Sample records for nanosecond time domain

  1. A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Wang, Hongtao; Qi, Ying; Mountziaris, T. J.; Salthouse, Christopher D.

    2014-05-01

    Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve the peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.

  2. A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongtao; Salthouse, Christopher D., E-mail: salthouse@ecs.umass.edu; Center for Personalized Health Monitoring, University of Massachusetts, Amherst, Massachusetts 01003

    2014-05-15

    Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve themore » peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.« less

  3. Raman linewidth measurements using time-resolved hybrid picosecond/nanosecond rotational CARS.

    PubMed

    Nordström, Emil; Hosseinnia, Ali; Brackmann, Christian; Bood, Joakim; Bengtsson, Per-Erik

    2015-12-15

    We report an innovative approach for time-domain measurements of S-branch Raman linewidths using hybrid picosecond/nanosecond pure-rotational coherent anti-Stokes Raman spectroscopy (RCARS). The Raman coherences are created by two picosecond excitation pulses and are probed using a narrow-band nanosecond pulse at 532 nm. The generated RCARS signal contains the entire coherence decay in a single pulse. By extracting the decay times of the individual transitions, the J-dependent Raman linewidths can be calculated. Self-broadened S-branch linewidths for nitrogen and oxygen at 293 K and ambient pressure are in good agreement with previous time-domain measurements. Experimental considerations of the approach are discussed along with its merits and limitations. The approach can be extended to a wide range of pressures and temperatures and has potential for simultaneous single-shot thermometry and linewidth determination.

  4. Time domain dielectric spectroscopy of nanosecond pulsed electric field induced changes in dielectric properties of pig whole blood.

    PubMed

    Zhuang, Jie; Kolb, Juergen F

    2015-06-01

    The dielectric spectra of fresh pig whole blood in the β-dispersion range after exposure to 300-nanosecond pulsed electric fields (nsPEFs) with amplitude higher than the supra-electroporation threshold for erythrocytes were recorded by time domain reflectometry dielectric spectroscopy. The implications of the dielectric parameters on the dynamics of post-pulse pore development were discussed in light of the Cole-Cole relaxation model. The temporal development of the Cole-Cole parameters indicates that nsPEFs induced significant poration and swelling of erythrocytes within the first 5 min. The results also show that the majority of erythrocytes could not fully recover from supra-electroporation up to 30 min. The findings of this study suggest that time domain dielectric spectroscopy is a promising label-free and real-time physiological measuring technique for nsPEF-blood related biomedical applications, capable of following the conformational and morphological changes of cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Observing non-equilibrium state of transport through graphene channel at the nano-second time-scale

    NASA Astrophysics Data System (ADS)

    Mishra, Abhishek; Meersha, Adil; Raghavan, Srinivasan; Shrivastava, Mayank

    2017-12-01

    Electrical performance of a graphene FET is drastically affected by electron-phonon inelastic scattering. At high electric fields, the out-of-equilibrium population of optical phonons equilibrates by emitting acoustic phonons, which dissipate the energy to heat sinks. The equilibration time of the process is governed by thermal diffusion time, which is few nano-seconds for a typical graphene FET. The nano-second time-scale of the process keeps it elusive to conventional steady-state or DC measurement systems. Here, we employ a time-domain reflectometry-based technique to electrically probe the device for few nano-seconds and investigate the non-equilibrium state. For the first time, the transient nature of electrical transport through graphene FET is revealed. A maximum change of 35% in current and 50% in contact resistance is recorded over a time span of 8 ns, while operating graphene FET at a current density of 1 mA/μm. The study highlights the role of intrinsic heating (scattering) in deciding metal-graphene contact resistance and transport through the graphene channel.

  6. Pattern analysis of laser-tattoo interactions for picosecond- and nanosecond-domain 1,064-nm neodymium-doped yttrium-aluminum-garnet lasers in tissue-mimicking phantom.

    PubMed

    Ahn, Keun Jae; Zheng, Zhenlong; Kwon, Tae Rin; Kim, Beom Joon; Lee, Hye Sun; Cho, Sung Bin

    2017-05-08

    During laser treatment for tattoo removal, pigment chromophores absorb laser energy, resulting in fragmentation of the ink particles via selective photothermolysis. The present study aimed to outline macroscopic laser-tattoo interactions in tissue-mimicking (TM) phantoms treated with picosecond- and nanosecond-domain lasers. Additionally, high-speed cinematographs were captured to visualize time-dependent tattoo-tissue interactions, from laser irradiation to the formation of photothermal and photoacoustic injury zones (PIZs). In all experimental settings using the nanosecond or picosecond laser, tattoo pigments fragmented into coarse particles after a single laser pulse, and further disintegrated into smaller particles that dispersed toward the boundaries of PIZs after repetitive delivery of laser energy. Particles fractured by picosecond treatment were more evenly dispersed throughout PIZs than those fractured by nanosecond treatment. Additionally, picosecond-then-picosecond laser treatment (5-pass-picosecond treatment + 5-pass-picosecond treatment) induced greater disintegration of tattoo particles within PIZs than picosecond-then-nanosecond laser treatment (5-pass-picosecond treatment + 5-pass-nanosecond treatment). High-speed cinematography recorded the formation of PIZs after repeated reflection and propagation of acoustic waves over hundreds of microseconds to a few milliseconds. The present data may be of use in predicting three-dimensional laser-tattoo interactions and associated reactions in surrounding tissue.

  7. Nanosecond time transfer via shuttle laser ranging experiment

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.; Premo, D. A.; Fitzmaurice, M. W.; Wardrip, S. C.; Cervenka, P. O.

    1978-01-01

    A method is described to use a proposed shuttle laser ranging experiment to transfer time with nanosecond precision. All that need be added to the original experiment are low cost ground stations and an atomic clock on the shuttle. It is shown that global time transfer can be accomplished with 1 ns precision and transfer up to distances of 2000 km can be accomplished with better than 100 ps precision.

  8. Observation of laser-driven shock propagation by nanosecond time-resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Guoyang; Zheng, Xianxu; Song, Yunfei; Zeng, Yangyang; Guo, Wencan; Zhao, Jun; Yang, Yanqiang

    2015-01-01

    An improved nanosecond time-resolved Raman spectroscopy is performed to observe laser-driven shock propagation in the anthracene/epoxy glue layer. The digital delay instead of optical delay line is introduced for sake of unlimited time range of detection, which enables the ability to observe both shock loading and shock unloading that always lasts several hundred nanoseconds. In this experiment, the peak pressure of shock wave, the pressure distribution, and the position of shock front in gauge layer were determined by fitting Raman spectra of anthracene using the Raman peak shift simulation. And, the velocity of shock wave was calculated by the time-dependent position of shock front.

  9. On the boundary flow using pulsed nanosecond DBD plasma actuators

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Jie; Cui, Y. D.; Li, Jiun-Ming; Zheng, Jian-Guo; Khoo, B. C.

    2018-05-01

    Our previous studies in quiescent air environment [Z. J. Zhao et al., AIAA J. 53(5) (2015) 1336; J. G. Zheng et al., Phys. Fluids 26(3) (2014) 036102] reveal experimentally and numerically that the shock wave generated by the nanosecond pulsed plasma is fundamentally a microblast wave. The shock-induced burst perturbations (overpressure and induced velocity) are found to be restricted to a very narrow region (about 1 mm) behind the shock front and last only for a few microseconds. These results indicate that the pulsed nanosecond dielectric barrier discharge (DBD) plasma actuator has stronger local effects in time and spatial domain. In this paper, we further investigate the effects of pulsed plasma on the boundary layer flow over a flat plate. The present investigation reveals that the nanosecond pulsed plasma actuator generates intense perturbations and tends to promote the laminar boundary over a flat plate to turbulent flow. The heat effect after the pulsed plasma discharge was observed in the external flow, lasting a few milliseconds for a single pulse and reaching a quasi-stable state for multi-pulses.

  10. A single-sweep, nanosecond time resolution laser temperature-jump apparatus

    NASA Astrophysics Data System (ADS)

    Ballew, R. M.; Sabelko, J.; Reiner, C.; Gruebele, M.

    1996-10-01

    We describe a fast temperature-jump (T-jump) apparatus capable of acquiring kinetic relaxation transients via real-time fluorescence detection over a time interval from nanoseconds to milliseconds in a single sweep. The method is suitable for aqueous solutions, relying upon the direct absorption of laser light by the bulk water. This obviates the need for additives (serving as optical or conductive heaters) that may interact with the sample under investigation. The longitudinal temperature profile is made uniform by counterpropagating heating pulses. Dead time is limited to one period of the probe laser (16 ns). The apparatus response is tested with aqueous tryptophan and the diffusion-controlled dimerization of proflavine.

  11. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2011-02-01

    Protein dynamics on a long time scale was investigated using all-atom molecular dynamics (MD) simulation and time-structure based independent component analysis (tICA). We selected the lysine-, arginine-, ornithine-binding protein (LAO) as a target protein and focused on its domain motions in the open state. A MD simulation of the LAO in explicit water was performed for 600 ns, in which slow and large-amplitude domain motions of the LAO were observed. After extracting domain motions by rigid-body domain analysis, the tICA was applied to the obtained rigid-body trajectory, yielding slow modes of the LAO's domain motions in order of decreasing time scale. The slowest mode detected by the tICA represented not a closure motion described by a largest-amplitude mode determined by the principal component analysis but a twist motion with a time scale of tens of nanoseconds. The slow dynamics of the LAO were well described by only the slowest mode and were characterized by transitions between two basins. The results show that tICA is promising for describing and analyzing slow dynamics of proteins.

  12. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions.

    PubMed

    Naritomi, Yusuke; Fuchigami, Sotaro

    2011-02-14

    Protein dynamics on a long time scale was investigated using all-atom molecular dynamics (MD) simulation and time-structure based independent component analysis (tICA). We selected the lysine-, arginine-, ornithine-binding protein (LAO) as a target protein and focused on its domain motions in the open state. A MD simulation of the LAO in explicit water was performed for 600 ns, in which slow and large-amplitude domain motions of the LAO were observed. After extracting domain motions by rigid-body domain analysis, the tICA was applied to the obtained rigid-body trajectory, yielding slow modes of the LAO's domain motions in order of decreasing time scale. The slowest mode detected by the tICA represented not a closure motion described by a largest-amplitude mode determined by the principal component analysis but a twist motion with a time scale of tens of nanoseconds. The slow dynamics of the LAO were well described by only the slowest mode and were characterized by transitions between two basins. The results show that tICA is promising for describing and analyzing slow dynamics of proteins.

  13. Realtime processing of LOFAR data for the detection of nano-second pulses from the Moon

    NASA Astrophysics Data System (ADS)

    Winchen, T.; Bonardi, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; Thoudam, S.; Trinh, T. N. G.; ter Veen, S.; KSP, The LOFAR Cosmic Ray

    2017-10-01

    The low flux of the ultra-high energy cosmic rays (UHECR) at the highest energies provides a challenge to answer the long standing question about their origin and nature. Even lower fluxes of neutrinos with energies above 1022 eV are predicted in certain Grand-Unifying-Theories (GUTs) and e.g. models for super-heavy dark matter (SHDM). The significant increase in detector volume required to detect these particles can be achieved by searching for the nanosecond radio pulses that are emitted when a particle interacts in Earth’s moon with current and future radio telescopes. In this contribution we present the design of an online analysis and trigger pipeline for the detection of nano-second pulses with the LOFAR radio telescope. The most important steps of the processing pipeline are digital focusing of the antennas towards the Moon, correction of the signal for ionospheric dispersion, and synthesis of the time-domain signal from the polyphased-filtered signal in frequency domain. The implementation of the pipeline on a GPU/CPU cluster will be discussed together with the computing performance of the prototype.

  14. Nanosecond electric modification of order parameters

    NASA Astrophysics Data System (ADS)

    Borshch, Volodymyr

    In this Dissertation, we study a nanosecond electro-optic response of a nematic liquid crystal in a geometry where an applied electric field E modifies the tensor order parameter but does not change the orientation of the optic axis (director N̂). We use nematics with negative dielectric anisotropy with the electric field applied perpendicularly to N̂. The field changes the dielectric tensor at optical frequencies (optic tensor), due to the following mechanisms: (a) nanosecond creation of biaxial orientational order; (b) uniaxial modification of the orientational order that occurs over the timescales of tens of nanoseconds, and (c) quenching of director fluctuations with a wide range of characteristic times up to milliseconds. We develop a model to describe the dynamics of all three mechanisms. We design the experimental conditions to selectively suppress the contributions from the quenching of director fluctuations (c) and from the biaxial order effect (a) and thus, separate the contributions of the three mechanisms in the electro-optic response. As a result, the experimental data can be well fitted with the model parameters. The analysis provides a rather detailed physical picture of how the liquid crystal responds to a strong electric field, E ˜ 108 V/m, on a timescale of nanoseconds. This work provides a useful guide in the current search of the biaxial nematic phase. Namely, the temperature dependence of the biaxial susceptibility allows one to estimate the temperature of the potential uniaxial-to-biaxial phase transition. An analysis of the quenching of director fluctuations indicates that on a timescale of nanoseconds, the classic model with constant viscoelastic material parameters might reach its limit of validity. The effect of nanosecond electric modification of the order parameter (NEMOP) can be used in applications in which one needs to achieve ultrafast (nanosecond) changes of optical characteristics, such as birefringence.

  15. Synchrotron radiation-based quasi-elastic scattering using time-domain interferometry with multi-line gamma rays.

    PubMed

    Saito, Makina; Masuda, Ryo; Yoda, Yoshitaka; Seto, Makoto

    2017-10-02

    We developed a multi-line time-domain interferometry (TDI) system using 14.4 keV Mössbauer gamma rays with natural energy widths of 4.66 neV from 57 Fe nuclei excited using synchrotron radiation. Electron density fluctuations can be detected at unique lengths ranging from 0.1 nm to a few nm on time scales from several nanoseconds to the sub-microsecond order by quasi-elastic gamma-ray scattering (QGS) experiments using multi-line TDI. In this report, we generalize the established expression for a time spectrum measured using an identical single-line gamma-ray emitter pair to the case of a nonidentical pair of multi-line gamma-ray emitters by considering the finite energy width of the incident synchrotron radiation. The expression obtained illustrates the unique characteristics of multi-line TDI systems, where the finite incident energy width and use of a nonidentical emitter pair produces further information on faster sub-picosecond-scale dynamics in addition to the nanosecond dynamics; this was demonstrated experimentally. A normalized intermediate scattering function was extracted from the spectrum and its relaxation form was determined for a relaxation time of the order of 1 μs, even for relatively large momentum transfer of ~31 nm -1 . The multi-line TDI method produces a microscopic relaxation picture more rapidly and accurately than conventional single-line TDI.

  16. Development of an electron momentum spectrometer for time-resolved experiments employing nanosecond pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun

    2018-03-01

    The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.

  17. Nanosecond step-scan FT-infrared absorption spectroscopy in photochemistry and catalysis

    NASA Astrophysics Data System (ADS)

    Frei, H.

    1998-06-01

    Time-resolved step-scan FT-IR absorption spectroscopy has been expanded to a resolution of 20 nanosecond. Following a description of the experimental set-up, applications in four research areas are presented. In the first project, we discuss a reversible isomerization, namely the bacteriorhodopsin photocycle. Main results are the discovery of 2 processes with distinct kinetics on the nanosecond time scale not detected by previous spectroscopic techniques, and observation of an instantaneous response of the protein environment to chromophore dynamics within the nanosecond laser pulse duration. In a second project, alkane C-H bond activation by a transition metal complex in room temperature solution is investigated and the first measurement of the formation of a C-H insertion product reported (alkyl hydride). Then, a nanosecond study of a pericyclic reaction, the ring-opening of cyclohexadiene, is discussed. The fourth example describes the first observation of a transient molecule in a zeolite matrix, a triplet excited quinone, by time-resolved infrared spectroscopy.

  18. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  19. Photodissociation dynamics of nitromethane at 226 and 271 nm at both nanosecond and femtosecond time scales.

    PubMed

    Guo, Y Q; Bhattacharya, A; Bernstein, E R

    2009-01-08

    Photodissociation of nitromethane has been investigated for decades both theoretically and experimentally; however, as a whole picture, the dissociation dynamics for nitromethane are still not clear, although many different mechanisms have been proposed. To make a complete interpretation of these different mechanisms, photolysis of nitromethane at 226 and 271 nm under both collisional and collisionless conditions is investigated at nanosecond and femtosecond time scales. These two laser wavelengths correspond to the pi* <-- pi and pi* <-- n excitations of nitromethane, respectively. In nanosecond 226 nm (pi* <-- pi) photolysis experiments, CH(3) and NO radicals are observed as major products employing resonance enhanced multiphoton ionization techniques and time-of-flight mass spectrometry. Additionally, OH and CH(3)O radicals are weakly observed as dissociation products employing laser induced fluorescence spectroscopy; the CH(3)O product is only observed under collisional conditions. In femtosecond 226 nm experiments, CH(3), NO(2), and NO products are observed. These results confirm that rupture of C-N bond should be the main primary process for the photolysis of nitromethane after the pi* <-- pi excitation at 226 nm, and the NO(2) molecule should be the precursor of the observed NO product. Formation of the CH(3)O radical after the recombination of CH(3) and NO(2) species under collisional conditions rules out a nitro-nitrite isomerization mechanism for the generation of CH(3)O and NO from pi pi* CH(3)NO(2). The OH radical formation for pi pi* CH(3)NO(2) should be a minor dissociation channel because of the weak OH signal in both nanosecond and femtosecond (nonobservable) experiments. Single color femtosecond pump-probe experiments at 226 nm are also employed to monitor the dynamics of the dissociation of nitromethane after the pi* <-- pi excitation. Because of the ultrafast dynamics of product formation at 226 nm, the pump-probe transients for the three

  20. Spectroscopic studies of model photo-receptors: validation of a nanosecond time-resolved micro-spectrophotometer design using photoactive yellow protein and α-phycoerythrocyanin.

    PubMed

    Purwar, Namrta; Tenboer, Jason; Tripathi, Shailesh; Schmidt, Marius

    2013-09-13

    Time-resolved spectroscopic experiments have been performed with protein in solution and in crystalline form using a newly designed microspectrophotometer. The time-resolution of these experiments can be as good as two nanoseconds (ns), which is the minimal response time of the image intensifier used. With the current setup, the effective time-resolution is about seven ns, determined mainly by the pulse duration of the nanosecond laser. The amount of protein required is small, on the order of 100 nanograms. Bleaching, which is an undesirable effect common to photoreceptor proteins, is minimized by using a millisecond shutter to avoid extensive exposure to the probing light. We investigate two model photoreceptors, photoactive yellow protein (PYP), and α-phycoerythrocyanin (α-PEC), on different time scales and at different temperatures. Relaxation times obtained from kinetic time-series of difference absorption spectra collected from PYP are consistent with previous results. The comparison with these results validates the capability of this spectrophotometer to deliver high quality time-resolved absorption spectra.

  1. Nanosecond pulse lasers for retinal applications.

    PubMed

    Wood, John P M; Plunkett, Malcolm; Previn, Victor; Chidlow, Glyn; Casson, Robert J

    2011-08-01

    Thermal lasers are routinely used to treat certain retinal disorders although they cause collateral damage to photoreceptors. The current study evaluated a confined, non-conductive thermal, 3-nanosecond pulse laser in order to determine how to produce the greatest therapeutic range without causing collateral damage. Data were compared with that obtained from a standard thermal laser. Porcine ocular explants were used; apposed neuroretina was also in place for actual laser treatment. After treatment, the retina was removed and a calcein-AM assay was used to assess retinal pigmented epithelium (RPE) cell viability in the explants. Histological methods were also employed to examine lased transverse explant sections. Three nanoseconds pulse lasers with either speckle- or gaussian-beam profile were employed in the study. Comparisons were made with a 100 milliseconds continuous wave (CW) 532 nm laser. The therapeutic energy range ratio was defined as the minimum visible effect threshold (VET) versus the minimum detectable RPE kill threshold. The 3-nanosecond lasers produced markedly lower minimum RPE kill threshold levels than the CW laser (e.g., 36 mJ/cm(2) for speckle-beam and 89 mJ/cm(2) for gaussian-beam profile nanosecond lasers vs. 7,958 mJ/cm(2) for CW laser). VET values were also correspondingly lower for the nanosecond lasers (130 mJ/cm(2) for 3 nanoseconds speckle-beam and 219 mJ/cm(2) for gaussian-beam profile vs. 1,0346 mJ/cm(2) for CW laser). Thus, the therapeutic range ratios obtained with the nanosecond lasers were much more favorable than that obtained by the CW laser: 3.6:1 for the speckle-beam and 2.5:1 for the gaussian-beam profile 3-nanosecond lasers versus 1.3:1 for the CW laser. Nanosecond lasers, particularly with a speckle-beam profile, provide a much wider therapeutic range of energies over which RPE treatment can be performed, without damage to the apposed retina, as compared with conventional CW lasers. These results may have

  2. Time-domain imaging

    NASA Technical Reports Server (NTRS)

    Tolliver, C. L.

    1989-01-01

    The quest for the highest resolution microwave imaging and principle of time-domain imaging has been the primary motivation for recent developments in time-domain techniques. With the present technology, fast time varying signals can now be measured and recorded both in magnitude and in-phase. It has also enhanced our ability to extract relevant details concerning the scattering object. In the past, the interface of object geometry or shape for scattered signals has received substantial attention in radar technology. Various scattering theories were proposed to develop analytical solutions to this problem. Furthermore, the random inversion, frequency swept holography, and the synthetic radar imaging, have two things in common: (1) the physical optic far-field approximation, and (2) the utilization of channels as an extra physical dimension, were also advanced. Despite the inherent vectorial nature of electromagnetic waves, these scalar treatments have brought forth some promising results in practice with notable examples in subsurface and structure sounding. The development of time-domain techniques are studied through the theoretical aspects as well as experimental verification. The use of time-domain imaging for space robotic vision applications has been suggested.

  3. Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-12-15

    Time- and space-resolved fast framing photography was employed to study the discharge initiated by runaway electrons in air and He gas at atmospheric pressure. Whereas in the both cases, the discharge occurs in a nanosecond time scale and its front propagates with a similar velocity along the cathode-anode gap, the later stages of the discharge differ significantly. In air, the main discharge channels develop and remain in the locations with the strongest field enhancement. In He gas, the first, diode 'gap bridging' stage, is similar to that obtained in air; however, the development of the discharge that follows is dictatedmore » by an explosive electron emission from micro-protrusions on the edge of the cathode. These results allow us to draw conclusions regarding the different conductivity of the plasma produced in He and air discharges.« less

  4. A cost-efficient frequency-domain photoacoustic imaging system

    PubMed Central

    LeBoulluec, Peter; Liu, Hanli; Yuan, Baohong

    2013-01-01

    Photoacoustic (PA) imaging techniques have recently attracted much attention and can be used for noninvasive imaging of biological tissues. Most PA imaging systems in research laboratories use the time domain method with expensive nanosecond pulsed lasers that are not affordable for most educational laboratories. Using an intensity modulated light source to excite PA signals is an alternative technique, known as the frequency domain method, with a much lower cost. In this paper, we describe a simple frequency domain PA system and demonstrate its imaging capability. The system provides opportunities not only to observe PA signals in tissue phantoms, but also to acquire hands-on skills in PA signal detection. It also provides opportunities to explore the underlying mechanisms of the PA effect. PMID:24659823

  5. A cost-efficient frequency-domain photoacoustic imaging system.

    PubMed

    Leboulluec, Peter; Liu, Hanli; Yuan, Baohong

    2013-09-01

    Photoacoustic (PA) imaging techniques have recently attracted much attention and can be used for noninvasive imaging of biological tissues. Most PA imaging systems in research laboratories use the time domain method with expensive nanosecond pulsed lasers that are not affordable for most educational laboratories. Using an intensity modulated light source to excite PA signals is an alternative technique, known as the frequency domain method, with a much lower cost. In this paper, we describe a simple frequency domain PA system and demonstrate its imaging capability. The system provides opportunities not only to observe PA signals in tissue phantoms, but also to acquire hands-on skills in PA signal detection. It also provides opportunities to explore the underlying mechanisms of the PA effect.

  6. Mono-energetic ions emission by nanosecond laser solid target irradiation

    NASA Astrophysics Data System (ADS)

    Muoio, A.; Tudisco, S.; Altana, C.; Lanzalone, G.; Mascali, D.; Cirrone, G. A. P.; Schillaci, F.; Trifirò, A.

    2016-09-01

    An experimental campaign aiming to investigate the acceleration mechanisms through laser-matter interaction in nanosecond domain has been carried out at the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS, Catania. Pure Al targets were irradiated by 6 ns laser pulses at different pumping energies, up to 2 J. Advanced diagnostics tools were used to characterize the plasma plume and ion production. We show the preliminary results of this experimental campaign, and especially the ones showing the production of multicharged ions having very narrow energy spreads.

  7. Protein relaxation without a geminate phase in nanosecond photodissociated CO carp hemoglobin

    NASA Astrophysics Data System (ADS)

    Loupiac, Camille; Kruk, Nicolay; Valat, Pierre; Alpert, Bernard

    1999-03-01

    Transient heme-protein interactions upon passing from ligated to deligated carp hemoglobin were observed through time-resolved optical spectra following nanosecond CO photodissociation. The spectral evolution of the heme, in the nanosecond and microsecond time ranges, shows a protein conformational relaxation and the absence of a geminate CO recombination in carp hemoglobin. The comparison of the phenomena in carp and human hemoglobin implies that the physical basis of the geminate rebinding in human hemoglobin should involve an out-of-equilibrium protein conformation, close to a dissipative structure defined by the thermodynamics of Prigogine.

  8. Analysis of 15N-1H NMR relaxation in proteins by a combined experimental and molecular dynamics simulation approach: picosecond-nanosecond dynamics of the Rho GTPase binding domain of plexin-B1 in the dimeric state indicates allosteric pathways.

    PubMed

    Zerbetto, Mirco; Anderson, Ross; Bouguet-Bonnet, Sabine; Rech, Mariano; Zhang, Liqun; Meirovitch, Eva; Polimeno, Antonino; Buck, Matthias

    2013-01-10

    We investigate picosecond–nanosecond dynamics of the Rho-GTPase Binding Domain (RBD) of plexin-B1, which plays a key role in plexin-mediated cell signaling. Backbone 15N relaxation data of the dimeric RBD are analyzed with the model-free (MF) method, and with the slowly relaxing local structure/molecular dynamics (SRLS-MD) approach. Independent analysis of the MD trajectories, based on the MF paradigm, is also carried out. MF is a widely popular and simple method, SRLS is a general approach, and SRLS-MD is an integrated approach we developed recently. Corresponding parameters from the RBD dimer, a previously studied RBD monomer mutant, and the previously studied complex of the latter with the GTPase Rac1, are compared. The L2, L3, and L4 loops of the plexin-B1 RBD are involved in interactions with other plexin domains, GTPase binding, and RBD dimerization, respectively. Peptide groups in the loops of both the monomeric and dimeric RBD are found to experience weak and moderately asymmetric local ordering centered approximately at the C(i–1)(α)–C(i)(α) axes, and nanosecond backbone motion. Peptide groups in the α-helices and the β-strands of the dimer (the β-strands of the monomer) experience strong and highly asymmetric local ordering centered approximately at the C(i–1)(α)–C(i)(α) axes (N–H bonds). N–H fluctuations occur on the picosecond time scale. An allosteric pathway for GTPase binding, providing new insights into plexin function, is delineated.

  9. Time-Domain Stability Margin Assessment

    NASA Technical Reports Server (NTRS)

    Clements, Keith

    2016-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  10. Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses

    PubMed Central

    Smith, Kyle C.; Weaver, James C.

    2012-01-01

    Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (~16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. PMID:21756883

  11. Low charge state heavy ion production with sub-nanosecond laser.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  12. Comparison of frequency-domain and time-domain rotorcraft vibration control methods

    NASA Technical Reports Server (NTRS)

    Gupta, N. K.

    1984-01-01

    Active control of rotor-induced vibration in rotorcraft has received significant attention recently. Two classes of techniques have been proposed. The more developed approach works with harmonic analysis of measured time histories and is called the frequency-domain approach. The more recent approach computes the control input directly using the measured time history data and is called the time-domain approach. The report summarizes the results of a theoretical investigation to compare the two approaches. Five specific areas were addressed: (1) techniques to derive models needed for control design (system identification methods), (2) robustness with respect to errors, (3) transient response, (4) susceptibility to noise, and (5) implementation difficulties. The system identification methods are more difficult for the time-domain models. The time-domain approach is more robust (e.g., has higher gain and phase margins) than the frequency-domain approach. It might thus be possible to avoid doing real-time system identification in the time-domain approach by storing models at a number of flight conditions. The most significant error source is the variation in open-loop vibrations caused by pilot inputs, maneuvers or gusts. The implementation requirements are similar except that the time-domain approach can be much simpler to implement if real-time system identification were not necessary.

  13. A universal matter-wave interferometer with optical ionization gratings in the time-domain

    PubMed Central

    Haslinger, Philipp; Dörre, Nadine; Geyer, Philipp; Rodewald, Jonas; Nimmrichter, Stefan; Arndt, Markus

    2015-01-01

    Matter-wave interferometry with atoms1 and molecules2 has attracted a rapidly growing interest throughout the last two decades both in demonstrations of fundamental quantum phenomena and in quantum-enhanced precision measurements. Such experiments exploit the non-classical superposition of two or more position and momentum states which are coherently split and rejoined to interfere3-11. Here, we present the experimental realization of a universal near-field interferometer built from three short-pulse single-photon ionization gratings12,13. We observe quantum interference of fast molecular clusters, with a composite de Broglie wavelength as small as 275 fm. Optical ionization gratings are largely independent of the specific internal level structure and are therefore universally applicable to different kinds of nanoparticles, ranging from atoms to clusters, molecules and nanospheres. The interferometer is sensitive to fringe shifts as small as a few nanometers and yet robust against velocity-dependent phase shifts, since the gratings exist only for nanoseconds and form an interferometer in the time-domain. PMID:25983851

  14. Low charge state heavy ion production with sub-nanosecond laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanesue, T., E-mail: tkanesue@bnl.gov; Okamura, M.; Kumaki, M.

    2016-02-15

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the differencemore » of generated plasma using the Zirconium target.« less

  15. Quantitative-phase microscopy of nanosecond laser-induced micro-modifications inside silicon.

    PubMed

    Li, Q; Chambonneau, M; Chanal, M; Grojo, D

    2016-11-20

    Laser-induced permanent modification inside silicon has been recently demonstrated by using tightly focused nanosecond sources at a 1550 nm wavelength. We have developed a quantitative-phase microscope operating in the near-infrared domain to characterize the laser-induced modifications deep into silicon. By varying the number of applied laser pulses and the energy, we observe porous and densified regions in the focal region. The observed changes are associated with refractive index variations |Δn| exceeding 10-3, enough to envision the laser writing of optical functionalities inside silicon.

  16. Time-domain wavefield reconstruction inversion

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Chun; Lin, Yu-Zhao; Zhang, Kai; Li, Yuan-Yuan; Yu, Zhen-Nan

    2017-12-01

    Wavefield reconstruction inversion (WRI) is an improved full waveform inversion theory that has been proposed in recent years. WRI method expands the searching space by introducing the wave equation into the objective function and reconstructing the wavefield to update model parameters, thereby improving the computing efficiency and mitigating the influence of the local minimum. However, frequency-domain WRI is difficult to apply to real seismic data because of the high computational memory demand and requirement of time-frequency transformation with additional computational costs. In this paper, wavefield reconstruction inversion theory is extended into the time domain, the augmented wave equation of WRI is derived in the time domain, and the model gradient is modified according to the numerical test with anomalies. The examples of synthetic data illustrate the accuracy of time-domain WRI and the low dependency of WRI on low-frequency information.

  17. Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses.

    PubMed

    Smith, Kyle C; Weaver, James C

    2011-08-19

    Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (∼16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Materials science in the time domain using Bragg coherent diffraction imaging

    DOE PAGES

    Robinson, Ian; Clark, Jesse; Harder, Ross

    2016-03-14

    Materials are generally classified by a phase diagram which displays their properties as a function of external state variables, typically temperature and pressure. A new dimension that is relatively unexplored is time: a rich variety of new materials can become accessible in the transient period following laser excitation from the ground state. The timescale of nanoseconds to femtoseconds, is ripe for investigation using x-ray free-electron laser (XFEL) methods. There is no shortage of materials suitable for time-resolved materials-science exploration. Oxides alone represent most of the minerals making up the Earth's crust, catalysts, ferroelectrics, corrosion products and electronically ordered materials suchmore » as superconductors, to name a few. Some of the elements have metastable phase diagrams with predicted new phases. There are some examples known already: an oxide 'hidden phase' living only nanoseconds and an electronically ordered excited phase of fullerene C 60, lasting only femtoseconds. In a completely general way, optically excited states of materials can be probed with Bragg coherent diffraction imaging, both below the damage threshold and in the destructive regime. Lastly, prospective methods for carrying out such XFEL experiments are discussed.« less

  19. Underwater Advanced Time-Domain Electromagnetic System

    DTIC Science & Technology

    2017-03-03

    SUPPLEMENTARY NOTES 14. ABSTRACT The overall objective of the project is to design , build and demonstrate an underwater advanced time -domain...Description The overall objective of the project is to design , build and demonstrate an underwater advanced time - domain electromagnetic (TEM) system...Electromagnetic System Design (July, 2015), and in the Underwater Advanced Time -Domain Electromagnetic System Evaluation Plan (October, 2016). A

  20. Pulse intensity characterization of the LCLS nanosecond double-bunch mode of operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yanwen; Decker, Franz-Josef; Turner, James

    The recent demonstration of the 'nanosecond double-bunch' operation mode,i.e.two X-ray pulses separated in time between 0.35 and hundreds of nanoseconds and by increments of 0.35 ns, offers new opportunities to investigate ultrafast dynamics in diverse systems of interest. However, in order to reach its full potential, this mode of operation requires the precise characterization of the intensity of each X-ray pulse within each pulse pair for any time separation. Here, a transmissive single-shot diagnostic that achieves this goal for time separations larger than 0.7 ns with a precision better than 5% is presented. Lastly, it also provides real-time monitoring feedbackmore » to help tune the accelerator parameters to deliver double pulse intensity distributions optimized for specific experimental goals.« less

  1. Pulse intensity characterization of the LCLS nanosecond double-bunch mode of operation

    DOE PAGES

    Sun, Yanwen; Decker, Franz-Josef; Turner, James; ...

    2018-03-27

    The recent demonstration of the 'nanosecond double-bunch' operation mode,i.e.two X-ray pulses separated in time between 0.35 and hundreds of nanoseconds and by increments of 0.35 ns, offers new opportunities to investigate ultrafast dynamics in diverse systems of interest. However, in order to reach its full potential, this mode of operation requires the precise characterization of the intensity of each X-ray pulse within each pulse pair for any time separation. Here, a transmissive single-shot diagnostic that achieves this goal for time separations larger than 0.7 ns with a precision better than 5% is presented. Lastly, it also provides real-time monitoring feedbackmore » to help tune the accelerator parameters to deliver double pulse intensity distributions optimized for specific experimental goals.« less

  2. [Mechanism of ablation with nanosecond pulsed electric field].

    PubMed

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  3. A new principle technic for the transformation from frequency domain to time domain

    NASA Astrophysics Data System (ADS)

    Gao, Ben-Qing

    2017-03-01

    A principle technic for the transformation from frequency domain to time domain is presented. Firstly, a special type of frequency domain transcendental equation is obtained for an expected frequency domain parameter which is a rational or irrational fraction expression. Secondly, the inverse Laplace transformation is performed. When the two time-domain factors corresponding to the two frequency domain factors at two sides of frequency domain transcendental equation are known quantities, a time domain transcendental equation is reached. At last, the expected time domain parameter corresponding to the expected frequency domain parameter can be solved by the inverse convolution process. Proceeding from rational or irrational fraction expression, all solving process is provided. In the meantime, the property of time domain sequence is analyzed and the strategy for choosing the parameter values is described. Numerical examples are presented to verify the proposed theory and technic. Except for rational or irrational fraction expressions, examples of complex relative permittivity of water and plasma are used as verification method. The principle method proposed in the paper can easily solve problems which are difficult to be solved by Laplace transformation.

  4. Time Domain Stability Margin Assessment Method

    NASA Technical Reports Server (NTRS)

    Clements, Keith

    2017-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  5. Accuracy of time-domain and frequency-domain methods used to characterize catchment transit time distributions

    NASA Astrophysics Data System (ADS)

    Godsey, S. E.; Kirchner, J. W.

    2008-12-01

    The mean residence time - the average time that it takes rainfall to reach the stream - is a basic parameter used to characterize catchment processes. Heterogeneities in these processes lead to a distribution of travel times around the mean residence time. By examining this travel time distribution, we can better predict catchment response to contamination events. A catchment system with shorter residence times or narrower distributions will respond quickly to contamination events, whereas systems with longer residence times or longer-tailed distributions will respond more slowly to those same contamination events. The travel time distribution of a catchment is typically inferred from time series of passive tracers (e.g., water isotopes or chloride) in precipitation and streamflow. Variations in the tracer concentration in streamflow are usually damped compared to those in precipitation, because precipitation inputs from different storms (with different tracer signatures) are mixed within the catchment. Mathematically, this mixing process is represented by the convolution of the travel time distribution and the precipitation tracer inputs to generate the stream tracer outputs. Because convolution in the time domain is equivalent to multiplication in the frequency domain, it is relatively straightforward to estimate the parameters of the travel time distribution in either domain. In the time domain, the parameters describing the travel time distribution are typically estimated by maximizing the goodness of fit between the modeled and measured tracer outputs. In the frequency domain, the travel time distribution parameters can be estimated by fitting a power-law curve to the ratio of precipitation spectral power to stream spectral power. Differences between the methods of parameter estimation in the time and frequency domain mean that these two methods may respond differently to variations in data quality, record length and sampling frequency. Here we evaluate how

  6. Light-activated Gigahertz Ferroelectric Domain Dynamics

    DOE PAGES

    Akamatsu, Hirofumii; Yuan, Yakun; Stoica, Vladimir A.; ...

    2018-02-26

    Using time- and spatially-resolved hard X-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO 3 are simultaneously captured on sub-nanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photo-induced electric field of up to 20 million volts per meter is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling (DPFM) method is developed that reveals the microscopic origin of these dynamics, leading to GHz polarization andmore » elastic waves travelling in the crystal with sonic speeds and spatially varying frequencies. The advance of spatiotemporal imaging and dynamical modeling tools open opportunities of disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains« less

  7. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    NASA Astrophysics Data System (ADS)

    The Pierre Auger Collaboration

    2016-01-01

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a ``beacon transmitter'' which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.

  8. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    DOE PAGES

    Aab, Alexander

    2016-01-29

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independentmore » method used for cross-checks that indeed we reach nanosecond-scale timing accuracy by this correction. First, we operate a “beacon transmitter” which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.« less

  9. Numerical Simulation of a Nanosecond Pulse Discharge in Mach 5 Flow

    DTIC Science & Technology

    2013-01-01

    Numerical Simulation of a Nanosecond Pulse Discharge in Mach 5 Flow Jonathan Poggie∗and Nicholas J. Bisek† Air Force Research Laboratory, Wright...was developed for nanosecond- pulse discharges , including real- istic air kinetics, electron energy transport, and compressible bulk gas flow. A reduced...shock waves originating near the sheath edge, consistent with experimental observations. I. Introduction In a nanosecond- pulse discharge , the input

  10. Energy efficiency in nanoscale synthesis using nanosecond plasmas.

    PubMed

    Pai, David Z; Ken Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A; Levchenko, Igor; Laux, Christophe O

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO₃ nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.

  11. Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains

    DOE PAGES

    Gu, Zheng; Nowakowski, Mark E.; Carlton, David B.; ...

    2015-03-16

    Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. In the past, signal propagation in nanomagnet chains were characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolvedmore » photoemission electron microscopy after applying nanosecond magnetic field pulses. Moreover, an intrinsic switching time of 100 ps per magnet is observed. In conclusion these experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.« less

  12. Nanosecond time-resolved characterization of a pentacene-based room-temperature MASER

    PubMed Central

    Salvadori, Enrico; Breeze, Jonathan D.; Tan, Ke-Jie; Sathian, Juna; Richards, Benjamin; Fung, Mei Wai; Wolfowicz, Gary; Oxborrow, Mark; Alford, Neil McN.; Kay, Christopher W. M.

    2017-01-01

    The performance of a room temperature, zero-field MASER operating at 1.45 GHz has been examined. Nanosecond laser pulses, which are essentially instantaneous on the timescale of the spin dynamics, allow the visible-to-microwave conversion efficiency and temporal response of the MASER to be measured as a function of excitation energy. It is observed that the timing and amplitude of the MASER output pulse are correlated with the laser excitation energy: at higher laser energy, the microwave pulses have larger amplitude and appear after shorter delay than those recorded at lower laser energy. Seeding experiments demonstrate that the output variation may be stabilized by an external source and establish the minimum seeding power required. The dynamics of the MASER emission may be modeled by a pair of first order, non-linear differential equations, derived from the Lotka-Volterra model (Predator-Prey), where by the microwave mode of the resonator is the predator and the spin polarization in the triplet state of pentacene is the prey. Simulations allowed the Einstein coefficient of stimulated emission, the spin-lattice relaxation and the number of triplets contributing to the MASER emission to be estimated. These are essential parameters for the rational improvement of a MASER based on a spin-polarized triplet molecule. PMID:28169331

  13. Underwater Advanced Time-Domain Electromagnetic System

    DTIC Science & Technology

    2017-03-01

    distribution statement initially submitted with AD1042986, entitled Underwater Advanced Time Domain Electromagnetic System (MR-201313), has been appealed...Advanced Time -Domain Electromagnetic System ESTCP Project MR-201313 MARCH 2017 Mr. Steve Saville CH2M Distribution Statement D: Distribution...is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

  14. Energy efficiency in nanoscale synthesis using nanosecond plasmas

    PubMed Central

    Pai, David Z.; (Ken) Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A.; Levchenko, Igor; Laux, Christophe O.

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO3 nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges. PMID:23386976

  15. HS-SPM Mapping of Ferroelectric Domain Dynamics with Combined Nanoscale and Nanosecond Resolution

    NASA Astrophysics Data System (ADS)

    Polomoff, Nicholas Alexander

    The unique properties of ferroelectric materials have been applied for a wide variety of device applications. In particular, properties such as spontaneous polarization and domain structure hysteresis at room temperature have rendered its application in nonvolatile memory devices such as FeRAMs. Along with the ever-present drive for smaller memory devices is the demand that they have increased operating speeds, longer retention times, lower power requirements and better overall reliability. It is therefore pertinent that further investigation of the dynamics, kinetics and mechanisms involved with ferroelectric domain polarization reversal at nanoscale lengths and temporal durations be conducted to optimize future ferroelectric based nonvolatile memory devices. Accordingly High Speed Piezoforce Microscopy (HSPFM) will be employed to directly investigate and observe the dynamic nucleation and growth progression of ferroelectric domain polarization reversal processes in thin epitaxial deposited PZT films. The capabilities of HSPFM will allow for in-situ direct observation of nascent dynamic domain polarization reversal events with nanoscale resolution. Correlations and characterization of the thin ferroelectric film samples will be made based on the observed polarization reversal dynamics and switching mechanism with respect to their varying strain states, compositions, and/or orientations. Electrical pulsing schemes will also be employed to enhance the HSPFM procedure to achieve nanoscale temporal resolution of nascent domain nucleation and growth events. A unique pulsing approach is also proposed, and tested, to improve power consumption during switching. Finally, artificial defects will be introduced into the PZT thin film by fabricating arrays of indentations with different shapes and loads. These controlled indents will result in the introduction of different stress states of compression and tension into the ferroelectric thin film. It is hypothesized that these

  16. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    DOE PAGES

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; ...

    2015-04-27

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of amore » unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm⁻¹. The response time of the TRIR detection setup is ~40 ns, with a typical sensitivity of ~100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. As a result, this new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.« less

  17. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor

    PubMed Central

    Barbosa, S.; Pilla, G.; Lacoste, D. A.; Scouflaire, P.; Ducruix, S.; Laux, C. O.; Veynante, D.

    2015-01-01

    This paper reports on an experimental study of the influence of a nanosecond repetitively pulsed spark discharge on the stability domain of a propane/air flame. This flame is produced in a lean premixed swirled combustor representative of an aeronautical combustion chamber. The lean extinction limits of the flame produced without and with plasma are determined and compared. It appears that only a low mean discharge power is necessary to increase the flame stability domain. Lastly, the effects of several parameters (pulse repetition frequency, global flowrate, electrode location) are studied. PMID:26170424

  18. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    PubMed

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.

  19. Temporal and spatial evolution of nanosecond microwave-driven plasma

    NASA Astrophysics Data System (ADS)

    Chang, C.; Chen, X. Q.; Zhu, M.; Pu, Y. K.

    2018-06-01

    In this paper, a method for simultaneously acquiring the temporal and spatial evolution of characteristic plasma spectra in a single microwave pulse is proposed and studied. By using multi-sub-beam fiber bundles coupled with a spectrometer and EMICCD (Electron-multiplying intensified charge-coupled device), the spatial distribution and time evolution of characteristic spectra of desorbed gases at the dielectric/vacuum interface during nanosecond microwave-driven plasma discharge are observed. Arrays of small align tubes punctured with metal walls of feed horn are filled with separate fibers of matched sizes and equal lengths. The output ends of fibers arranged in a single longitudinal column are connected to the entrance slit of a spectrometer, where the optical spectrum inputs to a high-speed EMICCD, to detect the rapid-varying time and space spectra of nanosecond giga-watt microwave discharges. The evolution of spectral clusters of N2 (C-B), N2+ (B-X), and the hydrogen atoms is discovered and monitored. The whole duration of light emission is much longer than the microwave pulse, and the intensities of ion N2+ (B-X) spectra increase after microwave pulses with rise times of 25-50 ns. The brightness distribution of plasma spectra in different space is observed and approximately consistent with the simulated E-field distribution.

  20. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  1. Nanosecond bipolar pulse generators for bioelectrics.

    PubMed

    Xiao, Shu; Zhou, Chunrong; Yang, Enbo; Rajulapati, Sambasiva R

    2018-04-26

    Biological effects caused by a nanosecond pulse, such as cell membrane permeabilization, peripheral nerve excitation and cell blebbing, can be reduced or cancelled by applying another pulse of reversed polarity. Depending on the degree of cancellation, the pulse interval of these two pulses can be as long as dozens of microseconds. The cancellation effect diminishes as the pulse duration increases. To study the cancellation effect and potentially utilize it in electrotherapy, nanosecond bipolar pulse generators must be made available. An overview of the generators is given in this paper. A pulse forming line (PFL) that is matched at one end and shorted at the other end allows a bipolar pulse to be produced, but no delay can be inserted between the phases. Another generator employs a combination of a resistor, an inductor and a capacitor to form an RLC resonant circuit so that a bipolar pulse with a decaying magnitude can be generated. A third generator is a converter, which converts an existing unipolar pulse to a bipolar pulse. This is done by inserting an inductor in a transmission line. The first phase of the bipolar pulse is provided by the unipolar pulse's rising phase. The second phase is formed during the fall time of the unipolar pulse, when the inductor, which was previously charged during the flat part of the unipolar pulse, discharges its current to the load. The fourth type of generator uses multiple MOSFET switches stacked to turn on a pre-charged, bipolar RC network. This approach is the most flexible in that it can generate multiphasic pulses that have different amplitudes, delays, and durations. However, it may not be suitable for producing short nanosecond pulses (<100 ns), whereas the PFL approach and the RLC approach with gas switches are used for this range. Thus, each generator has its own advantages and applicable range. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Investigation of airfoil leading edge separation control with nanosecond plasma actuator

    NASA Astrophysics Data System (ADS)

    Zheng, J. G.; Cui, Y. D.; Zhao, Z. J.; Li, J.; Khoo, B. C.

    2016-11-01

    A combined numerical and experimental investigation of airfoil leading edge flow separation control with a nanosecond dielectric barrier discharge (DBD) plasma actuator is presented. Our study concentrates on describing dynamics of detailed flow actuation process and elucidating the nanosecond DBD actuation mechanism. A loose coupling methodology is employed to perform simulation, which consists of a self-similar plasma model for the description of pulsed discharge and two-dimensional Reynolds averaged Navier-Stokes (RANS) equations for the calculation of external airflow. A series of simulations of poststall flows around a NACA0015 airfoil is conducted with a Reynolds number range covering both low and high Re at Re=(0.05 ,0.15 ,1.2 ) ×106 . Meanwhile, wind-tunnel experiment is performed for two low Re flows to measure aerodynamic force on airfoil model and transient flow field with time-resolved particle image velocimetry (PIV). The PIV measurement provides possibly the clearest view of flow reattachment process under the actuation of a nanosecond plasma actuator ever observed in experiments, which is highly comparable to that predicted by simulation. It is found from the detailed simulation that the discharge-induced residual heat rather than shock wave plays a dominant role in flow control. For any leading edge separations, the preliminary flow reattachment is realized by residual heat-induced spanwise vortices. After that, the nanosecond actuator functions by continuing exciting flow instability at poststall attack angles or acting as an active trip near stall angle. As a result, the controlled flow is characterized by a train of repetitive, downstream moving vortices over suction surface or an attached turbulent boundary layer, which depends on both angle of attack and Reynolds number. The advection of residual temperature with external flow offers a nanosecond plasma actuator a lot of flexibility to extend its influence region. Animations are provided for

  3. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    PubMed Central

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  4. Applied Time Domain Stability Margin Assessment for Nonlinear Time-Varying Systems

    NASA Technical Reports Server (NTRS)

    Kiefer, J. M.; Johnson, M. D.; Wall, J. H.; Dominguez, A.

    2016-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation. This technique was implemented by using the Stability Aerospace Vehicle Analysis Tool (SAVANT) computer simulation to evaluate the stability of the SLS system with the Adaptive Augmenting Control (AAC) active and inactive along its ascent trajectory. The gains for which the vehicle maintains apparent time-domain stability defines the gain margins, and the time delay similarly defines the phase margin. This method of extracting the control stability margins from the time-domain simulation is relatively straightforward and the resultant margins can be compared to the linearized system results. The sections herein describe the techniques employed to extract the time-domain margins, compare the results between these nonlinear and the linear methods, and provide explanations for observed discrepancies. The SLS ascent trajectory was simulated with SAVANT and the classical linear stability margins were evaluated at one second intervals. The linear analysis was performed with the AAC algorithm disabled to attain baseline stability

  5. Full waveform inversion in the frequency domain using classified time-domain residual wavefields

    NASA Astrophysics Data System (ADS)

    Son, Woohyun; Koo, Nam-Hyung; Kim, Byoung-Yeop; Lee, Ho-Young; Joo, Yonghwan

    2017-04-01

    We perform the acoustic full waveform inversion in the frequency domain using residual wavefields that have been separated in the time domain. We sort the residual wavefields in the time domain according to the order of absolute amplitudes. Then, the residual wavefields are separated into several groups in the time domain. To analyze the characteristics of the residual wavefields, we compare the residual wavefields of conventional method with those of our residual separation method. From the residual analysis, the amplitude spectrum obtained from the trace before separation appears to have little energy at the lower frequency bands. However, the amplitude spectrum obtained from our strategy is regularized by the separation process, which means that the low-frequency components are emphasized. Therefore, our method helps to emphasize low-frequency components of residual wavefields. Then, we generate the frequency-domain residual wavefields by taking the Fourier transform of the separated time-domain residual wavefields. With these wavefields, we perform the gradient-based full waveform inversion in the frequency domain using back-propagation technique. Through a comparison of gradient directions, we confirm that our separation method can better describe the sub-salt image than the conventional approach. The proposed method is tested on the SEG/EAGE salt-dome model. The inversion results show that our algorithm is better than the conventional gradient based waveform inversion in the frequency domain, especially for deeper parts of the velocity model.

  6. Application of MEMS-based x-ray optics as tuneable nanosecond choppers

    NASA Astrophysics Data System (ADS)

    Chen, Pice; Walko, Donald A.; Jung, Il Woong; Li, Zhilong; Gao, Ya; Shenoy, Gopal K.; Lopez, Daniel; Wang, Jin

    2017-08-01

    Time-resolved synchrotron x-ray measurements often rely on using a mechanical chopper to isolate a set of x-ray pulses. We have started the development of micro electromechanical systems (MEMS)-based x-ray optics, as an alternate method to manipulate x-ray beams. In the application of x-ray pulse isolation, we recently achieved a pulse-picking time window of half a nanosecond, which is more than 100 times faster than mechanical choppers can achieve. The MEMS device consists of a comb-drive silicon micromirror, designed for efficiently diffracting an x-ray beam during oscillation. The MEMS devices were operated in Bragg geometry and their oscillation was synchronized to x-ray pulses, with a frequency matching subharmonics of the cycling frequency of x-ray pulses. The microscale structure of the silicon mirror in terms of the curvature and the quality of crystallinity ensures a narrow angular spread of the Bragg reflection. With the discussion of factors determining the diffractive time window, this report showed our approaches to narrow down the time window to half a nanosecond. The short diffractive time window will allow us to select single x-ray pulse out of a train of pulses from synchrotron radiation facilities.

  7. Dynamic response of polyurea subjected to nanosecond rise-time stress waves

    NASA Astrophysics Data System (ADS)

    Youssef, George; Gupta, Vijay

    2012-08-01

    Shaped charges and explosively formed projectiles used in modern warfare can attain speeds as high as 30,000 ft/s. Impacts from these threats are expected to load the armor materials in the 10 to 100 ns timeframe. During this time, the material strains are quite limited but the strain rates are extremely high. To develop armors against such threats it is imperative to understand the dynamic constitutive behavior of materials in the tens of nanoseconds timeframe. Material behavior in this parameter space cannot be obtained by even the most sophisticated plate-impact and split-Hopkinson bar setups that exist within the high energy materials field today. This paper introduces an apparatus and a test method that are based on laser-generated stress waves to obtain such material behaviors. Although applicable to any material system, the test procedures are demonstrated on polyurea which shows unusual dynamic properties. Thin polyurea layers were deformed using laser-generated stress waves with 1-2 ns rise times and 16 ns total duration. The total strain in the samples was less than 3%. Because of the transient nature of the stress wave, the strain rate varied throughout the deformation history of the sample. A peak value of 1.1×105 s-1 was calculated. It was found that the stress-strain characteristics, determined from experimentally recorded incident and transmitted wave profiles, matched satisfactorily with those computed from a 2D wave mechanics simulation in which the polyurea was modeled as a linearly viscoelastic solid with constants derived from the quasi-static experiments. Thus, the test data conformed to the Time-Temperature Superposition (TTS) principle even at extremely high strain rates of our test. This then extends the previous observations of Zhao et al. (Mech. Time-Depend. Mater. 11:289-308, 2007) who showed the applicability of the TTS principle for polyurea in the linearly viscoelastic regime up to peak strain rates of 1200 s-1.

  8. Deflagration-to-Detonation Transition Control by Nanosecond Gas Discharges

    DTIC Science & Technology

    2008-04-07

    Report 3. DATES COVERED (From – To) 1 April 2007 - 18 August 09 4. TITLE AND SUBTITLE Deflagration-To- Detonation Transition Control By Nanosecond...SUPPLEMENTARY NOTES 14. ABSTRACT During the current project, an extensive experimental study of detonation initiation by high{voltage...nanosecond gas discharges has been performed in a smooth detonation tube with different discharge chambers and various discharge cell numbers. The chambers

  9. Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome

    NASA Astrophysics Data System (ADS)

    Abbasi, Hamed; Rauter, Georg; Guzman, Raphael; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    In minimal invasive laser osteotomy precise information about the ablation process can be obtained with LIBS in order to avoid carbonization, or cutting of wrong types of tissue. Therefore, the collecting fiber for LIBS needs to be optimally placed in narrow cavities in the endoscope. To determine this optimal placement, the plasma plume expansion dynamics in ablation of bone tissue by the second harmonic of a nanosecond Nd:YAG laser at 532 nm has been studied. The laserinduced plasma plume was monitored in different time delays, from one nanosecond up to one hundred microseconds. Measurements were performed using high-speed gated illumination imaging. The expansion features were studied using illumination of the overall visible emission by using a gated intensified charged coupled device (ICCD). The camera was capable of having a minimum gate width (Optical FWHM) of 3 ns and the timing resolution (minimum temporal shift of the gate) of 10 ps. The imaging data were used to generate position-time data of the luminous plasma-front. Moreover, the velocity of the plasma plume expansion was studied based on the time-resolved intensity data. By knowing the plasma plume profile over time, the optimum position (axial distance from the laser spot) of the collecting fiber and optimal time delay (to have the best signal to noise ratio) in spatial-resolved and time-resolved laser-induced breakdown spectroscopy (LIBS) can be determined. Additionally, the function of plasma plume expansion could be used to study the shock wave of the plasma plume.

  10. Compact nanosecond laser system for the ignition of aeronautic combustion engines

    NASA Astrophysics Data System (ADS)

    Amiard-Hudebine, G.; Tison, G.; Freysz, E.

    2016-12-01

    We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 μJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at 1 kHz repetition rate, it delivers TEM00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 μJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ = 808 nm and coupled to a 800 μm core multimode fiber. At 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.

  11. Nonlinear (time domain) and linearized (time and frequency domain) solutions to the compressible Euler equations in conservation law form

    NASA Technical Reports Server (NTRS)

    Sreenivas, Kidambi; Whitfield, David L.

    1995-01-01

    Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.

  12. Nanosecond UV lasers stimulate transient Ca2+ elevations in human hNT astrocytes.

    PubMed

    Raos, B J; Graham, E S; Unsworth, C P

    2017-06-01

    Astrocytes respond to various stimuli resulting in intracellular Ca 2+ signals that can propagate through organized functional networks. Recent literature calls for the development of techniques that can stimulate astrocytes in a fast and highly localized manner to emulate more closely the characteristics of astrocytic Ca 2+ signals in vivo. In this article we demonstrate, for the first time, how nanosecond UV lasers are capable of reproducibly stimulating Ca 2+ transients in human hNT astrocytes. We report that laser pulses with a beam energy of 4-29 µJ generate transient increases in cytosolic Ca 2+ . These Ca 2+ transients then propagate to adjacent astrocytes as intercellular Ca 2+ waves. We propose that nanosecond laser stimulation provides a valuable tool for enabling the study of Ca 2+ dynamics in human astrocytes at both a single cell and network level. Compared to previously developed techniques nanosecond laser stimulation has the advantage of not requiring loading of photo-caged or -sensitising agents, is non-contact, enables stimulation with a high spatiotemporal resolution and is comparatively cost effective.

  13. Evaluation of material dispersion using a nanosecond optical pulse radiator.

    PubMed

    Horiguchi, M; Ohmori, Y; Miya, T

    1979-07-01

    To study the material dispersion effects on graded-index fibers, a method for measuring the material dispersion in optical glass fibers has been developed. Nanosecond pulses in the 0.5-1.7-microm region are generated by a nanosecond optical pulse radiator and grating monochromator. These pulses are injected into a GeO(2)-P(2)0(5)-doped silica graded-index fiber. Relative time delay changes between different wavelengths are used to determine material dispersion, core glass refractive index, material group index, and optimum profile parameter of the graded-index fiber. From the measured data, the optimum profile parameter on the GeO(2)-P(2)O(5)-doped silica graded-index fiber could be estimated to be 1.88 at 1.27 microm of the material dispersion free wavelength region and 1.82 at 1.55 microm of the lowest-loss wavelength region in silica-based optical fiber waveguides.

  14. Time domain passivity controller for 4-channel time-delay bilateral teleoperation.

    PubMed

    Rebelo, Joao; Schiele, Andre

    2015-01-01

    This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is sub-optimal both with and without time delays. This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay. The proposed architecture is based on modelling the controllers as dependent voltage sources and using only series passivity controllers. The obtained results are shown on a one degree-of-freedom setup and illustrate the stabilization behaviour of the proposed controller when time delay is present in the communication channel.

  15. Picosecond absorption relaxation measured with nanosecond laser photoacoustics

    PubMed Central

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2010-01-01

    Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural—including strongly scattering and nonfluorescent—materials. PMID:21079726

  16. Picosecond absorption relaxation measured with nanosecond laser photoacoustics.

    PubMed

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2010-10-18

    Picosecond absorption relaxation-central to many disciplines-is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural-including strongly scattering and nonfluorescent-materials.

  17. Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments.

    PubMed

    Zhou, Chenming; Jacksha, Ronald; Yan, Lincan; Reyes, Miguel; Kovalchik, Peter

    2017-01-01

    Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments - one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.

  18. A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang

    2015-04-01

    A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.

  19. Slow domain reconfiguration causes power-law kinetics in a two-state enzyme.

    PubMed

    Grossman-Haham, Iris; Rosenblum, Gabriel; Namani, Trishool; Hofmann, Hagen

    2018-01-16

    Protein dynamics are typically captured well by rate equations that predict exponential decays for two-state reactions. Here, we describe a remarkable exception. The electron-transfer enzyme quiescin sulfhydryl oxidase (QSOX), a natural fusion of two functionally distinct domains, switches between open- and closed-domain arrangements with apparent power-law kinetics. Using single-molecule FRET experiments on time scales from nanoseconds to milliseconds, we show that the unusual open-close kinetics results from slow sampling of an ensemble of disordered domain orientations. While substrate accelerates the kinetics, thus suggesting a substrate-induced switch to an alternative free energy landscape of the enzyme, the power-law behavior is also preserved upon electron load. Our results show that the slow sampling of open conformers is caused by a variety of interdomain interactions that imply a rugged free energy landscape, thus providing a generic mechanism for dynamic disorder in multidomain enzymes.

  20. EUV nanosecond laser ablation of silicon carbide, tungsten and molybdenum

    NASA Astrophysics Data System (ADS)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Choukourov, Andrei; Kasuya, Koichi

    2015-09-01

    In this paper we present results of study interaction of nanosecond EUV laser pulses at wavelength of 46.9 nm with silicon carbide (SiC), tungsten (W) and molybdenum (Mo). As a source of laser radiation was used discharge-plasma driver CAPEX (CAPillary EXperiment) based on high current capillary discharge in argon. The laser beam is focused with a spherical Si/Sc multilayer-coated mirror on samples. Experimental study has been performed with 1, 5, 10, 20 and 50 laser pulses ablation of SiC, W and Mo at various fluence values. Firstly, sample surface modification in the nanosecond time scale have been registered by optical microscope. And the secondly, laser beam footprints on the samples have been analyzed by atomic-force microscope (AFM). This work supported by the Czech Science Foundation under Contract GA14-29772S and by the Grant Agency of the Ministry of Education, Youth and Sports of the Czech Republic under Contract LG13029.

  1. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M.

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  2. Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent

    1996-01-01

    It is an accepted practice in aeroacoustics to characterize the properties of an acoustically treated surface by a quantity known as impedance. Impedance is a complex quantity. As such, it is designed primarily for frequency-domain analysis. Time-domain boundary conditions that are the equivalent of the frequency-domain impedance boundary condition are proposed. Both single frequency and model broadband time-domain impedance boundary conditions are provided. It is shown that the proposed boundary conditions, together with the linearized Euler equations, form well-posed initial boundary value problems. Unlike ill-posed problems, they are free from spurious instabilities that would render time-marching computational solutions impossible.

  3. Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments

    PubMed Central

    Zhou, Chenming; Jacksha, Ronald; Yan, Lincan; Reyes, Miguel; Kovalchik, Peter

    2018-01-01

    Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments — one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.† PMID:29457801

  4. Space moving target detection using time domain feature

    NASA Astrophysics Data System (ADS)

    Wang, Min; Chen, Jin-yong; Gao, Feng; Zhao, Jin-yu

    2018-01-01

    The traditional space target detection methods mainly use the spatial characteristics of the star map to detect the targets, which can not make full use of the time domain information. This paper presents a new space moving target detection method based on time domain features. We firstly construct the time spectral data of star map, then analyze the time domain features of the main objects (target, stars and the background) in star maps, finally detect the moving targets using single pulse feature of the time domain signal. The real star map target detection experimental results show that the proposed method can effectively detect the trajectory of moving targets in the star map sequence, and the detection probability achieves 99% when the false alarm rate is about 8×10-5, which outperforms those of compared algorithms.

  5. Enhancement of ultracold molecule formation by local control in the nanosecond regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carini, J. L.; Kallush, S.; Kosloff, R.

    2015-02-01

    We describe quantum simulations of ultracold 87Rb 2 molecule formation using photoassociation (PA) with nanosecond-time-scale pulses of frequency chirped light. In particular, we compare the case of a linear chirp to one where the frequency evolution is optimized by local control (LC) of the phase, and find that LC can provide a significant enhancement. The resulting optimal frequency evolution corresponds to a rapid jump from the PA absorption resonance to a downward transition to a bound level of the lowest triplet state. We also consider the case of two frequencies and investigate interference effects. The assumed chirp parameters should bemore » achievable with nanosecond pulse shaping techniques and are predicted to provide a significant enhancement over recent experiments with linear chirps.« less

  6. Nanosecond laser coloration on stainless steel surface.

    PubMed

    Lu, Yan; Shi, Xinying; Huang, Zhongjia; Li, Taohai; Zhang, Meng; Czajkowski, Jakub; Fabritius, Tapio; Huttula, Marko; Cao, Wei

    2017-08-02

    In this work, we present laser coloration on 304 stainless steel using nanosecond laser. Surface modifications are tuned by adjusting laser parameters of scanning speed, repetition rate, and pulse width. A comprehensive study of the physical mechanism leading to the appearance is presented. Microscopic patterns are measured and employed as input to simulate light-matter interferences, while chemical states and crystal structures of composites to figure out intrinsic colors. Quantitative analysis clarifies the final colors and RGB values are the combinations of structural colors and intrinsic colors from the oxidized pigments, with the latter dominating. Therefore, the engineering and scientific insights of nanosecond laser coloration highlight large-scale utilization of the present route for colorful and resistant steels.

  7. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    NASA Astrophysics Data System (ADS)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  8. Generating Dynamic Persistence in the Time Domain

    NASA Astrophysics Data System (ADS)

    Guerrero, A.; Smith, L. A.; Smith, L. A.; Kaplan, D. T.

    2001-12-01

    Many dynamical systems present long-range correlations. Physically, these systems vary from biological to economical, including geological or urban systems. Important geophysical candidates for this type of behaviour include weather (or climate) and earthquake sequences. Persistence is characterised by slowly decaying correlation function; that, in theory, never dies out. The Persistence exponent reflects the degree of memory in the system and much effort has been expended creating and analysing methods that successfully estimate this parameter and model data that exhibits persistence. The most widely used methods for generating long correlated time series are not dynamical systems in the time domain, but instead are derived from a given spectral density. Little attention has been drawn to modelling persistence in the time domain. The time domain approach has the advantage that an observation at certain time can be calculated using previous observations which is particularly suitable when investigating the predictability of a long memory process. We will describe two of these methods in the time domain. One is a traditional approach using fractional ARIMA (autoregressive and moving average) models; the second uses a novel approach to extending a given series using random Fourier basis functions. The statistical quality of the two methods is compared, and they are contrasted with weather data which shows, reportedly, persistence. The suitability of this approach both for estimating predictability and for making predictions is discussed.

  9. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum.

    PubMed

    Xu, Yuntao; Dibble, Collin J; Petrik, Nikolay G; Smith, R Scott; Joly, Alan G; Tonkyn, Russell G; Kay, Bruce D; Kimmel, Greg A

    2016-04-28

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ∼10(10) K/s for temperature increases of ∼100-200 K are obtained. Subsequent rapid cooling (∼5 × 10(9) K/s) quenches the film, permitting in-situ, post-heating analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ∼±2.7% leading to a temperature uncertainty of ∼±4.4 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.

  10. A Tesla-type repetitive nanosecond pulse generator for solid dielectric breakdown research.

    PubMed

    Zhao, Liang; Pan, Ya Feng; Su, Jian Cang; Zhang, Xi Bo; Wang, Li Min; Fang, Jin Peng; Sun, Xu; Lui, Rui

    2013-10-01

    A Tesla-type repetitive nanosecond pulse generator including a pair of electrode and a matched absorption resistor is established for the application of solid dielectric breakdown research. As major components, a built-in Tesla transformer and a gas-gap switch are designed to boost and shape the output pulse, respectively; the electrode is to form the anticipated electric field; the resistor is parallel to the electrode to absorb the reflected energy from the test sample. The parameters of the generator are a pulse width of 10 ns, a rise and fall time of 3 ns, and a maximum amplitude of 300 kV. By modifying the primary circuit of the Tesla transformer, the generator can produce both positive and negative pulses at a repetition rate of 1-50 Hz. In addition, a real-time measurement and control system is established based on the solid dielectric breakdown requirements for this generator. With this system, experiments on test samples made of common insulation materials in pulsed power systems are conducted. The preliminary experimental results show that the constructed generator is capable to research the solid dielectric breakdown phenomenon on a nanosecond time scale.

  11. All-fibre optical gating system for measuring a complex-shaped periodic broadband signal with picosecond resolution in a nanosecond time window

    NASA Astrophysics Data System (ADS)

    Andrianov, A. V.

    2018-04-01

    We have developed an optical gating system for continuously monitoring a complex-shaped periodic optical signal with picosecond resolution in a nanosecond time window using an all-fibre optical gate in the form of a nonlinear loop mirror and a passively mode-locked femtosecond laser. The distinctive features of the system are the possibility of characterizing signals with a very large spectral bandwidth, the possibility of using a gating pulse source with a wavelength falling in the band of the signal under study and its all-fibre design with the use of standard fibres and telecom components.

  12. Time-Resolved X-Ray Magnetic Circular Dichroism - A Selective Probe of Magnetization Dynamics on Nanosecond Timescales

    NASA Astrophysics Data System (ADS)

    Pizzini, Stefania; Vogel, Jan; Bonfim, Marlio; Fontaine, Alain

    Many synchrotron radiation techniques have been developed in the last 15 years for studying the magnetic properties of thin-film materials. The most attractive properties of synchrotron radiation are its energy tunability and its time structure. The first property allows measurements in resonant conditions at an absorption edge of each of the magnetic elements constituting the probed sample, and the latter allows time-resolved measurements on subnanosecond timescales. In this review, we introduce some of the synchrotron-based techniques used for magnetic investigations. We then describe in detail X-ray magnetic circular dichroism (XMCD) and how time-resolved XMCD studies can be carried out in the pump-probe mode. Finally, we illustrate some applications to magnetization reversal dynamics in spin valves and tunnel junctions, using fast magnetic field pulses applied along the easy magnetization axis of the samples. Thanks to the element-selectivity of X-ray absorption spectroscopy, the magnetization dynamics of the soft (Permalloy) and the hard (cobalt) layers can be studied independently. In the case of spin valves, this allowed us to show that two magnetic layers that are strongly coupled in a static regime can become uncoupled on nanosecond timescales.Present address: Universidade Federal do Paraná, Centro Politécnico CP 19011, Curitiba - PR CEP 81531-990, Brazil

  13. Pump-probe imaging of nanosecond laser-induced bubbles in agar gel.

    PubMed

    Evans, R; Camacho-López, S; Pérez-Gutiérrez, F G; Aguilar, G

    2008-05-12

    In this paper we show results of Nd:YAG laser-induced bubbles formed in a one millimeter thick agar gel slab. The nine nanosecond duration pulse with a wave length of 532 nm was tightly focused inside the bulk of the gel sample. We present for the first time a pump-probe laser-flash shadowgraphy system that uses two electronically delayed Nd:YAG lasers to image the the bubble formation and shock wave fronts with nanosecond temporal resolution and up to nine seconds of temporal range. The shock waves generated by the laser are shown to begin at an earlier times within the laser pulse as the pulse energy increases. The shock wave velocity is used to infer a shocked to unshocked material pressure difference of up to 500 MPa. The bubble created settles to a quasi-stable size that has a linear relation to the maximum bubble size. The energy stored in the bubble is shown to increase nonlinearly with applied laser energy, and corresponds in form to the energy transmission in the agar gel. We show that the interaction is highly nonlinear, and most likely is plasma-mediated.

  14. Excited Electronic and Vibrational State Decomposition of Energetic Materials and Model Systems on Both Nanosecond and Femtosecond Time Scales

    DTIC Science & Technology

    2014-07-22

    differences among electronically excited nitro-containing molecules with different X–NO2 (X = C, N, O) bond connections. Nitromethane (NM...Dynamics of Nitromethane at 226 nm and 271 nm at both Nanosecond and Femtosecond Temporal Scales," J. Phys. Chem. A 113, 85 (2009).

  15. [Analysis of time domain and frequency domain heart rate variability in fighter pilot before and after upright tilt].

    PubMed

    Wang, L; Wu, L; Ji, G; Zhang, X; Chen, T; Wang, L

    1998-12-01

    Effects of upright tilt on mechanism of autonomic nervous regulation of cardiovascular system and characteristics of heart rate variability (HRV) were observed in sixty healthy male pilots. Relation between time domain and frequency domain indexes of short-time HRV (5 min) were analysed before and after upright tilt. The results showed that there are significant difference in short time HRV parameters before and after upright tilt. Significant relationship was formed between time domain and frequency domain indexes of HRV. It suggests that time domain and frequency domain HRV analysis is capable of revealing certain informations embedded in a short series of R-R intervals and can help to evaluate the status of autonomic regulation of cardiovascular function in pilots.

  16. Time-Domain Computation Of Electromagnetic Fields In MMICs

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1995-01-01

    Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.

  17. Domain wall formation in late-time phase transitions

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Wang, Yun

    1992-01-01

    We examine domain wall formulation in late time phase transitions. We find that in the invisible axion domain wall phenomenon, thermal effects alone are insufficient to drive different parts of the disconnected vacuum manifold. This suggests that domain walls do not form unless either there is some supplemental (but perhaps not unreasonable) dynamics to localize the scalar field responsible for the phase transition to the low temperature maximum (to an extraordinary precision) before the onset of the phase transition, or there is some non-thermal mechanism to produce large fluctuations in the scalar field. The fact that domain wall production is not a robust prediction of late time transitions may suggest future directions in model building.

  18. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier

    DOE PAGES

    Rogers, III, C. E.; Gould, P. L.

    2016-02-01

    Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  19. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier.

    PubMed

    Rogers, C E; Gould, P L

    2016-02-08

    We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  20. Topologically associating domains are stable units of replication-timing regulation.

    PubMed

    Pope, Benjamin D; Ryba, Tyrone; Dileep, Vishnu; Yue, Feng; Wu, Weisheng; Denas, Olgert; Vera, Daniel L; Wang, Yanli; Hansen, R Scott; Canfield, Theresa K; Thurman, Robert E; Cheng, Yong; Gülsoy, Günhan; Dennis, Jonathan H; Snyder, Michael P; Stamatoyannopoulos, John A; Taylor, James; Hardison, Ross C; Kahveci, Tamer; Ren, Bing; Gilbert, David M

    2014-11-20

    Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the

  1. Time-Domain Filtering for Spatial Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    An approach to large-eddy simulation (LES) is developed whose subgrid-scale model incorporates filtering in the time domain, in contrast to conventional approaches, which exploit spatial filtering. The method is demonstrated in the simulation of a heated, compressible, axisymmetric jet, and results are compared with those obtained from fully resolved direct numerical simulation. The present approach was, in fact, motivated by the jet-flow problem and the desire to manipulate the flow by localized (point) sources for the purposes of noise suppression. Time-domain filtering appears to be more consistent with the modeling of point sources; moreover, time-domain filtering may resolve some fundamental inconsistencies associated with conventional space-filtered LES approaches.

  2. Eulerian Time-Domain Filtering for Spatial LES

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    Eulerian time-domain filtering seems to be appropriate for LES (large eddy simulation) of flows whose large coherent structures convect approximately at a common characteristic velocity; e.g., mixing layers, jets, and wakes. For these flows, we develop an approach to LES based on an explicit second-order digital Butterworth filter, which is applied in,the time domain in an Eulerian context. The approach is validated through a priori and a posteriori analyses of the simulated flow of a heated, subsonic, axisymmetric jet.

  3. A two-dimensional time domain near zone to far zone transformation

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.

    1991-01-01

    A time domain transformation useful for extrapolating three dimensional near zone finite difference time domain (FDTD) results to the far zone was presented. Here, the corresponding two dimensional transform is outlined. While the three dimensional transformation produced a physically observable far zone time domain field, this is not convenient to do directly in two dimensions, since a convolution would be required. However, a representative two dimensional far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required, it can be obtained by inverse Fourier transform of the final frequency domain result.

  4. Time-domain damping models in structural acoustics using digital filtering

    NASA Astrophysics Data System (ADS)

    Parret-Fréaud, Augustin; Cotté, Benjamin; Chaigne, Antoine

    2016-02-01

    This paper describes a new approach in order to formulate well-posed time-domain damping models able to represent various frequency domain profiles of damping properties. The novelty of this approach is to represent the behavior law of a given material directly in a discrete-time framework as a digital filter, which is synthesized for each material from a discrete set of frequency-domain data such as complex modulus through an optimization process. A key point is the addition of specific constraints to this process in order to guarantee stability, causality and verification of thermodynamics second law when transposing the resulting discrete-time behavior law into the time domain. Thus, this method offers a framework which is particularly suitable for time-domain simulations in structural dynamics and acoustics for a wide range of materials (polymers, wood, foam, etc.), allowing to control and even reduce the distortion effects induced by time-discretization schemes on the frequency response of continuous-time behavior laws.

  5. Flares In Time-Domain Surveys

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam; Hawley, Suzanne; Davenport, James; Berlicki, Arkadiusz; Cauzzi, Gianna; Fletcher, Lyndsay; Heinzel, Petr; Notsu, Yuta; Loyd, Parke; Martinez Oliveros, Juan Carlos; Pugh, Chloe; Schmidt, Sarah Jane; Karmakar, Subhajeet; Pye, John; Flaccomio, Ettore

    2016-07-01

    Proceedings for the splinter session "Flares in Time-Domain Surveys" convened at Cool Stars 19 on June 07, 2016 in Uppsala, Sweden. Contains a two page summary of the splinter session, links to YouTube talks, and a PDF copy of the slides from the presenters.

  6. SPA- STATISTICAL PACKAGE FOR TIME AND FREQUENCY DOMAIN ANALYSIS

    NASA Technical Reports Server (NTRS)

    Brownlow, J. D.

    1994-01-01

    The need for statistical analysis often arises when data is in the form of a time series. This type of data is usually a collection of numerical observations made at specified time intervals. Two kinds of analysis may be performed on the data. First, the time series may be treated as a set of independent observations using a time domain analysis to derive the usual statistical properties including the mean, variance, and distribution form. Secondly, the order and time intervals of the observations may be used in a frequency domain analysis to examine the time series for periodicities. In almost all practical applications, the collected data is actually a mixture of the desired signal and a noise signal which is collected over a finite time period with a finite precision. Therefore, any statistical calculations and analyses are actually estimates. The Spectrum Analysis (SPA) program was developed to perform a wide range of statistical estimation functions. SPA can provide the data analyst with a rigorous tool for performing time and frequency domain studies. In a time domain statistical analysis the SPA program will compute the mean variance, standard deviation, mean square, and root mean square. It also lists the data maximum, data minimum, and the number of observations included in the sample. In addition, a histogram of the time domain data is generated, a normal curve is fit to the histogram, and a goodness-of-fit test is performed. These time domain calculations may be performed on both raw and filtered data. For a frequency domain statistical analysis the SPA program computes the power spectrum, cross spectrum, coherence, phase angle, amplitude ratio, and transfer function. The estimates of the frequency domain parameters may be smoothed with the use of Hann-Tukey, Hamming, Barlett, or moving average windows. Various digital filters are available to isolate data frequency components. Frequency components with periods longer than the data collection interval

  7. Inversion of time-domain induced polarization data based on time-lapse concept

    NASA Astrophysics Data System (ADS)

    Kim, Bitnarae; Nam, Myung Jin; Kim, Hee Joon

    2018-05-01

    Induced polarization (IP) surveys, measuring overvoltage phenomena of the medium, are widely and increasingly performed not only for exploration of mineral resources but also for engineering applications. Among several IP survey methods such as time-domain, frequency-domain and spectral IP surveys, this study introduces a noble inversion method for time-domain IP data to recover the chargeability structure of target medium. The inversion method employs the concept of 4D inversion of time-lapse resistivity data sets, considering the fact that measured voltage in time-domain IP survey is distorted by IP effects to increase from the instantaneous voltage measured at the moment the source current injection starts. Even though the increase is saturated very fast, we can consider the saturated and instantaneous voltages as a time-lapse data set. The 4D inversion method is one of the most powerful method for inverting time-lapse resistivity data sets. Using the developed IP inversion algorithm, we invert not only synthetic but also field IP data to show the effectiveness of the proposed method by comparing the recovered chargeability models with those from linear inversion that was used for the inversion of the field data in a previous study. Numerical results confirm that the proposed inversion method generates reliable chargeability models even though the anomalous bodies have large IP effects.

  8. Time-Reversal MUSIC Imaging with Time-Domain Gating Technique

    NASA Astrophysics Data System (ADS)

    Choi, Heedong; Ogawa, Yasutaka; Nishimura, Toshihiko; Ohgane, Takeo

    A time-reversal (TR) approach with multiple signal classification (MUSIC) provides super-resolution for detection and localization using multistatic data collected from an array antenna system. The theory of TR-MUSIC assumes that the number of antenna elements is greater than that of scatterers (targets). Furthermore, it requires many sets of frequency-domain data (snapshots) in seriously noisy environments. Unfortunately, these conditions are not practical for real environments due to the restriction of a reasonable antenna structure as well as limited measurement time. We propose an approach that treats both noise reduction and relaxation of the transceiver restriction by using a time-domain gating technique accompanied with the Fourier transform before applying the TR-MUSIC imaging algorithm. Instead of utilizing the conventional multistatic data matrix (MDM), we employ a modified MDM obtained from the gating technique. The resulting imaging functions yield more reliable images with only a few snapshots regardless of the limitation of the antenna arrays.

  9. A two-dimensional time domain near zone to far zone transformation

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Ryan, Deirdre; Beggs, John H.; Kunz, Karl S.

    1991-01-01

    In a previous paper, a time domain transformation useful for extrapolating 3-D near zone finite difference time domain (FDTD) results to the far zone was presented. In this paper, the corresponding 2-D transform is outlined. While the 3-D transformation produced a physically observable far zone time domain field, this is not convenient to do directly in 2-D, since a convolution would be required. However, a representative 2-D far zone time domain result can be obtained directly. This result can then be transformed to the frequency domain using a Fast Fourier Transform, corrected with a simple multiplicative factor, and used, for example, to calculate the complex wideband scattering width of a target. If an actual time domain far zone result is required it can be obtained by inverse Fourier transform of the final frequency domain result.

  10. Metrology for terahertz time-domain spectrometers

    NASA Astrophysics Data System (ADS)

    Molloy, John F.; Naftaly, Mira

    2015-12-01

    In recent years the terahertz time-domain spectrometer (THz TDS) [1] has emerged as a key measurement device for spectroscopic investigations in the frequency range of 0.1-5 THz. To date, almost every type of material has been studied using THz TDS, including semiconductors, ceramics, polymers, metal films, liquid crystals, glasses, pharmaceuticals, DNA molecules, proteins, gases, composites, foams, oils, and many others. Measurements with a TDS are made in the time domain; conversion from the time domain data to a frequency spectrum is achieved by applying the Fourier Transform, calculated numerically using the Fast Fourier Transform (FFT) algorithm. As in many other types of spectrometer, THz TDS requires that the sample data be referenced to similarly acquired data with no sample present. Unlike frequency-domain spectrometers which detect light intensity and measure absorption spectra, a TDS records both amplitude and phase information, and therefore yields both the absorption coefficient and the refractive index of the sample material. The analysis of the data from THz TDS relies on the assumptions that: a) the frequency scale is accurate; b) the measurement of THz field amplitude is linear; and c) that the presence of the sample does not affect the performance characteristics of the instrument. The frequency scale of a THz TDS is derived from the displacement of the delay line; via FFT, positioning errors may give rise to frequency errors that are difficult to quantify. The measurement of the field amplitude in a THz TDS is required to be linear with a dynamic range of the order of 10 000. And attention must be given to the sample positioning and handling in order to avoid sample-related errors.

  11. Nanoparticle formation after nanosecond-laser irradiation of thin gold films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratautas, Karolis; Gedvilas, Mindaugas; Raciukaitis, Gediminas

    2012-07-01

    Evolution in nanoparticle formation was observed after nanosecond-laser irradiation of thin gold films on a silicon substrate and physical phenomena leading to the formation of nanoparticles were studied. Gold films of different thickness (3, 5, 10, 15, 20, and 25 nm) were evaporated on the silicon (110) substrate and irradiated with the pulsed nanosecond laser using different pulse energies and the number of pulses in a burst. Experimentally morphological changes appeared in the films only when the pulse energy was high enough to initiate the phase transition. The threshold energy density for phase transitions in the films was estimated frommore » the thermal model of the laser beam and sample interaction. With the pulse energy just above the threshold, it was possible to observe evolution of nanoparticle formation from a plane metal film by changing the number of pulses applied, as duration of the pulse burst represented the time how long the liquid phase existed. The final size of nanoparticles was a function of the film thickness and was found to be independent of the pulse energy and the number of pulses.« less

  12. Hybrid micromachining using a nanosecond pulsed laser and micro EDM

    NASA Astrophysics Data System (ADS)

    Kim, Sanha; Kim, Bo Hyun; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam

    2010-01-01

    Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown.

  13. Absorption and fluorescence spectroscopic characterization of BLUF domain of AppA from Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Schiereis, T.; Hegemann, P.; Jung, A.; Schlichting, I.

    2005-08-01

    The BLUF domain of the transcriptional anti-repressor protein AppA from the non-sulfur anoxyphototrophic purple bacterium Rhodobacter sphaeroides was characterized by absorption and emission spectroscopy. The BLUF domain constructs AppA 148 (consisting of amino-acid residues 1-148) and AppA 126 (amino-acid residues 1-126) are investigated. The cofactor of the investigated domains is found to consist of a mixture of the flavins riboflavin, FMN, and FAD. The dark-adapted domains exist in two different active receptor conformations (receptor states) with different sub-nanosecond fluorescence lifetimes (BLUF r,f and BLUF r,sl) and a small non-interacting conformation (BLUF nc). The active receptor conformations are transformed to putative signalling states (BLUF s,f and BLUF s,sl) of low fluorescence efficiency and picosecond fluorescence lifetime by blue-light excitation (light-adapted domains). In the dark at room temperature both signalling states recover back to the initial receptor states with a time constant of about 17 min. A quantum yield of signalling state formation of about 25% was determined by intensity dependent transmission measurements. A photo-cycle scheme is presented including photo-induced charge transfer complex formation, charge recombination, and protein binding pocket reorganisation.

  14. Time-domain comparisons of power law attenuation in causal and noncausal time-fractional wave equations

    PubMed Central

    Zhao, Xiaofeng; McGough, Robert J.

    2016-01-01

    The attenuation of ultrasound propagating in human tissue follows a power law with respect to frequency that is modeled by several different causal and noncausal fractional partial differential equations. To demonstrate some of the similarities and differences that are observed in three related time-fractional partial differential equations, time-domain Green's functions are calculated numerically for the power law wave equation, the Szabo wave equation, and for the Caputo wave equation. These Green's functions are evaluated for water with a power law exponent of y = 2, breast with a power law exponent of y = 1.5, and liver with a power law exponent of y = 1.139. Simulation results show that the noncausal features of the numerically calculated time-domain response are only evident very close to the source and that these causal and noncausal time-domain Green's functions converge to the same result away from the source. When noncausal time-domain Green's functions are convolved with a short pulse, no evidence of noncausal behavior remains in the time-domain, which suggests that these causal and noncausal time-fractional models are equally effective for these numerical calculations. PMID:27250193

  15. Spectral Collocation Time-Domain Modeling of Diffractive Optical Elements

    NASA Astrophysics Data System (ADS)

    Hesthaven, J. S.; Dinesen, P. G.; Lynov, J. P.

    1999-11-01

    A spectral collocation multi-domain scheme is developed for the accurate and efficient time-domain solution of Maxwell's equations within multi-layered diffractive optical elements. Special attention is being paid to the modeling of out-of-plane waveguide couplers. Emphasis is given to the proper construction of high-order schemes with the ability to handle very general problems of considerable geometric and material complexity. Central questions regarding efficient absorbing boundary conditions and time-stepping issues are also addressed. The efficacy of the overall scheme for the time-domain modeling of electrically large, and computationally challenging, problems is illustrated by solving a number of plane as well as non-plane waveguide problems.

  16. Time Domain Diffraction by Composite Structures

    NASA Astrophysics Data System (ADS)

    Riccio, Giovanni; Frongillo, Marcello

    2017-04-01

    Time domain (TD) diffraction problems are receiving great attention because of the widespread use of ultra wide band (UWB) communication and radar systems. It is commonly accepted that, due to the large bandwidth of the UWB signals, the analysis of the wave propagation mechanisms in the TD framework is preferable to the frequency domain (FD) data processing. Furthermore, the analysis of transient scattering phenomena is also of importance for predicting the effects of electromagnetic pulses on civil structures. Diffraction in the TD framework represents a challenging problem and numerical discretization techniques can be used to support research and industry activities. Unfortunately, these methods become rapidly intractable when considering excitation pulses with high frequency content. This contribution deals with the TD diffraction phenomenon related to composite structures containing a dielectric wedge with arbitrary apex angle when illuminated by a plane wave. The approach is the same used in [1]-[3]. The transient diffracted field originated by an arbitrary function plane wave is evaluated via a convolution integral involving the TD diffraction coefficients, which are determined in closed form starting from the knowledge of the corresponding FD counterparts. In particular, the inverse Laplace transform is applied to the FD Uniform Asymptotic Physical Optics (FD-UAPO) diffraction coefficients available for the internal region of the structure and the surrounding space. For each observation domain, the FD-UAPO expressions are obtained by considering electric and magnetic equivalent PO surface currents located on the interfaces. The surface radiation integrals using these sources is assumed as starting point and manipulated for obtaining integrals able to be solved by means of the Steepest Descent Method and the Multiplicative Method. [1] G. Gennarelli and G. Riccio, "Time domain diffraction by a right-angled penetrable wedge," IEEE Trans. Antennas Propag., Vol

  17. Nanosecond X-ray Photon Correlation Spectroscopy on Magnetic Skyrmions

    DOE PAGES

    Seaberg, M. H.; Holladay, B.; Lee, J. C. T.; ...

    2017-08-09

    We report an X-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant X-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond timescales in thin films of multilayered Fe/Gd that exhibit ordered stripe and skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the skyrmion phase and near the stripe-skyrmion boundary. As a result, this technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.

  18. Nanosecond X-ray Photon Correlation Spectroscopy on Magnetic Skyrmions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaberg, M. H.; Holladay, B.; Lee, J. C. T.

    We report an X-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant X-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond timescales in thin films of multilayered Fe/Gd that exhibit ordered stripe and skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the skyrmion phase and near the stripe-skyrmion boundary. As a result, this technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.

  19. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  20. Differences between time domain and Fourier domain optical coherence tomography in imaging tissues.

    PubMed

    Gao, W; Wu, X

    2017-11-01

    It has been numerously demonstrated that both time domain and Fourier domain optical coherence tomography (OCT) can generate high-resolution depth-resolved images of living tissues and cells. In this work, we compare the common points and differences between two methods when the continuous and random properties of live tissue are taken into account. It is found that when relationships that exist between the scattered light and tissue structures are taken into account, spectral interference measurements in Fourier domain OCT (FDOCT) is more advantageous than interference fringe envelope measurements in time domain OCT (TDOCT) in the cases where continuous property of tissue is taken into account. It is also demonstrated that when random property of tissue is taken into account FDOCT measures the Fourier transform of the spatial correlation function of the refractive index and speckle phenomena will limit the effective limiting imaging resolution in both TDOCT and FDOCT. Finally, the effective limiting resolution of both TDOCT and FDOCT are given which can be used to estimate the effective limiting resolution in various practical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  1. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    NASA Astrophysics Data System (ADS)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-07-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle-1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  2. Spectroscopic characteristics of H α /OI atomic lines generated by nanosecond pulsed corona-like discharge in deionized water

    NASA Astrophysics Data System (ADS)

    Pongrác, Branislav; Šimek, Milan; Člupek, Martin; Babický, Václav; Lukeš, Petr

    2018-03-01

    Basic emission fingerprints of nanosecond discharges produced in deionized water by fast rise-time positive high-voltage pulses (duration of 6 ns and amplitude of  +100 kV) in a point-to-plane electrode geometry were investigated by means of time-resolved intensified charge-coupled device (ICCD) spectroscopy. Time-resolved emission spectra were measured via ICCD kinetic series during the discharge ignition and later phases over the 350-850 nm spectral range with fixed, either 3 ns or 30 ns, acquisition time and with 3 ns or 30 ns time resolution, respectively. The luminous phase of the initial discharge expansion and its subsequent collapse was characterized by a broadband vis-NIR continuum emission evolving during the first few nanoseconds which shifted more toward the UV with further increase of time. After ~30 ns from the discharge onset, the continuum gradually disappeared followed by the emission of H α and OI atomic lines. The electron densities calculated from the H α profile fit were estimated to be of the order of 1018-1019 cm-3. It is unknown if the H α and OI atomic lines are generated even in earlier times (before ~30 ns) because such signals were not detectable due to the superposition with the strong continuum. However, subsequent events caused by the reflected HV pulses were observed to have significant effects on the emission spectra profiles of the nanosecond discharge. By varying the time delay of the reflected pulse from 45 to 90 ns after the primary pulse, the intensities of the H α /OI atomic lines in the emission spectra of the secondary discharges were clearly visible and their intensities were greater with shorter time delay between primary and reflected pulses. These results indicate that the discharges generated due to the reflected pulses were very likely generated in the non-relaxed environment.

  3. Recent studies on nanosecond-timescale pressurized gas discharges

    DOE PAGES

    Yatom, S.; Shlapakovski, A.; Beilin, L.; ...

    2016-10-05

    The results of recent experimental and numerical studies of nanosecond high-voltage discharges in pressurized gases are reviewed. The discharges were ignited in a diode filled by different gases within a wide range of pressures by an applied pulsed voltage or by a laser pulse in the gas-filled charged resonant microwave cavity. Fast-framing imaging of light emission, optical emission spectroscopy, X-ray foil spectrometry and coherent anti-Stokes Raman scattering were used to study temporal and spatial evolution of the discharge plasma density and temperature, energy distribution function of runaway electrons and dynamics of the electric field in the plasma channel. The resultsmore » obtained allow a deeper understanding of discharge dynamical properties in the nanosecond timescale, which is important for various applications of these types of discharges in pressurized gases.« less

  4. Distributed fiber strain and vibration sensor based on Brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry.

    PubMed

    Wang, Feng; Zhang, Xuping; Wang, Xiangchuan; Chen, Haisheng

    2013-07-15

    A distributed fiber strain and vibration sensor which effectively combines Brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry is proposed. Two reference beams with orthogonal polarization states are, respectively, used to perform the measurement. By using the signal obtained from either reference beam, the vibration of fiber can be measured from the polarization effect. After combining the signals obtained by both reference beams, the strain can be measured from the Brillouin effect. In the experiment, 10 m spatial resolution, 0.6 kHz frequency measurement range, 2.5 Hz frequency resolution, and 0.2 MHz uncertainty of Brillouin frequency measurement are realized for a 4 km sensing distance.

  5. Picosecond to nanosecond dynamics provide a source of conformational entropy for protein folding.

    PubMed

    Stadler, Andreas M; Demmel, Franz; Ollivier, Jacques; Seydel, Tilo

    2016-08-03

    Myoglobin can be trapped in fully folded structures, partially folded molten globules, and unfolded states under stable equilibrium conditions. Here, we report an experimental study on the conformational dynamics of different folded conformational states of apo- and holomyoglobin in solution. Global protein diffusion and internal molecular motions were probed by neutron time-of-flight and neutron backscattering spectroscopy on the picosecond and nanosecond time scales. Global protein diffusion was found to depend on the α-helical content of the protein suggesting that charges on the macromolecule increase the short-time diffusion of protein. With regard to the molten globules, a gel-like phase due to protein entanglement and interactions with neighbouring macromolecules was visible due to a reduction of the global diffusion coefficients on the nanosecond time scale. Diffusion coefficients, residence and relaxation times of internal protein dynamics and root mean square displacements of localised internal motions were determined for the investigated structural states. The difference in conformational entropy ΔSconf of the protein between the unfolded and the partially or fully folded conformations was extracted from the measured root mean square displacements. Using thermodynamic parameters from the literature and the experimentally determined ΔSconf values we could identify the entropic contribution of the hydration shell ΔShydr of the different folded states. Our results point out the relevance of conformational entropy of the protein and the hydration shell for stability and folding of myoglobin.

  6. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    NASA Astrophysics Data System (ADS)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  7. A large capacity time division multiplexed (TDM) laser beam combining technique enabled by nanosecond speed KTN deflector

    NASA Astrophysics Data System (ADS)

    Yin, Stuart (Shizhuo); Chao, Ju-Hung; Zhu, Wenbin; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Dubinskiy, Mark; Hoffman, Robert C.

    2017-08-01

    In this paper, we present a novel large capacity (a 1000+ channel) time division multiplexing (TDM) laser beam combining technique by harnessing a state-of-the-art nanosecond speed potassium tantalate niobate (KTN) electro-optic (EO) beam deflector as the time division multiplexer. The major advantages of TDM approach are: (1) large multiplexing capability (over 1000 channels), (2) high spatial beam quality (the combined beam has the same spatial profile as the individual beam), (3) high spectral beam quality (the combined beam has the same spectral width as the individual beam, and (4) insensitive to the phase fluctuation of individual laser because of the nature of the incoherent beam combining. The quantitative analyses show that it is possible to achieve over one hundred kW average power, single aperture, single transverse mode solid state and/or fiber laser by pursuing this innovative beam combining method, which represents a major technical advance in the field of high energy lasers. Such kind of 100+ kW average power diffraction limited beam quality lasers can play an important role in a variety of applications such as laser directed energy weapons (DEW) and large-capacity high-speed laser manufacturing, including cutting, welding, and printing.

  8. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishihara, M.; Takashima, K.; Rich, J. W.

    2011-06-15

    Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 {+-} 30 K. Phase-locked Schlieren images are used to detect compression waves generatedmore » by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.« less

  9. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field.

    PubMed

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-06-25

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge.

  10. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    NASA Astrophysics Data System (ADS)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  11. Inclinometer - Time Domain Reflectometry Comparative Study

    DOT National Transportation Integrated Search

    2004-12-01

    Four pairs of inclinometers and time domain reflectometry (TDR) cables were set up to make a side-by-side : comparison of the performance of these systems in detecting slippage of soils in the shoulders of State Route 124 : and State Route 338 in Mei...

  12. Inclinometer--time-domain reflectometry comparative study.

    DOT National Transportation Integrated Search

    2004-12-01

    Four pairs of inclinometers and time domain reflectometry (TDR) cables were set up to make a side-by-side : comparison of the performance of these systems in detecting slippage of soils in the shoulders of State Route 124 : and State Route 338 in Mei...

  13. Formation of various types of nanostructures on germanium surface by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Mikolutskiy, S. I.; Khasaya, R. R.; Khomich, Yu V.; Yamshchikov, V. A.

    2018-03-01

    The paper describes the formation of micro- and nanostructures in different parts of irradiation zone on germanium surface by multiple action of nanosecond pulses of ArF-laser. It proposes a simple method using only one laser beam without any optional devices and masks for surface treatment. Hexa- and pentagonal cells with submicron dimensions along the surface were observed in peripheral zone of irradiation spot by atomic-force microscopy. Nanostructures in the form of bulbs with rounded peaks with lateral sizes of 40-120 nm were obtained in peripheral low-intensity region of the laser spot. Considering experimental data on material processing by nanosecond laser pulses, a classification of five main types of surface reliefs formed by nanosecond laser pulses with energy density near or slightly above ablation threshold was proposed.

  14. A statistical package for computing time and frequency domain analysis

    NASA Technical Reports Server (NTRS)

    Brownlow, J.

    1978-01-01

    The spectrum analysis (SPA) program is a general purpose digital computer program designed to aid in data analysis. The program does time and frequency domain statistical analyses as well as some preanalysis data preparation. The capabilities of the SPA program include linear trend removal and/or digital filtering of data, plotting and/or listing of both filtered and unfiltered data, time domain statistical characterization of data, and frequency domain statistical characterization of data.

  15. Two-photon microscopy using fiber-based nanosecond excitation.

    PubMed

    Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert

    2016-07-01

    Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements.

  16. Ablation of aluminum nitride films by nanosecond and femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Tzou, Robert; Salakhutdinov, Ildar; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory

    2009-02-01

    We present results of comparative study of laser-induced ablation of AlN films with variable content of oxygen as a surface-doping element. The films deposited on sapphire substrate were ablated by a single nanosecond pulse at wavelength 248 nm, and by a single femtosecond pulse at wavelength 775 nm in air at normal pressure. Ablation craters were inspected by AFM and Nomarski high-resolution microscope. Irradiation by nanosecond pulses leads to a significant removal of material accompanied by extensive thermal effects, chemical modification of the films around the ablation craters and formation of specific defect structures next to the craters. Remarkable feature of the nanosecond experiments was total absence of thermo-mechanical fracturing near the edges of ablation craters. The femtosecond pulses produced very gentle ablation removing sub-micrometer layers of the films. No remarkable signs of thermal, thermo-mechanical or chemical effects were found on the films after the femtosecond ablation. We discuss mechanisms responsible for the specific ablation effects and morphology of the ablation craters.

  17. Architecture for time or transform domain decoding of reed-solomon codes

    NASA Technical Reports Server (NTRS)

    Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor); Deutsch, Leslie J. (Inventor); Shao, Howard M. (Inventor)

    1989-01-01

    Two pipeline (255,233) RS decoders, one a time domain decoder and the other a transform domain decoder, use the same first part to develop an errata locator polynomial .tau.(x), and an errata evaluator polynominal A(x). Both the time domain decoder and transform domain decoder have a modified GCD that uses an input multiplexer and an output demultiplexer to reduce the number of GCD cells required. The time domain decoder uses a Chien search and polynomial evaluator on the GCD outputs .tau.(x) and A(x), for the final decoding steps, while the transform domain decoder uses a transform error pattern algorithm operating on .tau.(x) and the initial syndrome computation S(x), followed by an inverse transform algorithm in sequence for the final decoding steps prior to adding the received RS coded message to produce a decoded output message.

  18. Numerical time-domain electromagnetics based on finite-difference and convolution

    NASA Astrophysics Data System (ADS)

    Lin, Yuanqu

    Time-domain methods posses a number of advantages over their frequency-domain counterparts for the solution of wideband, nonlinear, and time varying electromagnetic scattering and radiation phenomenon. Time domain integral equation (TDIE)-based methods, which incorporate the beneficial properties of integral equation method, are thus well suited for solving broadband scattering problems for homogeneous scatterers. Widespread adoption of TDIE solvers has been retarded relative to other techniques by their inefficiency, inaccuracy and instability. Moreover, two-dimensional (2D) problems are especially problematic, because 2D Green's functions have infinite temporal support, exacerbating these difficulties. This thesis proposes a finite difference delay modeling (FDDM) scheme for the solution of the integral equations of 2D transient electromagnetic scattering problems. The method discretizes the integral equations temporally using first- and second-order finite differences to map Laplace-domain equations into the Z domain before transforming to the discrete time domain. The resulting procedure is unconditionally stable because of the nature of the Laplace- to Z-domain mapping. The first FDDM method developed in this thesis uses second-order Lagrange basis functions with Galerkin's method for spatial discretization. The second application of the FDDM method discretizes the space using a locally-corrected Nystrom method, which accelerates the precomputation phase and achieves high order accuracy. The Fast Fourier Transform (FFT) is applied to accelerate the marching-on-time process in both methods. While FDDM methods demonstrate impressive accuracy and stability in solving wideband scattering problems for homogeneous scatterers, they still have limitations in analyzing interactions between several inhomogenous scatterers. Therefore, this thesis devises a multi-region finite-difference time-domain (MR-FDTD) scheme based on domain-optimal Green's functions for solving

  19. A Novel Nanosecond Pulsed Power Unit for the Formation of ·OH in Water

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Hu, Sheng; Zhang, Han

    2012-04-01

    A novel nanosecond pulsed power unit was developed for plasma treatment of wastewater, based on the theory of magnetic pulse compression and semiconductor opening switch (SOS). The peak value, rise time and pulse duration of the output voltage were observed to be -51 kV, 60 ns and 120 ns, respectively. The concentrations of ·OH generated by the novel nanosecond pulsed plasma power were determined using the method of high-performance liquid chromatography (HPLC). The results showed that the concentrations of ·OH increased with the increase in peak voltage, and the generation rates of ·OH were 4.1 × 10-10 mol/s, 5.7 × 10-10 mol/s, and 7.7 × 10-10 mol/s at 30 kV, 35 kV, and 40 kV, respectively. The efficiency of OH generation was found to be independent of the input parameters for applied power, with an average value of 3.23×10-12 mol/J obtained.

  20. Nanosecond multiple pulse measurements and the different types of defects

    NASA Astrophysics Data System (ADS)

    Wagner, Frank R.; Natoli, Jean-Yves; Beaudier, Alexandre; Commandré, Mireille

    2017-11-01

    Laser damage measurements with multiple pulses at constant fluence (S-on-1 measurements) are of high practical importance for design and validation of high power photonic instruments. Using nanosecond lasers, it has been recognized long ago that single pulse laser damage is linked to fabrication related defects. Models describing the laser damage probability as the probability of encounter between the high fluence region of the laser beam and the fabrication related defects are thus widely used to analyze the measurements. Nanosecond S-on-1 tests often reveal the "fatigue effect", i.e. a decrease of the laser damage threshold with increasing pulse number. Most authors attribute this effect to cumulative material modifications operated by the first pulses. In this paper we discuss the different situations that are observed upon nanosecond S-on-1 measurements of several different materials using different wavelengths and speak in particular about the defects involved in the laser damage mechanism. These defects may be fabrication-related or laser-induced, stable or evolutive, cumulative or of short lifetime. We will show that the type of defect that is dominating an S-on-1 experiment depends on the wavelength and the material under test and give examples from measurements of nonlinear optical crystals, fused silica and oxide mixture coatings.

  1. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field

    PubMed Central

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-01-01

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294

  2. Cerebral autoregulation in the preterm newborn using near-infrared spectroscopy: a comparison of time-domain and frequency-domain analyses

    NASA Astrophysics Data System (ADS)

    Eriksen, Vibeke R.; Hahn, Gitte H.; Greisen, Gorm

    2015-03-01

    The aim was to compare two conventional methods used to describe cerebral autoregulation (CA): frequency-domain analysis and time-domain analysis. We measured cerebral oxygenation (as a surrogate for cerebral blood flow) and mean arterial blood pressure (MAP) in 60 preterm infants. In the frequency domain, outcome variables were coherence and gain, whereas the cerebral oximetry index (COx) and the regression coefficient were the outcome variables in the time domain. Correlation between coherence and COx was poor. The disagreement between the two methods was due to the MAP and cerebral oxygenation signals being in counterphase in three cases. High gain and high coherence may arise spuriously when cerebral oxygenation decreases as MAP increases; hence, time-domain analysis appears to be a more robust-and simpler-method to describe CA.

  3. Ozone and dinitrogen monoxide production in atmospheric pressure air dielectric barrier discharge plasma effluent generated by nanosecond pulse superimposed alternating current voltage

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Kaneko, Toshiro

    2017-06-01

    The effects of nanosecond pulse superposition to alternating current voltage (NS + AC) on the generation of an air dielectric barrier discharge (DBD) plasma and reactive species are experimentally studied, along with measurements of ozone (O3) and dinitrogen monoxide (N2O) in the exhausted gas through the air DBD plasma (air plasma effluent). The charge-voltage cycle measurement indicates that the role of nanosecond pulse superposition is to induce electrical charge transport and excess charge accumulation on the dielectric surface following the nanosecond pulses. The densities of O3 and N2O in NS + AC DBD are found to be significantly increased in the plasma effluent, compared to the sum of those densities generated in NS DBD and AC DBD operated individually. The production of O3 and N2O is modulated significantly by the phase in which the nanosecond pulse is superimposed. The density increase and modulation effects by the nanosecond pulse are found to correspond with the electrical charge transport and the excess electrical charge accumulation induced by the nanosecond pulse. It is suggested that the electrical charge transport by the nanosecond pulse might result in the enhancement of the nanosecond pulse current, which may lead to more efficient molecular dissociation, and the excess electrical charge accumulation induced by the nanosecond pulse increases the discharge coupling power which would enhance molecular dissociation.

  4. A distributed parameter model of transmission line transformer for high voltage nanosecond pulse generation

    NASA Astrophysics Data System (ADS)

    Li, Jiangtao; Zhao, Zheng; Li, Longjie; He, Jiaxin; Li, Chenjie; Wang, Yifeng; Su, Can

    2017-09-01

    A transmission line transformer has potential advantages for nanosecond pulse generation including excellent frequency response and no leakage inductance. The wave propagation process in a secondary mode line is indispensable due to an obvious inside transient electromagnetic transition in this scenario. The equivalent model of the transmission line transformer is crucial for predicting the output waveform and evaluating the effects of magnetic cores on output performance. However, traditional lumped parameter models are not sufficient for nanosecond pulse generation due to the natural neglect of wave propagations in secondary mode lines based on a lumped parameter assumption. In this paper, a distributed parameter model of transmission line transformer was established to investigate wave propagation in the secondary mode line and its influential factors through theoretical analysis and experimental verification. The wave propagation discontinuity in the secondary mode line induced by magnetic cores is emphasized. Characteristics of the magnetic core under a nanosecond pulse were obtained by experiments. Distribution and formation of the secondary mode current were determined for revealing essential wave propagation processes in secondary mode lines. The output waveform and efficiency were found to be affected dramatically by wave propagation discontinuity in secondary mode lines induced by magnetic cores. The proposed distributed parameter model was proved more suitable for nanosecond pulse generation in aspects of secondary mode current, output efficiency, and output waveform. In depth, comprehension of underlying mechanisms and a broader view of the working principle of the transmission line transformer for nanosecond pulse generation can be obtained through this research.

  5. A distributed parameter model of transmission line transformer for high voltage nanosecond pulse generation.

    PubMed

    Li, Jiangtao; Zhao, Zheng; Li, Longjie; He, Jiaxin; Li, Chenjie; Wang, Yifeng; Su, Can

    2017-09-01

    A transmission line transformer has potential advantages for nanosecond pulse generation including excellent frequency response and no leakage inductance. The wave propagation process in a secondary mode line is indispensable due to an obvious inside transient electromagnetic transition in this scenario. The equivalent model of the transmission line transformer is crucial for predicting the output waveform and evaluating the effects of magnetic cores on output performance. However, traditional lumped parameter models are not sufficient for nanosecond pulse generation due to the natural neglect of wave propagations in secondary mode lines based on a lumped parameter assumption. In this paper, a distributed parameter model of transmission line transformer was established to investigate wave propagation in the secondary mode line and its influential factors through theoretical analysis and experimental verification. The wave propagation discontinuity in the secondary mode line induced by magnetic cores is emphasized. Characteristics of the magnetic core under a nanosecond pulse were obtained by experiments. Distribution and formation of the secondary mode current were determined for revealing essential wave propagation processes in secondary mode lines. The output waveform and efficiency were found to be affected dramatically by wave propagation discontinuity in secondary mode lines induced by magnetic cores. The proposed distributed parameter model was proved more suitable for nanosecond pulse generation in aspects of secondary mode current, output efficiency, and output waveform. In depth, comprehension of underlying mechanisms and a broader view of the working principle of the transmission line transformer for nanosecond pulse generation can be obtained through this research.

  6. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air.

    PubMed

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-15

    In this study, a bipolar nanosecond pulse with 20ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Connecting the time domain community with the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Graham, Matthew J.; Djorgovski, S. G.; Donalek, Ciro; Drake, Andrew J.; Mahabal, Ashish A.; Plante, Raymond L.; Kantor, Jeffrey; Good, John C.

    2012-09-01

    The time domain has been identied as one of the most important areas of astronomical research for the next decade. The Virtual Observatory is in the vanguard with dedicated tools and services that enable and facilitate the discovery, dissemination and analysis of time domain data. These range in scope from rapid notications of time-critical astronomical transients to annotating long-term variables with the latest modelling results. In this paper, we will review the prior art in these areas and focus on the capabilities that the VAO is bringing to bear in support of time domain science. In particular, we will focus on the issues involved with the heterogeneous collections of (ancilllary) data associated with astronomical transients, and the time series characterization and classication tools required by the next generation of sky surveys, such as LSST and SKA.

  8. Single-label kinase and phosphatase assays for tyrosine phosphorylation using nanosecond time-resolved fluorescence detection.

    PubMed

    Sahoo, Harekrushna; Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M

    2007-12-26

    The collision-induced fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) by hydrogen atom abstraction from the tyrosine residue in peptide substrates was introduced as a single-labeling strategy to assay the activity of tyrosine kinases and phosphatases. The assays were tested for 12 different combinations of Dbo-labeled substrates and with the enzymes p60c-Src Src kinase, EGFR kinase, YOP protein tyrosine phosphatase, as well as acid and alkaline phosphatases, thereby demonstrating a broad application potential. The steady-state fluorescence changed by a factor of up to 7 in the course of the enzymatic reaction, which allowed for a sufficient sensitivity of continuous monitoring in steady-state experiments. The fluorescence lifetimes (and intensities) were found to be rather constant for the phosphotyrosine peptides (ca. 300 ns in aerated water), while those of the unphosphorylated peptides were as short as 40 ns (at pH 7) and 7 ns (at pH 13) as a result of intramolecular quenching. Owing to the exceptionally long fluorescence lifetime of Dbo, the assays were alternatively performed by using nanosecond time-resolved fluorescence (Nano-TRF) detection, which leads to an improved discrimination of background fluorescence and an increased sensitivity. The potential for inhibitor screening was demonstrated through the inhibition of acid and alkaline phosphatases by molybdate.

  9. Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges

    NASA Astrophysics Data System (ADS)

    Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.

    2017-04-01

    This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s-1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.

  10. Holographic imaging based on time-domain data of natural-fiber-containing materials

    DOEpatents

    Bunch, Kyle J.; McMakin, Douglas L.

    2012-09-04

    Methods and apparatuses for imaging material properties in natural-fiber-containing materials can utilize time-domain data. In particular, images can be constructed that provide quantified measures of localized moisture content. For example, one or more antennas and at least one transceiver can be configured to collect time-domain data from radiation interacting with the natural-fiber-containing materials. The antennas and the transceivers are configured to transmit and receive electromagnetic radiation at one or more frequencies, which are between 50 MHz and 1 THz, according to a time-domain impulse function. A computing device is configured to transform the time-domain data to frequency-domain data, to apply a synthetic imaging algorithm for constructing a three-dimensional image of the natural-fiber-containing materials, and to provide a quantified measure of localized moisture content based on a pre-determined correlation of moisture content to frequency-domain data.

  11. Frequency- and Time-Domain Methods in Soil-Structure Interaction Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolisetti, Chandrakanth; Whittaker, Andrew S.; Coleman, Justin L.

    2015-06-01

    Soil-structure interaction (SSI) analysis in the nuclear industry is currently performed using linear codes that function in the frequency domain. There is a consensus that these frequency-domain codes give reasonably accurate results for low-intensity ground motions that result in almost linear response. For higher intensity ground motions, which may result in nonlinear response in the soil, structure or at the vicinity of the foundation, the adequacy of frequency-domain codes is unproven. Nonlinear analysis, which is only possible in the time domain, is theoretically more appropriate in such cases. These methods are available but are rarely used due to the largemore » computational requirements and a lack of experience with analysts and regulators. This paper presents an assessment of the linear frequency-domain code, SASSI, which is widely used in the nuclear industry, and the time-domain commercial finite-element code, LS-DYNA, for SSI analysis. The assessment involves benchmarking the SSI analysis procedure in LS-DYNA against SASSI for linearly elastic models. After affirming that SASSI and LS-DYNA result in almost identical responses for these models, they are used to perform nonlinear SSI analyses of two structures founded on soft soil. An examination of the results shows that, in spite of using identical material properties, the predictions of frequency- and time-domain codes are significantly different in the presence of nonlinear behavior such as gapping and sliding of the foundation.« less

  12. GPS common-view time transfer

    NASA Technical Reports Server (NTRS)

    Lewandowski, W.

    1994-01-01

    The introduction of the GPS common-view method at the beginning of the 1980's led to an immediate and dramatic improvement of international time comparisons. Since then, further progress brought the precision and accuracy of GPS common-view intercontinental time transfer from tens of nanoseconds to a few nanoseconds, even with SA activated. This achievement was made possible by the use of the following: ultra-precise ground antenna coordinates, post-processed precise ephemerides, double-frequency measurements of ionosphere, and appropriate international coordination and standardization. This paper reviews developments and applications of the GPS common-view method during the last decade and comments on possible future improvements whose objective is to attain sub-nanosecond uncertainty.

  13. Full waveform time domain solutions for source and induced magnetotelluric and controlled-source electromagnetic fields using quasi-equivalent time domain decomposition and GPU parallelization

    NASA Astrophysics Data System (ADS)

    Imamura, N.; Schultz, A.

    2015-12-01

    Recently, a full waveform time domain solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations of non-zero wavenumber, the ability to operate in areas of high levels of source signal spatial complexity and non-stationarity, etc. This goal would not be obtainable if one were to adopt the finite difference time-domain (FDTD) approach for the forward problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across the large frequency bandwidth. It means that for FDTD simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a linear system that is computationally burdensome to solve. We have implemented our code that addresses this situation through the use of a fictitious wave domain method and GPUs to speed up the computation time. We also substantially reduce the size of the linear systems by applying concepts from successive cascade decimation, through quasi-equivalent time domain decomposition. By combining these refinements, we have made good progress toward implementing the core of a full waveform joint source field/earth conductivity inverse modeling method. From results, we found the use of previous generation of CPU/GPU speeds computations by an order of magnitude over a parallel CPU only approach. In part, this arises from the use of the quasi-equivalent time domain decomposition, which shrinks the size of the linear system dramatically.

  14. Cross-correlation least-squares reverse time migration in the pseudo-time domain

    NASA Astrophysics Data System (ADS)

    Li, Qingyang; Huang, Jianping; Li, Zhenchun

    2017-08-01

    The least-squares reverse time migration (LSRTM) method with higher image resolution and amplitude is becoming increasingly popular. However, the LSRTM is not widely used in field land data processing because of its sensitivity to the initial migration velocity model, large computational cost and mismatch of amplitudes between the synthetic and observed data. To overcome the shortcomings of the conventional LSRTM, we propose a cross-correlation least-squares reverse time migration algorithm in pseudo-time domain (PTCLSRTM). Our algorithm not only reduces the depth/velocity ambiguities, but also reduces the effect of velocity error on the imaging results. It relieves the accuracy requirements on the migration velocity model of least-squares migration (LSM). The pseudo-time domain algorithm eliminates the irregular wavelength sampling in the vertical direction, thus it can reduce the vertical grid points and memory requirements used during computation, which makes our method more computationally efficient than the standard implementation. Besides, for field data applications, matching the recorded amplitudes is a very difficult task because of the viscoelastic nature of the Earth and inaccuracies in the estimation of the source wavelet. To relax the requirement for strong amplitude matching of LSM, we extend the normalized cross-correlation objective function to the pseudo-time domain. Our method is only sensitive to the similarity between the predicted and the observed data. Numerical tests on synthetic and land field data confirm the effectiveness of our method and its adaptability for complex models.

  15. Anderson localization and Mott insulator phase in the time domain

    PubMed Central

    Sacha, Krzysztof

    2015-01-01

    Particles in space periodic potentials constitute standard models for investigation of crystalline phenomena in solid state physics. Time periodicity of periodically driven systems is a close analogue of space periodicity of solid state crystals. There is an intriguing question if solid state phenomena can be observed in the time domain. Here we show that wave-packets localized on resonant classical trajectories of periodically driven systems are ideal elements to realize Anderson localization or Mott insulator phase in the time domain. Uniform superpositions of the wave-packets form stationary states of a periodically driven particle. However, an additional perturbation that fluctuates in time results in disorder in time and Anderson localization effects emerge. Switching to many-particle systems we observe that depending on how strong particle interactions are, stationary states can be Bose-Einstein condensates or single Fock states where definite numbers of particles occupy the periodically evolving wave-packets. Our study shows that non-trivial crystal-like phenomena can be observed in the time domain. PMID:26074169

  16. Sub-nanosecond dynamics in low-dimensional systems

    NASA Astrophysics Data System (ADS)

    Armstrong-Brown, Alistair

    The sub-nanosecond dynamics of a two-dimensional electron gas (2DEG) are studied in conditions of high fields and low temperatures. Three main regimes are identified. Firstly, the propagation of sub-nanosecond, or GHz, signals in a 2DEG waveguide at low temperature (2 K) and high magnetic field (9 T). Here we show that the 2DEG waveguide can be fully parameterised by the Hall resistance and a new 'microwave scaling constant'. Secondly, the physics of plasmons confined at the edge and in a magnetic field (9 T): edge magnetoplasmons (EMPs). Here we resolve multiple plasmon modes, where as well as the standard EMP resonances, we discover additional lower frequency modes, which could be related to transverse acoustic excitations. Thirdly, tunneling into microwave induced resistance oscillation (MIRO) states at low temperatures (50 mK). By using a novel cleaved edge overgrown (CEO) technique we are able to identify the role of photon assisted tunneling (PAT) in the formation of MIROs. These experimental results were obtained by developing new techniques combining microwaves, low temperatures, 2DEGs and high magnetic fields, which required the design and fabrication of several novel probes for these regimes.

  17. A multi-domain spectral method for time-fractional differential equations

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.

    2015-07-01

    This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.

  18. Imaging workflow and calibration for CT-guided time-domain fluorescence tomography

    PubMed Central

    Tichauer, Kenneth M.; Holt, Robert W.; El-Ghussein, Fadi; Zhu, Qun; Dehghani, Hamid; Leblond, Frederic; Pogue, Brian W.

    2011-01-01

    In this study, several key optimization steps are outlined for a non-contact, time-correlated single photon counting small animal optical tomography system, using simultaneous collection of both fluorescence and transmittance data. The system is presented for time-domain image reconstruction in vivo, illustrating the sensitivity from single photon counting and the calibration steps needed to accurately process the data. In particular, laser time- and amplitude-referencing, detector and filter calibrations, and collection of a suitable instrument response function are all presented in the context of time-domain fluorescence tomography and a fully automated workflow is described. Preliminary phantom time-domain reconstructed images demonstrate the fidelity of the workflow for fluorescence tomography based on signal from multiple time gates. PMID:22076264

  19. Periodic Time-Domain Nonlocal Nonreflecting Boundary Conditions for Duct Acoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Zorumski, William E.

    1996-01-01

    Periodic time-domain boundary conditions are formulated for direct numerical simulation of acoustic waves in ducts without flow. Well-developed frequency-domain boundary conditions are transformed into the time domain. The formulation is presented here in one space dimension and time; however, this formulation has an advantage in that its extension to variable-area, higher dimensional, and acoustically treated ducts is rigorous and straightforward. The boundary condition simulates a nonreflecting wave field in an infinite uniform duct and is implemented by impulse-response operators that are applied at the boundary of the computational domain. These operators are generated by convolution integrals of the corresponding frequency-domain operators. The acoustic solution is obtained by advancing the Euler equations to a periodic state with the MacCormack scheme. The MacCormack scheme utilizes the boundary condition to limit the computational space and preserve the radiation boundary condition. The success of the boundary condition is attributed to the fact that it is nonreflecting to periodic acoustic waves. In addition, transient waves can pass rapidly out of the solution domain. The boundary condition is tested for a pure tone and a multitone source in a linear setting. The effects of various initial conditions are assessed. Computational solutions with the boundary condition are consistent with the known solutions for nonreflecting wave fields in an infinite uniform duct.

  20. On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain

    NASA Astrophysics Data System (ADS)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-06-01

    We present and demonstrate a new method for on-chip Brownian relaxation measurements on magnetic nanobeads in the time domain using magnetoresistive sensors. The beads are being magnetized by the sensor self-field arising from the bias current passed through the sensors and thus no external magnetic fields are needed. First, the method is demonstrated on Brownian relaxation measurements of beads with nominal sizes of 40, 80, 130, and 250 nm. The results are found to compare well to those obtained by an already established measurement technique in the frequency domain. Next, we demonstrate the time and frequency domain methods on Brownian relaxation detection of clustering of streptavidin coated magnetic beads in the presence of different concentrations of biotin-conjugated bovine serum albumin and obtain comparable results. In the time domain, a measurement is carried out in less than 30 s, which is about six times faster than in the frequency domain. This substantial reduction of the measurement time allows for continuous monitoring of the bead dynamics vs. time and opens for time-resolved studies, e.g., of binding kinetics.

  1. Time-domain multiple-quantum NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weitekamp, Daniel P.

    1982-11-01

    The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species.

  2. Wind-instrument reflection function measurements in the time domain.

    PubMed

    Keefe, D H

    1996-04-01

    Theoretical and computational analyses of wind-instrument sound production in the time domain have emerged as useful tools for understanding musical instrument acoustics, yet there exist few experimental measurements of the air-column response directly in the time domain. A new experimental, time-domain technique is proposed to measure the reflection function response of woodwind and brass-instrument air columns. This response is defined at the location of sound regeneration in the mouthpiece or double reed. A probe assembly comprised of an acoustic source and microphone is inserted directly into the air column entryway using a foam plug to ensure a leak-free fit. An initial calibration phase involves measurements on a single cylindrical tube of known dimensions. Measurements are presented on an alto saxophone and euphonium. The technique has promise for testing any musical instrument air columns using a single probe assembly and foam plugs over a range of diameters typical of air-column entryways.

  3. High Performance Computing of Meshless Time Domain Method on Multi-GPU Cluster

    NASA Astrophysics Data System (ADS)

    Ikuno, Soichiro; Nakata, Susumu; Hirokawa, Yuta; Itoh, Taku

    2015-01-01

    High performance computing of Meshless Time Domain Method (MTDM) on multi-GPU using the supercomputer HA-PACS (Highly Accelerated Parallel Advanced system for Computational Sciences) at University of Tsukuba is investigated. Generally, the finite difference time domain (FDTD) method is adopted for the numerical simulation of the electromagnetic wave propagation phenomena. However, the numerical domain must be divided into rectangle meshes, and it is difficult to adopt the problem in a complexed domain to the method. On the other hand, MTDM can be easily adept to the problem because MTDM does not requires meshes. In the present study, we implement MTDM on multi-GPU cluster to speedup the method, and numerically investigate the performance of the method on multi-GPU cluster. To reduce the computation time, the communication time between the decomposed domain is hided below the perfect matched layer (PML) calculation procedure. The results of computation show that speedup of MTDM on 128 GPUs is 173 times faster than that of single CPU calculation.

  4. Application of Time Domain Reflectometers in Urban Settings

    EPA Science Inventory

    Time domain reflectometers (TDRs) are sensors that measure the volumetric water content of soils and porous media. The sensors consist of stainless steel rods connected to a circuit board in an epoxy housing. An electromagnetic pulse is propagated along the rods. The time, or per...

  5. Fast time- and frequency-domain finite-element methods for electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Lee, Woochan

    Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution

  6. Time domains of the hypoxic cardio-respiratory response in bowfin (Amia calva).

    PubMed

    Porteus, Cosima S; Wright, Patricia A; Milsom, William K

    2014-02-01

    The aim of this study was to determine whether time domains exist in the hypoxic ventilatory (HVR) and cardiac responses (HCR) of bowfin (Amia calva), a facultative air breather, exposed to sustained hypoxia (SH) (26mmHg at 8°C or 45mmHg at 22°C). It was hypothesized that time domains would be evident in the HVR and HCR of bowfin when denied access to air during SH, as have been reported in mammals. It was also hypothesized that they would not be present in bowfin with access to air during SH because their oxygen supply should not be limited due to air breathing. Bowfin without access to air during SH exhibited time domains of the HVR and some time domains of the HCR. As hypothesized, bowfin with access to air did not exhibit time dependent changes in the gill breathing, air breathing, or cardiac responses to SH. The extent to which these reflect homologous processes to those underlying time domains in mammals remains to be determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A Proposed Time Transfer Experiment Between the USA and the South Pacific

    DTIC Science & Technology

    1991-12-01

    1 nanosecond, The corrected position will be traris~nitted by both the time transfer modem and the existing TV line sync dissemination process...communications satellite (AUSSAT K1) (Figure 5), With after-the- fact ephemeris correction , this is useful to the 20 nanosecond level. The second...spheric corrections will ultimately reduce ephemeris related time transfer errors to the 1 nanosecond level. The corrected position will be transmitted

  8. Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry.

    PubMed

    Marceau, Claude; Makhija, Varun; Platzer, Dominique; Naumov, A Yu; Corkum, P B; Stolow, Albert; Villeneuve, D M; Hockett, Paul

    2017-08-25

    Photoionization of molecular species is, essentially, a multipath interferometer with both experimentally controllable and intrinsic molecular characteristics. In this work, XUV photoionization of impulsively aligned molecular targets (N_{2}) is used to provide a time-domain route to "complete" photoionization experiments, in which the rotational wave packet controls the geometric part of the photoionization interferometer. The data obtained is sufficient to determine the magnitudes and phases of the ionization matrix elements for all observed channels, and to reconstruct molecular frame interferograms from lab frame measurements. In principle, this methodology provides a time-domain route to complete photoionization experiments and the molecular frame, which is generally applicable to any molecule (no prerequisites), for all energies and ionization channels.

  9. Time Domain Reflectometry for Damage Detection of Laminated CFRP plate

    DTIC Science & Technology

    2011-08-18

    Final Report PROJECT ID: AOARD-10-4112 Title: Time Domain Reflectometry for damage detection of laminated CFRP plate Researcher: Professor Akira...From July/2010 To July/2011 Abstract Recently, high toughness Carbon Fiber Reinforced Polymer (CFRP) laminates are used to primary structures. The...large laminated CFRP structures. In the previous study, Time Domain Reflectometry (TDR) method is adopted for the detection of the fiber breakages of

  10. Design of a patterned nanostructure array using a nanosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Yoshida, Yutaka; Ohnishi, Ko; Matsuo, Yasutaka; Watanabe, Seiichi

    2018-04-01

    For design the patterned nanostructure array (PNSA) on material surface using a nanosecond pulsed laser, we investigated the influence of phase shift between scattered lights on silicon (Si) substrate using 30-nm-wide gold lines (GLs) spacings. At a spacing of 5,871 nm, ten nanodot (ND) arrays were formed at intervals of 533 nm by nanosecond pulsed laser. The results show that the formation of the PNSA was affected by the resonance of scattered light. We conclude that ND arrays were formed with a spacing of Λ = nλ. And we have designed PNSA comprising two ND arrays on the substrate. The PNSA with dimensions of 1,600 nm × 1,600 nm was prepared using GLs.

  11. Controlled oxide films formation by nanosecond laser pulses for color marking.

    PubMed

    Veiko, Vadim; Odintsova, Galina; Ageev, Eduard; Karlagina, Yulia; Loginov, Anatoliy; Skuratova, Alexandra; Gorbunova, Elena

    2014-10-06

    A technology of laser-induced coloration of metals by surface oxidation is demonstrated. Each color of the oxide film corresponds to a technologic chromacity coefficient, which takes into account the temperature of the sample after exposure by sequence of laser pulses with nanosecond duration and effective time of action. The coefficient can be used for the calculation of laser exposure regimes for the development of a specific color on the metal. A correlation between the composition of the films obtained on the surface of stainless steel AISI 304 and commercial titanium Grade 2 and its color and chromacity coordinates is shown.

  12. Domain decomposition and matching for time-domain analysis of motions of ships advancing in head sea

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Zhu, Ren-chuan; Miao, Guo-ping; Fan, Ju

    2014-08-01

    A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare.

  13. Methodology for time-domain estimation of storm time geoelectric fields using the 3-D magnetotelluric response tensors

    USGS Publications Warehouse

    Kelbert, Anna; Balch, Christopher; Pulkkinen, Antti; Egbert, Gary D; Love, Jeffrey J.; Rigler, E. Joshua; Fujii, Ikuko

    2017-01-01

    Geoelectric fields at the Earth's surface caused by magnetic storms constitute a hazard to the operation of electric power grids and related infrastructure. The ability to estimate these geoelectric fields in close to real time and provide local predictions would better equip the industry to mitigate negative impacts on their operations. Here we report progress toward this goal: development of robust algorithms that convolve a magnetic storm time series with a frequency domain impedance for a realistic three-dimensional (3-D) Earth, to estimate the local, storm time geoelectric field. Both frequency domain and time domain approaches are presented and validated against storm time geoelectric field data measured in Japan. The methods are then compared in the context of a real-time application.

  14. Methodology for time-domain estimation of storm time geoelectric fields using the 3-D magnetotelluric response tensors

    NASA Astrophysics Data System (ADS)

    Kelbert, Anna; Balch, Christopher C.; Pulkkinen, Antti; Egbert, Gary D.; Love, Jeffrey J.; Rigler, E. Joshua; Fujii, Ikuko

    2017-07-01

    Geoelectric fields at the Earth's surface caused by magnetic storms constitute a hazard to the operation of electric power grids and related infrastructure. The ability to estimate these geoelectric fields in close to real time and provide local predictions would better equip the industry to mitigate negative impacts on their operations. Here we report progress toward this goal: development of robust algorithms that convolve a magnetic storm time series with a frequency domain impedance for a realistic three-dimensional (3-D) Earth, to estimate the local, storm time geoelectric field. Both frequency domain and time domain approaches are presented and validated against storm time geoelectric field data measured in Japan. The methods are then compared in the context of a real-time application.

  15. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  16. Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA

    NASA Astrophysics Data System (ADS)

    Bellato, M.; Bortolato, D.; Chavas, J.; Isocrate, R.; Rampazzo, G.; Triossi, A.; Bazzacco, D.; Mengoni, D.; Recchia, F.

    2013-07-01

    The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors.

  17. Z-scan study of thermal nonlinearities in silicon naphthalocyanine-toluene solution with the excitations of the picosecond pulse train and nanosecond pulse

    NASA Astrophysics Data System (ADS)

    Yang, Sidney S.; Wei, Tai-Huei; Huang, Tzer-Hsiang; Chang, Yun-Ching

    2007-02-01

    Using the Z-scan technique, we studied the nonlinear absorption and refraction behaviors of a dilute toluene solution of a silicon naphthalocyanine (Si(OSi(n-hexyl)3)2, SiNc) at 532 nanometer with both a 2.8-nanosecond pulse and a 21-nanosecond (HW1/eM) pulse train containing 11 18-picosecond pulses 7 nanosecond apart. A thermal acoustic model and its steady-state approximation account for the heat generated by the nonradiative relaxations subsequent to the absorption. We found that when the steady-state approximation satisfactorily explained the results obtained with a 21-nanosecond pulse train, only the thermal-acoustic model fit the 2.8-nanosecond experimental results, which supports the approximation criterion established by Kovsh et al.

  18. A post-processing algorithm for time domain pitch trackers

    NASA Astrophysics Data System (ADS)

    Specker, P.

    1983-01-01

    This paper describes a powerful post-processing algorithm for time-domain pitch trackers. On two successive passes, the post-processing algorithm eliminates errors produced during a first pass by a time-domain pitch tracker. During the second pass, incorrect pitch values are detected as outliers by computing the distribution of values over a sliding 80 msec window. During the third pass (based on artificial intelligence techniques), remaining pitch pulses are used as anchor points to reconstruct the pitch train from the original waveform. The algorithm produced a decrease in the error rate from 21% obtained with the original time domain pitch tracker to 2% for isolated words and sentences produced in an office environment by 3 male and 3 female talkers. In a noisy computer room errors decreased from 52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is efficient, accurate, and resistant to noise. The fundamental frequency micro-structure is tracked sufficiently well to be used in extracting phonetic features in a feature-based recognition system.

  19. Time-domain representation of frequency-dependent foundation impedance functions

    USGS Publications Warehouse

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  20. Topologically-associating domains are stable units of replication-timing regulation

    PubMed Central

    Pope, Benjamin D.; Ryba, Tyrone; Dileep, Vishnu; Yue, Feng; Wu, Weisheng; Denas, Olgert; Vera, Daniel L.; Wang, Yanli; Hansen, R. Scott; Canfield, Theresa K.; Thurman, Robert E.; Cheng, Yong; Gülsoy, Günhan; Dennis, Jonathan H.; Snyder, Michael P.; Stamatoyannopoulos, John A.; Taylor, James; Hardison, Ross C.; Kahveci, Tamer; Ren, Bing; Gilbert, David M.

    2014-01-01

    Summary Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program1. During mammalian development, at least half the genome changes replication timing, primarily in units of 400–800 kb (“replication domains”; RDs), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements2–7. Early and late replication correlate strongly with open and closed chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, lamina-associated domains (LADs)4,5,8,9. Recent Hi-C mapping has unveiled a substructure of topologically-associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to RDs8,10. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale11,12. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure8,9,13. Here, we localize boundaries of RDs to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, RD boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure RD boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell type specific sub-nuclear compartmentalization with developmentally

  1. Astrophysics in the Era of Massive Time-Domain Surveys

    NASA Astrophysics Data System (ADS)

    Djorgovski, G.

    Synoptic sky surveys are now the largest data producers in astronomy, entering the Petascale regime, opening the time domain for a systematic exploration. A great variety of interesting phenomena, spanning essentially all subfields of astronomy, can only be studied in the time domain, and these new surveys are producing large statistical samples of the known types of objects and events for further studies (e.g., SNe, AGN, variable stars of many kinds), and have already uncovered previously unknown subtypes of these (e.g., rare or peculiar types of SNe). These surveys are generating a new science, and paving the way for even larger surveys to come, e.g., the LSST; our ability to fully exploit such forthcoming facilities depends critically on the science, methodology, and experience that are being accumulated now. Among the outstanding challenges, the foremost is our ability to conduct an effective follow-up of the interesting events discovered by the surveys in any wavelength regime. The follow-up resources, especially spectroscopy, are already and, for the predictable future, will be severely limited, thus requiring an intelligent down-selection of the most astrophysically interesting events to follow. The first step in that process is an automated, real-time, iterative classification of events, that incorporates heterogeneous data from the surveys themselves, archival and contextual information (spatial, temporal, and multiwavelength), and the incoming follow-up observations. The second step is an optimal automated event prioritization and allocation of the available follow-up resources that also change in time. Both of these challenges are highly non-trivial, and require a strong cyber-infrastructure based on the Virtual Observatory data grid, and the various astroinformatics efforts. Time domain astronomy is inherently an astronomy of telescope-computational systems, and will increasingly depend on novel machine learning and artificial intelligence tools

  2. Single photon detection and timing in the Lunar Laser Ranging Experiment.

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.

    1972-01-01

    The goals of the Lunar Laser Ranging Experiment lead to the need for the measurement of a 2.5 sec time interval to an accuracy of a nanosecond or better. The systems analysis which included practical retroreflector arrays, available laser systems, and large telescopes led to the necessity of single photon detection. Operation under all background illumination conditions required auxiliary range gates and extremely narrow spectral and spatial filters in addition to the effective gate provided by the time resolution. Nanosecond timing precision at relatively high detection efficiency was obtained using the RCA C31000F photomultiplier and Ortec 270 constant fraction of pulse-height timing discriminator. The timing accuracy over the 2.5 sec interval was obtained using a digital interval with analog vernier ends. Both precision and accuracy are currently checked internally using a triggerable, nanosecond light pulser. Future measurements using sub-nanosecond laser pulses will be limited by the time resolution of single photon detectors.

  3. DNA Damage in Bone Marrow Cells Induced by Femtosecond and Nanosecond Ultraviolet Laser Pulses.

    PubMed

    Morkunas, Vaidotas; Gabryte, Egle; Vengris, Mikas; Danielius, Romualdas; Danieliene, Egle; Ruksenas, Osvaldas

    2015-12-01

    The purpose of this study was to investigate the possible genotoxic impact of new generation 205 nm femtosecond solid-state laser irradiation on the DNA of murine bone marrow cells in vitro, and to compare the DNA damage caused by both femtosecond and nanosecond UV laser pulses. Recent experiments of corneal stromal ablation in vitro and in vivo applying femtosecond UV pulses showed results comparable with or superior to those obtained using nanosecond UV lasers. However, the possible genotoxic effect of ultrashort laser pulses was not investigated. Mouse bone marrow cells were exposed to different doses of 205 nm femtosecond, 213 and 266 nm nanosecond lasers, and 254 nm UV lamp irradiation. The comet assay was used for the evaluation of DNA damage. All types of irradiation demonstrated intensity-dependent genotoxic impact. The DNA damage induced depended mainly upon wavelength rather than on other parameters such as pulse duration, repetition rate, or beam delivery to a target. Both 205 nm femtosecond and clinically applied 213 nm nanosecond lasers' pulses induced a comparable amount of DNA breakage in cells exposed to the same irradiation dose. To further evaluate the suitability of femtosecond UV laser sources for microsurgery, a separate investigation of the genotoxic and mutagenic effects on corneal cells in vitro and, particularly, in vivo is needed.

  4. Characterization of the LCLS “nanosecond two-bunch” mode for x-ray speckle visibility spectroscopy experiments

    DOE PAGES

    Sun, Yanwen; Zhu, Diling; Song, Sanghoon; ...

    2017-05-23

    The generation of two X-ray pulses with tunable nanosecond scale time separations has recently been demonstrated at the Linac Coherent Light Source using an accelerator based technique. This approach offers the opportunity to extend X-ray Photon Correlation Spectroscopy techniques to the yet unexplored regime of nanosecond timescales by means of X-ray Speckle Visibility Spectroscopy. As the two pulses originate from two independent Spontaneous Amplified Stimulated Emission processes, the beam properties fluctuate from pulse pair to pulse pair, but as well between the individual pulses within a pair. However, two-pulse XSVS experiments require the intensity of the individual pulses to bemore » either identical in the ideal case, or with a accurately known intensity ratio. We present the design and performances of a non-destructive intensity diagnostic based on measurement of scattering from a transparent target using a high-speed photo-detector. Individual pulses within a pulse pair with time delays as short as 0.7 ns can be resolved. Moreover, using small angle coherent scattering, we characterize the averaged spatial overlap of the focused pulse pairs. Furthermore, the multi-shot average-speckle contrasts from individual pulses and pulse pairs are compared.« less

  5. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less

  6. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    DOE PAGES

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; ...

    2017-03-16

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less

  7. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    NASA Astrophysics Data System (ADS)

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-03-01

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

  8. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power.

    PubMed

    Li, Binsong; Bian, Kaifu; Lane, J Matthew D; Salerno, K Michael; Grest, Gary S; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-03-16

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

  9. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    PubMed Central

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-01-01

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales. PMID:28300067

  10. Identification of bearing faults using time domain zero-crossings

    NASA Astrophysics Data System (ADS)

    William, P. E.; Hoffman, M. W.

    2011-11-01

    In this paper, zero-crossing characteristic features are employed for early detection and identification of single point bearing defects in rotating machinery. As a result of bearing defects, characteristic defect frequencies appear in the machine vibration signal, normally requiring spectral analysis or envelope analysis to identify the defect type. Zero-crossing features are extracted directly from the time domain vibration signal using only the duration between successive zero-crossing intervals and do not require estimation of the rotational frequency. The features are a time domain representation of the composite vibration signature in the spectral domain. Features are normalized by the length of the observation window and classification is performed using a multilayer feedforward neural network. The model was evaluated on vibration data recorded using an accelerometer mounted on an induction motor housing subjected to a number of single point defects with different severity levels.

  11. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.

    2017-10-01

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane.« less

  12. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.

    2015-12-14

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintainingmore » high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.« less

  13. Overview of the application of nanosecond electron beams for radiochemical sterilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotov, Y.A.; Sokovnin, S.Y.

    Problems concerning the use of nanosecond electron beams for sterilization of hermetically packed objects, and powdered or granulated materials, are discussed. The advantages and disadvantages of this type of radiation sterilization are demonstrated. The results are of interest to researchers who study the mechanism by which nanosecond electron beams act on microorganisms. It is worth considering repetitively pulsed electron accelerators as highly promising systems for use in commercial sterilization applications. Technologies and setups for the radiochemical sterilization (RCS) of medical glassware for blood products, beer bottles, bone meal used in food industry, medical instruments (surgical needles, systems for human kidneys),more » and of the external packaging for some biological materials used in ophthalmology are discussed. Such applications have been developed based on the use of the URT-0.2 and URT-0.5 repetitively nanosecond-pulsed electron accelerators. The observed sterilization of areas shaded from line-of-site irradiation and of the bottoms of, for example, glassware cannot be attributed to radiation sterilization alone, since the glass thickness was much larger than the range of electrons. Therefore, it can be conjectured that the demonstrated sterilization effect is due both to the electron beam and to the ozone and chemical radicals produced by the beam. Thus, one may introduce the notion of RCS.« less

  14. Advanced propeller noise prediction in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, M. H.; Spence, P. L.

    1992-01-01

    The time domain code ASSPIN gives acousticians a powerful technique of advanced propeller noise prediction. Except for nonlinear effects, the code uses exact solutions of the Ffowcs Williams-Hawkings equation with exact blade geometry and kinematics. By including nonaxial inflow, periodic loading noise, and adaptive time steps to accelerate computer execution, the development of this code becomes complete.

  15. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    PubMed Central

    Consoli, F.; De Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; Di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-01-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation. PMID:27301704

  16. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Consoli, F.; de Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-06-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation.

  17. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuntao; Dibble, Collin J.; Petrik, Nikolay G.

    2016-04-26

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond timescale in ultrahigh vacuum (UHV). Details of the design, implementation and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ~1010 K/s for temperature increases of ~100 – 200 K are obtained. Subsequent rapid cooling (~5 × 109more » K/s) quenches the film, permitting in-situ, post-mortem analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ~ ± 3% leading to a temperature uncertainty of ~ ± 5 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.« less

  18. Using NIAM to capture time dependencies in a domain of discourse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, S.D.

    1994-07-01

    This paper addresses the issues surrounding the use of NIAM to capture time dependencies in a domain of discourse. The NIAM concepts that support capturing time dependencies are in the event and process portions of the NIAM metamodel, which are the portions most poorly supported by a well-established methodology. This lack of methodological support is a potentially serious handicap in any attempt to apply NIAM to a domain of discourse in which time dependencies are a central issue. However, the capability that NIAM provides for validating and verifying the elementary facts in the domain may reduce the magnitude of themore » event/process-specification task to a level at which it could be effectively handled even without strong methodological support.« less

  19. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    NASA Astrophysics Data System (ADS)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  20. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes.

    PubMed

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ∼400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  1. 3D time-domain airborne EM modeling for an arbitrarily anisotropic earth

    NASA Astrophysics Data System (ADS)

    Yin, Changchun; Qi, Yanfu; Liu, Yunhe

    2016-08-01

    Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.

  2. Remote Imaging by Nanosecond Terahertz Spectrometer with Standoff Detector

    NASA Astrophysics Data System (ADS)

    Huang, J.-G.; Huang, Z.-M.; Andreev, Yu. M.; Kokh, K. A.; Lanskii, G. V.; Potekaev, A. I.; Svetlichnyi, V. A.

    2018-01-01

    Creation and application of the remote imaging spectrometer based on high power nanosecond terahertz source with standoff detector is reported. 2D transmission images of metal objects hided in nonconductive (dielectric) materials were recorded. Reflection images of metal objects mounted on silicon wafers are recorded with simultaneous determination of the wafer parameters (thickness/material).

  3. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    PubMed Central

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-01-01

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599

  4. Directly coupled vs conventional time domain reflectometry in soils

    USDA-ARS?s Scientific Manuscript database

    Time domain reflectometry (TDR), a technique for estimation of soil water, measures the travel time of an electromagnetic pulse on electrodes embedded in the soil, but has limited application in commercial agriculture due to costs, labor, and sensing depth. Conventional TDR systems have employed ana...

  5. Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion.

    PubMed

    Zhang, Xiao-Liang; Liu, Zhi-Bo; Li, Xiao-Chun; Ma, Qiang; Chen, Xu-Dong; Tian, Jian-Guo; Xu, Yan-Fei; Chen, Yong-Sheng

    2013-03-25

    The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp(2)- hybridized carbon domains and sp(3)- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.

  6. Application of Time Domain Reflectometers to Urban Settings

    EPA Science Inventory

    Time domain reflectometers (TDRs) are in-situ monitoring probes that produce a temperature-compensated signal proportional to soil moisture content of the surrounding material when calibrated to a particular media. Typically used in agricultural settings, TDRs may also be applied...

  7. Slow Domain Motions of an Oligomeric Protein from Deep-Sea Hyperthermophile probed by Neutron Spin Echo

    NASA Astrophysics Data System (ADS)

    Bhowmik, Debsindhu; Shrestha, Utsab; Dhindsa, Gurpreet; Sharp, Melissa; Stingaciu, Laura R.; Chu, Xiang-Qiang; Xiang-Qiang Chu Team

    Deep-sea microorganisms have the ability to survive under extreme conditions, such as high pressure and high temperature. In this work, we used the combination of the neutron spin-echo (NSE) and the small angle neutron scattering (SANS) techniques to study the inter-domain motions of the inorganic pyrophosphate (IPPase) enzyme derived from thermostable microorganisms Thermococcus thioreducens. The IPPase has hexameric quaternary structure with molecular mass of approx. 120kDa (each subunit of 20kDa), which is a large oligomeric structure. The understanding of its slow inter-domain motions can be the key to explain how they are able to perform catalytic activity at higher temperature compared to mesophilic enzymes, thus leading to adapt to extreme environment present at the seabed. The NSE can probe these slow motions directly in the time domain up to several tens of nanoseconds at the nanometers length scales, while the corresponding structural change can be explored by the SANS. Our results provide a better picture of the local flexibility and conformational substates unique to these types of proteins, which will help us better understandthe relation between protein dynamics and their biological activities

  8. Time-resolved nanoseconds dynamics of ultrasound contrast agent microbubbles manipulated and controlled by optical tweezers

    NASA Astrophysics Data System (ADS)

    Garbin, Valeria; Cojoc, Dan; Ferrari, Enrico; Di Fabrizio, Enzo; Overvelde, Marlies L. J.; Versluis, Michel; van der Meer, Sander M.; de Jong, Nico; Lohse, Detlef

    2006-08-01

    Optical tweezers enable non-destructive, contact-free manipulation of ultrasound contrast agent (UCA) microbubbles, which are used in medical imaging for enhancing the echogenicity of the blood pool and to quantify organ perfusion. The understanding of the fundamental dynamics of ultrasound-driven contrast agent microbubbles is a first step for exploiting their acoustical properties and to develop new diagnostic and therapeutic applications. In this respect, optical tweezers can be used to study UCA microbubbles under controlled and repeatable conditions, by positioning them away from interfaces and from neighboring bubbles. In addition, a high-speed imaging system is required to record the dynamics of UCA microbubbles in ultrasound, as their oscillations occur on the nanoseconds timescale. In this work, we demonstrate the use of an optical tweezers system combined with a high-speed camera capable of 128-frame recordings at up to 25 million frames per second (Mfps), for the study of individual UCA microbubble dynamics as a function of the distance from solid interfaces.

  9. Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform

    PubMed Central

    Liu, Yuexin; Lee, Young Jong; Cicerone, Marcus T.

    2014-01-01

    We describe a closed-form approach for performing a Kramers–Kronig (KK) transform that can be used to rapidly and reliably retrieve the phase, and thus the resonant imaginary component, from a broadband coherent anti-Stokes Raman scattering (CARS) spectrum with a nonflat background. In this approach we transform the frequency-domain data to the time domain, perform an operation that ensures a causality criterion is met, then transform back to the frequency domain. The fact that this method handles causality in the time domain allows us to conveniently account for spectrally varying nonresonant background from CARS as a response function with a finite rise time. A phase error accompanies KK transform of data with finite frequency range. In examples shown here, that phase error leads to small (<1%) errors in the retrieved resonant spectra. PMID:19412273

  10. Wide-band profile domain pulsar timing analysis

    NASA Astrophysics Data System (ADS)

    Lentati, L.; Kerr, M.; Dai, S.; Hobson, M. P.; Shannon, R. M.; Hobbs, G.; Bailes, M.; Bhat, N. D. Ramesh; Burke-Spolaor, S.; Coles, W.; Dempsey, J.; Lasky, P. D.; Levin, Y.; Manchester, R. N.; Osłowski, S.; Ravi, V.; Reardon, D. J.; Rosado, P. A.; Spiewak, R.; van Straten, W.; Toomey, L.; Wang, J.; Wen, L.; You, X.; Zhu, X.

    2017-04-01

    We extend profile domain pulsar timing to incorporate wide-band effects such as frequency-dependent profile evolution and broad-band shape variation in the pulse profile. We also incorporate models for temporal variations in both pulse width and in the separation in phase of the main pulse and interpulse. We perform the analysis with both nested sampling and Hamiltonian Monte Carlo methods. In the latter case, we introduce a new parametrization of the posterior that is extremely efficient in the low signal-to-noise regime and can be readily applied to a wide range of scientific problems. We apply this methodology to a series of simulations, and to between seven and nine years of observations for PSRs J1713+0747, J1744-1134 and J1909-3744 with frequency coverage that spans 700-3600 Mhz. We use a smooth model for profile evolution across the full frequency range, and compare smooth and piecewise models for the temporal variations in dispersion measure (DM). We find that the profile domain framework consistently results in improved timing precision compared to the standard analysis paradigm by as much as 40 per cent for timing parameters. Incorporating smoothness in the DM variations into the model further improves timing precision by as much as 30 per cent. For PSR J1713+0747, we also detect pulse shape variation uncorrelated between epochs, which we attribute to variation intrinsic to the pulsar at a level consistent with previously published analyses. Not accounting for this shape variation biases the measured arrival times at the level of ˜30 ns, the same order of magnitude as the expected shift due to gravitational waves in the pulsar timing band.

  11. A hybrid-domain approach for modeling climate data time series

    NASA Astrophysics Data System (ADS)

    Wen, Qiuzi H.; Wang, Xiaolan L.; Wong, Augustine

    2011-09-01

    In order to model climate data time series that often contain periodic variations, trends, and sudden changes in mean (mean shifts, mostly artificial), this study proposes a hybrid-domain (HD) algorithm, which incorporates a time domain test and a newly developed frequency domain test through an iterative procedure that is analogue to the well known backfitting algorithm. A two-phase competition procedure is developed to address the confounding issue between modeling periodic variations and mean shifts. A variety of distinctive features of climate data time series, including trends, periodic variations, mean shifts, and a dependent noise structure, can be modeled in tandem using the HD algorithm. This is particularly important for homogenization of climate data from a low density observing network in which reference series are not available to help preserve climatic trends and long-term periodic variations, preventing them from being mistaken as artificial shifts. The HD algorithm is also powerful in estimating trend and periodicity in a homogeneous data time series (i.e., in the absence of any mean shift). The performance of the HD algorithm (in terms of false alarm rate and hit rate in detecting shifts/cycles, and estimation accuracy) is assessed via a simulation study. Its power is further illustrated through its application to a few climate data time series.

  12. THz time-domain spectroscopy imaging for mail inspection

    NASA Astrophysics Data System (ADS)

    Zhang, Liquan; Wang, Zhongdong; Ma, Yanmei; Hao, Erjuan

    2011-08-01

    Acquiring messages from the mail but not destroying the envelope is a big challenge in the war of intelligence. If one can read the message of the mail when the envelope is closed, he will benefit from the message asymmetry and be on a good wicket in the competition. In this paper, we presented a transmitted imaging system using THz time-domain spectroscopy technology. We applied the system to image the mail inside an envelope by step-scanning imaging technology. The experimental results show that the THz spectroscopy can image the mail in an envelope. The words in the paper can be identified easily from the background. We also present the THz image of a metal blade in the envelope, in which we can see the metal blade clearly. The results show that it is feasible of THz Time-Domain Spectroscopy Imaging for mail inspection applications.

  13. Nanosecond barrier discharge in a krypton/helium mixture containing mercury dibromide: Optical emission and plasma parameters

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Starikovskaya, S. M.; Malinin, A. N.

    2015-01-01

    Spectral and electrical characteristics of atmospheric-pressure nanosecond barrier discharge plasma in a HgBr2/Kr/He mixture have been investigated. The discharge was initiated by positive 10-kV voltage pulses with a rise time of 4 ns and a half-amplitude duration of 28 ns. Emission from exciplex HgBr ( B 2Σ{1/2/+} - X 2Σ{1/2/+}) and KrBr ( B 2Σ{1/2/+} - X 2Σ{1/2/+}, C3/2-AΠ1/2, D1/2-AΠ1/2) molecules have been studied. From the time evolution of the B-X transition spectra of the HgBr molecule (502 nm) and KrBr molecule (207 nm), a mechanism of the formation of the exciplex molecules in the nanosecond discharge has been deduced. The distributions of the energies and rates of the processes responsible for emission from HgBr and KrBr molecules have been analyzed by numerically solving the Boltzmann equation for the electron distribution function. Experiments have confirmed the possibility of optimizing the voltage supply pulse for maximizing the efficiency of simultaneous emission in the UV and visible (green) spectral ranges from atmospheric-pressure discharge in the HgBr2/Kr/He mixture.

  14. Intense Nanosecond-Pulsed Cavity-Dumped Laser Radiation at 1.04 THz

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas

    2013-03-01

    We report first results of intense far-infrared (FIR) nanosecond-pulsed laser radiation at 1.04 THz from a previously described[2] cavity-dumped, optically-pumped molecular gas laser. The gain medium, methyl fluoride, is pumped by the 9R20 line of a TEA CO2 laser[3] with a pulse energy of 200 mJ. The THz laser pulses contain of 30 kW peak power in 5 nanosecond pulse widths at a pulse repetition rate of 10 Hz. The line width, measured by a scanning metal-mesh FIR Fabry-Perot interferometer, is 100 MHz. The novel THz laser is being used in experiments to resonantly excite coherent ns-pulsed 1.04 THz longitudinal acoustic phonons in silicon doping-superlattices. The research is supported by NASA EPSCoR NNX11AM04A and AFOSR FA9550-12-1-0100 awards.

  15. Wavelength Dependence of Nanosecond IR Laser-Induced Breakdown in Water: Evidence for Multiphoton Initiation via an Intermediate State

    DTIC Science & Technology

    2015-04-29

    bubble generation and shock wave emission in water for femtosecond to nanosecond laser pulses . ...breakdown threshold in water for nanosecond (ns) IR laser pulses . Avalanche ionization (AI) is the most powerful mechanism driving IR ns laser-induced...acknowledged that femtosecond (fs) and picosecond (ps) IR breakdown is initiated by photoionization because ultrashort pulses are sufficiently

  16. Comparison of two picosecond lasers to a nanosecond laser for treating tattoos: a prospective randomized study on 49 patients.

    PubMed

    Lorgeou, A; Perrillat, Y; Gral, N; Lagrange, S; Lacour, J-P; Passeron, T

    2018-02-01

    Q-switched nanosecond lasers demonstrated their efficacy in treating most types of tattoos, but complete disappearance is not always achieved even after performing numerous laser sessions. Picosecond lasers are supposed to be more efficient in clearing tattoos than nanosecond lasers, but prospective comparative data remain limited. To compare on different types of tattoos the efficacy of a nanosecond laser with two types of picosecond lasers. We conducted a prospective randomized study performed from December 2014 to June 2016 on adult patients with all types of tattoos. The tattoos were divided into two halves of equal size. After randomization, half of the tattoo was treated with a picosecond laser and the other half with a nanosecond laser. The evaluation was performed on standardized pictures performed before treatment and 2 months after the last session, by two physicians, not involved in the treatment, blinded on the type of treatments received. The main end point was a clearance above 75% of the tattoos. A total of 49 patients were included. Professional tattoos represented 85.7%, permanent make-up 8.2% and non-professional tattoo 6.1%. The majority were black or blue and 10.2% were polychromatic. No patient was lost during follow-up. A reduction of 75% or more of the colour intensity was obtained for 33% of the tattoos treated with the picosecond lasers compared to 14% with the nanosecond laser (P = 0.008). An improvement superior to 75% was obtained in 34% monochromic black or blue tattoos with the picosecond lasers compared to 9% for the nanosecond laser. Only one of the five polychromic tattoos achieved more than 75% of improvement with the two types of laser. Our results show a statistically significant superiority of the picosecond lasers compared to the nanosecond laser for tattoo clearance. However, they do not show better efficacy for polychromic tattoos and the difference in terms of side-effects was also minimal with a tendency of picosecond

  17. A Fourier collocation time domain method for numerically solving Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1991-01-01

    A new method for solving Maxwell's equations in the time domain for arbitrary values of permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a Fourier transform method and time integration is performed using a second order, semi-implicit procedure. Electric and magnetic fields are collocated on the same grid points, rather than on interleaved points, as in the Finite Difference Time Domain (FDTD) method. Numerical results are presented for the propagation of a 2-D Transverse Electromagnetic (TEM) mode out of a parallel plate waveguide and into a dielectric and conducting medium.

  18. Fabrication of functional fibronectin patterns by nanosecond excimer laser direct write for tissue engineering applications.

    PubMed

    Grigorescu, S; Hindié, M; Axente, E; Carreiras, F; Anselme, K; Werckmann, J; Mihailescu, I N; Gallet, O

    2013-07-01

    Laser direct write techniques represent a prospective alternative for engineering a new generation of hybrid biomaterials via the creation of patterns consisting of biological proteins onto practically any type of substrate. In this paper we report on the characterization of fibronectin features obtained onto titanium substrates by UV nanosecond laser transfer. Fourier-transform infrared spectroscopy measurements evidenced no modification in the secondary structure of the post-transferred protein. The molecular weight of the transferred protein was identical to the initial fibronectin, no fragment bands being found in the transferred protein's Western blot migration profile. The presence of the cell-binding domain sequence and the mannose groups within the transferred molecules was revealed by anti-fibronectin monoclonal antibody immunolabelling and FITC-Concanavalin-A staining, respectively. The in vitro tests performed with MC3T3-E1 osteoblast-like cells and Swiss-3T3 fibroblasts showed that the cells' morphology and spreading were strongly influenced by the presence of the fibronectin spots.

  19. Time-domain terahertz spectroscopy of artificial skin

    NASA Astrophysics Data System (ADS)

    Corridon, Peter M.; Ascázubi, Ricardo; Krest, Courtney; Wilke, Ingrid

    2006-02-01

    Time-domain Terahertz (THz) spectroscopy and imaging is currently evaluated as a novel tool for medical imaging and diagnostics. The application of THz-pulse imaging of human skin tissues and related cancers has been demonstrated recently in-vitro and in-vivo. With this in mind, we present a time-domain THz-transmission study of artificial skin. The skin samples consist of a monolayer of porous matrix of fibers of cross-linked bovine tendon collagen and a glycosaminoglycan (chondroitin-6-sulfate) that is manufactured with a controlled porosity and defined degradation rate. Another set of samples consists of the collagen monolayer covered with a silicone layer. We have measured the THz-transmission and determined the index of refraction and absorption of our samples between 0.1 and 3 THz for various states of hydration in distilled water and saline solutions. The transmission of the THz-radiation through the artificial skin samples is modeled by electromagnetic wave theory. Moreover, the THz-optical properties of the artificial skin layers are compared to the THz-optical properties of freshly excised human skin samples. Based on this comparison the potential use of artificial skin samples as photo-medical phantoms for human skin is discussed.

  20. Subjective time pressure: general or domain specific?

    PubMed

    Kleiner, Sibyl

    2014-09-01

    Chronic time pressure has been identified as a pervasive societal problem, exacerbated by high demands of the labor market and the home. Yet time pressure has not been disaggregated and examined separately across home and work contexts, leaving many unanswered questions regarding the sources and potentially stressful consequences of time pressure. Using data collected in the United States General Social Survey waves 2002 and 2004, this study disaggregates time pressure into the domains of home and work, and asks whether considering time pressures within distinct work and home contexts reveals distinct predictors or associations with stress. Findings show that both predictors and stress associations differ across work and home pressures, revealing both methodological and theoretical implications for the study of time pressure and work and family life more generally. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Application of Time Domain Reflectometers in Urban Settings

    EPA Science Inventory

    This is a poster for the Million Trees NYC research symposium in New York City, NY, March 5-6, 2010. The poster gives a summary of how time domain reflectometers can be installed in urban fill soil, engineered bioretention media, and recycled concrete aggregate to document the ...

  2. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K.

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots.more » This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.« less

  3. On the Analysis Methods for the Time Domain and Frequency Domain Response of a Buried Objects*

    NASA Astrophysics Data System (ADS)

    Poljak, Dragan; Šesnić, Silvestar; Cvetković, Mario

    2014-05-01

    There has been a continuous interest in the analysis of ground-penetrating radar systems and related applications in civil engineering [1]. Consequently, a deeper insight of scattering phenomena occurring in a lossy half-space, as well as the development of sophisticated numerical methods based on Finite Difference Time Domain (FDTD) method, Finite Element Method (FEM), Boundary Element Method (BEM), Method of Moments (MoM) and various hybrid methods, is required, e.g. [2], [3]. The present paper deals with certain techniques for time and frequency domain analysis, respectively, of buried conducting and dielectric objects. Time domain analysis is related to the assessment of a transient response of a horizontal straight thin wire buried in a lossy half-space using a rigorous antenna theory (AT) approach. The AT approach is based on the space-time integral equation of the Pocklington type (time domain electric field integral equation for thin wires). The influence of the earth-air interface is taken into account via the simplified reflection coefficient arising from the Modified Image Theory (MIT). The obtained results for the transient current induced along the electrode due to the transmitted plane wave excitation are compared to the numerical results calculated via an approximate transmission line (TL) approach and the AT approach based on the space-frequency variant of the Pocklington integro-differential approach, respectively. It is worth noting that the space-frequency Pocklington equation is numerically solved via the Galerkin-Bubnov variant of the Indirect Boundary Element Method (GB-IBEM) and the corresponding transient response is obtained by the aid of inverse fast Fourier transform (IFFT). The results calculated by means of different approaches agree satisfactorily. Frequency domain analysis is related to the assessment of frequency domain response of dielectric sphere using the full wave model based on the set of coupled electric field integral

  4. High on/off ratio nanosecond laser pulses for a triggered single-photon source

    NASA Astrophysics Data System (ADS)

    Jin, Gang; Liu, Bei; He, Jun; Wang, Junmin

    2016-07-01

    An 852 nm nanosecond laser pulse chain with a high on/off ratio is generated by chopping a continuous-wave laser beam using a Mach-Zehnder-type electro-optic intensity modulator (MZ-EOIM). The detailed dependence of the MZ-EOIM’s on/off ratio on various parameters is characterized. By optimizing the incident beam polarization and stabilizing the MZ-EOIM temperature, a static on/off ratio of 12600:1 is achieved. The dynamic on/off ratios versus the pulse repetition rate and the pulse duty cycle are measured and discussed. The high-on/off-ratio nanosecond pulsed laser system was used in a triggered single-photon source based on a trapped single cesium atom, which reveals clear antibunching.

  5. Current-Voltage Characteristic of Nanosecond - Duration Relativistic Electron Beam

    NASA Astrophysics Data System (ADS)

    Andreev, Andrey

    2005-10-01

    The pulsed electron-beam accelerator SINUS-6 was used to measure current-voltage characteristic of nanosecond-duration thin annular relativistic electron beam accelerated in vacuum along axis of a smooth uniform metal tube immersed into strong axial magnetic field. Results of these measurements as well as results of computer simulations performed using 3D MAGIC code show that the electron-beam current dependence on the accelerating voltage at the front of the nanosecond-duration pulse is different from the analogical dependence at the flat part of the pulse. In the steady-state (flat) part of the pulse), the measured electron-beam current is close to Fedosov current [1], which is governed by the conservation law of an electron moment flow for any constant voltage. In the non steady-state part (front) of the pulse, the electron-beam current is higher that the appropriate, for a giving voltage, steady-state (Fedosov) current. [1] A. I. Fedosov, E. A. Litvinov, S. Ya. Belomytsev, and S. P. Bugaev, ``Characteristics of electron beam formed in diodes with magnetic insulation,'' Soviet Physics Journal (A translation of Izvestiya VUZ. Fizika), vol. 20, no. 10, October 1977 (April 20, 1978), pp.1367-1368.

  6. Acoustic vibrations of metal nano-objects: Time-domain investigations

    NASA Astrophysics Data System (ADS)

    Crut, Aurélien; Maioli, Paolo; Del Fatti, Natalia; Vallée, Fabrice

    2015-01-01

    Theoretical and time-domain experimental investigations of the vibrational acoustic response of nano-objects are described focusing on metallic ones. Acoustic vibrations are modeled using a macroscopic-like approach based on continuum mechanics with the proper boundary conditions, a model which yields results in excellent agreement with the experimental ones and those of atomistic calculations, down to the nanometric scale. Vibrational mode excitation and detection mechanisms and the associated mode selection in ultrafast pump-probe spectroscopy are discussed, and the measured time-dependent signals in single and ensemble of nanoparticles modeled. The launched modes, their period and their damping rate are compared to experimental results obtained on ensembles of nano-objects with different composition, morphology and environment, and with size ranging from one to hundreds of nanometers. Recent extension of time-domain spectroscopy to individual nano-objects has shed new light on the vibrational responses of isolated nanoparticles, in particular on their damping, but also raises questions on the origin of its large particle to particle dispersion.

  7. Metallic scattering lifetime measurements with terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Lea, Graham Bryce

    The momentum scattering lifetime is a fundamental parameter of metallic conduction that can be measured with terahertz time-domain spectroscopy. This technique has an important strength over optical reflectance spectroscopy: it is capable of measuring both the phase and the amplitude of the probing radiation. This allows simultaneous, independent measurements of the scattering lifetime and resistivity. Broadly, it is the precision of the phase measurement that determines the precision of scattering lifetime measurements. This thesis describes milliradian-level phase measurement refinements in the experimental technique and measures the conductivity anisotropy in the correlated electron system CaRuO3. These phase measurement refinements translate to femtosecond-level refinements in scattering lifetime measurements of thin metallic films. Keywords: terahertz time-domain spectroscopy, calcium ruthenate, ruthenium oxides, correlated electrons, experimental technique.

  8. Electroporation-Induced Cell Modifications Detected with THz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Romeo, Stefania; Vernier, P. Thomas; Zeni, Olga

    2018-04-01

    Electroporation (electropermeabilization) increases the electrical conductivity of biological cell membranes and lowers transport barriers for normally impermeant materials. Molecular simulations suggest that electroporation begins with the reorganization of water and lipid head group dipoles in the phospholipid bilayer interface, driven by an externally applied electric field, and the evolution of the resulting defects into water-filled, lipid pores. The interior of the electroporated membrane thus contains water, which should provide a signature for detection of the electropermeabilized state. In this feasibility study, we use THz time-domain spectroscopy, a powerful tool for investigating biomolecular systems and their interactions with water, to detect electroporation in human cells subjected to permeabilizing pulsed electric fields (PEFs). The time-domain response of electroporated human monocytes was acquired with a commercial THz, time-domain spectrometer. For each sample, frequency spectra were calculated, and the absorption coefficient and refractive index were extracted in the frequency range between 0.2 and 1.5 THz. This analysis reveals a higher absorption of THz radiation by PEF-exposed cells, with respect to sham-exposed ones, consistent with the intrusion of water into the cell through the permeabilized membrane that is presumed to be associated with electroporation.

  9. Inclinometer--time-domain reflectometry comparative study : research implementation plan.

    DOT National Transportation Integrated Search

    2005-10-01

    ODOT currently uses slope indicator probing to analyze subsurface conditions at roadway landslide : locations. However, the current method is subject to several limitations, and time domain reflectometry : (TDR) has been proposed as an alternative to...

  10. Compressive Strength Estimation of Marble Specimens using Acoustic Emission Hits in Time and Natural Time Domains: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Hloupis, George; Stavrakas, Ilias; Vallianatos, Filippos; Triantis, Dimos

    2013-04-01

    The current study deals with preliminary results of characteristic patterns derived from acoustic emissions during compressional stress. Two loading cycles were applied to a specimen of 4cm x 4cm x 10 cm Dionysos marble while acoustic emissions (AE) were recorded using one acoustic sensor coupled at the expected direction of the main crack (at the center of the specimen). The produced time series comprised from the number of counts per AE hit under increasing and constant load. Processing took place in two domains: in conventional time domain (t), using multiresolution wavelet analysis for the study of temporal variation of the wavelet-coefficients' standard deviation (SDEV) [1] and in natural time domain (χ), using the variance (κ1) of natural-time transformed time-series [2,3]. Results in both cases, dictate that identification of the region where the increasing stress (σ), exceeds 40% of the ultimate compressional strength (σ*), is possible. More specific, in conventional time domain, the temporal evolution of SDEV presents a sharp change around σ* during first loading cycle and less than σ* during second loading cycle. In natural time domain, the κ1 value clearly oscillate around 0.07 at natural time indexes corresponding to σ* during first loading cycle. Merging both results leads to a preliminary observation that we have an identification of the time when the compressional stress exceeds σ*. References [1] Telesca, L., Hloupis, G., Nikolintaga, I., Vallianatos, F.,."Temporal patterns in southern Aegean seismicity revealed by the multiresolution wavelet analysis", Communications in Nonlinear Science and Numerical Simulation, vol. 12, issue 8, pp 1418-1426, 2007 [2] P. A. Varotsos, N. V. Sarlis, and E. S. Skordas, "Natural Time Analysis: The New View of Time. Precursory Seismic Electric Signals, Earthquakes and other Complex Time-Series", Springer-Verlag, Berlin, Heidelberg, 2011. [3] N. V. Sarlis, P. A. Varotsos, and E. S. Skordas, "Flux Avalances in

  11. Determining soil volumetric moisture content using time domain reflectometry

    DOT National Transportation Integrated Search

    1998-02-01

    Time domain reflectometry (TDR) is a technique used to measure indirectly the in situ volumetric moisture content of soil. Current research provides a variety of prediction equations that estimate the volumetric moisture content using the dielectric ...

  12. A Persistent Feature of Multiple Scattering of Waves in the Time-Domain: A Tutorial

    NASA Technical Reports Server (NTRS)

    Lock, James A.; Mishchenko, Michael I.

    2015-01-01

    The equations for frequency-domain multiple scattering are derived for a scalar or electromagnetic plane wave incident on a collection of particles at known positions, and in the time-domain for a plane wave pulse incident on the same collection of particles. The calculation is carried out for five different combinations of wave types and particle types of increasing geometrical complexity. The results are used to illustrate and discuss a number of physical and mathematical characteristics of multiple scattering in the frequency- and time-domains. We argue that frequency-domain multiple scattering is a purely mathematical construct since there is no temporal sequencing information in the frequency-domain equations and since the multi-particle path information can be dispelled by writing the equations in another mathematical form. However, multiple scattering becomes a definite physical phenomenon in the time-domain when the collection of particles is illuminated by an appropriately short localized pulse.

  13. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.

    2011-10-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  14. Over 0.5 MW green laser from sub-nanosecond giant pulsed microchip laser

    NASA Astrophysics Data System (ADS)

    Zheng, Lihe; Taira, Takunori

    2016-03-01

    A sub-nanosecond green laser with laser head sized 35 × 35 × 35 mm3 was developed from a giant pulsed microchip laser for laser processing on organic superconducting transistor with a flexible substrate. A composite monolithic Y3Al5O12 (YAG) /Nd:YAG/Cr4+:YAG/YAG crystal was designed for generating giant pulsed 1064 nm laser. A fibercoupled 30 W laser diode centered at 808 nm was used with pump pulse duration of 245 μs. The 532 nm green laser was obtained from a LiB3O5 (LBO) crystal with output energy of 150 μJ and pulse duration of 268 ps. The sub-nanosecond green laser is interesting for 2-D ablation patterns.

  15. Time-domain measurement of optical transport in silicon micro-ring resonators.

    PubMed

    Pernice, Wolfram H P; Li, Mo; Tang, Hong X

    2010-08-16

    We perform time-domain measurements of optical transport dynamics in silicon nano-photonic devices. Using pulsed optical excitation the thermal and carrier induced optical nonlinearities of micro-ring resonators are investigated, allowing for identification of their individual contributions. Under pulsed excitation build-up of free carriers and heat in the waveguides leads to a beating oscillation of the cavity resonance frequency. When employing a burst of pulse trains shorter than the carrier life-time, the slower heating effect can be separated from the faster carrier effect. Our scheme provides a convenient way to thermally stabilize optical resonators for high-power time-domain applications and nonlinear optical conversion.

  16. Efficient calculation of full waveform time domain inversion for electromagnetic problem using fictitious wave domain method and cascade decimation decomposition

    NASA Astrophysics Data System (ADS)

    Imamura, N.; Schultz, A.

    2016-12-01

    Recently, a full waveform time domain inverse solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion to solve simultaneously for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations, the ability to operate in areas of high levels of source signal spatial complexity, and non-stationarity. This goal would not be obtainable if one were to adopt the pure time domain solution for the inverse problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across a large frequency bandwidth. This means that for the forward simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a sensitivity matrix that is computationally burdensome to solve a model update. We have implemented a code that addresses this situation through the use of cascade decimation decomposition to reduce the size of the sensitivity matrix substantially, through quasi-equivalent time domain decomposition. We also use a fictitious wave domain method to speed up computation time of the forward simulation in the time domain. By combining these refinements, we have developed a full waveform joint source field/earth conductivity inverse modeling method. We found that cascade decimation speeds computations of the sensitivity matrices dramatically, keeping the solution close to that of the undecimated case. For example, for a model discretized into 2.6x105 cells, we obtain model updates in less than 1 hour on a 4U rack-mounted workgroup Linux server, which

  17. Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells.

    PubMed

    Rettenmaier, Alexander; Lenarz, Thomas; Reuter, Günter

    2014-04-01

    Optical stimulation of the inner ear has recently attracted attention, suggesting a higher frequency resolution compared to electrical cochlear implants due to its high spatial stimulation selectivity. Although the feasibility of the effect is shown in multiple in vivo experiments, the stimulation mechanism remains open to discussion. Here we investigate in single-cell measurements the reaction of spiral ganglion neurons and model cells to irradiation with a nanosecond-pulsed laser beam over a broad wavelength range from 420 nm up to 1950 nm using the patch clamp technique. Cell reactions were wavelength- and pulse-energy-dependent but too small to elicit action potentials in the investigated spiral ganglion neurons. As the applied radiant exposure was much higher than the reported threshold for in vivo experiments in the same laser regime, we conclude that in a stimulation paradigm with nanosecond-pulses, direct neuronal stimulation is not the main cause of optical cochlea stimulation.

  18. Impact of nanosecond proton beam processing on nanoblocks of copper

    NASA Astrophysics Data System (ADS)

    Borodin, Y. V.; Mantina, A. Y.; Pak, V.; Zhang, X. X.

    2017-01-01

    X-ray studies in conjunction with the method of recoil nuclei and electron microscopy of irradiated plates polycrystalline Cu by nanosecond high power density proton beams (E = 120 keV; I = 80 A/cm2, t = 50 ns) showed nano block nature of the formation of structure in the surface layer target and condensed-formed film.

  19. Negative response of HgCdTe photodiode induced by nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Xu, Zuodong; Zhang, Jianmin; Lin, Xinwei; Shao, Bibo; Yang, Pengling

    2017-05-01

    Photodetectors' behavior and mechanism of transient response are still not understood very well, especially under high photon injection. Most of the researches on this topic were carried out with ultra-short laser pulse, whose pulse width ranged from femtosecond scale to picosecond scale. However, in many applications the durations of incident light are in nanosecond order and the light intensities are strong. To investigate the transient response characteristics and mechanisms of narrow-bandgap photovoltaic detectors under short laser irradiation, we performed an experiment on HgCdTe photodiodes. The n+-on-p type HgCdTe photodiodes in the experiment were designed to work in spectrum from 1.0μm to 3.0μm, with conditions of zero bias and room temperature. They were exposed to in-band short laser pulses with dwell time of 20 nanosecond. When the intensity of incident laser beam rose to 0.1J/cm2 order, the photodiodes' response characteristics turned to be bipolar from unipolar. A much longer negative response with duration of about 10μs to 100μs followed the positive light response. The amplitude of the negative response increased with the laser intensity, while the dwell time of positive response decreased with the laser intensity. Considering the response characteristics and the device structure, it is proposed that the negative response was caused by space charge effect at the electrodes. Under intense laser irradiation, a temperature gradient formed in the HgCdTe material. Due to the temperature gradient, the majority carriers diffused away from upper surface and left space charge at the electrodes. Then negative response voltage could be measured in the external circuit. With higher incident laser intensity, the degree of the space charge effect would become higher, and then the negative response would come earlier and show larger amplitude.

  20. Time-domain diffuse optics: towards next generation devices

    NASA Astrophysics Data System (ADS)

    Contini, Davide; Dalla Mora, Alberto; Arridge, Simon; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio

    2015-07-01

    Diffuse optics is a powerful tool for clinical applications ranging from oncology to neurology, but also for molecular imaging, and quality assessment of food, wood and pharmaceuticals. We show that ideally time-domain diffuse optics can give higher contrast and a higher penetration depth with respect to standard technology. In order to completely exploit the advantages of a time-domain system a distribution of sources and detectors with fast gating capabilities covering all the sample surface is needed. Here, we present the building block to build up such system. This basic component is made of a miniaturised source-detector pair embedded into the probe based on pulsed Vertical-Cavity Surface-Emitting Lasers (VCSEL) as sources and Single-Photon Avalanche Diodes (SPAD) or Silicon Photomultipliers (SiPM) as detectors. The possibility to miniaturized and dramatically increase the number of source detectors pairs open the way to an advancement of diffuse optics in terms of improvement of performances and exploration of new applications. Furthermore, availability of compact devices with reduction in size and cost can boost the application of this technique.

  1. Use of restrained molecular dynamics to predict the conformations of phosphorylated receiver domains in two-component signaling systems.

    PubMed

    Foster, Clay A; West, Ann H

    2017-01-01

    Two-component signaling (TCS) is the primary means by which bacteria, as well as certain plants and fungi, respond to external stimuli. Signal transduction involves stimulus-dependent autophosphorylation of a sensor histidine kinase and phosphoryl transfer to the receiver domain of a downstream response regulator. Phosphorylation acts as an allosteric switch, inducing structural and functional changes in the pathway's components. Due to their transient nature, phosphorylated receiver domains are challenging to characterize structurally. In this work, we provide a methodology for simulating receiver domain phosphorylation to predict conformations that are nearly identical to experimental structures. Using restrained molecular dynamics, phosphorylated conformations of receiver domains can be reliably sampled on nanosecond timescales. These simulations also provide data on conformational dynamics that can be used to identify regions of functional significance related to phosphorylation. We first validated this approach on several well-characterized receiver domains and then used it to compare the upstream and downstream components of the fungal Sln1 phosphorelay. Our results demonstrate that this technique provides structural insight, obtained in the absence of crystallographic or NMR information, regarding phosphorylation-induced conformational changes in receiver domains that regulate the output of their associated signaling pathway. To our knowledge, this is the first time such a protocol has been described that can be broadly applied to TCS proteins for predictive purposes. Proteins 2016; 85:155-176. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  2. Field-scale comparison of frequency- and time-domain spectral induced polarization

    NASA Astrophysics Data System (ADS)

    Maurya, P. K.; Fiandaca, G.; Christiansen, A. V.; Auken, E.

    2018-05-01

    In this paper we present a comparison study of the time-domain (TD) and frequency-domain (FD) spectral induced polarization (IP) methods in terms of acquisition time, data quality, and spectral information retrieved from inversion. We collected TDIP and FDIP surface measurements on three profiles with identical electrode setups, at two different field sites with different lithology. In addition, TDIP data were collected in two boreholes using the El-Log drilling technique, in which apparent formation resistivity and chargeability values are measured during drilling using electrodes integrated within the stem auger.

  3. Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas

    NASA Astrophysics Data System (ADS)

    Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V.; Lempert, Walter R.

    2010-03-01

    Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ~ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.

  4. Selective removal of carious human dentin using a nanosecond pulsed laser operating at a wavelength of 5.85 μ m

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kita, Tetsuya; Yoshikawa, Kazushi; Yasuo, Kenzo; Yamamoto, Kazuyo; Awazu, Kunio

    2015-05-01

    Less invasive methods for treating dental caries are strongly desired. However, conventional dental lasers do not always selectively remove caries or ensure good bonding to the composite resin. According to our previous study, demineralized dentin might be removed by a nanosecond pulsed laser operating at wavelengths of around 5.8 μm. The present study investigated the irradiation effect of the light on carious human dentin classified into "remove," "not remove," and "unclear" categories. Under 5.85-μm laser pulses, at average power densities of 30 W/cm2 and irradiation time of 2 s, the ablation depth of "remove" and "not remove," and also the ablation depth of "unclear" and "not remove," were significantly different (p<0.01). The ablation depth was correlated with both Vickers hardness and Ca content. Thus, a nanosecond pulsed laser operating at 5.85 μm proved an effective less-invasive caries treatment.

  5. Volumetric blood flow via time-domain correlation: experimental verification.

    PubMed

    Embree, P M; O'Brien, W R

    1990-01-01

    A novel ultrasonic volumetric flow measurement method using time-domain correlation of consecutive pairs of echoes has been developed. An ultrasonic data acquisition system determined the time shift between a pair of range gated echoes by searching for the time shift with the maximum correlation between the RF sampled waveforms. Experiments with a 5-MHz transducer indicate that the standard deviation of the estimate of steady fluid velocity through 6-mm-diameter tubes is less than 10% of the mean. Experimentally, Sephadex (G-50; 20-80 mum dia.) particles in water and fresh porcine blood have been used as ultrasound scattering fluids. Two-dimensional (2-D) flow velocity can be estimated by slowly sweeping the ultrasonic beam across the blood vessel phantom. Volumetric flow through the vessel is estimated by integrating the 2-D flow velocity field and then is compared to hydrodynamic flow measurements to assess the overall experimental accuracy of the time-domain method. Flow rates from 50-500 ml/min have been estimated with an accuracy better than 10% under the idealized characteristics used in this study, which include straight circular thin-walled tubes, laminar axially-symmetric steady flow, and no intervening tissues.

  6. Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon

    NASA Astrophysics Data System (ADS)

    Sen, WANG; Dezheng, YANG; Feng, LIU; Wenchun, WANG; Zhi, FANG

    2018-07-01

    Atmospheric gas-liquid discharge with argon as a working gas is presented by employed nanosecond pulse power. The discharge is presented in a glow-like mode. The discharge powers are determined to be less than 1 W, and remains almost constant when the discharge duration time increases. Bountiful active species are determined by capturing optical emission spectra, and their main generation processes are also discussed. The plasma gas temperature is calculated as 350 K by comparing the experimental spectra and the simulated ones of {{{N}}}2({{C}}{}3{{\\Pi }}{{g}}\\to {{B}}{}3{{\\Pi }}{{g}},{{Δ }}{{ν }}=-2). The time resolved vibrational and rotational temperature is researched to present the stability of discharge when pulse voltage and discharge duration vary. The electron density is determined to be 1016 cm‑3 according to the Stark broadening effect of the H α line.

  7. Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Frank R., E-mail: frank.wagner@fresnel.fr; Natoli, Jean-Yves; Akhouayri, Hassan

    2014-06-28

    Due to its high effective nonlinearity and the possibility to produce periodically poled crystals, potassium titanyl phosphate (KTiOPO{sub 4}, KTP) is still one of the economically important nonlinear optical materials. In this overview article, we present a large study on catastrophic nanosecond laser induced damage in this material and the very similar RbTiOPO{sub 4} (RTP). Several different systematic studies are included: multiple pulse laser damage, multi-wavelength laser damage in KTP, damage resistance anisotropy, and variations of the laser damage thresholds for RTP crystals of different qualities. All measurements were carried out in comparable experimental conditions using a 1064 nm Q-switched lasermore » and some were repeated at 532 nm. After summarizing the experimental results, we detail the proposed model for laser damage in this material and discuss the experimental results in this context. According to the model, nanosecond laser damage is caused by light-induced generation of transient laser-damage precursors which subsequently provide free electrons that are heated by the same nanosecond pulse. We also present a stimulated Raman scattering measurement and confront slightly different models to the experimental data. Finally, the physical nature of the transient damage precursors is discussed and similarities and differences to laser damage in other crystals are pointed out.« less

  8. Modeling of plasma chemical processes in the artificial ionized layer in the upper atmosphere by the nanosecond corona discharge

    NASA Astrophysics Data System (ADS)

    Vikharev, A. L.; Gorbachev, A. M.; Ivanov, O. A.; Kolisko, A. L.; Litvak, A. G.

    1993-08-01

    The plasma chemical processes in the corona discharge formed in air by a series of high voltage pulses of nanosecond duration are investigated experimentally. The experimental conditions (reduced electric field, duration and repetition frequency of the pulses, gas pressure in the chamber) modeled the regime of creation of the artificial ionized layer (AIL) in the upper atmosphere by a nanosecond microwave discharge. It was found that in a nanosecond microwave discharge predominantly generation of ozone occurs, and that the production of nitrogen dioxide is not large. The energy expenditures for the generation of one O 3 molecule were about 15 eV. On the basis of the experimental results the prognosis of the efficiency of ozone generation in AIL was made.

  9. A PC based time domain reflectometer for space station cable fault isolation

    NASA Technical Reports Server (NTRS)

    Pham, Michael; McClean, Marty; Hossain, Sabbir; Vo, Peter; Kouns, Ken

    1994-01-01

    Significant problems are faced by astronauts on orbit in the Space Station when trying to locate electrical faults in multi-segment avionics and communication cables. These problems necessitate the development of an automated portable device that will detect and locate cable faults using the pulse-echo technique known as Time Domain Reflectometry. A breadboard time domain reflectometer (TDR) circuit board was designed and developed at the NASA-JSC. The TDR board works in conjunction with a GRiD lap-top computer to automate the fault detection and isolation process. A software program was written to automatically display the nature and location of any possible faults. The breadboard system can isolate open circuit and short circuit faults within two feet in a typical space station cable configuration. Follow-on efforts planned for 1994 will produce a compact, portable prototype Space Station TDR capable of automated switching in multi-conductor cables for high fidelity evaluation. This device has many possible commercial applications, including commercial and military aircraft avionics, cable TV, telephone, communication, information and computer network systems. This paper describes the principle of time domain reflectometry and the methodology for on-orbit avionics utility distribution system repair, utilizing the newly developed device called the Space Station Time Domain Reflectometer (SSTDR).

  10. Sub-nanosecond lasers for cosmetics and dermatology

    NASA Astrophysics Data System (ADS)

    Tarasov, Aleksandr A.; Chu, Hong

    2018-02-01

    We report about the development of two new subnanosecond solid-state laser models for application in dermatology and cosmetics. One model uses subnanosecond Nd: YAG microchip laser as a master oscillator and includes Nd: YAG double- and single-pass amplifiers. At 10 Hz this laser produces more than 600 mJ pulse energy with duration 500 +/- 5 ps. Another model (under development) is gain-switched Ti: Sapphire laser with short cavity. This laser produces 200 mJ, 560 ps pulses at 790 nm and uses standard Q-Switched Nd: YAG laser with nanosecond pulse duration as a pumping sourse.

  11. Time Domain Version of the Uniform Geometrical Theory of Diffraction

    NASA Astrophysics Data System (ADS)

    Rousseau, Paul R.

    1995-01-01

    A time domain (TD) version of the uniform geometrical theory of diffraction which is referred to as the TD-UTD is developed to analyze the transient electromagnetic scattering from perfectly conducting objects that are large in terms of pulse width. In particular, the scattering from a perfectly conducting arbitrary curved wedge and an arbitrary smooth convex surface are treated in detail. Note that the canonical geometries of a circular cylinder and a sphere are special cases of the arbitrary smooth convex surface. These TD -UTD solutions are obtained in the form of relatively simple analytical expressions valid for early to intermediate times. The geometries treated here can be used to build up a transient solution to more complex radiating objects via space-time localization, in exactly the same way as is done by invoking spatial localization properties in the frequency domain UTD. The TD-UTD provides the response due to an excitation of a general astigmatic impulsive wavefront with any polarization. This generalized impulse response may then be convolved with other excitation time pulses, to find even more general solutions due to other excitation pulses. Since the TD-UTD uses the same rays as the frequency domain UTD, it provides a simple picture for transient radiation or scattering and is therefore just as physically appealing as the frequency domain UTD. The formulation of an analytic time transform (ATT), which produces an analytic time signal given a frequency response function, is given here. This ATT is used because it provides a very efficient method of inverting the asymptotic high frequency UTD representations to obtain the corresponding TD-UTD expressions even when there are special UTD transition functions which may not be well behaved at the low frequencies; also, using the ATT avoids the difficulties associated with the inversion of UTD ray fields that traverse line or smooth caustics. Another useful aspect of the ATT is the ability to perform an

  12. Analysis of microstrip patch antennas using finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Reineix, Alain; Jecko, Bernard

    1989-11-01

    The study of microstrip patch antennas is directly treated in the time domain, using a modified finite-difference time-domain (FDTD) method. Assuming an appropriate choice of excitation, the frequency dependence of the relevant parameters can readily be found using the Fourier transform of the transient current. The FDTD method allows a rigorous treatment of one or several dielectric interfaces. Different types of excitation can be taken into consideration (coaxial, microstrip lines, etc.). Plotting the spatial distribution of the current density gives information about the resonance modes. The usual frequency-depedent parameters (input impedance, radiation pattern) are given for several examples.

  13. Stabilization and control of distributed systems with time-dependent spatial domains

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1990-01-01

    This paper considers the problem of the stabilization and control of distributed systems with time-dependent spatial domains. The evolution of the spatial domains with time is described by a finite-dimensional system of ordinary differential equations, while the distributed systems are described by first-order or second-order linear evolution equations defined on appropriate Hilbert spaces. First, results pertaining to the existence and uniqueness of solutions of the system equations are presented. Then, various optimal control and stabilization problems are considered. The paper concludes with some examples which illustrate the application of the main results.

  14. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  15. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  16. Finite difference time domain analysis of chirped dielectric gratings

    NASA Technical Reports Server (NTRS)

    Hochmuth, Diane H.; Johnson, Eric G.

    1993-01-01

    The finite difference time domain (FDTD) method for solving Maxwell's time-dependent curl equations is accurate, computationally efficient, and straight-forward to implement. Since both time and space derivatives are employed, the propagation of an electromagnetic wave can be treated as an initial-value problem. Second-order central-difference approximations are applied to the space and time derivatives of the electric and magnetic fields providing a discretization of the fields in a volume of space, for a period of time. The solution to this system of equations is stepped through time, thus, simulating the propagation of the incident wave. If the simulation is continued until a steady-state is reached, an appropriate far-field transformation can be applied to the time-domain scattered fields to obtain reflected and transmitted powers. From this information diffraction efficiencies can also be determined. In analyzing the chirped structure, a mesh is applied only to the area immediately around the grating. The size of the mesh is then proportional to the electric size of the grating. Doing this, however, imposes an artificial boundary around the area of interest. An absorbing boundary condition must be applied along the artificial boundary so that the outgoing waves are absorbed as if the boundary were absent. Many such boundary conditions have been developed that give near-perfect absorption. In this analysis, the Mur absorbing boundary conditions are employed. Several grating structures were analyzed using the FDTD method.

  17. Domain-Generality of Timing-Based Serial Order Processes in Short-Term Memory: New Insights from Musical and Verbal Domains

    PubMed Central

    Kowialiewski, Benjamin; Majerus, Steve

    2016-01-01

    Several models in the verbal domain of short-term memory (STM) consider a dissociation between item and order processing. This view is supported by data demonstrating that different types of time-based interference have a greater effect on memory for the order of to-be-remembered items than on memory for the items themselves. The present study investigated the domain-generality of the item versus serial order dissociation by comparing the differential effects of time-based interfering tasks, such as rhythmic interference and articulatory suppression, on item and order processing in verbal and musical STM domains. In Experiment 1, participants had to maintain sequences of verbal or musical information in STM, followed by a probe sequence, this under different conditions of interference (no-interference, rhythmic interference, articulatory suppression). They were required to decide whether all items of the probe list matched those of the memory list (item condition) or whether the order of the items in the probe sequence matched the order in the memory list (order condition). In Experiment 2, participants performed a serial order probe recognition task for verbal and musical sequences ensuring sequential maintenance processes, under no-interference or rhythmic interference conditions. For Experiment 1, serial order recognition was not significantly more impacted by interfering tasks than was item recognition, this for both verbal and musical domains. For Experiment 2, we observed selective interference of the rhythmic interference condition on both musical and verbal order STM tasks. Overall, the results suggest a similar and selective sensitivity to time-based interference for serial order STM in verbal and musical domains, but only when the STM tasks ensure sequential maintenance processes. PMID:27992565

  18. Domain-Generality of Timing-Based Serial Order Processes in Short-Term Memory: New Insights from Musical and Verbal Domains.

    PubMed

    Gorin, Simon; Kowialiewski, Benjamin; Majerus, Steve

    2016-01-01

    Several models in the verbal domain of short-term memory (STM) consider a dissociation between item and order processing. This view is supported by data demonstrating that different types of time-based interference have a greater effect on memory for the order of to-be-remembered items than on memory for the items themselves. The present study investigated the domain-generality of the item versus serial order dissociation by comparing the differential effects of time-based interfering tasks, such as rhythmic interference and articulatory suppression, on item and order processing in verbal and musical STM domains. In Experiment 1, participants had to maintain sequences of verbal or musical information in STM, followed by a probe sequence, this under different conditions of interference (no-interference, rhythmic interference, articulatory suppression). They were required to decide whether all items of the probe list matched those of the memory list (item condition) or whether the order of the items in the probe sequence matched the order in the memory list (order condition). In Experiment 2, participants performed a serial order probe recognition task for verbal and musical sequences ensuring sequential maintenance processes, under no-interference or rhythmic interference conditions. For Experiment 1, serial order recognition was not significantly more impacted by interfering tasks than was item recognition, this for both verbal and musical domains. For Experiment 2, we observed selective interference of the rhythmic interference condition on both musical and verbal order STM tasks. Overall, the results suggest a similar and selective sensitivity to time-based interference for serial order STM in verbal and musical domains, but only when the STM tasks ensure sequential maintenance processes.

  19. Two-dimensional nanosecond electric field mapping based on cell electropermeabilization.

    PubMed

    Chen, Meng-Tse; Jiang, Chunqi; Vernier, P Thomas; Wu, Yu-Hsuan; Gundersen, Martin A

    2009-11-11

    Nanosecond, megavolt-per-meter electric pulses cause permeabilization of cells to small molecules, programmed cell death (apoptosis) in tumor cells, and are under evaluation as a treatment for skin cancer. We use nanoelectroporation and fluorescence imaging to construct two-dimensional maps of the electric field associated with delivery of 15 ns, 10 kV pulses to monolayers of the human prostate cancer cell line PC3 from three different electrode configurations: single-needle, five-needle, and flat-cut coaxial cable. Influx of the normally impermeant fluorescent dye YO-PRO-1 serves as a sensitive indicator of membrane permeabilization. The level of fluorescence emission after pulse exposure is proportional to the applied electric field strength. Spatial electric field distributions were compared in a plane normal to the center axis and 15-20 mum from the tip of the center electrode. Measurement results agree well with models for the three electrode arrangements evaluated in this study. This live-cell method for measuring a nanosecond pulsed electric field distribution provides an operationally meaningful calibration of electrode designs for biological applications and permits visualization of the relative sensitivities of different cell types to nanoelectropulse stimulation. PACS Codes: 87.85.M-

  20. A note on supersonic flow control with nanosecond plasma actuator

    NASA Astrophysics Data System (ADS)

    Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.

    2018-04-01

    A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.

  1. Impact of nanosecond pulsed electric fields on primary hippocampal neurons

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Kuipers, Marjorie A.; Thompson, Gary L.; Wilmink, Gerald J.; Ibey, Bennett L.

    2012-02-01

    Cellular exposure to nanosecond pulsed electric fields (nsPEF) are believed to cause immediate creation of nanopores in the plasma membrane. These nanopores enable passage of small ions, but remain impermeable to larger molecules like propidium iodide. Previous work has shown that nanopores are stable for minutes after exposure, suggesting that formation of nanopores in excitable cells could lead to prolonged action potential inhibition. Previously, we measured the formation of nanopores in neuroblastoma cells by measuring the influx of extracellular calcium by preloading cells with Calcium Green-AM. In this work, we explored the impact of changing the width of a single nsPEF, at constant amplitude, on uptake of extracellular calcium ions by primary hippocampal neurons (PHN). Calcium Green was again used to measure the influx of extracellular calcium and FM1-43 was used to monitor changes in membrane conformation. The observed thresholds for nanopore formation in PHN by nsPEF were comparable to those measured in neuroblastoma. This work is the first study of nsPEF effects on PHN and strongly suggests that neurological inhibition by nanosecond electrical pulses is highly likely at doses well below irreversible damage.

  2. The Time-Domain Matched Filter and the Spectral-Domain Matched Filter in 1-Dimensional NMR Spectroscopy.

    PubMed

    Spencer, Richard G

    2010-09-01

    A type of "matched filter" (MF), used extensively in the processing of one-dimensional spectra, is defined by multiplication of a free-induction decay (FID) by a decaying exponential with the same time constant as that of the FID. This maximizes, in a sense to be defined, the signal-to-noise ratio (SNR) in the spectrum obtained after Fourier transformation. However, a different entity known also as the matched filter was introduced by van Vleck in the context of pulse detection in the 1940's and has become widely integrated into signal processing practice. These two types of matched filters appear to be quite distinct. In the NMR case, the "filter", that is, the exponential multiplication, is defined by the characteristics of, and applied to, a time domain signal in order to achieve improved SNR in the spectral domain. In signal processing, the filter is defined by the characteristics of a signal in the spectral domain, and applied in order to improve the SNR in the temporal (pulse) domain. We reconcile these two distinct implementations of the matched filter, demonstrating that the NMR "matched filter" is a special case of the matched filter more rigorously defined in the signal processing literature. In addition, two limitations in the use of the MF are highlighted. First, application of the MF distorts resonance ratios as defined by amplitudes, although not as defined by areas. Second, the MF maximizes SNR with respect to resonance amplitude, while intensities are often more appropriately defined by areas. Maximizing the SNR with respect to area requires a somewhat different approach to matched filtering.

  3. Toward a Time-Domain Fractal Lightning Simulation

    NASA Astrophysics Data System (ADS)

    Liang, C.; Carlson, B. E.; Lehtinen, N. G.; Cohen, M.; Lauben, D.; Inan, U. S.

    2010-12-01

    Electromagnetic simulations of lightning are useful for prediction of lightning properties and exploration of the underlying physical behavior. Fractal lightning models predict the spatial structure of the discharge, but thus far do not provide much information about discharge behavior in time and therefore cannot predict electromagnetic wave emissions or current characteristics. Here we develop a time-domain fractal lightning simulation from Maxwell's equations, the method of moments with the thin wire approximation, an adaptive time-stepping scheme, and a simplified electrical model of the lightning channel. The model predicts current pulse structure and electromagnetic wave emissions and can be used to simulate the entire duration of a lightning discharge. The model can be used to explore the electrical characteristics of the lightning channel, the temporal development of the discharge, and the effects of these characteristics on observable electromagnetic wave emissions.

  4. [Aging explosive detection using terahertz time-domain spectroscopy].

    PubMed

    Meng, Kun; Li, Ze-ren; Liu, Qiao

    2011-05-01

    Detecting the aging situation of stock explosive is essentially meaningful to the research on the capability, security and stability of explosive. Existing aging explosive detection techniques, such as scan microscope technique, Fourier transfer infrared spectrum technique, gas chromatogram mass spectrum technique and so on, are either not able to differentiate whether the explosive is aging or not, or not able to image the structure change of the molecule. In the present paper, using the density functional theory (DFT), the absorb spectrum changes after the explosive aging were calculated, from which we can clearly find the difference of spectrum between explosive molecule and aging ones in the terahertz band. The terahertz time-domain spectrum (THz-TDS) system as well as its frequency spectrum resolution and measured range are analyzed. Combined with the existing experimental results and the essential characters of the terahertz wave, the application of THz-TDS technique to the detection of aging explosive was demonstrated from the aspects of feasibility, veracity and practicability. On the base of that, the authors advance the new method of aging explosive detection using the terahertz time-domain spectrum technique.

  5. Adaptive multi-time-domain subcycling for crystal plasticity FE modeling of discrete twin evolution

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Cheng, Jiahao

    2018-02-01

    Crystal plasticity finite element (CPFE) models that accounts for discrete micro-twin nucleation-propagation have been recently developed for studying complex deformation behavior of hexagonal close-packed (HCP) materials (Cheng and Ghosh in Int J Plast 67:148-170, 2015, J Mech Phys Solids 99:512-538, 2016). A major difficulty with conducting high fidelity, image-based CPFE simulations of polycrystalline microstructures with explicit twin formation is the prohibitively high demands on computing time. High strain localization within fast propagating twin bands requires very fine simulation time steps and leads to enormous computational cost. To mitigate this shortcoming and improve the simulation efficiency, this paper proposes a multi-time-domain subcycling algorithm. It is based on adaptive partitioning of the evolving computational domain into twinned and untwinned domains. Based on the local deformation-rate, the algorithm accelerates simulations by adopting different time steps for each sub-domain. The sub-domains are coupled back after coarse time increments using a predictor-corrector algorithm at the interface. The subcycling-augmented CPFEM is validated with a comprehensive set of numerical tests. Significant speed-up is observed with this novel algorithm without any loss of accuracy that is advantageous for predicting twinning in polycrystalline microstructures.

  6. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields.

    PubMed

    Noe, G Timothy; Katayama, Ikufumi; Katsutani, Fumiya; Allred, James J; Horowitz, Jeffrey A; Sullivan, David M; Zhang, Qi; Sekiguchi, Fumiya; Woods, Gary L; Hoffmann, Matthias C; Nojiri, Hiroyuki; Takeda, Jun; Kono, Junichiro

    2016-12-26

    We have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers in the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.

  7. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    NASA Astrophysics Data System (ADS)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  8. Time Domain Filtering of Resolved Images of Sgr A∗

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Gammie, Charles F.; Doeleman, Sheperd S.

    2017-09-01

    The goal of the Event Horizon Telescope (EHT) is to provide spatially resolved images of Sgr A*, the source associated with the Galactic Center black hole. Because Sgr A* varies on timescales that are short compared to an EHT observing campaign, it is interesting to ask whether variability contains information about the structure and dynamics of the accretion flow. In this paper, we introduce “time-domain filtering,” a technique to filter time fluctuating images with specific temporal frequency ranges and to demonstrate the power and usage of the technique by applying it to mock millimeter wavelength images of Sgr A*. The mock image data is generated from the General Relativistic Magnetohydrodynamic (GRMHD) simulation and the general relativistic ray-tracing method. We show that the variability on each line of sight is tightly correlated with a typical radius of emission. This is because disk emissivity fluctuates on a timescale of the order of the local orbital period. Time-domain filtered images therefore reflect the model dependent emission radius distribution, which is not accessible in time-averaged images. We show that, in principle, filtered data have the power to distinguish between models with different black-hole spins, different disk viewing angles, and different disk orientations in the sky.

  9. Time-Domain Simulation of Along-Track Interferometric SAR for Moving Ocean Surfaces.

    PubMed

    Yoshida, Takero; Rheem, Chang-Kyu

    2015-06-10

    A time-domain simulation of along-track interferometric synthetic aperture radar (AT-InSAR) has been developed to support ocean observations. The simulation is in the time domain and based on Bragg scattering to be applicable for moving ocean surfaces. The time-domain simulation is suitable for examining velocities of moving objects. The simulation obtains the time series of microwave backscattering as raw signals for movements of ocean surfaces. In terms of realizing Bragg scattering, the computational grid elements for generating the numerical ocean surface are set to be smaller than the wavelength of the Bragg resonant wave. In this paper, the simulation was conducted for a Bragg resonant wave and irregular waves with currents. As a result, the phases of the received signals from two antennas differ due to the movement of the numerical ocean surfaces. The phase differences shifted by currents were in good agreement with the theoretical values. Therefore, the adaptability of the simulation to observe velocities of ocean surfaces with AT-InSAR was confirmed.

  10. Time-Domain Simulation of Along-Track Interferometric SAR for Moving Ocean Surfaces

    PubMed Central

    Yoshida, Takero; Rheem, Chang-Kyu

    2015-01-01

    A time-domain simulation of along-track interferometric synthetic aperture radar (AT-InSAR) has been developed to support ocean observations. The simulation is in the time domain and based on Bragg scattering to be applicable for moving ocean surfaces. The time-domain simulation is suitable for examining velocities of moving objects. The simulation obtains the time series of microwave backscattering as raw signals for movements of ocean surfaces. In terms of realizing Bragg scattering, the computational grid elements for generating the numerical ocean surface are set to be smaller than the wavelength of the Bragg resonant wave. In this paper, the simulation was conducted for a Bragg resonant wave and irregular waves with currents. As a result, the phases of the received signals from two antennas differ due to the movement of the numerical ocean surfaces. The phase differences shifted by currents were in good agreement with the theoretical values. Therefore, the adaptability of the simulation to observe velocities of ocean surfaces with AT-InSAR was confirmed. PMID:26067197

  11. Time-domain simulation of nonlinear radiofrequency phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Thomas G.; Austin, Travis M.; Smithe, David N.

    Nonlinear effects associated with the physics of radiofrequency wave propagation through a plasma are investigated numerically in the time domain, using both fluid and particle-in-cell (PIC) methods. We find favorable comparisons between parametric decay instability scenarios observed on the Alcator C-MOD experiment [J. C. Rost, M. Porkolab, and R. L. Boivin, Phys. Plasmas 9, 1262 (2002)] and PIC models. The capability of fluid models to capture important nonlinear effects characteristic of wave-plasma interaction (frequency doubling, cyclotron resonant absorption) is also demonstrated.

  12. Time-domain simulation of nonlinear radiofrequency phenomena

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Austin, Travis M.; Smithe, David N.; Loverich, John; Hakim, Ammar H.

    2013-01-01

    Nonlinear effects associated with the physics of radiofrequency wave propagation through a plasma are investigated numerically in the time domain, using both fluid and particle-in-cell (PIC) methods. We find favorable comparisons between parametric decay instability scenarios observed on the Alcator C-MOD experiment [J. C. Rost, M. Porkolab, and R. L. Boivin, Phys. Plasmas 9, 1262 (2002)] and PIC models. The capability of fluid models to capture important nonlinear effects characteristic of wave-plasma interaction (frequency doubling, cyclotron resonant absorption) is also demonstrated.

  13. Frequency and time domain three-dimensional inversion of electromagnetic data for a grounded-wire source

    NASA Astrophysics Data System (ADS)

    Sasaki, Yutaka; Yi, Myeong-Jong; Choi, Jihyang; Son, Jeong-Sul

    2015-01-01

    We present frequency- and time-domain three-dimensional (3-D) inversion approaches that can be applied to transient electromagnetic (TEM) data from a grounded-wire source using a PC. In the direct time-domain approach, the forward solution and sensitivity were obtained in the frequency domain using a finite-difference technique, and the frequency response was then Fourier-transformed using a digital filter technique. In the frequency-domain approach, TEM data were Fourier-transformed using a smooth-spectrum inversion method, and the recovered frequency response was then inverted. The synthetic examples show that for the time derivative of magnetic field, frequency-domain inversion of TEM data performs almost as well as time-domain inversion, with a significant reduction in computational time. In our synthetic studies, we also compared the resolution capabilities of the ground and airborne TEM and controlled-source audio-frequency magnetotelluric (CSAMT) data resulting from a common grounded wire. An airborne TEM survey at 200-m elevation achieved a resolution for buried conductors almost comparable to that of the ground TEM method. It is also shown that the inversion of CSAMT data was able to detect a 3-D resistivity structure better than the TEM inversion, suggesting an advantage of electric-field measurements over magnetic-field-only measurements.

  14. Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy.

    PubMed

    Kozuki, Kohei; Nagashima, Takeshi; Hangyo, Masanori

    2011-12-05

    We present a frequency-domain electron spin resonance (ESR) measurement system using terahertz time-domain spectroscopy. A crossed polarizer technique is utilized to increase the sensitivity in detecting weak ESR signals of paramagnets caused by magnetic dipole transitions between magnetic sublevels. We demonstrate the measurements of ESR signal of paramagnetic copper(II) sulfate pentahydrate with uniaxial anisotropy of the g-factor under magnetic fields up to 10 T. The lineshape of the obtained ESR signals agrees well with the theoretical predictions for a powder sample with the uniaxial anisotropy.

  15. Time domain para hydrogen induced polarization.

    PubMed

    Ratajczyk, Tomasz; Gutmann, Torsten; Dillenberger, Sonja; Abdulhussaein, Safaa; Frydel, Jaroslaw; Breitzke, Hergen; Bommerich, Ute; Trantzschel, Thomas; Bernarding, Johannes; Magusin, Pieter C M M; Buntkowsky, Gerd

    2012-01-01

    Para hydrogen induced polarization (PHIP) is a powerful hyperpolarization technique, which increases the NMR sensitivity by several orders of magnitude. However the hyperpolarized signal is created as an anti-phase signal, which necessitates high magnetic field homogeneity and spectral resolution in the conventional PHIP schemes. This hampers the application of PHIP enhancement in many fields, as for example in food science, materials science or MRI, where low B(0)-fields or low B(0)-homogeneity do decrease spectral resolution, leading to potential extinction if in-phase and anti-phase hyperpolarization signals cannot be resolved. Herein, we demonstrate that the echo sequence (45°-τ-180°-τ) enables the acquisition of low resolution PHIP enhanced liquid state NMR signals of phenylpropiolic acid derivatives and phenylacetylene at a low cost low-resolution 0.54 T spectrometer. As low field TD-spectrometers are commonly used in industry or biomedicine for the relaxometry of oil-water mixtures, food, nano-particles, or other systems, we compare two variants of para-hydrogen induced polarization with data-evaluation in the time domain (TD-PHIP). In both TD-ALTADENA and the TD-PASADENA strong spin echoes could be detected under conditions when usually no anti-phase signals can be measured due to the lack of resolution. The results suggest that the time-domain detection of PHIP-enhanced signals opens up new application areas for low-field PHIP-hyperpolarization, such as non-invasive compound detection or new contrast agents and biomarkers in low-field Magnetic Resonance Imaging (MRI). Finally, solid-state NMR calculations are presented, which show that the solid echo (90y-τ-90x-τ) version of the TD-ALTADENA experiment is able to convert up to 10% of the PHIP signal into visible magnetization. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    PubMed

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  17. Nanosecond laser ablation of target Al in a gaseous medium: explosive boiling

    NASA Astrophysics Data System (ADS)

    Mazhukin, V. I.; Mazhukin, A. V.; Demin, M. M.; Shapranov, A. V.

    2018-03-01

    An approximate mathematical description of the processes of homogeneous nucleation and homogeneous evaporation (explosive boiling) of a metal target (Al) under the influence of ns laser radiation is proposed in the framework of the hydrodynamic model. Within the continuum approach, a multi-phase, multi-front hydrodynamic model and a computational algorithm are designed to simulate nanosecond laser ablation of the metal targets immersed in gaseous media. The proposed approach is intended for modeling and detailed analysis of the mechanisms of heterogeneous and homogeneous evaporation and their interaction with each other. It is shown that the proposed model and computational algorithm allow modeling of interrelated mechanisms of heterogeneous and homogeneous evaporation of metals, manifested in the form of pulsating explosive boiling. Modeling has shown that explosive evaporation in metals is due to the presence of a near-surface temperature maximum. It has been established that in nanosecond pulsed laser ablation, such exposure regimes can be implemented in which phase explosion is the main mechanism of material removal.

  18. Multiple Input Design for Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene

    2003-01-01

    A method for designing multiple inputs for real-time dynamic system identification in the frequency domain was developed and demonstrated. The designed inputs are mutually orthogonal in both the time and frequency domains, with reduced peak factors to provide good information content for relatively small amplitude excursions. The inputs are designed for selected frequency ranges, and therefore do not require a priori models. The experiment design approach was applied to identify linear dynamic models for the F-15 ACTIVE aircraft, which has multiple control effectors.

  19. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya

    Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less

  20. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields

    DOE PAGES

    Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya; ...

    2016-12-22

    Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less

  1. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  2. Geometrical and Topological Methods in Time Domain Antenna Synthesis

    DTIC Science & Technology

    1994-04-30

    94 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS GEOMETRICAL & TOPOLOGICAL METHODS IN TIME DOMAIN ANTENNA SYNTHESIS (U) 6. AUTHOR(S) j 61102F i 2304/BS...34 UNCLASSIFIED UNCLASSIFIED j UNCLASSIFIED SAR(SAME AS REPORT) -. Final Technical Report Grant F49620-92-J-0056 Geometrical and Topological Methods in Time...Morse theory, we may try to relate Witten’s proof of the Morse inequalities[92’, the heat equation method for harmonic forms[30], in the context of

  3. Historical Time-Domain: Data Archives, Processing, and Distribution

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan E.; Griffin, R. Elizabeth

    2012-04-01

    The workshop on Historical Time-Domain Astronomy (TDA) was attended by a near-capacity gathering of ~30 people. From information provided in turn by those present, an up-to-date overview was created of available plate archives, progress in their digitization, the extent of actual processing of those data, and plans for data distribution. Several recommendations were made for prioritising the processing and distribution of historical TDA data.

  4. A proposed time transfer experiment between the USA and the South Pacific

    NASA Technical Reports Server (NTRS)

    Luck, John; Dunkley, John; Armstrong, Tim; Gifford, Guy A.; Landis, Paul; Rasmussen, Scott; Wheeler, Paul J.; Bartholomew, Thomas R.; Stein, Samuel R.

    1992-01-01

    Described here are the concept, architecture and preliminary details of an experiment directed towards providing continuous Ultra High Precision (UHP) time transfer between Washington, DC; Salisbury, SA Australia; Orroral Valley, ACT Australia; and Lower Hutt, New Zealand. A proposed method of distributing UTC(USNO) at a high level of precision to passive users over a broad area of the South Pacific is described. The concept is based on active two-way satellite time transfer from the United States Naval Observatory (USNO) to the proposed USNO Master Clock West (MCW) in Wahiwa, HI at the 1 nanosecond level using active satellite two-way time transfer augmented by Precise Positioning Service (PPS) of the Global Positioning System (GPS). MCW would act as an intermediate transfer/reference station, again linked to Salisbury at the 1 nanosecond level using active satellite two-way time transfer augmented by PPS GPS. From this point, time would be distributed within the region by two methods. The first is an existing TV line sync system using an Australian communications satellite (AUSSAT K1) which is useful to the 20 nanosecond level. The second approach is RF ranging and multilateration between Salisbury, Orroral Observatory, Lower Hutt and the AUSSAT B1 and B2 to be launched in 1992. Orroral Observatory will provide precise laser ranging to the AUSSAT B1/B2 retro reflectors which will reduce ephemeris related time transfer errors to below 1 nanosecond. The corrected position will be transmitted by both the time transfer modem and the existing TV line sync dissemination process. Multilateration has the advantage of being an all weather approach and when used with the laser ranging technique will provide a precise measurement of the propagation path delays. This will result in time transfer performance levels on the order of 10 nanoseconds to passive users in both Australia and New Zealand.

  5. In vivo monitoring laser tissue interaction using high resolution Fourier-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jo, Hang Chan; Shin, Dong Jun; Ahn, Jin-Chul; Chung, Phil-Sang; Kim, DaeYu

    2017-02-01

    Laser-induced therapies include laser ablation to remove or cut target tissue by irradiating high-power focused laser beam. These laser treatments are widely used tools for minimally invasive surgery and retinal surgical procedures in clinical settings. In this study, we demonstrate laser tissue interaction images of various sample tissues using high resolution Fourier-domain optical coherence tomography (Fd-OCT). We use a Q-switch diode-pumped Nd:YVO4 nanosecond laser (532nm central wavelength) with a 4W maximum output power at a 20 kHz repetition rate to ablate in vitro and in vivo samples including chicken breast and mouse ear tissues. The Fd-OCT system acquires time-series Bscan images at the same location during the tissue ablation experiments with 532nm laser irradiation. The real-time series of OCT cross-sectional (B-scan) images compare structural changes of 532nm laser ablation using same and different laser output powers. Laser tissue ablation is demonstrated by the width and the depth of the tissue ablation from the B-scan images.

  6. Numerical results for near surface time domain electromagnetic exploration: a full waveform approach

    NASA Astrophysics Data System (ADS)

    Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.

    2015-12-01

    Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two

  7. A compact 300 kV solid-state high-voltage nanosecond generator for dielectric wall accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yi; Wang, Wei; Liu, Yi

    2015-05-15

    Compact solid-state system is the main development trend in pulsed power technologies. A compact solid-state high-voltage nanosecond pulse generator with output voltage of 300 kV amplitude, 10 ns duration (FWHM), and 3 ns rise-time was designed for a dielectric wall accelerator. The generator is stacked by 15 planar-plate Blumlein pulse forming lines (PFL). Each Blumlein PFL consists of two solid-state planar transmission lines, a GaAs photoconductive semiconductor switch, and a laser diode trigger. The key components of the generator and the experimental results are reported in this paper.

  8. Molecular dynamics simulations of domain motions of substrate-free S-adenosyl- L-homocysteine hydrolase in solution.

    PubMed

    Hu, Chen; Fang, Jianwen; Borchardt, Ronald T; Schowen, Richard L; Kuczera, Krzysztof

    2008-04-01

    S-Adenosyl-L-homocysteine hydrolase (SAHH) is an enzyme regulating intracellular methylation reactions. The homotetrameric SAHH exists in an open conformation in absence of substrate, while enzyme:inhibitor complexes crystallize in the closed conformation, in which the ligands are engulfed by the protein due to an 18 degrees domain reorientation within each of the four subunits. We present a microscopic description of the structure and dynamics of the substrate-free, NAD(+)-bound SAHH in solution, based on a 15-ns molecular dynamics simulation in explicit solvent. In the trajectory, the four cofactor-binding domains formed a relatively rigid core with structure very similar to the crystal conformation. The four substrate-binding domains, located at the protein exterior, also retained internal structures similar to the crystal, while undergoing large amplitude rigid-body reorientations. The trajectory domain motions exhibited two interesting properties. First, within each subunit the domains fluctuated between open and closed conformations, while at the tetramer level 80% of the domain motions were perpendicular to the direction of the open-to-closed structural transition. Second, the domain reorientations in solution could be represented as a sum of two components, faster, with 20-50 ps correlation time and 3-4 degrees amplitude, and slower, with 8-23 ns correlation time and amplitude of 14-22 degrees . The faster motion is similar to the 1.5 cm(-1) frequency hinge-bending vibrations found in our recent normal mode analysis (Wang et al., Biochemistry 2005;44:7228-7239). The slower motion agrees with fluorescence anisotropy decay measurements, which detected a 10-20 ns domain reorientation of ca. 26 degrees amplitude in the substrate-free enzyme (Wang et al., Biochemistry 2006;45:7778-7786). Our simulations are thus in excellent agreement with experimental data. The simulations allow us to assign the observed nanosecond fluorescence anisotropy signal to fluctuations

  9. Direct use of linear time-domain aerodynamics in aeroservoelastic analysis: Aerodynamic model

    NASA Technical Reports Server (NTRS)

    Woods, J. A.; Gilbert, Michael G.

    1990-01-01

    The work presented here is the first part of a continuing effort to expand existing capabilities in aeroelasticity by developing the methodology which is necessary to utilize unsteady time-domain aerodynamics directly in aeroservoelastic design and analysis. The ultimate objective is to define a fully integrated state-space model of an aeroelastic vehicle's aerodynamics, structure and controls which may be used to efficiently determine the vehicle's aeroservoelastic stability. Here, the current status of developing a state-space model for linear or near-linear time-domain indicial aerodynamic forces is presented.

  10. Rheological Models in the Time-Domain Modeling of Seismic Motion

    NASA Astrophysics Data System (ADS)

    Moczo, P.; Kristek, J.

    2004-12-01

    The time-domain stress-strain relation in a viscoelastic medium has a form of the convolutory integral which is numerically intractable. This was the reason for the oversimplified models of attenuation in the time-domain seismic wave propagation and earthquake motion modeling. In their pioneering work, Day and Minster (1984) showed the way how to convert the integral into numerically tractable differential form in the case of a general viscoelastic modulus. In response to the work by Day and Minster, Emmerich and Korn (1987) suggested using the rheology of their generalized Maxwell body (GMB) while Carcione et al. (1988) suggested using the generalized Zener body (GZB). The viscoelastic moduli of both rheological models have a form of the rational function and thus the differential form of the stress-strain relation is rather easy to obtain. After the papers by Emmerich and Korn and Carcione et al. numerical modelers decided either for the GMB or GZB rheology and developed 'non-communicating' algorithms. In the many following papers the authors using the GMB never commented the GZB rheology and the corresponding algorithms, and the authors using the GZB never related their methods to the GMB rheology and algorithms. We analyze and compare both rheologies and the corresponding incorporations of the realistic attenuation into the time-domain computations. We then focus on the most recent staggered-grid finite-difference modeling, mainly on accounting for the material heterogeneity in the viscoelastic media, and the computational efficiency of the finite-difference algorithms.

  11. Analytical time-domain Green’s functions for power-law media

    PubMed Central

    Kelly, James F.; McGough, Robert J.; Meerschaert, Mark M.

    2008-01-01

    Frequency-dependent loss and dispersion are typically modeled with a power-law attenuation coefficient, where the power-law exponent ranges from 0 to 2. To facilitate analytical solution, a fractional partial differential equation is derived that exactly describes power-law attenuation and the Szabo wave equation [“Time domain wave-equations for lossy media obeying a frequency power-law,” J. Acoust. Soc. Am. 96, 491–500 (1994)] is an approximation to this equation. This paper derives analytical time-domain Green’s functions in power-law media for exponents in this range. To construct solutions, stable law probability distributions are utilized. For exponents equal to 0, 1∕3, 1∕2, 2∕3, 3∕2, and 2, the Green’s function is expressed in terms of Dirac delta, exponential, Airy, hypergeometric, and Gaussian functions. For exponents strictly less than 1, the Green’s functions are expressed as Fox functions and are causal. For exponents greater than or equal than 1, the Green’s functions are expressed as Fox and Wright functions and are noncausal. However, numerical computations demonstrate that for observation points only one wavelength from the radiating source, the Green’s function is effectively causal for power-law exponents greater than or equal to 1. The analytical time-domain Green’s function is numerically verified against the material impulse response function, and the results demonstrate excellent agreement. PMID:19045774

  12. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    PubMed

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  13. Time-domain reflectometry of water content in portland cement concrete

    DOT National Transportation Integrated Search

    1997-11-01

    Time-domain reflectometry is useful for measuring the moisture content of solids. However, little information exists on its use with portland cement concrete. By monitoring the response from TDR sensors embedded in concrete as the concrete dried, the...

  14. THE PSTD ALGORITHM: A TIME-DOMAIN METHOD REQUIRING ONLY TWO CELLS PER WAVELENGTH. (R825225)

    EPA Science Inventory

    A pseudospectral time-domain (PSTD) method is developed for solutions of Maxwell's equations. It uses the fast Fourier transform (FFT), instead of finite differences on conventional finite-difference-time-domain (FDTD) methods, to represent spatial derivatives. Because the Fourie...

  15. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    Determining transient electromagnetic fields in antennas with nonlinear loads is a challenging problem. Typical methods used involve calculating frequency domain parameters at a large number of different frequencies, then applying Fourier transform methods plus nonlinear equation solution techniques. If the antenna is simple enough so that the open circuit time domain voltage can be determined independently of the effects of the nonlinear load on the antennas current, time stepping methods can be applied in a straightforward way. Here, transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain (FDTD) methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case, the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets, including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  16. The Simulation Realization of Pavement Roughness in the Time Domain

    NASA Astrophysics Data System (ADS)

    XU, H. L.; He, L.; An, D.

    2017-10-01

    As the needs for the dynamic study on the vehicle-pavement system and the simulated vibration table test, how to simulate the pavement roughness actually is important guarantee for whether calculation and test can reflect the actual situation or not. Using the power spectral density function, the simulation of pavement roughness can be realized by Fourier inverse transform. The main idea of this method was that the spectrum amplitude and random phase were obtained separately according to the power spectrum, and then the simulation of pavement roughness was obtained in the time domain through the Fourier inverse transform (IFFT). In the process, the sampling interval (Δl) was 0.1m, and the sampling points(N) was 4096, which satisfied the accuracy requirements. Using this method, the simulate results of pavement roughness (A~H grades) were obtain in the time domain.

  17. A Time-Domain CMOS Oscillator-Based Thermostat with Digital Set-Point Programming

    PubMed Central

    Chen, Chun-Chi; Lin, Shih-Hao

    2013-01-01

    This paper presents a time-domain CMOS oscillator-based thermostat with digital set-point programming [without a digital-to-analog converter (DAC) or external resistor] to achieve on-chip thermal management of modern VLSI systems. A time-domain delay-line-based thermostat with multiplexers (MUXs) was used to substantially reduce the power consumption and chip size, and can benefit from the performance enhancement due to the scaling down of fabrication processes. For further cost reduction and accuracy enhancement, this paper proposes a thermostat using two oscillators that are suitable for time-domain curvature compensation instead of longer linear delay lines. The final time comparison was achieved using a time comparator with a built-in custom hysteresis to generate the corresponding temperature alarm and control. The chip size of the circuit was reduced to 0.12 mm2 in a 0.35-μm TSMC CMOS process. The thermostat operates from 0 to 90 °C, and achieved a fine resolution better than 0.05 °C and an improved inaccuracy of ± 0.6 °C after two-point calibration for eight packaged chips. The power consumption was 30 μW at a sample rate of 10 samples/s. PMID:23385403

  18. Real-Time Parameter Estimation in the Frequency Domain

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2000-01-01

    A method for real-time estimation of parameters in a linear dynamic state-space model was developed and studied. The application is aircraft dynamic model parameter estimation from measured data in flight. Equation error in the frequency domain was used with a recursive Fourier transform for the real-time data analysis. Linear and nonlinear simulation examples and flight test data from the F-18 High Alpha Research Vehicle were used to demonstrate that the technique produces accurate model parameter estimates with appropriate error bounds. Parameter estimates converged in less than one cycle of the dominant dynamic mode, using no a priori information, with control surface inputs measured in flight during ordinary piloted maneuvers. The real-time parameter estimation method has low computational requirements and could be implemented

  19. Time-domain finite-difference based analysis of induced crosstalk in multiwall carbon nanotube interconnects

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Nehra, Vikas; Kaushik, Brajesh Kumar

    2017-08-01

    Graphene rolled-up cylindrical sheets i.e. carbon nanotubes (CNTs) is one of the finest and emerging research area. This paper presents the investigation of induced crosstalk in coupled on-chip multiwalled carbon nanotube (MWCNT) interconnects using finite-difference analysis (FDA) in time-domain i.e. the finite-difference time-domain (FDTD) method. The exceptional properties of versatile MWCNTs profess their candidacy to replace conventional on-chip copper interconnects. Time delay and crosstalk noise have been evaluated for coupled on-chip MWCNT interconnects. With a decrease in CNT length, the obtained results for an MWCNT shows that transmission performance improves as the number of shells increases. It has been observed that the obtained results using the finite-difference time domain (FDTD) technique shows a very close match with the HSPICE simulated results.

  20. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis

    PubMed Central

    Pamenter, Matthew E.; Powell, Frank L.

    2016-01-01

    Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. PMID:27347896

  1. Gravitational Waves and Time Domain Astronomy

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Nissanke, Samaya; Williams, Roy

    2012-01-01

    The gravitational wave window onto the universe will open in roughly five years, when Advanced LIGO and Virgo achieve the first detections of high frequency gravitational waves, most likely coming from compact binary mergers. Electromagnetic follow-up of these triggers, using radio, optical, and high energy telescopes, promises exciting opportunities in multi-messenger time domain astronomy. In the decade, space-based observations of low frequency gravitational waves from massive black hole mergers, and their electromagnetic counterparts, will open up further vistas for discovery. This two-part workshop featured brief presentations and stimulating discussions on the challenges and opportunities presented by gravitational wave astronomy. Highlights from the workshop, with the emphasis on strategies for electromagnetic follow-up, are presented in this report.

  2. Nanosecond laser-cluster interactions at 109-1012 W/cm 2

    NASA Astrophysics Data System (ADS)

    Singh, Rohtash; Tripathi, V. K.; Vatsa, R. K.; Das, D.

    2017-08-01

    An analytical model and a numerical code are developed to study the evolution of multiple charge states of ions by irradiating clusters of atoms of a high atomic number (e.g., Xe) by 1.06 μm and 0.53 μm nanosecond laser pulses of an intensity in the range of 109-1012 W/cm 2 . The laser turns clusters into plasma nanoballs. Initially, the momentum randomizing collisions of electrons are with neutrals, but soon these are taken over by collisions with ions. The ionization of an ion to the next higher state of ionization is taken to be caused by an energetic free electron impact, and the rates of impact ionization are suitably modelled by having an inverse exponential dependence of ionizing collision frequency on the ratio of ionization potential to electron temperature. Cluster expansion led adiabatic cooling is a major limiting mechanism on electron temperature. In the intensity range considered, ionization states up to 7 are expected with nanosecond pulses. Another possible mechanism, filamentation of the laser, has also been considered to account for the observation of higher charged states. However, filamentation is seen to be insufficient to cause substantial local enhancement in the intensity to affect electron heating rates.

  3. Nanosecond pulsed laser welding of high carbon steels

    NASA Astrophysics Data System (ADS)

    Ascari, Alessandro; Fortunato, Alessandro

    2014-03-01

    The present paper deals with the possibility to exploit low-cost, near infra-red, nanosecond pulsed laser sources in welding of high carbon content thin sheets. The exploitation of these very common sources allows to achieve sound weld beads with a good depth-to-width ratio and very small heat affected zones when the proper process parameters are involved. In particular the role of pulse frequency, pulse duration, peak power and welding speed on the characteristics of the weld beads is studied and the advantage of the application of short-pulse laser sources over traditional long-pulse or continuous wave one is assessed.

  4. Subcellular Biological Effects of Nanosecond Pulsed Electric Fields

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen F.; Stacey, Michael

    Membranes of biological cells can be charged by exposure to pulsed electric fields. After the potential difference across the barrier reaches critical values on the order of 1 V, pores will form. For moderate pulse parameters of duration and amplitude, the effect is limited to the outer cell membrane. With the exposure to nanosecond pulses of several tens of kilovolts per centimeter, a similar effect is also expected for subcellular membranes and structures. Cells will respond to the disruption by different biochemical processes. This offers possibilities for the development of novel medical therapies, the manipulation of cells and microbiological decontamination.

  5. Effect of Nanosecond RF Pulses on Mitochondrial Membranes

    NASA Astrophysics Data System (ADS)

    Zharkova, L. P.; Romanchenko, I. V.; Bol'shakov, M. A.; Rostov, V. V.

    2017-12-01

    Effect of nanosecond RF pulses on the state of isolated mitochondria and their membranes is investigated. Mitochondrial suspensions are exposed to periodic RF pulses with durations from 4 to 25 ns, frequencies from 0.6 to 1.0 GHz, amplitudes from 0.1 to 36 kV/cm, and pulse repetition frequencies 8-25 Hz. The integrity of the mitochondrial membranes is estimated from their resistance to electric current. The possibility of opening of protein pores with nonspecific permeability is determined from a change in the mitochondrial volume by registration of optical density of organelle suspension.

  6. The second phase of bipolar, nanosecond-range electric pulses determines the electroporation efficiency.

    PubMed

    Pakhomov, Andrei G; Grigoryev, Sergey; Semenov, Iurii; Casciola, Maura; Jiang, Chunqi; Xiao, Shu

    2018-03-29

    Bipolar cancellation refers to a phenomenon when applying a second electric pulse reduces ("cancels") cell membrane damage by a preceding electric pulse of the opposite polarity. Bipolar cancellation is a reason why bipolar nanosecond electric pulses (nsEP) cause weaker electroporation than just a single unipolar phase of the same pulse. This study was undertaken to explore the dependence of bipolar cancellation on nsEP parameters, with emphasis on the amplitude ratio of two opposite polarity phases of a bipolar pulse. Individual cells (CHO, U937, or adult mouse ventricular cardiomyocytes (VCM)) were exposed to either uni- or bipolar trapezoidal nsEP, or to nanosecond electric field oscillations (NEFO). The membrane injury was evaluated by time-lapse confocal imaging of the uptake of propidium (Pr) or YO-PRO-1 (YP) dyes and by phosphatidylserine (PS) externalization. Within studied limits, bipolar cancellation showed little or no dependence on the electric field intensity, pulse repetition rate, chosen endpoint, or cell type. However, cancellation could increase for larger pulse numbers and/or for longer pulses. The sole most critical parameter which determines bipolar cancellation was the phase ratio: maximum cancellation was observed with the 2nd phase of about 50% of the first one, whereas a larger 2nd phase could add a damaging effect of its own. "Swapping" the two phases, i.e., delivering the smaller phase before the larger one, reduced or eliminated cancellation. These findings are discussed in the context of hypothetical mechanisms of bipolar cancellation and electroporation by nsEP. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cognitive domains that predict time to diagnosis in prodromal Huntington disease.

    PubMed

    Harrington, Deborah Lynn; Smith, Megan M; Zhang, Ying; Carlozzi, Noelle E; Paulsen, Jane S

    2012-06-01

    Prodromal Huntington's disease (prHD) is associated with a myriad of cognitive changes but the domains that best predict time to clinical diagnosis have not been studied. This is a notable gap because some domains may be more sensitive to cognitive decline, which would inform clinical trials. The present study sought to characterise cognitive domains underlying a large test battery and for the first time, evaluate their ability to predict time to diagnosis. Participants included gene negative and gene positive prHD participants who were enrolled in the PREDICT-HD study. The CAG-age product (CAP) score was the measure of an individual's genetic signature. A factor analysis of 18 tests was performed to identify sets of measures or latent factors that elucidated core constructs of tests. Factor scores were then fit to a survival model to evaluate their ability to predict time to diagnosis. Six factors were identified: (1) speed/inhibition, (2) verbal working memory, (3) motor planning/speed, (4) attention-information integration, (5) sensory-perceptual processing and (6) verbal learning/memory. Factor scores were sensitive to worsening of cognitive functioning in prHD, typically more so than performances on individual tests comprising the factors. Only the motor planning/speed and sensory-perceptual processing factors predicted time to diagnosis, after controlling for CAP scores and motor symptoms. Conclusions The results suggest that motor planning/speed and sensory-perceptual processing are important markers of disease prognosis. The findings also have implications for using composite indices of cognition in preventive Huntington's disease trials where they may be more sensitive than individual tests.

  8. Terahertz time-domain spectroscopy of chondroitin sulfate

    PubMed Central

    Shi, Changcheng; Ma, Yuting; Zhang, Jin; Wei, Dongshan; Wang, Huabin; Peng, Xiaoyu; Tang, Mingjie; Yan, Shihan; Zuo, Guokun; Du, Chunlei; Cui, Hongliang

    2018-01-01

    Chondroitin sulfate (CS), derived from cartilage tissues, is an important type of biomacromolecule. In this paper, the terahertz time-domain spectroscopy (THz-TDS) was investigated as a potential method for content detection of CS. With the increase of the CS content, the THz absorption coefficients of the CS/polyethylene mixed samples linearly increase. The refractive indices of the mixed samples also increase when the CS content increases. The extinction coefficient of CS demonstrates the THz frequency dependence to be approximately the power of 1.4, which can be explained by the effects of CS granular solids on THz scattering. PMID:29541526

  9. Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Wei, Wenfu; Li, Xingwen

    2013-04-22

    We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag modelmore » was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.« less

  10. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    PubMed Central

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; Winey, J. M.; Gupta, Yogendra M.

    2017-01-01

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HD plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events. PMID:29098183

  11. Perceived Interpersonal Discrimination and Older Women’s Mental Health: Accumulation Across Domains, Attributions, and Time

    PubMed Central

    Bécares, Laia; Zhang, Nan

    2018-01-01

    Abstract Experiencing discrimination is associated with poor mental health, but how cumulative experiences of perceived interpersonal discrimination across attributes, domains, and time are associated with mental disorders is still unknown. Using data from the Study of Women’s Health Across the Nation (1996–2008), we applied latent class analysis and generalized linear models to estimate the association between cumulative exposure to perceived interpersonal discrimination and older women’s mental health. We found 4 classes of perceived interpersonal discrimination, ranging from cumulative exposure to discrimination over attributes, domains, and time to none or minimal reports of discrimination. Women who experienced cumulative perceived interpersonal discrimination over time and across attributes and domains had the highest risk of depression (Center for Epidemiologic Studies Depression Scale score ≥16) compared with women in all other classes. This was true for all women regardless of race/ethnicity, although the type and severity of perceived discrimination differed across racial/ethnic groups. Cumulative exposure to perceived interpersonal discrimination across attributes, domains, and time has an incremental negative long-term association with mental health. Studies that examine exposure to perceived discrimination due to a single attribute in 1 domain or at 1 point in time underestimate the magnitude and complexity of discrimination and its association with health. PMID:29036550

  12. New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Lung, Shun-Fat

    2017-01-01

    A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.

  13. Reaching multi-nanosecond timescales in combined QM/MM molecular dynamics simulations through parallel horsetail sampling.

    PubMed

    Martins-Costa, Marilia T C; Ruiz-López, Manuel F

    2017-04-15

    We report an enhanced sampling technique that allows to reach the multi-nanosecond timescale in quantum mechanics/molecular mechanics molecular dynamics simulations. The proposed technique, called horsetail sampling, is a specific type of multiple molecular dynamics approach exhibiting high parallel efficiency. It couples a main simulation with a large number of shorter trajectories launched on independent processors at periodic time intervals. The technique is applied to study hydrogen peroxide at the water liquid-vapor interface, a system of considerable atmospheric relevance. A total simulation time of a little more than 6 ns has been attained for a total CPU time of 5.1 years representing only about 20 days of wall-clock time. The discussion of the results highlights the strong influence of the solvation effects at the interface on the structure and the electronic properties of the solute. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Nanosecond Absorption Spectroscopy of Hemoglobin: Elementary Processes in Kinetic Cooperativity

    NASA Astrophysics Data System (ADS)

    Hofrichter, James; Sommer, Joseph H.; Henry, Eric R.; Eaton, William A.

    1983-04-01

    A nanosecond absorption spectrometer has been used to measure the optical spectra of hemoglobin between 3 ns and 100 ms after photolysis of the CO complex. The data from a single experiment comprise a surface, defined by the time-ordered set of 50-100 spectra. Singular value decomposition is used to represent the observed spectra in terms of a minimal set of basis spectra and the time course of their amplitudes. Both CO rebinding and conformational changes are found to be multiphasic. Prior to the quaternary structural change, two relaxations are observed that are assigned to geminate recombination followed by a tertiary structural change. These relaxations are interpreted in terms of a kinetic model that points out their potential role in kinetic cooperativity. The rapid escape of CO from the heme pocket compared with the rate of rebinding observed for both R and T quaternary states shows that the quaternary structure controls the overall dissociation rate by changing the rate at which the Fe--CO bond is broken. A comparable description of the control of the overall association rates must await a more complete experimental description of the kinetics of the quaternary T state.

  15. Stabilization of time domain acoustic boundary element method for the interior problem with impedance boundary conditions.

    PubMed

    Jang, Hae-Won; Ih, Jeong-Guon

    2012-04-01

    The time domain boundary element method (BEM) is associated with numerical instability that typically stems from the time marching scheme. In this work, a formulation of time domain BEM is derived to deal with all types of boundary conditions adopting a multi-input, multi-output, infinite impulse response structure. The fitted frequency domain impedance data are converted into a time domain expression as a form of an infinite impulse response filter, which can also invoke a modeling error. In the calculation, the response at each time step is projected onto the wave vector space of natural radiation modes, which can be obtained from the eigensolutions of the single iterative matrix. To stabilize the computation, unstable oscillatory modes are nullified, and the same decay rate is used for two nonoscillatory modes. As a test example, a transient sound field within a partially lined, parallelepiped box is used, within which a point source is excited by an octave band impulse. In comparison with the results of the inverse Fourier transform of a frequency domain BEM, the average of relative difference norm in the stabilized time response is found to be 4.4%.

  16. Time-domain approach for the transient responses in stratified viscoelastic Earth models

    NASA Technical Reports Server (NTRS)

    Hanyk, L.; Moser, J.; Yuen, D. A.; Matyska, C.

    1995-01-01

    We have developed the numerical algorithm for the computation of transient viscoelastic responses in the time domain for a radially stratified Earth model. Stratifications in both the elastic parameters and the viscosity profile have been considered. The particular viscosity profile employed has a viscosity maximum with a constrast of O(100) in the mid lower mantle. The distribution of relaxation times reveals the presence of a continuous spectrum situated between O(100) and O(exp 4) years. The principal mode is embedded within this continuous spectrum. From this initial-value approach we have found that for the low degree harmonics the non-modal contributions are comparable to the modal contributions. For this viscosity model the differences between the time-domain and normal-mode results are found to decrease strongly with increasing angular order. These calculations also show that a time-dependent effective relaxation time can be defined, which can be bounded by the relaxation times of the principal modes.

  17. Time-domain diffuse optics using bioresorbable fibers: a proof-of-principle study

    NASA Astrophysics Data System (ADS)

    Di Sieno, Laura; Boetti, Nadia G.; Dalla Mora, Alberto; Pugliese, Diego; Farina, Andrea; Konugolu Venkata Sekar, Sanathana; Ceci-Ginistrelli, Edoardo; Janner, Davide; Pifferi, Antonio; Milanese, Daniel

    2017-07-01

    We show for the first time the aptness of Calcium Phosphate Glass-based bioresorbable fibers for time-domain diffuse optics using tests described by a standardized protocol and we also present a spectroscopic measurement on a chicken breast.

  18. EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity.

    PubMed

    Diykh, Mohammed; Li, Yan; Wen, Peng

    2016-11-01

    The electroencephalogram (EEG) signals are commonly used in diagnosing and treating sleep disorders. Many existing methods for sleep stages classification mainly depend on the analysis of EEG signals in time or frequency domain to obtain a high classification accuracy. In this paper, the statistical features in time domain, the structural graph similarity and the K-means (SGSKM) are combined to identify six sleep stages using single channel EEG signals. Firstly, each EEG segment is partitioned into sub-segments. The size of a sub-segment is determined empirically. Secondly, statistical features are extracted, sorted into different sets of features and forwarded to the SGSKM to classify EEG sleep stages. We have also investigated the relationships between sleep stages and the time domain features of the EEG data used in this paper. The experimental results show that the proposed method yields better classification results than other four existing methods and the support vector machine (SVM) classifier. A 95.93% average classification accuracy is achieved by using the proposed method.

  19. A kind of graded sub-pixel motion estimation algorithm combining time-domain characteristics with frequency-domain phase correlation

    NASA Astrophysics Data System (ADS)

    Xie, Bing; Duan, Zhemin; Chen, Yu

    2017-11-01

    The mode of navigation based on scene match can assist UAV to achieve autonomous navigation and other missions. However, aerial multi-frame images of the UAV in the complex flight environment easily be affected by the jitter, noise and exposure, which will lead to image blur, deformation and other issues, and result in the decline of detection rate of the interested regional target. Aiming at this problem, we proposed a kind of Graded sub-pixel motion estimation algorithm combining time-domain characteristics with frequency-domain phase correlation. Experimental results prove the validity and accuracy of the proposed algorithm.

  20. Surface damage of thin AlN films with increased oxygen content by nanosecond and femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Salakhutdinov, Ildar; Chen, J. K.; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory

    2009-10-01

    AlN films deposited on sapphire substrates were damaged by single UV nanosecond (at 248 nm) and IR femtosecond (at 775 nm) laser pulses in air at normal pressure. The films had high (27-35 atomic %) concentration of oxygen introduced into thin surface layer (5-10 nm thickness). We measured damage threshold and studied morphology of the damage sites with atomic force and Nomarski optical microscopes with the objective to determine a correlation between damage processes and oxygen content. The damage produced by nanosecond pulses was accompanied by significant thermal effects with evident signatures of melting, chemical modification of the film surface, and specific redistribution of micro-defect rings around the damage spots. The nanosecond-damage threshold exhibited pronounced increase with increase of the oxygen content. In contrast to that, the femtosecond pulses produced damage without any signs of thermal, thermo-mechanical or chemical effects. No correlation between femtosecond-damage threshold and oxygen content as well as presence of defects within the laser-damage spot was found. We discuss the influence of the oxygen contamination on film properties and related mechanisms responsible for the specific damage effects and morphology of the damage sites observed in the experiments.

  1. Free-decay time-domain modal identification for large space structures

    NASA Technical Reports Server (NTRS)

    Kim, Hyoung M.; Vanhorn, David A.; Doiron, Harold H.

    1992-01-01

    Concept definition studies for the Modal Identification Experiment (MIE), a proposed space flight experiment for the Space Station Freedom (SSF), have demonstrated advantages and compatibility of free-decay time-domain modal identification techniques with the on-orbit operational constraints of large space structures. Since practical experience with modal identification using actual free-decay responses of large space structures is very limited, several numerical and test data reduction studies were conducted. Major issues and solutions were addressed, including closely-spaced modes, wide frequency range of interest, data acquisition errors, sampling delay, excitation limitations, nonlinearities, and unknown disturbances during free-decay data acquisition. The data processing strategies developed in these studies were applied to numerical simulations of the MIE, test data from a deployable truss, and launch vehicle flight data. Results of these studies indicate free-decay time-domain modal identification methods can provide accurate modal parameters necessary to characterize the structural dynamics of large space structures.

  2. Broadband Trailing Edge Noise Predictions in the Time Domain. Revised

    NASA Technical Reports Server (NTRS)

    Casper, Jay; Farassat, Fereidoun

    2003-01-01

    A recently developed analytic result in acoustics, "Formulation 1B," is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Willliams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experimental results. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, by using both analytical and experimental data on the airfoil surface. The acoustic predictions are compared with analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.

  3. Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems.

    PubMed

    Li, Jianfeng; Huang, Zhitong; Liu, Xiaoshuang; Ji, Yuefeng

    2015-01-12

    A novel hybrid time-frequency domain equalization scheme is proposed and experimentally demonstrated to mitigate the white light emitting diode (LED) nonlinearity in visible light communication (VLC) systems based on orthogonal frequency division multiplexing (OFDM). We handle the linear and nonlinear distortion separately in a nonlinear OFDM system. The linear part is equalized in frequency domain and the nonlinear part is compensated by an adaptive nonlinear time domain equalizer (N-TDE). The experimental results show that with only a small number of parameters the nonlinear equalizer can efficiently mitigate the LED nonlinearity. With the N-TDE the modulation index (MI) and BER performance can be significantly enhanced.

  4. Third harmonic from air breakdown plasma induced by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Stafe, M.; Negutu, C.; Puscas, N. N.

    2018-06-01

    Harmonic generation is a nonlinear optical effect consisting in frequency up-conversion of intense laser radiation when phase-matching conditions are fulfilled. Here, we study the mechanisms involved in the third harmonic (TH) generation process, the conversion efficiency, and the properties of TH radiation generated in air by focusing infrared linearly polarized nanosecond laser pulses at intensities of the order of TW/cm2. By analyzing the emission from the air breakdown plasma, we demonstrate that filamentary breakdown plasma containing molecular nitrogen ions acts as an optical nonlinear medium enabling generation of TH radiation in the axial direction. The data reveal important properties of the TH radiation: maximum conversion efficiency of 0.04%, sinc2 dependence of the TH intensity on the square root of the pump intensity, and three times smaller divergence and pulse duration of TH as compared to the pump radiation.

  5. Investigation of laser induced breakdown in liquid nitromethane using nanosecond shadowgraphy

    NASA Astrophysics Data System (ADS)

    Guo, Wencan; Zheng, Xianxu; Yu, Guoyang; Zhao, Jun; Zeng, Yangyang; Liu, Cangli

    2016-09-01

    A nanosecond time-resolved shadowgraphy is performed to observe a laser-induced breakdown in nitromethane. The digital delays are introduced between a pump beam and an illumination light to achieve a measuring range from 40 ns to 100 ms, which enable us to study the shock wave propagation, bubble dynamics, and other process of the laser-induced breakdown. Compared with distilled water, there are two obvious differences observed in nitromethane: (1) the production of a non-evaporative gas at the final stage, and (2) an absence of the secondary shock wave after the first collapse of the bubble. We also calculated the bubble energy in nitromethane and distilled water under a different incident energy. The results indicate that the bubble energy in nitromethane is more than twice as large as that in water. It is suggested that chemical reactions contribute to the releasing of energy.

  6. Methodology for Time-Domain Estimation of Storm-Time Electric Fields Using the 3D Earth Impedance

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Balch, C. C.; Pulkkinen, A. A.; Egbert, G. D.; Love, J. J.; Rigler, E. J.; Fujii, I.

    2016-12-01

    Magnetic storms can induce geoelectric fields in the Earth's electrically conducting interior, interfering with the operations of electric-power grid industry. The ability to estimate these electric fields at Earth's surface in close to real-time and to provide local short-term predictions would improve the ability of the industry to protect their operations. At any given time, the electric field at the Earth's surface is a function of the time-variant magnetic activity (driven by the solar wind), and the local electrical conductivity structure of the Earth's crust and mantle. For this reason, implementation of an operational electric field estimation service requires an interdisciplinary, collaborative effort between space science, real-time space weather operations, and solid Earth geophysics. We highlight in this talk an ongoing collaboration between USGS, NOAA, NASA, Oregon State University, and the Japan Meteorological Agency, to develop algorithms that can be used for scenario analyses and which might be implemented in a real-time, operational setting. We discuss the development of a time domain algorithm that employs discrete time domain representation of the impedance tensor for a realistic 3D Earth, known as the discrete time impulse response (DTIR), convolved with the local magnetic field time series, to estimate the local electric field disturbances. The algorithm is validated against measured storm-time electric field data collected in the United States and Japan. We also discuss our plans for operational real-time electric field estimation using 3D Earth impedances.

  7. Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment.

    PubMed

    Long, Run; Prezhdo, Oleg V

    2015-07-08

    Hybrid organic/inorganic polymer/quantum dot (QD) solar cells are an attractive alternative to the traditional cells. The original, simple models postulate that one-dimensional polymers have continuous energy levels, while zero-dimensional QDs exhibit atom-like electronic structure. A realistic, atomistic viewpoint provides an alternative description. Electronic states in polymers are molecule-like: finite in size and discrete in energy. QDs are composed of many atoms and have high, bulk-like densities of states. We employ ab initio time-domain simulation to model the experimentally observed ultrafast photoinduced dynamics in a QD/polymer hybrid and show that an atomistic description is essential for understanding the time-resolved experimental data. Both electron and hole transfers across the interface exhibit subpicosecond time scales. The interfacial processes are fast due to strong electronic donor-acceptor, as evidenced by the densities of the photoexcited states which are delocalized between the donor and the acceptor. The nonadiabatic charge-phonon coupling is also strong, especially in the polymer, resulting in rapid energy losses. The electron transfer from the polymer is notably faster than the hole transfer from the QD, due to a significantly higher density of acceptor states. The stronger molecule-like electronic and charge-phonon coupling in the polymer rationalizes why the electron-hole recombination inside the polymer is several orders of magnitude faster than in the QD. As a result, experiments exhibit multiple transfer times for the long-lived hole inside the QD, ranging from subpicoseconds to nanoseconds. In contrast, transfer of the short-lived electron inside the polymer does not occur beyond the first picosecond. The energy lost by the hole on its transit into the polymer is accommodated by polymer's high-frequency vibrations. The energy lost by the electron injected into the QD is accommodated primarily by much lower-frequency collective and

  8. Microresonator-Based Optical Frequency Combs: A Time Domain Perspective

    DTIC Science & Technology

    2016-04-19

    optics; ultrafast optics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a...generation at frequency spacings down to 25 GHz, in the range where convenient electronic detection is possible. (c) Our best Purdue microrings had...time domain measurements of the generated combs, leading to observation of novel, ultrafast dark pulse waveforms, have introduced new structures such

  9. Time and frequency domain characteristics of detrending-operation-based scaling analysis: Exact DFA and DMA frequency responses

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Tsujimoto, Yutaka

    2016-07-01

    We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.

  10. Time and frequency domain characteristics of detrending-operation-based scaling analysis: Exact DFA and DMA frequency responses.

    PubMed

    Kiyono, Ken; Tsujimoto, Yutaka

    2016-07-01

    We develop a general framework to study the time and frequency domain characteristics of detrending-operation-based scaling analysis methods, such as detrended fluctuation analysis (DFA) and detrending moving average (DMA) analysis. In this framework, using either the time or frequency domain approach, the frequency responses of detrending operations are calculated analytically. Although the frequency domain approach based on conventional linear analysis techniques is only applicable to linear detrending operations, the time domain approach presented here is applicable to both linear and nonlinear detrending operations. Furthermore, using the relationship between the time and frequency domain representations of the frequency responses, the frequency domain characteristics of nonlinear detrending operations can be obtained. Based on the calculated frequency responses, it is possible to establish a direct connection between the root-mean-square deviation of the detrending-operation-based scaling analysis and the power spectrum for linear stochastic processes. Here, by applying our methods to DFA and DMA, including higher-order cases, exact frequency responses are calculated. In addition, we analytically investigate the cutoff frequencies of DFA and DMA detrending operations and show that these frequencies are not optimally adjusted to coincide with the corresponding time scale.

  11. Evaluation of skin moisturizer effects using terahertz time domain imaging

    NASA Astrophysics Data System (ADS)

    Martinez-Meza, L. H.; Rojas-Landeros, S. C.; Castro-Camus, E.; Alfaro-Gomez, M.

    2018-02-01

    We use terahertz time domain imaging for the evaluation of the effects of skin-moisturizers in vivo. We evaluate three principal substances used in commercial moisturizers: glycerin, hyaluronic acid and lanolin. We image the interaction of the forearm with each of the substances taking terahertz spectra at sequential times. With this, we are able to measure the effect of the substances on the hydration level of the skin in time, determining the feasibility of using THz imaging for the evaluation of the products and their effects on the hydration levels of the skin.

  12. Sub-nanosecond resolution electric field measurements during ns pulse breakdown in ambient air

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Goldberg, Ben; Gulko, Ilya; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field during ns pulse discharge breakdown in ambient air has been measured by ps four-wave mixing, with temporal resolution of 0.2 ns. The measurements have been performed in a diffuse plasma generated in a dielectric barrier discharge, in plane-to-plane geometry. Absolute calibration of the electric field in the plasma is provided by the Laplacian field measured before breakdown. Sub-nanosecond time resolution is obtained by using a 150 ps duration laser pulse, as well as by monitoring the timing of individual laser shots relative to the voltage pulse, and post-processing four-wave mixing signal waveforms saved for each laser shot, placing them in the appropriate ‘time bins’. The experimental data are compared with the analytic solution for time-resolved electric field in the plasma during pulse breakdown, showing good agreement on ns time scale. Qualitative interpretation of the data illustrates the effects of charge separation, charge accumulation/neutralization on the dielectric surfaces, electron attachment, and secondary breakdown. Comparison of the present data with more advanced kinetic modeling is expected to provide additional quantitative insight into air plasma kinetics on ~ 0.1-100 ns scales.

  13. Cellular response to high pulse repetition rate nanosecond pulses varies with fluorescent marker identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steelman, Zachary A., E-mail: zachary.steelman@duke.edu; Tolstykh, Gleb P.; Beier, Hope T.

    Nanosecond electric pulses (nsEP's) are a well-studied phenomena in biophysics that cause substantial alterations to cellular membrane dynamics, internal biochemistry, and cytoskeletal structure, and induce apoptotic and necrotic cell death. While several studies have attempted to measure the effects of multiple nanosecond pulses, the effect of pulse repetition rate (PRR) has received little attention, especially at frequencies greater than 100 Hz. In this study, uptake of Propidium Iodide, FM 1–43, and YO-PRO-1 fluorescent dyes in CHO-K1 cells was monitored across a wide range of PRRs (5 Hz–500 KHz) using a laser-scanning confocal microscope in order to better understand how high frequency repetition ratesmore » impact induced biophysical changes. We show that frequency trends depend on the identity of the dye under study, which could implicate transmembrane protein channels in the uptake response due to their chemical selectivity. Finally, YO-PRO-1 fluorescence was monitored in the presence of Gadolinium (Gd{sup 3+}), Ruthenium Red, and in calcium-free solution to elucidate a mechanism for its unique frequency trend. - Highlights: • Pulse repetition rate (PRR) is understudied in nanosecond electric pulsing. • 200 V pulses were applied to CHO-K1 cells from 5 Hz to 500 KHz. • Pulsing was repeated using a variety of fluorophores and imaging conditions. • The response is highly dependent on the fluorophore and the imaging conditions. • This may implicate protein channels in the nanoporation response.« less

  14. Prediction of non-cavitation propeller noise in time domain

    NASA Astrophysics Data System (ADS)

    Ye, Jin-Ming; Xiong, Ying; Xiao, Chang-Run; Bi, Yi

    2011-09-01

    The blade frequency noise of non-cavitation propeller in a uniform flow is analyzed in time domain. The unsteady loading (dipole source) on the blade surface is calculated by a potential-based surface panel method. Then the time-dependent pressure data is used as the input for Ffowcs Williams-Hawkings formulation to predict the acoustics pressure. The integration of noise source is performed over the true blade surface rather than the nothickness blade surface, and the effect of hub can be considered. The noise characteristics of the non-cavitation propeller and the numerical discretization forms are discussed.

  15. Studies on laser material processing with nanosecond and sub-nanosecond and picosecond and sub-picosecond pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2016-03-01

    In this paper, laser ablation of widely used metal (Al, Cu. stainless-steel), semiconductor (Si), transparent material (glass, sapphire), ceramic (Al2O3, AlN) and polymer (PI, PMMA) in industry were systematically studied with pulse width from nanosecond (5-100ns), picosecond (6-10ps) to sub-picosecond (0.8-0.95ps). A critical damage zone (CDZ) of up to 100um with ns laser, <=50um with ps laser, and <=20um with sub-ps laser, respectively was observed as a criteria of selecting the laser pulse width. The effects of laser processing parameters on speed and efficiency were also investigated. This is to explore how to provide industry users the best laser solution for device micro-fabrication with best price. Our studies of cutting and drilling with ns, ps, and sub-ps lasers indicate that it is feasible to achieve user accepted quality and speed with cost-effective and reliable laser by optimizing processing conditions.

  16. Nanosecond Surface Microdischarges in Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Dubinov, A. E.; Lyubimtseva, V. A.

    2018-05-01

    Multilayer structures in which nanosecond surface microdischarges are generated have been developed, fabricated, and investigated. In these structures, layers are made in the form of thin transparent films, and a plasma discharge channel is formed in thin spacings between the layers. Passage of the discharge channel from one layer into the neighboring layer is implemented via pre-fabricated microholes. Images of microdischarges were obtained which confirmed that their plasma channels are formed according to the route assigned by the holes. The route may follow a fairly complex scheme and have self-intersection points and portions in which the electrons are bound to move in opposition to the electric field. In studying the shape of channels in multilayer strictures, the authors have found a new physical effect which lies in the azimuthal self-orientation of the discharge channel as it passes from one microhole to another.

  17. Measuring the Moisture Content of Green Wood Using Time Domain Reflectometry

    Treesearch

    Laurence Schimleck; Kim Love-Myers; Joe Sanders; Heath Raybon; Richard Daniels; Jerry Mahon; Edward Andrews; Erik Schilling

    2011-01-01

    The responsible usage of water by facilities that rely on wet log storage in the southern United States has become an issue of great importance as restrictions on water usage have grown in recent years. In order to learn about the dynamics of moisture content in wet-stored logs over time, it is necessary to conduct continuous monitoring of log piles. Time domain...

  18. Evaluation of Time Domain EM Coupling Techniques. Volume II.

    DTIC Science & Technology

    1980-08-01

    tool for the analysis of elec- tromangetic coupling and shielding problems: the finite-difference, time-domain (FD- TD ) solution of Maxwell’s equations...The objective of the program was to evaluate the suitability of the FD- TD method to determine the amount of electromagnetic coupling through an...specific questfiowwere addressed during this program: 1. Can the FD- TD method accurately model electromagnetic coupling into a conducting structure for

  19. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics.

    PubMed

    D'Angelo, Francesco; Mics, Zoltán; Bonn, Mischa; Turchinovich, Dmitry

    2014-05-19

    Terahertz-range dielectric properties of the common polymers low-density polyethylene (LDPE), cyclic olefin/ethylene copolymer (TOPAS®), polyamide-6 (PA6), and polytetrafluoroethylene (PTFE or Teflon®) are characterized in the ultra-broadband frequency window 2-15 THz, using a THz time-domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6 and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultra-broadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science.

  20. Finite difference time domain modeling of spiral antennas

    NASA Technical Reports Server (NTRS)

    Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.

    1992-01-01

    The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.

  1. Studies in astronomical time series analysis: Modeling random processes in the time domain

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1979-01-01

    Random process models phased in the time domain are used to analyze astrophysical time series data produced by random processes. A moving average (MA) model represents the data as a sequence of pulses occurring randomly in time, with random amplitudes. An autoregressive (AR) model represents the correlations in the process in terms of a linear function of past values. The best AR model is determined from sampled data and transformed to an MA for interpretation. The randomness of the pulse amplitudes is maximized by a FORTRAN algorithm which is relatively stable numerically. Results of test cases are given to study the effects of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the optical light curve of the quasar 3C 273 is given.

  2. The MMSE orientation for time domain is a strong predictor of subsequent cognitive decline in the elderly.

    PubMed

    Guerrero-Berroa, Elizabeth; Luo, Xiaodong; Schmeidler, James; Rapp, Michael A; Dahlman, Karen; Grossman, Hillel T; Haroutunian, Vahram; Beeri, Michal Schnaider

    2009-12-01

    The mini-mental state exam (MMSE) has been used to address questions such as determination of appropriate cutoff scores for differentiation of individuals with intact cognitive function from patients with dementia and rate of cognitive decline. However, little is known about the relationship of performance in specific cognitive domains to subsequent overall decline. To examine the specific and/or combined contribution of four MMSE domains (orientation for time, orientation for place, delayed recall, and attention) to prediction of overall cognitive decline on the MMSE. Linear mixed models were applied to 505 elderly nursing home residents (mean age = 85, > 12 years education = 27%; 79% F, mean follow-up = 3.20 years) to examine the relationship between baseline scores of these domains and total MMSE scores over time. Orientation for time was the only domain significantly associated with MMSE decline over time. Combination of poor delayed recall with either attention or orientation for place was associated with significantly increased decline on the MMSE. The MMSE orientation for time predicts overall decline on MMSE scores over time. A good functioning domain added to good functioning delayed recall was associated with slower rate of decline. Copyright (c) 2009 John Wiley & Sons, Ltd.

  3. Particle-in-cell modeling of the nanosecond field emission driven discharge in pressurized hydrogen

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Yatom, Shurik; Krasik, Yakov E.

    2018-02-01

    The high-voltage field-emission driven nanosecond discharge in pressurized hydrogen is studied using the one-dimensional Particle-in-Cell Monte Carlo collision model. It is obtained that the main part of the field-emitted electrons becomes runaway in the thin cathode sheath. These runaway electrons propagate the entire cathode-anode gap, creating rather dense (˜1012 cm-3) seeding plasma electrons. In addition, these electrons initiate a streamer propagating through this background plasma with a speed ˜30% of the speed of light. Such a high streamer speed allows the self-acceleration mechanism of runaway electrons present between the streamer head and the anode to be realized. As a consequence, the energy of runaway electrons exceeds the cathode-anode gap voltage. In addition, the influence of the field emission switching-off time is analyzed. It is obtained that this time significantly influences the discharge dynamics.

  4. Time and Frequency-Domain Cross-Verification of SLS 6DOF Trajectory Simulations

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew; McCullough, John

    2017-01-01

    The Space Launch System (SLS) Guidance, Navigation, and Control (GNC) team and its partners have developed several time- and frequency-based simulations for development and analysis of the proposed SLS launch vehicle. The simulations differ in fidelity and some have unique functionality that allows them to perform specific analyses. Some examples of the purposes of the various models are: trajectory simulation, multi-body separation, Monte Carlo, hardware in the loop, loads, and frequency domain stability analyses. While no two simulations are identical, many of the models are essentially six degree-of-freedom (6DOF) representations of the SLS plant dynamics, hardware implementation, and flight software. Thus at a high level all of those models should be in agreement. Comparison of outputs from several SLS trajectory and stability analysis tools are ongoing as part of the program's current verification effort. The purpose of these comparisons is to highlight modeling and analysis differences, verify simulation data sources, identify inconsistencies and minor errors, and ultimately to verify output data as being a good representation of the vehicle and subsystem dynamics. This paper will show selected verification work in both the time and frequency domain from the current design analysis cycle of the SLS for several of the design and analysis simulations. In the time domain, the tools that will be compared are MAVERIC, CLVTOPS, SAVANT, STARS, ARTEMIS, and POST 2. For the frequency domain analysis, the tools to be compared are FRACTAL, SAVANT, and STARS. The paper will include discussion of these tools including their capabilities, configurations, and the uses to which they are put in the SLS program. Determination of the criteria by which the simulations are compared (matching criteria) requires thoughtful consideration, and there are several pitfalls that may occur that can severely punish a simulation if not considered carefully. The paper will discuss these

  5. Respiratory sinus arrhythmia: time domain characterization using autoregressive moving average analysis

    NASA Technical Reports Server (NTRS)

    Triedman, J. K.; Perrott, M. H.; Cohen, R. J.; Saul, J. P.

    1995-01-01

    Fourier-based techniques are mathematically noncausal and are therefore limited in their application to feedback-containing systems, such as the cardiovascular system. In this study, a mathematically causal time domain technique, autoregressive moving average (ARMA) analysis, was used to parameterize the relations of respiration and arterial blood pressure to heart rate in eight humans before and during total cardiac autonomic blockade. Impulse-response curves thus generated showed the relation of respiration to heart rate to be characterized by an immediate increase in heart rate of 9.1 +/- 1.8 beats.min-1.l-1, followed by a transient mild decrease in heart rate to -1.2 +/- 0.5 beats.min-1.l-1 below baseline. The relation of blood pressure to heart rate was characterized by a slower decrease in heart rate of -0.5 +/- 0.1 beats.min-1.mmHg-1, followed by a gradual return to baseline. Both of these relations nearly disappeared after autonomic blockade, indicating autonomic mediation. Maximum values obtained from the respiration to heart rate impulse responses were also well correlated with frequency domain measures of high-frequency "vagal" heart rate control (r = 0.88). ARMA analysis may be useful as a time domain representation of autonomic heart rate control for cardiovascular modeling.

  6. Laser induced fluorescence in nanosecond repetitively pulsed discharges for CO2 conversion

    NASA Astrophysics Data System (ADS)

    Martini, L. M.; Gatti, N.; Dilecce, G.; Scotoni, M.; Tosi, P.

    2018-01-01

    A CO2 nanosecond repetitively pulsed discharge (NRP) is a harsh environment for laser induced fluorescence (LIF) diagnostics. The difficulties arise from it being a strongly collisional system in which the gas composition, pressure and temperature, have quick and strong variations. The relevant diagnostic problems are described and illustrated through the application of LIF to the measurement of the OH radical in three different discharge configurations, with gas mixtures containing CO2 + H2O. These range from a dielectric barrier NRP with He buffer gas, a less hostile case in which absolute OH density measurement is possible, to an NRP in CO2+H2O, where the full set of drawbacks is at work. In the last case, the OH density measurement is not possible with laser pulses and detector time resolution in the ns time scale. Nevertheless, it is shown that with a proper knowledge of the collisional rate constants involved in the LIF process, a collisional energy transfer-LIF methodology is still applicable to deduce the gas composition from the analysis of LIF spectra.

  7. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis

    2014-09-15

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ∼0.1 mm spatial resolution and ∼150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution ofmore » (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E{sub p} = 150 eV and an electron kinetic energy range KE = 503–508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ∼9 ns at a pass energy of 50 eV and ∼1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the

  8. Time domain-nuclear magnetic resonance study of chars from southern hardwoods

    Treesearch

    Thomas Elder; Nicole Labbe; David Harper; Timothy Rials

    2006-01-01

    Chars from the thermal degradation of silver maple (Acer saccharinum), red maple (Acer rubrum), sugar maple (Acer saccharum), and white oak (Quercus spp.), performed at temperatures from 250 to 350 oC, were examined using time domain-nuclear magnetic resonance...

  9. Optimal time-domain technique for pulse width modulation in power electronics

    NASA Astrophysics Data System (ADS)

    Mayergoyz, I.; Tyagi, S.

    2018-05-01

    Optimal time-domain technique for pulse width modulation is presented. It is based on exact and explicit analytical solutions for inverter circuits, obtained for any sequence of input voltage rectangular pulses. Two optimal criteria are discussed and illustrated by numerical examples.

  10. Time Domain Tool Validation Using ARES I-X Flight Data

    NASA Technical Reports Server (NTRS)

    Hough, Steven; Compton, James; Hannan, Mike; Brandon, Jay

    2011-01-01

    The ARES I-X vehicle was launched from NASA's Kennedy Space Center (KSC) on October 28, 2009 at approximately 11:30 EDT. ARES I-X was the first test flight for NASA s ARES I launch vehicle, and it was the first non-Shuttle launch vehicle designed and flown by NASA since Saturn. The ARES I-X had a 4-segment solid rocket booster (SRB) first stage and a dummy upper stage (US) to emulate the properties of the ARES I US. During ARES I-X pre-flight modeling and analysis, six (6) independent time domain simulation tools were developed and cross validated. Each tool represents an independent implementation of a common set of models and parameters in a different simulation framework and architecture. Post flight data and reconstructed models provide the means to validate a subset of the simulations against actual flight data and to assess the accuracy of pre-flight dispersion analysis. Post flight data consists of telemetered Operational Flight Instrumentation (OFI) data primarily focused on flight computer outputs and sensor measurements as well as Best Estimated Trajectory (BET) data that estimates vehicle state information from all available measurement sources. While pre-flight models were found to provide a reasonable prediction of the vehicle flight, reconstructed models were generated to better represent and simulate the ARES I-X flight. Post flight reconstructed models include: SRB propulsion model, thrust vector bias models, mass properties, base aerodynamics, and Meteorological Estimated Trajectory (wind and atmospheric data). The result of the effort is a set of independently developed, high fidelity, time-domain simulation tools that have been cross validated and validated against flight data. This paper presents the process and results of high fidelity aerospace modeling, simulation, analysis and tool validation in the time domain.

  11. Physical and biological mechanisms of nanosecond- and microsecond-pulsed FE-DBD plasma interaction with biological objects

    NASA Astrophysics Data System (ADS)

    Dobrynin, Danil

    2013-09-01

    Mechanisms of plasma interaction with living tissues and cells can be quite complex, owing to the complexity of both the plasma and the tissue. Thus, unification of all the mechanisms under one umbrella might not be possible. Here, analysis of interaction of floating electrode dielectric barrier discharge (FE-DBD) with living tissues and cells is presented and biological and physical mechanisms are discussed. In physical mechanisms, charged species are identified as the major contributors to the desired effect and a mechanism of this interaction is proposed. Biological mechanisms are also addressed and a hypothesis of plasma selectivity and its effects is offered. Spatially uniform nanosecond and sub-nanosecond short-pulsed dielectric barrier discharge plasmas are gaining popularity in biological and medical applications due to their increased uniformity, lower plasma temperature, lower surface power density, and higher concentration of the active species produced. In this presentation we will compare microsecond pulsed plasmas with nanosecond driven systems and their applications in biology and medicine with specific focus on wound healing and tissue regeneration. Transition from negative to positive streamer will be discussed with proposed hypothesis of uniformity mechanisms of positive streamer and the reduced dependence on morphology and surface chemistry of the second electrode (human body) being treated. Uniform plasma offers a more uniform delivery of active species to the tissue/surface being treated thus leading to better control over the biological results.

  12. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  13. On the nanosecond proton dynamics in phosphoric acid–benzimidazole and phosphoric acid–water mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melchior, Jan-Patrick; Frick, Bernhard

    Combining 1H-NMR, 17O-NMR, and high-resolution backscattering QENS hydrodynamic and structural proton transport in phosphoric acid is separated. The rate limiting steps for structural proton diffusion in mixtures of acid with Brønsted bases are found to occur below the nanosecond timescale.

  14. On the nanosecond proton dynamics in phosphoric acid–benzimidazole and phosphoric acid–water mixtures

    DOE PAGES

    Melchior, Jan-Patrick; Frick, Bernhard

    2017-09-22

    Combining 1H-NMR, 17O-NMR, and high-resolution backscattering QENS hydrodynamic and structural proton transport in phosphoric acid is separated. The rate limiting steps for structural proton diffusion in mixtures of acid with Brønsted bases are found to occur below the nanosecond timescale.

  15. Nanosecond Dynamics at Protein Metal Sites: An Application of Perturbed Angular Correlation (PAC) of γ-Rays Spectroscopy.

    PubMed

    Chakraborty, Saumen; Pallada, Stavroula; Pedersen, Jeppe T; Jancso, Attila; Correia, Joao G; Hemmingsen, Lars

    2017-09-19

    Metalloproteins are essential to numerous reactions in nature, and constitute approximately one-third of all known proteins. Molecular dynamics of proteins has been elucidated with great success both by experimental and theoretical methods, revealing atomic level details of function involving the organic constituents on a broad spectrum of time scales. However, the characterization of dynamics at biomolecular metal sites on nanosecond time scales is scarce in the literature. The aqua ions of many biologically relevant metal ions exhibit exchange of water molecules on the nanosecond time scale or faster, often defining their reactivity in aqueous solution, and this is presumably also a relevant time scale for the making and breaking of coordination bonds between metal ions and ligands at protein metal sites. Ligand exchange dynamics is critical for a variety of elementary steps of reactions in metallobiochemistry, for example, association and dissociation of metal bound water, association of substrate and dissociation of product in the catalytic cycle of metalloenzymes, at regulatory metal sites which require binding and dissociation of metal ions, as well as in the transport of metal ions across cell membranes or between proteins involved in metal ion homeostasis. In Perturbed Angular Correlation of γ-rays (PAC) spectroscopy, the correlation in time and space of two γ-rays emitted successively in a nuclear decay is recorded, reflecting the hyperfine interactions of the PAC probe nucleus with the surroundings. This allows for characterization of molecular and electronic structure as well as nanosecond dynamics at the PAC probe binding site. Herein, selected examples describing the application of PAC spectroscopy in probing the dynamics at protein metal sites are presented, including (1) exchange of Cd 2+ bound water in de novo designed synthetic proteins, and the effect of remote mutations on metal site dynamics; (2) dynamics at the β-lactamase active site, where

  16. Visualization of nanosecond laser-induced dewetting, ablation and crystallization processes in thin silicon films

    NASA Astrophysics Data System (ADS)

    Qi, Dongfeng; Zhang, Zifeng; Yu, Xiaohan; Zhang, Yawen

    2018-06-01

    In the present work, nanosecond pulsed laser crystallization, dewetting and ablation of thin amorphous silicon films are investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 7 ns temporal width are irradiated on silicon film. Below the dewetting threshold, crystallization process happens after 400 ns laser irradiation in the spot central region. With the increasing of laser fluence, it is observed that the dewetting process does not conclude until 300 ns after the laser irradiation, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to solidification of transported matter at about 500 ns following the laser pulse exposure.

  17. A comparison of time domain boundary conditions for acoustic waves in wave guides

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Propst, G.; Silcox, R. J.

    1991-01-01

    Researchers consider several types of boundary conditions in the context of time domain models for acoustic waves. Experiments with four different duct terminations (hard wall, free radiation, foam, and wedge) were carried out in a wave duct from which reflection coefficients over a wide frequency range were measured. These reflection coefficients were used to estimate parameters in the time domain boundary conditions. A comparison of the relative merits of the models in describing the data is presented. Boundary conditions which yield a good fit of the model to the experimental data were found for all duct terminations except the wedge.

  18. Nanosecond fluorescence microscopy. Emission kinetics of fura-2 in single cells.

    PubMed Central

    Keating, S M; Wensel, T G

    1991-01-01

    A microscope based time-correlated single photon counting instrument has been constructed to measure fluorescence intensity and emission anisotropy decays from fluorophores in single cells on a nanosecond time scale. The sample is excited and the emission collected using epi-illumination optics with frequency-doubled pulses from the cavity-dumped output of a synchronously pumped dye laser serving as an excitation source. Collection of decays from a single cell is possible due to the presence of an iris in the emission path that can be reduced to less than the diameter of a single cell. Using the instrument the decay of 60 nM 1,6-diphenyl-1,3,5-hexatriene was measured, demonstrating that adequate data for lifetime analysis can be recorded from fewer 10(3) molecules of the fluorophore in an illuminated volume of 23 fl. In addition, the intensity and anisotropy decays of fura-2 in single adherent cells and in suspensions of fura-2 loaded cells in suspension, although the relative amplitudes and decay constants vary somewhat from cell to cell. The results indicate that a significant but variable fraction of fura-2 is bound to relatively immobile macromolecular components in these cells. PMID:2015383

  19. Multiple pulse nanosecond laser induced damage threshold on hybrid mirrors

    NASA Astrophysics Data System (ADS)

    Vanda, Jan; Muresan, Mihai-George; Bilek, Vojtech; Sebek, Matej; Hanus, Martin; Lucianetti, Antonio; Rostohar, Danijela; Mocek, Tomas; Škoda, Václav

    2017-11-01

    So-called hybrid mirrors, consisting of broadband metallic surface coated with dielectric reflector designed for specific wavelength, becoming more important with progressing development of broadband mid-IR sources realized using parametric down conversion system. Multiple pulse nanosecond laser induced damage on such mirrors was tested by method s-on-1, where s stands for various numbers of pulses. We show difference in damage threshold between common protected silver mirrors and hybrid silver mirrors prepared by PVD technique and their variants prepared by IAD. Keywords: LIDT,

  20. Angular Random Walk Estimation of a Time-Domain Switching Micromachined Gyroscope

    DTIC Science & Technology

    2016-10-19

    1 2. PARAMETRIC SYSTEM IDENTIFICATION BASED ON TIME-DOMAIN SWITCHING ........ 2 3. FINITE ELEMENT MODELING OF RESONATOR...8 3. FINITE ELEMENT MODELING OF RESONATOR This section details basic finite element modeling of the resonator used with the TDSMG. While it...Based on finite element simulations of the employed resonator, it is found that the effects of thermomechanical noise is on par with 10 ps of timing

  1. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events.« less

  2. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    DOE PAGES

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; ...

    2017-10-27

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events.« less

  3. Terahertz Time Domain Spectroscopy of Phonon-Depopulation Based Quantum Cascade Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rungsawang, R.; Dhillon, S. S.; Jukam, N.

    2011-12-23

    A 3.1 THz phonon depopulation-based quantum-cascade-laser is investigated using terahertz time domain spectroscopy. A gain of 25 cm{sup -1} and absorption features due to the lower laser level being populated from a parasitic electronic channel are highlighted.

  4. Time domain reflectometry waveform analysis with second order bounded mean oscillation

    USDA-ARS?s Scientific Manuscript database

    Tangent-line methods and adaptive waveform interpretation with Gaussian filtering (AWIGF) have been proposed for determining reflection positions of time domain reflectometry (TDR) waveforms. However, the accuracy of those methods is limited for short probe TDR sensors. Second order bounded mean osc...

  5. Time domain analysis of coherent terahertz synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Hübers, H.-W.; Semenov, A.; Holldack, K.; Schade, U.; Wüstefeld, G.; Gol'tsman, G.

    2005-10-01

    The time structure of coherent terahertz synchrotron radiation at the electron storage ring of the Berliner Elektronensynchrotron und Speicherring Gesellschaft has been analyzed with a fast superconducting hot-electron bolometer. The emission from a single bunch of electrons was found to last ˜1500ps at frequencies around 0.4THz, which is much longer than the length of an electron bunch in the time domain (˜5ps). It is suggested that this is caused by multiple reflections at the walls of the beam line. The quadratic increase of the power with the number of electrons in the bunch as predicted for coherent synchrotron radiation and the transition from stable to bursting radiation were determined from a single storage ring fill pattern of bunches with different populations.

  6. Nanosecond Plasma Enhanced H2/O2/N2 Premixed Flat Flames

    DTIC Science & Technology

    2014-01-01

    Simulations are conducted with a one-dimensional, multi-scale, pulsed -discharge model with detailed plasma-combustion kinetics to develop additional insight... model framework. The reduced electric field, E/N, during each pulse varies inversely with number density. A significant portion of the input energy is...dimensional numerical model [4, 12] capable of resolving electric field transients over nanosecond timescales (during each discharge pulse ) and radical

  7. A Singular Perturbation Approach for Time-Domain Assessment of Phase Margin

    NASA Technical Reports Server (NTRS)

    Zhu, J. Jim; Yang, Xiaojing; Hodel, A Scottedward

    2010-01-01

    This paper considers the problem of time-domain assessment of the Phase Margin (PM) of a Single Input Single Output (SISO) Linear Time-Invariant (LTI) system using a singular perturbation approach, where a SISO LTI fast loop system, whose phase lag increases monotonically with frequency, is introduced into the loop as a singular perturbation with a singular perturbation (time-scale separation) parameter Epsilon. First, a bijective relationship between the Singular Perturbation Margin (SPM) max and the PM of the nominal (slow) system is established with an approximation error on the order of Epsilon(exp 2). In proving this result, relationships between the singular perturbation parameter Epsilon, PM of the perturbed system, PM and SPM of the nominal system, and the (monotonically increasing) phase of the fast system are also revealed. These results make it possible to assess the PM of the nominal system in the time-domain for SISO LTI systems using the SPM with a standardized testing system called "PM-gauge," as demonstrated by examples. PM is a widely used stability margin for LTI control system design and certification. Unfortunately, it is not applicable to Linear Time-Varying (LTV) and Nonlinear Time-Varying (NLTV) systems. The approach developed here can be used to establish a theoretical as well as practical metric of stability margin for LTV and NLTV systems using a standardized SPM that is backward compatible with PM.

  8. Two dimensional microcirculation mapping with real time spatial frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Yang; Chen, Xinlin; Lin, Weihao; Cao, Zili; Zhu, Xiuwei; Zeng, Bixin; Xu, M.

    2018-02-01

    We present a spatial frequency domain imaging (SFDI) study of local hemodynamics in the human finger cuticle of healthy volunteers performing paced breathing and the forearm of healthy young adults performing normal breathing with our recently developed Real Time Single Snapshot Multiple Frequency Demodulation - Spatial Frequency Domain Imaging (SSMD-SFDI) system. A two-layer model was used to map the concentrations of deoxy-, oxy-hemoglobin, melanin, epidermal thickness and scattering properties at the subsurface of the forearm and the finger cuticle. The oscillations of the concentrations of deoxy- and oxy-hemoglobin at the subsurface of the finger cuticle and forearm induced by paced breathing and normal breathing, respectively, were found to be close to out-of-phase, attributed to the dominance of the blood flow modulation by paced breathing or heartbeat. Our results suggest that the real time SFDI platform may serve as one effective imaging modality for microcirculation monitoring.

  9. Decision-aided ICI mitigation with time-domain average approximation in CO-OFDM

    NASA Astrophysics Data System (ADS)

    Ren, Hongliang; Cai, Jiaxing; Ye, Xin; Lu, Jin; Cao, Quanjun; Guo, Shuqin; Xue, Lin-lin; Qin, Yali; Hu, Weisheng

    2015-07-01

    We introduce and investigate the feasibility of a novel iterative blind phase noise inter-carrier interference (ICI) mitigation scheme for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. The ICI mitigation scheme is performed through the combination of frequency-domain symbol decision-aided estimation and the ICI phase noise time-average approximation. An additional initial decision process with suitable threshold is introduced in order to suppress the decision error symbols. Our proposed ICI mitigation scheme is proved to be effective in removing the ICI for a simulated CO-OFDM with 16-QAM modulation format. With the slightly high computational complexity, it outperforms the time-domain average blind ICI (Avg-BL-ICI) algorithm at a relatively wide laser line-width and high OSNR.

  10. Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm.

    PubMed

    Kohlhaas, Robert B; Rehn, Arno; Nellen, Simon; Koch, Martin; Schell, Martin; Dietz, Roman J B; Balzer, Jan C

    2017-05-29

    We present a fiber-coupled terahertz quasi time-domain spectroscopy system driven by a laser with a central wavelength of 1550 nm. By using a commercially available multimode laser diode in combination with state-of-the-art continuous wave antennas, a bandwidth of more than 1.8 THz is achieved. The peak signal-to-noise ratio is around 60 dB. A simulation based on the optical spectrum of the laser diode and the transfer function of the THz path is in agreement with the experimental results. The system is used to extract the refractive index from two different samples and the results indicate that the performance is up to 1.8 THz comparable to a terahertz time-domain spectroscopy system.

  11. Three-dimensional time domain model of lightning including corona effects

    NASA Technical Reports Server (NTRS)

    Podgorski, Andrew S.

    1991-01-01

    A new 3-D lightning model that incorporates the effect of corona is described for the first time. The new model is based on a Thin Wire Time Domain Lightning (TWTDL) Code developed previously. The TWTDL Code was verified during the 1985 and 1986 lightning seasons by the measurements conducted at the 553 m CN Tower in Toronto, Ontario. The inclusion of corona in the TWTDL code allowed study of the corona effects on the lightning current parameters and the associated electric field parameters.

  12. Postural analysis in time and frequency domains in patients with Ehlers-Danlos syndrome.

    PubMed

    Galli, Manuela; Rigoldi, Chiara; Celletti, Claudia; Mainardi, Luca; Tenore, Nunzio; Albertini, Giorgio; Camerota, Filippo

    2011-01-01

    The goal of this work is to analyze postural control in Ehlers-Danlos syndrome (EDS) participants in time and frequency domain. This study considered a pathological group composed by 22 EDS participants performing a postural test consisting in maintaining standing position over a force platform for 30s in two conditions: open eyes (OE) and closed eyes (CE). In order to compare pathological group we acquired in the same conditions a control group composed by 20 healthy participants. The obtained center of pressure (COP) signal was analyzed in time and frequency domain using an AR model. Results revealed differences between pathological and control group: EDS participants pointed out difficulties in controlling COP displacements trying to keep it inside the BOS in AP direction and for this reason increased the use of ML mechanism in order to avoid the risk of fall. Also in CE conditions they demonstrated more difficulties in maintaining posture revealing the proprioceptive system is impaired, due to ligament laxity that characterized EDS participants. Frequency domain analysis showed no differences between the two groups, affirming that the changes in time domain reflected really the impairment to the postural control mechanism and not a different strategy assumed by EDS participants. These data could help in decision-making process to establish a correct rehabilitation approach, based on the reinforcing of muscle tone to supply the ligament laxity in order to prevent risks of falls and its consequences. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. A time-space domain stereo finite difference method for 3D scalar wave propagation

    NASA Astrophysics Data System (ADS)

    Chen, Yushu; Yang, Guangwen; Ma, Xiao; He, Conghui; Song, Guojie

    2016-11-01

    The time-space domain finite difference methods reduce numerical dispersion effectively by minimizing the error in the joint time-space domain. However, their interpolating coefficients are related with the Courant numbers, leading to significantly extra time costs for loading the coefficients consecutively according to velocity in heterogeneous models. In the present study, we develop a time-space domain stereo finite difference (TSSFD) method for 3D scalar wave equation. The method propagates both the displacements and their gradients simultaneously to keep more information of the wavefields, and minimizes the maximum phase velocity error directly using constant interpolation coefficients for different Courant numbers. We obtain the optimal constant coefficients by combining the truncated Taylor series approximation and the time-space domain optimization, and adjust the coefficients to improve the stability condition. Subsequent investigation shows that the TSSFD can suppress numerical dispersion effectively with high computational efficiency. The maximum phase velocity error of the TSSFD is just 3.09% even with only 2 sampling points per minimum wavelength when the Courant number is 0.4. Numerical experiments show that to generate wavefields with no visible numerical dispersion, the computational efficiency of the TSSFD is 576.9%, 193.5%, 699.0%, and 191.6% of those of the 4th-order and 8th-order Lax-Wendroff correction (LWC) method, the 4th-order staggered grid method (SG), and the 8th-order optimal finite difference method (OFD), respectively. Meanwhile, the TSSFD is compatible to the unsplit convolutional perfectly matched layer (CPML) boundary condition for absorbing artificial boundaries. The efficiency and capability to handle complex velocity models make it an attractive tool in imaging methods such as acoustic reverse time migration (RTM).

  14. Dental hard tissue ablation using mid-infrared tunable nanosecond pulsed Cr:CdSe laser.

    PubMed

    Lin, Taichen; Aoki, Akira; Saito, Norihito; Yumoto, Masaki; Nakajima, Sadahiro; Nagasaka, Keigo; Ichinose, Shizuko; Mizutani, Koji; Wada, Satoshi; Izumi, Yuichi

    2016-12-01

    Mid-infrared erbium: yttrium-aluminum-garnet (Er:YAG) and erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers (2.94- and 2.78-μm, respectively) are utilized for effective dental hard tissue treatment because of their high absorption in water, hydroxide ion, or both. Recently, a mid-infrared tunable, nanosecond pulsed, all-solid-state chromium-doped: cadmium-selenide (Cr:CdSe) laser system was developed, which enables laser oscillation in the broad spectral range around 2.9 μm. The purpose of this study was to evaluate the ablation of dental hard tissue by the nanosecond pulsed Cr:CdSe laser at a wavelength range of 2.76-3.00 μm. Enamel, dentin, and cementum tissue were irradiated at a spot or line at a fluence of 0-11.20 J/cm 2 /pulse (energy output: 0-2.00 mJ/pulse) with a repetition rate of 10 Hz and beam diameter of ∼150 μm on the target (pulse width ∼250 ns). After irradiation, morphological changes, ablation threshold, depth, and efficiency, and thickness of the structurally and thermally affected layer of irradiated surfaces were analyzed using stereomicroscopy, scanning electron microscopy (SEM), and light microscopy of non-decalcified histological sections. The nanosecond pulsed irradiation without water spray effectively ablated dental hard tissue with no visible thermal damage such as carbonization. The SEM analysis revealed characteristic micro-irregularities without major melting and cracks in the lased tissue. The ablation threshold of dentin was the lowest at 2.76 μm and the highest at 3.00 μm. The histological analysis revealed minimal thermal and structural changes ∼20 μm wide on the irradiated dentin surfaces with no significant differences between wavelengths. The efficiency of dentin ablation gradually increased from 3.00 to 2.76 μm, at which point the highest ablation efficiency was observed. The nanosecond pulsed Cr:CdSe laser demonstrated an effective ablation ability of hard dental tissues

  15. Time Domain Stability Margin Assessment of the NASA Space Launch System GN&C Design for Exploration Mission One

    NASA Technical Reports Server (NTRS)

    Clements, Keith; Wall, John

    2017-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  16. Time Domain Stability Margin Assessment of the NS Space Launch System GN&C Design for Exploration Mission One

    NASA Technical Reports Server (NTRS)

    Clements, Keith; Wall, John

    2017-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  17. Introduction of Nano-seconds Pulsed Discharge Plasma and its Applications

    NASA Astrophysics Data System (ADS)

    Namihira, Takao; Wang, Douyan; Matsumoto, Takao; Okada, Sho; Akiyama, Hidenori

    During the decades, the developments of high power semiconductor switch, magnetic core and etc have allowed us to manufacture the pulsed power source having higher energy transfer efficiency. As the results, the pulsed discharge has been recognized as one of the promised non-thermal plasma to practical use. In this paper, a generation process, electron energy, impedance and a temperature of the pulsed discharge plasma would be explained. In addition, a nano-seconds pulsed discharge plasma would be introduced as the non-thermal plasma processing giving us the highest energy efficiency and be demonstrated it.

  18. [An effective method for improving the imaging spatial resolution of terahertz time domain spectroscopy system].

    PubMed

    Zhang, Zeng-yan; Ji, Te; Zhu, Zhi-yong; Zhao, Hong-wei; Chen, Min; Xiao, Ti-qiao; Guo, Zhi

    2015-01-01

    Terahertz radiation is an electromagnetic radiation in the range between millimeter waves and far infrared. Due to its low energy and non-ionizing characters, THz pulse imaging emerges as a novel tool in many fields, such as material, chemical, biological medicine, and food safety. Limited spatial resolution is a significant restricting factor of terahertz imaging technology. Near field imaging method was proposed to improve the spatial resolution of terahertz system. Submillimeter scale's spauial resolution can be achieved if the income source size is smaller than the wawelength of the incoming source and the source is very close to the sample. But many changes were needed to the traditional terahertz time domain spectroscopy system, and it's very complex to analyze sample's physical parameters through the terahertz signal. A method of inserting a pinhole upstream to the sample was first proposed in this article to improve the spatial resolution of traditional terahertz time domain spectroscopy system. The measured spatial resolution of terahertz time domain spectroscopy system by knife edge method can achieve spatial resolution curves. The moving stage distance between 10 % and 90 Yo of the maximum signals respectively was defined as the, spatial resolution of the system. Imaging spatial resolution of traditional terahertz time domain spectroscopy system was improved dramatically after inserted a pinhole with diameter 0. 5 mm, 2 mm upstream to the sample. Experimental results show that the spatial resolution has been improved from 1. 276 mm to 0. 774 mm, with the increment about 39 %. Though this simple method, the spatial resolution of traditional terahertz time domain spectroscopy system was increased from millimeter scale to submillimeter scale. A pinhole with diameter 1 mm on a polyethylene plate was taken as sample, to terahertz imaging study. The traditional terahertz time domain spectroscopy system and pinhole inserted terahertz time domain spectroscopy

  19. Rapid updating of optical arbitrary waveforms via time-domain multiplexing.

    PubMed

    Scott, R P; Fontaine, N K; Yang, C; Geisler, D J; Okamoto, K; Heritage, J P; Yoo, S J B

    2008-05-15

    We demonstrate high-fidelity optical arbitrary waveform generation with 5 GHz waveform switching via time-domain multiplexing. Compact, integrated waveform shapers based on silica arrayed-waveguide grating pairs with 10 GHz channel spacing are used to shape (line-by-line) two different waveforms from the output of a 10-mode x 10 GHz optical frequency comb generator. Characterization of the time multiplexer's complex transfer function (amplitude and phase) by frequency-resolved optical gating permits compensation of its impact on the switched waveforms and matching of the measured and target waveforms to better than G'=5%.

  20. A review of hybrid implicit explicit finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Chen, Juan

    2018-06-01

    The finite-difference time-domain (FDTD) method has been extensively used to simulate varieties of electromagnetic interaction problems. However, because of its Courant-Friedrich-Levy (CFL) condition, the maximum time step size of this method is limited by the minimum size of cell used in the computational domain. So the FDTD method is inefficient to simulate the electromagnetic problems which have very fine structures. To deal with this problem, the Hybrid Implicit Explicit (HIE)-FDTD method is developed. The HIE-FDTD method uses the hybrid implicit explicit difference in the direction with fine structures to avoid the confinement of the fine spatial mesh on the time step size. So this method has much higher computational efficiency than the FDTD method, and is extremely useful for the problems which have fine structures in one direction. In this paper, the basic formulations, time stability condition and dispersion error of the HIE-FDTD method are presented. The implementations of several boundary conditions, including the connect boundary, absorbing boundary and periodic boundary are described, then some applications and important developments of this method are provided. The goal of this paper is to provide an historical overview and future prospects of the HIE-FDTD method.

  1. Time Domain Filtering of Resolved Images of Sgr A{sup ∗}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiokawa, Hotaka; Doeleman, Sheperd S.; Gammie, Charles F.

    The goal of the Event Horizon Telescope (EHT) is to provide spatially resolved images of Sgr A*, the source associated with the Galactic Center black hole. Because Sgr A* varies on timescales that are short compared to an EHT observing campaign, it is interesting to ask whether variability contains information about the structure and dynamics of the accretion flow. In this paper, we introduce “time-domain filtering,” a technique to filter time fluctuating images with specific temporal frequency ranges and to demonstrate the power and usage of the technique by applying it to mock millimeter wavelength images of Sgr A*. Themore » mock image data is generated from the General Relativistic Magnetohydrodynamic (GRMHD) simulation and the general relativistic ray-tracing method. We show that the variability on each line of sight is tightly correlated with a typical radius of emission. This is because disk emissivity fluctuates on a timescale of the order of the local orbital period. Time-domain filtered images therefore reflect the model dependent emission radius distribution, which is not accessible in time-averaged images. We show that, in principle, filtered data have the power to distinguish between models with different black-hole spins, different disk viewing angles, and different disk orientations in the sky.« less

  2. Time-domain SFG spectroscopy using mid-IR pulse shaping: practical and intrinsic advantages.

    PubMed

    Laaser, Jennifer E; Xiong, Wei; Zanni, Martin T

    2011-03-24

    Sum-frequency generation (SFG) spectroscopy is a ubiquitous tool in the surface sciences. It provides infrared transition frequencies and line shapes that probe the structure and environment of molecules at interfaces. In this article, we apply techniques learned from the multidimensional spectroscopy community to SFG spectroscopy. We implement balanced heterodyne detection to remove scatter and the local oscillator background. Heterodyning also separates the resonant and nonresonant signals by acquiring both the real and imaginary parts of the spectrum. We utilize mid-IR pulse shaping to control the phase and delay of the mid-IR pump pulse. Pulse shaping allows phase cycling for data collection in the rotating frame and additional background subtraction. We also demonstrate time-domain data collection, which is a Fourier transform technique, and has many advantages in signal throughput, frequency resolution, and line shape accuracy over existing frequency domain methods. To demonstrate time-domain SFG spectroscopy, we study an aryl isocyanide on gold, and find that the system has an inhomogeneous structural distribution, in agreement with computational results, but which was not resolved by previous frequency-domain SFG studies. The ability to rapidly and actively manipulate the mid-IR pulse in an SFG pules sequence makes possible new experiments and more accurate spectra. © 2011 American Chemical Society

  3. Small and Robotic Telescopes in the Era of Massive Time-Domain Surveys

    NASA Astrophysics Data System (ADS)

    Bode, M. F.; Vestrand, W. T.

    2012-04-01

    We have entered an era in time-domain astronomy in which the detected rate of explosive transients and important ephemeral states in persistent objects threatens to overwhelm the world's supply of traditional follow-up telescopes. As new, comprehensive time-domain surveys become operational and wide-field multi-messenger observatories come on-line, that problem will become more acute. The goal of this workshop was to foster discussion about how autonomous robotic telescopes and small-aperture conventional telescopes can be employed in the most effective ways to help deal with the coming deluge of scientifically interesting follow-up opportunities. Discussion topics included the role of event brokers, automated event triage, the establishment of cooperative global telescope networks, and real-time coordination of observations at geographically diverse sites. It therefore included brief overviews of the current diverse landscape of telescopes and their interactions, and also considered planned and potential new facilities and operating models.

  4. Time-frequency domain SNR estimation and its application in seismic data processing

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Liu, Yang; Li, Xuxuan; Jiang, Nansen

    2014-08-01

    Based on an approach estimating frequency domain signal-to-noise ratio (FSNR), we propose a method to evaluate time-frequency domain signal-to-noise ratio (TFSNR). This method adopts short-time Fourier transform (STFT) to estimate instantaneous power spectrum of signal and noise, and thus uses their ratio to compute TFSNR. Unlike FSNR describing the variation of SNR with frequency only, TFSNR depicts the variation of SNR with time and frequency, and thus better handles non-stationary seismic data. By considering TFSNR, we develop methods to improve the effects of inverse Q filtering and high frequency noise attenuation in seismic data processing. Inverse Q filtering considering TFSNR can better solve the problem of amplitude amplification of noise. The high frequency noise attenuation method considering TFSNR, different from other de-noising methods, distinguishes and suppresses noise using an explicit criterion. Examples of synthetic and real seismic data illustrate the correctness and effectiveness of the proposed methods.

  5. Optical properties of polyimides films treated by nanosecond pulsed electrical discharges in water

    NASA Astrophysics Data System (ADS)

    Sava, Ion; Kruth, Angela; Kolb, Juergen F.; Miron, Camelia

    2018-01-01

    Fluorinated polyimide films containing cobalt chloride based on hexafluoroisopropylidenediphthalic dianhydride and 4,4‧-diamino-3,3‧-dimethyl diphenylmethane were treated by nanosecond pulsed electrical discharges generated in distilled water. The polyimide films have been characterized by Fourier transform infrared (FTIR) spectra and contact angle measurements, optical transmission spectroscopy, and fluorescence spectroscopy. Significant changes in some intrinsic fluorescence features, such as the intensity and position of the emission peak, have been observed during exposure to water plasma. These effects have been considered to correlate with the development of specific chemical interactions between the liquid and the macromolecules, including the formation of hydrogen bridges. A slight increase in surface hydrophobicity was observed after plasma treatment. FTIR spectra showed a decrease in the intensity of the absorption band and an opening of the imide ring, depending on the treatment time.

  6. Nanoparticle mediated ablation of breast cancer cells using a nanosecond pulsed electric field

    NASA Astrophysics Data System (ADS)

    Burford, Christopher

    In the past, both nanomaterials and various heating modalities have been researched as means for treating cancers. However, many of the current methodologies have the flaws of inconsistent tumor ablation and significant destruction of healthy cells. Based on research performed using constant radiofrequency electric fields and metallic nanoparticles (where cell necrosis is induced by the heating of these nanoparticles) we have developed a modality that simlarly uses functionalized metallic nanoparticles, specific for the T47D breast cancer cell line, and nanosecond pulsed electric fields as the hyperthermic inducer. Using both iron oxide and gold nanoparticles the results of our pilot studies indicated that up to 90% of the cancer cells were ablated given the optimal treatment parameters. These quantities of ablated cells were achieved using a cumulative exposure time 6 orders of magnitude less than most in vitro radiofrequency electric field studies.

  7. Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum

    NASA Astrophysics Data System (ADS)

    Hammond, T. J.; Monchocé, Sylvain; Zhang, Chunmei; Brown, Graham G.; Corkum, P. B.; Villeneuve, D. M.

    2016-12-01

    As light propagates through a medium, absorption caused by electronic or rovibrational transitions is evident in the transmitted spectrum. The incident electromagnetic field polarizes the medium and the absorption is due to the imaginary part of the linear susceptibility. In the time domain, the field establishes a coherence in the medium that radiates out of phase with the initial field. This coherence can persist for tens of picoseconds in atmospheric molecules such as H2O . We propagate a few-cycle laser pulse centered at 1.8 μ m through the atmosphere and measure the long-lasting molecular coherence in the time domain by high-order harmonic cross correlation. The measured optical free-induction decay of the pulse is compared with a calculation based on the calculated rovibrational spectrum of H2O absorption.

  8. Photonic microwave waveforms generation based on pulse carving and superposition in time-domain

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Jiang, Yang; Zi, Yuejiao; He, Yutong; Tian, Jing; Zhang, Xiaoyu; Luo, Hao; Dong, Ruyang

    2018-05-01

    A novel photonic approach for various microwave waveforms generation based on time-domain synthesis is theoretically analyzed and experimentally investigated. In this scheme, two single-drive Mach-Zehnder modulators are used for pulses shaping. After shifting the phase and implementing envelopes superposition of the pulses, desired waveforms can be achieved in time-domain. The theoretic analysis and simulations are presented. In the experimental demonstrations, a triangular waveform, square waveform, and half duty cycle sawtooth (or reversed-sawtooth) waveform are generated successfully. By utilizing time multiplexing technique, a frequency-doubled sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can be obtained. In addition, a fundamental frequency sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can also be achieved by the superposition of square waveform and frequency-doubled sawtooth waveform.

  9. Theranostic system for drug delivery and pharmacokinetic imaging based on nanosecond pulsed light-induced photomechanical and photoacoustic effects

    NASA Astrophysics Data System (ADS)

    Tsunoi, Yasuyuki; Sato, Shunichi; Kawauchi, Satoko; Akutsu, Yusuke; Miyagawa, Yoshihiro; Araki, Koji; Shiotani, Akihiro; Terakawa, Mitsuhiro

    2015-11-01

    For efficient and side effects-free pharmacological treatment, we here propose a theranostic system that enables transvascular drug delivery by photomechanical waves (PMWs) and photoacoustic (PA) imaging of the drug distribution; both functions are based on nanosecond laser pulses and can therefore be integrated in one system. Through optical fibers arranged around an ultrasound sensor, low-energy and high-energy nanosecond light pulses were transmitted respectively for PA imaging and PMW-based drug delivery by temporal switching. With the system, we delivered a test drug (Evans blue) to tumors in mice and visualized distributions of both the blood vessels and drug in the tissue in vivo, showing the validity of the system.

  10. Studies in astronomical time series analysis. I - Modeling random processes in the time domain

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1981-01-01

    Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.

  11. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.

    2017-10-01

    Recent advances in finite-difference time-domain (FDTD) modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers) are much smaller than the wavelengths of fast (tens of cm) and slow (millimeter) waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC) models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core) FDTD/PIC simulations of Alcator C-Mod antenna operation.

  12. Time-Domain Full-Wave Modeling of Nonlinear Air Breakdown in High-Power Microwave Devices and Systems

    DTIC Science & Technology

    2017-09-30

    AFRL-RD-PS- AFRL-RD-PS- TR-2017-0047 TR-2017-0047 TIME -DOMAIN FULL-WAVE MODELING OF NONLINEAR AIR BREAKDOWN IN HIGH-POWER MICROWAVE...Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...TITLE AND SUBTITLE Time -Domain Full-Wave Modeling of Nonlinear Air Breakdown in High-Power Microwave Devices and Systems 5a. CONTRACT NUMBER 5b

  13. High pulse energy sub-nanosecond Tm-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Cserteg, Andras; Guillemet, Sebastien; Hernandez, Yves; Giannone, Domenico

    2012-02-01

    We report a core pumped thulium-doped fiber amplifier that generates 1.4 μJ pulses at 1980 nm with a repetition rate of 3.6 MHz preserving the original spectral bandwidth of the oscillator. The amplifier chain is seeded by a passively modelocked fiber laser with 5 mW output power and the pulses are stretched to 800 picoseconds. The amplifier is core pumped by a single mode erbium fiber laser. The slope efficiency is 35%. To the best of our knowledge, this is the first demonstration of sub nanosecond pulses with energies higher than 1 μJ coming out of a thulium-doped fiber amplifier.

  14. Three-Dimensional Localized-Delocalized Anderson Transition in the Time Domain

    NASA Astrophysics Data System (ADS)

    Delande, Dominique; Morales-Molina, Luis; Sacha, Krzysztof

    2017-12-01

    Systems which can spontaneously reveal periodic evolution are dubbed time crystals. This is in analogy with space crystals that display periodic behavior in configuration space. While space crystals are modeled with the help of space periodic potentials, crystalline phenomena in time can be modeled by periodically driven systems. Disorder in the periodic driving can lead to Anderson localization in time: the probability for detecting a system at a fixed point of configuration space becomes exponentially localized around a certain moment in time. We here show that a three-dimensional system exposed to a properly disordered pseudoperiodic driving may display a localized-delocalized Anderson transition in the time domain, in strong analogy with the usual three-dimensional Anderson transition in disordered systems. Such a transition could be experimentally observed with ultracold atomic gases.

  15. Analysis in natural time domain of geoelectric time series monitored prior two strong earthquakes occurred in Mexico

    NASA Astrophysics Data System (ADS)

    Ramírez-Rojas, A.; Flores-Marquez, L. E.

    2009-12-01

    The short-time prediction of seismic phenomena is currently an important problem in the scientific community. In particular, the electromagnetic processes associated with seismic events take in great interest since the VAN method was implemented. The most important features of this methodology are the seismic electrical signals (SES) observed prior to strong earthquakes. SES has been observed in the electromagnetic series linked to EQs in Greece, Japan and Mexico. By mean of the so-called natural time domain, introduced by Varotsos et al. (2001), they could characterize signals of dichotomic nature observed in different systems, like SES and ionic current fluctuations in membrane channels. In this work we analyze SES observed in geoelectric time series monitored in Guerrero, México. Our analysis concern with two strong earthquakes occurred, on October 24, 1993 (M=6.6) and September 14, 1995 (M=7.3). The time series of the first one displayed a seismic electric signal six days before the main shock and for the second case the time series displayed dichotomous-like fluctuations some months before the EQ. In this work we present the first results of the analysis in natural time domain for the two cases which seems to be agreeing with the results reported by Varotsos. P. Varotsos, N. Sarlis, and E. Skordas, Practica of the Athens Academy 76, 388 (2001).

  16. Energy Scaling of Nanosecond Gain-Switched Cr2+:ZnSe Lasers

    DTIC Science & Technology

    2011-01-01

    outcoupler or absorption from the lightly-doped active ions. Additionally, the edges of the crystals are cut at the Brewster angle , which raises...experiments we used Brewster cut Cr:ZnSe gain elements with a chromium concentration of 8x1018 cm-3. Under Cr:Tm:Ho:YAG pumping, the first Cr:ZnSe laser...the energy scaling of nanosecond gain-switched Cr:ZnSe lasers is optimization of the gain medium. In this study we used Brewster cut Cr:ZnSe gain

  17. Time domain multiplexed spatial division multiplexing receiver.

    PubMed

    van Uden, Roy G H; Okonkwo, Chigo M; Chen, Haoshuo; de Waardt, Hugo; Koonen, Antonius M J

    2014-05-19

    A novel time domain multiplexed (TDM) spatial division multiplexing (SDM) receiver which allows for the reception of >1 dual polarization mode with a single coherent receiver, and corresponding 4-port oscilloscope, is experimentally demonstrated. Received by two coherent receivers and respective 4-port oscilloscopes, a 3 mode transmission of 28GBaud QPSK, 8, 16, and 32QAM over 41.7km of few-mode fiber demonstrates the performance of the TDM-SDM receiver with respect to back-to-back. In addition, by using carrier phase estimation employing one digital phase locked loop per output, the frequency offset between the transmitter laser and local oscillator is shown to perform similar to previous work which employs 3 coherent receivers and 4-port oscilloscopes which are dedicated to the reception of each the three modes.

  18. Detection of quasars in the time domain

    NASA Astrophysics Data System (ADS)

    Graham, Matthew J.; Djorgovski, S. G.; Stern, Daniel J.; Drake, Andrew; Mahabal, Ashish

    2017-06-01

    The time domain is the emerging forefront of astronomical research with new facilities and instruments providing unprecedented amounts of data on the temporal behavior of astrophysical populations. Dealing with the size and complexity of this requires new techniques and methodologies. Quasars are an ideal work set for developing and applying these: they vary in a detectable but not easily quantifiable manner whose physical origins are poorly understood. In this paper, we will review how quasars are identified by their variability and how these techniques can be improved, what physical insights into their variability can be gained from studying extreme examples of variability, and what approaches can be taken to increase the number of quasars known. These will demonstrate how astroinformatics is essential to discovering and understanding this important population.

  19. Moving Force Identification: a Time Domain Method

    NASA Astrophysics Data System (ADS)

    Law, S. S.; Chan, T. H. T.; Zeng, Q. H.

    1997-03-01

    The solution for the vertical dynamic interaction forces between a moving vehicle and the bridge deck is analytically derived and experimentally verified. The deck is modelled as a simply supported beam with viscous damping, and the vehicle/bridge interaction force is modelled as one-point or two-point loads with fixed axle spacing, moving at constant speed. The method is based on modal superposition and is developed to identify the forces in the time domain. Both cases of one-point and two-point forces moving on a simply supported beam are simulated. Results of laboratory tests on the identification of the vehicle/bridge interaction forces are presented. Computation simulations and laboratory tests show that the method is effective, and acceptable results can be obtained by combining the use of bending moment and acceleration measurements.

  20. Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

    NASA Astrophysics Data System (ADS)

    Liu, Shukui; Papanikolaou, Apostolos D.

    2011-03-01

    Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT) of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.

  1. Agreement of Anterior Segment Parameters Obtained From Swept-Source Fourier-Domain and Time-Domain Anterior Segment Optical Coherence Tomography.

    PubMed

    Chansangpetch, Sunee; Nguyen, Anwell; Mora, Marta; Badr, Mai; He, Mingguang; Porco, Travis C; Lin, Shan C

    2018-03-01

    To assess the interdevice agreement between swept-source Fourier-domain and time-domain anterior segment optical coherence tomography (AS-OCT). Fifty-three eyes from 41 subjects underwent CASIA2 and Visante OCT imaging. One hundred eighty-degree axis images were measured with the built-in two-dimensional analysis software for the swept-source Fourier-domain AS-OCT (CASIA2) and a customized program for the time-domain AS-OCT (Visante OCT). In both devices, we examined the angle opening distance (AOD), trabecular iris space area (TISA), angle recess area (ARA), anterior chamber depth (ACD), anterior chamber width (ACW), and lens vault (LV). Bland-Altman plots and intraclass correlation (ICC) were performed. Orthogonal linear regression assessed any proportional bias. ICC showed strong correlation for LV (0.925) and ACD (0.992) and moderate agreement for ACW (0.801). ICC suggested good agreement for all angle parameters (0.771-0.878) except temporal AOD500 (0.743) and ARA750 (nasal 0.481; temporal 0.481). There was a proportional bias in nasal ARA750 (slope 2.44, 95% confidence interval [CI]: 1.95-3.18), temporal ARA750 (slope 2.57, 95% CI: 2.04-3.40), and nasal TISA500 (slope 1.30, 95% CI: 1.12-1.54). Bland-Altman plots demonstrated in all measured parameters a minimal mean difference between the two devices (-0.089 to 0.063); however, evidence of constant bias was found in nasal AOD250, nasal AOD500, nasal AOD750, nasal ARA750, temporal AOD500, temporal AOD750, temporal ARA750, and ACD. Among the parameters with constant biases, CASIA2 tends to give the larger numbers. Both devices had generally good agreement. However, there were proportional and constant biases in most angle parameters. Thus, it is not recommended that values be used interchangeably.

  2. Nanosecond-pulsed Q-switched Nd:YAG laser at 1064 nm with a gold nanotriangle saturable absorber

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohan; Li, Ping; Dun, Yangyang; Song, Teng; Ma, Baomin

    2018-06-01

    Gold nanotriangles (GNTs) were successfully employed as a saturable absorber (SA) to achieve passively Q-switched lasers for the first time. The performance of the Q-switched Nd:YAG laser at 1064 nm has been systematically investigated. The corresponding shortest pulsewidth, the threshold pump power and the maximum Q-switched average output power were 275.5 ns, 1.37 W, and 171 mW, respectively. To our knowledge, this is the shortest pulsewidth and the lowest threshold in a passively Q-switched laser at approximately 1.1 µm based on a gold nanoparticle SA (GNPs-SA). Our experimental results proved that the GNTs-SA can be used as a promising saturable absorber for nanosecond-pulsed lasers.

  3. Fast time-domain measurements on telecom single photons

    NASA Astrophysics Data System (ADS)

    Allgaier, Markus; Vigh, Gesche; Ansari, Vahid; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Brecht, Benjamin; Silberhorn, Christine

    2017-09-01

    Direct measurements on the temporal envelope of quantum light are a challenging task and not many examples are known because most classical pulse characterisation methods do not work on the single-photon level. Knowledge of both spectrum and timing can, however, give insights on properties that cannot be determined by the spectral intensity alone. While temporal measurements on single photons on timescales of tens of picoseconds are possible with superconducting photon detectors, and picosecond measurements have been performed using streak cameras, there are no commercial single-photon sensitive devices with femtosecond resolution available. While time-domain sampling using sum-frequency generation has already been exploited for such a measurement, inefficient conversion has necessitated long integration times to build the temporal profile. We demonstrate a highly efficient waveguided sum-frequency generation process in Lithium Niobate to measure the temporal envelope of single photons with femtosecond resolution with short enough acquisition time to provide a live-view of the measurement. We demonstrate the measurement technique and combine it with spectral measurements using a dispersive-fibre time-of-flight spectrometer to determine upper and lower bounds for the spectral purity of heralded single photons. The approach complements the joint spectral intensity measurements as a measure on the purity can be given without knowledge of the spectral phase.

  4. A single-shot nanosecond neutron pulsed technique for the detection of fissile materials

    NASA Astrophysics Data System (ADS)

    Gribkov, V.; Miklaszewski, R. A.; Chernyshova, M.; Scholz, M.; Prokopovicz, R.; Tomaszewski, K.; Drozdowicz, K.; Wiacek, U.; Gabanska, B.; Dworak, D.; Pytel, K.; Zawadka, A.

    2012-07-01

    A novel technique with the potential of detecting hidden fissile materials is presented utilizing the interaction of a single powerful and nanosecond wide neutron pulse with matter. The experimental system is based on a Dense Plasma Focus (DPF) device as a neutron source generating pulses of almost mono-energetic 2.45 MeV and/or 14.0 MeV neutrons, a few nanoseconds in width. Fissile materials, consisting of heavy nuclei, are detected utilizing two signatures: firstly by measuring those secondary fission neutrons which are faster than the elastically scattered 2.45 MeV neutrons of the D-D reaction in the DPF; secondly by measuring the pulses of the slower secondary fission neutrons following the pulse of the fast 14 MeV neutrons from the D-T reaction. In both cases it is important to compare the measured spectrum of the fission neutrons induced by the 2.45 MeV or 14 MeV neutron pulse of the DPF with theoretical spectra obtained by mathematical simulation. Therefore, results of numerical modelling of the proposed system, using the MCNP5 and the FLUKA codes are presented and compared with experimental data.

  5. Optimal sensor placement for time-domain identification using a wavelet-based genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mahdavi, Seyed Hossein; Razak, Hashim Abdul

    2016-06-01

    This paper presents a wavelet-based genetic algorithm strategy for optimal sensor placement (OSP) effective for time-domain structural identification. Initially, the GA-based fitness evaluation is significantly improved by using adaptive wavelet functions. Later, a multi-species decimal GA coding system is modified to be suitable for an efficient search around the local optima. In this regard, a local operation of mutation is introduced in addition with regeneration and reintroduction operators. It is concluded that different characteristics of applied force influence the features of structural responses, and therefore the accuracy of time-domain structural identification is directly affected. Thus, the reliable OSP strategy prior to the time-domain identification will be achieved by those methods dealing with minimizing the distance of simulated responses for the entire system and condensed system considering the force effects. The numerical and experimental verification on the effectiveness of the proposed strategy demonstrates the considerably high computational performance of the proposed OSP strategy, in terms of computational cost and the accuracy of identification. It is deduced that the robustness of the proposed OSP algorithm lies in the precise and fast fitness evaluation at larger sampling rates which result in the optimum evaluation of the GA-based exploration and exploitation phases towards the global optimum solution.

  6. Synthesis of bimetallic nanostructures by nanosecond laser ablation of multicomponent thin films in water

    NASA Astrophysics Data System (ADS)

    Nikov, R. G.; Nedyalkov, N. N.; Atanasov, P. A.; Karashanova, D. B.

    2018-03-01

    The paper presents results on nanosecond laser ablation of thin films immersed in a liquid. The thin films were prepared by consecutive deposition of layers of different metals by thermal evaporation (first layer) and classical on-axis pulsed laser deposition (second layer); Ni/Au, Ag/Au and Ni/Ag thin films were thus deposited on glass substrates. The as-prepared films were then placed at the bottom of a glass vessel filled with double distilled water and irradiated by nanosecond laser pulses delivered by a Nd:YAG laser system at λ = 355 nm. This resulted in the formation of colloids of the thin films’ material. We also compared the processes of ablation of a bulk target and a thin film in the liquid by irradiating a Au target and a Au thin film by the same laser wavelength and fluence (λ = 355 nm, F = 5 J/cm2). The optical properties of the colloids were evaluated by optical transmittance measurements in the UV– VIS spectral range. Transmission electron microscopy was employed to estimate the particles’ size distribution.

  7. Single laser based pump-probe technique to study plasma shielding during nanosecond laser ablation of copper thin films

    NASA Astrophysics Data System (ADS)

    Nammi, Srinagalakshmi; Vasa, Nilesh J.; Gurusamy, Balaganesan; Mathur, Anil C.

    2017-09-01

    A plasma shielding phenomenon and its influence on micromachining is studied experimentally and theoretically for laser wavelengths of 355 nm, 532 nm and 1064 nm. A time resolved pump-probe technique is proposed and demonstrated by splitting a single nanosecond Nd3+:YAG laser into an ablation laser (pump laser) and a probe laser to understand the influence of plasma shielding on laser ablation of copper (Cu) clad on polyimide thin films. The proposed nanosecond pump-probe technique allows simultaneous measurement of the absorption characteristics of plasma produced during Cu film ablation by the pump laser. Experimental measurements of the probe intensity distinctly show that the absorption by the ablated plume increases with increase in the pump intensity, as a result of plasma shielding. Theoretical estimation of the intensity of the transmitted pump beam based on the thermo-temporal modeling is in qualitative agreement with the pump-probe based experimental measurements. The theoretical estimate of the depth attained for a single pulse with high pump intensity value on a Cu thin film is limited by the plasma shielding of the incident laser beam, similar to that observed experimentally. Further, the depth of micro-channels produced shows a similar trend for all three wavelengths, however, the channel depth achieved is lesser at the wavelength of 1064 nm.

  8. Negative pressures and spallation in water drops subjected to nanosecond shock waves

    DOE PAGES

    Stan, Claudiu A.; Willmott, Philip R.; Stone, Howard A.; ...

    2016-05-16

    Most experimental studies of cavitation in liquid water at negative pressures reported cavitation at tensions significantly smaller than those expected for homogeneous nucleation, suggesting that achievable tensions are limited by heterogeneous cavitation. We generated tension pulses with nanosecond rise times in water by reflecting cylindrical shock waves, produced by X-ray laser pulses, at the internal surface of drops of water. Depending on the X-ray pulse energy, a range of cavitation phenomena occurred, including the rupture and detachment, or spallation, of thin liquid layers at the surface of the drop. When spallation occurred, we evaluated that negative pressures below –100 MPamore » were reached in the drops. As a result, we model the negative pressures from shock reflection experiments using a nucleation-and-growth model that explains how rapid decompression could outrun heterogeneous cavitation in water, and enable the study of stretched water close to homogeneous cavitation pressures.« less

  9. Assessment of Clogging Dynamics in Permeable Pavement Systems with Time Domain Reflectometers

    EPA Science Inventory

    Infiltration is a primary functional mechanism in green infrastructure stormwater controls. This study used time domain reflectometers (TDRs) to measure spatial infiltration and assess clogging dynamics of permeable pavement systems in Edison, NJ, and Louisville, KY. In 2009, t...

  10. On the Assessment of Acoustic Scattering and Shielding by Time Domain Boundary Integral Equation Solutions

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.; Pizzo, Michelle E.; Nark, Douglas M.

    2016-01-01

    Based on the time domain boundary integral equation formulation of the linear convective wave equation, a computational tool dubbed Time Domain Fast Acoustic Scattering Toolkit (TD-FAST) has recently been under development. The time domain approach has a distinct advantage that the solutions at all frequencies are obtained in a single computation. In this paper, the formulation of the integral equation, as well as its stabilization by the Burton-Miller type reformulation, is extended to cases of a constant mean flow in an arbitrary direction. In addition, a "Source Surface" is also introduced in the formulation that can be employed to encapsulate regions of noise sources and to facilitate coupling with CFD simulations. This is particularly useful for applications where the noise sources are not easily described by analytical source terms. Numerical examples are presented to assess the accuracy of the formulation, including a computation of noise shielding by a thin barrier motivated by recent Historical Baseline F31A31 open rotor noise shielding experiments. Furthermore, spatial resolution requirements of the time domain boundary element method are also assessed using point per wavelength metrics. It is found that, using only constant basis functions and high-order quadrature for surface integration, relative errors of less than 2% may be obtained when the surface spatial resolution is 5 points-per-wavelength (PPW) or 25 points-per-wavelength squared (PPW2).

  11. Standoff detection of explosive molecules using nanosecond gated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chung, Jin Hyuk; Cho, Soo Gyeong

    2013-06-01

    Recently, improvised explosive device (IED) has been a serious threat for many countries. One of the approaches to alleviate this threat is standoff detection of explosive molecules used in IEDs. Raman spectroscopy is a prospective method among many technologies under research to achieve this goal. It provides unique information of the target materials, through which the ingredients used in IEDs can be analyzed and identified. The main problem of standoff Raman spectroscopic detection is the large background noise hindering weak Raman signals from the target samples. Typical background noise comes from both ambient fluorescent lights indoor and sunlight outdoor whose intensities are usually much larger than that of Raman scattering from the sample. Under the proper condition using pulse laser and ICCD camera with nanosecond pulse width and gating technology, we succeed to separate and remove these background noises from Raman signals. For this experiment, we build an optical system for standoff detection of explosive molecules. We use 532 nm, 10 Hz, Q-switching Nd:YAG laser as light source, and ICCD camera triggered by laser Qswitching time with proper gate delay regarding the flight time of Raman from target materials. Our detection system is successfully applied to detect and identify more than 20 ingredients of IEDs including TNT, RDX, and HMX which are located 10 to 54 meters away from the system.

  12. Diamondoid synthesis by nanosecond pulsed microplasmas generated in He at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Shizuno, Tomoki; Oshima, Fumito; Pai, David Z.; Terashima, Kazuo

    2012-10-01

    Diamondoids are sp^3 hybridized carbon nanomaterials that possess interesting properties making them attractive for biotechnology, medicine, and opto- and nanoelectronics. So far, larger diamondoids have been synthesized using the smallest diamondoid (adamantane) as a precursor. For this electric discharges and pulsed laser plasmas generated in supercritical fluids, and hot filament chemical vapor deposition have been used, but these methods are difficult to realize or very time-consuming. We have developed a more convenient approach where diamondoids are synthesized by high-voltage nanosecond pulsed microplasmas (voltage 15 kVp-p, frequency 1 Hz, pulse width 10 ns) generated in He at atmospheric pressure using point-to-plane tungsten electrodes. Adamantane was used as a precursor, and synthesis was conducted for 10^5 pulses at gas temperatures of 297, 373 and 473 K. Energy dispersive X-ray and micro-Raman spectroscopy were conducted to determine the composition of the products, and gas chromatography - mass spectra indicated the formation of diamantane. It was found that synthesis is more efficient at room temperature than at higher temperatures, and time-resolved optical emission spectroscopy suggest that the chemical reactions take place in the afterglow.

  13. Multidetector system for nanosecond tagged neutron technology based on hardware selection of events

    NASA Astrophysics Data System (ADS)

    Karetnikov, M. D.; Korotkov, S. A.; Khasaev, T. O.

    2016-09-01

    At the T( d, n)He4 reaction a neutron is accompanied by an associated alpha-particle emitted in the opposite direction. A time and a direction of the neutron escape can be determined by measuring a time and coordinates of the alpha particle at the position-sensitive alpha-detector. The nanosecond tagged neutron technology (NTNT) based on this principle has great potentialities for various applications, e.g., for remote detection of explosives. A spectrum of gamma-rays emitted at the interaction of tagged neutrons with nuclei of chemical elements allows identify a chemical composition of an irradiated object. For practical realization of NTNT, a time resolution of recording the alpha-gamma coincidences should be close to 1 ns. The total intensity of signals can exceed 1 × 106 1/s from all gamma-detectors and 7 × 106 1/s from the alpha-detector. The processing of such stream of data without losses and distortion of information is one of challenging problems of NTNT. Several models of analog DAQ system based on hardware selection of events were devised and their characteristics are examined. The comparison with the digital DAQ systems demonstrated that the analog DAQ provides better timing parameters, lower power consumption, and higher maximum rate of useful events.

  14. Terahertz time-domain spectroscopy of submonolayer water adsorption in hydrophilic silica aerogel.

    PubMed

    Zhang, Jiangquan; Grischkowsky, Daniel

    2004-05-01

    We report a terahertz time-domain spectroscopy study of the adsorption of water in hydrophilic silica aerogel. The adsorbed water is in submonolayer form and shows properties of index of refraction similar to those of bulk water but different absorption properties.

  15. Finite-difference time-domain simulation of GPR data

    NASA Astrophysics Data System (ADS)

    Chen, How-Wei; Huang, Tai-Min

    1998-10-01

    Simulation of digital ground penetrating radar (GPR) wave propagation in two-dimensional (2-D) media is developed, tested, implemented, and applied using a time-domain staggered-grid finite-difference (FD) numerical method. Three types of numerical algorithms for constructing synthetic common-shot, constant-offset radar profiles based on an actual transmitter-to-receiver configuration and based on the exploding reflector concept are demonstrated to mimic different types of radar survey geometries. Frequency-dependent attenuation is also incorporated to account for amplitude decay and time shift in the recorded responses. The algorithms are based on an explicit FD solution to Maxwell's curl equations. In addition, the first-order TE mode responses of wave propagation phenomena are considered due to the operating frequency of current GPR instruments. The staggered-grid technique is used to sample the fields and approximate the spatial derivatives with fourth-order FDs. The temporal derivatives are approximated by an explicit second-order difference time-marching scheme. By combining paraxial approximation of the one-way wave equation ( A2) and the damping mechanisms (sponge filter), we propose a new composite absorbing boundary conditions (ABC) algorithm that effectively absorb both incoming and outgoing waves. To overcome the angle- and frequency-dependent characteristic of the absorbing behaviors, each ABC has two types of absorption mechanism. The first ABC uses a modified Clayton and Enquist's A2 condition. Moreover, a fixed and a floating A2 ABC that operates at one grid point is proposed. The second ABC uses a damping mechanism. By superimposing artificial damping and by alternating the physical attenuation properties and impedance contrast of the media within the absorbing region, those waves impinging on the boundary can be effectively attenuated and can prevent waves from reflecting back into the grid. The frequency-dependent characteristic of the damping

  16. Ultrasonic Phased Array Compressive Imaging in Time and Frequency Domain: Simulation, Experimental Verification and Real Application

    PubMed Central

    Bai, Zhiliang; Chen, Shili; Jia, Lecheng; Zeng, Zhoumo

    2018-01-01

    Embracing the fact that one can recover certain signals and images from far fewer measurements than traditional methods use, compressive sensing (CS) provides solutions to huge amounts of data collection in phased array-based material characterization. This article describes how a CS framework can be utilized to effectively compress ultrasonic phased array images in time and frequency domains. By projecting the image onto its Discrete Cosine transform domain, a novel scheme was implemented to verify the potentiality of CS for data reduction, as well as to explore its reconstruction accuracy. The results from CIVA simulations indicate that both time and frequency domain CS can accurately reconstruct array images using samples less than the minimum requirements of the Nyquist theorem. For experimental verification of three types of artificial flaws, although a considerable data reduction can be achieved with defects clearly preserved, it is currently impossible to break Nyquist limitation in the time domain. Fortunately, qualified recovery in the frequency domain makes it happen, meaning a real breakthrough for phased array image reconstruction. As a case study, the proposed CS procedure is applied to the inspection of an engine cylinder cavity containing different pit defects and the results show that orthogonal matching pursuit (OMP)-based CS guarantees the performance for real application. PMID:29738452

  17. Intrinsic motions in the N-terminal domain of an ionotropic glutamate receptor detected by fluorescence correlation spectroscopy.

    PubMed

    Jensen, Mette H; Sukumaran, Madhav; Johnson, Christopher M; Greger, Ingo H; Neuweiler, Hannes

    2011-11-18

    Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission in the central nervous system and play key roles in brain development and disease. iGluRs have two distinct extracellular domains, but the functional role of the distal N-terminal domain (NTD) is poorly understood. Crystal structures of the NTD from some non-N-methyl-d-aspartate (NMDA) iGluRs are consistent with a rigid body that facilitates receptor assembly but suggest an additional dynamic role that could modulate signaling. Here, we moved beyond spatial and temporal limitations of conventional protein single-molecule spectroscopy by employing correlation analysis of extrinsic oxazine fluorescence fluctuations. We observed nanosecond (ns)-to-microsecond (μs) motions of loop segments and helices within a region of an AMPA-type iGluR NTD, which has been identified previously to be structurally variable. Our data reveal that the AMPA receptor NTD undergoes rapid conformational fluctuations, suggesting an inherent allosteric capacity for this domain in addition to its established assembly function. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Modelling of heating and photoexcitation of single-crystal silicon under multipulse irradiation by a nanosecond laser at 1.06 μm

    NASA Astrophysics Data System (ADS)

    Polyakov, D. S.; Yakovlev, E. B.

    2018-03-01

    We report a theoretical study of heating and photoexcitation of single-crystal silicon by nanosecond laser radiation at a wavelength of 1.06 μm. The proposed physicomathematical model of heating takes into account the complex nonlinear dynamics of the interband absorption coefficient of silicon and the contribution of the radial heat removal to the cooling of silicon between pulses under multipulse irradiation, which allows one to obtain a satisfactory agreement between theoretical predictions of silicon melting thresholds at different nanosecond pulse durations and experimental data (both under single-pulse and multipulse irradiation). It is found that under irradiation by nanosecond pulses at a wavelength of 1.06 μm, the dynamic Burshtein–Moss effect can play an important role in processes of photoexcitation and heating. It is shown that with the regimes typical for laser multipulse microprocessing of silicon (the laser spot diameter is less than 100 μm, and the repetition rate of pulses is about 100 kHz), the radial heat removal cannot be neglected in the analysis of heat accumulation processes.

  19. Pathloss Calculation Using the Transmission Line Matrix and Finite Difference Time Domain Methods With Coarse Grids

    DOE PAGES

    Nutaro, James; Kuruganti, Teja

    2017-02-24

    Numerical simulations of the wave equation that are intended to provide accurate time domain solutions require a computational mesh with grid points separated by a distance less than the wavelength of the source term and initial data. However, calculations of radio signal pathloss generally do not require accurate time domain solutions. This paper describes an approach for calculating pathloss by using the finite difference time domain and transmission line matrix models of wave propagation on a grid with points separated by distances much greater than the signal wavelength. The calculated pathloss can be kept close to the true value formore » freespace propagation with an appropriate selection of initial conditions. This method can also simulate diffraction with an error governed by the ratio of the signal wavelength to the grid spacing.« less

  20. Fluorescence of silicon nanoparticles prepared by nanosecond pulsed laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chunyang, E-mail: chunyangliu@126.com; Sui, Xin; Yang, Fang

    2014-03-15

    A pulsed laser fabrication method is used to prepare fluorescent microstructures on silicon substrates in this paper. A 355 nm nanosecond pulsed laser micromachining system was designed, and the performance was verified and optimized. Fluorescence microscopy was used to analyze the photoluminescence of the microstructures which were formed using the pulsed laser processing technique. Photoluminescence spectra of the microstructure reveal a peak emission around 500 nm, from 370 nm laser irradiation. The light intensity also shows an exponential decay with irradiation time, which is similar to attenuation processes seen in porous silicon. The surface morphology and chemical composition of themore » microstructure in the fabricated region was also analyzed with multifunction scanning electron microscopy. Spherical particles are produced with diameters around 100 nm. The structure is compared with porous silicon. It is likely that these nanoparticles act as luminescence recombination centers on the silicon surface. The small diameter of the particles modifies the band gap of silicon by quantum confinement effects. Electron-hole pairs recombine and the fluorescence emission shifts into the visible range. The chemical elements of the processed region are also changed during the interaction between laser and silicon. Oxidation and carbonization play an important role in the enhancement of fluorescence emission.« less

  1. Comparison of GPS and GLONASS common-view time transfers

    NASA Technical Reports Server (NTRS)

    Lewandowski, W.; Petit, G.; Thomas, C.; Cherenkov, G. T.; Koshelyaevsky, N. B.; Pushkin, S. B.

    1993-01-01

    It was already shown than even with a simple daily averaging of GLONASS data at each site, continental GLONASS time transfer can be achieved at a level of several tens of nanoseconds. A further step is to carry out observations of GLONASS satellites by the common-view method. A comparison of GPS and GLONASS common-view time transfers between Russia and Western Europe are reported. At each site, a GPS receiver and a GLONASS receiver are connected to the same atomic clock. Both GPS receivers are of NBS type and the GLONASS receivers are of type A-724. As GPS common-view time transfer between Sevres and Mendeleevo is accomplished at a level of a few nanoseconds in precision, it gives an excellent reference with which to evaluate the performance of GLONASS common-view time transfer.

  2. Time-domain simulation of damped impacted plates. II. Numerical model and results.

    PubMed

    Lambourg, C; Chaigne, A; Matignon, D

    2001-04-01

    A time-domain model for the flexural vibrations of damped plates was presented in a companion paper [Part I, J. Acoust. Soc. Am. 109, 1422-1432 (2001)]. In this paper (Part II), the damped-plate model is extended to impact excitation, using Hertz's law of contact, and is solved numerically in order to synthesize sounds. The numerical method is based on the use of a finite-difference scheme of second order in time and fourth order in space. As a consequence of the damping terms, the stability and dispersion properties of this scheme are modified, compared to the undamped case. The numerical model is used for the time-domain simulation of vibrations and sounds produced by impact on isotropic and orthotropic plates made of various materials (aluminum, glass, carbon fiber and wood). The efficiency of the method is validated by comparisons with analytical and experimental data. The sounds produced show a high degree of similarity with real sounds and allow a clear recognition of each constitutive material of the plate without ambiguity.

  3. Time-domain least-squares migration using the Gaussian beam summation method

    NASA Astrophysics Data System (ADS)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-04-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  4. Time-domain least-squares migration using the Gaussian beam summation method

    NASA Astrophysics Data System (ADS)

    Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo

    2018-07-01

    With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modelling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modelling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a pre-conditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.

  5. Coherent combining pulse bursts in time domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvanauskas, Almantas

    A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies usingmore » a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.« less

  6. Explaining the Substantial Inter-Domain and Over-Time Correlations in Student Achievement: The Importance of Stable Student Attributes

    ERIC Educational Resources Information Center

    Marks, Gary N.

    2016-01-01

    Multi-domain and longitudinal studies of student achievement routinely find moderate to strong correlations across achievement domains and even stronger within-domain correlations over time. The purpose of this study is to examine the sources of these patterns analysing student achievement in 5 domains across Years 3, 5 and 7. The analysis is of…

  7. Thin layered drawing media probed by THz time-domain spectroscopy.

    PubMed

    Tasseva, J; Taschin, A; Bartolini, P; Striova, J; Fontana, R; Torre, R

    2016-12-19

    Dry and wet drawing materials were investigated by THz time-domain spectroscopy in transmission mode. Carbon-based and iron-gall inks have been studied, some prepared following ancient recipes and others using current synthetic materials; a commercial ink was studied as well. We measured the THz signals on the thin films of liquid inks deposited on polyethylene pellicles, comparing the results with the thick pellets of dried inks blended with polyethylene powder. This study required the implementation of an accurate experimental method and data analysis procedure able to provide a reliable extraction of the material transmission parameters from a structured sample composed of thin layers, down to a thickness of a few tens of micrometers. THz measurements on thin ink layers enabled the determination of both the absorption and the refractive index in an absolute scale in the 0.1-3 THz range, as well as the layer thickness. THz spectroscopic features of a paper sheet dyed by using one of the iron-gall inks were also investigated. Our results showed that THz time-domain spectroscopy enables the discrimination of various inks on different supports, including the application on paper, together with the proper determination of the absorption coefficients and indices of refraction.

  8. High Intensity Mirror-Free Nanosecond Ytterbium Fiber Laser System in Master Oscillator Power Amplification

    NASA Astrophysics Data System (ADS)

    Chun-Lin, Louis Chang

    further become a nonlinear fiber amplifier in all-normal dispersion instead of a nonlinear passive fiber. The combination of laser amplification and nonlinear conversion together can therefore overcome the significant pump depletion during the propagation along the passive fiber for power scaling. As a result, an intense spectrum spanning from 980 to 1600 nm as a high-power nanosecond supercontinuum source can be successfully generated with a conversion efficiency of >65% and a record-high peak power of >116 kW to the best of our knowledge. Because of MOPA structure, the influence of input parameters of nonlinear fiber amplifier on supercontinuum parameters can also be studied. The onset and interplay of fiber nonlinearities can be revealed stage by stage. Such an unique and linearly-polarized light source composed of an intense pump and broad sideband seed is beneficial for efficiently driving the broadband tunable optical parametric amplification free from the bulkiness and timing jitter. Keywords: High power fiber laser and amplifier, ytterbium fiber, master oscillator power amplification, parasitic stimulated amplification, multi-pass fiber amplification, peak power/pulse energy scaling, fiber nonlinear optics, supercontinuum generation.

  9. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    NASA Astrophysics Data System (ADS)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  10. Material parameter estimation with terahertz time-domain spectroscopy.

    PubMed

    Dorney, T D; Baraniuk, R G; Mittleman, D M

    2001-07-01

    Imaging systems based on terahertz (THz) time-domain spectroscopy offer a range of unique modalities owing to the broad bandwidth, subpicosecond duration, and phase-sensitive detection of the THz pulses. Furthermore, the possibility exists for combining spectroscopic characterization or identification with imaging because the radiation is broadband in nature. To achieve this, we require novel methods for real-time analysis of THz waveforms. This paper describes a robust algorithm for extracting material parameters from measured THz waveforms. Our algorithm simultaneously obtains both the thickness and the complex refractive index of an unknown sample under certain conditions. In contrast, most spectroscopic transmission measurements require knowledge of the sample's thickness for an accurate determination of its optical parameters. Our approach relies on a model-based estimation, a gradient descent search, and the total variation measure. We explore the limits of this technique and compare the results with literature data for optical parameters of several different materials.

  11. The development of efficient numerical time-domain modeling methods for geophysical wave propagation

    NASA Astrophysics Data System (ADS)

    Zhu, Lieyuan

    This Ph.D. dissertation focuses on the numerical simulation of geophysical wave propagation in the time domain including elastic waves in solid media, the acoustic waves in fluid media, and the electromagnetic waves in dielectric media. This thesis shows that a linear system model can describe accurately the physical processes of those geophysical waves' propagation and can be used as a sound basis for modeling geophysical wave propagation phenomena. The generalized stability condition for numerical modeling of wave propagation is therefore discussed in the context of linear system theory. The efficiency of a series of different numerical algorithms in the time-domain for modeling geophysical wave propagation are discussed and compared. These algorithms include the finite-difference time-domain method, pseudospectral time domain method, alternating directional implicit (ADI) finite-difference time domain method. The advantages and disadvantages of these numerical methods are discussed and the specific stability condition for each modeling scheme is carefully derived in the context of the linear system theory. Based on the review and discussion of these existing approaches, the split step, ADI pseudospectral time domain (SS-ADI-PSTD) method is developed and tested for several cases. Moreover, the state-of-the-art stretched-coordinate perfect matched layer (SCPML) has also been implemented in SS-ADI-PSTD algorithm as the absorbing boundary condition for truncating the computational domain and absorbing the artificial reflection from the domain boundaries. After algorithmic development, a few case studies serve as the real-world examples to verify the capacities of the numerical algorithms and understand the capabilities and limitations of geophysical methods for detection of subsurface contamination. The first case is a study using ground penetrating radar (GPR) amplitude variation with offset (AVO) for subsurface non-aqueous-liquid (NAPL) contamination. The

  12. Gas Breakdown in the Sub-Nanosecond Regime with Voltages Below 15 KV

    DTIC Science & Technology

    2013-06-01

    needle -plane gap with outer coaxial conductor, and a 50-Ω load line. The needle consists of tungsten and has a radius of curvature below 0.5 µm. The...here gas breakdown during nanosecond pulses occurs mainly as corona discharges on wire antennas, and represents an unwanted effect - General...risetime between 400 ps to1 ns), 50-W transmission line, axial needle -plane gap with outer coaxial conductor, and a 50-W load line. The needle consists of

  13. Gastric Emptying Assessment in Frequency and Time Domain Using Bio-impedance: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Huerta-Franco, R.; Vargas-Luna, M.; Hernández, E.; Córdova, T.; Sosa, M.; Gutiérrez, G.; Reyes, P.; Mendiola, C.

    2006-09-01

    The impedance assessment to measure gastric emptying and in general gastric activity has been reported since 1985. The physiological interpretation of these measurements, is still under research. This technique usually uses a single frequency, and the conductivity parameter. The frequency domain and the Fourier analysis of the time domain behavior of the gastric impedance in different gastric conditions (fasting state, and after food administration) has not been explored in detail. This work presents some insights of the potentiality of these alternative methodologies to measure gastric activity.

  14. Single-shot distributed Brillouin optical time domain analyzer.

    PubMed

    Fang, Jian; Xu, Pengbai; Dong, Yongkang; Shieh, William

    2017-06-26

    We demonstrate a novel single-shot distributed Brillouin optical time domain analyzer (SS-BOTDA). In our method, dual-polarization probe with orthogonal frequency-division multiplexing (OFDM) modulation is used to acquire the distributed Brillouin gain spectra, and coherent detection is used to enhance the signal-to-noise ratio (SNR) drastically. Distributed temperature sensing is demonstrated over a 1.08 km standard single-mode fiber (SSMF) with 20.48 m spatial resolution and 0.59 °C temperature accuracy. Neither frequency scanning, nor polarization scrambling, nor averaging is required in our scheme. All the data are obtained through only one-shot measurement, indicating that the sensing speed is only limited by the length of fiber.

  15. Finite difference time domain grid generation from AMC helicopter models

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.

    1992-01-01

    A simple technique is presented which forms a cubic grid model of a helicopter from an Aircraft Modeling Code (AMC) input file. The AMC input file defines the helicopter fuselage as a series of polygonal cross sections. The cubic grid model is used as an input to a Finite Difference Time Domain (FDTD) code to obtain predictions of antenna performance on a generic helicopter model. The predictions compare reasonably well with measured data.

  16. Evolution of metastable state molecules N2(A3 Σu+) in a nanosecond pulsed discharge: A particle-in-cell/Monte Carlo collisions simulation

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Sun, Jizhong; Feng, Chunlei; Bai, Jing; Ding, Hongbin

    2012-01-01

    A particle-in-cell plus Monte Carlo collisions method has been employed to investigate the nitrogen discharge driven by a nanosecond pulse power source. To assess whether the production of the metastable state N2(A3 Σu+) can be efficiently enhanced in a nanosecond pulsed discharge, the evolutions of metastable state N2(A3 Σu+) density and electron energy distribution function have been examined in detail. The simulation results indicate that the ultra short pulse can modulate the electron energy effectively: during the early pulse-on time, high energy electrons give rise to quick electron avalanche and rapid growth of the metastable state N2(A3 Σu+) density. It is estimated that for a single pulse with amplitude of -9 kV and pulse width 30 ns, the metastable state N2(A3 Σu+) density can achieve a value in the order of 109 cm-3. The N2(A3 Σu+) density at such a value could be easily detected by laser-based experimental methods.

  17. Terahertz time-domain spectroscopy for non-invasive assessment of water content in biological samples.

    PubMed

    Borovkova, Mariia; Khodzitsky, Mikhail; Demchenko, Petr; Cherkasova, Olga; Popov, Alexey; Meglinski, Igor

    2018-05-01

    We apply terahertz time-domain spectroscopy for the quantitative non-invasive assessment of the water content in biological samples, such as Carpinus caroliniana tree leaves and pork muscles. The developed experimental terahertz time-domain spectroscopy system operates both in transmission and reflection modes. The Landau-Looyenga-Lifshitz-based model is used for the calculation of the water concentration within the samples. The results of the water concentration measurements are compared with the results of the gravimetric measurements. The obtained results show that the water content in biological samples can be measured non-invasively, with a high accuracy, utilizing terahertz waves in transmission and reflection modes.

  18. Conceptualizing and Re-Evaluating Resilience Across Levels of Risk, Time, and Domains of Competence

    PubMed Central

    Shaw, Daniel S.

    2009-01-01

    This article examines potential theoretical constraints on resilience across levels of risk, time, and domain of outcome. Studies of resilience are reviewed as they relate to the prevalence of resilience across levels of risk (e.g., single life events vs. cumulative risk), time, and domains of adjustment. Based on a thorough review of pertinent literature, we conclude that resilience, as a global construct, appears to be rare at the highest levels of risk, and that resilience may benefit from a narrower conceptualization focusing on specific outcomes at specific timepoints in development. The implication of this conclusion for future research and intervention efforts is then discussed. PMID:18379875

  19. CMOS image sensor with lateral electric field modulation pixels for fluorescence lifetime imaging with sub-nanosecond time response

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Seo, Min-Woong; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji

    2016-04-01

    This paper presents the design and implementation of a time-resolved CMOS image sensor with a high-speed lateral electric field modulation (LEFM) gating structure for time domain fluorescence lifetime measurement. Time-windowed signal charge can be transferred from a pinned photodiode (PPD) to a pinned storage diode (PSD) by turning on a pair of transfer gates, which are situated beside the channel. Unwanted signal charge can be drained from the PPD to the drain by turning on another pair of gates. The pixel array contains 512 (V) × 310 (H) pixels with 5.6 × 5.6 µm2 pixel size. The imager chip was fabricated using 0.11 µm CMOS image sensor process technology. The prototype sensor has a time response of 150 ps at 374 nm. The fill factor of the pixels is 5.6%. The usefulness of the prototype sensor is demonstrated for fluorescence lifetime imaging through simulation and measurement results.

  20. Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for wave propagation

    NASA Astrophysics Data System (ADS)

    Pagán Muñoz, Raúl; Hornikx, Maarten

    2017-11-01

    The Fourier Pseudospectral time-domain (Fourier PSTD) method was shown to be an efficient way of modelling acoustic propagation problems as described by the linearized Euler equations (LEE), but is limited to real-valued frequency independent boundary conditions and predominantly staircase-like boundary shapes. This paper presents a hybrid approach to solve the LEE, coupling Fourier PSTD with a nodal Discontinuous Galerkin (DG) method. DG exhibits almost no restrictions with respect to geometrical complexity or boundary conditions. The aim of this novel method is to allow the computation of complex geometries and to be a step towards the implementation of frequency dependent boundary conditions by using the benefits of DG at the boundaries, while keeping the efficient Fourier PSTD in the bulk of the domain. The hybridization approach is based on conformal meshes to avoid spatial interpolation of the DG solutions when transferring values from DG to Fourier PSTD, while the data transfer from Fourier PSTD to DG is done utilizing spectral interpolation of the Fourier PSTD solutions. The accuracy of the hybrid approach is presented for one- and two-dimensional acoustic problems and the main sources of error are investigated. It is concluded that the hybrid methodology does not introduce significant errors compared to the Fourier PSTD stand-alone solver. An example of a cylinder scattering problem is presented and accurate results have been obtained when using the proposed approach. Finally, no instabilities were found during long-time calculation using the current hybrid methodology on a two-dimensional domain.

  1. Domain-Specific and Unspecific Reaction Times in Experienced Team Handball Goalkeepers and Novices

    PubMed Central

    Helm, Fabian; Reiser, Mathias; Munzert, Jörn

    2016-01-01

    In our everyday environments, we are constantly having to adapt our behavior to changing conditions. Hence, processing information is a fundamental cognitive activity, especially the linking together of perceptual and action processes. In this context, expertise research in the sport domain has concentrated on arguing that superior processing performance is driven by an advantage to be found in anticipatory processes (see Williams et al., 2011, for a review). This has resulted in less attention being paid to the benefits coming from basic internal perceptual-motor processing. In general, research on reaction time (RT) indicates that practicing a RT task leads to an increase in processing speed (Mowbray and Rhoades, 1959; Rabbitt and Banerji, 1989). Against this background, the present study examined whether the speed of internal processing is dependent on or independent from domain-specific motor expertise in unpredictable stimulus–response tasks and in a double stimulus–response paradigm. Thirty male participants (15 team handball goalkeepers and 15 novices) performed domain-unspecific simple or choice stimulus–response (CSR) tasks as well as CSR tasks that were domain-specific only for goalkeepers. As expected, results showed significantly faster RTs for goalkeepers on domain-specific tasks, whereas novices’ RTs were more frequently excessively long. However, differences between groups in the double stimulus-response paradigm were not significant. It is concluded that the reported expertise advantage might be due to recalling stored perceptual-motor representations for the domain-specific tasks, implying that experience with (practice of) a motor task explicitly enhances the internal processing of other related domain-specific tasks. PMID:27445879

  2. Domain-Specific and Unspecific Reaction Times in Experienced Team Handball Goalkeepers and Novices.

    PubMed

    Helm, Fabian; Reiser, Mathias; Munzert, Jörn

    2016-01-01

    In our everyday environments, we are constantly having to adapt our behavior to changing conditions. Hence, processing information is a fundamental cognitive activity, especially the linking together of perceptual and action processes. In this context, expertise research in the sport domain has concentrated on arguing that superior processing performance is driven by an advantage to be found in anticipatory processes (see Williams et al., 2011, for a review). This has resulted in less attention being paid to the benefits coming from basic internal perceptual-motor processing. In general, research on reaction time (RT) indicates that practicing a RT task leads to an increase in processing speed (Mowbray and Rhoades, 1959; Rabbitt and Banerji, 1989). Against this background, the present study examined whether the speed of internal processing is dependent on or independent from domain-specific motor expertise in unpredictable stimulus-response tasks and in a double stimulus-response paradigm. Thirty male participants (15 team handball goalkeepers and 15 novices) performed domain-unspecific simple or choice stimulus-response (CSR) tasks as well as CSR tasks that were domain-specific only for goalkeepers. As expected, results showed significantly faster RTs for goalkeepers on domain-specific tasks, whereas novices' RTs were more frequently excessively long. However, differences between groups in the double stimulus-response paradigm were not significant. It is concluded that the reported expertise advantage might be due to recalling stored perceptual-motor representations for the domain-specific tasks, implying that experience with (practice of) a motor task explicitly enhances the internal processing of other related domain-specific tasks.

  3. Mapping Turnaround Times (TAT) to a Generic Timeline: A Systematic Review of TAT Definitions in Clinical Domains

    PubMed Central

    2011-01-01

    Background Assessing turnaround times can help to analyse workflows in hospital information systems. This paper presents a systematic review of literature concerning different turnaround time definitions. Our objectives were to collect relevant literature with respect to this kind of process times in hospitals and their respective domains. We then analysed the existing definitions and summarised them in an appropriate format. Methods Our search strategy was based on Pubmed queries and manual reviews of the bibliographies of retrieved articles. Studies were included if precise definitions of turnaround times were available. A generic timeline was designed through a consensus process to provide an overview of these definitions. Results More than 1000 articles were analysed and resulted in 122 papers. Of those, 162 turnaround time definitions in different clinical domains were identified. Starting and end points vary between these domains. To illustrate those turnaround time definitions, a generic timeline was constructed using preferred terms derived from the identified definitions. The consensus process resulted in the following 15 terms: admission, order, biopsy/examination, receipt of specimen in laboratory, procedure completion, interpretation, dictation, transcription, verification, report available, delivery, physician views report, treatment, discharge and discharge letter sent. Based on this analysis, several standard terms for turnaround time definitions are proposed. Conclusion Using turnaround times to benchmark clinical workflows is still difficult, because even within the same clinical domain many different definitions exist. Mapping of turnaround time definitions to a generic timeline is feasible. PMID:21609424

  4. Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Jun-ichi; Yokoyama, Shota; Kaji, Toshiyuki; Sornphiphatphong, Chanond; Shiozawa, Yu; Makino, Kenzo; Furusawa, Akira

    2016-09-01

    In recent quantum optical continuous-variable experiments, the number of fully inseparable light modes has drastically increased by introducing a multiplexing scheme either in the time domain or in the frequency domain. Here, modifying the time-domain multiplexing experiment reported in the work of Yokoyama et al. [Nat. Photonics 7, 982 (2013)], we demonstrate the successive generation of fully inseparable light modes for more than one million modes. The resulting multi-mode state is useful as a dual-rail continuous variable cluster state. We circumvent the previous problem of optical phase drifts, which has limited the number of fully inseparable light modes to around ten thousands, by continuous feedback control of the optical system.

  5. Frequency and time-domain inspiral templates for comparable mass compact binaries in eccentric orbits

    NASA Astrophysics Data System (ADS)

    Tanay, Sashwat; Haney, Maria; Gopakumar, Achamveedu

    2016-03-01

    Inspiraling compact binaries with non-negligible orbital eccentricities are plausible gravitational wave (GW) sources for the upcoming network of GW observatories. In this paper, we present two prescriptions to compute post-Newtonian (PN) accurate inspiral templates for such binaries. First, we adapt and extend the postcircular scheme of Yunes et al. [Phys. Rev. D 80, 084001 (2009)] to obtain a Fourier-domain inspiral approximant that incorporates the effects of PN-accurate orbital eccentricity evolution. This results in a fully analytic frequency-domain inspiral waveform with Newtonian amplitude and 2PN-order Fourier phase while incorporating eccentricity effects up to sixth order at each PN order. The importance of incorporating eccentricity evolution contributions to the Fourier phase in a PN-consistent manner is also demonstrated. Second, we present an accurate and efficient prescription to incorporate orbital eccentricity into the quasicircular time-domain TaylorT4 approximant at 2PN order. New features include the use of rational functions in orbital eccentricity to implement the 1.5PN-order tail contributions to the far-zone fluxes. This leads to closed form PN-accurate differential equations for evolving eccentric orbits, and the resulting time-domain approximant is accurate and efficient to handle initial orbital eccentricities ≤0.9 . Preliminary GW data analysis implications are probed using match estimates.

  6. Nanosecond laser pulses for mimicking thermal effects on nanostructured tungsten-based materials

    NASA Astrophysics Data System (ADS)

    Besozzi, E.; Maffini, A.; Dellasega, D.; Russo, V.; Facibeni, A.; Pazzaglia, A.; Beghi, M. G.; Passoni, M.

    2018-03-01

    In this work, we exploit nanosecond laser irradiation as a compact solution for investigating the thermomechanical behavior of tungsten materials under extreme thermal loads at the laboratory scale. Heat flux factor thresholds for various thermal effects, such as melting, cracking and recrystallization, are determined under both single and multishot experiments. The use of nanosecond lasers for mimicking thermal effects induced on W by fusion-relevant thermal loads is thus validated by direct comparison of the thresholds obtained in this work and the ones reported in the literature for electron beams and millisecond laser irradiation. Numerical simulations of temperature and thermal stress performed on a 2D thermomechanical code are used to predict the heat flux factor thresholds of the different thermal effects. We also investigate the thermal effect thresholds of various nanostructured W coatings. These coatings are produced by pulsed laser deposition, mimicking W coatings in tokamaks and W redeposited layers. All the coatings show lower damage thresholds with respect to bulk W. In general, thresholds decrease as the porosity degree of the materials increases. We thus propose a model to predict these thresholds for coatings with various morphologies, simply based on their porosity degree, which can be directly estimated by measuring the variation of the coating mass density with respect to that of the bulk.

  7. A time domain frequency-selective multivariate Granger causality approach.

    PubMed

    Leistritz, Lutz; Witte, Herbert

    2016-08-01

    The investigation of effective connectivity is one of the major topics in computational neuroscience to understand the interaction between spatially distributed neuronal units of the brain. Thus, a wide variety of methods has been developed during the last decades to investigate functional and effective connectivity in multivariate systems. Their spectrum ranges from model-based to model-free approaches with a clear separation into time and frequency range methods. We present in this simulation study a novel time domain approach based on Granger's principle of predictability, which allows frequency-selective considerations of directed interactions. It is based on a comparison of prediction errors of multivariate autoregressive models fitted to systematically modified time series. These modifications are based on signal decompositions, which enable a targeted cancellation of specific signal components with specific spectral properties. Depending on the embedded signal decomposition method, a frequency-selective or data-driven signal-adaptive Granger Causality Index may be derived.

  8. Multi-AUV autonomous task planning based on the scroll time domain quantum bee colony optimization algorithm in uncertain environment

    PubMed Central

    Zhang, Rubo; Yang, Yu

    2017-01-01

    Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution. PMID:29186166

  9. Multi-AUV autonomous task planning based on the scroll time domain quantum bee colony optimization algorithm in uncertain environment.

    PubMed

    Li, Jianjun; Zhang, Rubo; Yang, Yu

    2017-01-01

    Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution.

  10. Performance enhancement of sub-nanosecond diode-pumped passively Q-switched Yb:YAG microchip laser with diamond surface cooling.

    PubMed

    Zhuang, W Z; Chen, Yi-Fan; Su, K W; Huang, K F; Chen, Y F

    2012-09-24

    We experimentally confirm that diamond surface cooling can significantly enhance the output performance of a sub-nanosecond diode-end-pumped passively Q-switched Yb:YAG laser. It is found that the pulse energy obtained with diamond cooling is approximately 1.5 times greater than that obtained without diamond cooling, where a Cr(4+):YAG absorber with the initial transmission of 84% is employed. Furthermore, the standard deviation of the pulse amplitude peak-to-peak fluctuation is found to be approximately 3 times lower than that measured without diamond cooling. Under a pump power of 3.9 W, the passively Q-switched Yb:YAG laser can generate a pulse train of 3.3 kHz repetition rate with a pulse energy of 287 μJ and with a pulse width of 650 ps.

  11. 2.36 J, 50 Hz nanosecond pulses from a diode side-pumped Nd:YAG MOPA system

    NASA Astrophysics Data System (ADS)

    Li, Chaoyang; Lu, Chengqiang; Li, Chuan; Yang, Ning; Li, Ye; Yang, Zhen; Han, Song; Shi, Junfeng; Zhou, Zewu

    2017-07-01

    We report on a high-energy high-repetition-rate nanosecond Nd:YAG main oscillator power amplifier (MOPA) system. Maximum output pulse energy of 2.36 J with duration of 9.4 ns at 50 Hz has been achieved. The master oscillator was a LD side-pumped electro-optical Q-switched Nd:YAG rod laser adopting unstable cavity with variable reflectivity mirror (VRM). It delivered a pulse train with energy up to 180 mJ and pulse duration of 10.7 ns. The near-field pattern demonstrated a nearly super Gaussian flat top profile. In the amplification stage, the pulse was boosted via double-pass two Nd:YAG rod amplifiers. Maximum pulse energy was obtained at the peak pump power of 37.5 kW, corresponding to an optical-optical conversion efficiency of 25.2%. The correlative peak power was deduced to be 251 MW. We also presented the result of 100 Hz nanosecond laser with average output power of >100 W.

  12. Nanosecond electrical and optical pulses and self phase conjugation from photorefractive lithium niobate fibers and crystals

    NASA Astrophysics Data System (ADS)

    Kukhtarev, N.; Kukhtareva, T.; Curley, M.; Jaenisch, H. M.; Edwards, M. E.; Gu, M.; Zhou, Z.; Guo, R.

    2007-09-01

    We have observed nanosecond electrical and optical pulsations from photorefractive lithium-niobate optical fibers using CW green and blue low-power lasers. Fourier spectra of the pulsations have a maximum at ~900 MHz with peaks separated by ~30MHz. We consider free-space and fiber supported illumination of the fiber crystal. Strong nonlinear enhanced backscattering with phase conjugation was observed from bulk crystals and crystal fibers along the C-axis. Model of transformation of CW laser irradiation of ferroelectric crystals into periodic nanosecond electrical and optical pulsations is suggested. This model includes combinations of photorefractive, pyroelectric, piezoelectric, and photogalvanic mechanisms of the holographic grating formation and crystal electrical charging. Possible applications of these short photo-induced electrical pulses for modulation of holographic beam coupling, pulsed electrolysis, electrophoresis, focused electron beams, X-ray and neutron generation, and hand-held micro X-ray devices for localized oncology imaging and treatment based on our advanced sensor work are discussed.

  13. Readout architecture for sub-nanosecond resolution TDC

    NASA Astrophysics Data System (ADS)

    Marteau, J.; Carlus, B.; Gardien, S.; Girerd, C.; Ianigro, J.-C.; Montorio, J.-L.; Gibert, D.; Nicollin, F.

    2012-04-01

    The DIAPHANE project is pluri-disciplinary collaboration between particle physicists and geophysicists to perform the tomography of large geological structure mainly devoted to the study of active volcanoes. The detector used for this tomography, hereafter referred to as telescope, uses a standard, robust, cost-effective and well-known technology based on solid plastic scintillator readout by photomultiplier(s) (either multichannel pixelized PM or silicon PM). The electronics system is built on the concept of autonomous, triggerless, smart sensor directly connected on a standard fast Ethernet network. First radiographies have been performed on the Mont-Terri underground laboratory (St-Ursanne, Switzerland) and on the active volcano of La Soufrière (Guadeloupe, Lesser Antilles, France). We present an upgrade of the readout architecture allowing to embed a sub-nanosecond resolution TDC within the existing programmable logic to help in the background rejection (rear flux, random coincidences) and to improve the detection purity and the radiography quality. First results obtained are also presented and briefly discussed.

  14. Texturing of polypropylene (PP) with nanosecond lasers

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Soto, R.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.

    2016-06-01

    Polypropylene (PP) is a biocompatible and biostable polymer, showing good mechanical properties that has been recently introduced in the biomedical field for bone repairing applications; however, its poor surface properties due to its low surface energy limit their use in biomedical applications. In this work, we have studied the topographical modification of polypropylene (PP) laser textured with Nd:YVO4 nanosecond lasers emitting at λ = 1064 nm, 532 nm, and 355 nm. First, optical response of this material under these laser wavelengths was determined. The application of an absorbing coating was also studied. The influence of the laser processing parameters on the surface modification of PP was investigated by means of statistically designed experiments. Processing maps to tailor the roughness, and wettability, the main parameters affecting cell adhesion characteristics of implants, were also determined. Microhardness measurements were performed to discern the impact of laser treatment on the final mechanical properties of PP.

  15. Terahertz time-domain spectroscopy of edible oils

    NASA Astrophysics Data System (ADS)

    Dinovitser, Alex; Valchev, Dimitar G.; Abbott, Derek

    2017-06-01

    Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05-2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min.

  16. Time domain simulation of novel photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Chung, Haejun

    Thin-film silicon-based solar cells have operated far from the Shockley- Queisser limit in all experiments to date. Novel light-trapping structures, however, may help address this limitation. Finite-difference time domain simulation methods offer the potential to accurately determine the light-trapping potential of arbitrary dielectric structures, but suffer from materials modeling problems. In this thesis, existing dispersion models for novel photovoltaic materials will be reviewed, and a novel dispersion model, known as the quadratic complex rational function (QCRF), will be proposed. It has the advantage of accurately fitting experimental semiconductor dielectric values over a wide bandwidth in a numerically stable fashion. Applying the proposed dispersion model, a statistically correlated surface texturing method will be suggested, and light absorption rates of it will be explained. In future work, these designs will be combined with other structures and optimized to help guide future experiments.

  17. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for the Convective Wave Equation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Kreider, K. L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  18. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  19. Results of time-domain electromagnetic soundings in Everglades National Park, Florida

    USGS Publications Warehouse

    Fitterman, D.V.; Deszcz-Pan, Maria; Stoddard, C.E.

    1999-01-01

    This report describes the collection, processing, and interpretation of time-domain electromagnetic soundings from Everglades National Park. The results are used to locate the extent of seawater intrusion in the Biscayne aquifer and to map the base of the Biscayne aquifer in regions where well coverage is sparse. The data show no evidence of fresh, ground-water flows at depth into Florida Bay.

  20. Distributed fiber optical sensing of oxygen with optical time domain reflectometry.

    PubMed

    Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd

    2013-05-31

    In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements.

  1. Micro-processing of NiMnGa shape memory alloy by using a nanosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2016-04-01

    The interest on Ferromagnetic Shape Memory Alloys (FSMAs), such as NiMnGa, is growing up, thanks to their functional properties to be employed in a new class of micro-devices. The most evident critical issue, limiting the use of these systems in the production of industrial devices, is the brittleness of the bulk material; its workability by using convectional processing methods is very limited. Thus, alternative processing methods, including laser processing, are encouraged for the manufacture of FSMAs based new devices. In this work, the effect of the nanosecond laser microprocessing on Ni45Mn33Ga22 [at%] has been studied. Linear grooves were realized by a nanosecond 30 W fiber laser; the machined surfaces were analyzed with scanning electron microscopy, coupled with energetic dispersion spectroscopy for the composition analysis. The morphology of the grooves was affected by the laser scanning velocity and the number of laser pulses while the measured material removal rate appeared to be influenced mainly by the number of laser pulses. Compositional modification, associated to the loss of Ga content, was detected only for the lower scanning velocity, because of the high fluence. On the contrary, by increasing the velocity up to 1000 mm/s no Ga loss can be seen, making possible the laser processing of this functional alloy without its chemical modification. The use of short pulses allowed also to reduce the amount of recast material and the compositional change with respect to long pulses. Finally, the calorimetric analysis indicated that laser nanosecond microprocessing could affect the functional properties of this alloy: a larger decrease of the characteristic temperatures of the martensitic transformation was observed in correspondence of the low scanning velocity.

  2. Time-domain Astronomy with the Advanced X-ray Imaging Satellite

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.; Vestrand, Tom; Smith, Karl; Kippen, Marc; Schirato, Richard

    2018-01-01

    The Advanced X-ray Imaging Satellite (AXIS) is a concept NASA Probe class mission that will enable time-domain X-ray observations after the conclusion of the successful Swift Gamma-ray burst mission. AXIS will achieve rapid response, like Swift, with an improved X-ray monitoring capability through high angular resolution (similar to the 0.5 arc sec resolution of the Chandra X-ray Observatory) and high sensitivity (ten times the Chandra count rate) observations in the 0.3-10 keV band. In the up-coming decades, AXIS’s fast slew rate will provide the only rapid X-ray capability to study explosive transient events. Increased ground-based monitoring with next-generation survey telescopes like the Large Synoptic Survey Telescope will provide a revolution in transient science through the discovery of many new known and unknown phenomena – requiring AXIS follow-ups to establish the highest energy emission from these events. This synergy between AXIS and ground-based detections will constrain the rapid rise through decline in energetic emission from numerous transients including: supernova shock breakout winds, gamma-ray burst X-ray afterglows, ionized gas resulting from the activation of a hidden massive black hole in tidal disruption events, and intense flares from magnetic reconnection processes in stellar coronae. Additionally, the combination of high sensitivity and angular resolution will allow deeper and more precise monitoring for prompt X-ray signatures associated with gravitational wave detections. We present a summary of time-domain science with AXIS, highlighting its capabilities and expected scientific gains from rapid high quality X-ray imaging of transient phenomena.

  3. Helicopter time-domain electromagnetic numerical simulation based on Leapfrog ADI-FDTD

    NASA Astrophysics Data System (ADS)

    Guan, S.; Ji, Y.; Li, D.; Wu, Y.; Wang, A.

    2017-12-01

    We present a three-dimension (3D) Alternative Direction Implicit Finite-Difference Time-Domain (Leapfrog ADI-FDTD) method for the simulation of helicopter time-domain electromagnetic (HTEM) detection. This method is different from the traditional explicit FDTD, or ADI-FDTD. Comparing with the explicit FDTD, leapfrog ADI-FDTD algorithm is no longer limited by Courant-Friedrichs-Lewy(CFL) condition. Thus, the time step is longer. Comparing with the ADI-FDTD, we reduce the equations from 12 to 6 and .the Leapfrog ADI-FDTD method will be easier for the general simulation. First, we determine initial conditions which are adopted from the existing method presented by Wang and Tripp(1993). Second, we derive Maxwell equation using a new finite difference equation by Leapfrog ADI-FDTD method. The purpose is to eliminate sub-time step and retain unconditional stability characteristics. Third, we add the convolution perfectly matched layer (CPML) absorbing boundary condition into the leapfrog ADI-FDTD simulation and study the absorbing effect of different parameters. Different absorbing parameters will affect the absorbing ability. We find the suitable parameters after many numerical experiments. Fourth, We compare the response with the 1-Dnumerical result method for a homogeneous half-space to verify the correctness of our algorithm.When the model contains 107*107*53 grid points, the conductivity is 0.05S/m. The results show that Leapfrog ADI-FDTD need less simulation time and computer storage space, compared with ADI-FDTD. The calculation speed decreases nearly four times, memory occupation decreases about 32.53%. Thus, this algorithm is more efficient than the conventional ADI-FDTD method for HTEM detection, and is more precise than that of explicit FDTD in the late time.

  4. Time domain diffuse Raman spectrometer based on a TCSPC camera for the depth analysis of diffusive media.

    PubMed

    Konugolu Venkata Sekar, S; Mosca, S; Tannert, S; Valentini, G; Martelli, F; Binzoni, T; Prokazov, Y; Turbin, E; Zuschratter, W; Erdmann, R; Pifferi, A

    2018-05-01

    We present a time domain diffuse Raman spectrometer for depth probing of highly scattering media. The system is based on, to the best of our knowledge, a novel time-correlated single-photon counting (TCSPC) camera that simultaneously acquires both spectral and temporal information of Raman photons. A dedicated non-contact probe was built, and time domain Raman measurements were performed on a tissue mimicking bilayer phantom. The fluorescence contamination of the Raman signal was eliminated by early time gating (0-212 ps) the Raman photons. Depth sensitivity is achieved by time gating Raman photons at different delays with a gate width of 106 ps. Importantly, the time domain can provide time-dependent depth sensitivity leading to a high contrast between two layers of Raman signal. As a result, an enhancement factor of 2170 was found for our bilayer phantom which is much higher than the values obtained by spatial offset Raman spectroscopy (SORS), frequency offset Raman spectroscopy (FORS), or hybrid FORS-SORS on a similar phantom.

  5. CARS molecular fingerprinting using a sub-nanosecond supercontinuum light source

    NASA Astrophysics Data System (ADS)

    Kano, Hideaki; Akiyama, Toshihiro; Inoko, Akihito; Kobayashi, Tsubasa; Leproux, Philippe; Couderc, Vincent; Kaji, Yuichi; Oshika, Tetsuro

    2018-02-01

    We have visualized living cells and tissues using an ultrabroadband multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopic system by using a sub-nanosecond supercontinuum (SC) light source. Owing to the ultrabroadband spectral profile of the SC, we can generate multiplex CARS signals in the spectral range of 500-3800 cm-1, which covers the whole molecular fingerprint region, as well as the C-H and O-H stretching regions. Through the combination of the ultrabroadband multiplex CARS method with second harmonic generation (SHG) and third harmonic generation (THG) processes, we have successfully performed selective imaging of ciliary rootlet-composing Rootletin filaments in rat retina.

  6. Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability.

    PubMed

    Beebe, Stephen J; Chen, Yeong-Jer; Sain, Nova M; Schoenbach, Karl H; Xiao, Shu

    2012-01-01

    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0-80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death.

  7. Acquisition of a Multi-Domain Advanced Real-Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB

    DTIC Science & Technology

    2017-10-17

    Report: Acquisition of a Multi-Domain Advanced Real- Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB The views, opinions and...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...University - Bakersfield Title: Acquisition of a Multi-Domain Advanced Real- Time Simulator to Support DoD-focused Interdisciplinary Research at CSUB Report

  8. Dynamics of Molecular Emission Features from Nanosecond, Femtosecond Laser and Filament Ablation Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.

    2016-06-15

    The evolutionary paths of molecular species and nanoparticles in laser ablation plumes are not well understood due to the complexity of numerous physical processes that occur simultaneously in a transient laser-plasma system. It is well known that the emission features of ions, atoms, molecules and nanoparticles in a laser ablation plume strongly depend on the laser irradiation conditions. In this letter we report the temporal emission features of AlO molecules in plasmas generated using a nanosecond laser, a femtosecond laser and filaments generated from a femtosecond laser. Our results show that, at a fixed laser energy, the persistence of AlOmore » is found to be highest and lowest in ns and filament laser plasmas respectively while molecular species are formed at early times for both ultrashort pulse (fs and filament) generated plasmas. Analysis of the AlO emission band features show that the vibrational temperature of AlO decays rapidly in filament assisted laser ablation plumes.« less

  9. Ellipticity-dependent of multiple ionisation methyl iodide cluster using 532 nm nanosecond laser

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Zhao, Wuduo; Wang, Weiguo; Hua, Lei; Chen, Ping; Hou, Keyong; Huang, Yunguang; Li, Haiyang

    2016-03-01

    The dependence of multiply charged ions on laser ellipticity in methyl iodide clusters with 532 nm nanosecond laser was measured using a time-of-flight mass spectrometer. The intensities of multiply charged ions Iq+(q = 2-4) with circularly polarised laser pulse were clearly higher than those with linearly polarised laser pulse but the intensity of single charged ions I+ was inverse. And the dependences of ions on the optical polarisation state were investigated and a flower petal and square distribution for single charged ions (I+, C+) and multiply charged ions (I2+, I3+, I4+, C2+) were observed, respectively. A theoretical calculation was also proposed to simulate the distributions of ions and theoretical results fitted well with the experimental ones. It indicated that the high multiphoton ionisation probability in the initial stage would result in the disintegration of big clusters into small ones and suppress the production of multiply charged ions.

  10. Spots and Flares: Stellar Activity in the Time Domain Era

    NASA Astrophysics Data System (ADS)

    Davenport, James R. A.

    Time domain photometric surveys for large numbers of stars have ushered in a new era of statistical studies of astrophysics. This new parameter space allows us to observe how stars behave and change on a human timescale, and facilitates ensemble studies to understand how stars change over cosmic timescales. With current and planned time domain stellar surveys, we will be able to put the Sun in a Galactic context, and discover how typical or unique our parent star truly is. The goal of this thesis is to develop techniques for detecting and analyzing the most prominent forms of magnetic activity from low-mass stars in modern time domain surveys: starspots and flares. Magnetic field strength is a fundamental property that decays over a star's life. As a result, flux modulations from both flares and starspots become smaller amplitude and more infrequent in light curves. Methods for detecting these forms of magnetic activity will be extensible to future time domain surveys, and helpful in characterizing the properties of stars as they age. Flares can be detected in sparsely sampled wide field surveys by searching for bright single-point outliers in light curves. Using both red optical and near infrared data from ground-based surveys over many years, I have constrained the rate of flares in multiple wavelengths for an ensemble of M dwarfs. Studying flares in these existing ground-based datasets will enable predictions for future survey yields. Space-based photometry enables continuous and precise monitoring of stars for many years, which is crucial for obtaining a complete census of flares from a single star. Using 11 months of 1-minute photometry for the M dwarf GJ 1243, I have amassed over 6100 flare events, the largest sample of white light flares for any low-mass star. I have also created the first high fidelity empirical white light flare template, which shows three distinct phases in typical flare light curves. With this template, I demonstrate that complex multi

  11. Spots and Flares: Stellar Activity in the Time Domain Era

    NASA Astrophysics Data System (ADS)

    Davenport, James

    2015-08-01

    Time domain photometric surveys for large numbers of stars have ushered in a new era of statistical studies of astrophysics. This new parameter space allows us to observe how stars behave and change on a human timescale, and facilitates ensemble studies to understand how stars change over cosmic timescales. With current and planned time domain stellar surveys, we will be able to put the Sun in a Galactic context, and discover how typical or unique our parent star truly is. The goal of this thesis is to develop techniques for detecting and analyzing the most prominent forms of magnetic activity from low-mass stars in modern time domain surveys: starspots and flares. Magnetic field strength is a fundamental property that decays over a star's life. As a result, flux modulations from both flares and starspots become smaller amplitude and more infrequent in light curves. Methods for detecting these forms of magnetic activity will be extensible to future time domain surveys, and helpful in characterizing the properties of stars as they age. Flares can be detected in sparsely sampled wide field surveys by searching for bright single-point outliers in light curves. Using both red optical and near infrared data from ground-based surveys over many years, I have constrained the rate of flares in multiple wavelengths for an ensemble of M dwarfs. Studying flares in these existing ground-based datasets will enable predictions for future survey yields. Space-based photometry enables continuous and precise monitoring of stars for many years, which is crucial for obtaining a complete census of flares from a single star. Using 11 months of 1-minute photometry for the M dwarf GJ 1243, I have amassed over 6100 flare events, the largest sample of white light flares for any low-mass star. I have also created the first high fidelity empirical white light flare template, which shows three distinct phases in typical flare light curves. With this template, I demonstrate that complex multi

  12. Finite difference time domain modeling of steady state scattering from jet engines with moving turbine blades

    NASA Technical Reports Server (NTRS)

    Ryan, Deirdre A.; Langdon, H. Scott; Beggs, John H.; Steich, David J.; Luebbers, Raymond J.; Kunz, Karl S.

    1992-01-01

    The approach chosen to model steady state scattering from jet engines with moving turbine blades is based upon the Finite Difference Time Domain (FDTD) method. The FDTD method is a numerical electromagnetic program based upon the direct solution in the time domain of Maxwell's time dependent curl equations throughout a volume. One of the strengths of this method is the ability to model objects with complicated shape and/or material composition. General time domain functions may be used as source excitations. For example, a plane wave excitation may be specified as a pulse containing many frequencies and at any incidence angle to the scatterer. A best fit to the scatterer is accomplished using cubical cells in the standard cartesian implementation of the FDTD method. The material composition of the scatterer is determined by specifying its electrical properties at each cell on the scatterer. Thus, the FDTD method is a suitable choice for problems with complex geometries evaluated at multiple frequencies. It is assumed that the reader is familiar with the FDTD method.

  13. Examination of nanosecond laser melting thresholds in refractory metals by shear wave acoustics

    NASA Astrophysics Data System (ADS)

    Abdullaev, A.; Muminov, B.; Rakhymzhanov, A.; Mynbayev, N.; Utegulov, Z. N.

    2017-07-01

    Nanosecond laser pulse-induced melting thresholds in refractory (Nb, Mo, Ta and W) metals are measured using detected laser-generated acoustic shear waves. Obtained melting threshold values were found to be scaled with corresponding melting point temperatures of investigated materials displaying dissimilar shearing behavior. The experiments were conducted with motorized control of the incident laser pulse energies with small and uniform energy increments to reach high measurement accuracy and real-time monitoring of the epicentral acoustic waveforms from the opposite side of irradiated sample plates. Measured results were found to be in good agreement with numerical finite element model solving coupled elastodynamic and thermal conduction governing equations on structured quadrilateral mesh. Solid-melt phase transition was handled by means of apparent heat capacity method. The onset of melting was attributed to vanished shear modulus and rapid radial molten pool propagation within laser-heated metal leading to preferential generation of transverse acoustic waves from sources surrounding the molten mass resulting in the delay of shear wave transit times. Developed laser-based technique aims for applications involving remote examination of rapid melting processes of materials present in harsh environment (e.g. spent nuclear fuels) with high spatio-temporal resolution.

  14. Measurement and analysis of time-domain characteristics of corona-generated radio interference from a single positive corona source

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Li, Dayong; Chen, Bo; Cui, Xiang; Lu, Tiebing; Li, Yinfei

    2018-04-01

    The corona-generated electromagnetic interference commonly known as radio interference (RI) has become a limiting factor for the design of high voltage direct current transmission lines. In this paper, a time-domain measurement system is developed to measure the time-domain characteristics of corona-generated RI from a single corona source under a positive corona source. In the experiments, the corona current pulses are synchronously measured through coupling capacitors. The one-to-one relationship between the corona current pulse and measured RI voltage pulse is observed. The statistical characteristics of pulse parameters are analyzed, and the correlations between the corona current pulse and RI voltage pulse in the time-domain and frequency-domain are analyzed. Depending on the measured corona current pulses, the time-domain waveform of corona-generated RI is calculated on the basis of the propagation model of corona current on the conductor, the dipolar model for electric field calculation, and the antenna model for inducing voltage calculation. The well matched results between measured and simulated waveforms of RI voltage can show the validity of the measurement and calculation method presented in this paper, which also further show the close correlation between corona current and corona-generated RI.

  15. Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages

    NASA Astrophysics Data System (ADS)

    Zheng, Chan; Huang, Jiaxin; Lei, Li; Chen, Wenzhe; Wang, Haiyan; Li, Wei

    2018-01-01

    Gold nanocages (NCs) were prepared using the galvanic replacement reaction. Transmission electron microscopy images confirmed the porous morphology and completely hollow interior of the gold NCs. The nanosecond nonlinear optical and optical limiting (OL) properties of the NCs were characterized using the open-aperture Z-scan technique with 8-ns laser pulses at 532 nm. The gold NCs exhibited intensity-dependent transformation from saturable absorption to reverse-saturable absorption. The nonlinear absorption coefficient and saturable energy of the NCs were 5 × 10- 12 m/W and 2.5 × 1010 W/m2, respectively. Meanwhile, the gold NCs were found to display strong OL properties towards nanosecond laser pulses. The OL threshold of the gold NCs was lower than that of solid gold nanoparticles and comparable with that of a carbon nanotube suspension. Input fluence and angle-dependent scattering measurements indicated that nonlinear scattering plays an important role in the OL behavior of the gold nanostructures at high laser excitation. The improved OL response in gold NCs was discussed from the viewpoint of structural characteristic. The ultrathin and highly porous walls of the gold NCs can effectively transfer the photon-induced heat to the surrounding solvent, resulting in enhanced OL properties compared with those of solid gold nanoparticles. The intensity-dependent transformation from saturable absorption to reverse-saturable absorption and excellent OL response indicate that the smart gold NCs with ultrathin and highly porous walls can be considered as potential candidate in pulse shaping, passive mode locking, and eye protection against powerful lasers.

  16. Terahertz time-domain spectroscopy of edible oils

    PubMed Central

    Valchev, Dimitar G.

    2017-01-01

    Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05–2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min. PMID:28680681

  17. Terahertz time-domain spectroscopy of edible oils.

    PubMed

    Dinovitser, Alex; Valchev, Dimitar G; Abbott, Derek

    2017-06-01

    Chemical degradation of edible oils has been studied using conventional spectroscopic methods spanning the spectrum from ultraviolet to mid-IR. However, the possibility of morphological changes of oil molecules that can be detected at terahertz frequencies is beginning to receive some attention. Furthermore, the rapidly decreasing cost of this technology and its capability for convenient, in situ measurement of material properties, raises the possibility of monitoring oil during cooking and processing at production facilities, and more generally within the food industry. In this paper, we test the hypothesis that oil undergoes chemical and physical changes when heated above the smoke point, which can be detected in the 0.05-2 THz spectral range, measured using the conventional terahertz time-domain spectroscopy technique. The measurements demonstrate a null result in that there is no significant change in the spectra of terahertz optical parameters after heating above the smoke point for 5 min.

  18. Characteristics of a novel nanosecond DBD microplasma reactor for flow applications

    NASA Astrophysics Data System (ADS)

    Elkholy, A.; Nijdam, S.; van Veldhuizen, E.; Dam, N.; van Oijen, J.; Ebert, U.; de Goey, L. Philip H.

    2018-05-01

    We present a novel microplasma flow reactor using a dielectric barrier discharge (DBD) driven by repetitive nanosecond high-voltage pulses. Our DBD-based geometry can generate a non-thermal plasma discharge at atmospheric pressure and below in a regular pattern of micro-channels. This reactor can work continuously up to about 100 min in air, depending on the pulse repetition rate and operating pressure. We here present the geometry and main characteristics of the reactor. Pulse energies of 1.46 and 1.3 μJ per channel at atmospheric pressure and 50 mbar, respectively, have been determined by time-resolved measurements of current and voltage. Time-resolved optical emission spectroscopy measurements have been performed to calculate the relative species concentrations and temperatures (vibrational and rotational) of the discharge. The effects of the operating pressure and flow velocity on the discharge intensity have been investigated. In addition, the effective reduced electric field strength {(E/N)}eff} has been obtained from the intensity ratio of vibronic emission bands of molecular nitrogen at different operating pressures and different locations. The derived {(E/N)}eff} increases gradually from about 550 to 4600 Td when decreasing the pressure from 1 bar to 100 mbar. Below 100 mbar, further pressure reduction results in a significant increase in {(E/N)}eff} up to about 10000 Td at 50 mbar.

  19. Single-shot optical recording with sub-picosecond resolution spans record nanosecond lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, Ryan; Heebner, John

    With the advent of electronics, oscilloscopes and photodiodes are now routinely capable of measuring events well below nanosecond resolution. However, these electronic instruments do not currently measure events below 10 ps resolution. From Walden’s observation that there is an engineering tradeoff between electronic bit depth and temporal resolution in analog-to-digital converters, this technique is projected to have extremely poor fidelity if it is extended to record single events with picosecond resolution. While this constraint may be circumvented with extensive signal averaging or other multiple measurements approaches, rare events and nonrepetitive events cannot be observed with this technique. Techniques capable ofmore » measuring information in a single shot are often required. There is a general lack of available technologies that are easily scalable to long records with sub-picosecond resolution, and are simultaneously versatile in wavelength of operation. Since it is difficult to scale electronic methods to shorter resolutions, we instead aim to scale optical methods to longer records. Demonstrated optical recording methods that have achieved 1 ps resolution and long recording lengths rely on either time scaling to slow down the temporal information or, like Wien, perform time-to-space mapping so that fast events may be captured with a conventional camera.« less

  20. Single-shot optical recording with sub-picosecond resolution spans record nanosecond lengths

    DOE PAGES

    Muir, Ryan; Heebner, John

    2018-01-18

    With the advent of electronics, oscilloscopes and photodiodes are now routinely capable of measuring events well below nanosecond resolution. However, these electronic instruments do not currently measure events below 10 ps resolution. From Walden’s observation that there is an engineering tradeoff between electronic bit depth and temporal resolution in analog-to-digital converters, this technique is projected to have extremely poor fidelity if it is extended to record single events with picosecond resolution. While this constraint may be circumvented with extensive signal averaging or other multiple measurements approaches, rare events and nonrepetitive events cannot be observed with this technique. Techniques capable ofmore » measuring information in a single shot are often required. There is a general lack of available technologies that are easily scalable to long records with sub-picosecond resolution, and are simultaneously versatile in wavelength of operation. Since it is difficult to scale electronic methods to shorter resolutions, we instead aim to scale optical methods to longer records. Demonstrated optical recording methods that have achieved 1 ps resolution and long recording lengths rely on either time scaling to slow down the temporal information or, like Wien, perform time-to-space mapping so that fast events may be captured with a conventional camera.« less

  1. New and Advanced Picosecond Lasers for Tattoo Removal.

    PubMed

    Adatto, Maurice A; Amir, Ruthie; Bhawalkar, Jayant; Sierra, Rafael; Bankowski, Richard; Rozen, Doran; Dierickx, Christine; Lapidoth, Moshe

    2017-01-01

    Early methods of tattoo removal ultimately resulted in unacceptable cosmetic outcomes. While the introduction of laser technology was an improvement over the existing chemical, mechanical, and surgical procedures, the use of nonselective tattoo removal with carbon dioxide and argon lasers led to scarring. Q-switched lasers with nanosecond (10-9) pulse domains were considered to have revolutionized tattoo treatment, by selectively heating the tattoo particles, while reducing the adverse sequelae to adjacent normal skin. Theoretical considerations of restricting pulse duration, to heat tattoo particles to higher temperatures, proposed the use of sub-nanosecond pulses to target particles with thermal relaxation times lower than the nanosecond pulses in Q-switched lasers. Initial studies demonstrated that picosecond (10-12) pulses were more effective than nanosecond pulses in clearing black tattoos. Advances in picosecond technology led to the development of commercially available lasers, incorporating several different wavelengths, to further refine pigment targeting. © 2017 S. Karger AG, Basel.

  2. Nonlinear optical switching and optical limiting in colloidal CdSe quantum dots investigated by nanosecond Z-scan measurement

    NASA Astrophysics Data System (ADS)

    Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao

    2016-10-01

    The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.

  3. Toward picosecond time-resolved X-ray absorption studies of interfacial photochemistry

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Mahl, Johannes; Neppl, Stefan

    2016-05-01

    We report on the progress toward developing a novel picosecond time-resolved transient X-ray absorption spectroscopy (TRXAS) capability for time-domain studies of interfacial photochemistry. The technique is based on the combination of a high repetition rate picosecond laser system with a time-resolved X-ray fluorescent yield setup that may be used for the study of radiation sensitive materials and X-ray spectroscopy compatible photoelectrochemical (PEC) cells. The mobile system is currently deployed at the Advanced Light Source (ALS) and may be used in all operating modes (two-bunch and multi-bunch) of the synchrotron. The use of a time-stamping technique enables the simultaneous recording of TRXAS spectra with delays between the exciting laser pulses and the probing X-ray pulses spanning picosecond to nanosecond temporal scales. First results are discussed that demonstrate the viability of the method to study photoinduced dynamics in transition metal-oxide semiconductor (SC) samples under high vacuum conditions and at SC-liquid electrolyte interfaces during photoelectrochemical water splitting. Opportunities and challenges are outlined to capture crucial short-lived intermediates of photochemical processes with the technique. This work was supported by the Department of Energy Office of Science Early Career Research Program.

  4. A near-infrared SETI experiment: A multi-time resolution data analysis

    NASA Astrophysics Data System (ADS)

    Tallis, Melisa; Maire, Jerome; Wright, Shelley; Drake, Frank D.; Duenas, Andres; Marcy, Geoffrey W.; Stone, Remington P. S.; Treffers, Richard R.; Werthimer, Dan; NIROSETI

    2016-06-01

    We present new post-processing routines which are used to detect very fast optical and near-infrared pulsed signals using the latest NIROSETI (Near-Infrared Optical Search for Extraterrestrial Intelligence) instrument. NIROSETI was commissioned in 2015 at Lick Observatory and searches for near-infrared (0.95 to 1.65μ) nanosecond pulsed laser signals transmitted by distant civilizations. Traditional optical SETI searches rely on analysis of coincidences that occur between multiple detectors at a fixed time resolution. We present a multi-time resolution data analysis that extends our search from the 1ns to 1ms range. This new feature greatly improves the versatility of the instrument and its search parameters for near-infrared SETI. We aim to use these algorithms to assist us in our search for signals that have varying duty cycles and pulse widths. We tested the fidelity and robustness of our algorithms using both synthetic embedded pulsed signals, as well as data from a near-infrared pulsed laser installed on the instrument. Applications of NIROSETI are widespread in time domain astrophysics, especially for high time resolution transients, and astronomical objects that emit short-duration high-energy pulses such as pulsars.

  5. Efficient Intracellular Delivery of Molecules with High Cell Viability Using Nanosecond-Pulsed Laser-Activated Carbon Nanoparticles

    PubMed Central

    2015-01-01

    Conventional physical and chemical methods that efficiently deliver molecules into cells are often associated with low cell viability. In this study, we evaluated the cellular effects of carbon nanoparticles believed to emit photoacoustic waves due to nanosecond-pulse laser activation to test the hypothesis that this method could achieve efficient intracellular delivery while maintaining high cell viability. Suspensions of DU145 human prostate carcinoma cells, carbon black (CB) nanoparticles, and calcein were exposed to 5–9 ns long laser pulses of near-infrared (1064 nm wavelength) light and then analyzed by flow cytometry for intracellular uptake of calcein and cell viability by propidium iodide staining. We found that intracellular uptake increased and in some cases saturated at high levels with only small losses in cell viability as a result of increasing laser fluence, laser exposure time, and as a unifying parameter, the total laser energy. Changing interpulse spacing between 0.1 and 10 s intervals showed no significant change in bioeffects, suggesting that the effects of each pulse were independent when spaced by at least 0.1 s intervals. Pretreatment of CB nanoparticles to intense laser exposure followed by mixing with cells also had no significant effect on uptake or viability. Similar uptake and viability were seen when CB nanoparticles were substituted with India ink, when DU145 cells were substituted with H9c2 rat cardiomyoblast cells, and when calcein was substituted with FITC-dextran. The best laser exposure conditions tested led to 88% of cells with intracellular uptake and close to 100% viability, indicating that nanosecond-pulse laser-activated carbon nanoparticles can achieve efficient intracellular delivery while maintaining high cell viability. PMID:24547946

  6. Distributed Fiber Optical Sensing of Oxygen with Optical Time Domain Reflectometry

    PubMed Central

    Eich, Susanne; Schmälzlin, Elmar; Löhmannsröben, Hans-Gerd

    2013-01-01

    In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR) which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP), immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements. PMID:23727953

  7. Development of time-domain differential Raman for transient thermal probing of materials

    DOE PAGES

    Xu, Shen; Wang, Tianyu; Hurley, David; ...

    2015-01-01

    A novel transient thermal characterization technology is developed based on the principles of transient optical heating and Raman probing: time-domain differential Raman. It employs a square-wave modulated laser of varying duty cycle to realize controlled heating and transient thermal probing. Very well defined extension of the heating time in each measurement changes the temperature evolution profile and the probed temperature field at μs resolution. Using this new technique, the transient thermal response of a tipless Si cantilever is investigated along the length direction. A physical model is developed to reconstruct the Raman spectrum considering the temperature evolution, while taking intomore » account the temperature dependence of the Raman emission. By fitting the variation of the normalized Raman peak intensity, wavenumber, and peak area against the heating time, the thermal diffusivity is determined as 9.17 × 10⁻⁵, 8.14 × 10⁻⁵, and 9.51 × 10⁻⁵ m²/s. These results agree well with the reference value of 8.66 × 10⁻⁵ m²/s considering the 10% fitting uncertainty. The time-domain differential Raman provides a novel way to introduce transient thermal excitation of materials, probe the thermal response, and measure the thermal diffusivity, all with high accuracy.« less

  8. EM Diffusion for a Time-Domain Airborne EM System

    NASA Astrophysics Data System (ADS)

    Yin, C.; Qiu, C.; Liu, Y.; Cai, J.

    2014-12-01

    Visualization of EM diffusion for an airborne EM (AEM) system is important for understanding the transient procedure of EM diffusion. The current distribution and diffusion features also provide effective means to evaluate EM footprint, depth of exploration and further help AEM system design and data interpretation. Most previous studies on EM diffusion (or "smoke ring" effect) are based on the static presentation of EM field, where the dynamic features of EM diffusion were not visible. For visualizing the dynamic feature of EM diffusion, we first calculate in this paper the frequency-domain EM field by downward continuation of the EM field at the EM receiver to the deep earth. After that, we transform the results to time-domain via a Fourier transform. We take a homogeneous half-space and a two-layered earth induced by a step pulse to calculate the EM fields and display the EM diffusion in the earth as 3D animated vectors or time-varying contours. The "smoke ring" effect of EM diffusion, dominated by the resistivity distribution of the earth, is clearly observed. The numerical results for an HCP (vertical magnetic dipole) and a VCX (horizontal magnetic dipole) transmitting coil above a homogeneous half-space of 100 ohm-m are shown in Fig.1. We display as example only the distribution of EM field inside the earth for the diffusion time of 0.05ms. The detailed EM diffusion will be shown in our future presentation. From the numerical experiments for different models, we find that 1) the current for either an HCP or a VCX transmitting dipole propagates downward and outward with time, becoming wider and more diffuse, forming a "smoke ring"; 2) for a VCX transmitter, the underground current forms two ellipses, corresponding to the two polarities of the magnetic flux of a horizontal magnetic dipole, injecting into or ejected from the earth; 3) for a HCP transmitter, however, the underground current forms only one circle, corresponding to the polarity of the magnetic flux

  9. Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Krása, J.; De Marco, M.; Cikhardt, J.; Pfeifer, M.; Velyhan, A.; Klír, D.; Řezáč, K.; Limpouch, J.; Krouský, E.; Dostál, J.; Ullschmied, J.; Dudžák, R.

    2017-06-01

    The current balancing the target charging and the emission of transient electromagnetic pulses (EMP) driven by the interaction of a focused 1.315 μm iodine 300 ps PALS laser with metallic and plastic targets were measured with the use of inductive probes. It is experimentally proven that the duration of return target currents and EMPs is much longer than the duration of laser-target interaction. The laser-produced plasma is active after the laser-target interaction. During this phase, the target acts as a virtual cathode and the plasma-target interface expands. A double exponential function is used in order to obtain the temporal characteristics of EMP. The rise time of EMPs fluctuates in the range up to a few tens of nanoseconds. Frequency spectra of EMP and target currents are modified by resonant frequencies of the interaction chamber.

  10. Detection of Poisonous Herbs by Terahertz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Li, Z.; Chen, T.; Liu, J.-J.

    2018-03-01

    The aim of this paper is the application of terahertz (THz) spectroscopy combined with chemometrics techniques to distinguish poisonous and non-poisonous herbs which both have a similar appearance. Spectra of one poisonous and two non-poisonous herbs (Gelsemium elegans, Lonicera japonica Thunb, and Ficus Hirta Vahl) were obtained in the range 0.2-1.4 THz by using a THz time-domain spectroscopy system. Principal component analysis (PCA) was used for feature extraction. The prediction accuracy of classification is between 97.78 to 100%. The results demonstrate an efficient and applicative method to distinguish poisonous herbs, and it may be implemented by using THz spectroscopy combined with chemometric algorithms.

  11. The element level time domain (ELTD) method for the analysis of nano-optical systems: I. Nondispersive media

    NASA Astrophysics Data System (ADS)

    Fallahi, Arya; Oswald, Benedikt; Leidenberger, Patrick

    2012-04-01

    We study a 3-dimensional, dual-field, fully explicit method for the solution of Maxwell's equations in the time domain on unstructured, tetrahedral grids. The algorithm uses the element level time domain (ELTD) discretization of the electric and magnetic vector wave equations. In particular, the suitability of the method for the numerical analysis of nanometer structured systems in the optical region of the electromagnetic spectrum is investigated. The details of the theory and its implementation as a computer code are introduced and its convergence behavior as well as conditions for stable time domain integration is examined. Here, we restrict ourselves to non-dispersive dielectric material properties since dielectric dispersion will be treated in a subsequent paper. Analytically solvable problems are analyzed in order to benchmark the method. Eventually, a dielectric microlens is considered to demonstrate the potential of the method. A flexible method of 2nd order accuracy is obtained that is applicable to a wide range of nano-optical configurations and can be a serious competitor to more conventional finite difference time domain schemes which operate only on hexahedral grids. The ELTD scheme can resolve geometries with a wide span of characteristic length scales and with the appropriate level of detail, using small tetrahedra where delicate, physically relevant details must be modeled.

  12. High-pressure cell for terahertz time-domain spectroscopy.

    PubMed

    Zhang, Wei; Nickel, Daniel; Mittleman, Daniel

    2017-02-06

    We introduce a sample cell that can be used for pressure-dependent terahertz time-domain spectroscopy. Compared with traditional far-IR spectroscopy with a diamond anvil cell, the larger aperture permits measurements down to much lower frequencies as low as 3.3 cm-1 (0.1 THz), giving access to new spectroscopic results. The pressure tuning range reaches up to 34.4 MPa, while the temperature range is from 100 to 473 K. With this large range of tuning parameters, we are able to map out phase diagrams of materials based on their THz spectrum, as well as to track the changing of the THz spectrum within a single phase as a function of temperature and pressure. Pressure-dependent THz-TDS results for nitrogen and R-camphor are shown as an example.

  13. Insensitivity of single particle time domain measurements to laser velocimeter 'Doppler ambiguity.'

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.

    1973-01-01

    It is shown that single particle time domain measurements in high speed gas flows obtained by a laser velocimeter technique developed for use in wind tunnels are not affected by the so-called 'Doppler ambiguity.' A comparison of hot-wire anemometer and laser velocimeter measurements taken under similar flow conditions is used for the demonstration.

  14. Acousto-Optic Tunable Filter for Time-Domain Processing of Ultra-Short Optical Pulses,

    DTIC Science & Technology

    The application of acousto - optic tunable filters for shaping of ultra-fast pulses in the time domain is analyzed and demonstrated. With the rapid...advance of acousto - optic tunable filter (AOTF) technology, the opportunity for sophisticated signal processing capabilities arises. AOTFs offer unique

  15. Plastique: A synchrotron radiation beamline for time resolved fluorescence in the frequency domain

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Zema, N.; Antonangeli, F.; Savoia, A.; Parasassi, T.; Rosato, N.

    1991-06-01

    PLASTIQUE is the only synchrotron radiation beamline in the world that performs time resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and dynamics of molecules. We describe the beamline and some initial data.

  16. Lumbar multifidus and erector spinae electromyograms during back bridge exercise in time and frequency domains.

    PubMed

    Mello, Roger Gomes Tavares; Carriço, Igor Rodrigues; da Matta, Thiago Torres; Nadal, Jurandir; Oliveira, Liliam Fernandes

    2016-01-01

    Muscle activity is studied during trunk stabilization exercises using electromyograms (EMG) in time domain. However, the frequency domain analysis provides information that would be important to understand fatigue process. To assess EMG of lumbar multifidus (LM) and erector spinae (ES) muscles, in time and frequency domains, during back bridge exercise. Nineteen healthy young men performed the exercise for one minute and EMG was monitored by surface electromyography. Normalized root mean square (RMS) value and spectral median frequency (MF) were compared between beginning and final epochs of test. The dynamics of the MF during whole test was also obtained by short-time Fourier transform. RMS values were about 30% of maximum voluntary contraction, and LM muscle showed greater MF than ES, which did not decrease at the final of exercise. However, the slope of MF was significant mainly for LM. Muscle activation of 30% is sufficient to keep lumbar stability and is suitable to improve muscular endurance. The significance of MF slope without decreasing at the final of exercise indicates challenging muscular endurance without imply on high fatigability. Due to lower muscular demand, this exercise might be recommended for trunk stabilizing for low back pain patients.

  17. Non-destructive inspections of illicit drugs in envelope using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Ning; Shen, Jingling; Lu, Meihong; Jia, Yan; Sun, Jinhai; Liang, Laishun; Shi, Yanning; Xu, Xiaoyu; Zhang, Cunlin

    2006-09-01

    The absorption spectra of two illicit drugs, methylenedioxyamphetarnine (MDA) and methamphetamine (MA), within and without two conventional envelopes are studied using terahertz time-domain spectroscopy technique. The characteristic absorption spectra of MDA and MA are obtained in the range of 0.2 THz to 2.5 THz. MDA has an obvious absorption peak at 1.41 THz while MA has obvious absorption peaks at 1.23 THz, 1.67 THz, 1.84 THz and 2.43 THz. We find that the absorption peaks of MDA and MA within the envelopes are almost the same as those without the envelopes respectively although the two envelopes have some different absorption in THz waveband. This result indicates that the type of illicit drugs in envelopes can be determined by identifying their characteristic absorption peaks, and THz time-domain spectroscopy is one of the most powerful candidates for illicit drugs inspection.

  18. Nucleation of holin domains and holes optimizes lysis timing of E. coli by phage λ

    NASA Astrophysics Data System (ADS)

    Ryan, Gillian; Rutenberg, Andrew

    2007-03-01

    Holin proteins regulate the precise scheduling of Escherichia coli lysis during infection by bacteriophage λ. Inserted into the host bacterium's inner membrane during infection, holins aggregate to form rafts and then holes within those rafts. We present a two-stage nucleation model of holin action, with the nucleation of condensed holin domains followed by the nucleation of holes within these domains. Late nucleation of holin rafts leads to a weak dependence of lysis timing on host cell size, though both nucleation events contribute equally to timing errors. Our simulations recover the accurate scheduling observed experimentally, and also suggest that phage-λ lysis of E.coli is optimized.

  19. Time- and frequency-domain parameters of heart rate variability and sympathetic skin response in Parkinson's disease.

    PubMed

    Maetzler, Walter; Karam, Marie; Berger, Monika Fruhmann; Heger, Tanja; Maetzler, Corina; Ruediger, Heinz; Bronzova, Juliana; Lobo, Patricia Pita; Ferreira, Joaquim J; Ziemssen, Tjalf; Berg, Daniela

    2015-03-01

    The autonomic nervous system (ANS) is regularly affected in Parkinson's disease (PD). Information on autonomic dysfunction can be derived from e.g. altered heart rate variability (HRV) and sympathetic skin response (SSR). Such parameters can be quantified easily and measured repeatedly which might be helpful for evaluating disease progression and therapeutic outcome. In this 2-center study, HRV and SSR of 45 PD patients and 26 controls were recorded. HRV was measured during supine metronomic breathing and analyzed in time- and frequency-domains. SSR was evoked by repetitive auditory stimulation. Various ANS parameters were compared (1) between patients and healthy controls, (2) to clinical scales (Unified Parkinson's disease rating scale, Mini-Mental State Examination, Becks Depression Inventory), and (3) to disease duration. Root mean square of successive differences (RMSSD) and low frequency/high frequency (LF/HF) ratio differed significantly between PD and controls. Both, HRV and SSR parameters showed low or no association with clinical scores. Time-domain parameters tended to be affected already at early PD stages but did not consistently change with longer disease duration. In contrast, frequency-domain parameters were not altered in early PD phases but tended to be lower (LF, LF/HF ratio), respectively higher (HF) with increasing disease duration. This report confirms previous results of altered ANS parameters in PD. In addition, it suggests that (1) these ANS parameters are not relevantly associated with motor, behavioral, and cognitive changes in PD, (2) time-domain parameters are useful for the assessment of early PD, and (3) frequency-domain parameters are more closely associated with disease duration.

  20. Spatiotemporal Domain Decomposition for Massive Parallel Computation of Space-Time Kernel Density

    NASA Astrophysics Data System (ADS)

    Hohl, A.; Delmelle, E. M.; Tang, W.

    2015-07-01

    Accelerated processing capabilities are deemed critical when conducting analysis on spatiotemporal datasets of increasing size, diversity and availability. High-performance parallel computing offers the capacity to solve computationally demanding problems in a limited timeframe, but likewise poses the challenge of preventing processing inefficiency due to workload imbalance between computing resources. Therefore, when designing new algorithms capable of implementing parallel strategies, careful spatiotemporal domain decomposition is necessary to account for heterogeneity in the data. In this study, we perform octtree-based adaptive decomposition of the spatiotemporal domain for parallel computation of space-time kernel density. In order to avoid edge effects near subdomain boundaries, we establish spatiotemporal buffers to include adjacent data-points that are within the spatial and temporal kernel bandwidths. Then, we quantify computational intensity of each subdomain to balance workloads among processors. We illustrate the benefits of our methodology using a space-time epidemiological dataset of Dengue fever, an infectious vector-borne disease that poses a severe threat to communities in tropical climates. Our parallel implementation of kernel density reaches substantial speedup compared to sequential processing, and achieves high levels of workload balance among processors due to great accuracy in quantifying computational intensity. Our approach is portable of other space-time analytical tests.