266 nm. The scattered laser signal is imaged onto a triple grating spectrometer, which is used to suppress the Rayleigh scatter signal in order to measure the low amplitude Thomson and Raman signals. Preliminary results include measurements of electron temperature and electron density in the plasma column taken during the evolution of the discharge. The laser system is also used to measure the Rayleigh scattering signal, which provides space and time resolved measurements of gas temperature in the arc discharge.

  10. A Novel Sterilization Method Using Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Xi-lu; Akira, Mizuno; Shijin, Katsura

    1998-01-01

    Pulsed discharge plasma(PDP) has been used to kill bacteria and the curves of the survival rate of bacteria against treatment time are obtained. Irreversible structural change in the cell membrane is caused by PDP and the cell is thus killed. The sterilization mechanism is analyzed.

  11. Experimental study of the critical point region of aluminum under the action of the powerful nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Cherepetskaya, E. B.; Karabutov, A. A.; Kaptilniy, A. G.; Ksenofontov, D. M.; Makarov, V. A.; Podymova, N. B.

    2015-12-01

    This paper is a report on the novel experimental method of the study of the thermodynamic parameters of thin aluminum films in the critical point region. The controlled supercritical state of aluminum is achieved for the first time as a result of the heating of these films by the absorption of the powerful nanosecond pulse of Q-switched Nd:YAG laser at the fundamental wavelength. The possibility is demonstrated to find simultaneously the temporal dependencies of the temperature, of the pressure and of the density of aluminum during the experiment with the thin aluminum films confined at both sides by the quartz glass substrates. These dependencies are obtained taking into account the nonlinear dependence on the incident laser intensity of the light reflection coefficient from the irradiated surface of aluminum. For the first time the thermodynamic cooling cycle of aluminum after its heating by the powerful nanosecond laser pulse is plotted in the space of variables’ temperature—pressure and temperature—density that get into the supercritical region.

  12. Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges

    SciTech Connect

    Konstantinidis, S.; Dauchot, J.P.; Ganciu, M.; Ricard, A.; Hecq, M.

    2006-01-01

    High-power pulsed magnetron discharges have drawn an increasing interest as an approach to produce highly ionized metallic vapor. In this paper we propose to study how the plasma composition and the deposition rate are influenced by the pulse duration. The plasma is studied by time-resolved optical emission and absorption spectroscopies and the deposition rate is controlled thanks to a quartz microbalance. The pulse length is varied between 2.5 and 20 {mu}s at 2 and 10 mTorr in pure argon. The sputtered material is titanium. For a constant discharge power, the deposition rate increases as the pulse length decreases. With 5 {mu}s pulse, for an average power of 300 W, the deposition rate is {approx}70% of the deposition rate obtained in direct current magnetron sputtering at the same power. The increase of deposition rate can be related to the sputtering regime. For long pulses, self-sputtering seems to occur as demonstrated by time-resolved optical emission diagnostic of the discharge. In contrary, the metallic vapor ionization rate, as determined by absorption measurements, diminishes as the pulses are shortened. Nevertheless, the ionization rate is in the range of 50% for 5 {mu}s pulses while it lies below 10% in the case of a classical continuous magnetron discharge.

  13. Pulsed discharge ionization source for miniature ion mobility spectrometers

    DOEpatents

    Xu, Jun; Ramsey, J. Michael; Whitten, William B.

    2004-11-23

    A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.

  14. Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells

    PubMed Central

    Carr, Lynn; Bardet, Sylvia M.; Burke, Ryan C.; Arnaud-Cormos, Delia; Leveque, Philippe; O’Connor, Rodney P.

    2017-01-01

    High powered, nanosecond duration, pulsed electric fields (nsPEF) cause cell death by a mechanism that is not fully understood and have been proposed as a targeted cancer therapy. Numerous chemotherapeutics work by disrupting microtubules. As microtubules are affected by electrical fields, this study looks at the possibility of disrupting them electrically with nsPEF. Human glioblastoma cells (U87-MG) treated with 100, 10 ns, 44 kV/cm pulses at a frequency of 10 Hz showed a breakdown of their interphase microtubule network that was accompanied by a reduction in the number of growing microtubules. This effect is temporally linked to loss of mitochondrial membrane potential and independent of cellular swelling and calcium influx, two factors that disrupt microtubule growth dynamics. Super-resolution microscopy revealed microtubule buckling and breaking as a result of nsPEF application, suggesting that nsPEF may act directly on microtubules. PMID:28117459

  15. Multiphoton imaging reveals that nanosecond pulsed electric fields collapse tumor and normal vascular perfusion in human glioblastoma xenografts

    PubMed Central

    Bardet, Sylvia M.; Carr, Lynn; Soueid, Malak; Arnaud-Cormos, Delia; Leveque, Philippe; O’Connor, Rodney P.

    2016-01-01

    Despite the biomedical advances of the last century, many cancers including glioblastoma are still resistant to existing therapies leaving patients with poor prognoses. Nanosecond pulsed electric fields (nsPEF) are a promising technology for the treatment of cancer that have thus far been evaluated in vitro and in superficial malignancies. In this paper, we develop a tumor organoid model of glioblastoma and apply intravital multiphoton microscopy to assess their response to nsPEFs. We demonstrate for the first time that a single 10 ns, high voltage electric pulse (35–45 kV/cm), collapses the perfusion of neovasculature, and also alters the diameter of capillaries and larger vessels in normal tissue. These results contribute to the fundamental understanding of nsPEF effects in complex tissue environments, and confirm the potential of nsPEFs to disrupt the microenvironment of solid tumors such as glioblastoma. PMID:27698479

  16. Nanosecond near-spinodal homogeneous boiling of water superheated by a pulsed CO{sub 2} laser

    SciTech Connect

    Kudryashov, Sergey I.; Lyon, Kevin; Allen, Susan D.

    2007-03-15

    The fast boiling dynamics of superheated surface layers of bulk water cavitating under near-spinodal conditions during nanosecond CO{sub 2} laser heating pulses was studied using contact broad-band photoacoustic spectroscopy. Characteristic pressure-tension cycles recorded by an acoustic transducer at different incident laser fluences represent (a) weak random oscillations of transient nanometer-sized near-critical bubbles-precursors and (b) well-defined stimulated oscillations of micron-sized supercritical bubbles and their submicrosecond coalescence products. These findings provide an important insight into basic thermodynamic parameters, spatial and temporal scales of bubble nucleation during explosive liquid/vapor transformations in absorbing liquids ablated by short laser pulses in the thermal confinement regime.

  17. Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells.

    PubMed

    Carr, Lynn; Bardet, Sylvia M; Burke, Ryan C; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2017-01-24

    High powered, nanosecond duration, pulsed electric fields (nsPEF) cause cell death by a mechanism that is not fully understood and have been proposed as a targeted cancer therapy. Numerous chemotherapeutics work by disrupting microtubules. As microtubules are affected by electrical fields, this study looks at the possibility of disrupting them electrically with nsPEF. Human glioblastoma cells (U87-MG) treated with 100, 10 ns, 44 kV/cm pulses at a frequency of 10 Hz showed a breakdown of their interphase microtubule network that was accompanied by a reduction in the number of growing microtubules. This effect is temporally linked to loss of mitochondrial membrane potential and independent of cellular swelling and calcium influx, two factors that disrupt microtubule growth dynamics. Super-resolution microscopy revealed microtubule buckling and breaking as a result of nsPEF application, suggesting that nsPEF may act directly on microtubules.

  18. Analysis of Current Pulses in HeLa-Cell Permeabilization Due to High Voltage DC Corona Discharge.

    PubMed

    Chetty, Nevendra K; Chonco, Louis; Ijumba, Nelson; Chetty, Leon; Govender, Thavendran; Parboosing, Raveen; Davidson, Innocent E

    2016-06-28

    Corona discharges are commonly utilized for numerous practical applications, including bio-technological ones. The corona induced transfer of normally impermeant molecules into the interior of biological cells has recently been successfully demonstrated. The exact nature of the interaction of the corona discharge with a cell membrane is still unknown, however, previous studies have suggested that it is either the electric fields produced by ions or the chemical interaction of the reactive species that result in the disruption of the cell membrane. This disruption of the cell membrane allows molecules to permeate into the cell. Corona discharge current constitutes a series of pulses, and it is during these pulses that the ions and reactive species are produced. It stands to reason, therefore, that the nature of these corona pulses would have an influence on the level of cell permeabilization and cell destruction. In this investigation, an analysis of the width, rise-time, characteristic frequencies, magnitude, and repetition rate of the nanosecond pulses was carried out in order to establish the relationship between these factors and the levels of cell membrane permeabilization and cell destruction. Results obtained are presented and discussed.

  19. Analysis of Current Pulses in HeLa-Cell Permeabilization Due to High Voltage DC Corona Discharge.

    PubMed

    Chetty, Nevendra K; Chonco, Louis; Ijumba, Nelson M; Chetty, Leon; Govender, Thavendran; Parboosing, Raveen; Davidson, Innocent E

    2016-09-01

    Corona discharges are commonly utilized for numerous practical applications, including bio-technological ones. The corona induced transfer of normally impermeant molecules into the interior of biological cells has recently been successfully demonstrated. The exact nature of the interaction of the corona discharge with a cell membrane is still unknown, however, previous studies have suggested that it is either the electric fields produced by ions or the chemical interaction of the reactive species that result in the disruption of the cell membrane. This disruption of the cell membrane allows molecules to permeate into the cell. Corona discharge current constitutes a series of pulses, and it is during these pulses that the ions and reactive species are produced. It stands to reason, therefore, that the nature of these corona pulses would have an influence on the level of cell permeabilization and cell destruction. In this investigation, an analysis of the width, rise-time, characteristic frequencies, magnitude, and repetition rate of the nanosecond pulses was carried out in order to establish the relationship between these factors and the levels of cell membrane permeabilization and cell destruction. Results obtained are presented and discussed.

  20. Optical emission spectroscopy observations of fast pulsed capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Avaria, G.; Ruiz, M.; Guzmán, F.; Favre, M.; Wyndham, E. S.; Chuaqui, H.; Bhuyan, H.

    2014-05-01

    We present time resolved optical emission spectroscopic (OES) observations of a low energy, pulsed capillary discharage (PCD). The optical emission from the capillary plasma and plasma jets emitted from the capillary volume was recorded with with a SpectraPro 275 spectrograph, fitted with a MCP gated OMA system, with 15 ns time resolution. The discharge was operated with different gases, including argon, nitrogen, hydrogen and methane, in a repetitive pulsed discharge mode at 10-50 Hz, with, 10-12 kV pulses applied at the cathode side. The time evolution of the electron density was measured using Stark broadening of the Hβ line. Several features of the capillary plasma dynamics, such as ionization growth, wall effects and plasma jet evolution, are inferred from the time evolution of the optical emission.

  1. Plasma discharge self-cleaning filtration system

    SciTech Connect

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  2. Generation of pulsed discharge plasma in water with fine bubbles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu; Goto laboratory Team

    2015-09-01

    Recently, some researchers have proposed electric discharge methods with bubbles in water because the discharge plasma inside bubble was easy to be generated compared to that in water. Almost all of these methods introduced bubbles in the order of millimeter size from a nozzle placed in water. In these methods, bubbles rose one after another owing to high rising speed of millibubble, leading to inefficient gas consumption. We proposed fine bubbles introduction at the discharge area in water. A fine bubble is determined a bubble with less than 100 μm in a diameter. Fine bubbles exhibit extremely slow rising speed. Fine bubbles decrease in size during bubble rising and subsequently collapse in water with OH radical generation. Therefore, combining the discharge plasma with fine bubbles is expected to generate more active species with small amount of gas consumption. In this work, fine bubbles were introduced in water and pulsed discharge plasma was generated between two cylindrical electrodes which placed in water. We examined effects of fine bubbles on electric discharge in water when argon or oxygen gas was utilized as feed gas. Fine bubbles enhanced optical emission of hydrogen and oxygen atoms from H2O molecules, but that of feed gas was not observed. The formation mechanism of H2O2 by electric discharge was supposed to be different from that with no bubbling. Dissolved oxygen in water played a role in H2O2 formation by the discharge with fine bubbles.

  3. Efficient intracellular delivery of molecules with high cell viability using nanosecond-pulsed laser-activated carbon nanoparticles.

    PubMed

    Sengupta, Aritra; Kelly, Sean C; Dwivedi, Nishant; Thadhani, Naresh; Prausnitz, Mark R

    2014-03-25

    Conventional physical and chemical methods that efficiently deliver molecules into cells are often associated with low cell viability. In this study, we evaluated the cellular effects of carbon nanoparticles believed to emit photoacoustic waves due to nanosecond-pulse laser activation to test the hypothesis that this method could achieve efficient intracellular delivery while maintaining high cell viability. Suspensions of DU145 human prostate carcinoma cells, carbon black (CB) nanoparticles, and calcein were exposed to 5-9 ns long laser pulses of near-infrared (1064 nm wavelength) light and then analyzed by flow cytometry for intracellular uptake of calcein and cell viability by propidium iodide staining. We found that intracellular uptake increased and in some cases saturated at high levels with only small losses in cell viability as a result of increasing laser fluence, laser exposure time, and as a unifying parameter, the total laser energy. Changing interpulse spacing between 0.1 and 10 s intervals showed no significant change in bioeffects, suggesting that the effects of each pulse were independent when spaced by at least 0.1 s intervals. Pretreatment of CB nanoparticles to intense laser exposure followed by mixing with cells also had no significant effect on uptake or viability. Similar uptake and viability were seen when CB nanoparticles were substituted with India ink, when DU145 cells were substituted with H9c2 rat cardiomyoblast cells, and when calcein was substituted with FITC-dextran. The best laser exposure conditions tested led to 88% of cells with intracellular uptake and close to 100% viability, indicating that nanosecond-pulse laser-activated carbon nanoparticles can achieve efficient intracellular delivery while maintaining high cell viability.

  4. Efficient Intracellular Delivery of Molecules with High Cell Viability Using Nanosecond-Pulsed Laser-Activated Carbon Nanoparticles

    PubMed Central

    2015-01-01

    Conventional physical and chemical methods that efficiently deliver molecules into cells are often associated with low cell viability. In this study, we evaluated the cellular effects of carbon nanoparticles believed to emit photoacoustic waves due to nanosecond-pulse laser activation to test the hypothesis that this method could achieve efficient intracellular delivery while maintaining high cell viability. Suspensions of DU145 human prostate carcinoma cells, carbon black (CB) nanoparticles, and calcein were exposed to 5–9 ns long laser pulses of near-infrared (1064 nm wavelength) light and then analyzed by flow cytometry for intracellular uptake of calcein and cell viability by propidium iodide staining. We found that intracellular uptake increased and in some cases saturated at high levels with only small losses in cell viability as a result of increasing laser fluence, laser exposure time, and as a unifying parameter, the total laser energy. Changing interpulse spacing between 0.1 and 10 s intervals showed no significant change in bioeffects, suggesting that the effects of each pulse were independent when spaced by at least 0.1 s intervals. Pretreatment of CB nanoparticles to intense laser exposure followed by mixing with cells also had no significant effect on uptake or viability. Similar uptake and viability were seen when CB nanoparticles were substituted with India ink, when DU145 cells were substituted with H9c2 rat cardiomyoblast cells, and when calcein was substituted with FITC-dextran. The best laser exposure conditions tested led to 88% of cells with intracellular uptake and close to 100% viability, indicating that nanosecond-pulse laser-activated carbon nanoparticles can achieve efficient intracellular delivery while maintaining high cell viability. PMID:24547946

  5. Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica

    SciTech Connect

    Shen, Chao; Xu, Zhongjie; Chambonneau, Maxime E-mail: jiangtian198611@163.com; Cheng, Xiang'ai; Jiang, Tian E-mail: jiangtian198611@163.com

    2015-09-14

    Employing a pump-probe polarization-based two-frame shadowgraphy setup, the formation of filamentary damage induced in bulk fused silica by a nanosecond pulse at 1064 nm is investigated with a picosecond probe. Three different phases are exhibited in the damage experiments. The first phase is the formation of a micrometric plasma channel along the laser direction during the beginning of the pulse likely caused by multi-photon ionization. This channel exhibits growth during ∼400 ps, and the newly grown plasma is discrete. Then, during the end of the pulse, this channel evolves into a tadpole-like morphology showing an elliptical head upstream the laser flux followed by a thin tail. This observed asymmetry is attributed to shielding effects caused by both the plasma and hot modified silica. Once the damage shows its almost final morphology, a last phase consists in the launch of a pressure wave enlarging it after the laser pulse. The physical mechanisms that might be involved in the formation of plasma channels are discussed. The experimental data are first confronted to the moving breakdown model which overestimates the filamentary damage length. Finally, taking into account the temporal shape of the laser pulses, the coupling between Kerr-induced self-focusing and stimulated Brillouin scattering is discussed to interpret the observations.

  6. Probing with randomly interleaved pulse train bridges the gap between ultrafast pump-probe and nanosecond flash photolysis.

    PubMed

    Nakagawa, Tatsuo; Okamoto, Kido; Hanada, Hiroaki; Katoh, Ryuzi

    2016-04-01

    Despite the long-standing importance of transient absorption (TA) spectroscopy, many researchers remain frustrated by the difficulty of measuring the nanosecond range in a wide spectral range. To address this shortcoming, we propose a TA spectrophotometer in which there is no synchronization between a pump pulse and a train of multiple probe pulses from a picosecond supercontinuum light source, termed the randomly-interleaved-pulse-train (RIPT) method. For each pump pulse, many monochromatized probe pulses impinge upon the sample, and the associated pump-probe time delays are determined passively shot by shot with subnanosecond accuracy. By repeatedly pumping with automatically varying time delays, a TA temporal profile that covers a wide dynamic range from subnanosecond to milliseconds is simultaneously obtained. By scanning wavelength, this single, simple apparatus acquires not only wide time range TA profiles, but also broadband TA spectra from the visible through the near-infrared regions. Furthermore, we present a typical result to demonstrate how the RIPT method may be used to correct for fluorescence, which often pollutes TA curves.

  7. Simulation of proton-boron nuclear burning in the potential well of virtual cathode at nanosecond vacuum discharge

    NASA Astrophysics Data System (ADS)

    Kurilenkov, Yu K.; Tarakanov, V. P.; Gus'kov, S. Yu

    2016-11-01

    The neutron-free reaction of proton-boron nuclear burning accompanied with the yield of three alpha particles (p + 11B → α + 8Be* → 3α) is of great fundamental and applied interest. However, the implementation of the synthesis of p +11B requires such extreme plasma parameters that are difficult to achieve at well-known schemes of controlled thermonuclear fusion. Earlier, the yield of DD neutrons in a compact nanosecond vacuum discharge (NVD) of low energy with deuterated Pd anode have been observed. Further detailed particle-in-cell simulation by the electrodynamic code have recognized that this experiment represents the realization of rather old scheme of inertial electrostatic confinement (IEC). This IEC scheme is one of the few where the energies of ions needed for p + 11B reaction are quite possible. The purpose of this work on simulation of proton-boron reaction is studying the features of possible p + 11B burning at the IEC scheme based on NVD, thus, to look forward and planning the real experiment.

  8. Soft X-ray radiation due to a nanosecond diffuse discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.

    2010-02-01

    A source of soft X-rays with an effective photon energy of 9 keV and a subnanosecond pulse width is built around a gas diode filled with atmospheric-pressure air and a UAEB-150 generator. A collector placed behind a grounded mesh electrode detects an electron beam and a pulse with positive polarity, the latter being due to an electric field surrounding the mesh. It is shown that the intensity of soft X-rays from the gas-diode-based source depends on the material of a massive potential anode; namely, it grows with an increase in the atomic number of the cathode material. In the case of a tantalum anode, X-ray photons with an effective energy of 9 and 17 keV contribute to the exposure dose.

  9. Characteristics of pulse corona discharge over water surface

    NASA Astrophysics Data System (ADS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  10. Experimental observation of the luminescence flash at the collapse phase of a bubble produced by pulsed discharge in water

    NASA Astrophysics Data System (ADS)

    Huang, Yifan; Zhang, Liancheng; Chen, Jim; Zhu, Xinlei; Liu, Zhen; Yan, Keping

    2015-11-01

    This letter presents an experimental observation of luminescence flash at the collapse phase of an oscillating bubble produced by a pulsed discharge in water. According to the high speed records, the flash lasts around tens of microseconds, which is much longer than the lifetime of laser and ultrasound induced luminescence flashes in nanoseconds and picoseconds, respectively. The pulse width of temperature waveform and minimum radius calculated at the collapse phase also show that the thermodynamic and dynamic signatures of the bubbles in this work are much larger than those of ultrasound and laser induced bubbles both in time and space scales. However, the peak temperature at the point of collapse is close to the results of ultrasound and laser induced bubbles. This result provides another possibility for accurate emission spectrum measurement other than amplification of the emitted light, such as increasing laser energy or sound energy or substituting water with sulphuric acid.

  11. Experimental observation of the luminescence flash at the collapse phase of a bubble produced by pulsed discharge in water

    SciTech Connect

    Huang, Yifan; Zhang, Liancheng; Zhu, Xinlei; Liu, Zhen Yan, Keping; Chen, Jim

    2015-11-02

    This letter presents an experimental observation of luminescence flash at the collapse phase of an oscillating bubble produced by a pulsed discharge in water. According to the high speed records, the flash lasts around tens of microseconds, which is much longer than the lifetime of laser and ultrasound induced luminescence flashes in nanoseconds and picoseconds, respectively. The pulse width of temperature waveform and minimum radius calculated at the collapse phase also show that the thermodynamic and dynamic signatures of the bubbles in this work are much larger than those of ultrasound and laser induced bubbles both in time and space scales. However, the peak temperature at the point of collapse is close to the results of ultrasound and laser induced bubbles. This result provides another possibility for accurate emission spectrum measurement other than amplification of the emitted light, such as increasing laser energy or sound energy or substituting water with sulphuric acid.

  12. Afterglow emission from xenon, krypton, and argon dimers in nanosecond volume discharge at elevated pressures

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Lomaev, M. I.; Rybka, D. V.; Tarasenko, V. F.

    2006-10-01

    The emission characteristics of plasma of a volume discharge initiated by electron avalanche beams in heavy inert gases at pressures up to 1.5 bar have been studied. It is established that more than 90% of the energy radiated in the wavelength range from 120 to 850 nm is emitted from xenon, krypton, and argon dimers. In the case of excited xenon plasma, an output radiation power of ˜300 kW and an energy of 45 mJ per cubic centimeter were obtained.

  13. Pulsed Electrical Discharge in a Gas Bubble in Water

    NASA Astrophysics Data System (ADS)

    Schaefer, Erica; Gershman, Sophia; Mozgina, Oksana

    2005-10-01

    This experiment is an investigation of the electrical and optical characteristics of a pulsed electrical discharge ignited in a gas bubble in water in a needle-to-plane electrode geometry. Argon or oxygen gas is fed through a platinum hypodermic needle that serves as the high voltage electrode. The gas filled bubble forms at the high voltage electrode with the tip of the needle inside the bubble. The discharge in the gas bubble in water is produced by applying 5 -- 15 kV, microsecond long rectangular pulses between the electrodes submerged in water. The voltage across the electrodes and the current are measured as functions of time. Electrical measurements suggest a discharge ignited in the bubble (composed of the bubbled gas and water vapor) without breakdown of the entire water filled electrode gap. Time-resolved optical emission measurements are taken in the areas of the spectrum corresponding to the main reactive species produced in the discharge, e.g. OH 309 nm, Ar 750 nm, and O 777 nm emissions using optical filters. The discharge properties are investigated as a function of the applied voltage, the distance between the electrodes, the gas in the bubble (Ar or O2). Work supported by the US Army, Picatinny Arsenal, NJ and the US DOE (Contract number DE-AC02-76CH03073).

  14. Numerical simulation of compact intracloud discharge and generated electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2015-06-01

    Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.

  15. The CRRES IDM spacecraft experiment for insulator discharge pulses

    NASA Astrophysics Data System (ADS)

    Frederickson, A. R.; Mullen, E. G.; Kerns, K. J.; Robinson, P. A.; Holeman, E. G.

    1993-04-01

    The Internal Discharge Monitor (IDM) is designed to observe electrical pulses from common electrical insulators in space service. The characteristics of the instrument are described. The IDM was flown on the Combined Release and Radiation Effects Satellite (CRRES). The sixteen insulator samples included G10 circuit boards, FR4 and PTFE fiberglass circuit boards, FEP Teflon, alumina, and wires with common insulations. The samples are fully enclosed, mutually isolated, and space radiation penetrates 0.02 cm of aluminum before striking the samples. Published data in the literature provides a simple method for determining the flux of penetrating electrons. The pulse rate is compared to the penetrating flux of electrons.

  16. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    NASA Astrophysics Data System (ADS)

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-03-01

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

  17. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    PubMed Central

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-01-01

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales. PMID:28300067

  18. Generation of high-power nanosecond pulses from laser diode-pumped Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Chan, Kinpui

    1988-01-01

    Simulation results are used to compare the pulse energy levels and pulse energy widths that can be achieved with LD-pumped Nd:YAG lasers for both the pulse-transmission mode (PTM) and pulse-reflection mode (PRM) Q-switching methods for pulse energy levels up to hundreds of microjoules and pulse widths as short as 1 ns. It is shown that high-power pulses with pulse widths as short as 1 ns can be generated with PTM Q-switched in LD-pumped Nd:YAG lasers. With the PRM Q-switching method, pulse widths as short as 2 ns and pulse energy at the level of a few hundred microjoules can also be achieved but require pumping with 8-10-mJ AlGaAs laser diode arrays.

  19. Nanosecond pulsed electric fields (nsPEF) induce direct electric field effects and biological effects on human colon carcinoma cells.

    PubMed

    Hall, Emily H; Schoenbach, Karl H; Beebe, Stephen J

    2005-05-01

    Nanosecond pulsed electric fields (nsPEFs) are ultrashort pulses with high electric field intensity (kV/cm) and high power (megawatts), but low energy density (mJ/cc). To determine roles for p53 in response to nsPEFs, HCT116 cells (p53+/+ and p53-/-) were exposed to nsPEF and analyzed for membrane integrity, phosphatidylserine externalization, caspase activation, and cell survival. Decreasing plasma membrane effects were observed in both HCT116p53+/+ and p53-/- cells with decreasing pulse durations and/or decreasing electric fields. However, addition of ethidium homodimer-1 and Annexin-V-FITC post-pulse demonstrated greater fluorescence in p53-/- versus p53+/+ cells, suggesting a postpulse p53-dependent biological effect at the plasma membrane. Caspase activity was significantly higher than nonpulsed cells only in the p53-/- cells. HCT116 cells exhibited greater survival in response to nsPEFs than HL-60 and Jurkat cells, but survival was more evident for HCT116p53+/+ cells than for HCT116p53-/- cells. These results indicate that nsPEF effects on HCT116 cells include (1) apparent direct electric field effects, (2) biological effects that are p53-dependent and p53-independent, (3) actions on mechanisms that originate at the plasma membranes and at intracellular structures, and (4) an apparent p53 protective effect. NsPEF applications provide a means to explore intracellular structures and functions that can reveal mechanisms in health and disease.

  20. Nanosecond pulsed electric fields as a novel drug free therapy for breast cancer: an in vivo study.

    PubMed

    Wu, Shan; Wang, Yu; Guo, Jinsong; Chen, Qunzhi; Zhang, Jue; Fang, Jing

    2014-02-28

    Nanosecond pulsed electric fields (nsPEFs) is a novel non-thermal approach to induce cell apoptosis. NsPEFs has been proven effective in treating several murine tumors, but few studies focus on its efficacy in treating human tumors. To determine if nsPEFs is equally effective in treatment of human breast cancer, 30 human breast cancer tumors across 30Balb/c (nu/nu) mice were exposed to 720 pulses of 100ns duration, at 4pulsespersecond and 30kV/cm. Two weeks after treatment, the growth of treated tumors was inhibited by 79%. Morphological changes of tumors were observed via a 3.0T clinical magnetic resonance imaging (MRI) system with a self-made surface coil. Pulsed tumors exhibited apoptosis evaluated by TUNEL staining, inhibition in Bcl-2 expression and decreased blood vessel density. Notably, CD34, vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) expression in treated tumors were strongly suppressed. To evaluate the might-be adverse effects of nsPEFs in healthy tissues, normal skin was treated exactly the same way as tumors, and pulsed skin showed no permanent damages. The results suggest nsPEFs is able to inhibit human breast cancer development and suppress tumor blood vessel growth, indicating nsPEFs may serve as a novel therapy for breast cancer in the future.

  1. Experimental investigation of the spectro-temporal dynamics of the light pulses of Q-switched Nd:YAG lasers and nanosecond optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Anstett, G.; Wallenstein, R.

    2004-11-01

    We report an experimental investigation of the spectro-temporal dynamics of the pulse formation in Q-switched Nd:YAG lasers and in nanosecond optical parametric oscillators (OPOs). The temporal evolution of the spectral intensity distribution of the light pulses was measured with a 1-m Czerny Turner spectrometer in combination with a fast streak camera. This detection system allows the analysis of temporal changes in the spectrum of single nanosecond pulses. The measurements were performed for a flashlamp-pumped, Q-switched Nd:YAG laser and for an unseeded as well as for a seeded singly-resonant nanosecond OPO. The laser output spectrum varies strongly from pulse to pulse and even within a single pulse due to mode beating. In an unseeded OPO, individual spectral modes start to oscillate statistically from the parametric noise for pump powers close to the OPO threshold. With increasing pump power a strong modulation in the spectral formation of the pulse is observed, resulting from a strong interaction of parametric conversion and back conversion of signal and idler radiation into pump radiation. By means of injection seeding, the starting condition was controlled for a single mode. Due to the seed radiation, the seeded mode starts sooner than the unseeded modes. These are suppressed completely in the case of sufficient seed power and moderate pump power. The observations are in good agreement with results of corresponding numerical simulations.

  2. Scaled-Up Nonequilibrium Air Plasmas Generated by DC and Pulsed Discharges

    DTIC Science & Technology

    2010-09-08

    scalability of nonequilibrium plasmas produced by electrical discharges in atmospheric pressure air. Both DC and repetitively pulsed discharges ...Key results demonstrate that both DC glow discharge and pulsed transient spark generate air plasmas of required parameters. Glow discharge is easier...Corona discharge as a temperature probe was developed to diagnose the microwave torch preheated air. A new concept of the DC-driven pulsed

  3. Functionalization Of Polymers Using N2 Pulsed Dielectric Barrier Discharge

    DTIC Science & Technology

    2007-06-01

    wettability of the material through the inclusion of polar functional groups. Through the use of atmospheric pulsed-dielectric barrier discharges...work, many have used air and oxygen plasmas operating at atmospheric conditions to enhance the wettability of the polymer surface through the...An alternative method that has been explored to increase adhesion and wettability of these hydrophobic surfaces is the selective functionalization

  4. A Comparison in laser precision drilling of stainless steel 304 with nanosecond and picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyu; Di, Jianke; Zhou, Ming; Yan, Yu

    2014-09-01

    Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone. However, a detailed comparison between nanosecond and picosecond laser drilling techniques has rarely been reported in previous research. In the present study, a series of micro-holes are manufactured on stainless steel 304 using a nanosecond and a picosecond laser drilling system, respectively. The quality of the micro-holes, e.g., recast layer, micro-crack, circularity, and conicity, etc, is evaluated by employing an optical microscope, an optical interferometer, and a scanning electron microscope. Additionally, the micro-structure of the samples between the edges of the micro-holes and the parent material is compared following etching treatment. The researching results show that a great amount of spattering material accumulated at the entrance ends of the nanosecond laser drilled micro-holes. The formation of a recast layer with a thickness of ˜25 μm is detected on the side walls, associated with initiation of micro-cracks. Tapering phenomenon is also observed and the circularity of the micro-holes is rather poor. With regard to the micro-holes drilled by picosecond laser, the entrance ends, the exit ends, and the side walls are quite smooth without accumulation of spattering material, formation of recast layer and micro-cracks. The circularity of the micro-holes is fairly good without observation of tapering phenomenon. Furthermore, there is no obvious difference as for the micro-structure between the edges of the micro-holes and the parent material. This study proposes a picosecond laser helical drilling technique which can be used for effective manufacturing of high quality micro-holes.

  5. Single all-fiber-based nanosecond-pulsed supercontinuum source for multispectral photoacoustic microscopy and optical coherence tomography.

    PubMed

    Shu, Xiao; Bondu, Magalie; Dong, Biqin; Podoleanu, Adrian; Leick, Lasse; Zhang, Hao F

    2016-06-15

    We report the usefulness of a single all-fiber-based supercontinuum (SC) source for combined photoacoustic microscopy (PAM) and optical coherence tomography (OCT). The SC light is generated by a tapered photonic crystal fiber pumped by a nanosecond pulsed master oscillator power amplifier at 1064 nm. The spectrum is split into a shorter wavelength band (500-800 nm) for single/multi-spectral PAM and a longer wavelength band (800-900 nm) band for OCT. In vivo mouse ear imaging was achieved with an integrated dual-modality system. We further demonstrated its potential for spectroscopic photoacoustic imaging by doing multispectral measurements on retinal pigment epithelium and blood samples with 15-nm linewidth.

  6. Possibility of applying a hydrodynamic model to describe the laser erosion of metals irradiated by high-intensity nanosecond pulses

    SciTech Connect

    Kozadaev, K V

    2014-04-28

    We report the results of experimental investigations of the production and development of plasma-vapour plumes upon irradiation of metal targets by nanosecond (10–100 ns) pulses with a high (10{sup 8}–10{sup 10} W cm{sup -2}) power density under atmospheric conditions. The transition from a quasi-stationary thermal mechanism of metal erosion to an explosion hydrodynamic one takes place when the radiation power density increases from 10{sup 8} to 10{sup 9} W cm{sup -2}. The resultant experimental information is extremely important for the laser deposition of metal nanostructures under atmospheric conditions, which is possible only for power densities of 10{sup 8}–10{sup 9} W cm{sup -2}. (interaction of laser radiation with matter)

  7. Off-axis quartz-enhanced photoacoustic spectroscopy using a pulsed nanosecond mid-infrared optical parametric oscillator.

    PubMed

    Lassen, Mikael; Lamard, Laurent; Feng, Yuyang; Peremans, Andre; Petersen, Jan C

    2016-09-01

    A trace-gas sensor, based on quartz-enhanced photoacoustic spectroscopy (QEPAS), consisting of two acoustically coupled micro-resonators (mR) with an off-axis 20 kHz quartz tuning fork (QTF) is demonstrated. The complete acoustically coupled mR system is optimized based on finite-element simulations and is experimentally verified. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator. The sensor is used for spectroscopic measurements on methane in the 3.1-3.5 μm wavelength region with a resolution bandwidth of 1  cm-1 and a detection limit of 0.8 ppm. An Allan deviation analysis shows that the detection limit at the optimum integration time for the QEPAS sensor is 32 ppbv at 190 s, and that the background noise is due solely to the thermal noise of the QTF.

  8. Off-axis quartz-enhanced photoacoustic spectroscopy using a pulsed nanosecond mid-infrared optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Lassen, Mikael; Lamard, Laurent; Feng, Yuyang; Peremans, Andre; Petersen, Jan C.

    2016-09-01

    A trace gas sensor, based on quartz-enhanced photoacoustic spectroscopy (QEPAS), consisting of two acoustically coupled micro-resonators (mR) with an off-axis 20 kHz quartz tuning fork (QTF) is demonstrated. The complete acoustically coupled mR system is optimized based on finite element simulations and experimentally verified. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator (MIR OPO). The sensor is used for spectroscopic measurements on methane in the 3.1 um to 3.5 um wavelength region with a resolution bandwidth of 1 cm^-1 and a detection limit of 0.8 ppm. An Allan deviation analysis shows that the detection limit at optimum integration time for the QEPAS sensor is 32 ppbv@190s and that the background noise is solely due to the thermal noise of the QTF.

  9. Nanosecond Pulsed Electric Fields (nsPEFs) Regulate Phenotypes of Chondrocytes through Wnt/β-catenin Signaling Pathway

    PubMed Central

    Zhang, Kun; Guo, Jinsong; Ge, Zigang; Zhang, Jue

    2014-01-01

    Nanosecond pulsed electric fields (nsPEFs) characterized by high voltage, low energy and non-thermal effects, have been broadly investigated as a potential tumor therapy; however, little is known about their effects on somatic cells. In this current study, we evaluated effects of nsPEFs on the phenotype of chondrocytes (morphology, glycosaminoglycan (GAG) content, proliferation and gene expression) and explored the mechanisms involved. Our results demonstrated that exposing chondrocytes to nsPEFs led to enhanced proliferation and dedifferentiation, evidenced by the upregulated gene expression of collagen type I (COL I) and downregulated gene expression of Sox9, collagen type II (COL II) and aggrecan (AGG) with activation of the wnt/β-catenin signaling pathway. Inhibition of the wnt/β-catenin pathway partially blocked these effects. Thus we concluded that nsPEFs induce dedifferentiation of chondrocytes partially through transient activation of the wnt/β-catenin signaling pathway. PMID:25060711

  10. Spectroscopic determination of molecular kinetics in a pulsed corona discharge

    SciTech Connect

    Shofran, S.P.; Boss, C.B.; Lawless, P.A.

    1995-12-31

    The pulsed corona discharge, which is a low power electrical discharge that operates at or near atmospheric pressure, is currently being tested and optimized for its ability to convert volatile organic compounds (VOCs) in air to environmentally safe by-products. The plasma reactor consists of a 0.40 mm wire anode that is in the center of a 3.0 cm i.d. stainless steel cathode. Pulsed high voltage is applied to the anode through a rotating spark gap assembly designed in this lab. The discharge is a streamer-type plasma that is formed from the strong electric field associate with the anode. Air containing ppm concentrations of toluene flows through the reactor at 0.50 L/min. A CCD detector was used to observe the axial emission from the corona discharge. The resultant spectra were digitized and the average electron energy calculated by using a method outlined by Spyrou and Manassis. Reactive species detected by the CCD were identified and coupled with knowledge of incomplete break-down products to kinetically model the corona plasma and to show how volatile organic compounds are converted to environmentally suitable molecules.

  11. Nanosecond pulsed electric field induced dose dependent phosphatidylinositol-4,5-bisphosphate signaling and intracellular electro-sensitization.

    PubMed

    Tolstykh, Gleb P; Tarango, Melissa; Roth, Caleb C; Ibey, Bennett L

    2017-03-01

    Previously, it was demonstrated that nanometer-sized pores (nanopores) are formed in outer cellular membranes after exposure to nanosecond electric pulses (nsEPs). We reported that plasma membrane nanoporation affects phospholipids of the cell membrane, culminating in cascading phosphoinositide phosphatidylinositol-4,5-bisphosphate (PIP2) intracellular signaling. In the current study, we show that nsEPs initiated electric field (EF) dose-dependent PIP2 hydrolysis and/or depletion from the plasma membrane. This process was confirmed using fluorescent optical probes of PIP2 hydrolysis: PLCδ-PH-EGFP and GFP-C1-PKCγ-C1a. The 50% maximum response occurs with a single 600ns pulse achieving an effective dose (ED50) of EF~8kV/cm within our model cell system. At 16.2kV/cm, the ED50 for the pulse width was 484ns. Reduction of the pulse width or EF amplitude gradually reduced the observed effect, but twenty 60ns 16.2kV/cm pulses produced an effect similar to a single 600ns pulse of the same amplitude. Propidium iodide (PI) uptake after the nsEP exposure confirmed a strong relationship between EF-induced plasma membrane impact and PIP2 depletion. These results have expanded our current knowledge of nsEPs dependent cell physiological effects, and serve as a basis for model development of new exposure standards, providing novel tools for drug independent stimulation and approaches to differential modulation of key cellular functions.

  12. Excimer emission from pulsed microhollow cathode discharges in xenon

    SciTech Connect

    Lee, B.-J.; Nam, S. H.; Rahaman, H.; Iberler, M.; Jacoby, J.; Frank, K.

    2013-12-15

    Direct current (dc) microhollow cathode discharge (MHCD) is an intense source for excimer radiation in vacuum ultraviolet at a wavelength of 172 nm in a high pressure xenon (Xe) gas. The concentration of precursors for the excimer formation, i.e., excited and ionized gas atoms, increases significantly by applying high voltage pulse onto the dc MHCD over the pulse duration range from 20 to 100 ns. The intensity of the excimer emission for the voltage pulse of 20 ns duration exceeds that of the emission intensity obtained from the same MHCD operated only in the dc mode, by one order of magnitude. In addition, the emission intensity increases by one order of magnitude over the pulse duration range from 20 to 100 ns. It can be assumed that the emission intensity of the MHCD source increases as long as the duration of the high voltage pulse is shorter than the electron relaxation time. For the high voltage pulse of 100 ns duration, the emission intensity has been found to be further enhanced by a factor of three when the gas pressure is increased from 200 to 800 mbar.

  13. The optical emission spectroscopy of pulsed and pulse- periodic discharges initiated with runaway electrons

    NASA Astrophysics Data System (ADS)

    Lomaev, M.; Sorokin, D.; Tarasenko, V.

    2015-11-01

    We report on the results of measurements of an electron Te and a gas Tg temperatures as well as a reduced electric field strength E/N in the plasma of a high-voltage nanosecond discharge initiated with runaway electrons in a gap with a strongly nonuniform electric field distribution. The foregoing plasma parameters were determined with optical emission spectroscopy techniques. The possibility of using the method for determining Te and E/N in thermodynamically nonequilibrium plasma, which is based on a determination of a ratio of a peak intensities of the ionic (λ = 391.4 nm) and molecular N2 (λ = 394 nm) nitrogen bands, is proved. To measure a gas temperature the optical emission spectroscopy technique based on the measurement of a relative radiation intensity of rotation structure of electronic-vibrational molecular transitions was used, as well.

  14. Monochromatization of high-current nanosecond pulse source of x-ray bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Adischev, Y. N.; Afanasiev, K. V.; Vukolov, A. V.; Potylitsyn, Alexander P.

    2007-05-01

    The bremsstrahlung spectrum of the nanosecond electron accelerator on the basis of the vacuum diode supplied by the high-voltage nanosecond generator SINUS - 150 with the coaxial forming line combined with the transformer has been monochromatized by the tungsten crystal under the Bragg - geometry (θ B = 45 0). The dose field map has been taken by the dosimeter on the basis of the diamond detector in the median acceleration plane. The bremsstrahlung radiation beam divergence has left 62°. It has been shown that the maximum dose is 16 cGrey/s at the distance of 10 cm from the collector, then it falls down proportionally to the square of distance to the level less than 0.1 cGrey/s at the distance of 1 m. The X-Ray spectrum has been measured by the silicon semi-conductor X-ray spectrometer with energy resolution 280 eV for 5.9 keV. It has been shown that the two maximum at the spectrum corresponds the second and third orders of diffraction on (111) planes of a tungsten crystal.

  15. Highly site-selective transvascular drug delivery by the use of nanosecond pulsed laser-induced photomechanical waves.

    PubMed

    Sato, Shunichi; Yoshida, Ken; Kawauchi, Satoko; Hosoe, Kazue; Akutsu, Yusuke; Fujimoto, Norihiro; Nawashiro, Hiroshi; Terakawa, Mitsuhiro

    2014-10-28

    Photomechanical waves (PMWs), which were generated by irradiation of a light-absorbing material (laser target) with nanosecond laser pulses, were used for targeted transvascular drug delivery in rats. An Evans blue (EB) solution was injected into the tail vein, and laser targets were placed on the skin, muscle and brain. Each laser target was irradiated with a laser pulse(s) and 4h later, the rat was perfused and the distribution of EB fluorescence in the targeted tissues was examined. We observed laser fluence-dependent and hence PMW pressure-dependent extravasation of EB selectively in the tissues that had been exposed to a PMW(s). Uptake of leaked EB into cells in extravascular space was also observed in the targeted tissues. Tissue damage or hemorrhage was not apparent except in the brain exposed to the highest laser fluence used. The results for the brain indicated opening of the blood-brain barrier (BBB). Reverse-order (PMW application before EB injection) experiments showed that the BBB was closed in the duration from 8h to 12h after PMW application at a laser fluence of 0.5J/cm(2). Since EB molecules are strongly bound with serum albumin in blood, the results indicate that the present method can be applied not only to small molecules but also to macromolecules.

  16. Effects of ion and nanosecond-pulsed laser co-irradiation on the surface nanostructure of Au thin films on SiO{sub 2} glass substrates

    SciTech Connect

    Yu, Ruixuan; Meng, Xuan; Takayanagi, Shinya; Shibayama, Tamaki Yatsu, Shigeo; Ishioka, Junya; Watanabe, Seiichi

    2014-04-14

    Ion irradiation and short-pulsed laser irradiation can be used to form nanostructures on the surfaces of substrates. This work investigates the synergistic effects of ion and nanosecond-pulsed laser co-irradiation on surface nanostructuring of Au thin films deposited under vacuum on SiO{sub 2} glass substrates. Gold nanoparticles are randomly formed on the surface of the substrate after nanosecond-pulsed laser irradiation under vacuum at a wavelength of 532 nm with a repetition rate of 10 Hz and laser energy density of 0.124 kJ/m{sup 2}. Gold nanoparticles are also randomly formed on the substrate after 100-keV Ar{sup +} ion irradiation at doses of up to 3.8 × 10{sup 15} ions/cm{sup 2}, and nearly all of these nanoparticles are fully embedded in the substrate. With increasing ion irradiation dose (number of incident laser pulses), the mean diameter of the Au nanoparticles decreases (increases). However, Au nanoparticles are only formed in a periodic surface arrangement after co-irradiation with 6000 laser pulses and 3.8 × 10{sup 15} ions/cm{sup 2}. The periodic distance is ∼540 nm, which is close to the wavelength of the nanosecond-pulsed laser, and the mean diameter of the Au nanoparticles remains at ∼20 nm with a relatively narrow distribution. The photoabsorption peaks of the ion- or nanosecond-pulsed laser-irradiated samples clearly correspond to the mean diameter of Au nanoparticles. Conversely, the photoabsorption peaks for the co-irradiated samples do not depend on the mean nanoparticle diameter. This lack of dependence is likely caused by the periodic nanostructure formed on the surface by the synergistic effects of co-irradiation.

  17. Investigation of phase explosion in aluminum induced by nanosecond double pulse technique

    NASA Astrophysics Data System (ADS)

    Jafarabadi, Marzieh Akbari; Mahdieh, Mohammad Hossein

    2015-08-01

    In this paper, the influence of double pulse technique on phase explosion threshold in laser ablation of an aluminum target is investigated. Single and double pulse laser ablation of aluminum target was performed by a high power Nd:YAG laser beam in ambient air. In the double pulse excitation, the two pulses were from a single laser source which separated by a delay time in the range of 5-20 ns. Measuring ablation depth and rate, the phase explosion threshold was estimated in double pulse configuration as well as in the single pulse regime. The results show that in comparison between single and double pulse regimes, the phase explosion threshold fluence is decreased in double pulse configuration. The lowest phase explosion threshold fluence of 0.9 J/cm2 was obtained at 5 ns delay time. The results also show that plasma shielding effect reduced crater depth at a laser fluence which depended on the laser ablation configuration (single pulse or double pulse). The reduction of crater depth occurs at lower laser fluences for double pulse regime.

  18. Selective removal of carious human dentin using a nanosecond pulsed laser operating at a wavelength of 5.85 μ m

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kita, Tetsuya; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2015-05-01

    Less invasive methods for treating dental caries are strongly desired. However, conventional dental lasers do not always selectively remove caries or ensure good bonding to the composite resin. According to our previous study, demineralized dentin might be removed by a nanosecond pulsed laser operating at wavelengths of around 5.8 μm. The present study investigated the irradiation effect of the light on carious human dentin classified into "remove," "not remove," and "unclear" categories. Under 5.85-μm laser pulses, at average power densities of 30 W/cm2 and irradiation time of 2 s, the ablation depth of "remove" and "not remove," and also the ablation depth of "unclear" and "not remove," were significantly different (p<0.01). The ablation depth was correlated with both Vickers hardness and Ca content. Thus, a nanosecond pulsed laser operating at 5.85 μm proved an effective less-invasive caries treatment.

  19. Low-inductance pulse-discharge capacitor study

    SciTech Connect

    Edwards, L.R.

    1992-01-01

    The Capacitors Division at Sandia National Laboratories has for many years been actively involved in developing high reliability, low-inductance, energy-storage, pulse-discharge capacitors. Development has concentrated on two dielectric systems; mica-paper and Mylar (both dry wrap and fill and FC40 liquid impregnation). Continuous design improvements are constantly being sought. For pulse discharge usage lowering the capacitor inductance can improve circuit performance. This paper describes recent efforts to improve the efficiency of low-inductance, mica-paper capacitors by reducing the inductance through optimizing the component geometry. The study focused on a 0.2 {mu}F, 4000 V mica-paper extended-foil capacitor design. The experimental matrix was a two-level, three factor with center points design, and was replicated four times to give reasonable statistics. The factors were the capacitor width, capacitor length, and electrode width, and with response functions of capacitor inductance and circuit performance. The capacitor inductance was measured by the resonance technique, and the circuit performance was evaluated by peak (discharge) current and rise time. Results show that the inductance can be minimized by choice of geometry with accompanying improvements in circuit performance.

  20. Low-inductance pulse-discharge capacitor study

    NASA Astrophysics Data System (ADS)

    Edwards, L. R.

    1992-03-01

    The Capacitors Division at Sandia National Laboratories has for many years been actively involved in developing high reliability, low inductance, energy storage, pulse discharge capacitors. Development has concentrated on two dielectric systems; mica-paper and Mylar (both dry wrap and fill and FC40 liquid impregnation). Continuous design improvements are constantly being sought. For pulse discharge usage lowering the capacitor inductance can improve circuit performance. This paper describes recent efforts to improve the efficiency of low inductance, mica-paper capacitors by reducing the inductance through optimizing the component geometry. The study focused on a 0.2 micro-F, 4000 V mica-paper extended-foil capacitor design. The experimental matrix was a two-level, three factor with center points design, and was replicated four times to give reasonable statistics. The factors were the capacitor width, capacitor length, and electrode width, and with response functions of capacitor inductance and circuit performance. The capacitor inductance was measured by the resonance technique, and the circuit performance was evaluated by peak (discharge) current and rise time. Results show that the inductance can be minimized by choice of geometry with accompanying improvements in circuit performance.

  1. [The antioxidant enzyme activity in mouse liver mitochondria after nanosecond pulsed periodic X-ray exposure].

    PubMed

    Kniazeva, I R; Ivanov, V V; Bol'shakov, M A; Zharkova, L P; Kereia, A V; Kutenkov, O P; Rostov, V V

    2013-01-01

    The effect of repetitive pulsed X-ray (4 ns pulse duration, 300 kV accelerating voltage; 2.5 kA electron beam current) on the antioxidant enzyme activity in mouse liver mitochondria has been investigated. The mitochondrial suspension was exposed to single 4000 pulse X-ray radiation with repetition rates ranging between 10 and 22 pps (pulsed dose was 0.3-1.8 x 10(-6) Gy/pulse, the total absorbed dose following a single exposure was 7.2 x 10(-3) Gy). It was shown that a short-time exposure to X-ray radiation changes the antioxidant enzyme activity in mouse liver mitochondria. The greatest effect was observed in the changes of the activity of the metal-containing enzymes: superoxide dismutase and glutathione peroxidase. The effect depends on the pulse repetition frequency and radiation dose.

  2. Multi-parametric study of temperature and thermal damage of tumor exposed to high-frequency nanosecond-pulsed electric fields based on finite element simulation.

    PubMed

    Mi, Yan; Rui, Shaoqin; Li, Chengxiang; Yao, Chenguo; Xu, Jin; Bian, Changhao; Tang, Xuefeng

    2016-11-16

    High-frequency nanosecond-pulsed electric fields were recently introduced for tumor or abnormal tissue ablation to solve some problems of conventional electroporation. However, it is necessary to study the thermal effects of high-field-intensity nanosecond pulses inside tissues. The multi-parametric analysis performed here is based on a finite element model of liver tissue with a tumor that has been punctured by a pair of needle electrodes. The pulse voltage used in this study ranges from 1 to 4 kV, the pulse width ranges from 50 to 500 ns, and the repetition frequency is between 100 kHz and 1 MHz. The total pulse length is 100 μs, and the pulse burst repetition frequency is 1 Hz. Blood flow and metabolic heat generation have also been considered. Results indicate that the maximum instantaneous temperature at 100 µs can reach 49 °C, with a maximum instantaneous temperature at 1 s of 40 °C, and will not cause thermal damage during single pulse bursts. By parameter fitting, we can obtain maximum instantaneous temperature at 100 µs and 1 s for any parameter values. However, higher temperatures will be achieved and may cause thermal damage when multiple pulse bursts are applied. These results provide theoretical basis of pulse parameter selection for future experimental researches.

  3. Comparative study of ornamental granite cleaning using femtosecond and nanosecond pulsed lasers

    NASA Astrophysics Data System (ADS)

    Rivas, T.; Lopez, A. J.; Ramil, A.; Pozo, S.; Fiorucci, M. P.; Silanes, M. E. López de; García, A.; Aldana, J. R. Vazquez de; Romero, C.; Moreno, P.

    2013-08-01

    Granite has been widely used as a structural and ornamental element in public works and buildings. In damp climates it is almost permanently humid and its exterior surfaces are consequently biologically colonized and blackened We describe a comparative analysis of the performance of two different laser sources in removing biological crusts from granite surfaces: nanosecond Nd:YVO4 laser (355 nm) and femtosecond Ti:Sapphire laser at its fundamental wavelength (790 nm) and second harmonic (395 nm). The granite surface was analyzed using scanning electron microscopy, attenuated total reflection - Fourier transform infrared spectroscopy and profilometry, in order to assess the degree of cleaning and to characterize possible morphological and chemical changes caused by the laser sources.

  4. Relation Between Discharge Length and Laser Pulse Characteristics in Longitudinally Excited CO2 Laser

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Dobashi, Kazuma; Akitsu, Tetsuya; Jitsuno, Takahisa

    2013-04-01

    A longitudinally excited CO2 laser pumped by a fast discharge emits a short laser pulse, similarly to TEA and Q-switched CO2 lasers. We investigated the relation between the discharge length and the laser pulse characteristics to develop a longitudinally excited CO2 laser producing a high spike laser pulse. We examined discharge lengths of 30, 45, and 60 cm, using the same mirrors and the same excitation circuit with the same input energy. A longer discharge length increased the discharge volume and improved the laser output energy. However, the longer discharge length caused a long discharge formation time (a slow fall time of the discharge voltage) due to the higher discharge impedance, which resulted in a long laser pulse tail. Therefore, the longitudinally excited CO2 laser had optimum conditions for obtaining a high spike laser pulse effectively.

  5. Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm.

    PubMed

    Smith, Arlee V; Do, Binh T

    2008-09-10

    We measured bulk and surface dielectric breakdown thresholds of pure silica for 14 ps and 8 ns pulses of 1064 nm light. The thresholds are sharp and reproducible. For the 8 ns pulses the bulk threshold irradiance is 4.75 +/- 0.25 kW/microm2. The threshold is approximately three times higher for 14 ps pulses. For 8 ns pulses the input surface damage threshold can be made equal to the bulk threshold by applying an alumina or silica surface polish.

  6. Sub-nanosecond ranging possibilities of optical radar at various signal levels and transmitted pulse widths

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.

    1971-01-01

    The behavior of the photomultiplier is considered, as well as the method of derivation of the photomultiplier output pulse and its relation to the reflected light pulse width and amplitude, and the calibration of range precision and accuracy. Pulsed laser radars with light pulse widths of 30, 3, and 0.1 nanosec a considered, with the 0.1 nanosec system capable of highest precision in several modes of operation, including a high repetition rate, single photoelectron reception mode. An alternate calibration scheme using a fast, triggerable light pulser is described in detail.

  7. Numerical Study of Control of Flow Separation Over a Ramp with Nanosecond Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Zheng, J. G.; Khoo, B. C.; Cui, Y. D.; Zhao, Z. J.; Li, J.

    2016-06-01

    The nanosecond plasma discharge actuator driven by high voltage pulse with typical rise and decay time of several to tens of nanoseconds is emerging as a promising active flow control means in recent years and is being studied intensively. The characterization study reveals that the discharge induced shock wave propagates through ambient air and introduces highly transient perturbation to the flow. On the other hand, the residual heat remaining in the discharge volume may trigger the instability of external flow. In this study, this type of actuator is used to suppress flow separation over a ramp model. Numerical simulation is carried out to investigate the interaction of the discharge induced disturbance with the external flow. It is found that the flow separation region over the ramp can be reduced significantly. Our work may provide some insights into the understanding of the control mechanism of nanosecond pulse actuator.

  8. Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena

    NASA Astrophysics Data System (ADS)

    Akchurin, Garif; Khlebtsov, Boris; Akchurin, Georgy; Tuchin, Valery; Zharov, Vladimir; Khlebtsov, Nikolai

    2008-01-01

    Laser-nanoparticle interaction is crucial for biomedical applications of lasers and nanotechnology to the treatment of cancer or pathogenic microorganisms. We report on the first observation of laser-induced coloring of gold nanoshell solution after a one nanosecond pulse and an unprecedentedly low bubble formation (as the main mechanism of cancer cell killing) threshold at a laser fluence of about 4 mJ cm-2, which is safe for normal tissue. Specifically, silica/gold nanoshell (140/15 nm) suspensions were irradiated with a single 4 ns (1064 nm) or 8 ns (900 nm) laser pulse at fluences ranging from 0.1 mJ cm-2 to 50 J cm-2. Solution red coloring was observed by the naked eye confirmed by blue-shifting of the absorption spectrum maximum from the initial 900 nm for nanoshells to 530 nm for conventional colloidal gold nanospheres. TEM images revealed significant photomodification of nanoparticles including complete fragmentation of gold shells, changes in silica core structure, formation of small 20-30 nm isolated spherical gold nanoparticles, gold nanoshells with central holes, and large and small spherical gold particles attached to a silica core. The time-resolved monitoring of bubble formation phenomena with the photothermal (PT) thermolens technique demonstrated that after application of a single 8 ns pulse at fluences 5-10 mJ cm-2 and higher the next pulse did not produce any PT response, indicating a dramatic decrease in absorption because of gold shell modification. We also observed a dependence of the bubble expansion time on the laser energy with unusually very fast PT signal rising (~3.5 ns scale at 0.2 J cm-2). Application of the observed phenomena to medical applications is discussed, including a simple visual color test for laser-nanoparticle interaction.

  9. Averaging of Replicated Pulses for Enhanced-Dynamic-Range Single-Shot Measurement of Nanosecond Optical Pulses

    SciTech Connect

    Marciante, J.R.; Donaldson, W.R.; Roides, R.G.

    2007-10-04

    Measuring optical pulse shapes beyond the dynamic range of oscilloscopes is achieved by temporal pulse stacking in a low-loss, passive, fiber-optic network. Optical pulses are averaged with their time-delayed replicas without introducing additional noise or jitter, allowing for high-contrast pulse-shape measurements of single-shot events. A dynamic-range enhancement of three bits is experimentally demonstrated and compared with conventional multi-shot averaging. This technique can be extended to yield an increase of up to seven bits of additional dynamic range over nominal oscilloscope performance.

  10. Environmental resistance of oxide tags fabricated on 304L stainless steel via nanosecond pulsed laser irradiation

    SciTech Connect

    Lawrence, Samantha Kay; Adams, David P.; Bahr, David F.; Moody, Neville R.

    2015-11-14

    Nanosecond pulsed laser irradiation was used to fabricate colored, mechanically robust oxide “tags” on 304L stainless steel. Immersion in simulated seawater solution, salt fog exposure, and anodic polarization in a 3.5% NaCl solution were employed to evaluate the environmental resistance of these oxide tags. Single layer oxides outside a narrow thickness range (~ 100–150 nm) are susceptible to dissolution in chloride containing environments. The 304L substrates immediately beneath the oxides corrode severely—attributed to Cr-depletion in the melt zone during laser processing. For the first time, multilayered oxides were fabricated with pulsed laser irradiation in an effort to expand the protective thickness range while also increasing the variety of film colors attainable in this range. Layered films grown using a laser scan rate of 475 mm/s are more resistant to both localized and general corrosion than oxides fabricated at 550 mm/s. Furthermore, in the absence of pre-processing to mitigate Cr-depletion, layered films can enhance environmental stability of the system.

  11. Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications.

    PubMed

    Sassaroli, E; Li, K C P; O'Neill, B E

    2009-09-21

    We have modeled, by finite element analysis, the process of heating of a spherical gold nanoparticle by nanosecond laser pulses and of heat transfer between the particle and the surrounding medium, with no mass transfer. In our analysis, we have included thermal conductivity changes, vapor formation, and changes of the dielectric properties as a function of temperature. We have shown that such changes significantly affect the temperature reached by the particle and surrounding microenvironment and therefore the thermal and dielectric properties of the medium need to be known for a correct determination of the temperature elevation. We have shown that for sufficiently low intensity and long pulses, it is possible to establish a quasi-steady temperature profile in the medium with no vapor formation. As the intensity is increased, a phase-change with vapor formation takes place around the gold nanoparticle. As phase-transition starts, an additional increase in the intensity does not significantly increase the temperature of the gold nanoparticle and surrounding environment. The temperature starts to rise again above a given intensity threshold which is particle and environment dependent. The aim of this study is to provide useful insights for the development of molecular targeting of gold nanoparticles for applications such as remote drug release of therapeutics and photothermal cancer therapy.

  12. ICRF Heated Long-Pulse Plasma Discharges in LHD

    NASA Astrophysics Data System (ADS)

    Kumazawa, R.; Seki, T.; Mutoh, T.; Saito, K.; Watari, T.; Nakamura, Y.; Sakamoto, M.; Watanabe, T.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takeiri, Y.; Oka, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Nagaoka, K.; Kaneko, O.; Miyazawa, J.; Morita, S.; Narihara, K.; Shoji, M.; Masuzaki, S.; Goto, M.; Morisaki, T.; Peterson, B. J.; Sato, K.; Tokuzawa, T.; Ashikawa, N.; Nishimura, K.; Funaba, H.; Chikaraishi, H.; Notake, T.; Torii, Y.; Okada, H.; Ichimura, M.; Higaki, H.; Takase, Y.; Kasahara, H.; Shimpo, F.; Nomura, G.; Takahashi, C.; Yokota, M.; Kato, A.; Zhao, Yanping; Yoon, J. S.; Kwak, J. G.; Yamada, H.; Kawahata, K.; Ohyabu, N.; Ida, K.; Nagayama, Y.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.; LHD Experimental Group

    2006-01-01

    A long-pulse plasma discharge for more than 30 min. was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8× 1019 m-3 and Ti0 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. Total injected heating energy was 1.3 GJ, which was a quarter of the prepared RF heating energy. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by shifting the magnetic axis inward and outward.

  13. Pulsed power corona discharges for air pollution control

    SciTech Connect

    Smulders, E.H.W.M.; Heesch, B.E.J.M. van; Paasen, S.S.V.B. van

    1998-10-01

    Successful introduction of pulsed corona for industrial purposes very much depends on the reliability of high-voltage and pulsed power technology and on the efficiency of energy transfer. In addition, it is of the utmost importance that adequate electromagnetic compatibility (EMC) is achieved between the high-voltage pulse source and the surrounding equipment. Pulsed corona is generated in a pilot unit that produces narrow 50 MW pulses at 1000 pps (net average corona power 1.5 kW). The pilot unit can run continuously for use in industrial applications such as cleaning of gases (100 m{sup 3}/h) containing NO or volatile organic compounds (VOC`s) or fluids (e.g., waste water). Simultaneous removal of NO and ethylene to obtain clean CO{sub 2} from the exhaust of a combustion engine was tested at an industrial site. Various chemical processes, such as removal of toluene or styrene from an airflow are tested in the laboratory. The authors developed a model to analyze the conversion of these pollutants. To examine the discharges in the reactor they use current, voltage, and E-field sensors as well as a fast charge-coupled device (CCD) camera. Detailed energy input measurements are compared with CCD movies to investigate the efficiency of different streamer phases. EMC techniques incorporated in the pilot unit are based on the successful concept of constructing a low transfer impedance between common mode currents induced by pulsed power and differential mode voltages in signal lines and external main lines.

  14. Beta limits in long-pulse tokamak discharges

    SciTech Connect

    Sauter, O.; La Haye, R.J.; Chang, Z.; Gates, D.A.; Kamada, Y.; Zohm, H.; Bondeson, A.; Boucher, D.; Callen, J.D.; Chu, M.S.; Gianakon, T.A.; Gruber, O.; Harvey, R.W.; Hegna, C.C.; Lao, L.L.; Monticello, D.A.; Perkins, F.; Pletzer, A.; Reiman, A.H.; Rosenbluth, M.; Strait, E.J.; Taylor, T.S.; Turnbull, A.D.; Waelbroeck, F.; Wesley, J.C.; Wilson, H.R.; Yoshino, R. ||||||||||

    1997-05-01

    The maximum normalized beta achieved in long-pulse tokamak discharges at low collisionality falls significantly below both that observed in short pulse discharges and that predicted by the ideal MHD theory. Recent long-pulse experiments, in particular those simulating the International Thermonuclear Experimental Reactor (ITER) [M. Rosenbluth {ital et al.}, {ital Plasma Physics and Controlled Nuclear Fusion} (International Atomic Energy Agency, Vienna, 1995), Vol. 2, p. 517] scenarios with low collisionality {nu}{sub e{sup {asterisk}}}, are often limited by low-m/n nonideal magnetohydrodynamic (MHD) modes. The effect of saturated MHD modes is a reduction of the confinement time by 10{percent}{endash}20{percent}, depending on the island size and location, and can lead to a disruption. Recent theories on neoclassical destabilization of tearing modes, including the effects of a perturbed helical bootstrap current, are successful in explaining the qualitative behavior of the resistive modes and recent results are consistent with the size of the saturated islands. Also, a strong correlation is observed between the onset of these low-m/n modes with sawteeth, edge localized modes (ELM), or fishbone events, consistent with the seed island required by the theory. We will focus on a quantitative comparison between both the conventional resistive and neoclassical theories, and the experimental results of several machines, which have all observed these low-m/n nonideal modes. This enables us to single out the key issues in projecting the long-pulse beta limits of ITER-size tokamaks and also to discuss possible plasma control methods that can increase the soft {beta} limit, decrease the seed perturbations, and/or diminish the effects on confinement. {copyright} {ital 1997 American Institute of Physics.}

  15. Characteristics of a nanosecond-barrier-discharge-pumped multiwave UV – VUV lamp on a mixture of argon, krypton and vapours of freon

    SciTech Connect

    Shuaibov, A K; Minya, A I; Hrytsak, R V; Gomoki, Z T

    2015-02-28

    We present the results of investigation of the characteristics of a nanosecond-barrier-discharge-pumped multiwave lamp based on a gas mixture of Ar – Kr – CCl{sub 4}, which emits in the spectral range of 170 – 260 nm. The main emission bands in the lamp spectrum are ArCl (B → X) near 175 nm, KrCl (B → X) near 222 nm and Cl{sub 2} (D' → A') near 258 nm. The lamp intensity with respect to pressure, working mixture composition and pump regime is optimised. (uv - vuv emitters)

  16. ARSA accelerator - small-size source of nanosecond pulses of electron and x-ray radiation

    SciTech Connect

    Elyash, S.L.; Alexandrin, A.I.; Donskoy, E.N.

    1993-12-31

    ARSA miniature accelerator is notable for high intensity of radiation and characteristics stability. Near the output window the electron an x ray dose in the air constitutes in a 10 ns pulse 3 x 10{sup 4} Gy and 3 Gy, respectively. Maximal electron and x-ray quanta energy of 700 keV provides high permeability. Dimensions of the accelerator high-voltage unit are small: 250 x 1000 mm and 50 kg weight. It operates in a single pulse regime or generates a pulse series according to the specified program.

  17. Amplification of sub-nanosecond pulse in THL-100 laser system

    NASA Astrophysics Data System (ADS)

    Losev, V. F.; Alekseev, S. V.; Ivanov, M. V.; Ivanov, N. G.; Mesyats, G. A.; Mikheev, L. D.; Panchenko, Yu. N.; Ratakhin, N. A.; Yastremsky, A. G.

    2017-01-01

    The results of the formation and amplification of positive chirped 0.1 ns laser pulse at a central wavelength of 470 nm in the laser system THL-100 are presented. It is shown that a front-end allows forming a radiation pulse with a Gaussian intensity profile and the energy up to 7 mJ. At amplification in XeF(C-A) amplifier of the pulse with 2-5 mJ energy a saturated mode is realized and 3.2 J output laser beam energy is reached.

  18. Pulsed microwave discharges in powder mixtures: Status, problems, and prospects

    NASA Astrophysics Data System (ADS)

    Batanov, G. M.; Kossyi, I. A.

    2015-10-01

    Results of experiments on the excitation of pulsed microwave discharges by gyrotron radiation (λ = 4 mm, P 0 = 100-500 kW, τ = 1-10 ms) in the volumes and on the surfaces of metal-dielectric powder mixtures are presented. It is shown that there are two phases of discharge development: the spark phase, accompanied by a partial evaporation of the powder material, and the phase of a developed discharge, characterized by a plasma density of ˜1017 cm-3, high absorption, and high temperatures (˜5-10 kK) in a thin layer (˜0.1-0.2 mm) of plasma and vapor. It is demonstrated that the conductivity induced in the targets by UV radiation play an important role in the microwave absorption by powder grains. It is found that, in the course of the discharge, a conductive metal mesh forms in the powder volume as a result of metal evaporation. Reactions of high-temperature synthesis were initiated in various powder mixtures (Ti + B, Al + Fe2O3, Mo + B, etc.). It is shown that the reactions of high-temperature synthesis last for up to 0.1 s and are accompanied by the evaporation of powder grains and the formation of an aerosol cloud due to free expansion of reactants from the sample surface. The possibility of experimentally studying the kinetics of reactions of high-temperature synthesis is demonstrated. It is noticed that microwave discharges can be used to initiate plasmachemical reactions on the surfaces of radioparent materials in active gaseous media.

  19. Pulsed microwave discharges in powder mixtures: Status, problems, and prospects

    SciTech Connect

    Batanov, G. M. Kossyi, I. A.

    2015-10-15

    Results of experiments on the excitation of pulsed microwave discharges by gyrotron radiation (λ = 4 mm, P{sub 0} = 100–500 kW, τ = 1–10 ms) in the volumes and on the surfaces of metal-dielectric powder mixtures are presented. It is shown that there are two phases of discharge development: the spark phase, accompanied by a partial evaporation of the powder material, and the phase of a developed discharge, characterized by a plasma density of ∼10{sup 17} cm{sup –3}, high absorption, and high temperatures (∼5–10 kK) in a thin layer (∼0.1–0.2 mm) of plasma and vapor. It is demonstrated that the conductivity induced in the targets by UV radiation play an important role in the microwave absorption by powder grains. It is found that, in the course of the discharge, a conductive metal mesh forms in the powder volume as a result of metal evaporation. Reactions of high-temperature synthesis were initiated in various powder mixtures (Ti + B, Al + Fe{sub 2}O{sub 3}, Mo + B, etc.). It is shown that the reactions of high-temperature synthesis last for up to 0.1 s and are accompanied by the evaporation of powder grains and the formation of an aerosol cloud due to free expansion of reactants from the sample surface. The possibility of experimentally studying the kinetics of reactions of high-temperature synthesis is demonstrated. It is noticed that microwave discharges can be used to initiate plasmachemical reactions on the surfaces of radioparent materials in active gaseous media.

  20. NOx diesel exhaust treatment using a pulsed corona discharge: the pulse repetition rate effect

    NASA Astrophysics Data System (ADS)

    Yankelevich, Y.; Wolf, M.; Baksht, R.; Pokryvailo, A.; Vinogradov, J.; Rivin, B.; Sher, E.

    2007-05-01

    The pulsed corona offers real promise for degradation of pollutants in gas and water streams. This paper presents a study of NOx removal from diesel exhaust. Special emphasis is laid on the investigation of the dependence of the NO removal rate and efficiency on the pulse repetition rate (PRR). A nanosecond solid state power supply (45 kV, 60 ns, up to 1 kHz) was used for driving the corona reactor. A Mitsubishi 10 kW 3-cylinder diesel-generator engine with a total volume of 1300 cm3 was used as a source of exhaust gas. At an NO removal rate of 35% the NO removal efficiency was 53 g kW-1h-1 for PRR = 500 Hz and the initial NO concentration was 375 ppm. A semi-empirical expression for the corona reactor removal efficiency related both to PRR and to the residence time is presented. The removal efficiency decreases with increasing PRR at constant flow rate or constant residence time. This expression demonstrates reasonable agreement between the calculation results and the experimental data.

  1. The System of Nanosecond 280-KeV He+ Pulsed Beam

    SciTech Connect

    Junphong, P.; Ano, V.; Lekprasert, B.; Suwannakachorn, D.; Thongnopparat, N.; Vilaithong, T.; Wiedemann, H.; /SLAC /SLAC, SSRL

    2006-05-01

    At Fast Neutron Research Facility, the 150 kV-pulses neutron generator is being upgraded to a 280-kV-pulsed-He beam for time-of-flight Rutherford backscattering spectrometry. It involves replacing the existing beam line elements by a multicusp ion source, a 400-kV accelerating tube, 45{sup o}-double focusing dipole magnet and quadrupole lens. The multicusp ion source is a compact filament-driven of 2.6 cm in diameter and 8 cm in length. The current extracted is 20.4 {micro}A with 13 kV of extraction voltage and 8.8 kV of Einzel lens voltage. The beam emittance has found to vary between 6-12 mm mrad. The beam transport system has to be redesigned based on the new elements. The important part of a good pulsed beam depends on the pulsing system. The two main parts are the chopper and buncher. An optimized geometry for the 280 keV pulsed helium ion beam will be presented and discussed. The PARMELA code has been used to optimize the space charge effect, resulting in pulse width of less than 2 ns at a target. The calculated distance from a buncher to the target is 4.6 m. Effects of energy spread and phase angle between chopper and buncher have been included in the optimization of the bunch length.

  2. Destruction of humic substances by pulsed electrical discharge

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.; Davidenko, M. A.

    2017-01-01

    Currently, the water recourses in the territory of Tomsk region are groundwater which is limited to the high concentration of iron and manganese ions and organic substances. These impurities present in water in different forms such as soluble salts ant the colloid forms. Therefore, the present work is a part of a continuations researcher of the processes in natural waters containing humic substances at the influence of pulsed electrical discharges in a layer of iron pellets. It is shown that the main stage of water purification process of humic substances during treatment by pulsed electric discharge in the layer of iron granules is a difficult process including several stages such as formation of iron oxyhydroxide colloid particles, sorption and coagulation with humic macromolecules substances, growth of particle dispersed phase and precipitation. The reason for the formation and coagulation of the dispersed phase is a different state of charge of the colloid particles (zeta potentials of (Fe (OH)3) is +8 mV, zeta potentials of (Humic substances) is -70 mV. The most intense permanganate oxidation reduction to the maximum permissible concentration occurs at the processing time equal to 10 seconds. The contact time of active erosion products with sodium humate is established and it equals to 1 hour. The value of permanganate oxidation achieves maximum permissible concentration during this time and iron concentration in solution achieves maximum permissible concentration after filtration.

  3. Plasma Catalysis of Methane Decomposition in Pulse Microwave Discharge

    NASA Astrophysics Data System (ADS)

    Potapkin, B.; Rusanov, V.; Jivotov, V.; Babaritski, A.; Potechin, S.; Etievant, C.

    1997-10-01

    Investigation of plasma catalysis effects in various chemical reactions, such as SO2 and hydrocarbons oxidation, ammonia and nitrogen oxides synthesis, has been of interest for many decades. Present work describes the first experimental observation and theoretical analysis of plasma catalysis effects in the case of endothermic methane decomposition into molecular hydrogen and carbon black. Process energy requirements are coverd mainly by low potential gas thermal energy while plasma is used for acceleration of chemical reactions via active species generation. The experiments were done as follows: (i) methane was preheated in a conventional heat exchanger up to about 40-65 ^oC where thermal methane decomposition is limited by process kinetics, (ii) methane was passed through a non-equilibrium pulse microwave discharge (9.04 GHz, pulse duration 1 μs). Experiments have shown a strong catalytic effect of plasma on methane decomposition. The degree of conversion after discharge increased drastically, despite gas cooling, because of heat absorption in the methane decomposition reaction. Theoretical analysis of process kinetics and energy balance gave clear evidence of the catalytic effect of plasma under experimental conditions. The estimated chain length was about 300. The possible mechanism of plasma catalysis, the ion-molecular chain Winchester mechanism, is proposed and described.

  4. Excimer radiation from pulsed micro hollow cathode discharges

    NASA Astrophysics Data System (ADS)

    Petzenhauser, Isfried; Ernst, Uwe; Frank, Klaus

    2001-10-01

    Since several years d.c. microhollow cathode discharges (MHCDs) are under investigation as efficient sources of VUV excimer radiation [1]. Up to now overall efficiency and the radiation power of the MHCDs are too low to compete e.g. with silent discharges. Substantial improvement in these parameters would make by its simple geometry MCHDs attractive for a wide range of applications. Experiments and simulations show that the efficiency of MCHDs is substantially reduced by high gas temperatures beyond 1500 K. Measurements in pure nitrogen showed that the gas temperature can be reduced about 40The actual experiments are with Xe and Ar bands in the VUV and the results of radiation output under d.c. and pulsed operation for different pulse duration and repetition rates are presented. [1] A. El-Habachi, K.H. Schoenbach, Appl. Phys. Lett. 73(7), pp. 885-887 (1998) [2] U. Ernst, "Emissionsspektroskopische Charakterisierung von Hochdruck-Mikrohohlkathodenentladungen", Ph. D thesis, Univ. of Erlangen-Nuremberg, 2001 This work was supported by DFG under the contact FR 1273-1

  5. Measurement and simulation of Joule heating during treatment of B-16 melanoma tumors in mice with nanosecond pulsed electric fields.

    PubMed

    Pliquett, Uwe; Nuccitelli, Richard

    2014-12-01

    Experimental evidence shows that nanosecond pulsed electric fields (nsPEF) trigger apoptosis in skin tumors. We have postulated that the energy delivered by nsPEF is insufficient to impart significant heating to the treated tissue. Here we use both direct measurements and theoretical modeling of the Joule heating in order to validate this assumption. For the temperature measurement, thermo-sensitive liquid crystals (TLC) were used to determine the surface temperature while a micro-thermocouple (made from 30 μm wires) was used for measuring the temperature inside the tissue. The calculation of the temperature distribution used an asymptotic approach with the repeated calculation of the electric field, Joule heating and heat transfer, and the subsequent readjustment of the electrical tissue conductivity. This yields a temperature distribution both in space and time. It can be shown that for the measured increase in temperature an unexpectedly high electrical conductivity of the tissue would be required, which was indeed found by using voltage and current monitoring during the experiment. Using impedance measurements within t(after)=50 μs after the pulse revealed a fast decline of the high conductivity state when the electric field ceases. The experimentally measured high conductance of a skin fold (mouse) between plate electrodes was about 5 times higher than those of the maximally expected conductance due to fully electroporated membrane structures (G(max)/G(electroporated))≈5. Fully electroporated membrane structure assumes that 100% of the membranes are conductive which is estimated from an impedance measurement at 10 MHz where membranes are capacitively shorted. Since the temperature rise in B-16 mouse melanoma tumors due to equally spaced (Δt=2 s) 300 ns-pulses with E=40 kV/cm usually does not exceed ΔΤ=3 K at all parts of the skin fold between the electrodes, a hyperthermic effect on the tissue can be excluded.

  6. Using dual-antenna nanosecond pulse near-field sensing technology for non-contact and continuous blood pressure measurement.

    PubMed

    Lin, Hong-Dun; Lee, Yen-Shien; Chuang, Bor-Nian

    2012-01-01

    Long-term and continuous non-invasive blood pressure monitoring has shown that it is the most important to clinical diagnosis of cardiovascular diseases and personal home health care. Currently, there are many preferable non-invasive methods, including optical sensor, pressure-sensitive transducers, and applanation tonometry, to get insight of blood pressure and flow signal detection. However, the operation of traditional monitors is cuff accessories needed, and also the sensing probes needed to exert pressure to the user directly. The measurement procedure is limited by long-term, continuous measurement and also easy to cause discomfort. To improve these issues, the non-pressurized and non-invasive measuring method will become an important innovation improvement. In this paper, the novel nanosecond pulse near-field sensing (NPNS) based screening technology with dual-antenna, which includes radio frequency (RF) pulse transmission and two combined flat antenna connected to transceiver of miniature radar, is proposed to derive relative blood pressure parameters from measured blood flow activity (Pulse Wave Velocity, PWV). A dedicated analysis software is also provided to calculate cardiovascular parameters, including PWV, average systolic time, diastolic and systolic pressure, for clinical and homecare applications. To evaluate the performance, the proposed method was applied on blood pressure measurement at the body site of limbs (brachial and leg). As a result, it shows error of DBP and SBP is 5.18±1.61 and 4.09 ± 1.69 mmHg in average compared with the measurement result from commercial product, and performs the capability of continuous long-term monitoring in real-time.

  7. Time evolution of domain-wall motion induced by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gerasimov, M. V.; Logunov, M. V.; Spirin, A. V.; Nozdrin, Yu. N.; Tokman, I. D.

    2016-07-01

    The time evolution of the magnetization normal component change in a garnet film with a labyrinthine domain structure under the action of circularly and linearly polarized laser pump pulses (the pulse duration is 5 ns; the wavelength is 527 nm) has been studied. The dynamic state of the magnetic film was registered using an induction method with a time resolution of 1 ns. It was found that for the initial state of the magnetic film with an equilibrium domain structure, the form of the photomagnetization pulse reflects the time evolution of a domain-wall motion. The domain-wall motion initiated by the circularly polarized laser pump pulse continues in the same direction for a time more than an order of magnitude exceeding the laser pulse duration. In general, the time evolution of the domain-wall movement occurs in three stages. The separation of the contributions to the photomagnetization from the polarization-dependent and polarization-independent effects was carried out. The photomagnetization pulses that reflect the contributions by the aforementioned effects differ by form, and more than two orders of magnitude by duration. Their form doesn't change under a magnetic bias field change, only the photomagnetization pulse amplitude does: for the polarization-dependent contribution, it's an even function of the field, and for the polarization-independent contribution, it's an odd function. The interconnection between the polarization-dependent and polarization-independent effects, on the one hand, and the domain-wall displacement and the change of the film's saturation magnetization, on the other hand, was identified and described.

  8. Experimental studies of breakdown characteristics in pulse-modulated radio-frequency atmospheric discharge

    NASA Astrophysics Data System (ADS)

    Huo, W. G.; Zhang, X.; Gu, J. L.; Ding, Z. F.

    2016-12-01

    The influences of the pulse off-time on the breakdown voltage of the first pulse and the stable pulse discharge (having repeatedly undergone a process of ignition, maintenance, and extinction) are experimentally investigated in a pulse-modulated radio-frequency atmospheric pressure argon discharge. The experimental results show that the first pulse discharge breakdown voltage decreases, but the stable pulse discharge breakdown voltage increases with increasing the pulse off-time. In a large region of the pulse off-time, the luminescence property of the initial breakdown stage is studied using a high speed camera. The captured images at different pulse off-times demonstrate that the gas breakdown exhibits five key characteristics: single-point random breakdown, multi-point random breakdown, stable uniform breakdown, stable glow mixed with pattern breakdown, and stable nonuniform pattern breakdown. The physical reasons for these results are discussed.

  9. Propagation of the pulsed electron beam of nanosecond duration in gas composition of high pressure

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G.; Sazonov, R.; Ponomarev, D.; Remnev, G.

    2015-11-01

    This paper presents the results of the investigation of the propagation of an electron beam in the high-pressure gas compositions (50, 300, and 760 Torr): sulfur hexafluoride and hydrogen, sulfur hexafluoride and nitrogen, sulfur hexafluoride and argon. The experiments have been performed using the TEA-500 laboratory accelerator. The main parameters of the accelerator are as follows: an accelerating voltage of 500 kV; an electron beam current of 10 kA; a pulse width at half maximum of 60 ns; a pulse energy of 200 J; a pulse repetition rate of up to 5 pulses per second, a beam diameter of 5 cm. The pulsed electron beam was injected into a 55 cm metal drift tube. The drift tube is equipped with three reverse-current shunts with simultaneous detecting of signals. The obtained results of the investigation make it possible to conclude that the picture of the processes occurring in the interaction of an electron beam in the high-pressure gas compositions is different from that observed in the propagation of the electron beam in the low-pressure gas compositions (1 Torr).

  10. Microdosimetric study for nanosecond pulsed electric fields on a cell circuit model with nucleus.

    PubMed

    Denzi, Agnese; Merla, Caterina; Camilleri, Paola; Paffi, Alessandra; d'Inzeo, Guglielmo; Apollonio, Francesca; Liberti, Micaela

    2013-10-01

    Recently, scientific interest in electric pulses, always more intense and shorter and able to induce biological effects on both plasma and nuclear membranes, has greatly increased. Hence, microdosimetric models that include internal organelles like the nucleus have assumed increasing importance. In this work, a circuit model of the cell including the nucleus is proposed, which accounts for the dielectric dispersion of all cell compartments. The setup of the dielectric model of the nucleus is of fundamental importance in determining the transmembrane potential (TMP) induced on the nuclear membrane; here, this is demonstrated by comparing results for three different sets of nuclear dielectric properties present in the literature. The results have been compared, even including or disregarding the dielectric dispersion of the nucleus. The main differences have been found when using pulses shorter than 10 ns. This is due to the fact that the high spectral components of the shortest pulses are differently taken into account by the nuclear membrane transfer functions computed with and without nuclear dielectric dispersion. The shortest pulses are also the most effective in porating the intracellular structures, as confirmed by the time courses of the TMP calculated across the plasma and nuclear membranes. We show how dispersive nucleus models are unavoidable when dealing with pulses shorter than 10 ns because of the large spectral contents arriving above 100 MHz, i.e., over the typical relaxation frequencies of the dipolar mechanism of the molecules constituting the nuclear membrane and the subcellular cell compartments.

  11. Development of a compact generator for gigawatt, nanosecond high-voltage pulses.

    PubMed

    Zhou, Lin; Jiang, Zhanxing; Liang, Chuan; Li, Mingjia; Wang, Wenchuan; Li, Zhenghong

    2016-03-01

    A compact generator producing 2.2-ns 1.5 GW high-voltage pulses was developed. The generator employed a 27.6 Ω, 0.9 ns pulse-forming-line (PFL), which was charged by an iron core transformer with a turn ratio of 2:33.5 and a coefficient of 0.94. A 1.2 μF, 20 kV capacitor and a hydrogen thyratron were used in the primary circuit. When the thyratron closed at 14.5 kV, 3.4% of the energy stored in the capacitor was delivered to the PFL in 850 ns, producing a peak voltage of up to ∼500 kV. In addition, the principle of triple resonance transformation was employed by adding a 50 pF tuning capacitor and a 1.15 mH inductor between the transformer and the PFL, which led to a significant reduction of the duration and peak value of the transformer voltage without reducing that in the PFL. Meanwhile, an adjustable self-break oil switch was applied. By using transmission lines with impedance overmatched to that of the PFL, the generator delivered a 512 kV pulse across an electron beam diode, generating radiation with a dose of 20 mR/pulse at 20 cm ahead of the diode. The generator provides an excellent ultra-short radiation pulse source for the studies on radiation physics.

  12. Development of a compact generator for gigawatt, nanosecond high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Jiang, Zhanxing; Liang, Chuan; Li, Mingjia; Wang, Wenchuan; Li, Zhenghong

    2016-03-01

    A compact generator producing 2.2-ns 1.5 GW high-voltage pulses was developed. The generator employed a 27.6 Ω, 0.9 ns pulse-forming-line (PFL), which was charged by an iron core transformer with a turn ratio of 2:33.5 and a coefficient of 0.94. A 1.2 μF, 20 kV capacitor and a hydrogen thyratron were used in the primary circuit. When the thyratron closed at 14.5 kV, 3.4% of the energy stored in the capacitor was delivered to the PFL in 850 ns, producing a peak voltage of up to ˜500 kV. In addition, the principle of triple resonance transformation was employed by adding a 50 pF tuning capacitor and a 1.15 mH inductor between the transformer and the PFL, which led to a significant reduction of the duration and peak value of the transformer voltage without reducing that in the PFL. Meanwhile, an adjustable self-break oil switch was applied. By using transmission lines with impedance overmatched to that of the PFL, the generator delivered a 512 kV pulse across an electron beam diode, generating radiation with a dose of 20 mR/pulse at 20 cm ahead of the diode. The generator provides an excellent ultra-short radiation pulse source for the studies on radiation physics.

  13. INTERACTION OF LASER RADIATION WITH MATTER: Laser swelling model for polymers irradiated by nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Malyshev, A. Yu; Bityurin, N. M.

    2005-09-01

    Mechanisms of laser swelling of polymers are considered. A theoretical model for one of such mechanisms is constructed and investigated. This mechanism is based on the formation of a thermoelastic wave upon absorption of a laser pulse. Tensile stresses in this wave lead to elastic and plastic deformation of a polymer in the heated region and to the formation of convex structures (humps). The threshold energy density of a laser pulse required for the production of a residual hump under laser irradiation is obtained analytically. A formula for the height of this hump is also derived. The model explains the earlier experimental data from the literature on swelling of a PMMA film irradiated by UV pulses.

  14. Detection of nanosecond-scale, high power THz pulses with a field effect transistor

    SciTech Connect

    Preu, S.; Lu, H.; Gossard, A. C.; Sherwin, M. S.

    2012-05-15

    We demonstrate detection and resolution of high power, 34 ns free electron laser pulses using a rectifying field effect transistor. The detector remains linear up to an input power of 11 {+-} 0.5 W at a pulse energy of 20 {+-} 1 {mu}J at 240 GHz. We compare its performance to a protected Schottky diode, finding a shorter intrinsic time constant. The damage threshold is estimated to be a few 100 W. The detector is, therefore, well-suited for characterizing high power THz pulses. We further demonstrate that the same detector can be used to detect low power continuous-wave THz signals with a post detection limited noise floor of 3.1 {mu}W/{radical}(Hz). Such ultrafast, high power detectors are important tools for high power and high energy THz facilities such as free electron lasers.

  15. Destruction of monocrystalline silicon with nanosecond pulsed fiber laser accompanied by the oxidation of ablation microparticles

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Skvortsov, A. M.; Huynh, C. T.; Petrov, A. A.

    2013-11-01

    In this work, we report an observation of process of local destruction monocrystalline silicon with a scanning beam irradiation of pulse ytterbium fiber laser with a wavelength λ= 1062 nm, accompanied by the oxidation of ablation microparticles. It is shown that depending on the power density of irradiation was observed a large scatter size of the microparticles. From a certain average power density is observed beginning oxidation particulate emitted from the surface of the irradiated area. By varying the parameters of the laser beam such as scanning speed, pulse repetition rate, overlap of laser spot, radiation dose can be achieved almost complete oxidation of all formed during the ablation of microparticles.

  16. Spatio-temporal characteristics of self-pulse in hollow cathode discharge

    SciTech Connect

    Jing, Ha; He, Shoujie

    2015-02-15

    The characteristics of self-pulse in hollow cathode discharge at low pressure have been investigated. The voltage-current (V-I) curves, the influence of ballast resistor on the self-pulses, and the evolution of current and voltage are measured. Both the axial and radial spatio-temporal discharge images of self-pulse are recorded. The results show that there exists the hysteresis effect in the present hollow cathode discharge. The high value of ballast resistors is favourable for the observation of self-pulses. The process of the self-pulse can be divided into three stages from the temporal discharge images, i.e., the pre-discharge, the transition from mainly axial electric field to mainly radial electric field, and the decaying process. The self-pulse is suggested to originate from the mode transition of the discharge in essence.

  17. Selective removal of composite sealants with near-ultraviolet laser pulses of nanosecond duration.

    PubMed

    Louie, Tiffany M; Jones, Robert S; Sarma, Anupama V; Fried, Daniel

    2005-01-01

    It is often necessary to replace pit and fissure sealants and composite restorations. This task is complicated by the necessity for complete removal of the remaining composite to enable suitable adhesion of new composite. Previous studies have shown that 355-nm laser pulses from a frequency-tripled Nd:YAG laser can selectively remove residual composite after orthodontic bracket removal on enamel surfaces. Our objective is to determine if such laser pulses are suitable for selective removal of composite pit and fissure sealants and restorations. Optical coherence tomography is used to acquire optical cross sections of the occlusal topography nondestructively before sealant application, after sealant application, and after sealant removal. Thermocouples are used to monitor the temperature in the pulp chamber during composite removal under clinically relevant ablation rates, i.e., 30 Hz and 30 mJ/pulse. At an irradiation intensity of 1.3 J/cm2, pit and fissure sealants are completely removed without visible damage to the underlying enamel. At intensities above 1.5 J/cm2, incident laser pulses remove the resin layer while at the same time preferentially etching the surface of the enamel. Temperature excursions in the pulp chamber of extracted teeth are limited to less than 5 degrees C if air-cooling is used during the rapid removal (1 to 2 min) of sealants, water-cooling is not necessary. Selective removal of composite restorative materials is possible without damage to the underlying sound tooth structure.

  18. Approximate theory of highly absorbing polymer ablation by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Furzikov, N. P.

    1990-04-01

    Surface interference, nonlinearly saturated instability of laser-induced thermodestruction, and subsequent oscillation of absorption mode permit the description of analytical ablation thresholds and depths per pulse of polymers having high absorption at laser wavelengths, e.g., polyimide and poly(ethylene terephtalate). Inverse problem solution for polycarbonate and ablation invariant designing are also realized.

  19. Development of a Specific Impulse Balance for a Pulsed Capillary Discharge (Preprint)

    DTIC Science & Technology

    2008-06-13

    thrust stand [rad/s] I. Introduction A capillary discharge based coaxial , electrothermal pulsed plasma thruster (PPT) is currently under...20-23 July 2008. 14. ABSTRACT A capillary discharge based pulsed plasma thruster is currently under development at the Air Force Research...Edwards AFB, CA 93524 A capillary discharge based pulsed plasma thruster is currently under development at the Air Force Research Laboratory. A

  20. Growth and characterization of Cu(In,Ga)Se2 thin films by nanosecond and femtosecond pulsed laser deposition.

    PubMed

    Chen, Shih-Chen; Hsieh, Dan-Hua; Jiang, Hsin; Liao, Yu-Kuang; Lai, Fang-I; Chen, Chyong-Hua; Luo, Chih Wei; Juang, Jenh-Yih; Chueh, Yu-Lun; Wu, Kaung-Hsiung; Kuo, Hao-Chung

    2014-01-01

    In this work, CuIn1 - x Ga x Se2 (CIGS) thin films were prepared by nanosecond (ns)- and femtosecond (fs)-pulsed laser deposition (PLD) processes. Different film growth mechanisms were discussed in perspective of the laser-produced plasmas and crystal structures. The fs-PLD has successfully improved the inherent flaws, Cu2 - x Se, and air voids ubiquitously observed in ns-PLD-derived CIGS thin films. Moreover, the prominent antireflection and excellent crystalline structures were obtained in the fs-PLD-derived CIGS thin films. The absorption spectra suggest the divergence in energy levels of radiative defects brought by the inhomogeneous distribution of elements in the fs-PLD CIGS, which has also been supported by comparing photoluminescence (PL) spectra of ns- and fs-PLD CIGS thin films at 15 K. Finally, the superior carrier transport properties in fs-PLD CIGS were confirmed by fs pump-probe spectroscopy and four-probe measurements. The present results indicate a promising way for preparing high-quality CIGS thin films via fs-PLD.

  1. Nanosecond Pulsed Electric Fields Enhance the Anti-tumour Effects of the mTOR Inhibitor Everolimus against Melanoma

    NASA Astrophysics Data System (ADS)

    Dai, Jie; Wu, Shan; Kong, Yan; Chi, Zhihong; Si, Lu; Sheng, Xinan; Cui, Chuanliang; Fang, Jing; Zhang, Jue; Guo, Jun

    2017-01-01

    The PI3K/mTOR/AKT pathway is activated in most melanomas, but mTOR inhibitors used singly have limited activity against advanced melanomas. The application of nanosecond pulsed electric fields (nsPEFs) is a promising cancer therapy approach. In this study, we evaluated the synergistic anti-tumour efficacy of the mTOR inhibitor everolimus in conjunction with nsPEFs against melanoma. The combined treatment of nsPEFs and everolimus gradually decreased cell growth concurrent with nsPEF intensity. nsPEFs alone or combined with everolimus could promote melanoma cell apoptosis, accompanied with a loss in cellular mitochondrial membrane potential and an increase in Ca2+ levels. In vivo experiments showed that a combination of the mTOR inhibitor everolimus and nsPEFs improved the inhibitory effect, and all skin lesions caused by nsPEFs healed in 1 week without any observed adverse effect. Combination treatment induced caspase-dependent apoptosis through the upregulation of the pro-apoptotic factor Bax and downregulation of the anti-apoptotic factor Bcl-2. Everolimus and nsPEFs synergistically inhibited angiogenesis by decreasing the expression of vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR), and CD34. Our findings indicate that nsPEFs in combination with an mTOR inhibitor can be used as a potential treatment approach for advanced melanoma.

  2. Darkening effect on AZ31B magnesium alloy surface induced by nanosecond pulse Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Guan, Y. C.; Zhou, W.; Zheng, H. Y.; Li, Z. L.

    2013-09-01

    Permanent darkening effect was achieved on surface of AZ31B Mg alloy irradiated with nanosecond pulse Nd:YAG laser, and special attention was made to examine how surface structure as well as oxidation affect the darkening effect. Experiments were carried out to characterize morphological evolution and chemical composition of the irradiated areas by optical reflection spectrometer, Talysurf surface profiler, SEM, EDS, and XPS. The darkening effect was found to be occurred at the surface under high laser energy. Optical spectra showed that the induced darkening surface was uniform over the spectral range from 200 nm to 1100 nm. SEM and surface profiler showed that surface morphology of darkening areas consisted of large number of micron scale cauliflower-like clusters and protruding particles. EDS and XPS showed that compared to non-irradiated area, oxygen content at the darkening areas increased significantly. It was proposed a mechanism that involved trapping of light in the surface morphology and chemistry variation of irradiated areas to explain the laser-induced darkening effect on AZ31B Mg alloy.

  3. Evaluation of the Genetic Response of U937 and Jurkat Cells to 10-Nanosecond Electrical Pulses (nsEP)

    PubMed Central

    Glickman, Randolph D.; Tolstykh, Gleb P.; Estlack, Larry E.; Moen, Erick K.; Echchgadda, Ibtissam; Beier, Hope T.; Barnes, Ronald A.; Ibey, Bennett L.

    2016-01-01

    Nanosecond electrical pulse (nsEP) exposure activates signaling pathways, produces oxidative stress, stimulates hormone secretion, causes cell swelling and induces apoptotic and necrotic death. The underlying biophysical connection(s) between these diverse cellular reactions and nsEP has yet to be elucidated. Using global genetic analysis, we evaluated how two commonly studied cell types, U937 and Jurkat, respond to nsEP exposure. We hypothesized that by studying the genetic response of the cells following exposure, we would gain direct insight into the stresses experienced by the cell and in turn better understand the biophysical interaction taking place during the exposure. Using Ingenuity Systems software, we found genes associated with cell growth, movement and development to be significantly up-regulated in both cell types 4 h post exposure to nsEP. In agreement with our hypothesis, we also found that both cell lines exhibit significant biological changes consistent with mechanical stress induction. These results advance nsEP research by providing strong evidence that the interaction of nsEPs with cells involves mechanical stress. PMID:27135944

  4. Nanosecond Pulsed Electric Fields Enhance the Anti-tumour Effects of the mTOR Inhibitor Everolimus against Melanoma

    PubMed Central

    Dai, Jie; Wu, Shan; Kong, Yan; Chi, Zhihong; Si, Lu; Sheng, Xinan; Cui, Chuanliang; Fang, Jing; Zhang, Jue; Guo, Jun

    2017-01-01

    The PI3K/mTOR/AKT pathway is activated in most melanomas, but mTOR inhibitors used singly have limited activity against advanced melanomas. The application of nanosecond pulsed electric fields (nsPEFs) is a promising cancer therapy approach. In this study, we evaluated the synergistic anti-tumour efficacy of the mTOR inhibitor everolimus in conjunction with nsPEFs against melanoma. The combined treatment of nsPEFs and everolimus gradually decreased cell growth concurrent with nsPEF intensity. nsPEFs alone or combined with everolimus could promote melanoma cell apoptosis, accompanied with a loss in cellular mitochondrial membrane potential and an increase in Ca2+ levels. In vivo experiments showed that a combination of the mTOR inhibitor everolimus and nsPEFs improved the inhibitory effect, and all skin lesions caused by nsPEFs healed in 1 week without any observed adverse effect. Combination treatment induced caspase-dependent apoptosis through the upregulation of the pro-apoptotic factor Bax and downregulation of the anti-apoptotic factor Bcl-2. Everolimus and nsPEFs synergistically inhibited angiogenesis by decreasing the expression of vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR), and CD34. Our findings indicate that nsPEFs in combination with an mTOR inhibitor can be used as a potential treatment approach for advanced melanoma. PMID:28054548

  5. Growth and characterization of Cu(In,Ga)Se2 thin films by nanosecond and femtosecond pulsed laser deposition

    PubMed Central

    2014-01-01

    In this work, CuIn1 - x Ga x Se2 (CIGS) thin films were prepared by nanosecond (ns)- and femtosecond (fs)-pulsed laser deposition (PLD) processes. Different film growth mechanisms were discussed in perspective of the laser-produced plasmas and crystal structures. The fs-PLD has successfully improved the inherent flaws, Cu2 - x Se, and air voids ubiquitously observed in ns-PLD-derived CIGS thin films. Moreover, the prominent antireflection and excellent crystalline structures were obtained in the fs-PLD-derived CIGS thin films. The absorption spectra suggest the divergence in energy levels of radiative defects brought by the inhomogeneous distribution of elements in the fs-PLD CIGS, which has also been supported by comparing photoluminescence (PL) spectra of ns- and fs-PLD CIGS thin films at 15 K. Finally, the superior carrier transport properties in fs-PLD CIGS were confirmed by fs pump-probe spectroscopy and four-probe measurements. The present results indicate a promising way for preparing high-quality CIGS thin films via fs-PLD. PMID:24959108

  6. Anti-bacterial selenium nanoparticles produced by UV/VIS/NIR pulsed nanosecond laser ablation in liquids

    NASA Astrophysics Data System (ADS)

    Guisbiers, G.; Wang, Q.; Khachatryan, E.; Arellano-Jimenez, M. J.; Webster, T. J.; Larese-Casanova, P.; Nash, K. L.

    2015-01-01

    The ability to produce nanoparticles free of any surface contamination is very challenging especially for bio-medical applications. Using a pulsed nanosecond Nd-YAG laser, pure selenium nanoparticles have been synthesized by irradiating selenium powder (99.999%) immerged in de-ionized water and ethanol. The wavelength of the laser beam has been varied from the UV to NIR (355, 532 and 1064 nm) and its effect on the particle size distribution has been studied by dynamic light scattering (DLS) and transmission electronic microscopy (TEM), revealing then the production of selenium quantum dots (size < 4 nm) by photo-fragmentation. It has been found that the crystallinity of the nanoparticles depends on their size. The zeta-potential measurement reveals that the colloidal solutions produced in de-ionized water were stable while the ones synthesized in ethanol agglomerate. The concentration of selenium has been measured using inductively coupled plasma mass spectrometry (ICP-MS). The anti-bacterial effect of selenium nanostructures has been analyzed on E. Coli bacteria. Finally, selenium quantum dots produced by this method can also be useful for quantum dot solar cells.

  7. Dose dependent translocations of fluorescent probes of PIP2 hydrolysis in cells exposed to nanosecond pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Tolstykh, Gleb P.; Tarango, Melissa; Roth, Caleb C.; Ibey, Bennett L.

    2014-03-01

    Previously, it was demonstrated that small nanometer-sized pores (nanopores) are preferentially formed after exposure to nanosecond pulsed electric fields (nsPEF). We have reported that nanoporation of the plasma membrane directly affects the phospholipids of the cell membrane, ultimately culminating in phosphatidylinositol4,5- bisphosphate (PIP2) intracellular signaling. PIP2, located within the internal layer of the plasma membrane, plays a critical role as a regulator of ion transport proteins, a source of second messenger compounds, and an anchor for cytoskeletal elements. In this proceeding, we present data that demonstrates that nsPEFs initiate electric field dose-dependent PIP2 hydrolysis and/or depletion from the plasma membrane through the observation of the accumulation of inositol1,4,5-trisphosphate (IP3) in the cytoplasm and the increase of diacylglycerol (DAG) on the inner surface of the plasma membrane. The phosphoinositide signaling cascade presented here involves activation of phospholipase C (PLC) and protein kinase C (PKC), which are responsible for a multitude of biological effects after nsPEF exposure. These results expand our current knowledge of nsPEF induced physiological effects, and serve as a basis for development of novel tools for drug independent stimulation or modulation of different cellular functions.

  8. Nanosecond pulsed platelet-rich plasma (nsPRP) improves mechanical and electrical cardiac function following myocardial reperfusion injury.

    PubMed

    Hargrave, Barbara; Varghese, Frency; Barabutis, Nektarios; Catravas, John; Zemlin, Christian

    2016-02-01

    Ischemia and reperfusion (I/R) of the heart is associated with biochemical and ionic changes that result in cardiac contractile and electrical dysfunction. In rabbits, platelet-rich plasma activated using nanosecond pulsed electric fields (nsPRP) has been shown to improve left ventricular pumping. Here, we demonstrate that nsPRP causes a similar improvement in mouse left ventricular function. We also show that nsPRP injection recovers electrical activity even before reperfusion begins. To uncover the mechanism of nsPRP action, we studied whether the enhanced left ventricular function in nsPRP rabbit and mouse hearts was associated with increased expression of heat-shock proteins and altered mitochondrial function under conditions of oxidative stress. Mouse hearts underwent 30 min of global ischemia and 1 h of reperfusion in situ. Rabbit hearts underwent 30 min of ischemia in vivo and were reperfused for 14 days. Hearts treated with nsPRP expressed significantly higher levels of Hsp27 and Hsp70 compared to hearts treated with vehicle. Also, pretreatment of cultured H9c2 cells with nsPRP significantly enhanced the "spare respiratory capacity (SRC)" also referred to as "respiratory reserve capacity" and ATP production in response to the uncoupler FCCP. These results suggest a cardioprotective effect of nsPRP on the ischemic heart during reperfusion.

  9. Development of a Lumped Element Circuit Model for Approximation of Nanosecond Pulsed Dielectric Barrier Discharges

    DTIC Science & Technology

    2013-01-01

    52) β ∝ ∆V, (53) φ1 ∝ Ne. (54) To solve the resulting equation system, the Dormand-Prince Runge - Kutta method was employed. This method provides an...Roy† Computational Plasma Dynamics Laboratory and Test Facility, Applied Physics Research Group , Mechanical and Aerospace Engineering, University of...University of Florida,Applied Physics Research Group ,Department of Mechanical and Aerospace Engineering,Gainesville,FL,32611 8. PERFORMING ORGANIZATION

  10. Physics Based Lumped Element Circuit Model for Nanosecond Pulsed Dielectric Barrier Discharges

    DTIC Science & Technology

    2013-01-01

    system, the Dormand-Prince Runge - Kutta method was employed. This method provides an efficient way to incorporate an adaptive step size that is...1Applied Physics Research Group , Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA 2Vehicle...TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Florida,Applied Physics Research Group

  11. Flow Reactor Studies with Nanosecond Pulsed Discharges at Atmospheric Pressure and Higher

    DTIC Science & Technology

    2013-10-01

    quartz tube (58mm I.D.) with Teflon end caps • Actual flow reactor length is 1524 mm (60 in.) • The copper electrodes are connected to ceramic...O2 Branching Products HO2• + Conjugate alkenes •OH + Cyclic ethers •OH + R’CHO + CnH2n + O2 + •OH β- Decomposition products Thermal Oxidation... nitrate compounds at low temperatures may be a means to enhance ignition. Team Interactions/Collaborations • Collaborative research with Ohio

  12. Numerical Simulation of a Nanosecond Pulse Discharge in Mach 5 Flow

    DTIC Science & Technology

    2013-01-01

    Diffusion and Drift of Electrons in Gases, Wiley, New York, 1974. 31Itikawa, Y., Hayashi, M., Ichimura, A., Onda , K., Sakimoto, K., Takayanagi, K., Nakamura...Chemical Reference Data, Vol. 16, 1986, pp. 985–1010. 32Itikawa, Y., Ichimura, A., Onda , K., Sakimoto, K., Takayanagi, K., Hatano, Y., Hayashi, M

  13. Hypersonic Flow over a Cylinder with a Nanosecond-Pulse Electrical Discharge

    DTIC Science & Technology

    2013-01-01

    ns- DBD ) in a Mach 5 flow demonstrated the feasibility of a plasma-based supersonic flow controller. In the experiment, a bow-shock perturbation on a... DBD , which propagated upstream from the cylinder surface and interacted with the standing bow-shock. This interaction temporarily increased the shock...standoff distance, with the series of events repeated at an interval of 10 μs (100 kHz). Previous demonstrations using the ns- DBD have included

  14. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  15. Physical Mechanism of Initial Breakdown Pulses in Lightning Discharges

    NASA Astrophysics Data System (ADS)

    Da Silva, C.; Pasko, V. P.

    2014-12-01

    The initial breakdown stage of a lightning flash encompasses its first several to tens of milliseconds and it is characterized by a sequence of pulses typically detected with electric field change sensors on the ground [e.g., Villanueva et al., JGR, 99, D7, 1994]. A typical (referred to as "classical") initial breakdown pulse (IBP) has duration of tens of microseconds and it is one of the largest pulses at the beginning of a lightning flash, but a wide range of pulse durations and amplitudes also occur [e.g., Nag et al., Atmos. Res., 91, 316, 2009]. Recent results by Marshall et al. [JGR, 119, 445, 2014] suggest that IBPs should be observable in all lightning discharges. Complementarily, Stolzenburg et al. [JGR, 118, 2918, 2013] correlated individual IBPs to bursts of light that appear to be illumination of a lightning leader channel and Karunarathne et al. [JGR, 118, 7129, 2013] have determined that as a flash evolves the location of IBP sources inside the cloud coincide with the position of negative leaders as determined by a VHF lightning mapping system. In view of the above listed properties of IBPs, we have developed a new numerical model to investigate the electromagnetic signatures associated with these events and to relate them to the initial lightning leader development. The model is built on a bidirectional (zero-net-charge) lightning leader concept [e.g., Mazur and Ruhnke, JGR, 103, D18, 1998]. We simulate a finite-length finite-conductivity leader elongating in the thunderstorm electric field and we solve a set of integro-differential equations to retrieve the full dynamics of charges and currents induced in it. Our proposed approach is a generalization of the transmission-line [e.g., Nag and Rakov, JGR, 115, D20102, 2010] and electrostatic [e.g., Pasko, GRL, 41, 179, 2014] approximations used for analysis of in-cloud discharge processes. We also allow for different propagation mechanisms at the different polarity leader extremities, i.e., continuous

  16. Laser induced shock wave lithotripsy--biologic effects of nanosecond pulses

    SciTech Connect

    Hofmann, R.; Hartung, R.; Geissdoerfer, K.A.; Ascherl, R.; Erhardt, W.; Schmidt-Kloiber, H.; Reichel, E.

    1988-05-01

    Laser energy of a Nd-YAG laser (1064 nm. wave length, 8 nsec pulse duration) was directed against various tissue cultures and the urothelium of the ureter, bladder and kidney parenchyma in pigs. Single pulse energy was 50 to 120 mJ with a repetition rate of 20 Hz. Urothelium and kidney parenchyma were irradiated in seven pigs. Tissue samples were examined histologically and electron microscopically directly, two, four, eight and 12 days after irradiation. No macroscopic lesion could be found. Maximum energy caused a small rupture cone of 40 micron. depth. No thermic effects or necrosis resulted, so that no harm is to be expected with unintentional irradiation during laser stone disintegration.

  17. Nanosecond square high voltage pulse generator for electro-optic switch

    NASA Astrophysics Data System (ADS)

    Feng, Xian-wang; Long, Xing-wu; Tan, Zhong-qi

    2011-07-01

    A scalable square high voltage pulse generator, which has the properties of fast rise time, fast fall time, powerful driving capability, and long lifetime, is presented in this paper by utilizing solid state circuitry. A totem-pole topology is designed to supply a powerful driving capability for the electro-optic (EO) crystal which is of capacitive load. Power MOSFETs are configured in series to sustain high voltage, and proper driving circuits are introduced for the specific MOSFETs configurations. A 3000 V pulse generator with ˜49.04 ns rise time and ˜10.40 ns fall time of the output waveform is presented. This kind of generator is desirable for electro-optic switch. However, it is not specific to EO switch and may have broad applications where high voltage fast switching is required.

  18. Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

    PubMed Central

    Kovalyuk, Vadim; Hennrich, Frank; Kappes, Manfred M; Goltsman, Gregory N; Pernice, Wolfram H P; Krupke, Ralph

    2017-01-01

    Carbon nanotubes (CNTs) have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources. PMID:28144563

  19. Near-Field Propagation of Sub-Nanosecond Electric Pulses into Amorphous Masses

    DTIC Science & Technology

    2012-02-01

    pores is similar to synthetic nanopores in polymer foils, reportedly to be in asymmetrical conical shape [42]. Whereas causing cell membrane leakage...the impulse width needs to be small compared to both and 2b ( similar discussion in the frequency domain can be seen in [7]). A pulse with faster rise...be- tween the backscattered signal with/without the presence of the target ( similar to the signals shown in Fig. 5). The focus is at zero distance from

  20. Nanosecond Pulsed Laser Processing of Ion Implanted Single Crystal Silicon Carbide Thin Layers

    NASA Astrophysics Data System (ADS)

    Özel, Tuğrul; Thepsonthi, Thanongsak; Amarasinghe, Voshadhi P.; Celler, George K.

    The attractiveness of single crystal SiC in a variety of high power, high voltage, and high temperature device applications such as electric vehicles and jet engines is counteracted by the very high cost of substrates. Precision cutting of multiple micrometre thick SiC layers and transferring them to lower cost substrates would drive the cost down and allow expanding the use of single crystal SiC. In this study, laser beam processing has been utilized to exfoliate thin layers from a surface of single crystal SiC that was prepared with hydrogen and boron ion implantation. The layer thickness of 1 μm has been achieved by ion implantation that formed voids and microcracks under the surface at a layer of 150 nm thick. High energy laser pulses provided the layer removal and its transfer to bonded Si substrate has been shown. Exfoliated surfaces and topography have been evaluated with Scanning Electron Microscopy. Furthermore, thermal modelling of pulse laser irradiation of implanted multi-layer SiC material has been conducted and temperature profiles are obtained at different peak pulse intensity settings to optimize exfoliation process parameters. It was found that laser exfoliation mechanism can be further improved by higher optical absorptance of defect rich layer obtained with boron ion implantation.