Sample records for nanostructure multilayer materials

  1. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  2. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  3. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  4. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  5. Material optimization of multi-layered enhanced nanostructures

    NASA Astrophysics Data System (ADS)

    Strobbia, Pietro

    physical properties of the spacer on the multi-layer enhancement were also studied. The trends in Schottky barrier height, interfacial potential and dielectric constant were isolated by using different materials as spacers (i.e., TiO2, HfO2, Ag 2O and Al2O3). The results show that the bulk dielectric constant of the material can be used to predict the relative magnitude of the multi-layer enhancement, with low dielectric constant materials performing more efficiently as spacers. Optimal spacer layers were found to be ultrathin coalescent films (ideally a monolayer) of low dielectric constant materials. Finally, multi-layered structures were observed to be employable to amplify SERS in drastically different substrate geometries. The multi-layered structures were applied to disposable commercial SERS substrates (i.e., Klarite). This project involved the regeneration of the used substrates, by stripping and redepositing the gold coating layer, and their amplification, by using the multi-layer geometry. The latter was observed to amplify the sensitivity of the substrates. Additionally, the multi-layered structures were applied to probes dispersed in solution. Such probes were observed to yield stronger SERS signal when optically trapped and to reduce the background signal. The application of the multi-layered structures on trapped probes, not only further amplified the SERS signal, but also increased the maximum number of applicable layers for the structures.

  6. Electronic properties of hybrid monolayer-multilayer MoS2 nanostructured materials

    NASA Astrophysics Data System (ADS)

    Mlinar, Vladan

    2017-12-01

    The remarkable, layer-dependent properties of molybdenum disulphide (MoS2), such as an appropriately small and sizable bandgap or interplay between spin and the valley degrees of freedom, make it an attractive candidate for photodetectors, electrominescent devices, valleytronic devices, etc. Using nanostructuring to manipulate the size in lateral direction or number of layers of MoS2, we are opening a new playground for exploring and tuning properties of such systems. Here, we theoretically study the electronic properties of nanostructured MoS2 systems consisting of monolayer and multilayer MoS2 regions. In our analysis we consider hybrid systems in which monolayer region is surrounded by multilayer region and vice versa. We show how energy spectra and localization of carriers are influenced by the size and shape of the regions in lateral direction, number of MoS2 layers in the multilayer region, and the edge structure. Finally, we demonstrate how to control localization of carriers in these hybrid systems, which could make them appealing candidates for optoelectronic devices. Our findings are extracted from a tight-binding model that includes non-orthogonal sp3d5 orbitals, nearest-neighbor hopping matrix elements, and spin-orbit coupling.

  7. Artificial multilayers and nanomagnetic materials

    PubMed Central

    SHINJO, Teruya

    2013-01-01

    The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author’s studies are described. (1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism. (2) Preparation and characterization of metallic multilayers with artificial superstructures. (3) Giant magnetoresistance (GMR) effect in magnetic multilayers. (4) Novel properties of nanostructured ferromagnetic thin films (dots and wires). A subject of particular interest in the author’s research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author’s research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint. PMID:23391605

  8. Artificial multilayers and nanomagnetic materials.

    PubMed

    Shinjo, Teruya

    2013-01-01

    The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author's studies are described.(1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism.(2) Preparation and characterization of metallic multilayers with artificial superstructures.(3) Giant magnetoresistance (GMR) effect in magnetic multilayers.(4) Novel properties of nanostructured ferromagnetic thin films (dots and wires).A subject of particular interest in the author's research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author's research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint.

  9. Micromechanical Properties of Nanostructured Clay-Oxide Multilayers Synthesized by Layer-by-Layer Self-Assembly.

    PubMed

    Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong

    2016-11-08

    Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.

  10. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

  11. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}) in alternating layers to form a nano-laminate. 1 fig.

  12. Patterning of magnetic thin films and multilayers using nanostructured tantalum gettering templates.

    PubMed

    Qiu, Wenlan; Chang, Long; Lee, Dahye; Dannangoda, Chamath; Martirosyan, Karen; Litvinov, Dmitri

    2015-03-25

    This work demonstrates that a nonmagnetic thin film of cobalt oxide (CoO) sandwiched between Ta seed and capping layers can be effectively reduced to a magnetic cobalt thin film by annealing at 200 °C, whereas CoO does not exhibit ferromagnetic properties at room temperature and is stable at up to ∼400 °C. The CoO reduction is attributed to the thermodynamically driven gettering of oxygen by tantalum, similar to the exothermic reduction-oxidation reaction observed in thermite systems. Similarly, annealing at 200 °C of a nonmagnetic [CoO/Pd]N multilayer thin film sandwiched between Ta seed and Ta capping layers results in the conversion into a magnetic [Co/Pd]N multilayer, a material with perpendicular magnetic anisotropy that is of interest for magnetic data storage applications. A nanopatterning approach is introduced where [CoO/Pd]N multilayers is locally reduced into [Co/Pd]N multilayers to achieve perpendicular magnetic anisotropy nanostructured array. This technique can potentially be adapted to nanoscale patterning of other systems for which thermodynamically favorable combination of oxide and gettering layers can be identified.

  13. Nanostructured giant magneto-impedance multilayers deposited onto flexible substrates for low pressure sensing

    PubMed Central

    2012-01-01

    Nanostructured FeNi-based multilayers are very suitable for use as magnetic sensors using the giant magneto-impedance effect. New fields of application can be opened with these materials deposited onto flexible substrates. In this work, we compare the performance of samples prepared onto a rigid glass substrate and onto a cyclo olefin copolymer flexible one. Although a significant reduction of the field sensitivity is found due to the increased effect of the stresses generated during preparation, the results are still satisfactory for use as magnetic field sensors in special applications. Moreover, we take advantage of the flexible nature of the substrate to evaluate the pressure dependence of the giant magneto-impedance effect. Sensitivities up to 1 Ω/Pa are found for pressures in the range of 0 to 1 Pa, demostrating the suitability of these nanostructured materials deposited onto flexible substrates to build sensitive pressure sensors. PMID:22525096

  14. Scaling laws for van der Waals interactions in nanostructured materials.

    PubMed

    Gobre, Vivekanand V; Tkatchenko, Alexandre

    2013-01-01

    Van der Waals interactions have a fundamental role in biology, physics and chemistry, in particular in the self-assembly and the ensuing function of nanostructured materials. Here we utilize an efficient microscopic method to demonstrate that van der Waals interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of van der Waals interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly.

  15. Two-component end mills with multilayer composite nano-structured coatings as a viable alternative to monolithic carbide end mills

    NASA Astrophysics Data System (ADS)

    Vereschaka, Alexey; Mokritskii, Boris; Mokritskaya, Elena; Sharipov, Oleg; Oganyan, Maksim

    2018-03-01

    The paper deals with the challenges of the application of two-component end mills, which represent a combination of a carbide cutting part and a shank made of cheaper structural material. The calculations of strains and deformations of composite mills were carried out in comparison with solid carbide mills, with the use of the finite element method. The study also involved the comparative analysis of accuracy parameters of machining with monolithic mills and two-component mills with various shank materials. As a result of the conducted cutting tests in milling aluminum alloy with monolithic and two-component end mills with specially developed multilayer composite nano-structured coatings, it has been found that the use of such coatings can reduce strains and, correspondingly, deformations, which can improve the accuracy of machining. Thus, the application of two-component end mills with multilayer composite nano-structured coatings can provide a reduction in the cost of machining while maintaining or even improving the tool life and machining accuracy parameters.

  16. Multilayer Insulation Material Guidelines

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Dooling, D.

    1999-01-01

    Multilayer Insulation Material Guidelines provides data on multilayer insulation materials used by previous spacecraft such as Spacelab and the Long-Duration Exposure Facility and outlines other concerns. The data presented in the document are presented for information only. They can be used as guidelines for multilayer insulation design for future spacecraft provided the thermal requirements of each new design and the environmental effects on these materials are taken into account.

  17. Thermal transport in strongly correlated multilayered nanostructures

    NASA Astrophysics Data System (ADS)

    Freericks, James; Zlatic, Veljko

    2006-03-01

    The formalism for thermal transport in strongly correlated multilayered nanostructures is developed. We employ inhomogeneous dynamical mean-field theory and the Kubo formula to derive relevant thermal transport coefficients, which take the form of matrices with respect to the planar indices. We show how to define the local versions of the current and heat current operators so that heat-current correlation functions can be easily evaluated via the Jonson-Mahan theorem. Thermal transport in nanostructures is complicated by the fact that the thermal current need not be conserved through the device, and a given experimental set-up determines both how the thermal current can change through the device and how the steady-state temperature profile can be determined. Formulae to analyze classic experiments such as the Peltier and Seebeck effects, the thermal conductivity, and for running a thermoelectric cooler or power generator are also discussed.

  18. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  19. Electronic thermal transport in strongly correlated multilayered nanostructures

    NASA Astrophysics Data System (ADS)

    Freericks, J. K.; Zlatić, V.; Shvaika, A. M.

    2007-01-01

    The formalism for a linear-response many-body treatment of the electronic contributions to thermal transport is developed for multilayered nanostructures. By properly determining the local heat-current operator, it is possible to show that the Jonson-Mahan theorem for the bulk can be extended to inhomogeneous problems, so the various thermal-transport coefficient integrands are related by powers of frequency (including all effects of vertex corrections when appropriate). We illustrate how to use this formalism by showing how it applies to measurements of the Peltier effect, the Seebeck effect, and the thermal conductance.

  20. Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures

    NASA Astrophysics Data System (ADS)

    Maksymov, Ivan S.; Kostylev, Mikhail

    2015-05-01

    This paper presents a comprehensive critical overview of fundamental and practical aspects of the modern stripline broadband ferromagnetic resonance (BFMR) spectroscopy largely employed for the characterisation of magnetic low-dimensional systems, such as thin ferro- and ferromagnetic, multiferroic and half-metallic films, multi-layers and nanostructures. These planar materials form the platform of the nascent fields of magnonics and spintronics. Experimental and theoretical results of research on these materials are summarised, along with systematic description of various phenomena associated with the peculiarities of the stripline BFMR, such as the geometry of stripline transducers, the orientation of the static magnetic field, the presence of microwave eddy currents, and the impacts of non-magnetic layers, interfaces and surfaces in the samples. Results from 240 articles, textbooks and technical reports are presented and many practical examples are discussed in detail. This review will be of interest to both general physical audience and specialists conducting research on various aspects of magnetisation dynamics and nanomagnetism.

  1. Electromagnetic characterization of advanced nanostructured materials and multilayer design optimization for metrological and low radar observability applications

    NASA Astrophysics Data System (ADS)

    Micheli, Davide; Pastore, Roberto; Delfini, Andrea; Giusti, Alfonso; Vricella, Antonio; Santoni, Fabio; Marchetti, Mario; Tolochko, Oleg; Vasilyeva, Ekaterina

    2017-05-01

    In this work the electromagnetic characterization of composite materials reinforced with carbon and metallic nanoparticles is presented. In particular, the electric permittivity and the magnetic permeability as a function of the frequency are used to evaluate the electromagnetic absorption capability of the nanocomposites. The aim is the study of possible applications in advanced coating able to tune the electromagnetic reflectivity of satellite surfaces in specific frequency ranges, in a special way for those surfaces that for some reason could be exposed to the antenna radiation pattern. In fact, the interference caused by the spurious electromagnetic multipath due to good electric conductive satellite surface components could in turn affect the main radiation lobe of TLC and Telemetry antennas, thus modifying its main propagation directions and finally increasing the microwave channel pathloss. The work reports the analysis of different nanostructured materials in the 2-10 GHz frequency range. The employed nanopowders are of carbon nanotubes, cobalt, argent, titanium, nickel, zinc, copper, iron, boron, bismuth, hafnium, in different weight percentages versus the hosting polymeric matrix. The materials are classified as a function of their electromagnetic losses capability by taking into account of both electric and magnetic properties. The possibility to design multi-layered structures optimized to provide specific microwave response is finally analyzed by the aid of swam intelligence algorithm. This novel technique is in general interesting for metrological purpose and remote sensing purposes, and can be effectively used in aerospace field for frequency selective materials design, in order to reduce the aircraft/spacecraft radar observability at certain frequencies.

  2. Nanostructured materials for hydrogen storage

    DOEpatents

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  3. Composite materials formed with anchored nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  4. Nanostructured layers of thermoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Jeffrey J.; Lynch, Jared; Coates, Nelson

    This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermallymore » annealed.« less

  5. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrantoni, M.; Rossi, C.; Salvagnac, L.

    2010-10-15

    Multilayered Al/CuO thermite was deposited by a dc reactive magnetron sputtering method. Pure Al and Cu targets were used in argon-oxygen gas mixture plasma and with an oxygen partial pressure of 0.13 Pa. The process was designed to produce low stress (<50 MPa) multilayered nanoenergetic material, each layer being in the range of tens nanometer to one micron. The reaction temperature and heat of reaction were measured using differential scanning calorimetry and thermal analysis to compare nanostructured layered materials to microstructured materials. For the nanostructured multilayers, all the energy is released before the Al melting point. In the case ofmore » the microstructured samples at least 2/3 of the energy is released at higher temperatures, between 1036 and 1356 K.« less

  6. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering.

    PubMed

    Silva, Joana M; Georgi, Nicole; Costa, Rui; Sher, Praveen; Reis, Rui L; Van Blitterswijk, Clemens A; Karperien, Marcel; Mano, João F

    2013-01-01

    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs.

  7. Shockwave Consolidation of Nanostructured Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Patrick; Nemir, David

    2014-01-01

    Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonating. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nano-structured bismuth telluride alloy powders by using the shockwave technique. Using these consolidated materials, several types of thermoelectric power generating devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique.

  8. Anchored nanostructure materials and method of fabrication

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  9. Aggregate nanostructures of organic molecular materials.

    PubMed

    Liu, Huibiao; Xu, Jialiang; Li, Yongjun; Li, Yuliang

    2010-12-21

    Conjugated organic molecules are interesting materials because of their structures and their electronic, electrical, magnetic, optical, biological, and chemical properties. However, researchers continue to face great challenges in the construction of well-defined organic compounds that aggregate into larger molecular materials such as nanowires, tubes, rods, particles, walls, films, and other structural arrays. Such nanoscale materials could serve as direct device components. In this Account, we describe our recent progress in the construction of nanostructures formed through the aggregation of organic conjugated molecules and in the investigation of the optical, electrical, and electronic properties that depend on the size or morphology of these nanostructures. We have designed and synthesized functional conjugated organic molecules with structural features that favor assembly into aggregate nanostructures via weak intermolecular interactions. These large-area ordered molecular aggregate nanostructures are based on a variety of simpler structures such as fullerenes, perylenes, anthracenes, porphyrins, polydiacetylenes, and their derivatives. We have developed new methods to construct these larger structures including organic vapor-solid phase reaction, natural growth, association via self-polymerization and self-organization, and a combination of self-assembly and electrochemical growth. These methods are both facile and reliable, allowing us to produce ordered and aligned aggregate nanostructures, such as large-area arrays of nanowires, nanorods, and nanotubes. In addition, we can synthesize nanoscale materials with controlled properties. Large-area ordered aggregate nanostructures exhibit interesting electrical, optical, and optoelectronic properties. We also describe the preparation of large-area aggregate nanostructures of charge transfer (CT) complexes using an organic solid-phase reaction technique. By this process, we can finely control the morphologies and

  10. Periodic nanostructural materials for nanoplasmonics

    NASA Astrophysics Data System (ADS)

    Choi, Dukhyun

    2017-02-01

    Nanoscale periodic material design and fabrication are essentially fundamental requirement for basic scientific researches and industrial applications of nanoscience and engineering. Innovative, effective, reproducible, large-area uniform, tunable and robust nanostructure/material syntheses are still challenging. Here, I would like to introduce the novel periodic nanostructural materials particularly with uniformly ordered nanoporous or nanoflower structures, which are fabricated by simple, cost-effective, and high-throughput wet chemical methods. I also report large-area periodic plasmonic nanostructures based on template-based nanolithography. The surface morphology and optical properties are characterized by SEM and UV-vis. spectroscopy. Furthermore, their enhancement factor is evaluated by using SERS signals.

  11. Multilayer composite material and method for evaporative cooling

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  12. Method of fabrication of anchored nanostructure materials

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  13. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.

    PubMed

    Gai, Boju; Sun, Yukun; Lim, Haneol; Chen, Huandong; Faucher, Joseph; Lee, Minjoo L; Yoon, Jongseung

    2017-01-24

    Large-scale deployment of GaAs solar cells in terrestrial photovoltaics demands significant cost reduction for preparing device-quality epitaxial materials. Although multilayer epitaxial growth in conjunction with printing-based materials assemblies has been proposed as a promising route to achieve this goal, their practical implementation remains challenging owing to the degradation of materials properties and resulting nonuniform device performance between solar cells grown in different sequences. Here we report an alternative approach to circumvent these limitations and enable multilayer-grown GaAs solar cells with uniform photovoltaic performance. Ultrathin single-junction GaAs solar cells having a 300-nm-thick absorber (i.e., emitter and base) are epitaxially grown in triple-stack releasable multilayer assemblies by molecular beam epitaxy using beryllium as a p-type impurity. Microscale (∼500 × 500 μm 2 ) GaAs solar cells fabricated from respective device layers exhibit excellent uniformity (<3% relative) of photovoltaic performance and contact properties owing to the suppressed diffusion of p-type dopant as well as substantially reduced time of epitaxial growth associated with ultrathin device configuration. Bifacial photon management employing hexagonally periodic TiO 2 nanoposts and a vertical p-type metal contact serving as a metallic back-surface reflector together with specialized epitaxial design to minimize parasitic optical losses for efficient light trapping synergistically enable significantly enhanced photovoltaic performance of such ultrathin absorbers, where ∼17.2% solar-to-electric power conversion efficiency under simulated AM1.5G illumination is demonstrated from 420-nm-thick single-junction GaAs solar cells grown in triple-stack epitaxial assemblies.

  14. Toughening mechanisms in bioinspired multilayered materials.

    PubMed

    Askarinejad, Sina; Rahbar, Nima

    2015-01-06

    Outstanding mechanical properties of biological multilayered materials are strongly influenced by nanoscale features in their structure. In this study, mechanical behaviour and toughening mechanisms of abalone nacre-inspired multilayered materials are explored. In nacre's structure, the organic matrix, pillars and the roughness of the aragonite platelets play important roles in its overall mechanical performance. A micromechanical model for multilayered biological materials is proposed to simulate their mechanical deformation and toughening mechanisms. The fundamental hypothesis of the model is the inclusion of nanoscale pillars with near theoretical strength (σth ~ E/30). It is also assumed that pillars and asperities confine the organic matrix to the proximity of the platelets, and, hence, increase their stiffness, since it has been previously shown that the organic matrix behaves more stiffly in the proximity of mineral platelets. The modelling results are in excellent agreement with the available experimental data for abalone nacre. The results demonstrate that the aragonite platelets, pillars and organic matrix synergistically affect the stiffness of nacre, and the pillars significantly contribute to the mechanical performance of nacre. It is also shown that the roughness induced interactions between the organic matrix and aragonite platelet, represented in the model by asperity elements, play a key role in strength and toughness of abalone nacre. The highly nonlinear behaviour of the proposed multilayered material is the result of distributed deformation in the nacre-like structure due to the existence of nano-asperities and nanopillars with near theoretical strength. Finally, tensile toughness is studied as a function of the components in the microstructure of nacre.

  15. Toughening mechanisms in bioinspired multilayered materials

    PubMed Central

    Askarinejad, Sina; Rahbar, Nima

    2015-01-01

    Outstanding mechanical properties of biological multilayered materials are strongly influenced by nanoscale features in their structure. In this study, mechanical behaviour and toughening mechanisms of abalone nacre-inspired multilayered materials are explored. In nacre's structure, the organic matrix, pillars and the roughness of the aragonite platelets play important roles in its overall mechanical performance. A micromechanical model for multilayered biological materials is proposed to simulate their mechanical deformation and toughening mechanisms. The fundamental hypothesis of the model is the inclusion of nanoscale pillars with near theoretical strength (σth ~ E/30). It is also assumed that pillars and asperities confine the organic matrix to the proximity of the platelets, and, hence, increase their stiffness, since it has been previously shown that the organic matrix behaves more stiffly in the proximity of mineral platelets. The modelling results are in excellent agreement with the available experimental data for abalone nacre. The results demonstrate that the aragonite platelets, pillars and organic matrix synergistically affect the stiffness of nacre, and the pillars significantly contribute to the mechanical performance of nacre. It is also shown that the roughness induced interactions between the organic matrix and aragonite platelet, represented in the model by asperity elements, play a key role in strength and toughness of abalone nacre. The highly nonlinear behaviour of the proposed multilayered material is the result of distributed deformation in the nacre-like structure due to the existence of nano-asperities and nanopillars with near theoretical strength. Finally, tensile toughness is studied as a function of the components in the microstructure of nacre. PMID:25551150

  16. Application of carbide cutting tools with nano-structured multilayer composite coatings for turning austenitic steels, type 16Cr-10NI

    NASA Astrophysics Data System (ADS)

    Vereschaka, Alexey; Migranov, Mars; Oganyan, Gaik; Sotova, Catherine S.; Batako, Andre

    2018-03-01

    This paper addresses the challenges of increasing the efficiency of the machining of austenitic stainless steels AISI 321 and S31600 by application of cutting tools with multilayer composite nano-structured coatings. The main mechanical properties and internal structures of the coatings under study (hardness, adhesion strength in the "coating-substrate" system) were investigated, and their chemical compositions were analyzed. The conducted research of tool life and nature of wear of carbide tools with the investigated coatings during turning of the above mentioned steels showed that the application of those coatings increases the tool life by up to 2.5 times. In addition, the use of a cutting tool with coatings allows machining at higher cutting speeds. It was also found that the use of a tool with multilayer composite nano-structured coating (Zr,Nb)N-(Zr,Al,Nb)N ensures better results compared with not only monolithic coating TiN, but also with nano-structured coatings Ti-TiN-(Ti,Al)N and (Zr,Nb)N-(Cr,Zr,Nb,Al)N. The mechanism of failure of the coatings under study was also investigated.

  17. Hierarchical concave layered triangular PtCu alloy nanostructures: rational integration of dendritic nanostructures for efficient formic acid electrooxidation.

    PubMed

    Wu, Fengxia; Lai, Jianping; Zhang, Ling; Niu, Wenxin; Lou, Baohua; Luque, Rafael; Xu, Guobao

    2018-05-08

    The rational construction of multi-dimensional layered noble metal nanostructures is a great challenge since noble metals are not layer-structured materials. Herein, we report a one-pot hydrothermal synthetic method for PtCu hierarchical concave layered triangular (HCLT) nanostructures using dl-carnitine, KI, poly(vinylpyrrolidone), CuCl2, and H2PtCl6. The PtCu HCLT nanostructure is comprised of multilayered triangular dendrites. Its layer number is tunable by changing dl-carnitine concentrations, and the concavity/convexity of the PtCu triangle nanostructures is tunable by changing the H2PtCl6/CuCl2 ratio or KI concentrations. Hierarchical trigonal bipyramid nanoframes are also obtained under certain conditions. Because of its advantageous nanostructure and bimetallic synergetic effect, the obtained PtCu HCLT nanostructure exhibits enhanced electrocatalytic activity and prolonged stability to formic acid oxidation compared to commercial Pt black, Pd/C and some other nanostructures.

  18. Release-rate calorimetry of multilayered materials for aircraft seats

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.; Duskin, F. E.; Spieth, H.; Trabold, E.; Parker, J. A.

    1979-01-01

    Multilayered samples of contemporary and improved fire resistant aircraft seat materials (foam cushion, decorative fabric, slip sheet, fire blocking layer, and cushion reinforcement layer) were evaluated for their rates of heat release and smoke generation. Top layers (decorative fabric, slip sheet, fire blocking, and cushion reinforcement) with glass fiber block cushion were evaluated to determine which materials based on their minimum contributions to the total heat release of the multilayered assembly may be added or deleted. Top layers exhibiting desirable burning profiles were combined with foam cushion materials. The smoke and heat release rates of multilayered seat materials were then measured at heat fluxes of 1.5 and 3.5 W/sq cm. Choices of contact and silicone adhesives for bonding multilayered assemblies were based on flammability, burn and smoke generation, animal toxicity tests, and thermal gravimetric analysis. Abrasion tests were conducted on the decorative fabric covering and slip sheet to ascertain service life and compatibility of layers.

  19. Direct Magnetic Relief Recording Using As40S60: Mn-Se Nanocomposite Multilayer Structures.

    PubMed

    Stronski, A; Achimova, E; Paiuk, O; Meshalkin, A; Prisacar, A; Triduh, G; Oleksenko, P; Lytvyn, P

    2017-12-01

    Processes of holographic recording of surface relief structures using As 2 S 3 :Mn-Se multilayer nanostructures as registering media were studied in this paper. Optical properties of As 2 S 3 :Mn, Se layers, and As 2 S 3 :Mn-Se multilayer nanostructures were investigated. Values of optical bandgaps were obtained from Tauc dependencies. Surface relief diffraction gratings were recorded. Direct one-stage formation of surface relief using multilayer nanostructures is considered. For the first time, possibility of direct formation of magnetic relief simultaneous with surface relief formation under optical recording using As 2 S 3 :Mn-Se multilayer nanostructures is shown.

  20. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    NASA Astrophysics Data System (ADS)

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-11-01

    This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  1. Hierarchically nanostructured materials for sustainable environmental applications

    PubMed Central

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-01-01

    This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946

  2. Ablative Laser Propulsion Using Multi-Layered Material Systems

    NASA Technical Reports Server (NTRS)

    Nehls, Mary; Edwards, David; Gray, Perry; Schneider, T.

    2002-01-01

    Experimental investigations are ongoing to study the force imparted to materials when subjected to laser ablation. When a laser pulse of sufficient energy density impacts a material, a small amount of the material is ablated. A torsion balance is used to measure the momentum produced by the ablation process. The balance consists of a thin metal wire with a rotating pendulum suspended in the middle. The wire is fixed at both ends. Recently, multi-layered material systems were investigated. These multi-layered materials were composed of a transparent front surface and opaque sub surface. The laser pulse penetrates the transparent outer surface with minimum photon loss and vaporizes the underlying opaque layer.

  3. Highly ductile multilayered films by layer-by-layer assembly of oppositely charged polyurethanes for biomedical applications.

    PubMed

    Podsiadlo, Paul; Qin, Ming; Cuddihy, Meghan; Zhu, Jian; Critchley, Kevin; Kheng, Eugene; Kaushik, Amit K; Qi, Ying; Kim, Hyoung-Sug; Noh, Si-Tae; Arruda, Ellen M; Waas, Anthony M; Kotov, Nicholas A

    2009-12-15

    Multilayered thin films prepared with the layer-by-layer (LBL) assembly technique are typically "brittle" composites, while many applications such as flexible electronics or biomedical devices would greatly benefit from ductile, and tough nanostructured coatings. Here we present the preparation of highly ductile multilayered films via LBL assembly of oppositely charged polyurethanes. Free-standing films were found to be robust, strong, and tough with ultimate strains as high as 680% and toughness of approximately 30 MJ/m(3). These results are at least 2 orders of magnitude greater than most LBL materials presented until today. In addition to enhanced ductility, the films showed first-order biocompatibility with animal and human cells. Multilayered structures incorporating polyurethanes open up a new research avenue into the preparation of multifunctional nanostructured films with great potential in biomedical applications.

  4. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    PubMed Central

    2010-01-01

    Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability. PMID:21076674

  5. Nanostructured materials for water desalination.

    PubMed

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  6. Nanostructured materials for water desalination

    NASA Astrophysics Data System (ADS)

    Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

    2011-07-01

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

  7. Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures

    NASA Astrophysics Data System (ADS)

    Abderrafi, Kamal; García-Calzada, Raúl; Sanchez-Royo, Juan F.; Chirvony, Vladimir S.; Agouram, Saïd; Abargues, Rafael; Ibáñez, Rafael; Martínez-Pastor, Juan P.

    2013-04-01

    With the use of high-resolution transmission electron microscopy, selected area electron diffraction and x-ray photoelectron spectroscopy methods of analysis we show that the laser ablation of a Si target in chloroform (CHCl3) by nanosecond UV pulses (40 ns, 355 nm) results in the formation of about 50-80 nm core-shell nanoparticles with a polycrystalline core composed of small (5-10 nm) Si and SiC mono-crystallites, the core being coated by several layers of carbon with the structure of graphite (the shell). In addition, free carbon multilayer nanostructures (carbon nano-onions) are also found in the suspension. On the basis of a comparison with similar laser ablation experiments implemented in carbon tetrachloride (CCl4), where only bare (uncoated) Si nanoparticles are produced, we suggest that a chemical (solvent decomposition giving rise to highly reactive CH-containing radicals) rather than a physical (solvent atomization followed by carbon nanostructure formation) mechanism is responsible for the formation of graphitic shells. The silicon carbonization process found for the case of laser ablation in chloroform may be promising for silicon surface protection and functionalization.

  8. Nanostructure studies of strongly correlated materials.

    PubMed

    Wei, Jiang; Natelson, Douglas

    2011-09-01

    Strongly correlated materials exhibit an amazing variety of phenomena, including metal-insulator transitions, colossal magnetoresistance, and high temperature superconductivity, as strong electron-electron and electron-phonon couplings lead to competing correlated ground states. Recently, researchers have begun to apply nanostructure-based techniques to this class of materials, examining electronic transport properties on previously inaccessible length scales, and applying perturbations to drive systems out of equilibrium. We review progress in this area, particularly emphasizing work in transition metal oxides (Fe(3)O(4), VO(2)), manganites, and high temperature cuprate superconductors. We conclude that such nanostructure-based studies have strong potential to reveal new information about the rich physics at work in these materials.

  9. Interfacial pattern changes of imprinted multilayered material in milli- and microscales

    NASA Astrophysics Data System (ADS)

    Yonekura, Kazuhiro; Tokumaru, Kazuki; Tsumori, Fujio

    2018-06-01

    Nanoimprint lithography (NIL) is a technique that transfers a mold pattern of nanometer order to the surface of a resist material by heating and pressing. NIL is an excellent technology in terms of high productivity, accuracy, and resolution. Recently, NIL has been applied to the processing of different multilayered materials, in which it is possible to process multiple materials simultaneously. In this processing of multilayered materials, it is possible to form an interfacial pattern between the upper layer and the lower layer simultaneously with patterning on the mold surface. This interface pattern can be controlled by the deformation characteristics, initial thickness, and so forth. In this research, we compared the interfacial pattern changes of imprinted multilayered materials in milli- and microscales. For multilayered imprint using multiple materials, it is important to know the flow of the resist and its dependence on the scale. If there is similarity in the relationship produced by the scale on the imprinted samples, a process design with a number of feedbacks could be realized. It also becomes easier to treat structures in the millimeter scale for the experiment. In this study, we employed micropowder imprint (µPI) for multilayered material imprint. A compound sheet of alumina powder and polymer binder was used for imprint. Two similar experiments in different scales, micro- and millimeter scales, were carried out. Results indicate that the interfacial patterns of micro- and millimeter-scale-imprinted samples are similar.

  10. PHOTONICS AND NANOTECHNOLOGY Laser nanostructuring of materials surfaces

    NASA Astrophysics Data System (ADS)

    Zavestovskaya, I. N.

    2010-12-01

    This paper reviews results of experimental and theoretical studies of surface micro- and nanostructuring of metals and other materials irradiated directly by short and ultrashort laser pulses. Special attention is paid to direct laser action involving melting of the material (with or without ablation), followed by ultrarapid surface solidification, which is an effective approach to producing surface nanostructures. Theoretical analysis of recrystallisation kinetics after irradiation by ultrashort laser pulses makes it possible to determine the volume fraction of crystallised phase and the average size of forming crystalline structures as functions of laser treatment regime and thermodynamic properties of the material. The present results can be used to optimise pulsed laser treatment regime in order to ensure control nanostructuring of metal surfaces.

  11. Inorganic nanostructured materials for high performance electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-01-01

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  12. Inorganic nanostructured materials for high performance electrochemical supercapacitors.

    PubMed

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-02-21

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  13. Reversible creation of nanostructures between identical or different species of materials

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Ik; Ko, Sungho; Park, Junyong; Lee, Dong-Eon; Jeon, Seokwoo; Ahn, Chi Won; Yoo, Kwang Soo; Park, Jae Hong

    2012-07-01

    In this study, accurate nanostructures with various aspect ratios are created on several types of material. This work is highly applicable to the energy, optical, and nano-bio fields, for example. A silicon (Si) nano-mold is preserved using the method described, and target nanostructures are replicated reversibly and unlimitedly to or from various hard and soft materials. It is also verified that various materials can be applied to the substrates. The results confirm that the target nanostructures are successfully created in precise straight line structures and circle structures with various aspect ratios, including extremely high aspect ratios of 1:18. It is suggested that the optimal replicating and demolding process of nanostructures with high aspect ratios, which are the most problematic, could be controlled by means of the surface energy between the functional materials. Relevant numerical and analytical studies are also performed. It is possible to expand the applicability of the nanostructured mold by adopting various backing materials, including rounded substrates. The scope of the applications is extended further by transferring the nanostructures between different species of materials including metallic materials as well as identical species.

  14. Immunomodulatory properties of titanium dioxide nanostructural materials.

    PubMed

    Latha, T Sree; Reddy, Madhava C; R Durbaka, Prasad V; Muthukonda, Shankar V; Lomada, Dakshayani

    2017-01-01

    Although titanium dioxide (TiO 2 ) nanostructural materials have been widely used in Biology and Medicine, very little is known about immunomodulation mechanism of these materials. Objectives of this study are to investigate in vitro immunomodulatory effects of TiO 2 . Immunosuppressant may lower immune responses and are helpful for the treatment of graft versus host diseases and autoimmune disorders. In this study, we used H 2 Ti 3 O 7 titanium dioxide nanotubes (TNT) nanotubes along with commercial TiO 2 nanoparticles (TNP) and TiO 2 fine particles (TFP). We investigated the in vitro immunomodulatory effects of TNP, TNT, and TFP using mixed lymphocyte reaction (MLR). Suppression was studied by 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Cytokine profile was measured by enzyme-linked immunosorbent assay (ELISA). The results from this study illustrated that the TiO 2 nanostructural materials strongly suppressed splenocytes proliferation in MLR. For TNP and TNT, at 50 μg/ml suppression of 20%-25% and 30%-35%, respectively, and for TFP at 100 μg/ml suppression was 25%-30% was observed. Suppression of splenocytes proliferation in the presence of TNP, TNT, and TFP demonstrated that these nanostructural materials probably block T-cell-mediated responses in vitro . Our ELISA results confirmed that significantly lower levels of Th1 type cytokines (interleukin-2, interferon-γ) in the 48 h MLR culture supernatants. Our data suggest that TiO 2 nanostructural materials suppress splenocytes proliferation by suppressing Th1 cytokines.

  15. Synthesis and processing of nanostructured BN and BN/Ti composites

    NASA Astrophysics Data System (ADS)

    Horvath, Robert Steven

    Superhard materials, such as cubic-BN, are widely used in machine tools, grinding wheels, and abrasives. Low density combined with high hardness makes c-BN and its composites attractive candidate materials for personnel and vehicular armor. However, improvements in toughness, and ballistic-impact performance, are needed to meet anticipated performance requirements. To achieve such improvements, we have targeted for development nanostructured c-BN, and its composites with Ti. Current research utilizes an experimental high pressure/high temperature (HPHT) method to produce these materials on a laboratory scale. Results from this work should transfer well into the industrial arena, utilizing high-tonnage presses used in the production of synthetic diamond and c-BN. Progress has been made in: (1) HPHT synthesis of cBN powder using Mg as catalyst; (2) HPHT consolidation of cBN powder to produce nanostructured cBN; (3) reactive-HPHT consolidation of mixed cBN/Ti powder to produce nanostructured Ti- or TiB2/TiN-bonded cBN; and (4) reactive-HPHT consolidation of mixed hBN/Ti powder to produce nanostructured Ti-bonded TiB2/TiN or TiB2/TiN. Even so, much remains to be done to lay a firm scientific foundation to enable the reproducible fabrication of large-area panels for armor applications. To this end, Rutgers has formed a partnership with a major producer of hard and superhard materials. The ability to produce hard and superhard nanostructured composites by reacting cBN or hBN with Ti under high pressure also enables multi-layered structures to be developed. Such structures may be designed to satisfy impedance-mismatch requirements for high performance armor, and possibly provide a multi-hit capability. A demonstration has been made of reactive-HPHT processing of multi-layered composites, consisting of alternating layers of superhard Ti-bonded cBN and tough Ti. It is noteworthy that the pressure requirements for processing Ti-bonded cBN, Ti-bonded TiB2/TiN, and their

  16. Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials

    DTIC Science & Technology

    2007-08-01

    code) 2007 Reprint Aug 2006-Aug 2007 Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials W911NF-04-1-0178 sub 2781-USC-DOA...Priya Vashishta 213 821 2663 Reset Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials Priya Vashishta,∗ Rajiv K. Kalia...function of the particle velocity that drives the shock [18]. The MD and experimental data agree very well. Furthermore, the simulation shows a sudden

  17. Atomistic simulations of thermal transport in Si and SiGe based materials: From bulk to nanostructures

    NASA Astrophysics Data System (ADS)

    Savic, Ivana; Mingo, Natalio; Donadio, Davide; Galli, Giulia

    2010-03-01

    It has been recently proposed that Si and SiGe based nanostructured materials may exhibit low thermal conductivity and overall promising properties for thermoelectric applications. Hence there is a considerable interest in developing accurate theoretical and computational methods which can help interpret recent measurements, identify the physical origin of the reduced thermal conductivity, as well as shed light on the interplay between disorder and nanostructuring in determining a high figure of merit. In this work, we investigate the capability of an atomistic Green's function method [1] to describe phonon transport in several types of Si and SiGe based systems: amorphous Si, SiGe alloys, planar and nanodot Si/SiGe multilayers. We compare our results with experimental data [2,3], and with the findings of molecular dynamics simulations and calculations based on the Boltzmann transport equation. [1] I. Savic, N. Mingo, and D. A. Stewart, Phys. Rev. Lett. 101, 165502 (2008). [2] S.-M. Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997). [3] G. Pernot et al., submitted.

  18. Quantitative Characterization of Nanostructured Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Frank

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to real-world materials problems and to familiarize the materials research community with the state-of-the-art local structuremore » measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.« less

  19. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    NASA Technical Reports Server (NTRS)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  20. Plasma-Based Synthesis of Nanostructured Materials and their Characterization

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.

    The aim of this thesis is to explore the novel cost-effective synthesis technique to develop nanostructured materials and investigate their structural and magnetic properties. Nanomaterials were synthesized by a plasma discharge between desired metal electrodes in the cavitation field of an organic solvent. Multifunctional core-shell magnetic nanoparticles of 3d transition elements (Fe, Ni) and bimetallic (FeNi) were synthesized by varying experimental conditions. The phase, crystallinity and the magnetic properties of the materials synthesized were found to be dependent on experimental reaction parameters such as different solvents, electrodes, the spacing between electrodes, applied voltage, experiment time and high-temperature annealing. Fe and Gd-based nanoparticles were developed for high-performance magnetic resonance imaging (MRI) contrast enhancement. Biocompatible hybrid composite of Fe core - C shell nanoparticles evaluated as negative MRI contrast agents display remarkably high transverse relaxivity (r2) of 70 mM-1S-1 at 7T. In addition to 3d transition magnetic materials, magnetism of multilayer graphene nanosheets with only s and p electrons was investigated to understand and explain the intrinsic origin of ferromagnetism in carbon-based material. Apart from magnetic materials, noble metal Pd nanoparticles were developed using one-step process for hydrogen storage. The role of hydrogen on the dilation of Pd lattice was investigated using the experiment and density functional theory (DFT) studies. This method demonstrates that plasma discharge method using appropriate electrodes and solvents can be used to synthesize desired nanoparticles. This potential emphasizes the importance of adopting this methodology, which offers advantages that include a rapid reaction rate and ability to form very small nanoparticles with narrow size distribution.

  1. Combination of lightweight elements and nanostructured materials for batteries.

    PubMed

    Chen, Jun; Cheng, Fangyi

    2009-06-16

    In a society that increasingly relies on mobile electronics, demand is rapidly growing for both primary and rechargeable batteries that power devices from cell phones to vehicles. Existing batteries utilize lightweight active materials that use electrochemical reactions of ions such as H(+), OH(-) and Li(+)/Mg(2+) to facilitate energy storage and conversion. Ideal batteries should be inexpensive, have high energy density, and be made from environmentally friendly materials; batteries based on bulk active materials do not meet these requirements. Because of slow electrode process kinetics and low-rate ionic diffusion/migration, most conventional batteries demonstrate huge gaps between their theoretical and practical performance. Therefore, efforts are underway to improve existing battery technologies and develop new electrode reactions for the next generation of electrochemical devices. Advances in electrochemistry, surface science, and materials chemistry are leading to the use of nanomaterials for efficient energy storage and conversion. Nanostructures offer advantages over comparable bulk materials in improving battery performance. This Account summarizes our progress in battery development using a combination of lightweight elements and nanostructured materials. We highlight the benefits of nanostructured active materials for primary zinc-manganese dioxide (Zn-Mn), lithium-manganese dioxide (Li-Mn), and metal (Mg, Al, Zn)-air batteries, as well as rechargeable lithium ion (Li-ion) and nickel-metal hydride (Ni-MH) batteries. Through selected examples, we illustrate the effect of structure, shape, and size on the electrochemical properties of electrode materials. Because of their numerous active sites and facile electronic/ionic transfer and diffusion, nanostructures can improve battery efficiency. In particular, we demonstrate the properties of nanostructured active materials including Mg, Al, Si, Zn, MnO(2), CuV(2)O(6), LiNi(0.8)Co(0.2)O(2), LiFePO(4), Fe(2)O(3

  2. Direct and inverse problems of studying the properties of multilayer nanostructures based on a two-dimensional model of X-ray reflection and scattering

    NASA Astrophysics Data System (ADS)

    Khachaturov, R. V.

    2014-06-01

    A mathematical model of X-ray reflection and scattering by multilayered nanostructures in the quasi-optical approximation is proposed. X-ray propagation and the electric field distribution inside the multilayered structure are considered with allowance for refraction, which is taken into account via the second derivative with respect to the depth of the structure. This model is used to demonstrate the possibility of solving inverse problems in order to determine the characteristics of irregularities not only over the depth (as in the one-dimensional problem) but also over the length of the structure. An approximate combinatorial method for system decomposition and composition is proposed for solving the inverse problems.

  3. Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress.

    PubMed

    Wang, Jin Min; Sun, Xiao Wei; Jiao, Zhihui

    2010-11-26

    The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO₃, crystalline WO₃ nanoparticles and nanorods, mesoporous WO₃ and TiO₂, poly(3,4-ethylenedioxythiophene) nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed.

  4. Nanostructured manganese oxide thin films as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Lai, Man On; Lu, Li

    2011-01-01

    Electrochemical capacitors, also called supercapacitors, are alternative energy storage devices, particularly for applications requiring high power densities. Recently, manganese oxides have been extensively evaluated as electrode materials for supercapacitors due to their low cost, environmental benignity, and promising supercapacitive performance. In order to maximize the utilization of manganese oxides as the electrode material for the supercapacitors and improve their supercapacitive performance, the nanostructured manganese oxides have therefore been developed. This paper reviews the synthesis of the nanostructured manganese oxide thin films by different methods and the supercapacitive performance of different nanostructures.

  5. Application of Nanostructures in Electrochromic Materials and Devices: Recent Progress

    PubMed Central

    Wang, Jinmin; Sun, Xiao Wei; Jiao, Zhihui

    2010-01-01

    The recent progress in application of nanostructures in electrochromic materials and devices is reviewed. ZnO nanowire array modified by viologen and WO3, crystalline WO3 nanoparticles and nanorods, mesoporous WO3 and TiO2, poly(3,4-ethylenedioxythiophene) nanotubes, Prussian blue nanoinks and nanostructures in switchable mirrors are reviewed. The electrochromic properties were significantly enhanced by applying nanostructures, resulting in faster switching responses, higher stability and higher optical contrast. A perspective on the development trends in electrochromic materials and devices is also proposed. PMID:28883368

  6. Safety by design of printed multilayer materials intended for food packaging.

    PubMed

    Domeño, Celia; Aznar, Margarita; Nerín, Cristina; Isella, Francesca; Fedeli, Mauro; Bosetti, Osvaldo

    2017-07-01

    Printing inks are commonly used in multilayer plastics materials used for food packaging, and compounds present in inks can migrate to the food either by diffusion through the multilayers or because of set-off phenomena. To avoid this problem, the right design of the packaging is crucial. This paper studies the safety by design of multilayer materials. First, the migration from four different multilayers manufactured using polyethylene terephthalate (PET), aluminium (Al) and polyethylene (PE) was determined. The structural differences among materials such as the presence of inks or lacquer coatings as well as the differences in layers position allowed the study of a safety-by-design approach. Sixty-nine different compounds were detected and identified; 49 of them were not included in the positive list of Regulation EU/10/2011 or in Swiss legislation and 15 belong to Cramer class III, which means that they have a theoretical high toxicity. Some of the compounds related to ink composition were pyrene, a compound commercially used to make dyes and dye precursors and the antioxidant Irganox 1300. The application of external lacquers decreased the concentration of some migrants but also brought the potential for new migrants coming from its composition. A final risk assessment of the material allowed evaluating food safety for different food simulants and confirm it.

  7. Scalable Inkjet-Based Structural Color Printing by Molding Transparent Gratings on Multilayer Nanostructured Surfaces.

    PubMed

    Jiang, Hao; Kaminska, Bozena

    2018-04-24

    To enable customized manufacturing of structural colors for commercial applications, up-scalable, low-cost, rapid, and versatile printing techniques are highly demanded. In this paper, we introduce a viable strategy for scaling up production of custom-input images by patterning individual structural colors on separate layers, which are then vertically stacked and recombined into full-color images. By applying this strategy on molded-ink-on-nanostructured-surface printing, we present an industry-applicable inkjet structural color printing technique termed multilayer molded-ink-on-nanostructured-surface (M-MIONS) printing, in which structural color pixels are molded on multiple layers of nanostructured surfaces. Transparent colorless titanium dioxide nanoparticles were inkjet-printed onto three separate transparent polymer substrates, and each substrate surface has one specific subwavelength grating pattern for molding the deposited nanoparticles into structural color pixels of red, green, or blue primary color. After index-matching lamination, the three layers were vertically stacked and bonded to display a color image. Each primary color can be printed into a range of different shades controlled through a half-tone process, and full colors were achieved by mixing primary colors from three layers. In our experiments, an image size as big as 10 cm by 10 cm was effortlessly achieved, and even larger images can potentially be printed on recombined grating surfaces. In one application example, the M-MIONS technique was used for printing customizable transparent color optical variable devices for protecting personalized security documents. In another example, a transparent diffractive color image printed with the M-MIONS technique was pasted onto a transparent panel for overlaying colorful information onto one's view of reality.

  8. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.

    PubMed

    Sarker, Ashis K; Hong, Jong-Dal

    2012-08-28

    Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices

  9. Modeling of space environment impact on nanostructured materials. General principles

    NASA Astrophysics Data System (ADS)

    Voronina, Ekaterina; Novikov, Lev

    2016-07-01

    In accordance with the resolution of ISO TC20/SC14 WG4/WG6 joint meeting, Technical Specification (TS) 'Modeling of space environment impact on nanostructured materials. General principles' which describes computer simulation methods of space environment impact on nanostructured materials is being prepared. Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. Most such standards are related to production and characterization of nanostructures, however there is no ISO documents concerning nanomaterials behavior in different environmental conditions, including the space environment. The given TS deals with the peculiarities of the space environment impact on nanostructured materials (i.e. materials with structured objects which size in at least one dimension lies within 1-100 nm). The basic purpose of the document is the general description of the methodology of applying computer simulation methods which relate to different space and time scale to modeling processes occurring in nanostructured materials under the space environment impact. This document will emphasize the necessity of applying multiscale simulation approach and present the recommendations for the choice of the most appropriate methods (or a group of methods) for computer modeling of various processes that can occur in nanostructured materials under the influence of different space environment components. In addition, TS includes the description of possible

  10. Advanced materials for multilayer mirrors for extreme ultraviolet solar astronomy.

    PubMed

    Bogachev, S A; Chkhalo, N I; Kuzin, S V; Pariev, D E; Polkovnikov, V N; Salashchenko, N N; Shestov, S V; Zuev, S Y

    2016-03-20

    We provide an analysis of contemporary multilayer optics for extreme ultraviolet (EUV) solar astronomy in the wavelength ranges: λ=12.9-13.3  nm, λ=17-21  nm, λ=28-33  nm, and λ=58.4  nm. We found new material pairs, which will make new spaceborne experiments possible due to the high reflection efficiencies, spectral resolution, and long-term stabilities of the proposed multilayer coatings. In the spectral range λ=13  nm, Mo/Be multilayer mirrors were shown to demonstrate a better ratio of reflection efficiency and spectral resolution compared with the commonly used Mo/Si. In the spectral range λ=17-21  nm, a new multilayer structure Al/Si was proposed, which had higher spectral resolution along with comparable reflection efficiency compared with the commonly used Al/Zr multilayer structures. In the spectral range λ=30  nm, the Si/B4C/Mg/Cr multilayer structure turned out to best obey reflection efficiency and long-term stability. The B4C and Cr layers prevented mutual diffusion of the Si and Mg layers. For the spectral range λ=58  nm, a new multilayer Mo/Mg-based structure was developed; its reflection efficiency and long-term stability have been analyzed. We also investigated intrinsic stresses inherent for most of the multilayer structures and proposed possibilities for stress elimination.

  11. Controlled synthesis of MnOOH multilayer nanowires as anode materials for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yue; Yue, Kaiqiang; Wang, Yuanxin

    MnOOH multilayer nanowires have been successfully synthesized by a hydrothermal method. It is found that the uniform multilayer structure of nanowires ran through the entire nanowire, which is formed via a layer by layer. The electrochemical properties of MnOOH multilayer nanowires as an anode material for Li-ion batteries (LIB) were investigated, and excellent capacity retention, superior cycling performance, and high rate capability were achieved. Specifically, the reversible capacity of MnOOH multilayer nanowires is 521 mAh/g after 500 cycles at 0.1 C, with excellent electrochemical stability. The multilayer nanowire electrodes exhibit short electron path lengths, high internal dislocation densities and largemore » surface to volume ratio, resulting in increased specific capacity, cycling stability and rate performance in the energy storage devices, which serves as an indication of their potential application in LIBs. - Highlights: •MnOOH multilayer nanowires were synthesized by a hydrothermal method. •The uniform multilayer structure of nanowires was formed via layer by layer. •The reversible capacity of product shows 521 mAh/g after 500 cycles at 0.1 C. •MnOOH multilayer nanowires showed higher property as anode material in LIB.« less

  12. Specific features of the atomic structure of metallic layers of multilayered (CoFeZr/SiO2)32 and (CoFeZr/ a-Si)40 nanostructures with different interlayers

    NASA Astrophysics Data System (ADS)

    Domashevskaya, E. P.; Guda, A. A.; Chernyshev, A. V.; Sitnikov, V. G.

    2017-02-01

    Multilayered nanostructures (MN) were prepared by ion-beam successive sputtering from two targets, one of which was a metallic Co45Fe45Zr10 alloy plate and another target was a quartz (SiO2) or silicon plate on the surface of a rotating glass-ceramic substrate in an argon atmosphere. The Co and Fe K edges X-ray absorption fine structure of XANES in the (CoFeZr/SiO2)32 sample with oxide interlayers was similar to XANES of metallic Fe foil. This indicated the existence in metallic layers of multilayered CoFeZr nanocrystals with a local environment similar to the atomic environment in solid solutions on the base of bcc Fe structure, which is also confirmed by XRD data. XANES near the Co and Fe K edges absorption in another multilayered nanostructure with silicon interlayers (CoFeZr/ a-Si)40 differs from XANES of MN with dielectric SiO2 interlayer, which demonstrates a dominant influence of the Fe-Si and Co-Si bonds in the local environment of 3 d Co and Fe metals when they form CoFeSi-type silicide phases in thinner bilayers of this MN.

  13. Nanostructures and functional materials fabricated by interferometric lithography.

    PubMed

    Xia, Deying; Ku, Zahyun; Lee, S C; Brueck, S R J

    2011-01-11

    Interferometric lithography (IL) is a powerful technique for the definition of large-area, nanometer-scale, periodically patterned structures. Patterns are recorded in a light-sensitive medium, such as a photoresist, that responds nonlinearly to the intensity distribution associated with the interference of two or more coherent beams of light. The photoresist patterns produced with IL are a platform for further fabrication of nanostructures and growth of functional materials and are building blocks for devices. This article provides a brief review of IL technologies and focuses on various applications for nanostructures and functional materials based on IL including directed self-assembly of colloidal nanoparticles, nanophotonics, semiconductor materials growth, and nanofluidic devices. Perspectives on future directions for IL and emerging applications in other fields are presented.

  14. Nanostructured mesoporous materials for lithium-ion battery applications

    NASA Astrophysics Data System (ADS)

    Balaya, P.; Saravanan, K.; Hariharan, S.; Ramar, V.; Lee, H. S.; Kuezma, M.; Devaraj, S.; Nagaraju, D. H.; Ananthanarayanan, K.; Mason, C. W.

    2011-06-01

    The Energy crisis happens to be one of the greatest challenges we are facing today. In this view, much effort has been made in developing new, cost effective, environmentally friendly energy conversion and storage devices. The performance of such devices is fundamentally related to material properties. Hence, innovative materials engineering is important in solving the energy crisis problem. One such innovation in materials engineering is porous materials for energy storage. Porous electrode materials for lithium-ion batteries (LIBs) offer a high degree of electrolyte-electrode wettability, thus enhancing the electrochemical activity within the material. Among the porous materials, mesoporous materials draw special attention, owing to shorter diffusion lengths for Li+ and electronic movement. Nanostructured mesoporous materials also offer better packing density compared to their nanostructured counterparts such as nanopowders, nanowires, nanotubes etc., thus opening a window for developing electrode materials with high volumetric energy densities. This would directly translate into a scenario of building batteries which are much lighter than today's commercial LIBs. In this article, the authors present a simple, soft template approach for preparing both cathode and anode materials with high packing density for LIBs. The impact of porosity on the electrochemical storage performance is highlighted.

  15. Equivalent-Continuum Modeling of Nano-Structured Materials

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2001-01-01

    A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

  16. Universal method for creating optically active nanostructures on layered materials

    NASA Astrophysics Data System (ADS)

    Kidd, Tim; He, Rui; Stollenwerk, Andrew; Oshea, Aaron; Beck, Ben; Spurgeon, Kyle; Gu, Genda

    2014-03-01

    We report a new method for the creating of nanostructures using a scanning electron microscope. Residual organic molecules on the surface of layered materials can be excited by electron beam radiation to burrow into the open spaces between the layers of these materials, and then are broken down further to form photoluminescent carbon nanoclusters. Surface characterization by atomic force microscopy shows the surface is nearly undamaged at the molecular level by this process, and a lack of nanostructure formation in non-layered materials confirms that the structures are created by sub-surface incorporation. The presence of carbon nanoclusters was determined by Raman Spectroscopy and photoluminescence in the visible light range. The nanostructures are react strongly to visible light, making them readily apparent using an optical microscope even for features measuring only a few nanometers tall. This technique can be used on apparently any layered material, with successful results on dichalcogenides, topological insulators, graphite, and high temperature copper oxide superconductors. This technique can create patterned nanostructures with vertical resolution at the nanometer scale and lateral resolution of tens of nanometers depending on beam spot size. This work is funded by University of Northern Iowa, NSF #DMR-1206530, and DOE #DE-AC02-98CH10886.

  17. Nano selenium as antioxidant agent in a multilayer food packaging material.

    PubMed

    Vera, Paula; Echegoyen, Yolanda; Canellas, Elena; Nerín, Cristina; Palomo, María; Madrid, Yolanda; Cámara, Carmen

    2016-09-01

    Selenium nanoparticles (SeNPs) were incorporated in a flexible multilayer plastic material using a water-base adhesive as vehicle for SeNPs. The antioxidant performance of the original solutions containing spherical SeNPs of 50-60 nm diameter, the adhesive containing these SeNPs, and the final multilayer plastic material to be used as food packaging were quantitatively measured. The radical scavenging capacity due to SeNPs was quantified by a free radical assay developed in the laboratory and by the diphenyl-1-picrylhydrazyl (DPPH) method. DPPH was not efficient to measure the scavenging capacity in the multilayer when the free radical scavenger is not in the surface in contact with it. Several multilayer laminated structures composed by [PET (20 m)-adhesive-LDPE (with variable thickness from 35 to 90 μm)] were prepared and measured, demonstrating for the first time that free radicals derived from oxygen (OH·, O2·, and O2H) cross the PE layer and arrive at the adhesive. SeNPs remain as such after manufacture and the final laminate is stable after 3 months of storage. The antioxidant multilayer is a non-migrating efficient free radical scavenger, able to protect the packaged product versus oxidation and extending the shelf life without being in direct contact with the product. Migration tests of both Se and SeNPs to simulants and hazelnuts demonstrated the non-migrating performance of this new active packaging. Graphical abstract ᅟ.

  18. The Energetics of Oxide Multilayer Systems: SOFC Cathode and Electrolyte Materials

    NASA Astrophysics Data System (ADS)

    Kemik, Nihan

    Complex oxides are evoking a surge of scientific and technological interest due to the unexpected properties of their interfaces which have been shown to differ from the constituent materials. Layered oxide structures have found wide use in applications ranging from electronic and magnetic devices to solid oxide fuel cells (SOFCs). For devices such as SOFCs which utilize multilayers at elevated temperatures, it is critical to know the relative stabilities of these interfaces since they directly influence the device performance. In this work, we explored the energetics of two oxide multilayer systems which are relevant for SOFCs components using high temperature solution calorimetry and differential scanning calorimetry (DSC). The fundamental understanding of the interfacial and structural properties of multilayers combined with the information about phase stabilities is essential in materials selection for components for intermediate temperature SOFC's. For cathode materials, we investigated the family of perovskite oxides, La0.7Sr0.3MO3, where M=Mn and Fe, as well as their solid solution phase. Manganites have been the most investigated cathode material, while the ferrites are also being considered for future use due to their thermodynamic stability and close thermal expansion coefficient with the commonly used electrolyte materials. For the bulk La0.7Sr0.3FexMn1-xO 3 solid solution, high temperature oxide melt drop solution calorimetry was performed to determine the enthalpies of formation from binary oxides and the enthalpy of mixing. It was shown that the symmetry of the perovskite structure, the valence of transition metal, and the energetics are highly interdependent and the balance between the different valence states of the Mn and Fe ions is the main factor in determining the energetics. The energetics of interfaces in multilayered structures was investigated by high temperature oxide melt solution calorimetry for the first time. The drop solution

  19. Stress Compensating Multilayers

    NASA Technical Reports Server (NTRS)

    Broadway, David M.; Ramsey, Brian D.; O'dell, Stephen; Gurgew, Danielle

    2017-01-01

    We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.

  20. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials.

    PubMed

    Yan, Zheng; Zhang, Fan; Liu, Fei; Han, Mengdi; Ou, Dapeng; Liu, Yuhao; Lin, Qing; Guo, Xuelin; Fu, Haoran; Xie, Zhaoqian; Gao, Mingye; Huang, Yuming; Kim, JungHwan; Qiu, Yitao; Nan, Kewang; Kim, Jeonghyun; Gutruf, Philipp; Luo, Hongying; Zhao, An; Hwang, Keh-Chih; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2016-09-01

    Capabilities for assembly of three-dimensional (3D) micro/nanostructures in advanced materials have important implications across a broad range of application areas, reaching nearly every class of microsystem technology. Approaches that rely on the controlled, compressive buckling of 2D precursors are promising because of their demonstrated compatibility with the most sophisticated planar technologies, where materials include inorganic semiconductors, polymers, metals, and various heterogeneous combinations, spanning length scales from submicrometer to centimeter dimensions. We introduce a set of fabrication techniques and design concepts that bypass certain constraints set by the underlying physics and geometrical properties of the assembly processes associated with the original versions of these methods. In particular, the use of releasable, multilayer 2D precursors provides access to complex 3D topologies, including dense architectures with nested layouts, controlled points of entanglement, and other previously unobtainable layouts. Furthermore, the simultaneous, coordinated assembly of additional structures can enhance the structural stability and drive the motion of extended features in these systems. The resulting 3D mesostructures, demonstrated in a diverse set of more than 40 different examples with feature sizes from micrometers to centimeters, offer unique possibilities in device design. A 3D spiral inductor for near-field communication represents an example where these ideas enable enhanced quality ( Q ) factors and broader working angles compared to those of conventional 2D counterparts.

  1. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials

    PubMed Central

    Yan, Zheng; Zhang, Fan; Liu, Fei; Han, Mengdi; Ou, Dapeng; Liu, Yuhao; Lin, Qing; Guo, Xuelin; Fu, Haoran; Xie, Zhaoqian; Gao, Mingye; Huang, Yuming; Kim, JungHwan; Qiu, Yitao; Nan, Kewang; Kim, Jeonghyun; Gutruf, Philipp; Luo, Hongying; Zhao, An; Hwang, Keh-Chih; Huang, Yonggang; Zhang, Yihui; Rogers, John A.

    2016-01-01

    Capabilities for assembly of three-dimensional (3D) micro/nanostructures in advanced materials have important implications across a broad range of application areas, reaching nearly every class of microsystem technology. Approaches that rely on the controlled, compressive buckling of 2D precursors are promising because of their demonstrated compatibility with the most sophisticated planar technologies, where materials include inorganic semiconductors, polymers, metals, and various heterogeneous combinations, spanning length scales from submicrometer to centimeter dimensions. We introduce a set of fabrication techniques and design concepts that bypass certain constraints set by the underlying physics and geometrical properties of the assembly processes associated with the original versions of these methods. In particular, the use of releasable, multilayer 2D precursors provides access to complex 3D topologies, including dense architectures with nested layouts, controlled points of entanglement, and other previously unobtainable layouts. Furthermore, the simultaneous, coordinated assembly of additional structures can enhance the structural stability and drive the motion of extended features in these systems. The resulting 3D mesostructures, demonstrated in a diverse set of more than 40 different examples with feature sizes from micrometers to centimeters, offer unique possibilities in device design. A 3D spiral inductor for near-field communication represents an example where these ideas enable enhanced quality (Q) factors and broader working angles compared to those of conventional 2D counterparts. PMID:27679820

  2. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zheng; Zhang, Fan; Liu, Fei

    Capabilities for assembly of three-dimensional (3D) micro/nanostructures in advanced materials have important implications across a broad range of application areas, reaching nearly every class of microsystem technology. Approaches that rely on the controlled, compressive buckling of 2D precursors are promising because of their demonstrated compatibility with the most sophisticated planar technologies, where materials include inorganic semiconductors, polymers, metals, and various heterogeneous combinations, spanning length scales from submicrometer to centimeter dimensions. We introduce a set of fabrication techniques and design concepts that bypass certain constraints set by the underlying physics and geometrical properties of the assembly processes associated with the originalmore » versions of these methods. In particular, the use of releasable, multilayer 2D precursors provides access to complex 3D topologies, including dense architectures with nested layouts, controlled points of entanglement, and other previously unobtainable layouts. Furthermore, the simultaneous, coordinated assembly of additional structures can enhance the structural stability and drive the motion of extended features in these systems. The resulting 3D mesostructures, demonstrated in a diverse set of more than 40 different examples with feature sizes from micrometers to centimeters, offer unique possibilities in device design. In conclusion, a 3D spiral inductor for near-field communication represents an example where these ideas enable enhanced quality ( Q) factors and broader working angles compared to those of conventional 2D counterparts.« less

  3. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials

    DOE PAGES

    Yan, Zheng; Zhang, Fan; Liu, Fei; ...

    2016-09-23

    Capabilities for assembly of three-dimensional (3D) micro/nanostructures in advanced materials have important implications across a broad range of application areas, reaching nearly every class of microsystem technology. Approaches that rely on the controlled, compressive buckling of 2D precursors are promising because of their demonstrated compatibility with the most sophisticated planar technologies, where materials include inorganic semiconductors, polymers, metals, and various heterogeneous combinations, spanning length scales from submicrometer to centimeter dimensions. We introduce a set of fabrication techniques and design concepts that bypass certain constraints set by the underlying physics and geometrical properties of the assembly processes associated with the originalmore » versions of these methods. In particular, the use of releasable, multilayer 2D precursors provides access to complex 3D topologies, including dense architectures with nested layouts, controlled points of entanglement, and other previously unobtainable layouts. Furthermore, the simultaneous, coordinated assembly of additional structures can enhance the structural stability and drive the motion of extended features in these systems. The resulting 3D mesostructures, demonstrated in a diverse set of more than 40 different examples with feature sizes from micrometers to centimeters, offer unique possibilities in device design. In conclusion, a 3D spiral inductor for near-field communication represents an example where these ideas enable enhanced quality ( Q) factors and broader working angles compared to those of conventional 2D counterparts.« less

  4. Self-assembled peptide nanostructures for functional materials

    NASA Astrophysics Data System (ADS)

    Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  5. Science and Technology of Nanostructured Magnetic Materials

    DTIC Science & Technology

    1990-07-06

    galvano-magnetic and magneto-optic effects that can lead to future storage technologies. Ultrafine particles also show interesting and unique properties...areas including thin films, multilayers, disordered systems, ultrafine particles , intermetallic compounds, permanent magnets and magnetic imaging... ultrafine particles , intermetallic compounds, permanent magnets and magnetic imaging techniques. The development of new techniques for materials preparation

  6. Nanostructured core-shell electrode materials for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  7. Nanostructured Materials for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Castro, Stephanie; Fahey, S.; Gennett, T.; Tin, P.

    2003-01-01

    The use of both inorganic and organic nanostructured materials in producing high efficiency photovoltaics is discussed in this paper. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of semiconductor quantum dots in an ordinary p-i-n solar cell. In addition, it has also recently been demonstrated that quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. A similar improvement in these types of cells has also been observed by employing single wall carbon nanotubes. This relatively new carbon allotrope may assist both in the disassociation of excitons as well as carrier transport through the composite material. This paper reviews the efforts that are currently underway to produce and characterize these nanoscale materials and to exploit their unique properties.

  8. Advanced Nanostructured Anode Materials for Sodium-Ion Batteries.

    PubMed

    Wang, Qidi; Zhao, Chenglong; Lu, Yaxiang; Li, Yunming; Zheng, Yuheng; Qi, Yuruo; Rong, Xiaohui; Jiang, Liwei; Qi, Xinguo; Shao, Yuanjun; Pan, Du; Li, Baohua; Hu, Yong-Sheng; Chen, Liquan

    2017-11-01

    Sodium-ion batteries (NIBs), due to the advantages of low cost and relatively high safety, have attracted widespread attention all over the world, making them a promising candidate for large-scale energy storage systems. However, the inherent lower energy density to lithium-ion batteries is the issue that should be further investigated and optimized. Toward the grid-level energy storage applications, designing and discovering appropriate anode materials for NIBs are of great concern. Although many efforts on the improvements and innovations are achieved, several challenges still limit the current requirements of the large-scale application, including low energy/power densities, moderate cycle performance, and the low initial Coulombic efficiency. Advanced nanostructured strategies for anode materials can significantly improve ion or electron transport kinetic performance enhancing the electrochemical properties of battery systems. Herein, this Review intends to provide a comprehensive summary on the progress of nanostructured anode materials for NIBs, where representative examples and corresponding storage mechanisms are discussed. Meanwhile, the potential directions to obtain high-performance anode materials of NIBs are also proposed, which provide references for the further development of advanced anode materials for NIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Hinkley, Jeffrey A.

    2003-01-01

    The paper provides details on the structure and implementation of the Computational Materials program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA's broad mission objectives.

  10. Carbon-based layer-by-layer nanostructures: from films to hollow capsules

    NASA Astrophysics Data System (ADS)

    Hong, Jinkee; Han, Jung Yeon; Yoon, Hyunsik; Joo, Piljae; Lee, Taemin; Seo, Eunyong; Char, Kookheon; Kim, Byeong-Su

    2011-11-01

    Over the past years, the layer-by-layer (LbL) assembly has been widely developed as one of the most powerful techniques to prepare multifunctional films with desired functions, structures and morphologies because of its versatility in the process steps in both material and substrate choices. Among various functional nanoscale objects, carbon-based nanomaterials, such as carbon nanotubes and graphene sheets, are promising candidates for emerging science and technology with their unique physical, chemical, and mechanical properties. In particular, carbon-based functional multilayer coatings based on the LbL assembly are currently being actively pursued as conducting electrodes, batteries, solar cells, supercapacitors, fuel cells and sensor applications. In this article, we give an overview on the use of carbon materials in nanostructured films and capsules prepared by the LbL assembly with the aim of unraveling the unique features and their applications of carbon multilayers prepared by the LbL assembly.

  11. Confirming the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials by PECVD

    NASA Astrophysics Data System (ADS)

    Liu, Yulin; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Feng, Jicai; Fei, Weidong

    2017-11-01

    In order to confirm the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials (NCMs), here we report a novel strategy to create different Ar+ ion states in situ in plasma enhanced chemical vapor deposition (PECVD) by separating catalyst film from the substrate. Different bombardment environments on either side of the catalyst film were created simultaneously to achieve multi-layered structural NCMs. Results showed that Ar+ ion bombardment is crucial and complex for the growth of NCMs. Firstly, Ar+ ion bombardment has both positive and negative effects on carbon nanotubes (CNTs). On one hand, Ar+ ions can break up the graphic structure of CNTs and suppress thin CNT nucleation and growth. On the other hand, Ar+ ion bombardment can remove redundant carbon layers on the surface of large catalyst particles which is essential for thick CNTs. As a result, the diameter of the CNTs depends on the Ar+ ion state. As for vertically oriented few-layer graphene (VFG), Ar+ ions are essential and can even convert the CNTs into VFG. Therefore, by combining with the catalyst separation method, specific or multi-layered structural NCMs can be obtained by PECVD only by changing the intensity of Ar+ ion bombardment, and these special NCMs are promising in many fields.

  12. Confirming the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials by PECVD.

    PubMed

    Liu, Yulin; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Feng, Jicai; Fei, Weidong

    2017-11-24

    In order to confirm the key role of Ar + ion bombardment in the growth feature of nanostructured carbon materials (NCMs), here we report a novel strategy to create different Ar + ion states in situ in plasma enhanced chemical vapor deposition (PECVD) by separating catalyst film from the substrate. Different bombardment environments on either side of the catalyst film were created simultaneously to achieve multi-layered structural NCMs. Results showed that Ar + ion bombardment is crucial and complex for the growth of NCMs. Firstly, Ar + ion bombardment has both positive and negative effects on carbon nanotubes (CNTs). On one hand, Ar + ions can break up the graphic structure of CNTs and suppress thin CNT nucleation and growth. On the other hand, Ar + ion bombardment can remove redundant carbon layers on the surface of large catalyst particles which is essential for thick CNTs. As a result, the diameter of the CNTs depends on the Ar + ion state. As for vertically oriented few-layer graphene (VFG), Ar + ions are essential and can even convert the CNTs into VFG. Therefore, by combining with the catalyst separation method, specific or multi-layered structural NCMs can be obtained by PECVD only by changing the intensity of Ar + ion bombardment, and these special NCMs are promising in many fields.

  13. Optical response of nanostructured metal/dielectric composites and multilayers

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey B.; Maaroof, Abbas I.; Allan, Rodney S.; Schelm, Stefan; Anstis, Geoffrey R.; Cortie, Michael B.

    2004-08-01

    The homogeneous optical response in conducting nanostructured layers, and in insulating layers containing dense arrays of self assembled conducting nanoparticles separated by organic linkers, is examined experimentally through their effective complex indices (n*, k*). Classical effective medium models, modified to account for the 3-phase nanostructure, are shown to explain (n*, k*) in dense particulate systems but not inhomogeneous layers with macroscopic conductance for which a different approach to homogenisation is discussed. (n*, k*) data on thin granular metal films, thin mesoporous gold, and on thin metal layers containing ordered arrays of voids, is linked to properties of the surface plasmon states which span the nanostructured film. Coupling between evanescent waves at either surface counterbalanced by electron scattering losses must be considered. Virtual bound states for resonant photons result, with the associated transit delay leading to a large rise in n* in many nanostructures. Overcoating n-Ag with alumina is shown to alter (n*, k*) through its impact on the SP coupling. In contrast to classical optical homogenisation, effective indices depend on film thickness. Supporting high resolution SEM images are presented.

  14. Coating multilayer material with improved tribological properties obtained by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mateescu, A. O.; Mateescu, G.; Balasoiu, M.; Pompilian, G. O.; Lungu, M.

    2017-02-01

    This work is based on the Patent no. RO 128094 B1, granted by the Romanian State Office for Inventions and Trademarks. The goal of the work is to obtain for investigations tribological coatings with multilayer structure with improved tribological properties, deposited by magnetron sputtering process from three materials (sputtering targets). Starting from compound chemical materials (TiC, TiB2 and WC), as sputtering targets, by deposition in argon atmosphere on polished stainless steel, we have obtained, based on the claims of the above patent, thin films of multilayer design with promising results regarding their hardness, elastic modulus, adherence, coefficient of friction and wear resistance. The sputtering process took place in a special sequence in order to ensure better tribological properties to the coating, comparing to those of the individual component materials. The tribological properties, such as the coefficient of friction, are evaluated using the tribometer test.

  15. Synthesis of nanostructured materials in inverse miniemulsions and their applications.

    PubMed

    Cao, Zhihai; Ziener, Ulrich

    2013-11-07

    Polymeric nanogels, inorganic nanoparticles, and organic-inorganic hybrid nanoparticles can be prepared via the inverse miniemulsion technique. Hydrophilic functional cargos, such as proteins, DNA, and macromolecular fluoresceins, may be conveniently encapsulated in these nanostructured materials. In this review, the progress of inverse miniemulsions since 2000 is summarized on the basis of the types of reactions carried out in inverse miniemulsions, including conventional free radical polymerization, controlled/living radical polymerization, polycondensation, polyaddition, anionic polymerization, catalytic oxidation reaction, sol-gel process, and precipitation reaction of inorganic precursors. In addition, the applications of the nanostructured materials synthesized in inverse miniemulsions are also reviewed.

  16. Method of making nanopatterns and nanostructures and nanopatterned functional oxide materials

    DOEpatents

    Dravid, Vinayak P; Donthu, Suresh K; Pan, Zixiao

    2014-02-11

    Method for nanopatterning of inorganic materials, such as ceramic (e.g. metal oxide) materials, and organic materials, such as polymer materials, on a variety of substrates to form nanopatterns and/or nanostructures with control of dimensions and location, all without the need for etching the materials and without the need for re-alignment between multiple patterning steps in forming nanostructures, such as heterostructures comprising multiple materials. The method involves patterning a resist-coated substrate using electron beam lithography, removing a portion of the resist to provide a patterned resist-coated substrate, and spin coating the patterned resist-coated substrate with a liquid precursor, such as a sol precursor, of the inorganic or organic material. The remaining resist is removed and the spin coated substrate is heated at an elevated temperature to crystallize the deposited precursor material.

  17. Au-Graphene Hybrid Plasmonic Nanostructure Sensor Based on Intensity Shift

    PubMed Central

    Alharbi, Raed; Irannejad, Mehrdad; Yavuz, Mustafa

    2017-01-01

    Integrating plasmonic materials, like gold with a two-dimensional material (e.g., graphene) enhances the light-material interaction and, hence, plasmonic properties of the metallic nanostructure. A localized surface plasmon resonance sensor is an effective platform for biomarker detection. They offer a better bulk surface (local) sensitivity than a regular surface plasmon resonance (SPR) sensor; however, they suffer from a lower figure of merit compared to that one in a propagating surface plasmon resonance sensors. In this work, a decorated multilayer graphene film with an Au nanostructures was proposed as a liquid sensor. The results showed a significant improvement in the figure of merit compared with other reported localized surface plasmon resonance sensors. The maximum figure of merit and intensity sensitivity of 240 and 55 RIU−1 (refractive index unit) at refractive index change of 0.001 were achieved which indicate the capability of the proposed sensor to detect a small change in concentration of liquids in the ng/mL level which is essential in early-stage cancer disease detection. PMID:28106850

  18. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    PubMed Central

    Lowry, Troy W.; Prommapan, Plengchart; Rainer, Quinn; Van Winkle, David; Lenhert, Steven

    2015-01-01

    Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. PMID:26308001

  19. Boron carbide nanostructures: A prospective material as an additive in concrete

    NASA Astrophysics Data System (ADS)

    Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay

    2018-05-01

    In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.

  20. Melt infiltration: an emerging technique for the preparation of novel functional nanostructured materials.

    PubMed

    de Jongh, Petra E; Eggenhuisen, Tamara M

    2013-12-10

    The rapidly expanding toolbox for design and preparation is a major driving force for the advances in nanomaterials science and technology. Melt infiltration originates from the field of ceramic nanomaterials and is based on the infiltration of porous matrices with the melt of an active phase or precursor. In recent years, it has become a technique for the preparation of advanced materials: nanocomposites, pore-confined nanoparticles, ordered mesoporous and nanostructured materials. Although certain restrictions apply, mostly related to the melting behavior of the infiltrate and its interaction with the matrix, this review illustrates that it is applicable to a wide range of materials, including metals, polymers, ceramics, and metal hydrides and oxides. Melt infiltration provides an alternative to classical gas-phase and solution-based preparation methods, facilitating in several cases extended control over the nanostructure of the materials. This review starts with a concise discussion on the physical and chemical principles for melt infiltration, and the practical aspects. In the second part of this contribution, specific examples are discussed of nanostructured functional materials with applications in energy storage and conversion, catalysis, and as optical and structural materials and emerging materials with interesting new physical and chemical properties. Melt infiltration is a useful preparation route for material scientists from different fields, and we hope this review may inspire the search and discovery of novel nanostructured materials. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mechanical properties of nanostructure of biological materials

    NASA Astrophysics Data System (ADS)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  2. Chemistry and Processing of Nanostructured Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, G A; Baumann, T F; Hope-Weeks, L J

    2002-01-18

    Nanostructured materials can be formed through the sol-gel polymerization of inorganic or organic monomer systems. For example, a two step polymerization of tetramethoxysilane (TMOS) was developed such that silica aerogels with densities as low as 3 kg/m{sup 3} ({approx} two times the density of air) could be achieved. Organic aerogels based upon resorcinol-formaldehyde and melamine-formaldehyde can also be prepared using the sol-gel process. Materials of this type have received significant attention at LLNL due to their ultrafine cell sizes, continuous porosity, high surface area and low mass density. For both types of aerogels, sol-gel polymerization depends upon the transformation ofmore » these monomers into nanometer-sized clusters followed by cross-linking into a 3-dimensional gel network. While sol-gel chemistry provides the opportunity to synthesize new material compositions, it suffers from the inability to separate the process of cluster formation from gelation. This limitation results in structural deficiencies in the gel that impact the physical properties of the aerogel, xerogel or nanocomposite. In order to control the properties of the resultant gel, one should be able to regulate the formation of the clusters and their subsequent cross-linking. Towards this goal, we are utilizing dendrimer chemistry to separate the cluster formation from the gelation so that new nanostructured materials can be produced. Dendrimers are three-dimensional, highly branched macromolecules that are prepared in such a way that their size, shape and surface functionality are readily controlled. The dendrimers will be used as pre-formed clusters of known size that can be cross-linked to form an ordered gel network.« less

  3. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    PubMed

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 < y < 1), MMo(x)O(y) (M = Fe, Co, Ni, Ca, Mn, Zn, Mg, or Cd; x = 1, y = 4; x = 3, y = 8), MoS2, MoSe2, (MoO2)2P2O7, LiMoO2, Li2MoO3, etc. possess multiple valence states and exhibit rich chemistry. They are very attractive candidates for efficient electrochemical energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  4. Design and fabrication of far ultraviolet filters based on π-multilayer technology in high-k materials

    PubMed Central

    Wang, Xiao-Dong; Chen, Bo; Wang, Hai-Feng; He, Fei; Zheng, Xin; He, Ling-Ping; Chen, Bin; Liu, Shi-Jie; Cui, Zhong-Xu; Yang, Xiao-Hu; Li, Yun-Peng

    2015-01-01

    Application of π-multilayer technology is extended to high extinction coefficient materials, which is introduced into metal-dielectric filter design. Metal materials often have high extinction coefficients in far ultraviolet (FUV) region, so optical thickness of metal materials should be smaller than that of the dielectric material. A broadband FUV filter of 9-layer non-periodic Al/MgF2 multilayer was successfully designed and fabricated and it shows high reflectance in 140–180 nm, suppressed reflectance in 120–137 nm and 181–220 nm. PMID:25687255

  5. Some aspects of applying nanostructured materials in air filtration, water filtration and electrical engineering

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Lovecka, Lenka; Kazda, Tomas; Giurg, Adam; Skorvan, Ondrej

    2017-05-01

    Nanostructures prepared from nanofibres and nanostructured composites prepared from nanofibres and fillers are gradually becoming increasingly demanded materials for applications in various industrial branches connected with catalysis, environment protection (air filtration, waste water treatment, sound absorption), in biological engineering, electronics (battery separators, electrode materials), etc. Selected applications of these materials prepared in the company SPUR a.s. are summed up in the following presentation.

  6. Nanotechnology and health safety--toxicity and risk assessments of nanostructured materials on human health.

    PubMed

    Singh, Surya; Nalwa, Hari Singh

    2007-09-01

    The field of nanotechnology has recently emerged as the most commercially viable technology of this century because of its wide-ranging applications in our daily lives. Man-made nanostructured materials such as fullerenes, nanoparticles, nanopowders, nanotubes, nanowires, nanorods, nanofibers, quantum dots, dendrimers, nanoclusters, nanocrystals, and nanocomposites are globally produced in large quantities due to their wide potential applications, e.g., in skincare and consumer products, healthcare, electronics, photonics, biotechnology, engineering products, pharmaceuticals, drug delivery, and agriculture. Human exposure to these nanostructured materials is inevitable, as they can enter the body through the lungs or other organs via food, drink, and medicine and affect different organs and tissues such as the brain, liver, kidney, heart, colon, spleen, bone, blood, etc., and may cause cytotoxic effects, e.g., deformation and inhibition of cell growth leading to various diseases in humans and animals. Since a very wide variety of nanostructured materials exits, their interactions with biological systems and toxicity largely depend upon their properties, such as size, concentration, solubility, chemical and biological properties, and stability. The toxicity of nanostructured materials could be reduced by chemical approaches such by surface treatment, functionalization, and composite formation. This review summarizes the sources of various nanostructured materials and their human exposure, biocompatibility in relation to potential toxicological effects, risk assessment, and safety evaluation on human and animal health as well as on the environment.

  7. Kinetic Monte Carlo Simulation of the Growth of Various Nanostructures through Atomic and Cluster Deposition: Application to Gold Nanostructure Growth on Graphite

    NASA Astrophysics Data System (ADS)

    Claassens, C. H.; Hoffman, M. J. H.; Terblans, J. J.; Swart, H. C.

    2006-01-01

    A Kinetic Monte Carlo (KMC) method is presented to describe the growth of metallic nanostructures through atomic and cluster deposition in the mono -and multilayer regime. The model makes provision for homo- and heteroepitaxial systems with small lattice mismatch. The accuracy of the model is tested with simulations of the growth of gold nanostructures on HOPG and comparisons are made with existing experimental data.

  8. The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review

    PubMed Central

    Armentano, Ilaria; Arciola, Carla Renata; Fortunati, Elena; Ferrari, Davide; Mattioli, Samantha; Amoroso, Concetta Floriana; Rizzo, Jessica; Kenny, Jose M.; Imbriani, Marcello; Visai, Livia

    2014-01-01

    Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections. PMID:25025086

  9. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  10. Nanostructured materials for ocular delivery: nanodesign for enhanced bioadhesion, transepithelial permeability and sustained delivery

    PubMed Central

    Kim, Jean; Schlesinger, Erica B; Desai, Tejal A

    2015-01-01

    Effective drug delivery to the eye is an ongoing challenge due to poor patient compliance coupled with numerous physiological barriers. Eye drops for the front of the eye and ocular injections for the back of the eye are the most prevalent delivery methods, both of which require relatively frequent administration and are burdensome to the patient. Novel drug delivery techniques stand to drastically improve safety, efficacy and patient compliance for ocular therapeutics. Remarkable advances in nanofabrication technologies make the application of nanostructured materials to ocular drug delivery possible. This article focuses on the use of nanostructured materials with nanoporosity or nanotopography for ocular delivery. Specifically, we discuss nanotopography for enhanced bioadhesion and permeation and nanoporous materials for controlled release drug delivery. As examples, application of polymeric nanostructures for greater transepithelial permeability, nanostructured microparticles for enhanced preocular retention time and nanoporous membranes for tuning drug release profile are covered. PMID:26652282

  11. The possibility of giant dielectric materials for multilayer ceramic capacitors.

    PubMed

    Ishii, Tatsuya; Endo, Makoto; Masuda, Kenichiro; Ishida, Keisuke

    2013-02-11

    There have been numerous reports on discovery of giant dielectric permittivity materials called internal barrier layer capacitor in the recent years. We took particular note of one of such materials, i.e., BaTiO 3 with SiO 2 coating. It shows expressions of giant electric permittivity when processed by spark plasma sintering. So we evaluated various electrical characteristics of this material to find out whether it is applicable to multilayer ceramic capacitors. Our evaluation revealed that the isolated surface structure is the sole cause of expressions of giant dielectric permittivity.

  12. Materials science. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration.

    PubMed

    Lee, Jae-Hwang; Loya, Phillip E; Lou, Jun; Thomas, Edwin L

    2014-11-28

    Multilayer graphene is an exceptional anisotropic material due to its layered structure composed of two-dimensional carbon lattices. Although the intrinsic mechanical properties of graphene have been investigated at quasi-static conditions, its behavior under extreme dynamic conditions has not yet been studied. We report the high-strain-rate behavior of multilayer graphene over a range of thicknesses from 10 to 100 nanometers by using miniaturized ballistic tests. Tensile stretching of the membrane into a cone shape is followed by initiation of radial cracks that approximately follow crystallographic directions and extend outward well beyond the impact area. The specific penetration energy for multilayer graphene is ~10 times more than literature values for macroscopic steel sheets at 600 meters per second. Copyright © 2014, American Association for the Advancement of Science.

  13. Review of multi-layered magnetoelectric composite materials and devices applications

    NASA Astrophysics Data System (ADS)

    Chu, Zhaoqiang; PourhosseiniAsl, MohammadJavad; Dong, Shuxiang

    2018-06-01

    Multiferroic materials with the coexistence of at least two ferroic orders, such as ferroelectricity, ferromagnetism, or ferroelasticity, have recently attracted ever-increasing attention due to their potential for multifunctional device applications, including magnetic and current sensors, energy harvesters, magnetoelectric (ME) random access memory and logic devices, tunable microwave devices, and ME antenna. In this article, we provide a review of the recent and ongoing research efforts in the field of multi-layered ME composites. After a brief introduction to ME composites and ME coupling mechanisms, we review recent advances in multi-layered ME composites as well as their device applications based on the direct ME effect, magnetic sensors in particular. Finally, some remaining challenges and future perspective of ME composites and their engineering applications will be discussed.

  14. Review on recent progress of nanostructured anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Goriparti, Subrahmanyam; Miele, Ermanno; De Angelis, Francesco; Di Fabrizio, Enzo; Proietti Zaccaria, Remo; Capiglia, Claudio

    2014-07-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  15. Basic principles for rational design of high-performance nanostructured silicon-based thermoelectric materials.

    PubMed

    Yang, Chun Cheng; Li, Sean

    2011-12-23

    Recently, nanostructured silicon-based thermoelectric materials have drawn great attention owing to their excellent thermoelectric performance in the temperature range around 450 °C, which is eminently applicable for concentrated solar thermal technology. In this work, a unified nanothermodynamic model is developed to investigate the predominant factors that determine the lattice thermal conductivity of nanocrystalline, nanoporous, and nanostructured bulk Si. A systematic study shows that the thermoelectric performance of these materials can be substantially enhanced by the following three basic principles: 1) artificial manipulation and optimization of roughness with surface/interface patterning/engineering; 2) grain-size reduction with innovative fabrication techniques in a controllable fashion; and 3) optimization of material parameters, such as bulk solid-vapor transition entropy, bulk vibrational entropy, dimensionality, and porosity, to decrease the lattice thermal conductivity. These principles may be used to rationally design novel nanostructured Si-based thermoelectric materials for renewable energy applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    NASA Technical Reports Server (NTRS)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  17. Infrared hyperbolic metasurface based on nanostructured van der Waals materials

    NASA Astrophysics Data System (ADS)

    Li, Peining; Dolado, Irene; Alfaro-Mozaz, Francisco Javier; Casanova, Fèlix; Hueso, Luis E.; Liu, Song; Edgar, James H.; Nikitin, Alexey Y.; Vélez, Saül; Hillenbrand, Rainer

    2018-02-01

    Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons), which promise opportunities for controlling light in photonic and optoelectronic applications. We developed a mid-infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride that supports deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.

  18. Gold nanostructure materials in diabetes management

    NASA Astrophysics Data System (ADS)

    Si, Satyabrata; Pal, Arttatrana; Mohanta, Jagdeep; Sagar Satapathy, Smith

    2017-04-01

    Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia, and is now one of the most non-communicable diseases globally and can be lethal if not properly controlled. Prolonged exposure to chronic hyperglycemia, without proper management, can lead to various vascular complications and represents the main cause of morbidity and mortality in diabetes patients. Studies have indicated that major long-term complications of diabetes arise from persistent oxidative-nitrosative stress and dysregulation in multiple metabolic pathways. Presently, the main focus for diabetes management is to optimize the available techniques to ensure adequate blood sugar level, blood pressure and lipid profile, thereby minimizing the diabetes complications. In this regard, nanomedicine utilizing gold nanostructures has great potential and seems to be a promising option. The present review highlights the basic concepts and up-to-date literature survey of gold nanostructure materials in management of diabetes in several ways, which include sensing, imaging, drug delivery and therapy. The work can be of interest to various researchers working on basic and applied sciences including nanosciences.

  19. Nanostructured Catalytic Hybrid Materials for Energy Conversion or Storage

    DTIC Science & Technology

    2017-08-27

    and 6) and characterized them using bomb calorimetry, DSC and XRD. - We are organizing the data to make research articles and patents. [Iron...Unlimited Distribution Figure 4 • Bomb calorimeter (BC) enthalpy plot of Al-encapsulated nanofibers Nanostructured catalytic hybrid materials for energy

  20. Universal approach for appending double-negative materials to magneto-optics in multilayer structures

    NASA Astrophysics Data System (ADS)

    Zamani, Mehdi; Eftekhari, Sepideh; Ghanaatshoar, Majid

    2018-04-01

    We express a general formalism to describe light propagation in multilayers including both left-handed and normal magnetic materials. In this order, we employ propagation and boundary matrices which are applicable to any configuration of media, incident angle of light and orientation of magnetization in each ferromagnetic layer. We calculate the Kerr and Faraday rotation in some given magneto-optical multilayers and show that this universal approach can thoroughly illustrate spectral broadening by the left-handed layers, even in presence of dispersion effect.

  1. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials

    NASA Astrophysics Data System (ADS)

    Ding, Song-Yuan; Yi, Jun; Li, Jian-Feng; Ren, Bin; Wu, De-Yin; Panneerselvam, Rajapandiyan; Tian, Zhong-Qun

    2016-06-01

    Since 2000, there has been an explosion of activity in the field of plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). In this Review, we explore the mechanism of PERS and discuss PERS hotspots — nanoscale regions with a strongly enhanced local electromagnetic field — that allow trace-molecule detection, biomolecule analysis and surface characterization of various materials. In particular, we discuss a new generation of hotspots that are generated from hybrid structures combining PERS-active nanostructures and probe materials, which feature a strong local electromagnetic field on the surface of the probe material. Enhancement of surface Raman signals up to five orders of magnitude can be obtained from materials that are weakly SERS active or SERS inactive. We provide a detailed overview of future research directions in the field of PERS, focusing on new PERS-active nanomaterials and nanostructures and the broad application prospect for materials science and technology.

  2. Nanomanufacturing : nano-structured materials made layer-by-layer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with thesemore » processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.« less

  3. Computational design of surfaces, nanostructures and optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of

  4. Polyelectrolyte multilayers: preparation and applications

    NASA Astrophysics Data System (ADS)

    Izumrudov, V. A.; Mussabayeva, B. Kh; Murzagulova, K. B.

    2018-02-01

    The review concerns the results of studies on the synthesis of polyelectrolyte coatings on charged surfaces. These coatings represent nanostructured systems with clearly defined tendency to self-assembly and self-adjustment, which is of particular interest for materials science, biomedicine and pharmacology. A breakthrough in this area of knowledge is due to the development and introduction of a new technique, so-called layer-by-layer (LbL) deposition of nanofilms. The technique is very simple, viz., multilayers are formed as a result of alternating treatment of a charged substrate of arbitrary shape with water-salt solutions of differently charged polyelectrolytes. Nevertheless, efficient use of the LbL method to fabricate nanofilms requires meeting certain conditions and limitations that were revealed in the course of research on model systems. Prospects for applications of polyelectrolyte layers in various fields are discussed. The bibliography includes 58 references.

  5. Protein-tannic acid multilayer films: A multifunctional material for microencapsulation of food-derived bioactives.

    PubMed

    Lau, Hooi Hong; Murney, Regan; Yakovlev, Nikolai L; Novoselova, Marina V; Lim, Su Hui; Roy, Nicole; Singh, Harjinder; Sukhorukov, Gleb B; Haigh, Brendan; Kiryukhin, Maxim V

    2017-11-01

    The benefits of various functional foods are often negated by stomach digestion and poor targeting to the lower gastrointestinal tract. Layer-by-Layer assembled protein-tannic acid (TA) films are suggested as a prospective material for microencapsulation of food-derived bioactive compounds. Bovine serum albumin (BSA)-TA and pepsin-TA films demonstrate linear growth of 2.8±0.1 and 4.2±0.1nm per bi-layer, correspondingly, as shown by ellipsometry. Both multilayer films are stable in simulated gastric fluid but degrade in simulated intestinal fluid. Their corresponding degradation constants are 0.026±0.006 and 0.347±0.005nm -1 min -1 . Milk proteins possessing enhanced adhesion to human intestinal surface, Immunoglobulin G (IgG) and β-Lactoglobulin (BLG), are explored to tailor targeting function to BSA-TA multilayer film. BLG does not adsorb onto the multilayer while IgG is successfully incorporated. Microcapsules prepared from the multilayer demonstrate 2.7 and 6.3 times higher adhesion to Caco-2 cells when IgG is introduced as an intermediate and the terminal layer, correspondingly. This developed material has a great potential for oral delivery of numerous active food-derived ingredients. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Nanostructured material-based biofuel cells: recent advances and future prospects.

    PubMed

    Zhao, Cui-E; Gai, Panpan; Song, Rongbin; Chen, Ying; Zhang, Jianrong; Zhu, Jun-Jie

    2017-03-06

    During the past decade, biofuel cells (BFCs) have emerged as an emerging technology on account of their ability to directly generate electricity from biologically renewable catalysts and fuels. Due to the boost in nanotechnology, significant advances have been accomplished in BFCs. Although it is still challenging to promote the performance of BFCs, adopting nanostructured materials for BFC construction has been extensively proposed as an effective and promising strategy to achieve high energy production. In this review, we presented the major novel nanostructured materials applied for BFCs and highlighted the breakthroughs in this field. Based on different natures of the bio-catalysts and electron transfer process at the bio-electrode surfaces, the fundamentals of BFC systems, including enzymatic biofuel cells (EBFCs) and microbial fuel cells (MFCs), have been elucidated. In particular, the principle of electrode materials design has been detailed in terms of enhancing electrical communications between biological catalysts and electrodes. Furthermore, we have provided the applications of BFCs and potential challenges of this technology.

  7. A review of nanostructured lithium ion battery materials via low temperature synthesis.

    PubMed

    Chen, Jiajun

    2013-01-01

    Nanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet- chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed.

  8. Contribution of tin in electrochemical properties of zinc antimonate nanostructures: An electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, M.; Balakumar, S.

    2018-04-01

    Tin (Sn) doped ZnSb2O6 nanostructures was synthesized by chemical precipitation method and was used as an electrode material for supercapacitors to explore its electrochemical stability and potentiality as energy storage materials. Their characteristic structural, morphological and compositional features were investigated through XRD, FESEM and XPS analysis. Results showed that the nanostructures have well ordered crystalline features with spherical particle morphology. As the size and morphology are the vital parameters in exhibiting better electrochemical properties, the prepared nanostructures exhibited a significant specific capacitance of 222 F/g at a current density of 0.5 A/g respectively. While charging and discharging for 1000 cycles, the capacitance retention was enhanced to 105.0% which depicts the stability and activeness of electrochemical sites present in the Sn doped ZnSb2O6 nanostructures even after cycling. Hence, the inclusion of Sn into ZnSb2O6 has contributed in improving the electrochemical properties thereby it represents itself as a potential electrode material for supercapacitors.

  9. Rate- and Temperature-Dependent Material Behavior of a Multilayer Polymer Battery Separator

    NASA Astrophysics Data System (ADS)

    Avdeev, Ilya; Martinsen, Michael; Francis, Alex

    2014-01-01

    Designing battery packs for safety in automotive applications requires multiscale modeling, as macroscopic deformations due to impact cause the mechanical failure of individual cells on a sub-millimeter level. The separator material plays a critical role in this process, as the thinning or perforating of the separator can lead to thermal runaway and catastrophic failure of an entire battery pack. The electrochemical properties of various polymer separators have been extensively investigated; however, the dependency of mechanical properties of these thin films on various factors, such as high temperature and strain rate, has not been sufficiently characterized. In this study, the macroscopic mechanical properties of a multilayer polymer thin film used as a battery separator are studied experimentally at various temperatures, strain rates, and solvent saturations. Due to the anisotropy of the material, material testing was conducted in two perpendicular directions (machine and transverse directions). Material samples were tested in both dry and saturated conditions at several temperatures, and it was found that temperature and strain rate have a nearly linear effect on the stress experienced by the material. Additionally, saturating the separator material in a common lithium-ion solvent had softened it and had a positive effect on its toughness. The experimental results obtained in this study can be used to develop mathematical constitutive models of the multilayer separator material for subsequent numerical simulations and design.

  10. Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origami-induced local destruction of silicon dioxide.

    PubMed

    Shen, Boxuan; Linko, Veikko; Dietz, Hendrik; Toppari, J Jussi

    2015-01-01

    DNA origami is a widely used method for fabrication of custom-shaped nanostructures. However, to utilize such structures, one needs to controllably position them on nanoscale. Here we demonstrate how different types of 3D scaffolded multilayer origamis can be accurately anchored to lithographically fabricated nanoelectrodes on a silicon dioxide substrate by DEP. Straight brick-like origami structures, constructed both in square (SQL) and honeycomb lattices, as well as curved "C"-shaped and angular "L"-shaped origamis were trapped with nanoscale precision and single-structure accuracy. We show that the positioning and immobilization of all these structures can be realized with or without thiol-linkers. In general, structural deformations of the origami during the DEP trapping are highly dependent on the shape and the construction of the structure. The SQL brick turned out to be the most robust structure under the high DEP forces, and accordingly, its single-structure trapping yield was also highest. In addition, the electrical conductivity of single immobilized plain brick-like structures was characterized. The electrical measurements revealed that the conductivity is negligible (insulating behavior). However, we observed that the trapping process of the SQL brick equipped with thiol-linkers tended to induce an etched "nanocanyon" in the silicon dioxide substrate. The nanocanyon was formed exactly between the electrodes, that is, at the location of the DEP-trapped origami. The results show that the demonstrated DEP-trapping technique can be readily exploited in assembling and arranging complex multilayered origami geometries. In addition, DNA origamis could be utilized in DEP-assisted deformation of the substrates onto which they are attached. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials.

    PubMed

    Feng, Shien-Ping; Chang, Ya-Huei; Yang, Jian; Poudel, Bed; Yu, Bo; Ren, Zhifeng; Chen, Gang

    2013-05-14

    A cost-effective and reliable Ni-Au contact on nanostructured Bi2Te3-based alloys for a solar thermoelectric generator (STEG) is reported. The use of MPS SAMs creates a strong covalent binding and more nucleation sites with even distribution for electroplating contact electrodes on nanostructured thermoelectric materials. A reliable high-performance flat-panel STEG can be obtained by using this new method.

  12. Electrostatic nanolithography in polymer materials: an alternative technique for nanostructures formation

    NASA Astrophysics Data System (ADS)

    Lyuksyutov, Sergei F.; Paramonov, Pavel B.; Sigalov, Grigori; Vaia, Richard A.; Juhl, Shane; Sancaktar, Erol

    2003-10-01

    The combination of localized softening attolitres (10^2 -10^4) of polymer film by Jule heating, extremely non-uniform electric field gradients to polarize and manipulate the soften polymer, and single step technique using conventional atomic force microscopy (AFM), establishes a new paradigm for nanolithography in a broad class of polymer materials allowing rapid (order of milliseconds) creation of raised and depressed nanostructures without external heating of a polymer film of AFM tip-film contact [1]. In this work we present recent studies of AFM-assisted electrostatic nanolithography (AFMEN) such as amplitude-modulated AFMEN, and the humidity influence on nanostructures formation during contact mode AFMEN. It has been shown that the aspect ratio of nanostructures grows on the order of magnitude (0.2), while the lateral dimensions of nanodots decreases down to 10-15 nm. [1] S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, S. Juhl, L. Waterhouse, R.M. Ralich, G. Sigalov, and E. Sancaktar, "Electrostatic nanolithography in polymers using atomic force microscopy," Nature Materials 2, 468-472 (2003)

  13. Could Nano-Structured Materials Enable the Improved Pressure Vessels for Deep Atmospheric Probes?

    NASA Technical Reports Server (NTRS)

    Srivastava, D.; Fuentes, A.; Bienstock, B.; Arnold, J. O.

    2005-01-01

    A viewgraph presentation on the use of Nano-Structured Materials to enable pressure vessel structures for deep atmospheric probes is shown. The topics include: 1) High Temperature/Pressure in Key X-Environments; 2) The Case for Use of Nano-Structured Materials Pressure Vessel Design; 3) Carbon based Nanomaterials; 4) Nanotube production & purification; 5) Nanomechanics of Carbon Nanotubes; 6) CNT-composites: Example (Polymer); 7) Effect of Loading sequence on Composite with 8% by volume; 8) Models for Particulate Reinforced Composites; 9) Fullerene/Ti Composite for High Strength-Insulating Layer; 10) Fullerene/Epoxy Composite for High Strength-Insulating Layer; 11) Models for Continuous Fiber Reinforced Composites; 12) Tensile Strength for Discontinuous Fiber Composite; 13) Ti + SWNT Composites: Thermal/Mechanical; 14) Ti + SWNT Composites: Tensile Strength; and 15) Nano-structured Shell for Pressure Vessels.

  14. Reduction of thermal conductivity in MnSi{sub 1.7} multi-layered thin films with artificially inserted Si interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurosaki, Y., E-mail: yosuke.kurosaki.uy@hitachi.com; Yabuuchi, S.; Nishide, A.

    We report a lowered lattice thermal conductivity in nm-scale MnSi{sub 1.7}/Si multilayers which were fabricated by controlling thermal diffusions of Mn and Si atoms. The thickness of the constituent layers is 1.5–5.0 nm, which is comparable to the phonon mean free path of both MnSi{sub 1.7} and Si. By applying the above nanostructures, we reduced the lattice thermal conductivity down to half that of bulk MnSi{sub 1.7}/Si composite materials. The obtained value of 1.0 W/K m is the experimentally observed minimum in MnSi{sub 1.7}-based materials without any heavy element doping and close to the minimum thermal conductivity. We attribute the reduced latticemore » thermal conductivity to phonon scattering at the MnSi{sub 1.7}/Si interfaces in the multilayers.« less

  15. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  16. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiments (A0056)

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hunneman, R.; Whatley, A.; Lipscombe, D. R.

    1984-01-01

    Infrared multilayer interface filter which were used in satellite radiometers were examined. The ability of the filters to withstand the space environment in these applications is critical. An experiment on the LDEF subjects the filters to authoritative spectral measurements following space exposure to ascertain their suitability for spacecraft use and to permit an understanding of degradation mechanisms. The understanding of the effects of prolonged space exposure on spacecraft materials, surface finishes, and adhesive systems is important to the spacecraft designer. Materials technology experiments and experiment on infrared multilayer filters are discussed.

  17. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications.

    PubMed

    Mohamed, Mohamad Azuwa; Abd Mutalib, Muhazri; Mohd Hir, Zul Adlan; M Zain, M F; Mohamad, Abu Bakar; Jeffery Minggu, Lorna; Awang, Nor Asikin; W Salleh, W N

    2017-10-01

    A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials

    DTIC Science & Technology

    2016-04-27

    Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials PI Maria received support to construct a physical...vapor deposition (PVD) system that combines electron beam (e- beam) evaporation, magnetron sputtering, pulsed laser ablation, and ion-assisted deposition ...The instrumentation enables clean, uniform, and rapid deposition of a wide variety of metallic, semiconducting, and ceramic thin films with

  19. Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials

    DTIC Science & Technology

    2016-04-27

    Hybrid Physical Vapor Deposition Instrument for Advanced Functional Multilayers and Materials PI Maria received support to construct a physical... vapor deposition (PVD) system that combines electron beam (e- beam) evaporation, magnetron sputtering, pulsed laser ablation, and ion-assisted deposition ...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Hybrid Physical Vapor Deposition Instrument for Advanced

  20. Preparation and Reactivity of Gasless Nanostructured Energetic Materials

    PubMed Central

    Manukyan, Khachatur V.; Shuck, Christopher E.; Rogachev, Alexander S.; Mukasyan, Alexander S.

    2015-01-01

    High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energetic composites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites. PMID:25868065

  1. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  2. Nanostructured Materials Development for Space Power

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Landi, B. J.; Elich, J. B.; Gennett, T.; Castro, S. L.; Bailey, Sheila G.; Hepp, Aloysius F.

    2003-01-01

    There have been many recent advances in the use of nanostructured materials for space power applications. In particular, the use of high purity single wall nanotubes holds promise for a variety of generation and storage devices including: thin film lithium ion batteries, microelectronic proton exchange membrane (PEM) fuel cells, polymeric thin film solar cells, and thermionic power supplies is presented. Semiconducting quantum dots alone and in conjunction with carbon nanotubes are also being investigated for possible use in high efficiency photovoltaic solar cells. This paper will review some of the work being done at RIT in conjunction with the NASA Glenn Research Center to utilize nanomaterials in space power devices.

  3. Thin film thermocouples for thermoelectric characterization of nanostructured materials

    NASA Astrophysics Data System (ADS)

    Grayson, Matthew; Zhou, Chuanle; Varrenti, Andrew; Chyung, Seung Hye; Long, Jieyi; Memik, Seda

    2011-03-01

    The increased use of nanostructured materials as thermoelectrics requires reliable and accurate characterization of the anisotropic thermal coefficients of small structures, such as superlattices and quantum wire networks. Thin evaporated metal films can be used to create thermocouples with a very small thermal mass and low thermal conductivity, in order to measure thermal gradients on nanostructures and thereby measure the thermal conductivity and the Seebeck coefficient of the nanostructure. In this work we confirm the known result that thin metal films have lower Seebeck coefficients than bulk metals, and we also calibrate the Seebeck coefficient of a thin-film Ni/Cr thermocouple with 50 nm thickness, showing it to have about 1/4 the bulk value. We demonstrate reproducibility of this thin-filmSeebeck coefficient on multiple substrates, and we show that this coefficient does, in fact, change as a function of film thickness. We will discuss prototype measurement designs and preliminary work as to how these thin films can be used to study both Seebeck coefficients and thermal conductivities of superlattices in various geometries. The same technology can in principle be used on integrated circuits for thermal mapping, under the name ``Integrated On-Chip Thermocouple Array'' (IOTA).

  4. Exposure to space radiation of high-performance infrared multilayer filters and materials technology experiment (A0056)

    NASA Technical Reports Server (NTRS)

    Hawkins, Gary J.; Seeley, John S.; Hunneman, Roger

    1992-01-01

    Infrared optical multilayer filters and materials were exposed to the space environment of low Earth orbit on LDEF. The effects are summarized of that environment on the physical and optical properties of the filters and materials flown.

  5. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials.

    PubMed

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-04-11

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  6. Silk fibroin nanostructured materials for biomedical applications

    NASA Astrophysics Data System (ADS)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  7. (Indium, Aluminum) co-doped Zinc Oxide as a Novel Material System for Quantum-Well Multilayer Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Teehan, Sean

    Waste heat recovery from low efficiency industrial processes requires high performance thermoelectric materials to meet challenging requirements. The efficiency such a device is quantified by the dimensionless figure of merit ZT=S2sigmaT/kappa, where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature and kappa is the thermal conductivity. For practical applications these devices are only cost-effective if the ZT is higher than 2. Theoretically it has been proven that by engineering nanostructures with lower dimensionality one can significantly increase ZT. A superlattice, or a system of 2-dimensional multilayer quantum wells has previously shown the potential to be used for thermoelectric structures. However, the use of conventional materials within these structures has only allowed this at low temperatures and has utilized cross-plane transport. This study focuses on both high temperature range operation and the in-plane transport properties of such structures, which benefit from both quantum confinement and an enhancement in density of states near EF. The n-type structures are fabricated by alternately sputtering barrier and well materials of Al-doped ZnO (AZO) and indium co-doped AZO, respectively. Samples investigated consist of 50 periods with targeted layer thicknesses of 10nm, which results in sufficient sampling material as well as quantum well effects. The indium doping level within the quantum well was controlled by varying the target power, and ultimately results in a 3x improvement in power factor (S 2sigma) over the parent bulk materials. The film characterization was determined by X-ray reflectometry, transmission electron microscopy, X-ray diffraction, auger electron spectroscopy, as well as other relevant techniques. In addition, process optimization was performed on material parameters such as layer thickness, interface roughness, and band-gap offset which all play a major role in determining the

  8. Strong Eu2+ light emission in Eu silicate through Eu3+ reduction in Eu2O3/Si multilayer deposited on Si substrates

    PubMed Central

    2013-01-01

    Eu2O3/Si multilayer nanostructured films are deposited on Si substrates by magnetron sputtering. Transmission electron microscopy and X-ray diffraction measurements demonstrate that multicrystalline Eu silicate is homogeneously distributed in the film after high-temperature treatment in N2. The Eu2+ silicate is formed by the reaction of Eu2O3 and Si layers, showing an intense and broad room-temperature photoluminescence peak centered at 610 nm. It is found that the Si layer thickness in nanostructures has great influence on Eu ion optical behavior by forming different Eu silicate crystalline phases. These findings open a promising way to prepare efficient Eu2+ materials for photonic application. PMID:23618344

  9. Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen

    NASA Astrophysics Data System (ADS)

    Stefan-van Staden, Raluca-Ioana; Comnea-Stancu, Ionela Raluca; Surdu-Bob, Carmen Cristina; Badulescu, Marius

    2015-09-01

    New nanostructured materials based on thin films of Cu and Ni deposited on textile material (veil), as well as gold nanostructured microspheres were used for the design of new stochastic sensors. The stochastic sensors were able to detect simultaneously a panel of biomarkers comprising epidermal growth factor receptor, neuron specific enolase, and carcinoembryonic antigen from whole blood samples with high reliabilities - recovery tests higher than 97.00%, with a RSD (%) lower than 0.1%. The stochastic sensors had shown high sensitivities and low determination levels for the detection of the proposed panel of biomarkers making early detection of lung cancer possible by fast screening of whole blood.

  10. Advanced nanostructured materials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Hutchings, Gregory S.

    Due to a global effort to reduce greenhouse gas emissions and to utilize renewable sources of energy, much effort has been directed towards creating new alternatives to fossil fuels. Identifying novel materials for energy storage and conversion can enable radical changes to the current fuel production infrastructure and energy utilization. The use of engineered nanostructured materials in these systems unlocks unique catalytic activity in practical configurations. In this work, research efforts have been focused on the development of nanostructured materials to address the need for both better energy conversion and storage, with applications toward Li-O2 battery electrocatalysts, electrocatalytic generation of H2, conversion of furfural to useful chemicals and fuels, and Li battery anode materials. Highly-active alpha-MnO2 materials were synthesized for use as bifunctional oxygen reduction (ORR) and evolution (OER) catalysts in Li-O2 batteries, and were evaluated under operating conditions with a novel in situ X-ray absorption spectroscopy configuration. Through detailed analysis of local coordination and oxidation states of Mn atoms at key points in the electrochemical cycle, a self-switching behavior affecting the bifunctional activity was identified and found to be critical. In an additional study of materials for lithium batteries, nanostructured TiO2 anode materials doped with first-row transition metals were synthesized and evaluated for improving battery discharge capacity and rate performance, with Ni and Co doping at low levels found to cause the greatest enhancement. In addition to battery technology research, I have also sought to find inexpensive and earth-abundant electrocatalysts to replace state-of-the-art Pt/C in the hydrogen evolution reaction (HER), a systematic computational study of Cu-based bimetallic electrocatalysts was performed. During the screening of dilute surface alloys of Cu mixed with other first-row transition metals, materials with

  11. Hexagonal CeO2 nanostructures: an efficient electrode material for supercapacitors.

    PubMed

    Maheswari, Nallappan; Muralidharan, Gopalan

    2016-09-28

    Cerium oxide (CeO2) has emerged as a new and promising pseudocapacitive material due to its prominent valance states and extensive applications in various fields. In the present study, hexagonal CeO2 nanostructures have been prepared via the hydrothermal method employing cationic surfactant cetyl trimethyl ammonium bromide (CTAB). CTAB ensures a slow rate of hydrolysis to form small sized CeO2 nanostructures. The role of calcination temperature on the morphological, structural, electrochemical properties and cyclic stability has been assessed for supercapacitor applications. The mesoscopic hexagonal architecture endows the CeO2 with not only a higher specific capacity, but also with an excellent rate capability and cyclability. When the charge/discharge current density is increased from 2 to 10 A g(-1) the reversible charge capacity decreased from 927 F g(-1) to 475 F g(-1) while 100% capacity retention at a high current density of 20 A g(-1) even after 1500 cycles could be achieved. Furthermore, the asymmetric supercapacitor based on CeO2 exhibited a significantly higher energy density of 45.6 W h kg(-1) at a power density of 187.5 W kg(-1) with good cyclic stability. The electrochemical richness of the CeO2 nanostructure makes it a suitable electrode material for supercapacitor applications.

  12. Nanostructure of highly aromatic graphene nanosheets -- From optoelectronics to electrochemical energy storage applications

    NASA Astrophysics Data System (ADS)

    Biswas, Sanjib

    The exceptional electrical properties along with intriguing physical and chemical aspects of graphene nanosheets can only be realized by nanostructuring these materials through the homogeneous and orderly distribution of these nanosheets without compromising the aromaticity of the native basal plane. Graphene nanosheets prepared by direct exfoliation as opposed to the graphene oxide route are necessary in order to preserve the native chemical properties of graphene basal planes. This research has been directed at optimally combining the diverse physical and chemical aspects of graphene nanosheets such as particle size, surface area and edge chemistry to fabricate nanostructured architectures for optoelectronics and high power electrochemical energy storage applications. In the first nanostructuring effort, a monolayer of these ultrathin, highly hydrophobic graphene nanosheets was prepared on a large area substrate via self-assembly at the liquid-liquid interface. Driven by the minimization of interfacial energy these planar graphene nanosheets produce a close packed monolayer structure at the liquid-liquid interface. The resulting monolayer film exhibits high electrical conductivity of more than 1000 S/cm and an optical transmission of more than 70-80% between wavelengths of 550 nm and 2000 nm making it an ideal candidate for optoelectronic applications. In the second part of this research, nanostructuring was used to create a configuration suitable for supercapacitor applications. A free standing, 100% binder free multilayer, flexible film consisting of monolayers of graphene nanosheets was prepared by utilizing the van der Waals forces of attraction between the basal plans of the graphene nanosheets coupled with capillary driven and drying-induced collapse. A major benefit in this approach is that the graphene nanosheet's attractive physical and chemical characteristics can be synthesized into an architecture consisting of large and small nanosheets to create an

  13. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  14. Reconfigurable optical assembly of nanostructures

    PubMed Central

    Montelongo, Yunuen; Yetisen, Ali K.; Butt, Haider; Yun, Seok-Hyun

    2016-01-01

    Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays. PMID:27337216

  15. Immobilization of lipase and keratinase on functionalized SBA-15 nanostructured materials

    NASA Astrophysics Data System (ADS)

    Le, Hy G.; Vu, Tuan A.; Tran, Hoa T. K.; Dang, Phuong T.

    2013-12-01

    SBA-15 nanostructured materials were synthesized via hydrothermal treatment and were functionalized with 3- aminopropyltriethoxysilane (APTES). The obtained samples were characterized by different techniques such as XRD, BET, TEM, IR and DTA. After functionalization, it showed that these nanostrucrured materials still maintained the hexagonal pore structure of the parent SBA-15. The model enzyms chosen in this study were lipase and keratinase. Lipase was a biocatalyst for hydrolyzation of long chain triglycerides or methyl esters of long chain alcohols and fatty acids; keratinase is a proteolytic enzyme that catalyzes the cleavage of keratin. The functionalized SBA-15 materials were used to immobilize lipase and keratinase, exhibiting higher activity than that of the unfunctionalized pure silica SBA-15 ones. This might be due to the enhancing of surface hydrophobicity upon functionalization. The surface functionalization of the nanostructured silicas with organic groups can favor the interaction between enzyme and the supports and consequently increasing the operational stability of the immobilized enzymes. The loading of lipase on functionalized SBA-15 materials was higher than that of keratinase. This might be rationalized by the difference in size of enzyms.

  16. Self-assembly strategies for the synthesis of functional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Perego, M.; Seguini, G.

    2016-06-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  17. The Process of Nanostructuring of Metal (Iron) Matrix in Composite Materials for Directional Control of the Mechanical Properties

    PubMed Central

    Zemtsova, Elena

    2014-01-01

    We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology. PMID:24695459

  18. The process of nanostructuring of metal (iron) matrix in composite materials for directional control of the mechanical properties.

    PubMed

    Zemtsova, Elena; Yurchuk, Denis; Smirnov, Vladimir

    2014-01-01

    We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1-50 nm. This material can be represented as the material type "frame in the frame" that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology.

  19. Technique for etching monolayer and multilayer materials

    DOEpatents

    Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert

    2015-10-06

    A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.

  20. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    NASA Astrophysics Data System (ADS)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred

    2017-03-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement

  1. Ion beam induced optical and surface modification in plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Udai B.; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran

    2016-07-01

    In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm-1 along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.

  2. Approximate Green's function methods for HZE transport in multilayered materials

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Shinn, Judy L.; Costen, Robert C.

    1993-01-01

    A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code was found to be highly efficient and compared well with the perturbation approximation.

  3. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    PubMed Central

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-01-01

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches. PMID:28788602

  4. Synthesis of large-area multilayer hexagonal boron nitride for high material performance.

    PubMed

    Kim, Soo Min; Hsu, Allen; Park, Min Ho; Chae, Sang Hoon; Yun, Seok Joon; Lee, Joo Song; Cho, Dae-Hyun; Fang, Wenjing; Lee, Changgu; Palacios, Tomás; Dresselhaus, Mildred; Kim, Ki Kang; Lee, Young Hee; Kong, Jing

    2015-10-28

    Although hexagonal boron nitride (h-BN) is a good candidate for gate-insulating materials by minimizing interaction from substrate, further applications to electronic devices with available two-dimensional semiconductors continue to be limited by flake size. While monolayer h-BN has been synthesized on Pt and Cu foil using chemical vapour deposition (CVD), multilayer h-BN is still absent. Here we use Fe foil and synthesize large-area multilayer h-BN film by CVD with a borazine precursor. These films reveal strong cathodoluminescence and high mechanical strength (Young's modulus: 1.16 ± 0.1 TPa), reminiscent of formation of high-quality h-BN. The CVD-grown graphene on multilayer h-BN film yields a high carrier mobility of ∼ 24,000 cm(2) V(-1) s(-1) at room temperature, higher than that (∼ 13,000 (2) V(-1) s(-1)) with exfoliated h-BN. By placing additional h-BN on a SiO2/Si substrate for a MoS2 (WSe2) field-effect transistor, the doping effect from gate oxide is minimized and furthermore the mobility is improved by four (150) times.

  5. Synthesis of large-area multilayer hexagonal boron nitride for high material performance

    PubMed Central

    Kim, Soo Min; Hsu, Allen; Park, Min Ho; Chae, Sang Hoon; Yun, Seok Joon; Lee, Joo Song; Cho, Dae-Hyun; Fang, Wenjing; Lee, Changgu; Palacios, Tomás; Dresselhaus, Mildred; Kim, Ki Kang; Lee, Young Hee; Kong, Jing

    2015-01-01

    Although hexagonal boron nitride (h-BN) is a good candidate for gate-insulating materials by minimizing interaction from substrate, further applications to electronic devices with available two-dimensional semiconductors continue to be limited by flake size. While monolayer h-BN has been synthesized on Pt and Cu foil using chemical vapour deposition (CVD), multilayer h-BN is still absent. Here we use Fe foil and synthesize large-area multilayer h-BN film by CVD with a borazine precursor. These films reveal strong cathodoluminescence and high mechanical strength (Young's modulus: 1.16±0.1 TPa), reminiscent of formation of high-quality h-BN. The CVD-grown graphene on multilayer h-BN film yields a high carrier mobility of ∼24,000 cm2 V−1 s−1 at room temperature, higher than that (∼13,000 2 V−1 s−1) with exfoliated h-BN. By placing additional h-BN on a SiO2/Si substrate for a MoS2 (WSe2) field-effect transistor, the doping effect from gate oxide is minimized and furthermore the mobility is improved by four (150) times. PMID:26507400

  6. Cavitational synthesis of nanostructured inorganic materials for enhanced heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Krausz, Ivo Michael

    The synthesis of nanostructured inorganic materials by hydrodynamic cavitation processing was investigated. The goal of this work was to develop a general synthesis technique for nanostructured materials with a control over crystallite size in the 1--20 nm range. Materials with crystallite sizes in this range have shown enhanced catalytic activity compared to materials with larger crystallite sizes. Several supported and unsupported inorganic materials were studied to understand the effects of cavitation on crystallite size. Cavitation processing of calcium fluoride resulted in more spherical particles, attached to one another by melted necks. This work produced the first evidence of shock wave heating of nanostructured materials by hydrodynamic cavitation processing. Hydrodynamic cavitation synthesis of various catalytic support materials indicated that their phase composition and purity could be controlled by adjustment of the processing parameters. Zirconia/alumina supports synthesized using hydro-dynamic cavitation and calcined to 1368 K retained a high purity cubic zirconia phase, whereas classically prepared samples showed a phase transformation to monoclinic zirconia. Similarly, the synthesis of alumina resulted in materials with varying Bohmite and Bayerite contents as a function of the process parameters. High temperature calcination resulted in stable alumina supports with varying amounts of delta-, and theta-alumina. Synthesis studies of palladium and silver showed modest variations in crystallite size as a function of cavitation process parameters. Calcination resulted in larger grain materials, indicating a disappearance of intergrain boundaries. Based on these results, a new synthesis method was studied involving controlled agglomeration of small silver crystallites by hydrodynamic cavitation processing, followed by deposition on alumina. The optimal pH, concentration, and processing time for controlling the silver crystallite size in the cavitation

  7. Figure correction of multilayer coated optics

    DOEpatents

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  8. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kan-Sheng; Xu, Rui; Luu, Norman S.

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-basedmore » lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 degrees C, this work advances lithium-ion battery technology into unprecedented regimes of operation.« less

  9. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion.

    PubMed

    Chen, Kan-Sheng; Xu, Rui; Luu, Norman S; Secor, Ethan B; Hamamoto, Koichi; Li, Qianqian; Kim, Soo; Sangwan, Vinod K; Balla, Itamar; Guiney, Linda M; Seo, Jung-Woo T; Yu, Xiankai; Liu, Weiwei; Wu, Jinsong; Wolverton, Chris; Dravid, Vinayak P; Barnett, Scott A; Lu, Jun; Amine, Khalil; Hersam, Mark C

    2017-04-12

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.

  10. Prospects of Nanostructure Materials and Their Composites as Antimicrobial Agents

    PubMed Central

    Baranwal, Anupriya; Srivastava, Ananya; Kumar, Pradeep; Bajpai, Vivek K.; Maurya, Pawan K.; Chandra, Pranjal

    2018-01-01

    Nanostructured materials (NSMs) have increasingly been used as a substitute for antibiotics and additives in various products to impart microbicidal effect. In particular, use of silver nanoparticles (AgNPs) has garnered huge researchers' attention as potent bactericidal agent due to the inherent antimicrobial property of the silver metal. Moreover, other nanomaterials (carbon nanotubes, fullerenes, graphene, chitosan, etc.) have also been studied for their antimicrobial effects in order ensure their application in widespread domains. The present review exclusively emphasizes on materials that possess antimicrobial activity in nanoscale range and describes their various modes of antimicrobial action. It also entails broad classification of NSMs along with their application in various fields. For instance, use of AgNPs in consumer products, gold nanoparticles (AuNPs) in drug delivery. Likewise, use of zinc oxide nanoparticles (ZnO-NPs) and titanium dioxide nanoparticles (TiO2-NPs) as additives in consumer merchandises and nanoscale chitosan (NCH) in medical products and wastewater treatment. Furthermore, this review briefly discusses the current scenario of antimicrobial nanostructured materials (aNSMs), limitations of current research and their future prospects. To put various perceptive insights on the recent advancements of such antimicrobials, an extended table is incorporated, which describes effect of NSMs of different dimensions on test microorganisms along with their potential widespread applications. PMID:29593676

  11. Preparation of TiO2/boron-doped diamond/Ta multilayer films and use as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Shi, Chao; Li, Hongji; Li, Cuiping; Li, Mingji; Qu, Changqing; Yang, Baohe

    2015-12-01

    We report nanostructured TiO2/boron-doped diamond (BDD)/Ta multilayer films and their electrochemical performances as supercapacitor electrodes. The BDD films were grown on Ta substrates using electron-assisted hot filament chemical vapor deposition. Ti metal layers were deposited on the BDD surfaces by radio frequency magnetron sputtering, and nanostructured TiO2/BDD/Ta thin films were prepared by electrochemical etching and thermal annealing. The successful formation of TiO2 and Ta layered nanostructures was demonstrated using scanning electron and transmission electron microscopies. The electrochemical responses of these electrodes were evaluated by examining their use as electrical double-layer capacitors, using cyclic voltammetry, and galvanostatic charge/discharge and impedance measurements. When the TiO2/BDD/Ta film was used as the working electrode with 0.1 M Na2SO4 as the electrolyte, the capacitor had a specific capacitance of 5.23 mF cm-2 at a scan rate of 5 mV s-1 for a B/C ratio of 0.1% w/w. Furthermore, the TiO2/BDD/Ta film had improved electrochemical stability, with a retention of 89.3% after 500 cycles. This electrochemical behavior is attributed to the quality of the BDD, the surface roughness and electrocatalytic activities of the TiO2 layer and Ta nanoporous structures, and the synergies between them. These results show that TiO2/BDD/Ta films are promising as capacitor electrodes for special applications.

  12. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  13. Nano-structuring of multi-layer material by single x-ray vortex pulse with femtosecond duration

    NASA Astrophysics Data System (ADS)

    Kohmura, Yoshiki; Zhakhovsky, Vasily; Takei, Dai; Suzuki, Yoshio; Takeuchi, Akihisa; Inoue, Ichiro; Inubushi, Yuichi; Inogamov, Nail; Ishikawa, Tetsuya; Yabashi, Makina

    2018-03-01

    A narrow zero-intensity spot arising from an x-ray vortex has huge potential for future applications such as nanoscopy and nanofabrication. We here present an X-ray Free Electron Laser (XFEL) experiment with a focused vortex wavefront which generated high aspect ratio nanoneedles on a Cr/Au multi-layer (ML) specimen. A sharp needle with a typical width and height of 310 and 600 nm was formed with a high occurrence rate at the center of a 7.71 keV x-ray vortex on this ML specimen, respectively. The observed width exceeds the diffraction limit, and the smallest structures ever reported using an intense-XFEL ablation were fabricated. We found that the elemental composition of the nanoneedles shows a significant difference from that of the unaffected area of Cr/Au ML. All these results are well explained by the molecular dynamics simulations, leading to the elucidation of the needle formation mechanism on an ultra-fast timescale.

  14. Natural polysaccharides as active biomaterials in nanostructured films for sensing.

    PubMed

    Eiras, Carla; Santos, Amanda C; Zampa, Maysa F; de Brito, Ana Cristina Facundo; Leopoldo Constantino, Carlos J; Zucolotto, Valtencir; dos Santos, José R

    2010-01-01

    The search for natural, biocompatible and degradable materials amenable to be used in biomedical/analytical applications has attracted attention, either from the environmental or medical point of view. Examples are the polysaccharides extracted from natural gums, which have found applications in the food and pharmaceutical industries as stabilizers or thickening agent. In a previous paper, however, it was shown that a Brazilian natural gum, chicha (Sterculia striata), is suitable for application as building block for nanostructured film fabrication in conjunction with phthalocyanines. The films displayed electroactivity and could be used in sensing. In the present paper, we introduce the use of two different natural gums, viz., angico (Anadenanthera colubrina) and caraia (Sterculia urens), as active biomaterials to be used to modification layers, in the form of nanostructured thin films, including the study of dopamine detection. The multilayer films were assembled in conjunction with nickel tetrasulfonated phthalocyanines (NiTsPC) and displayed good chemical and electrochemical stability, allowing their use as transducer elements in sensors for detection of specific neurotransmitters. It is suggested here that nanoscale manipulation of new biodegradable natural polymers opens up a variety of new opportunities for the use of these materials in advanced biomedical and analytical devices.

  15. Water-evaporation-induced electricity with nanostructured carbon materials.

    PubMed

    Xue, Guobin; Xu, Ying; Ding, Tianpeng; Li, Jia; Yin, Jun; Fei, Wenwen; Cao, Yuanzhi; Yu, Jin; Yuan, Longyan; Gong, Li; Chen, Jian; Deng, Shaozhi; Zhou, Jun; Guo, Wanlin

    2017-05-01

    Water evaporation is a ubiquitous natural process that harvests thermal energy from the ambient environment. It has previously been utilized in a number of applications including the synthesis of nanostructures and the creation of energy-harvesting devices. Here, we show that water evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity. We find that evaporation from centimetre-sized carbon black sheets can reliably generate sustained voltages of up to 1 V under ambient conditions. The interaction between the water molecules and the carbon layers and moreover evaporation-induced water flow within the porous carbon sheets are thought to be key to the voltage generation. This approach to electricity generation is related to the traditional streaming potential, which relies on driving ionic solutions through narrow gaps, and the recently reported method of moving ionic solutions across graphene surfaces, but as it exploits the natural process of evaporation and uses cheap carbon black it could offer advantages in the development of practical devices.

  16. Dimensional-Hybrid Structures of 2D Materials with ZnO Nanostructures via pH-Mediated Hydrothermal Growth for Flexible UV Photodetectors.

    PubMed

    Lee, Young Bum; Kim, Seong Ku; Lim, Yi Rang; Jeon, In Su; Song, Wooseok; Myung, Sung; Lee, Sun Sook; Lim, Jongsun; An, Ki-Seok

    2017-05-03

    Complementary combination of heterostructures is a crucial factor for the development of 2D materials-based optoelectronic devices. Herein, an appropriate solution for fabricating complementary dimensional-hybrid nanostructures comprising structurally tailored ZnO nanostructures and 2D materials such as graphene and MoS 2 is suggested. Structural features of ZnO nanostructures hydrothermally grown on graphene and MoS 2 are deliberately manipulated by adjusting the pH value of the growing solution, which will result in the formation of ZnO nanowires, nanostars, and nanoflowers. The detailed growth mechanism is further explored for the structurally tailored ZnO nanostructures on the 2D materials. Furthermore, a UV photodetector based on the dimensional-hybrid nanostructures is fabricated, which demonstrates their excellent photocurrent and mechanical durability. This can be understood by the existence of oxygen vacancies and oxygen-vacancies-induced band narrowing in the ZnO nanostructures, which is a decisive factor for determining their photoelectrical properties in the hybrid system.

  17. Pattering of nanostructures with high aspect ratio in polymer materials

    NASA Astrophysics Data System (ADS)

    Lyuksyutov, Sergei; Paramonov, Pavel; Sancaktar, Erol; Vaia, Richard; Juhl, Shane

    2004-04-01

    The generation of features larger than the initial atomic force microscope (AFM) tip-surface distance (presumably less that 1nm for unbiased tip) had previously been reported for silicon and metal oxidation. Such nanostructure (1-50 nm high) formation exceeding AFM tip-sample separation has been observed by us during AFM-assisted nanolithography in polymers [1,2]. The technique produces nanostructures up to 100 nm high in thin (10-30 nm) polymer films through the one-step process. The specific spatial details of the tip-surface contact profile, as well as cantilever motion, with applied bias during writing is not well understood and we are not aware of any comprehensive explanation provided in literature for this effect. In this work we analyze tip-polymer interaction using real-time tip deflection. An abrupt lift-up of biased AFM tip has been recorded experimentally and found to be proportional to the height of polymer nanostructures. This fact was used to pattern robust nanostructures of 20-100 nm high using amplitude modulated AFM-assisted electrostatic nanolithography [2] as the arrays of dots in polystyrene and polybenzoxasole polymer films. References [1] S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, S. Juhl, L. Waterhouse, R.M. Ralich, G. Sigalov, and E. Sancaktar, Nature Materials 2(7) 468-472 (2003) [2] S.F. Lyuksyutov, R.A. Vaia, P.B. Paramonov, and S. Juhl, Appl. Phys. Lett. 83 (21), 4405-4407 (2003)

  18. Nanostructured Electrode Materials for Electrochemical Capacitor Applications.

    PubMed

    Choi, Hojin; Yoon, Hyeonseok

    2015-06-02

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013). Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  19. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    NASA Astrophysics Data System (ADS)

    Goyal, Vivek Kumar

    Continuous downscaling of Si complementary metal-oxide semiconductor (CMOS) technology and progress in high-power electronics demand more efficient heat removal techniques to handle the increasing power density and rising temperature of hot spots. For this reason, it is important to investigate thermal properties of materials at nanometer scale and identify materials with the extremely large or extremely low thermal conductivity for applications as heat spreaders or heat insulators in the next generation of integrated circuits. The thin films used in microelectronic and photonic devices need to have high thermal conductivity in order to transfer the dissipated power to heat sinks more effectively. On the other hand, thermoelectric devices call for materials or structures with low thermal conductivity because the performance of thermoelectric devices is determined by the figure of merit Z=S2sigma/K, where S is the Seebeck coefficient, K and sigma are the thermal and electrical conductivity, respectively. Nanostructured superlattices can have drastically reduced thermal conductivity as compared to their bulk counterparts making them promising candidates for high-efficiency thermoelectric materials. Other applications calling for thin films with low thermal conductivity value are high-temperature coatings for engines. Thus, materials with both high thermal conductivity and low thermal conductivity are technologically important. The increasing temperature of the hot spots in state-of-the-art chips stimulates the search for innovative methods for heat removal. One promising approach is to incorporate materials, which have high thermal conductivity into the chip design. Two suitable candidates for such applications are diamond and graphene. Another approach is to integrate the high-efficiency thermoelectric elements for on-spot cooling. In addition, there is strong motivation for improved thermal interface materials (TIMs) for heat transfer from the heat-generating chip

  20. Liquid crystal alignment in electro-responsive nanostructured thermosetting materials based on block copolymer dispersed liquid crystal.

    PubMed

    Tercjak, A; Garcia, I; Mondragon, I

    2008-07-09

    Novel well-defined nanostructured thermosetting systems were prepared by modification of a diglicydylether of bisphenol-A epoxy resin (DGEBA) with 10 or 15 wt% amphiphilic poly(styrene-b-ethylene oxide) block copolymer (PSEO) and 30 or 40 wt% low molecular weight liquid crystal 4'-(hexyl)-4-biphenyl-carbonitrile (HBC) using m-xylylenediamine (MXDA) as a curing agent. The competition between well-defined nanostructured materials and the ability for alignment of the liquid crystal phase in the materials obtained has been studied by atomic and electrostatic force microscopy, AFM and EFM, respectively. Based on our knowledge, this is the first time that addition of an adequate amount (10 wt%) of a block copolymer to 40 wt% HBC-(DGEBA/MXDA) leads to a well-organized nanostructured thermosetting system (between a hexagonal and worm-like ordered structure), which is also electro-responsive with high rate contrast. This behavior was confirmed using electrostatic force microscopy (EFM), by means of the response of the HBC liquid crystal phase to the voltage applied to the EFM tip. In contrast, though materials containing 15 wt% PSEO and 30 wt% HBC also form a well-defined nanostructured thermosetting system, they do not show such a high contrast between the uncharged and charged surface.

  1. Layer-by-layer strippable Ag multilayer films fabricated by modular assembly.

    PubMed

    Li, Yan; Chen, Xiaoyan; Li, Qianqian; Song, Kai; Wang, Shihui; Chen, Xiaoyan; Zhang, Kai; Fu, Yu; Jiao, Yong-Hua; Sun, Ting; Liu, Fu-Chun; Han, En-Hou

    2014-01-21

    We have developed a new method to fabricate multilayer films, which uses prepared thin films as modular blocks and transfer as operation mode to build up multilayer structures. In order to distinguish it from the in situ fabrication manner, this method is called modular assembly in this study. On the basis of such concept, we have fabricated a multilayer film using the silver mirror film as the modular block and poly(lactic acid) as the transfer tool. Due to the special double-layer structure of the silver mirror film, the resulting multilayer film had a well-defined stratified architecture with alternate porous/compact layers. As a consequence of the distinct structure, the interaction between the adjacent layers was so weak that the multilayer film could be layer-by-layer stripped. In addition, the top layer in the film could provide an effective protection on the morphology and surface property of the underlying layers. This suggests that if the surface of the film was deteriorated, the top layer could be peeled off and the freshly exposed surface would still maintain the original function. The successful preparation of the layer-by-layer strippable silver multilayer demonstrates that modular assembly is a feasible and effective method to build up multilayer films capable of creating novel and attractive micro/nanostructures, having great potential in the fabrication of nanodevices and coatings.

  2. Charge carrier transport in defective reduced graphene oxide as quantum dots and nanoplatelets in multilayer films

    NASA Astrophysics Data System (ADS)

    Jimenez, Mawin J. M.; Oliveira, Rafael F.; Almeida, Tiago P.; Hensel Ferreira, Rafael C.; Bufon, Carlos Cesar B.; Rodrigues, Varlei; Pereira-da-Silva, Marcelo A.; Gobbi, Ângelo L.; Piazzetta, Maria H. O.; Riul, Antonio, Jr.

    2017-12-01

    Graphene is a breakthrough 2D material due to its unique mechanical, electrical, and thermal properties, with considerable responsiveness in real applications. However, the coverage of large areas with pristine graphene is a challenge and graphene derivatives have been alternatively exploited to produce hybrid and composite materials that allow for new developments, considering also the handling of large areas using distinct methodologies. For electronic applications there is significant interest in the investigation of the electrical properties of graphene derivatives and related composites to determine whether the characteristic 2D charge transport of pristine graphene is preserved. Here, we report a systematic study of the charge transport mechanisms of reduced graphene oxide chemically functionalized with sodium polystyrene sulfonate (PSS), named as GPSS. GPSS was produced either as quantum dots (QDs) or nanoplatelets (NPLs), being further nanostructured with poly(diallyldimethylammonium chloride) through the layer-by-layer (LbL) assembly to produce graphene nanocomposites with molecular level control. Current-voltage (I-V) measurements indicated a meticulous growth of the LbL nanostructures onto gold interdigitated electrodes (IDEs), with a space-charge-limited current dominated by a Mott-variable range hopping mechanism. A 2D intra-planar conduction within the GPSS nanostructure was observed, which resulted in effective charge carrier mobility (μ) of 4.7 cm2 V-1 s-1 for the QDs and 34.7 cm2 V-1 s-1 for the NPLs. The LbL assemblies together with the dimension of the materials (QDs or NPLs) were favorably used for the fine tuning and control of the charge carrier mobility inside the LbL nanostructures. Such 2D charge conduction mechanism and high μ values inside an interlocked multilayered assembly containing graphene-based nanocomposites are of great interest for organic devices and functionalization of interfaces.

  3. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaokai; Jood, Priyanka; Ohta, Michihiro

    2016-01-01

    In this work, we demonstrate the use of high performance nanostructured PbTe-based materials in high conversion efficiency thermoelectric modules. We fabricated the samples of PbTe-2% MgTe doped with 4% Na and PbTe doped with 0.2% PbI2 with high thermoelectric figure of merit (ZT) and sintered them with Co-Fe diffusion barriers for use as p- and n-type thermoelectric legs, respectively. Transmission electron microscopy of the PbTe legs reveals two shapes of nanostructures, disk-like and spherical. The reduction in lattice thermal conductivity through nanostructuring gives a ZT of similar to 1.8 at 810 K for p-type PbTe and similar to 1.4 atmore » 750 K for n-type PbTe. Nanostructured PbTe-based module and segmented-leg module using Bi2Te3 and nanostructured PbTe were fabricated and tested with hot-side temperatures up to 873 K in a vacuum. The maximum conversion efficiency of similar to 8.8% for a temperature difference (Delta T) of 570 K and B11% for a Delta T of 590 K have been demonstrated in the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module, respectively. Three-dimensional finite-element simulations predict that the maximum conversion efficiency of the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module reaches 12.2% for a Delta T of 570 K and 15.6% for a Delta T of 590 K respectively, which could be achieved if the electrical and thermal contact between the nanostructured PbTe legs and Cu interconnecting electrodes is further improved.« less

  4. Fabrication and nanoscale characterization of magnetic multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Elawayeb, Mohamed

    Magnetic multilayers nanowires are scientifically fascinating and have potential industrial applications in many areas of advanced nanotechnology. These applications arise due to the nanoscale dimensions of nanostructures that lead to unique physical properties. Magnetic multilayer nanowires have been successfully produced by electrodeposition into templates. Anodic Aluminium Oxide (AAO) membranes were used as templates in this process; the templates were fabricated by anodization method in acidic solutions at a fixed voltage. The fabrication method of a range of magnetic multilayer nanowires is described in this study and their structure and dimensions were analyzed using scanning electron microscope (SEM), Transmission electron microscope (TEM) and scanning transmission electron microscopy (STEM). This study is focused on the first growth of NiFe/Pt and NiFe/Fe magnetic multilayer nanowires, which were successfully fabricated by pulse electrodeposition into the channels of porous anodic aluminium oxide (AAO) templates, and characterized at the nanoscale. Individual nanowires have uniform structure and regular periodicity. The magnetic and nonmagnetic layers are polycrystalline, with randomly oriented fcc lattice structure crystallites. Chemical compositions of the individual nanowires were analyzed using TEM equipped with energy-dispersive x-ray analysis (EDX) and electron energy loss spectrometry (EELS). The electrical and magnetoresistance properties of individual magnetic multilayer nanowires have been measured inside a SEM using two sharp tip electrodes attached to in situ nanomanipulators and a new electromagnet technique. The giant magnetoresistance (GMR) effect of individual magnetic multilayer nanowires was measured in the current - perpendicular to the plane (CPP) geometry using a new in situ method at variable magnetic field strength and different orientations..

  5. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  6. Disordered 3 D Multi-layer Graphene Anode Material from CO2 for Sodium-Ion Batteries.

    PubMed

    Smith, Kassiopeia; Parrish, Riley; Wei, Wei; Liu, Yuzi; Li, Tao; Hu, Yun Hang; Xiong, Hui

    2016-06-22

    We report the application of disordered 3 D multi-layer graphene, synthesized directly from CO2 gas through a reaction with Li at 550 °C, as an anode for Na-ion batteries (SIBs) toward a sustainable and greener future. The material exhibited a reversible capacity of ∼190 mA h g(-1) with a Coulombic efficiency of 98.5 % at a current density of 15 mA g(-1) . The discharge capacity at higher potentials (>0.2 V vs. Na/Na(+) ) is ascribed to Na-ion adsorption at defect sites, whereas the capacity at low potentials (<0.2 V) is ascribed to intercalation between graphene sheets through electrochemical characterization, Raman spectroscopy, and small-angle X-ray scattering experiments. The disordered multi-layer graphene electrode demonstrated a great rate capability and cyclability. This novel approach to synthesize disordered 3 D multi-layer graphene from CO2 gas makes it attractive not only as an anode material for SIBs but also to mitigate CO2 emission. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nanostructured materials: A novel approach to enhanced performance. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korth, G.E.; Froes, F.H.; Suryanarayana, C.

    Nanostuctured materials are an emerging class of materials that can exhibit physical and mechanical characteristics often exceeding those exhibited by conventional course grained materials. A number of different techniques can be employed to produce these materials. In this program, the synthesis methods were (a) mechanical alloying , (b) physical vapor deposition, and (c) plasma processing. The physical vapor deposition and plasma processing were discontinued after initial testing with subsequent efforts focused on mechanical alloying. The major emphasis of the program was on the synthesis, consolidation, and characterization of nanostructured Al-Fe, Ti-Al, Ti-Al-Nb, and Fe-Al by alloying intermetallics with a viewmore » to increase their ductilities. The major findings of this project are reported.« less

  8. Characterization and imaging of nanostructured materials using tabletop extreme ultraviolet light sources

    NASA Astrophysics Data System (ADS)

    Karl, Robert; Knobloch, Joshua; Frazer, Travis; Tanksalvala, Michael; Porter, Christina; Bevis, Charles; Chao, Weilun; Abad Mayor, Begoña.; Adams, Daniel; Mancini, Giulia F.; Hernandez-Charpak, Jorge N.; Kapteyn, Henry; Murnane, Margaret

    2018-03-01

    Using a tabletop coherent extreme ultraviolet source, we extend current nanoscale metrology capabilities with applications spanning from new models of nanoscale transport and materials, to nanoscale device fabrication. We measure the ultrafast dynamics of acoustic waves in materials; by analyzing the material's response, we can extract elastic properties of films as thin as 11nm. We extend this capability to a spatially resolved imaging modality by using coherent diffractive imaging to image the acoustic waves in nanostructures as they propagate. This will allow for spatially resolved characterization of the elastic properties of non-isotropic materials.

  9. Improved thermoelectric property of B-doped Si/Ge multilayered quantum dot films prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Peng, Ying; Miao, Lei; Li, Chao; Huang, Rong; Urushihara, Daisuke; Asaka, Toru; Nakatsuka, Osamu; Tanemura, Sakae

    2018-01-01

    The use of nanostructured thermoelectric materials that can effectively reduce the lattice conductivity with minimal effects on electrical properties has been recognized as the most successful approach to decoupling three key parameters (S, σ, and κ) and reaching high a dimensionless figure of merit (ZT) values. Here, five-period multilayer films consisting of 10 nm B-doped Si, 1.1 nm B, and 13 nm B-doped Ge layers in each period were prepared on Si wafer substrates using a magnetron sputtering system. Nanocrystallites of 22 nm diameter were formed by post-annealing at 800 °C in a short time. The nanostructures were confirmed by X-ray diffraction analysis, Raman spectroscopy, and transmission electron microscopy. The maximum Seebeck coefficient of Si/Ge films is significantly increased to 850 µV/K at 200 °C with their electrical resistivity decreased to 1.3 × 10-5 Ω·m, and the maximum power factor increased to 5.6 × 10-2 W·m-1·K-2. The improved thermoelectric properties of Si/Ge nanostructured films are possibly attributable to the synergistic effects of interface scattering, interface barrier, and quantum dot localization.

  10. Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures

    DOEpatents

    Adzic, Radoslav R.; Harris, Alexander

    2015-10-06

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The manufacturing process may involve initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  11. Platinum-based electrocatalysts synthesized by depositing contiguous adlayers on carbon nanostructures

    DOEpatents

    Adzic, Radoslav; Harris, Alexander

    2013-03-26

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  12. Flaw investigation in a multi-layered, multi-material composite: Using air-coupled ultrasonic resonance imaging

    NASA Astrophysics Data System (ADS)

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2012-05-01

    Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.

  13. Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.

    PubMed

    Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V

    2010-10-01

    The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.

  14. Nanoprobes, nanostructured materials and solid state materials

    NASA Astrophysics Data System (ADS)

    Yin, Houping

    2005-07-01

    Novel templates have been developed to prepare nanostructured porous materials through nonsurfactant templated pathway. And new applications of these materials, such as drug delivery and molecular imprinting, have been explored. The relationship between template content and pore structure has been investigated. The composition and pore structures were studied in detail using IR, TGA, SEM, TEM, BET and XRD. The obtained mesoporous materials have tunable diameters in the range of 2--12 nm. Due to the many advantages of this nonsurfactant templated pathway, such as environment friendly and biocompatibility, controlled release of antibiotics in the nanoporous materials were studied. The in vitro release properties were found to depend on the silica structures which were well tuned by varying the template content. A controlled long-term release pattern of vancomycin was achieved when the template content was 30 wt% or lower. Nanoscale electrochemical probes with dimensions as small as 50 nm in diameter and 1--2 mum in length were fabricated using electron beam deposition on the apex of conventional micron size electrodes. The electroactive region was limited to the extreme tip of the nanoprobe by coating with an insulating polymer and re-opening of the coating at the extreme tip. The novel nanoelectrodes thus prepared were employed to probe neurons in mouse brain slice and the results suggest that the nanoprobes were capable of recording neuronal excitatory postsynaptic potential signals. Interesting solid state chemistry was found in oxygenated iron phthalocyanine. Their Mossbauer spectra show the formation of four oxygenated species apart from the unoxygenated parent compound. The oxygen-bridged compounds formed in the solid matrix bear no resemblance to the one formed by solution chemistry. Tentative assignment of species has been made with the help of Mossbauer and IR spectroscopy. An effort to modify aniline trimer for potential nanoelectronics applications and to

  15. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications

    PubMed Central

    Li, Hui; Lee, Taek; Dziubla, Thomas; Pi, Fengmei; Guo, Sijin; Xu, Jing; Li, Chan; Haque, Farzin; Liang, Xing-Jie; Guo, Peixuan

    2015-01-01

    Summary The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field. PMID:26770259

  16. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    PubMed Central

    Choi, Hojin; Yoon, Hyeonseok

    2015-01-01

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013). Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead. PMID:28347044

  17. Etched-multilayer phase shifting masks for EUV lithography

    DOEpatents

    Chapman, Henry N.; Taylor, John S.

    2005-04-05

    A method is disclosed for the implementation of phase shifting masks for EUV lithography. The method involves directly etching material away from the multilayer coating of the mask, to cause a refractive phase shift in the mask. By etching into the multilayer (for example, by reactive ion etching), rather than depositing extra material on the top of the multilayer, there will be minimal absorption loss associated with the phase shift.

  18. Recent progress in high-mobility thin-film transistors based on multilayer 2D materials

    NASA Astrophysics Data System (ADS)

    Hong, Young Ki; Liu, Na; Yin, Demin; Hong, Seongin; Kim, Dong Hak; Kim, Sunkook; Choi, Woong; Yoon, Youngki

    2017-04-01

    Two-dimensional (2D) layered semiconductors are emerging as promising candidates for next-generation thin-film electronics because of their high mobility, relatively large bandgap, low-power switching, and the availability of large-area growth methods. Thin-film transistors (TFTs) based on multilayer transition metal dichalcogenides or black phosphorus offer unique opportunities for next-generation electronic and optoelectronic devices. Here, we review recent progress in high-mobility transistors based on multilayer 2D semiconductors. We describe the theoretical background on characterizing methods of TFT performance and material properties, followed by their applications in flexible, transparent, and optoelectronic devices. Finally, we highlight some of the methods used in metal-semiconductor contacts, hybrid structures, heterostructures, and chemical doping to improve device performance.

  19. Nano-array integrated monolithic devices: toward rational materials design and multi-functional performance by scalable nanostructures assembly

    DOE PAGES

    Wang, Sibo; Ren, Zheng; Guo, Yanbing; ...

    2016-03-21

    We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less

  20. Nano-array integrated monolithic devices: toward rational materials design and multi-functional performance by scalable nanostructures assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sibo; Ren, Zheng; Guo, Yanbing

    We report the scalable three-dimensional (3-D) integration of functional nanostructures into applicable platforms represents a promising technology to meet the ever-increasing demands of fabricating high performance devices featuring cost-effectiveness, structural sophistication and multi-functional enabling. Such an integration process generally involves a diverse array of nanostructural entities (nano-entities) consisting of dissimilar nanoscale building blocks such as nanoparticles, nanowires, and nanofilms made of metals, ceramics, or polymers. Various synthetic strategies and integration methods have enabled the successful assembly of both structurally and functionally tailored nano-arrays into a unique class of monolithic devices. The performance of nano-array based monolithic devices is dictated bymore » a few important factors such as materials substrate selection, nanostructure composition and nano-architecture geometry. Therefore, the rational material selection and nano-entity manipulation during the nano-array integration process, aiming to exploit the advantageous characteristics of nanostructures and their ensembles, are critical steps towards bridging the design of nanostructure integrated monolithic devices with various practical applications. In this article, we highlight the latest research progress of the two-dimensional (2-D) and 3-D metal and metal oxide based nanostructural integrations into prototype devices applicable with ultrahigh efficiency, good robustness and improved functionality. Lastly, selective examples of nano-array integration, scalable nanomanufacturing and representative monolithic devices such as catalytic converters, sensors and batteries will be utilized as the connecting dots to display a roadmap from hierarchical nanostructural assembly to practical nanotechnology implications ranging from energy, environmental, to chemical and biotechnology areas.« less

  1. Novel multi-layered 1-D nanostructure exhibiting the theoretical capacity of silicon for a super-enhanced lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Sun; Yang, Ho-Sung; Jung, Heechul; Jeon, Seung-Yeol; Jung, Changhoon; Kim, Sang-Won; Bae, Jihyun; Choong, Chwee-Lin; Im, Jungkyun; Chung, U.-In; Park, Jong-Jin; Yu, Woong-Ryeol

    2014-05-01

    Silicon/carbon (Si/C) nanocomposites have recently received much attention as Li-ion battery negative electrodes due to their mutual synergetic effects in capacity and mechanical integrity. The contribution of Si to the total capacity of the Si/C nanocomposites determines their structural efficiency. Herein, we report on a multi-layered, one-dimensional nanostructure that exhibits the theoretical specific capacity of Si in the nanocomposite. Concentrically tri-layered, compartmentalized, C-core/Si-medium/C-shell nanofibers were fabricated by triple coaxial electrospinning. The pulverization of Si was accommodated inside the C-shell, whereas the conductive pathway of the Li-ions and electrons was provided by the C-core, which was proven by ex situ Raman spectroscopy. The compartmentalized Si in between the C-core and C-shell led to excellent specific capacity at a high current rate (>820 mA h g-1 at 12000 mA g-1) and the realization of the theoretical specific capacity of the Li15Si4 phase of Si nanoparticles (3627 mA h g-1). The electrochemical characterization and inductively coupled plasma-atomic emission spectrometry provided direct evidence of full participation of Si in the electrochemical reactions.Silicon/carbon (Si/C) nanocomposites have recently received much attention as Li-ion battery negative electrodes due to their mutual synergetic effects in capacity and mechanical integrity. The contribution of Si to the total capacity of the Si/C nanocomposites determines their structural efficiency. Herein, we report on a multi-layered, one-dimensional nanostructure that exhibits the theoretical specific capacity of Si in the nanocomposite. Concentrically tri-layered, compartmentalized, C-core/Si-medium/C-shell nanofibers were fabricated by triple coaxial electrospinning. The pulverization of Si was accommodated inside the C-shell, whereas the conductive pathway of the Li-ions and electrons was provided by the C-core, which was proven by ex situ Raman spectroscopy

  2. Combustion Synthesis of Fullerenes and Fullerenic Nanostructures In Microgravity

    NASA Technical Reports Server (NTRS)

    Howard, Jack B.; Brooker, John E. (Technical Monitor)

    2002-01-01

    The objectives of the proposed research were to determine the effects of gravity on fullerenes formation in flames and, based on the observed effects, to develop fundamental understanding of fullerenes formation and to identify engineering principles for fullerenes production. The research method consisted of the operation of laminar diffusion flames under normal- and reduced-gravity conditions, and the collection from the flames and subsequent analysis of condensables including any fullerenes present, using coupled high performance liquid chromatography/mass spectrometry and high resolution transmission electron microscopy. The focus included fullerene molecules C60 and C70 and fullerenic nanostructures including tubes, spherules and other shapes. The normal-gravity experiments were performed at MIT and complementary reduced-gravity experiments were to have been contributed by NASA. The independent variables of interest are gravity, fuel type, fuel/oxygen ratio, pressure, gas velocity at burner, diluent type and concentration. Given the large number of variables and the absence of data on either fullerene formation in diffusion flames or gravitational effects on fullerene formation in diffusion or premixed flames, the first part of the work was exploratory while the later part involved detailed study of the most interesting mechanisms. Samples of condensable material from laminar low pressure benzene/argon/oxygen diffusion flames were collected and analyzed by high-performance liquid chromatography to determine the yields of fullerenes, and by high-resolution transmission electron microscopy (HRTEM) to characterize the fullerenic material, i.e., curved-layer nanostructures, on and within the soot particles. The highest concentration of fullerenes was always detected just above the visible stoichiometric surface of a flame. The percentage of fullerenes in the condensable material increases with decreasing pressure. The overall highest amount of fullerenes was found

  3. pH-responsiveness of multilayered films and membranes made of polysaccharides

    PubMed Central

    Silva, Joana M.; Caridade, Sofia G.; Costa, Rui R.; Alves, Natália M.; Groth, Thomas; Picart, Catherine; Reis, Rui L.; Mano, João F.

    2016-01-01

    We investigated the pH-dependent properties of multilayered films made of chitosan (CHI) and alginate (ALG) and focused on their post-assembly response to different pH environments using quartz crystal microbalance with dissipation monitoring (QCM-D), swelling studies, zeta potential measurements and dynamic mechanical analysis (DMA). In an acidic environment, the multilayers presented lower dissipation values and, consequently, higher moduli when compared with the values obtained for the pH used during the assembly (5.5). When the multilayers were exposed to alkaline environments the opposite behavior occurred. These results were further corroborated with the ability of this multilayered system to exhibit a reversible swelling-deswelling behavior within the pH range from 3 to 9. The changes of the physicochemical properties of the multilayer system were gradual and different from the ones of individual solubilized polyelectrolytes. This behavior is related to electrostatic interactions between the ionizable groups combined with hydrogen-bonding and hydrophobic interactions. Beyond the pH range of 3-9 the multilayers were stabilized by genipin cross-linking. The multilayered films also became more rigid while preserving the pH-responsiveness conferred by the ionizable moieties of the polyelectrolytes. This work demonstrates the versatility and feasibility of LbL methodology to generate inherently pH stimuli-responsive nanostructured films. Surface functionalization using pH-repsonsiveness endows abilities for several biomedical applications such as drug delivery, diagnostics, microfluidics, biosensing or biomimetic implantable membranes. PMID:26421873

  4. 75 FR 66126 - Multilayered Wood Flooring From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ...)] Multilayered Wood Flooring From China AGENCY: United States International Trade Commission. ACTION: Institution... the United States is materially retarded, by reason of imports from China of multilayered wood... multilayered wood flooring. The following companies are members of the CAHP: Anderson Hardwood Floors, LLC...

  5. Characterization of stable, electroactive protein cage/synthetic polymer multilayer thin films prepared by layer-by-layer assembly

    NASA Astrophysics Data System (ADS)

    Uto, Koichiro; Yamamoto, Kazuya; Kishimoto, Naoko; Muraoka, Masahiro; Aoyagi, Takao; Yamashita, Ichiro

    2013-04-01

    We have fabricated electroactive multilayer thin films containing ferritin protein cages. The multilayer thin films were prepared on a solid substrate by the alternate electrostatic adsorption of (apo)ferritin and poly( N-isopropylacrylamide- co-2-carboxyisopropylacrylamide) (NIPAAm- co-CIPAAm) in pH 3.5 acetate buffer solution. The assembly process was monitored using a quartz crystal microbalance. The (apo)ferritin/poly(NIPAAm- co-CIPAAm) multilayer thin films were then cross-linked using a water-soluble carbodiimide, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide. The cross-linked films were stable under a variety of conditions. The surface morphology and thickness of the multilayer thin films were characterized by atomic force microscopy, and the ferritin iron cores were observed by scanning electron microscopy to confirm the assembly mechanism. Cyclic voltammetry measurements showed different electrochemical properties for the cross-linked ferritin and apoferritin multilayer thin films, and the effect of stability of the multilayer film on its electrochemical properties was also examined. Our method for constructing multilayer films containing protein cages is expected to be useful in building more complex functional inorganic nanostructures.

  6. In Situ Neutron Scattering Study of Nanostructured PbTe-PbS Bulk Thermoelectric Material

    NASA Astrophysics Data System (ADS)

    Ren, Fei; Schmidt, Robert; Case, Eldon D.; An, Ke

    2017-05-01

    Nanostructures play an important role in thermoelectric materials. Their thermal stability, such as phase change and evolution at elevated temperatures, is thus of great interest to the thermoelectric community. In this study, in situ neutron diffraction was used to examine the phase evolution of nanostructured bulk PbTe-PbS materials fabricated using hot pressing and pulsed electrical current sintering (PECS). The PbS second phase was observed in all samples in the as-pressed condition. The temperature dependent lattice parameter and phase composition data show an initial formation of PbS precipitates followed by a redissolution during heating. The redissolution process started around 570-600 K, and completed at approximately 780 K. During cooling, the PECS sample followed a reversible curve while the heating/cooling behavior of the hot pressed sample was irreversible.

  7. Highly sensitive ethanol chemical sensor based on Ni-doped SnO₂ nanostructure materials.

    PubMed

    Rahman, Mohammed M; Jamal, Aslam; Khan, Sher Bahadar; Faisal, M

    2011-10-15

    Due to potential applications of semiconductor transition doped nanostructure materials and the important advantages of synthesis in cost-effective and environmental concerns, a significant effort has been consummated for improvement of Ni-doped SnO(2) nanomaterials using hydrothermal technique at room conditions. The structural and optical properties of the low-dimensional (average diameter, 52.4 nm) Ni-doped SnO(2) nanostructures were demonstrated using various conventional techniques such as UV/visible spectroscopy, FT-IR spectroscopy, X-ray powder diffraction (XRD), and Field-emission scanning electron microscopy (FE-SEM). The calcined doped material is an attractive semiconductor nanoparticle for accomplishment in chemical sensing by simple I-V technique, where toxic chemical (ethanol) is used as a target chemical. Thin-film of Ni-doped SnO(2) nanostructure materials with conducting coating agents on silver electrodes (AgE, surface area, 0.0216 cm(2)) revealed higher sensitivity and repeatability. The calibration plot is linear (R, 0.8440) over the large dynamic range (1.0 nM-1.0 mM), where the sensitivity is approximately 2.3148 μA cm(-2) mM(-1) with a detection limit of 0.6 nM, based on signal/noise ratio in short response time. Consequently on the basis of the sensitive communication among structures, morphologies, and properties, it is exemplified that the morphologies and the optical characteristics can be extended to a large scale in doping nanomaterials and proficient chemical sensors applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Epitaxial growth of hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua

    2018-02-01

    Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.

  9. Nonlinear multilayers as optical limiters

    NASA Astrophysics Data System (ADS)

    Turner-Valle, Jennifer Anne

    1998-10-01

    In this work we present a non-iterative technique for computing the steady-state optical properties of nonlinear multilayers and we examine nonlinear multilayer designs for optical limiters. Optical limiters are filters with intensity-dependent transmission designed to curtail the transmission of incident light above a threshold irradiance value in order to protect optical sensors from damage due to intense light. Thin film multilayers composed of nonlinear materials exhibiting an intensity-dependent refractive index are used as the basis for optical limiter designs in order to enhance the nonlinear filter response by magnifying the electric field in the nonlinear materials through interference effects. The nonlinear multilayer designs considered in this work are based on linear optical interference filter designs which are selected for their spectral properties and electric field distributions. Quarter wave stacks and cavity filters are examined for their suitability as sensor protectors and their manufacturability. The underlying non-iterative technique used to calculate the optical response of these filters derives from recognizing that the multi-valued calculation of output irradiance as a function of incident irradiance may be turned into a single-valued calculation of incident irradiance as a function of output irradiance. Finally, the benefits and drawbacks of using nonlinear multilayer for optical limiting are examined and future research directions are proposed.

  10. Synthesis, characterization, and properties of low-dimensional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Hu, Xianluo

    2007-05-01

    Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely

  11. High-capacity nanostructured germanium-containing materials and lithium alloys thereof

    DOEpatents

    Graetz, Jason A.; Fultz, Brent T.; Ahn, Channing; Yazami, Rachid

    2010-08-24

    Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0

  12. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  13. Process for manufacturing multilayer capacitors

    DOEpatents

    Lauf, Robert J.; Holcombe, Cressie E.; Dykes, Norman L.

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  14. Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer

    DOEpatents

    Adzic, Radoslav; Harris, Alexander

    2014-04-15

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  15. Silicon-embedded copper nanostructure network for high energy storage

    DOEpatents

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  16. Silicon-embedded copper nanostructure network for high energy storage

    DOEpatents

    Yu, Tianyue

    2018-01-23

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  17. Electrical, thermal, catalytic and magnetic properties of nano-structured materials and their applications

    NASA Astrophysics Data System (ADS)

    Liu, Zuwei

    Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their

  18. The multilayer nanoparticles for deep penetration of docetaxel into tumor parenchyma to overcome tumor microenvironment.

    PubMed

    Khaliq, Nisar Ul; Park, Dal Yong; Lee, Jae Young; Joo, Yeonhee; Oh, Keun Sang; Kim, Jung Seok; Kim, Jin-Seok; Kim, In-San; Kwon, Ick Chan; Yuk, Soon Hong

    2016-10-01

    Deep penetration of the anticancer drug, docetaxel (DTX), into tumor parenchyma was demonstrated to achieve improved chemotherapy. For this purpose, a multistage nanostructure was designed and characterized using the multilayer nanoparticles (NPs). The multilayer NPs had a core/shell structure. The core was composed of the DTX-loaded Pluronic NPs (diameter: 12nm) that were transferred into the inner side of vesicles to form the vesicle NPs. Förster resonance energy transfer (FRET) in the NPs was observed to verify the incorporation of the DTX-loaded Pluronic NPs into the inner side of the vesicles during the formation of the vesicle NPs. Subsequently, the vesicle NPs were stabilized through Pluronic-lipid bilayer interaction to form the multilayer NPs. To examine the morphology and size distribution of the multilayer NPs, transmittance electron microscopy and dynamic light scattering were used. In vitro release behavior and toxicity were observed to verify the functionality of the multilayer NPs as nanocarriers for cancer therapy. Multistage functionality was evaluated by cellular uptake and tissue distribution behaviors of the multilayer NPs. The biodistribution of the multilayer NPs and their antitumor efficacy were also observed to understand the role of multistage functionality for improved chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Functional Nanostructured Materials Based on Polymerized Surfactant Liquid Crystal Assemblies Liquid Crystal Assemblies

    NASA Astrophysics Data System (ADS)

    Gin, Douglas

    2003-03-01

    The development of materials with controlled nanostructures is one of the most important new areas of scientific research in chemistry and engineering. Our research group has developed a novel approach for making nanostructured polymer materials with unique functional properties using liquid crystals as starting materials. In this approach, we design polymerizable organic building blocks based on lyotropic liquid crystals (LLCs) (i.e., amphiphiles or surfactants) that carry, or can accommodate, a functional property of general interest. Through appropriate molecular design, these monomers self-assemble in the presence of water into fluid, yet ordered phase-separated, water-hydrocarbon assemblies with predictable nanoscale geometries. The architectures of these LLC phases can range from stacked two-dimensional lamellae to hexagonally ordered cylindrical channels with uniform feature sizes in the 1-10 nm range. These LLC phases are then photopolymerized into robust polymer networks with preservation of their small-scale structures. This approach allows us to investigate the effect of nanometer-scale architecture on important bulk properties, as well as to engineer chemical environments on the nanometer-scale for several areas of application. In this talk, new functional materials based on the polymerization of the lyotropic inverted hexagonal phase will be presented as one example of our general approach. Issues in the design and photopolymerization of functional amphiphilic monomers that adopt this LC architecture will be discussed. More importantly, the use of the resulting nanostructured polymer networks in three areas of application will be presented: (1) as templates for the synthesis of functional nanocomposites; (2) as tunable heterogeneous catalysts, and (3) as nanoporous membrane and separation media. In particular, issues pertaining to the contribution of nanoscale architecture to the performance of these systems will be highlighted. Opportunities for

  20. Polar order in nanostructured organic materials

    NASA Astrophysics Data System (ADS)

    Sayar, M.; Olvera de la Cruz, M.; Stupp, S. I.

    2003-02-01

    Achiral multi-block liquid crystals are not expected to form polar domains. Recently, however, films of nanoaggregates formed by multi-block rodcoil molecules were identified as the first example of achiral single-component materials with macroscopic polar properties. By solving an Ising-like model with dipolar and asymmetric short-range interactions, we show here that polar domains are stable in films composed of aggregates as opposed to isolated molecules. Unlike classical molecular systems, these nanoaggregates have large intralayer spacings (a approx 8 nm), leading to a reduction in the repulsive dipolar interactions which oppose polar order within layers. In finite-thickness films of nanostructures, this effect enables the formation of polar domains. We compute exactly the energies of the possible structures consistent with the experiments as a function of film thickness at zero temperature (T). We also provide Monte Carlo simulations at non-zero T for a disordered hexagonal lattice that resembles the smectic-like packing in these nanofilms.

  1. Bulk and interface quantum states of electrons in multi-layer heterostructures with topological materials.

    PubMed

    Nikolic, Aleksandar; Zhang, Kexin; Barnes, C H W

    2018-06-13

    In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material's ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb 2 Te 3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.

  2. Micro/Nanostructured Materials for Sodium Ion Batteries and Capacitors.

    PubMed

    Li, Feng; Zhou, Zhen

    2018-02-01

    High-efficiency energy storage technologies and devices have received considerable attention due to their ever-increasing demand. Na-related energy storage systems, sodium ion batteries (SIBs) and sodium ion capacitors (SICs), are regarded as promising candidates for large-scale energy storage because of the abundant sources and low cost of sodium. In the last decade, many efforts, including structural and compositional optimization, effective modification of available materials, and design and exploration of new materials, have been made to promote the development of Na-related energy storage systems. In this Review, the latest developments of micro/nanostructured electrode materials for advanced SIBs and SICs, especially the rational design of unique composites with high thermodynamic stabilities and fast kinetics during charge/discharge, are summarized. In addition to the recent achievements, the remaining challenges with respect to fundamental investigations and commercialized applications are discussed in detail. Finally, the prospects of sodium-based energy storage systems are also described. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nanostructuring superconductors by ion beams: A path towards materials engineering

    NASA Astrophysics Data System (ADS)

    Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco; Amato, Antonino; Rovelli, Alberto; Cherubini, Roberto

    2013-07-01

    The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.

  4. Fabrication and efficiency measurement of a Mo/C/Si/C three material system multilayer Laue lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubec, Adam; Maser, J.; Formanek, P.

    In this letter we report on the manufacturing of a multilayer Laue lens (MLL) consisting of a multilayer stack with three materials: molybdenum and silicon as absorber and spacer layer, respectively, and carbon as transition layers. The design has four layers per period: Mo/C/Si/C. It yields 6000 zones, and provides an aperture of 50 μm. This allows the MLL structure to accept a large portion of the coherent part of the beam and achieving a small spot size. The MLL deposition was made by magnetron sputtering at the Fraunhofer IWS, the sectioning was done by laser cutting and subsequent focusedmore » ion beam milling to a thickness that provides a good efficiency for a photon energy of 12 keV. The diffraction efficiency as a function of the tilting angle has been measured at beamline 1-BM of the Advanced Photon Source. An efficiency of almost 40% has been achieved. This shows that the material system performs well compared to MLLs made of two-materials and that it is in an excellent agreement with the numerically calculated efficiency for a comparable molybdenum/silicon bilayer system lens. Here, we conclude that the three material system offers high efficiencies and is advantageous for stress reduction in MLLs.« less

  5. Fabrication and efficiency measurement of a Mo/C/Si/C three material system multilayer Laue lens

    DOE PAGES

    Kubec, Adam; Maser, J.; Formanek, P.; ...

    2017-03-17

    In this letter we report on the manufacturing of a multilayer Laue lens (MLL) consisting of a multilayer stack with three materials: molybdenum and silicon as absorber and spacer layer, respectively, and carbon as transition layers. The design has four layers per period: Mo/C/Si/C. It yields 6000 zones, and provides an aperture of 50 μm. This allows the MLL structure to accept a large portion of the coherent part of the beam and achieving a small spot size. The MLL deposition was made by magnetron sputtering at the Fraunhofer IWS, the sectioning was done by laser cutting and subsequent focusedmore » ion beam milling to a thickness that provides a good efficiency for a photon energy of 12 keV. The diffraction efficiency as a function of the tilting angle has been measured at beamline 1-BM of the Advanced Photon Source. An efficiency of almost 40% has been achieved. This shows that the material system performs well compared to MLLs made of two-materials and that it is in an excellent agreement with the numerically calculated efficiency for a comparable molybdenum/silicon bilayer system lens. Here, we conclude that the three material system offers high efficiencies and is advantageous for stress reduction in MLLs.« less

  6. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Spiller, Eberhard A.; Mirkarimi, Paul B.; Montcalm, Claude; Bajt, Sasa; Folta, James A.

    2000-01-01

    Stress compensating systems that reduces/compensates stress in a multilayer without loss in reflectivity, while reducing total film thickness compared to the earlier buffer-layer approach. The stress free multilayer systems contain multilayer systems with two different material combinations of opposite stress, where both systems give good reflectivity at the design wavelengths. The main advantage of the multilayer system design is that stress reduction does not require the deposition of any additional layers, as in the buffer layer approach. If the optical performance of the two systems at the design wavelength differ, the system with the poorer performance is deposited first, and then the system with better performance last, thus forming the top of the multilayer system. The components for the stress reducing layer are chosen among materials that have opposite stress to that of the preferred multilayer reflecting stack and simultaneously have optical constants that allow one to get good reflectivity at the design wavelength. For a wavelength of 13.4 nm, the wavelength presently used for extreme ultraviolet (EUV) lithography, Si and Be have practically the same optical constants, but the Mo/Si multilayer has opposite stress than the Mo/Be multilayer. Multilayer systems of these materials have practically identical reflectivity curves. For example, stress free multilayers can be formed on a substrate using Mo/Be multilayers in the bottom of the stack and Mo/Si multilayers at the top of the stack, with the switch-over point selected to obtain zero stress. In this multilayer system, the switch-over point is at about the half point of the total thickness of the stack, and for the Mo/Be--Mo/Si system, there may be 25 deposition periods Mo/Be to 20 deposition periods Mo/Si.

  7. Spin-Transfer Studies in Magnetic Multilayer Nanostructures

    NASA Astrophysics Data System (ADS)

    Emley, N. C.; Albert, F. J.; Ryan, E. M.; Krivorotov, I. N.; Ralph, D. C.; Buhrman, R. A.

    2003-03-01

    Numerous experiments have demonstrated current-induced magnetization reversal in ferromagnet/paramagnet/ferromagnet nanostructures with the current in the CPP geometry. The primary mechanism for this reversal is the transfer of angular momentum from the spin-polarized conduction electrons to the nanomagnet moment the spin transfer effect. This phenomenon has potential application in nanoscale, current-controlled non-volatile memory elements, but several challenges must be overcome for realistic device implementation. Typical Co/Cu/Co nanopillar devices, although effective for fundamental studies, are not advantageous for technological applications because of their large switching currents Ic ( 3-10 mA) and small R·A (< 1 mΩ·µm^2). Here we report initial results testing some possible approaches for enhancing spin-transfer device performance which involve the addition of more layers, and hence, more complexity, to the simple Co/Cu/Co trilayer structure. These additions include synthetic antiferromagnet layers (SAF), exchange biased layers, nano-oxide layers (NOL), and additional magnetic layers. Research supported by NSF and DARPA

  8. General Theory of Absorption in Porous Materials: Restricted Multilayer Theory.

    PubMed

    Aduenko, Alexander A; Murray, Andy; Mendoza-Cortes, Jose L

    2018-04-18

    In this article, we present an approach for the generalization of adsorption of light gases in porous materials. This new theory goes beyond Langmuir and Brunauer-Emmett-Teller theories, which are the standard approaches that have a limited application to crystalline porous materials by their unphysical assumptions on the amount of possible adsorption layers. The derivation of a more general equation for any crystalline porous framework is presented, restricted multilayer theory. Our approach allows the determination of gas uptake considering only geometrical constraints of the porous framework and the interaction energy of the guest molecule with the framework. On the basis of this theory, we calculated optimal values for the adsorption enthalpy at different temperatures and pressures. We also present the use of this theory to determine the optimal linker length for a topologically equivalent framework series. We validate this theoretical approach by applying it to metal-organic frameworks (MOFs) and show that it reproduces the experimental results for seven different reported materials. We obtained the universal equation for the optimal linker length, given the topology of a porous framework. This work applied the general equation to MOFs and H 2 to create energy-storage materials; however, this theory can be applied to other crystalline porous materials and light gases, which opens the possibility of designing the next generations of energy-storage materials by first considering only the geometrical constraints of the porous materials.

  9. Optical multilayers with an amorphous fluoropolymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, R.; Loomis, G.E.; Lindsey, E.F.

    1994-07-01

    Multilayered coatings were made by physical vapor deposition (PVD) of a perfluorinated amorphous polymer, Teflon AF2400, together with other optical materials. A high reflector at 1064 run was made with ZnS and AF2400. An all-organic 1064-nm reflector was made from AF2400 and polyethylene. Oxide (HfO{sub 2}, SiO{sub 2}) compatibility was also tested. Each multilayer system adhered to itself. The multilayers were influenced by coating stress and unintentional temperature rises during PVD deposition.

  10. Large scale atomistic approaches to thermal transport and phonon scattering in nanostructured materials

    NASA Astrophysics Data System (ADS)

    Savic, Ivana

    2012-02-01

    Decreasing the thermal conductivity of bulk materials by nanostructuring and dimensionality reduction, or by introducing some amount of disorder represents a promising strategy in the search for efficient thermoelectric materials [1]. For example, considerable improvements of the thermoelectric efficiency in nanowires with surface roughness [2], superlattices [3] and nanocomposites [4] have been attributed to a significantly reduced thermal conductivity. In order to accurately describe thermal transport processes in complex nanostructured materials and directly compare with experiments, the development of theoretical and computational approaches that can account for both anharmonic and disorder effects in large samples is highly desirable. We will first summarize the strengths and weaknesses of the standard atomistic approaches to thermal transport (molecular dynamics [5], Boltzmann transport equation [6] and Green's function approach [7]) . We will then focus on the methods based on the solution of the Boltzmann transport equation, that are computationally too demanding, at present, to treat large scale systems and thus to investigate realistic materials. We will present a Monte Carlo method [8] to solve the Boltzmann transport equation in the relaxation time approximation [9], that enables computation of the thermal conductivity of ordered and disordered systems with a number of atoms up to an order of magnitude larger than feasible with straightforward integration. We will present a comparison between exact and Monte Carlo Boltzmann transport results for small SiGe nanostructures and then use the Monte Carlo method to analyze the thermal properties of realistic SiGe nanostructured materials. This work is done in collaboration with Davide Donadio, Francois Gygi, and Giulia Galli from UC Davis.[4pt] [1] See e.g. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).[0pt] [2] A. I. Hochbaum et al, Nature 451, 163 (2008).[0pt

  11. Multilayer biomimetics: reversible covalent stabilization of a nanostructured biofilm.

    PubMed

    Li, Bingyun; Haynie, Donald T

    2004-01-01

    Designed polypeptides and electrostatic layer-by-layer self-assembly form the basis of promising research in bionanotechnology and medicine on development of polyelectrolyte multilayer films (PEMs). We show that PEMs can be formed from oppositely charged 32mers containing several cysteine residues. The polypeptides in PEMs become cross-linked under mild oxidizing conditions. This mimicking of disulfide (S-S) bond stabilization of folded protein structure confers on the PEMs a marked increase in resistance to film disassembly at acidic pH. The reversibility of S-S bond stabilization of PEMs presents further advantages for controlling physical properties of films, coatings, and other applications involving PEMs.

  12. Electron-Beam-Lithographed Nanostructures as Reference Materials for Label-Free Scattered-Light Biosensing of Single Filoviruses.

    PubMed

    Agrawal, Anant; Majdi, Joseph; Clouse, Kathleen A; Stantchev, Tzanko

    2018-05-23

    Optical biosensors based on scattered-light measurements are being developed for rapid and label-free detection of single virions captured from body fluids. Highly controlled, stable, and non-biohazardous reference materials producing virus-like signals are valuable tools to calibrate, evaluate, and refine the performance of these new optical biosensing methods. To date, spherical polymer nanoparticles have been the only non-biological reference materials employed with scattered-light biosensing techniques. However, pathogens like filoviruses, including the Ebola virus, are far from spherical and their shape strongly affects scattered-light signals. Using electron beam lithography, we fabricated nanostructures resembling individual filamentous virions attached to a biosensing substrate (silicon wafer overlaid with silicon oxide film) and characterized their dimensions with scanning electron and atomic force microscopes. To assess the relevance of these nanostructures, we compared their signals across the visible spectrum to signals recorded from Ebola virus-like particles which exhibit characteristic filamentous morphology. We demonstrate the highly stable nature of our nanostructures and use them to obtain new insights into the relationship between virion dimensions and scattered-light signal.

  13. Metal oxide nanostructures with hierarchical morphology

    DOEpatents

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  14. Multilayer coatings for flexible high-barrier materials

    NASA Astrophysics Data System (ADS)

    Vaško, Karol; Noller, Klaus; Mikula, Milan; Amberg-Schwab, Sabine; Weber, Ulrike

    2009-06-01

    A multilayer, flexible, and transparent high-barrier system based on flexible plastic foils, polyethyleneterephthalate (PET) and ethylene-tetrafluoroethylene-copolymer (ETFE), combined with vacuum-deposited, inorganic SiOx layers and hybrid ORMOCER® varnish layers were prepared in different orders on a semiproduction level. Barrier properties of prepared systems, as water vapour transmission (WVTR) and oxygen transmission (OTR), were measured and studied in connection with surface energy, surface topography, and water vapour adsorption properties. Correlations among layers sequence, barrier properties, and other parameters are presented, including some basic principles of permeation of substances through multilayer barrier systems. A combination of several inorganic and hybrid varnish layers is necessary to achieve the technological demands from a barrier standpoint. It is easier to suppress the oxygen transport than the water transport, due to the additional active penetration of water through hydrogen bonds and silanol creations at oxide interfaces, capillary condensation, and swelling with high internal pressure, leading to new defects.

  15. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  16. Single- and Multilayered Nanostructures via Laser-Induced Block Copolymer Self-Assembly

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel; Yager, Kevin; Rahman, Atikur; Black, Charles

    We present a novel method of accelerated self-assembly of block copolymer thin films utilizing laser light, called Laser Zone Annealing (LZA). In our approach, steep temperature transients are induced in block copolymer films by rastering narrowly focused laser line over the light-absorbing substrate. Extremely steep temperature gradients accelerate the process of self-assembly by several orders-of-magnitude compared to conventional oven annealing, and, when coupled to photo-thermal shearing, lead to global alignment of block copolymer domains assessed by GISXAS diffraction studies and real-space SEM imaging. We demonstrate monolithic alignment of various block-copolymer thin films including PS-b-PMMA, PS-b-PEO, PS-b-P2VP, PS-b-PI and observe different responsiveness to the shearing rate depending on the characteristic relaxation timescale of the particular material. Subsequently, we use the aligned polymeric films as templates for synthesis of single- and multi-layered arrays of inorganic, metallic or semiconducting nanowires and nanomeshes and investigate their anisotropic electro-optical properties. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  17. Effect of γ-irradiation on commercial polypropylene based mono and multi-layered retortable food packaging materials

    NASA Astrophysics Data System (ADS)

    George, Johnsy; Kumar, R.; Sajeevkumar, V. A.; Sabapathy, S. N.; Vaijapurkar, S. G.; Kumar, D.; Kchawahha, A.; Bawa, A. S.

    2007-07-01

    Irradiation processing of food in the prepackaged form may affect chemical and physical properties of the plastic packaging materials. The effect of γ-irradiation doses (2.5-10.0 kGy) on polypropylene (PP)-based retortable food packaging materials, were investigated using Fourier transform infrared (FTIR) spectroscopic analysis, which revealed the changes happening to these materials after irradiation. The mechanical properties decreased with irradiation while oxygen transmission rate (OTR) was not affected significantly. Colour measurement indicated that Nylon 6 containing multilayer films became yellowish after irradiation. Thermal characterization revealed the changes in percentage crystallinity.

  18. Simulation of the microwave heating of a thin multilayered composite material: A parameter analysis

    NASA Astrophysics Data System (ADS)

    Tertrais, Hermine; Barasinski, Anaïs; Chinesta, Francisco

    2018-05-01

    Microwave (MW) technology relies on volumetric heating. Thermal energy is transferred to the material that can absorb it at specific frequencies. The complex physics involved in this process is far from being understood and that is why a simulation tool has been developed in order to solve the electromagnetic and thermal equations in such a complex material as a multilayered composite part. The code is based on the in-plane-out-of-plane separated representation within the Proper Generalized Decomposition framework. To improve the knowledge on the process, a parameter study in carried out in this paper.

  19. The Development of Metal Oxide Chemical Sensing Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; VanderWal,R. L.; Xu, J. C.; Evans, L. J.; Berger, G. M.; Kulis, M. J.

    2008-01-01

    This paper discusses sensor development based on metal oxide nanostructures and microsystems technology. While nanostructures such as nanowires show significant potential as enabling materials for chemical sensors, a number of significant technical challenges remain. This paper discusses development to address each of these technical barriers: 1) Improved contact and integration of the nanostructured materials with microsystems in a sensor structure; 2) Control of nanostructure crystallinity to allow control of the detection mechanism; and 3) Widening the range of gases that can be detected by fabricating multiple nanostructured materials. A sensor structure composed of three nanostructured oxides aligned on a single microsensor has been fabricated and tested. Results of this testing are discussed and future development approaches are suggested. It is concluded that while this work lays the foundation for further development, these are the beginning steps towards realization of repeatable, controlled sensor systems using oxide based nanostructures.

  20. High reflectance and low stress Mo2C/Be multilayers

    DOEpatents

    Bajt, Sasa; Barbee, Jr., Troy W.

    2001-01-01

    A material for extreme ultraviolet (EUV) multilayers that will reflect at about 11.3 nm, have a high reflectance, low stress, and high thermal and radiation stability. The material consists of alternating layers of Mo.sub.2 C and Be deposited by DC magnetron sputtering on a substrate, such as silicon. In one example a Mo.sub.2 C/Be multilayer gave 65.2% reflectance at 11.25 nm measured at 5 degrees off normal incidence angle, and consisted of 70 bilayers with a deposition period of 5.78 nm, and was deposited at 0.83 mTorr argon (Ar) sputtering pressure, with the first and last layers being Be. The stress of the multilayer is tensile and only +88 MPa, compared to +330 MPa of a Mo/Be multilayers of the same thickness. The Mo.sub.2 C/Be multilayer was capped with carbon which produced an increase in reflectivity of about 7% over a similar multilayer with no carbon capping material, thus raising the reflectivity from 58.3% to over 65%. The multilayers were formed using either Mo.sub.2 C or Be as the first and last layers, and initial testing has shown the formation of beryllium carbide at the interfaces between the layers which both stabilizes and has a smoothing effect, and appear to be smoother than the interfaces in Mo/Be multilayers.

  1. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.

    PubMed

    Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

    2012-04-21

    The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs.

  2. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties.

    PubMed

    Dastjerdi, Roya; Montazer, Majid

    2010-08-01

    Textiles can provide a suitable substrate to grow micro-organisms especially at appropriate humidity and temperature in contact to human body. Recently, increasing public concern about hygiene has been driving many investigations for anti-microbial modification of textiles. However, using many anti-microbial agents has been avoided because of their possible harmful or toxic effects. Application of inorganic nano-particles and their nano-composites would be a good alternative. This review paper has focused on the properties and applications of inorganic nano-structured materials with good anti-microbial activity potential for textile modification. The discussed nano-structured anti-microbial agents include TiO(2) nano-particles, metallic and non-metallic TiO(2) nano-composites, titania nanotubes (TNTs), silver nano-particles, silver-based nano-structured materials, gold nano-particles, zinc oxide nano-particles and nano-rods, copper nano-particles, carbon nanotubes (CNTs), nano-clay and its modified forms, gallium, liposomes loaded nano-particles, metallic and inorganic dendrimers nano-composite, nano-capsules and cyclodextrins containing nano-particles. This review is also concerned with the application methods for the modification of textiles using nano-structured materials. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Localized surface plasmon resonance properties of symmetry-broken Au-ITO-Ag multilayered nanoshells

    NASA Astrophysics Data System (ADS)

    Lv, Jingwei; Mu, Haiwei; Lu, Xili; Liu, Qiang; Liu, Chao; Sun, Tao; Chu, Paul K.

    2018-06-01

    The plasmonic properties of symmetry-broken Au-ITO-Ag multilayered nanoshells by shell cutting are studied by the finite element method. The influence of the polarization of incident light and geometrical parameters on the plasmon resonances of the multilayered nanoshells are investigated. The polarization-dependent multiple plasmon resonances appear from the multilayered nanoshells due to symmetry breaking. In nanostructures with a broken symmetry, the localized surface plasmon resonance modes are enhanced resulting in higher order resonances. According to the plasmon hybridization theory, these resonance modes and greater spectral tunability derive from the interactions of an admixture of both primitive and multipolar modes between the inner Au core and outer Ag shell. By changing the radius of the Au core, the extinction resonance modes of the multilayered nanoshells can be easily tuned to the near-infrared region. To elucidate the symmetry-broken effects of multilayered nanoshells, we link the geometrical asymmetry to the asymmetrical distributions of surface charges and demonstrate dipolar and higher order plasmon modes with large associated field enhancements at the edge of the Ag rim. The spectral tunability of the multiple resonance modes from visible to near-infrared is investigated and the unique properties are attractive to applications including angularly selective filtering to biosensing.

  4. Nanostructures, systems, and methods for photocatalysis

    DOEpatents

    Reece, Steven Y.; Jarvi, Thomas D.

    2015-12-08

    The present invention generally relates to nanostructures and compositions comprising nanostructures, methods of making and using the nanostructures, and related systems. In some embodiments, a nanostructure comprises a first region and a second region, wherein a first photocatalytic reaction (e.g., an oxidation reaction) can be carried out at the first region and a second photocatalytic reaction (e.g., a reduction reaction) can be carried out at the second region. In some cases, the first photocatalytic reaction is the formation of oxygen gas from water and the second photocatalytic reaction is the formation of hydrogen gas from water. In some embodiments, a nanostructure comprises at least one semiconductor material, and, in some cases, at least one catalytic material and/or at least one photosensitizing agent.

  5. Engineering optical properties using plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth

    Plasmonic nanostructures can be engineered to take on unusual optical properties not found in natural materials. The optical responses of plasmonic materials are functions of the structural parameters and symmetry of the nanostructures, material parameters of the nanostructure and its surroundings and the incidence angle, frequency and polarization state of light. The scattering and hence the visibility of an object could be reduced by coating it with a plasmonic material. In this thesis, presented is an optical frequency scattering cancelation device composed of a silicon nanorod coated by a plasmonic gold nanostructure. The principle of operation was theoretically analyzed using Mie theory and the device design was verified by extensive numerical simulations. The device was fabricated using a combination of nanofabrication techniques such as electron beam lithography and focused ion beam milling. The optical responses of the scattering cancelation device and a control sample of bare silicon rod were directly visualized using near-field microscopy coupled with heterodyne interferometric detection. The experimental results were analyzed and found to match very well with theoretical prediction from numerical simulations thereby validating the design principles and our implementation. Plasmonic nanostructures could be engineered to exhibit unique optical properties such as Fano resonance characterized by narrow asymmetrical lineshape. We present dynamic tuning and symmetry lowering of Fano resonances in plasmonic nanostructures fabricated on flexible substrates. The tuning of Fano resonance was achieved by application of uniaxial mechanical stress. The design of the nanostructures was facilitated by extensive numerical simulations and the symmetry lowering was analyzed using group theoretical methods. The nanostructures were fabricated using electron beam lithography and optically characterized for various mechanical stress. The experimental results were in good

  6. Nanostructured Anodic Multilayer Dielectric Stacked Metal-Insulator-Metal Capacitors.

    PubMed

    Karthik, R; Kannadassan, D; Baghini, Maryam Shojaei; Mallick, P S

    2015-12-01

    This paper presents the fabrication of Al2O3/TiO2/Al2O3 metal-insulator-metal (MIM) capacitor using anodization technique. High capacitance density of > 3.5 fF/μm2, low quadratic voltage coefficient of capacitance of < 115 ppm/V2 and a low leakage current density of 4.457 x 10(-11) A/cm2 at 3 V are achieved which are suitable for analog and mixed signal applications. We found that the anodization voltage played a major role in electrical and structural properties of the thin film. This work suggests that the anodization method can offer crystalline multilayer dielectric stack required for high performance MIM capacitor.

  7. Synthesis of nanostructured bio-related materials by hybridization of synthetic polymers with polysaccharides or saccharide residues.

    PubMed

    Kaneko, Yoshiro; Kadokawa, Jun-Ichi

    2006-01-01

    In the first part of this review, we describe the synthesis of nanostructured hybrid materials composed of polysaccharides and synthetic polymers. Amylose-synthetic polymer inclusion complexes were synthesized by amylose-forming polymerization using phosphorylase enzyme in the presence of synthetic polymers such as polyethers and polyesters. Alginate-polymethacrylate hybrid materials were prepared by free-radical polymerization of cationic methacrylate in the presence of sodium alginate. These methods allow the simultaneous control of the nanostructure with polymerization, giving well-defined hybrid materials. In the second part of this review, we describe the synthesis of novel glycopolymers with rigid structures. Polyaniline-based glycopolymers were synthesized by means of oxidative polymerization of N-glycosylaniline. Polysiloxane-based glycopolymers were prepared by means of introduction of sugar-lactone to the rodlike polysiloxane. These glycopolymers had regular higher-ordered structures due to their rigid polymer backbones, resulting in control of the three-dimensional array of sugar-residues.

  8. Preparation and properties of the multi-layer aerogel thermal insulation composites

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Feng, Junzong; Jiang, Yonggang; Zhang, Zhongming; Feng, Jian

    2018-03-01

    Multi-layer insulation materials possess low radiation thermal conductivity, and excellent thermal insulation property in a vacuum environment. However, the spacers of the traditional multi-layer insulation materials are mostly loose fibers, which lead to more sensitive to the vacuum environmental of serviced. With the vacuum degree declining, gas phases thermal convection increase obviously, and the reflective screen will be severe oxidation, all of these make the thermal insulation property of traditional multi-layer insulation deteriorate, thus limits its application scope. In this paper, traditional multi-layer insulation material is combined with aerogel and obtain a new multi-layer aerogel thermal insulation composite, and the effects of the number, thickness and type of the reflective screens on the thermal insulation properties of the multi-layer composites are also studied. The result is that the thermal insulation property of the new type multi-layer aerogel composites is better than the pure aerogel composites and the traditional multi-layer insulation composites. When the 0.01 mm stainless steel foil as the reflective screen, and the aluminum silicate fiber and silica aerogel as the spacer layer, the layer density of composite with the best thermal insulation property is one layer per millimeter at 1000 °C.

  9. Multilayer SnSb4-SbSe Thin Films for Phase Change Materials Possessing Ultrafast Phase Change Speed and Enhanced Stability.

    PubMed

    Liu, Ruirui; Zhou, Xiao; Zhai, Jiwei; Song, Jun; Wu, Pengzhi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2017-08-16

    A multilayer thin film, comprising two different phase change material (PCM) components alternatively deposited, provides an effective means to tune and leverage good properties of its components, promising a new route toward high-performance PCMs. The present study systematically investigated the SnSb 4 -SbSe multilayer thin film as a potential PCM, combining experiments and first-principles calculations, and demonstrated that these multilayer thin films exhibit good electrical resistivity, robust thermal stability, and superior phase change speed. In particular, the potential operating temperature for 10 years is shown to be 122.0 °C and the phase change speed reaches 5 ns in the device test. The good thermal stability of the multilayer thin film is shown to come from the formation of the Sb 2 Se 3 phase, whereas the fast phase change speed can be attributed to the formation of vacancies and a SbSe metastable phase. It is also demonstrated that the SbSe metastable phase contributes to further enhancing the electrical resistivity of the crystalline state and the thermal stability of the amorphous state, being vital to determining the properties of the multilayer SnSb 4 -SbSe thin film.

  10. Nanostructuring of Palladium with Low-Temperature Helium Plasma

    PubMed Central

    Fiflis, P.; Christenson, M.P.; Connolly, N.; Ruzic, D.N.

    2015-01-01

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium. PMID:28347109

  11. Nanostructuring of Palladium with Low-Temperature Helium Plasma.

    PubMed

    Fiflis, P; Christenson, M P; Connolly, N; Ruzic, D N

    2015-11-25

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium.

  12. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    PubMed

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.

  13. One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues

    PubMed Central

    Choi, Kyoung Jin; Jang, Ho Won

    2010-01-01

    In this article, we review gas sensor application of one-dimensional (1D) metal-oxide nanostructures with major emphases on the types of device structure and issues for realizing practical sensors. One of the most important steps in fabricating 1D-nanostructure devices is manipulation and making electrical contacts of the nanostructures. Gas sensors based on individual 1D nanostructure, which were usually fabricated using electron-beam lithography, have been a platform technology for fundamental research. Recently, gas sensors with practical applicability were proposed, which were fabricated with an array of 1D nanostructures using scalable micro-fabrication tools. In the second part of the paper, some critical issues are pointed out including long-term stability, gas selectivity, and room-temperature operation of 1D-nanostructure-based metal-oxide gas sensors. PMID:22319343

  14. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    NASA Astrophysics Data System (ADS)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    adhesion and durability in the environment. Though these coatings are efficient in protecting polymer composites, their application imposes severe constraints. Their thermal expansion coefficients may differ markedly from those of polymer composite substrates: as a result, cracks develop in the coatings on thermal cycling and AO can penetrate through them to the substrate. In addition to the technicalities of forming an effective barrier, such factors as cost, convenience of application and ease of repair are important considerations in the selection of a coating for a particular application. The latter issues drive the aerospace research toward the development of novel light composite materials, like the so called polymer nanocomposites, which are materials with a polymer matrix and a filler with at least one dimension less than 100 nanometers. Current interest in nanocomposites has been generated and maintained because nanoparticle-filled polymers exhibit unique combinations of properties not achievable with traditional composites. These combinations of properties can be achieved because of the small size of the fillers, the large surface area the fillers provide, and in many cases the unique properties of the fillers themselves. In particular, the carbon fiber-based polymeric composite materials are the basic point of interest: the aim of the present study is to find new solution to produce carbon fiber-based composites with even more upgraded performances. One intriguing strategy to tackle such an issue has been picked out in the coupling between the carbon fibers and the carbon nanostructures. That for two main reasons: first, carbon nanostructures have shown fancy potentialities for any kind of technological applications since their discovery, second, the chemical affinity between fiber and nanostructure (made of the same element) should be a likely route to approach the typical problems due to thermo-mechanical compatibility. This work is joined in such framework

  15. Nanostructured Materials Utilized in Biopolymer-based Plastics for Food Packaging Applications.

    PubMed

    Ghanbarzadeh, Babak; Oleyaei, Seyed Amir; Almasi, Hadi

    2015-01-01

    Most materials currently used for food packaging are nondegradable, generating environmental problems. Several biopolymers have been exploited to develop materials for ecofriendly food packaging. However, the use of biopolymers has been limited because of their usually poor mechanical and barrier properties, which may be improved by adding reinforcing compounds (fillers), forming composites. Most reinforced materials present poor matrix-filler interactions, which tend to improve with decreasing filler dimensions. The use of fillers with at least one nanoscale dimension (nanoparticles) produces nanocomposites. Nanoparticles have proportionally larger surface area than their microscale counterparts, which favors the filler-matrix interactions and the performance of the resulting material. Besides nanoreinforcements, nanoparticles can have other functions when added to a polymer, such as antimicrobial activity, etc. in this review paper, the structure and properties of main kinds of nanostructured materials which have been studied to use as nanofiller in biopolymer matrices are overviewed, as well as their effects and applications.

  16. Preparation and properties on hollow nano-structured smoke material

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were

  17. Continuum damage model for ferroelectric materials and its application to multilayer actuators

    NASA Astrophysics Data System (ADS)

    Gellmann, Roman; Ricoeur, Andreas

    2016-05-01

    In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.

  18. Trade-off between Photon Management Efficacy and Material Quality in Thin-Film Solar Cells on Nanostructured Substrates of High Aspect Ratio Structures

    DOE PAGES

    Chin, Alan; Keshavarz, Majid; Wang, Qi

    2018-04-13

    Although texturing of the transparent electrode of thin-film solar cells has long been used to enhance light absorption via light trapping, such texturing has involved low aspect ratio features. With the recent development of nanotechnology, nanostructured substrates enable improved light trapping and enhanced optical absorption via resonances, a process known as photon management, in thin-film solar cells. Despite the progress made in the development of photon management in thin-film solar cells using nanostructures substrates, the structural integrity of the thin-film solar cells deposited onto such nanostructured substrates is rarely considered. Here, we report the observation of the reduction in themore » open circuit voltage of amorphous silicon solar cells deposited onto a nanostructured substrate with increasing areal number density of high aspect ratio structures. For a nanostructured substrate with the areal number density of such nanostructures increasing in correlation with the distance from one edge of the substrate, a correlation between the open circuit voltage reduction and the increase of the areal number density of high aspect ratio nanostructures of the front electrode of the small-size amorphous silicon solar cells deposited onto different regions of the substrate with graded nanostructure density indicates the effect of the surface morphology on the material quality, i.e., a trade-off between photon management efficacy and material quality. Lastly, this observed trade-off highlights the importance of optimizing the morphology of the nanostructured substrate to ensure conformal deposition of the thin-film solar cell.« less

  19. Trade-off between Photon Management Efficacy and Material Quality in Thin-Film Solar Cells on Nanostructured Substrates of High Aspect Ratio Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Alan; Keshavarz, Majid; Wang, Qi

    Although texturing of the transparent electrode of thin-film solar cells has long been used to enhance light absorption via light trapping, such texturing has involved low aspect ratio features. With the recent development of nanotechnology, nanostructured substrates enable improved light trapping and enhanced optical absorption via resonances, a process known as photon management, in thin-film solar cells. Despite the progress made in the development of photon management in thin-film solar cells using nanostructures substrates, the structural integrity of the thin-film solar cells deposited onto such nanostructured substrates is rarely considered. Here, we report the observation of the reduction in themore » open circuit voltage of amorphous silicon solar cells deposited onto a nanostructured substrate with increasing areal number density of high aspect ratio structures. For a nanostructured substrate with the areal number density of such nanostructures increasing in correlation with the distance from one edge of the substrate, a correlation between the open circuit voltage reduction and the increase of the areal number density of high aspect ratio nanostructures of the front electrode of the small-size amorphous silicon solar cells deposited onto different regions of the substrate with graded nanostructure density indicates the effect of the surface morphology on the material quality, i.e., a trade-off between photon management efficacy and material quality. Lastly, this observed trade-off highlights the importance of optimizing the morphology of the nanostructured substrate to ensure conformal deposition of the thin-film solar cell.« less

  20. Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review

    PubMed Central

    Liu, Wenbo; Ji, Yanzhou; Tan, Pengkang; Zang, Hang; He, Chaohui; Yun, Di; Zhang, Chi; Yang, Zhigang

    2016-01-01

    Nanostructured (NS) materials may have different irradiation resistance from their coarse-grained (CG) counterparts. In this review, we focus on the effect of grain boundaries (GBs)/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs) and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials) which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments. PMID:28787902

  1. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R.; Lunt, Richard R.

    2016-04-05

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  2. Ordered organic-organic multilayer growth

    DOEpatents

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  3. Method of making coherent multilayer crystals

    DOEpatents

    Schuller, Ivan K.; Falco, Charles M.

    1984-01-01

    A new material consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 .ANG. to 2500 .ANG.. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.

  4. Improving the oxidation resistance and stability of Ag nanoparticles by coating with multilayered reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo

    2017-12-01

    A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.

  5. Analysis of Counterfeit Coated Tablets and Multi-Layer Packaging Materials Using Infrared Microspectroscopic Imaging.

    PubMed

    Winner, Taryn L; Lanzarotta, Adam; Sommer, André J

    2016-06-01

    An effective method for detecting and characterizing counterfeit finished dosage forms and packaging materials is described in this study. Using attenuated total internal reflection Fourier transform infrared spectroscopic imaging, suspect tablet coating and core formulations as well as multi-layered foil safety seals, bottle labels, and cigarette tear tapes were analyzed and compared directly with those of a stored authentic product. The approach was effective for obtaining molecular information from structures as small as 6 μm.

  6. Analytic theory of alternate multilayer gratings operating in single-order regime.

    PubMed

    Yang, Xiaowei; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Wang, Zhanshan

    2017-07-10

    Using the coupled wave approach (CWA), we introduce the analytical theory for alternate multilayer grating (AMG) operating in the single-order regime, in which only one diffraction order is excited. Differing from previous study analogizing AMG to crystals, we conclude that symmetrical structure, or equal thickness of the two multilayer materials, is not the optimal design for AMG and may result in significant reduction in diffraction efficiency. The peculiarities of AMG compared with other multilayer gratings are analyzed. An influence of multilayer structure materials on diffraction efficiency is considered. The validity conditions of analytical theory are also discussed.

  7. TiO2 Nanostructures as Anode Materials for Li/Na-ion Batteries.

    PubMed

    Vazquez-Santos, Maria B; Tartaj, Pedro; Morales, Enrique; Amarilla, Jose Manuel

    2018-03-14

    Here we summarize some results on the use of TiO 2 nanostructures as anode materials for more efficient Li-ion (LIBs) and Na-ion (NIBs) batteries. LIBs are the leader to power portable electronic devices, and represent in the short-term the most adequate technology to power electrical vehicles, while NIBs hold promise for large storage of energy generated from renewable sources. Specifically, TiO 2 an abundant, low cost, chemically stable and environmentally safe oxide represents in LIBs an alternative to graphite for applications in which safety is mandatory. For NIBs, TiO 2 anodes (or more precisely negative electrodes) work at low voltage, assuring acceptable energy density values. Finally, assembling different TiO 2 polymorphs in the form of nanostructures decreases diffusion distances, increases the number of contacts and offering additional sites for Na + storage, helping to improve power efficiency. More specifically, in this contribution we highlighted our work on TiO 2 anatase mesocrystals of colloidal size. These sophisticate materials; showing excellent textural properties, have remarkable electrochemical performance as anodes for Li/Na-ion batteries, with conventional alkyl carbonates electrolytes and safe electrolytes based on ionic liquids. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High-Yield Synthesis of Stoichiometric Boron Nitride Nanostructures

    DOE PAGES

    Nocua, José E.; Piazza, Fabrice; Weiner, Brad R.; ...

    2009-01-01

    Boron nimore » tride (BN) nanostructures are structural analogues of carbon nanostructures but have completely different bonding character and structural defects. They are chemically inert, electrically insulating, and potentially important in mechanical applications that include the strengthening of light structural materials. These applications require the reliable production of bulk amounts of pure BN nanostructures in order to be able to reinforce large quantities of structural materials, hence the need for the development of high-yield synthesis methods of pure BN nanostructures. Using borazine ( B 3 N 3 H 6 ) as chemical precursor and the hot-filament chemical vapor deposition (HFCVD) technique, pure BN nanostructures with cross-sectional sizes ranging between 20 and 50 nm were obtained, including nanoparticles and nanofibers. Their crystalline structure was characterized by (XRD), their morphology and nanostructure was examined by (SEM) and (TEM), while their chemical composition was studied by (EDS), (FTIR), (EELS), and (XPS). Taken altogether, the results indicate that all the material obtained is stoichiometric nanostructured BN with hexagonal and rhombohedral crystalline structure.« less

  9. Asynchronous cracking with dissimilar paths in multilayer graphene.

    PubMed

    Jang, Bongkyun; Kim, Byungwoon; Kim, Jae-Hyun; Lee, Hak-Joo; Sumigawa, Takashi; Kitamura, Takayuki

    2017-11-16

    Multilayer graphene consists of a stack of single-atomic-thick monolayer graphene sheets bound with π-π interactions and is a fascinating model material opening up a new field of fracture mechanics. In this study, fracture behavior of single-crystalline multilayer graphene was investigated using an in situ mode I fracture test under a scanning electron microscope, and abnormal crack propagation in multilayer graphene was identified for the first time. The fracture toughness of graphene was determined from the measured load-displacement curves and the realistic finite element modelling of specimen geometries. Nonlinear fracture behavior of the multilayer graphene is discussed based on nonlinear elastic fracture mechanics. In situ scanning electron microscope images obtained during the fracture test showed asynchronous crack propagation along independent paths, causing interlayer shear stress and slippages. We also found that energy dissipation by interlayer slippages between the graphene layers is the reason for the enhanced fracture toughness of multilayer graphene. The asynchronous cracking with independent paths is a unique cracking and toughening mechanism for single-crystalline multilayer graphene, which is not observed for the monolayer graphene. This could provide a useful insight for the design and development of graphene-based composite materials for structural applications.

  10. Innovative soft magnetic multilayers with enhanced in-plane anisotropy and ferromagnetic resonance frequency for integrated RF passive devices

    NASA Astrophysics Data System (ADS)

    Falub, Claudiu V.; Bless, Martin; Hida, Rachid; MeduÅa, Mojmír; Ammann, Arnold

    2018-04-01

    We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.%) and Co-4.5%Ta4%Zr (at.%) amorphous alloys are deposited on 8" bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR) we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers) to 52 % (e.g. FeCoB-based multilayers). We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD), but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the conventional Co

  11. Numerical simulation and experiment on multilayer stagger-split die.

    PubMed

    Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou

    2013-05-01

    A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.

  12. Bulk and interface quantum states of electrons in multi-layer heterostructures with topological materials

    NASA Astrophysics Data System (ADS)

    Nikolic, Aleksandar; Zhang, Kexin; Barnes, C. H. W.

    2018-06-01

    In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material’s ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb2Te3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.

  13. Multilayered materials based on biopolymers as drug delivery systems.

    PubMed

    Vilela, Carla; Figueiredo, Ana R P; Silvestre, Armando J D; Freire, Carmen S R

    2017-02-01

    The design of efficient therapeutic delivery devices has become a tremendously active area of research with a strong contribution from the layer-by-layer (LbL) technology. The application of this simple yet firmly established technique for the design of drug reservoirs originates a multitude of multilayered systems of tailored architecture and with a high level of control of drug administration. Areas covered: This review will focus on the most recent and original research on LbL assemblies based on biopolymers including polysaccharides, polypeptides and proteins, with potential use in drug delivery. Herein, drug reservoirs consisting of multilayered planar films and capsules will be examined with emphasis on the ones benefiting from the non-cytotoxic and biocompatible nature of biopolymers, which are suitable to load, protect and release a high payload of toxic and fragile drugs. Expert opinion: The combination of biopolymers with LbL technology has undergone extensive research, still, there is a multitude of R&D opportunities for the design of smart drug delivery systems with distinct multilayered morphologies, low immunological response, non-invasive drug release devices, as well as the design of theranostic systems combining diagnostics and therapeutic features. Further developments in terms of scaling towards mass production in the pharmaceutical industry are expected in the long-term.

  14. Nanostructured Diclofenac Sodium Releasing Material

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Harlin, A.; Seppälä, J.; Ashammakhi, N.

    2008-02-01

    Various techniques have been developed to produce second generation biomaterials for tissue repair. These include extrusion, molding, salt leaching, spinning etc, but success in regenerating tissues has been limited. It is important to develop porous material, yet with a fibrous structure for it to be biomimetic. To mimic biological tissues, the extra-cellular matrix usually contains fibers in nano scale. To produce nanostructures, self-assembly or electrospinning can be used. Adding a drug release function to such a material may advance applications further for use in controlled tissue repair. This turns the resulting device into a multifunctional porous, fibrous structure to support cells and drug releasing properties in order to control tissue reactions. A bioabsorbable poly(ɛ-caprolactone-co-D,L lactide) 95/5 (PCL) was made into diluted solution using a solvent, to which was added 2w-% of diclofenac sodium (DS). Nano-fibers were made by electrospinning onto substrate. Microstructure of the resulting nanomat was studied using SEM and drug release profiles with UV/VIS spectroscopy. Thickness of the electrospun nanomat was about 2 mm. SEM analysis showed that polymeric nano-fibers containing drug particles form a highly interconnected porous nano structure. Average diameter of the nano-fibers was 130 nm. There was a high burst peak in drug release, which decreased to low levels after one day. The used polymer has slow a degradation rate and though the nanomat was highly porous with a large surface area, drug release rate is slow. It is feasible to develop a nano-fibrous porous structure of bioabsorbable polymer, which is loaded with test drug. Drug release is targeted at improving the properties of biomaterial for use in controlled tissue repair and regeneration.

  15. Corrugated grating on organic multilayer Bragg reflector

    NASA Astrophysics Data System (ADS)

    Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter

    2007-08-01

    Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.

  16. Structure and mechanical properties of a multilayer carbide-hardened niobium composite material fabricated by diffusion welding

    NASA Astrophysics Data System (ADS)

    Korzhov, V. P.; Ershov, A. E.; Stroganova, T. S.; Prokhorov, D. V.

    2016-04-01

    The structure, the bending strength, and the fracture mechanism of an artificial niobium-based composite material, which is fabricated by high-pressure diffusion welding of multilayer stacks assembled from niobium foils with a two-sided carbon coating, are studied. The microstructure of the composite material is found to consist of alternating relatively plastic layers of the solid solution of carbon in niobium and hardening niobium carbide layers. The room-temperature proportional limit of the developed composite material is threefold that of the composite material fabricated from coating-free niobium foils using the proposed technology. The proportional limit of the developed composite material and the stress corresponding to the maximum load at 1100°C are 500 and 560 MPa, respectively. The developed material is considered as an alternative to Ni-Al superalloys.

  17. Surface-Enhanced Raman Spectroscopy as a Probe of the Surface Chemistry of Nanostructured Materials.

    PubMed

    Dick, Susan; Konrad, Magdalena P; Lee, Wendy W Y; McCabe, Hannah; McCracken, John N; Rahman, Taifur M D; Stewart, Alan; Xu, Yikai; Bell, Steven E J

    2016-07-01

    Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    PubMed Central

    Wang, Alan X.; Kong, Xianming

    2015-01-01

    Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene. PMID:26900428

  19. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering.

    PubMed

    Wang, Alan X; Kong, Xianming

    2015-06-01

    Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  20. Acquisition of a Modified Suction Casting Instrument for the Fabrication of Radiation Tolerant Bulk nNanostructured Metallic Materials

    DTIC Science & Technology

    2015-01-13

    Cu/ Nb films”, Philos. Mag., 84, 1021-1028, (2004). [23] D. H. Ryan, J. M. D. Coey, “Magnetic properties of iron-rich Fe- Zr glasses”, Phys. Rev. B...2226, (1982). [26] K. Fukamichi, R. J. Gambino, T. R. McGuire, “ Electrical resistivity and Hall effect in FeZr amorphous sputtered films”, J. Appl...fabricate several bulk nanostructured metallic materials. In particular we fabricated bulk nanostructured Fe- Zr alloys via suction casting technique. The as

  1. Combustion Synthesis Reaction Behavior of Cold-Rolled Ni/Al and Ti/Al Multilayers

    DTIC Science & Technology

    2011-04-01

    6   Figure 4 . Combustion synthesis process of the cold-rolled Ni/Al multilayer foils: (a) reaction front of the displacement of the reaction...Reactive Nanostructured Foil Used as a Heat Source for Joining Titanium . J. Appl. Phys. 2004, 96 ( 4 ), 2336–2342. 16. Wang, J.; Besnoin, E...2011 2. REPORT TYPE Final 3. DATES COVERED (From - To) January 2006–January 2008 4 . TITLE AND SUBTITLE Combustion Synthesis Reaction Behavior of

  2. Design, Synthesis, and Characterization of Nanostructured Materials for Energy Storage Devices and Flexible Chemical Sensors

    NASA Astrophysics Data System (ADS)

    Kang, Ning

    Nanomaterials have shown increasing applications in the design and fabrication of functional devices such as energy storage devices and sensor devices. A key challenge is the ability to harness the nanostructures in terms of size, shape, composition and structure so that the unique nanoscale functional properties can be exploited. This dissertation describes our findings in design, synthesis, and characterization of nanoparticles towards applications in two important fronts. The first involves the investigation of nanoalloy catalysts and functional nanoparticles for energy storage devices, including Li-air and Li-ion batteries, aiming at increasing the capacity and cycle performance. Part of this effort focuses on design of bifunctional nanocatalysts through alloying noble metal with non-noble transition metal to improve the ORR and OER activity of Li-air batteries. By manipulating the composition and alloying structure of the catalysts, synergetic effect has been demonstrated, which is substantiated by both experimental results and theoretical calculation for the charge/discharge process. The other part of the effort focuses on modification of Si nanoparticles towards high-capacity anode materials. The modification involved dopant elements, carbon coating, and graphene composite formation to manipulate the ability of the nanoparticles in accommodating the volume expansion. The second part focuses on the design, preparation and characterization of metal nanoparticles and nanocomposite materials for the application in flexible sensing devices. The investigation focuses on fabrication of a novel class of nanoparticle-nanofibrous membranes consisting of gold nanoparticles embedded in a multi-layered fibrous membrane as a tunable interfacial scaffold for flexible sweat sensors. Sensing responses to different ionic species in aqueous solutions and relative humidity changes in the environment were demonstrated, showing promising potential as flexible sensing devices for

  3. Synthesis and Electron Field-Emission of 1-D Carbon-Related Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Shih, Han C.

    2002-10-01

    Carbon nanotubes, a new stable form of carbon that was first identified in 1991 [1], are fullerene-related structures which consist of graphitic cylinders closed at either end with caps containing pentagonal rings. Although carbon nanotube structures are closely related to graphite, the curvature, symmetry and small size induce marked deviations from the graphitic behavior. Various methods have been used to produce carbon nanotubes, e.g., arc-discharge, laser-vaporization, catalytic chemical vapor deposition, but too many impurities also be produced, such as fullerenes, carbon nanoparticles and amorphous carbons. The microwave plasma enhanced chemical vapor deposition (MPECVD) system has been used to grow carbon nanotubes in this work and other 1-D carbon-related nanostructured materials was synthesized by the electron cyclotron resonance (ECR) plasma system. Plasma is generated by microwave excitation at 2.45 GHz by a magnetron passes through a waveguide and fed perpendicularly through a quartz dome into an 875 G magnetic field generated by the coils surrounding the resonance volume that creates the ECR condition. The deposition chamber was pumped down to the base pressure of 6.7X10-4 Pa (5X10-6 Torr) with a turbomolecular pump for ECR-plasma and subatmospheric pressures for MPECVD by a rotary mechanical pump. Well-aligned carbon-related nanostructures have been synthesized in nanoporous alumina or silicon with a uniform diameter of 30-100 nm by microwave excited plasma of CH_4, C_2H_2, N_2, H2 and Ar precursors. Nickel nanowires not only serve as catalysts to decompose hydrocarbons to form nanostructures but also function as an electrical conductor for other advanced applications. A negative dc bias is always applied to the substrate to promote the flow of ion fluxes through the nanochannels of the template materials that facilitate the physical adsorption and subsequent chemical absorption in the formation of carbon- and carbon-nitride nanotubes[2]. The electron

  4. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design.

    PubMed

    van 't Hag, Leonie; Gras, Sally L; Conn, Charlotte E; Drummond, Calum J

    2017-05-22

    Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).

  5. Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers

    PubMed Central

    Feng, Ai Ling; You, Min Li; Tian, Limei; Singamaneni, Srikanth; Liu, Ming; Duan, Zhenfeng; Lu, Tian Jian; Xu, Feng; Lin, Min

    2015-01-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interests in bioapplications due to their unique optical properties by converting near infrared excitation to visible emission. However, relatively low quantum yield prompts a need for developing methods for fluorescence enhancement. Plasmon nanostructures are known to efficiently enhance fluorescence of the surrounding fluorophores by acting as nanoantennae to focus electric field into nano-volume. Here, we reported a novel plasmon-enhanced fluorescence system in which the distance between UCNPs and nanoantennae (gold nanorods, AuNRs) was precisely tuned by using layer-by-layer assembled polyelectrolyte multilayers as spacers. By modulating the aspect ratio of AuNRs, localized surface plasmon resonance (LSPR) wavelength at 980 nm was obtained, matching the native excitation of UCNPs resulting in maximum enhancement of 22.6-fold with 8 nm spacer thickness. These findings provide a unique platform for exploring hybrid nanostructures composed of UCNPs and plasmonic nanostructures in bioimaging applications. PMID:25586238

  6. Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers.

    PubMed

    Feng, Ai Ling; You, Min Li; Tian, Limei; Singamaneni, Srikanth; Liu, Ming; Duan, Zhenfeng; Lu, Tian Jian; Xu, Feng; Lin, Min

    2015-01-14

    Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interests in bioapplications due to their unique optical properties by converting near infrared excitation to visible emission. However, relatively low quantum yield prompts a need for developing methods for fluorescence enhancement. Plasmon nanostructures are known to efficiently enhance fluorescence of the surrounding fluorophores by acting as nanoantennae to focus electric field into nano-volume. Here, we reported a novel plasmon-enhanced fluorescence system in which the distance between UCNPs and nanoantennae (gold nanorods, AuNRs) was precisely tuned by using layer-by-layer assembled polyelectrolyte multilayers as spacers. By modulating the aspect ratio of AuNRs, localized surface plasmon resonance (LSPR) wavelength at 980 nm was obtained, matching the native excitation of UCNPs resulting in maximum enhancement of 22.6-fold with 8 nm spacer thickness. These findings provide a unique platform for exploring hybrid nanostructures composed of UCNPs and plasmonic nanostructures in bioimaging applications.

  7. Generalized Ellipsometry on Complex Nanostructures and Low-Symmetry Materials

    NASA Astrophysics Data System (ADS)

    Mock, Alyssa Lynn

    In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with monoclinic and triclinic symmetries. A model eigendielectric displacement vector approach is developed, described and utilized to characterize monoclinic materials. Materials are investigated in spectral regions spanning from the far-infrared to the vacuum ultraviolet. Examples are demonstrated for phonon mode determination in cadmium tungstate and yttrium silicate and for band-to-band transitions in gallia (beta-Ga2O3) single crystals. Furthermore, the anisotropic optical properties of an emerging class of spatially coherent heterostructure materials with nanostructure dimensions are investigated. The so-called anisotropic effective medium approximation for slanted columnar thin films is extended to the concept of slanted columnar heterostructure thin films as well as core-shell heterostructure thin films. Examples include the determination of band-to-band transitions, phonon modes and oxidation properties of cobalt-oxide core shell structures and gas-liquid-solid distribution during controlled adsorption of organic solvents in silicon slanted columnar thin films.

  8. Spectroscopic investigation of the wettability of multilayer graphene using highly ordered pyrolytic graphite as a model material.

    PubMed

    Ashraf, Ali; Wu, Yanbin; Wang, Michael C; Aluru, Narayana R; Dastgheib, Seyed A; Nam, SungWoo

    2014-11-04

    We report the intrinsic water contact angle (WCA) of multilayer graphene, explore different methods of cleaning multilayer graphene, and evaluate the efficiency of those methods on the basis of spectroscopic analysis. Highly ordered pyrolytic graphite (HOPG) was used as a model material system to study the wettability of the multilayer graphene surface by WCA measurements. A WCA value of 45° ± 3° was measured for a clean HOPG surface, which can serve as the intrinsic WCA for multilayer graphene. A 1 min plasma treatment (100 W) decreased the WCA to 6°, owing to the creation of surface defects and functionalization by oxygen-containing groups. Molecular dynamics simulations of water droplets on the HOPG surface with or without the oxygen-containing defect sites confirmed the experimental results. Heat treatment at near atmospheric pressure and wet chemical cleaning methods using hydrofluoric acid and chloroform did not change the WCA significantly. Low-pressure, high-temperature annealing under argon and hydrogen reduced the WCA to 54°, close to the intrinsic WCA of HOPG. Raman spectroscopy and atomic force microscopy did not show any significant change for the HOPG surface after this treatment, confirming low-pressure, high-temperature annealing as an effective technique to clean multilayer graphene without damaging the surface. Time-of-flight secondary ion mass spectrometry indicated the existence of hydrocarbon species on the surface of the HOPG sample that was exposed to air for <5 min and the absence of these impurities in the bulk. X-ray photoelectron spectroscopy analyses of the sample surfaces after the different cleaning techniques were performed to correlate the WCA to the surface chemistry. X-ray photoelectron spectroscopy results revealed that the WCA value changed drastically, depending on the amounts of oxygen-containing and hydrocarbon-containing groups on the surface.

  9. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material.

    PubMed

    Lu, S B; Miao, L L; Guo, Z N; Qi, X; Zhao, C J; Zhang, H; Wen, S C; Tang, D Y; Fan, D Y

    2015-05-04

    Black phosphorous (BP), the most thermodynamically stable allotrope of phosphorus, is a high-mobility layered semiconductor with direct band-gap determined by the number of layers from 0.3 eV (bulk) to 2.0 eV (single layer). Therefore, BP is considered as a natural candidate for broadband optical applications, particularly in the infrared (IR) and mid-IR part of the spectrum. The strong light-matter interaction, narrow direct band-gap, and wide range of tunable optical response make BP as a promising nonlinear optical material, particularly with great potentials for infrared and mid-infrared opto-electronics. Herein, we experimentally verified its broadband and enhanced saturable absorption of multi-layer BP (with a thickness of ~10 nm) by wide-band Z-scan measurement technique, and anticipated that multi-layer BPs could be developed as another new type of two-dimensional saturable absorber with operation bandwidth ranging from the visible (400 nm) towards mid-IR (at least 1930 nm). Our results might suggest that ultra-thin multi-layer BP films could be potentially developed as broadband ultra-fast photonics devices, such as passive Q-switcher, mode-locker, optical switcher etc.

  10. Nanostructured and thermoresponsive recombinant biopolymer-based microcapsules for the delivery of active molecules.

    PubMed

    Costa, Rui R; Custódio, Catarina A; Arias, Francisco J; Rodríguez-Cabello, José C; Mano, João F

    2013-10-01

    Multilayer capsules conceived at the nano- and microscales are receiving increasing interest due to their potential role as carriers of biomolecules for drug delivery and tissue engineering. Herein we report the construction of microcapsules by the sequential adsorption of chitosan and a biomimetic elastin-like recombinamer into nanostructured layers on inorganic microparticle templates. The release profile of bovine serum albumin, which was studied at 25 and 37 °C, shows higher retention and Fickian diffusion at physiological temperature. The self-assembled multilayers act as a barrier and allowed for sustained release over 14 days. The capsules studied are non-cytotoxic towards L929 cells, thereby suggesting multiple applications in the fields of biotechnology and bioengineering, where high control of the delivery of therapeutics and growth/differentiation factors is required. In this paper, the construction of microcapsules by sequential adsorption of chitosan and a biomimetic, elastin-like recombinamer into nanostructured layers on inorganic microparticle templates is reported. The layers demonstrated sustained drug release over 14 days. These microcapsules are non-cytotoxic toward L929 cells, suggesting multiple applications where high control of drug or growth factor delivery is required. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Kinetic Modulation of Pulsed Chrono-potentiometric Polymeric Membrane Ion Sensors by Polyelectrolyte Multilayers

    PubMed Central

    Xu, Yida; Xu, Chao; Shvarev, Alexey; Becker, Thomas; De Marco, Roland

    2010-01-01

    Polymeric membrane ion selective electrodes are normally interrogated by zero current potentiometry, and their selectivity is understood to be primarily dependent on an extraction/ion-exchange equilibrium between the aqueous sample and polymeric membrane. If concentration gradients in the contacting diffusion layers are insubstantial, the membrane response is thought to be rather independent of kinetic processes such as surface blocking effects. In this work, the surface of calcium-selective polymeric ion-selective electrodes is coated with polyelectrolyte multilayers as evidenced by zeta potential measurements, atomic force microscopy and electrochemical impedance spectroscopy. Indeed, such multilayers have no effect on their potentiometric response if the membranes are formulated in a traditional manner, containing a lipophilic ion-exchanger and a calcium-selective ionophore. However, drastic changes in the potential response are observed if the membranes are operated in a recently introduced kinetic mode using pulsed chronopotentiometry. The results suggest that the assembled nanostructured multilayers drastically alter the kinetics of ion transport to the sensing membrane, making use of the effect that polyelectrolyte multilayers have different permeabilities toward ions with different valences. The results have implications to the design of chemically selective ion sensors since surface localized kinetic limitations can now be used as an additional dimension to tune the operational ion selectivity. PMID:17711298

  12. Defect-Rich Dopant-Free ZrO2 Nanostructures with Superior Dilute Ferromagnetic Semiconductor Properties.

    PubMed

    Rahman, Md Anisur; Rout, S; Thomas, Joseph P; McGillivray, Donald; Leung, Kam Tong

    2016-09-14

    Control of the spin degree of freedom of an electron has brought about a new era in spin-based applications, particularly spin-based electronics, with the potential to outperform the traditional charge-based semiconductor technology for data storage and information processing. However, the realization of functional spin-based devices for information processing remains elusive due to several fundamental challenges such as the low Curie temperature of group III-V and II-VI semiconductors (<200 K), and the low spin-injection efficiencies of existing III-V, II-VI, and transparent conductive oxide semiconductors in a multilayer device structure, which are caused by precipitation and migration of dopants from the host layer to the adjacent layers. Here, we use catalyst-assisted pulsed laser deposition to grow, for the first time, oxygen vacancy defect-rich, dopant-free ZrO2 nanostructures with high TC (700 K) and high magnetization (5.9 emu/g). The observed magnetization is significantly greater than both doped and defect-rich transparent conductive oxide nanomaterials reported to date. We also provide the first experimental evidence that it is the amounts and types of oxygen vacancy defects in, and not the phase of ZrO2 that control the ferromagnetic order in undoped ZrO2 nanostructures. To explain the origin of ferromagnetism in these ZrO2 nanostructures, we hypothesize a new defect-induced bound polaron model, which is generally applicable to other defect-rich, dopant-free transparent conductive oxide nanostructures. These results provide new insights into magnetic ordering in undoped dilute ferromagnetic semiconductor oxides and contribute to the design of exotic magnetic and novel multifunctional materials.

  13. Nanostructured materials with plasmonic nanobiosensors for early cancer detection: A past and future prospect.

    PubMed

    Sugumaran, Sathish; Jamlos, Mohd Faizal; Ahmad, Mohd Noor; Bellan, Chandar Shekar; Schreurs, Dominique

    2018-02-15

    Early cancer detection and treatment is an emerging and fascinating field of plasmonic nanobiosensor research. It paves to enrich a life without affecting living cells leading to a possible survival of the patient. This review describes a past and future prospect of an integrated research field on nanostructured metamaterials, microwave transmission, surface plasmonic resonance, nanoantennas, and their manifested versatile properties with nano-biosensors towards early cancer detection to preserve human health. Interestingly, (i) microwave transmission shows more advantages than other electromagnetic radiation in reacting with biological tissues, (ii) nanostructured metamaterial (Au) with special properties like size and shape can stimulate plasmonic effects, (iii) plasmonic based nanobiosensors are to explore the efficacy for early cancer tumour detection or single molecular detection and (iv) nanoantenna wireless communication by using microwave inverse scattering nanomesh (MISN) technique instead of conventional techniques can be adopted to characterize the microwave scattered signals from the biomarkers. It reveals that the nanostructured material with plasmonic nanobiosensor paves a fascinating platform towards early detection of cancer tumour and is anticipated to be exploited as a magnificent field in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Coherent multilayer crystals and method of making

    DOEpatents

    Schuller, I.K.; Falco, C.M.

    1980-10-30

    A new material is described consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 A to 2500 A. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.

  15. Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity

    PubMed Central

    Hsiung, Bor-Kai; Deheyn, Dimitri D.; Shawkey, Matthew D.; Blackledge, Todd A.

    2015-01-01

    Slight shifts in arrangement within biological photonic nanostructures can produce large color differences, and sexual selection often leads to high color diversity in clades with structural colors. We use phylogenetic reconstruction, electron microscopy, spectrophotometry, and optical modeling to show an opposing pattern of nanostructural diversification accompanied by unusual conservation of blue color in tarantulas (Araneae: Theraphosidae). In contrast to other clades, blue coloration in phylogenetically distant tarantulas peaks within a narrow 20-nm region around 450 nm. Both quasi-ordered and multilayer nanostructures found in different tarantulas produce this blue color. Thus, even within monophyletic lineages, tarantulas have evolved strikingly similar blue coloration through divergent mechanisms. The poor color perception and lack of conspicuous display during courtship of tarantulas argue that these colors are not sexually selected. Therefore, our data contrast with sexual selection that typically produces a diverse array of colors with a single structural mechanism by showing that natural selection on structural color in tarantulas resulted in convergence on similar color through diverse structural mechanisms. PMID:26702433

  16. Welding bulk metallic glass using nanostructured reactive multilayer foils

    NASA Astrophysics Data System (ADS)

    Trenkle, Jonathan C.

    phase transformations in situ in Al/Ni multilayers. Unlike previous annealing and quenching studies in these multilayers, we observed no metastable or intermediate phases.

  17. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.

    PubMed

    Guan, Bu Yuan; Yu, Xin Yao; Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    Metal-organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF-based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy-related applications of complex nanostructures derived from MOF-based precursors is provided. After a brief summary of synthetic methods of MOF-based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single-shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium-ion batteries, hybrid supercapacitors, water-splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF-based-templates for electrochemical energy storage and conversion applications are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Molecularly Designed Ultrafine/Nanostructured Materials

    DTIC Science & Technology

    1994-04-08

    Ti. UdIOVic. R R, Cananaeh. /iXn. S. Kawi, T. Mure, and B1 C Gates STUDIIES OF- NANOSTRUCTURED M50 TYPE STEEL USING X - RAY AB3SORPTION SPFECTROSCOPY...hydrogenation of titanium or zirconium sponges and related systems and as a powerful activator for heterogeneous hydrogenation catalysts. X - ray ... X - ray diffraction). Quantitave measurements of the gas evolved during the reduction (1 mol H2 per mol Ti), protonolysis and cross experiments using K

  19. Anticancer Applications of Nanostructured Silica-Based Materials Functionalized with Titanocene Derivatives: Induction of Cell Death Mechanism through TNFR1 Modulation.

    PubMed

    Gómez-Ruiz, Santiago; García-Peñas, Alberto; Prashar, Sanjiv; Rodríguez-Diéguez, Antonio; Fischer-Fodor, Eva

    2018-01-31

    A series of cytotoxic titanocene derivatives have been immobilized onto nanostructured silica-based materials using two different synthetic routes, namely, (i) a simple grafting protocol via protonolysis of the Ti-Cl bond; and (ii) a tethering method by elimination of ethanol using triethoxysilyl moieties of thiolato ligands attached to titanium. The resulting nanostructured systems have been characterized by different techniques such as XRD, XRF, DR-UV, BET, SEM, and TEM, observing the incorporation of the titanocene derivatives onto the nanostructured silica and slight changes in the textural features of the materials after functionalization with the metallodrugs. A complete biological study has been carried out using the synthesized materials exhibiting moderate cytotoxicity in vitro against three human hepatic carcinoma (HepG2, SK-Hep-1, Hep3B) and three human colon carcinomas (DLD-1, HT-29, COLO320) and very low cytotoxicity against normal cell lines. In addition, the cells' metabolic activity was modified by a 24-h exposure in a dose-dependent manner. Despite not having a significant effect on TNFα or the proinflammatory interleukin 1α secretion, the materials strongly modulated tumor necrosis factor (TNF) signaling, even at sub-cytotoxic concentrations. This is achieved mainly by upregulation of the TNFR1 receptor production, something which has not previously been observed for these systems.

  20. Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES.

    PubMed

    Escobar Galindo, Ramón; Gago, Raul; Duday, David; Palacio, Carlos

    2010-04-01

    An increasing amount of effort is currently being directed towards the development of new functionalized nanostructured materials (i.e., multilayers and nanocomposites). Using an appropriate combination of composition and microstructure, it is possible to optimize and tailor the final properties of the material to its final application. The analytical characterization of these new complex nanostructures requires high-resolution analytical techniques that are able to provide information about surface and depth composition at the nanometric level. In this work, we comparatively review the state of the art in four different depth-profiling characterization techniques: Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES). In addition, we predict future trends in these techniques regarding improvements in their depth resolutions. Subnanometric resolution can now be achieved in RBS using magnetic spectrometry systems. In SIMS, the use of rotating sample holders and oxygen flooding during analysis as well as the optimization of floating low-energy ion guns to lower the impact energy of the primary ions improves the depth resolution of the technique. Angle-resolved XPS provides a very powerful and nondestructive technique for obtaining depth profiling and chemical information within the range of a few monolayers. Finally, the application of mathematical tools (deconvolution algorithms and a depth-profiling model), pulsed sources and surface plasma cleaning procedures is expected to greatly improve GDOES depth resolution.

  1. Tuning the field distribution and fabrication of an Al@ZnO core-shell nanostructure for a SPR-based fiber optic phenyl hydrazine sensor.

    PubMed

    Tabassum, Rana; Kaur, Parvinder; Gupta, Banshi D

    2016-05-27

    We report the fabrication and characterization of a surface plasmon resonance (SPR)-based fiber optic sensor that uses coatings of silver and aluminum (Al)-zinc oxide (ZnO) core-shell nanostructure (Al@ZnO) for the detection of phenyl hydrazine (Ph-Hyd). To optimize the volume fraction (f) of Al in ZnO and the thickness of the core-shell nanostructure layer (d), the electric field intensity along the normal to the multilayer system is simulated using the two-dimensional multilayer matrix method. The Al@ZnO core-shell nanostructure is prepared using the laser ablation technique. Various probes are fabricated with different values of f and an optimized thickness of core-shell nanostructure for the characterization of the Ph-Hyd sensor. The performance of the Ph-Hyd sensor is evaluated in terms of sensitivity. It is found that the Ag/Al@ZnO nanostructure core-shell-coated SPR probe with f = 0.25 and d = 0.040 μm possesses the maximum sensitivity towards Ph-Hyd. These results are in agreement with the simulated ones obtained using electric field intensity. In addition, the performance of the proposed probe is compared with that of probes coated with (i) Al@ZnO nanocomposite, (ii) Al nanoparticles and (iii) ZnO nanoparticles. It is found that the probe coated with an Al@ZnO core-shell nanostructure shows the largest resonance wavelength shift. The detailed mechanism of the sensing (involving chemical reactions) is presented. The sensor also manifests optimum performance at pH 7.

  2. Finite element analysis of multilayer DEAP stack-actuators

    NASA Astrophysics Data System (ADS)

    Kuhring, Stefan; Uhlenbusch, Dominik; Hoffstadt, Thorben; Maas, Jürgen

    2015-04-01

    Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP). They are coated with compliant and conductive electrodes on each side, which make them performing a relative high amount of deformation with considerable force generation under the influence of an electric field. Because the realization of high electric fields with a limited voltage level requests single layer polymer films to be very thin, novel multilayer actuators are utilized to increase the absolute displacement and force. In case of a multilayer stack-actuator, many actuator films are mechanically stacked in series and electrically connected in parallel. Because there are different ways to design such a stack-actuator, this contribution considers an optimization of some design parameters using the finite element analysis (FEA), whereby the behavior and the actuation of a multilayer dielectric electroactive polymer (DEAP) stack-actuator can be improved. To describe the material behavior, first different material models are compared and necessary material parameters are identified by experiments. Furthermore, a FEA model of a DEAP film is presented, which is expanded to a multilayer DEAP stack-actuator model. Finally, the results of the FEA are discussed and conclusions for design rules of optimized stack-actuators are outlined.

  3. Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Kevin C.; Urban, Jeffrey J.; Segalman, Rachel A.

    The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.

  4. Multilayered composite proton exchange membrane and a process for manufacturing the same

    DOEpatents

    Santurri, Pasco R; Duvall, James H; Katona, Denise M; Mausar, Joseph T; Decker, Berryinne

    2015-05-05

    A multilayered membrane for use with fuel cells and related applications. The multilayered membrane includes a carrier film, at least one layer of an undoped conductive polymer electrolyte material applied onto the carrier film, and at least one layer of a conductive polymer electrolyte material applied onto the adjacent layer of polymer electrolyte material. Each layer of conductive polymer electrolyte material is doped with a plurality of nanoparticles. Each layer of undoped electrolyte material and doped electrolyte material may be applied in an alternating configuration, or alternatively, adjacent layers of doped conductive polymer electrolyte material is employed. The process for producing a multilayered composite membrane includes providing a carrier substrate and solution casting a layer of undoped conductive polymer electrolyte material and a layer of conductive polymer electrolyte material doped with nanoparticles in an alternating arrangement or in an arrangement where doped layers are adjacent to one another.

  5. Piezoelectric polymer multilayer on flexible substrate for energy harvesting.

    PubMed

    Zhang, Lei; Oh, Sharon Roslyn; Wong, Ting Chong; Tan, Chin Yaw; Yao, Kui

    2013-09-01

    A piezoelectric polymer multilayer structure formed on a flexible substrate is investigated for mechanical energy harvesting under bending mode. Analytical and numerical models are developed to clarify the effect of material parameters critical to the energy harvesting performance of the bending multilayer structure. It is shown that the maximum power is proportional to the square of the piezoelectric stress coefficient and the inverse of dielectric permittivity of the piezoelectric polymer. It is further found that a piezoelectric multilayer with thinner electrodes can generate more electric energy in bending mode. The effect of improved impedance matching in the multilayer polymer on energy output is remarkable. Comparisons between piezoelectric ceramic multilayers and polymer multilayers on flexible substrate are discussed. The fabrication of a P(VDF-TrFE) multilayer structure with a thin Al electrode layer is experimentally demonstrated by a scalable dip-coating process on a flexible aluminum substrate. The results indicate that it is feasible to produce a piezoelectric polymer multilayer structure on flexible substrate for harvesting mechanical energy applicable for many low-power electronics.

  6. Application of Traditional and Nanostructure Materials for Medical Electron Beams Collimation: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Miloichikova, I. A.; Stuchebrov, S. G.; Zhaksybayeva, G. K.; Wagner, A. R.

    2015-11-01

    Nowadays, the commercial application of the electron accelerators grows in the industry, in the research investigations, in the medical diagnosis and treatment. In this regard, the electron beam profile modification in accordance with specific purposes is an actual task. In this paper the model of the TPU microtron extracted electron beam developed in the program “Computer Laboratory (PCLab)” is described. The internal beam divergence influence for the electron beam profile and depth dose distribution in the air is considered. The possibility of using the nanostructure materials for the electron beam formation was analyzed. The simulation data of the electron beam shape collimated by different materials (lead, corund- zirconia nanoceramic, gypsum) are shown. The collimator material influence for the electron beam profile and shape are analyzed.

  7. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    PubMed

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  8. Development of nanostructures for application in food technology: evaluation of their in vitro behaviour

    NASA Astrophysics Data System (ADS)

    Pinheiro, Ana Cristina Braga

    The emerging field of nanotechnology offers new challenges to the food industry either by offering novel tools for the development of strategies to improve food quality and human health, or by the introduction of questions about the behaviour of nanostructures within the human body. Nanotechnology holds a great potential to generate very innovative solutions and to provide food technologists and manufacturers with instruments to meet the evergrowing consumer demands in very diverse aspects related with the foods they eat: safety, quality, health-promotion and novelty. However, the application of nanostructures to foods is hindered by very pertinent problems, which could be summarized in two issues: edibility (only edible materials must be used for their production) and functionality/behaviour once inside the human body, that is raising safety concerns among the consumers, and therefore demands an evaluation (ideally) in vivo, or at least in vitro. In this context, the two main challenges addressed in this thesis were to develop stable nanostructures for food applications and to evaluate their in vitro behaviour. The strategy adopted included the development and characterization of edible nanostructures, incorporation of bioactive compounds and evaluation of their behaviour when subjected to digestion in artificial gastrointestinal (GI) systems. In particular, the research undertaken was based on three different nanostructures: nanofilms composed of kappa-carrageenan and chitosan, curcumin nanoemulsions stabilized by different emulsifiers and multilayer nanocapsules composed of chitosan and fucoidan. The nanostructures developed in this work can be used as platforms for the production of new products with improved characteristics targeted at the most recent consumer trends. This work contributes to the understanding of the behaviour of those nanostructures inside the human body during digestion (e.g. release phenomena involved at the nano-scale and bioavailability

  9. Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems

    PubMed Central

    Jiang, Bingbing; Barnett, John B; Li, Bingyun

    2009-01-01

    There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications. PMID:24198464

  10. Surface plasmon aided high sensitive non-enzymatic glucose sensor using Au/NiAu multilayered nanowire arrays.

    PubMed

    Wang, Lanfang; Zhu, Weiqi; Lu, Wenbo; Qin, Xiufang; Xu, Xiaohong

    2018-07-15

    A novel plasmon aided non-enzymatic glucose sensor was first constructed based on the unique half-rough Au/NiAu multilayered nanowire arrays. These multilayered and half-rough nanowires provide high chemical activity and large surface area for glucose oxidation in an alkaline solution. Under visible light irradiation, the surface plasmons originated from Au part enhance the electron transfer in the vertically aligned nanowires, leading to high sensitivity and wide detection range. The resulting sensor exhibits a wide glucose detection concentration range, low detection limit, and high sensitivity for plasmon aided non-enzymatic glucose sensor. Moreover, the detection sensitivity is enhanced by almost 2 folds compared to that in the dark, which significantly enhanced the performance of Au/NiAu multilayered nanowire arrays sensor. An excellent selectivity and acceptable stability were also achieved. These results indicate that surface plasmon aided nanostructures are promising new platforms for the construction of non-enzymatic glucose sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Plasmonic detection of possible defects in multilayer nanohole array consisting of essential materials in simplified STT-RAM cell

    NASA Astrophysics Data System (ADS)

    Sadri-Moshkenani, Parinaz; Khan, Mohammad Wahiduzzaman; Zhao, Qiancheng; Krivorotov, Ilya; Nilsson, Mikael; Bagherzadeh, Nader; Boyraz, Ozdal

    2017-08-01

    Plasmonic nanostructures are highly used for sensing purposes since they support plasmonic modes which make them highly sensitive to the refractive index change of their surrounding medium. Therefore, they can also be used to detect changes in optical properties of ultrathin layer films in a multilayer plasmonic structure. Here, we investigate the changes in optical properties of ultrathin films of macro structures consisting of STT-RAM layers. Among the highest sensitive plasmonic structures, nanohole array has attracted many research interest because of its ease of fabrication, small footprint, and simplified optical alignment. Hence it is more suitable for defect detection in STT-RAM geometries. Moreover, the periodic nanohole pattern in the nanohole array structure makes it possible to couple the light to the surface plasmon polariton (SPP) mode supported by the structure. To assess the radiation damages and defects in STT-RAM cells we have designed a multilayer nanohole array based on the layers used in STT-RAM structure, consisting 4nm- Ta/1.5nm-CoFeB/2nm-MgO/1.5nm-CoFeB/4nm-Ta layers, all on a 300nm silver layer on top of a PEC boundary. The nanoholes go through all the layers and become closed by the PEC boundary on one side. The dimensions of the designed nanoholes are 313nm depth, 350nm diameter, and 700nm period. Here, we consider the normal incidence of light and investigate zeroth-order reflection coefficient to observe the resonance. Our simulation results show that a 10% change in refractive index of the 2nm-thick MgO layer leads to about 122GHz shift in SPP resonance in reflection pattern.

  12. Metallic multilayers at the nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankowski, A.F.

    1994-11-01

    The development of multilayer structures has been driven by a wide range of commercial applications requiring enhanced material behaviors. Innovations in physical vapor deposition technologies, in particular magnetron sputtering, have enabled the synthesis of metallic-based structures with nanoscaled layer dimensions as small as one-to-two monolayers. Parameters used in the deposition process are paramount to the Formation of these small layer dimensions and the stability of the structure. Therefore, optimization of the desired material properties must be related to assessment of the actual microstructure. Characterization techniques as x-ray diffraction and high resolution microscopy are useful to reveal the interface and layermore » structure-whether ordered or disordered crystalline, amorphous, compositionally abrupt or graded, and/or lattice strained Techniques for the synthesis of metallic multilayers with subnanometric layers will be reviewed with applications based on enhancing material behaviors as reflectivity and magnetic anisotropy but with emphasis on experimental studies of mechanical properties.« less

  13. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures.

    PubMed

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-16

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd 150 nm /Ag 80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks (~ 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from ~ 510 to ~ 475 nm along with the decreased average size of alloy nanostructures.

  14. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures

    NASA Astrophysics Data System (ADS)

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-01

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd150 nm/Ag80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks ( 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from 510 to 475 nm along with the decreased average size of alloy nanostructures.

  15. Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hsin-jay; Chen, Sinn-wen; Foo, Wei-jian

    2012-07-09

    Nanostructured Ag-Pb-Te thermoelectric materials were fabricated by unidirectionally solidifying the ternary Ag-Pb-Te eutectic and near-eutectic alloys using the Bridgeman method. Specially, the Bridgman-grown eutectic alloy exhibited a partially aligned lamellar microstructure, which consisted of Ag{sub 5}Te{sub 3} and Te phases, with additional 200-600 nm size particles of PbTe. The self-assembled interfaces altered the thermal and electronic transport properties in the bulk Ag-Pb-Te eutectic alloy. Presumably due to phonon scattering from the nanoscale microstructure, a low thermal conductivity ({kappa} = 0.3 W/mK) was achieved of the eutectic alloy, leading to a zT peak of 0.41 at 400 K.

  16. Recycled diesel carbon nanoparticles for nanostructured battery anodes

    NASA Astrophysics Data System (ADS)

    Chen, Yuming; Liu, Chang; Sun, Xiaoxuan; Ye, Han; Cheung, Chunshun; Zhou, Limin

    2015-02-01

    Considerable attention has been devoted to using rational nanostructure design to address critical carbonaceous anode material issues for next-generation lithium-ion batteries (LIBs). However, the fabrication of nanostructured carbonaceous anode materials often involves complex processes and expensive starting materials. Diesel engine is an important source of nanostructured carbon particles with diameters ranging 20 nm-60 nm suspended in air, resulting in a serious scourge of global climate and a series of diseases such as lung cancer, asthma, and cardiovascular disease. Here, we show that diesel carbon nanoparticles collected from diesel engines can be chemically activated to create a porous structure. The resulting nanostructured carbon electrodes have a high specific capacity of 936 mAh g-1 after 40 cycles at 0.05 A/g, and excellent cycle stability while retaining a capacity of ∼210 mAh g-1 after 1200 cycles at 5 A/g. As recycled diesel carbon nanoparticles are readily available due to the several billion tons of diesel fuel consumed every year by diesel engines, their use represents an exciting source for nanostructured carbonaceous anode materials for high-performance LIBs and improves our environment and health.

  17. Development of nanostructured antireflection coatings for infrared technologies and applications

    NASA Astrophysics Data System (ADS)

    Pethuraja, Gopal G.; Zeller, John W.; Welser, Roger E.; Efstathiadis, Harry; Haldar, Pradeep; Wijewarnasuriya, Priyalal S.; Dhar, Nibir K.; Sood, Ashok K.

    2017-09-01

    Infrared (IR) sensing technologies and systems operating from the near-infrared (NIR) to long-wave infrared (LWIR) spectra are being developed for a variety of defense and commercial systems applications. Reflection losses affecting a significant portion of the incident signal limits the performance of IR sensing systems. One of the critical technologies that will overcome this limitation and enhance the performance of IR sensing systems is the development of advanced antireflection (AR) coatings. Magnolia is actively involved in the development and advancement of ultrahigh performance AR coatings for a wide variety of defense and commercial applications. Ultrahigh performance nanostructured AR coatings have been demonstrated for UV to LWIR spectral bands using various substrates. The AR coatings enhance the optical transmission through optical components and devices by significantly minimizing reflection losses, a substantial improvement over conventional thin-film AR coating technologies. Nanostructured AR coatings are fabricated using a tunable self-assembly process on substrates that are transparent for a given spectrum of interest ranging from UV to LWIR. The nanostructured multilayer structures have been designed, developed and optimized for various optoelectronic applications. The optical properties of the AR-coated optical components and sensor substrates have been measured and fine-tuned to achieve a predicted high level of performance of the coatings. In this paper, we review our latest work on high quality nanostructure-based AR coatings, including recent efforts towards the development of nanostructured AR coatings on IR-transparent substrates.

  18. Reactive multilayers fabricated by vapor deposition. A critical review

    DOE PAGES

    Adams, D. P.

    2014-10-02

    The reactive multilayer thin films are a class of energetic materials that continue to attract attention for use in joining applications and as igniters. Generally composed of two reactants, these heterogeneous solids can be stimulated by an external source to promptly release stored chemical energy in a sudden emission of light and heat. In our critical review article, results from recent investigations of these materials are discussed. Discussion begins with a brief description of the vapor deposition techniques that provide accurate control of layer thickness and film composition. More than 50 reactive film compositions have been reported to date, withmore » most multilayers fabricated by magnetron sputter deposition or electron-beam evaporation. In later sections, we review how multilayer ignition threshold, reaction rate, and total heat are tailored via thin film design. For example, planar multilayers with nanometer-scale periodicity exhibit rapid, self-sustained reactions with wavefront velocities up to 100 m/s. Numeric and analytical models have elucidated many of the fundamental processes that underlie propagating exothermic reactions while demonstrating how reaction rates vary with multilayer design. Recent, time-resolved diffraction and imaging studies have further revealed the phase transformations and the wavefront dynamics associated with propagating chemical reactions. Many reactive multilayers (e.g., Co/Al) form product phases that are consistent with published equilibrium phase diagrams, yet a few systems, such as Pt/Al, develop metastable products. The final section highlights current and emerging applications of reactive multilayers. Examples include reactive Ni(V)/Al and Pd/Al multilayers which have been developed for localized soldering of heat-sensitive components.« less

  19. Thermal conductivity anisotropy in nanostructures and nanostructured materials

    NASA Astrophysics Data System (ADS)

    Termentzidis, Konstantinos

    2018-03-01

    Thermal conductivity anisotropy is a subject for both fundamental and application interests. The anisotropy can be induced either by van der Waals forces in bulk systems or by nanostructuration. Here, we will examine four cases in which thermal anisotropy has been observed: (i) Si/Ge superlattices which exhibit higher thermal anisotropy between in-plane and cross-plane directions for the case of smooth interfaces, (ii) amorphous/crystalline superlattices with much higher anisotropy than the crystalline/crystalline superlattices and which can reach a factor of six when the amorphous fraction increases, (iii) the impact of the density of edge and screw dislocations on the thermal anisotropy of defected GaN, and (iv) the influence of the growth direction of Bi2Te3 nanowires on thermal conductivity.

  20. Optimized capping layers for EUV multilayers

    DOEpatents

    Bajt, Sasa [Livermore, CA; Folta, James A [Livermore, CA; Spiller, Eberhard A [Livermore, CA

    2004-08-24

    A new capping multilayer structure for EUV-reflective Mo/Si multilayers consists of two layers: A top layer that protects the multilayer structure from the environment and a bottom layer that acts as a diffusion barrier between the top layer and the structure beneath. One embodiment combines a first layer of Ru with a second layer of B.sub.4 C. Another embodiment combines a first layer of Ru with a second layer of Mo. These embodiments have the additional advantage that the reflectivity is also enhanced. Ru has the best oxidation resistance of all materials investigated so far. B.sub.4 C is an excellent barrier against silicide formation while the silicide layer formed at the Si boundary is well controlled.

  1. One-Dimensional Hetero-Nanostructures for Rechargeable Batteries.

    PubMed

    Mai, Liqiang; Sheng, Jinzhi; Xu, Lin; Tan, Shuangshuang; Meng, Jiashen

    2018-04-17

    Rechargeable batteries are regarded as one of the most practical electrochemical energy storage devices that are able to convert and store the electrical energy generated from renewable resources, and they function as the key power sources for electric vehicles and portable electronics. The ultimate goals for electrochemical energy storage devices are high power and energy density, long lifetime, and high safety. To achieve the above goals, researchers have tried to apply various morphologies of nanomaterials as the electrodes to enhance the electrochemical performance. Among them, one-dimensional (1D) materials show unique superiorities, such as cross-linked structures for external stress buffering and large draw ratios for internal stress dispersion. However, a homogeneous single-component electrode material can hardly have the characteristics of high electronic/ionic conductivity and high stability in the electrochemical environment simultaneously. Therefore, designing well-defined functional 1D hetero-nanostructures that combine the advantages and overcome the limitations of different electrochemically active materials is of great significance. This Account summarizes fabrication strategies for 1D hetero-nanostructures, including nucleation and growth, deposition, and melt-casting and electrospinning. Besides, the chemical principles for each strategy are discussed. The nucleation and growth strategy is suitable for growing and constructing 1D hetero-nanostructures of partial transition metal compounds, and the experimental conditions for this strategy are relatively accessible. Deposition is a reliable strategy to synthesize 1D hetero-nanostructures by decorating functional layers on 1D substrate materials, on the condition that the preobtained substrate materials must be stable in the following deposition process. The melt-casting strategy, in which 1D hetero-nanostructures are synthesizes via a melting and molding process, is also widely used. Additionally

  2. Estimation of Complex Permittivity of Composite Multilayer Material at Microwave Frequency Using Waveguide Measurements

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Dudley, Kenneth

    2003-01-01

    A simple method is presented to estimate the complex dielectric constants of individual layers of a multilayer composite material. Using the MatLab Optimization Tools simple MatLab scripts are written to search for electric properties of individual layers so as to match the measured and calculated S-parameters. A single layer composite material formed by using materials such as Bakelite, Nomex Felt, Fiber Glass, Woven Composite B and G, Nano Material #0, Cork, Garlock, of different thicknesses are tested using the present approach. Assuming the thicknesses of samples unknown, the present approach is shown to work well in estimating the dielectric constants and the thicknesses. A number of two layer composite materials formed by various combinations of above individual materials are tested using the present approach. However, the present approach could not provide estimate values close to their true values when the thicknesses of individual layers were assumed to be unknown. This is attributed to the difficulty in modelling the presence of airgaps between the layers while doing the measurement of S-parameters. A few examples of three layer composites are also presented.

  3. Multilayer ZnO/Pd/ZnO Structure as Sensing Membrane for Extended-Gate Field-Effect Transistor (EGFET) with High pH Sensitivity

    NASA Astrophysics Data System (ADS)

    Rasheed, Hiba S.; Ahmed, Naser M.; Matjafri, M. Z.; Al-Hardan, Naif H.; Almessiere, Munirah Abdullah; Sabah, Fayroz A.; Al-Hazeem, Nabeel Z.

    2017-10-01

    Metal oxide nanostructures have attracted considerable attention as pH-sensitive membranes because of their unique advantages. Specifically, the special properties of ZnO thin film, including high surface-to-volume ratio, nontoxicity, thermal stability, chemical stability, electrochemical activity, and high mechanical strength, have attracted massive interest. ZnO exhibits wide bandgap of 3.37 eV, good biocompatibility, high reactivity, robustness, and environmental stability. These unique properties explain why ZnO has the most applications among all nanostructured metal oxides based on its structure and properties. Moreover, ZnO has excellent electrical characteristics, enabling its use in accurate sensors with rapid response. ZnO nanostructures can be used in novel pH and biomedical sensing applications. However, ZnO thin film exhibits large sheet resistance and low conductivity. Increasing the conductivity or reducing the resistivity of ZnO sensing membranes is important to achieve low impedance. We propose herein a new design using a multilayer ZnO/Pd/ZnO structure as a pH-sensing membrane. Multiple layers were deposited by radio frequency (RF) sputtering for ZnO and direct current (DC) sputtering for Pd to achieve low sheet resistance. These multilayers with low sheet resistance of 15.8 Ω/sq were then successfully used to control the conductivity in extended-gate field-effect transistors (EGFETs). The resulting multilayered EGFET pH-sensor demonstrated improved sensing performance. The measured sensitivity of the pH sensor was 40 μA/pH and 52 mV/pH within the pH range from 2 to 12, rendering this structure suitable for use in various applications, including pH sensors and biosensors.

  4. WSi2/Si multilayer sectioning by reactive ion etching for multilayer Laue lens fabrication

    NASA Astrophysics Data System (ADS)

    Bouet, N.; Conley, R.; Biancarosa, J.; Divan, R.; Macrander, A. T.

    2010-09-01

    Reactive ion etching (RIE) has been employed in a wide range of fields such as semiconductor fabrication, MEMS (microelectromechanical systems), and refractive x-ray optics with a large investment put towards the development of deep RIE. Due to the intrinsic differing chemistries related to reactivity, ion bombardment, and passivation of materials, the development of recipes for new materials or material systems can require intense effort and resources. For silicon in particular, methods have been developed to provide reliable anisotropic profiles with good dimensional control and high aspect ratios1,2,3, high etch rates, and excellent material to mask etch selectivity. A multilayer Laue lens4 is an x-ray focusing optic, which is produced by depositing many layers of two materials with differing electron density in a particular stacking sequence where the each layer in the stack satisfies the Fresnel zone plate law. When this stack is sectioned to allow side-illumination with radiation, the diffracted exiting radiation will constructively interfere at the focal point. Since the first MLLs were developed at Argonne in the USA in 20064, there have been published reports of MLL development efforts in Japan5, and, very recently, also in Germany6. The traditional technique for sectioning multilayer Laue lens (MLL) involves mechanical sectioning and polishing7, which is labor intensive and can induce delamination or structure damage and thereby reduce yield. If a non-mechanical technique can be used to section MLL, it may be possible to greatly shorten the fabrication cycle, create more usable optics from the same amount of deposition substrate, and perhaps develop more advanced structures to provide greater stability or flexibility. Plasma etching of high aspect-ratio multilayer structures will also expand the scope for other types of optics fabrication (such as gratings, zone plates, and so-on). However, well-performing reactive ion etching recipes have been developed

  5. Nanostructure Neutron Converter Layer Development

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Lowther, Sharon E. (Inventor); Kang, Jin Ho (Inventor); Thibeault, Sheila A. (Inventor); Sauti, Godfrey (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  6. Anticancer Applications of Nanostructured Silica-Based Materials Functionalized with Titanocene Derivatives: Induction of Cell Death Mechanism through TNFR1 Modulation

    PubMed Central

    García-Peñas, Alberto

    2018-01-01

    A series of cytotoxic titanocene derivatives have been immobilized onto nanostructured silica-based materials using two different synthetic routes, namely, (i) a simple grafting protocol via protonolysis of the Ti–Cl bond; and (ii) a tethering method by elimination of ethanol using triethoxysilyl moieties of thiolato ligands attached to titanium. The resulting nanostructured systems have been characterized by different techniques such as XRD, XRF, DR-UV, BET, SEM, and TEM, observing the incorporation of the titanocene derivatives onto the nanostructured silica and slight changes in the textural features of the materials after functionalization with the metallodrugs. A complete biological study has been carried out using the synthesized materials exhibiting moderate cytotoxicity in vitro against three human hepatic carcinoma (HepG2, SK-Hep-1, Hep3B) and three human colon carcinomas (DLD-1, HT-29, COLO320) and very low cytotoxicity against normal cell lines. In addition, the cells’ metabolic activity was modified by a 24-h exposure in a dose-dependent manner. Despite not having a significant effect on TNFα or the proinflammatory interleukin 1α secretion, the materials strongly modulated tumor necrosis factor (TNF) signaling, even at sub-cytotoxic concentrations. This is achieved mainly by upregulation of the TNFR1 receptor production, something which has not previously been observed for these systems. PMID:29385103

  7. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. F.; Sousa, R.; Cunha, D. J.; Vieira, E. M. F.; Silva, M. M.; Dupont, L.; Goncalves, L. M.

    2015-10-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO2) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si3N4). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber.

  8. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.

    PubMed

    Burakov, Alexander E; Galunin, Evgeny V; Burakova, Irina V; Kucherova, Anastassia E; Agarwal, Shilpi; Tkachev, Alexey G; Gupta, Vinod K

    2018-02-01

    The problem of water pollution is of a great concern. Adsorption is one of the most efficient techniques for removing noxious heavy metals from the solvent phase. This paper presents a detailed information and review on the adsorption of noxious heavy metal ions from wastewater effluents using various adsorbents - i.e., conventional (activated carbons, zeolites, clays, biosorbents, and industrial by-products) and nanostructured (fullerenes, carbon nanotubes, graphenes). In addition to this, the efficiency of developed materials for adsorption of the heavy metals is discussed in detail along with the comparison of their maximum adsorption capacity in tabular form. A special focus is made on the perspectives of further wider applications of nanostructured adsorbents (especially, carbon nanotubes and graphenes) in wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Multi-layer waste containment barrier

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Nickelson, David F.

    1999-01-01

    An apparatus for constructing an underground containment barrier for containing an in-situ portion of earth. The apparatus includes an excavating device for simultaneously (i) excavating earthen material from beside the in-situ portion of earth without removing the in-situ portion and thereby forming an open side trench defined by opposing earthen sidewalls, and (ii) excavating earthen material from beneath the in-situ portion of earth without removing the in-situ portion and thereby forming a generally horizontal underground trench beneath the in-situ portion defined by opposing earthen sidewalls. The apparatus further includes a barrier-forming device attached to the excavating device for simultaneously forming a side barrier within the open trench and a generally horizontal, multi-layer barrier within the generally horizontal trench. The multi-layer barrier includes at least a first layer and a second layer.

  10. In-situ stress measurement of single and multilayer thin-films used in x-ray astronomy optics applications

    NASA Astrophysics Data System (ADS)

    Broadway, David M.; Ramsey, Brian D.; O'Dell, Stephen L.; Gurgew, Danielle

    2017-09-01

    We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.

  11. Nanointaglio fabrication of optical lipid multilayer diffraction gratings with applications in biosensing

    NASA Astrophysics Data System (ADS)

    Lowry, Troy Warren

    The dynamic self-organization of lipids in biological systems is a highly regulated process that enables the compartmentalization of living systems at microscopic and nanoscopic levels. Exploiting the self-organization and innate biofunctionality of lyotropic liquid crystalline phospholipids, a novel nanofabrication process called "nanointaglio" was invented in order to rapidly and scalably integrate lipid nanopatterns onto the surface. The work presented here focuses on using nanointaglio fabricated lipid diffraction micro- and nanopatterns for the development of new sensing and bioactivity studies. The lipids are patterned as diffraction gratings for sensor functionality. The lipid multilayer gratings operate as nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. To demonstrate the label free detection capabilities, lipid nanopatterns are shown to be suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering, indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. A second main application is demonstrated for the study of membrane binding proteins. Although in vitro methods for assaying the catalytic activity of individual enzymes are well established, quantitative methods for assaying the kinetics of

  12. Characterisation of phases in nanostructured, multilayered titanium alloys by analytical and high-resolution electron microscopy.

    PubMed

    Czyrska-Filemonowicz, A; Buffat, P A

    2009-01-01

    Surface processing of a Ti-6Al-4V alloy led to a complex multilayered microstructure containing several phases of the Ni-Ti-P-Al-O system, which improves the mechanical and tribological surface properties. The microstructure, chemical and phase compositions of the hard layer formed on the surface were investigated by LM, XRD, SEM as well as analytical/high-resolution TEM, STEM, EDS, electron diffraction and FIB. Phase identification based on electron diffraction, HRTEM and EDS microanalysis revealed the presence of several binary and ternary phases in the system Ti-Ni-P, sometimes with partial substitution of Ti by Al. However some phases, mainly nanoparticles, still remain not identified satisfactorily. Electron microscopy techniques used for identification of phases present in surface multilayers and some practical limits to their routine application are reminded here.

  13. Recent developments of nano-structured materials as the catalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Kang, SungYeon; Kim, HuiJung; Chung, Yong-Ho

    2018-04-01

    Developments of high efficient materials for electrocatalyst are significant topics of numerous researches since a few decades. Recent global interests related with energy conversion and storage lead to the expansion of efforts to find cost-effective catalysts that can substitute conventional catalytic materials. Especially, in the field of fuel cell, novel materials for oxygen reduction reaction (ORR) have been noticed to overcome disadvantages of conventional platinum-based catalysts. Various approaching methods have been attempted to achieve low cost and high electrochemical activity comparable with Pt-based catalysts, including reducing Pt consumption by the formation of hybrid materials, Pt-based alloys, and not-Pt metal or carbon based materials. To enhance catalytic performance and stability, numerous methods such as structural modifications and complex formations with other functional materials are proposed, and they are basically based on well-defined and well-ordered catalytic active sites by exquisite control at nanoscale. In this review, we highlight the development of nano-structured catalytic materials for ORR based on recent findings, and discuss about an outlook for the direction of future researches.

  14. Synthesis and characterization of Copper/Cobalt/Copper/Iron nanostructurated films with magnetoresistive properties

    NASA Astrophysics Data System (ADS)

    Ciupinǎ, Victor; Prioteasa, Iulian; Ilie, Daniela; Manu, Radu; Petrǎşescu, Lucian; Tutun, Ştefan Gabriel; Dincǎ, Paul; MustaÅ£ǎ, Ion; Lungu, Cristian Petricǎ; Jepu, IonuÅ£; Vasile, Eugeniu; Nicolescu, Virginia; Vladoiu, Rodica

    2017-02-01

    Copper/Cobalt/Copper/Iron thin films were synthesized in order to obtain nanostructured materials with special magnetoresistive properties. The multilayer films were deposited on silicon substrates. In this respect we used Thermionic Vacuum Arc Discharge Method (TVA). The benefit of this deposition technique is the ability to have a controlled range of thicknesses starting from few nanometers to hundreds of nanometers. The purity of the thin films was insured by a high vacuum pressure and a lack of any kind of buffer gas inside the coating chamber. The morphology and structure of the thin films were analyzed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Techniques and Energy Dispersive X-ray Spectroscopy (EDXS). Magnetoresistive measurement results depict that thin films possess Giant Magneto-Resistance Effect (GMR). Magneto-Optic-Kerr Effect (MOKE) studies were performed to characterize the magnetic properties of these thin films.

  15. Understanding Structure and Bonding of Multilayered Metal–Organic Nanostructures

    PubMed Central

    2013-01-01

    For organic and hybrid electronic devices, the physicochemical properties of the contained interfaces play a dominant role. To disentangle the various interactions occurring at such heterointerfaces, we here model a complex, yet prototypical, three-component system consisting of a Cu–phthalocyanine (CuPc) film on a 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) monolayer adsorbed on Ag(111). The two encountered interfaces are similar, as in both cases there would be no bonding without van der Waals interactions. Still, they are also distinctly different, as only at the Ag(111)–PTCDA interface do massive charge-rearrangements occur. Using recently developed theoretical tools, we show that it has become possible to provide atomistic insight into the physical and chemical processes in this comparatively complex nanostructure distinguishing between interactions involving local rearrangements of the charge density and long-range van der Waals attraction. PMID:23447750

  16. Nanostructured mesophase electrode materials: modulating charge-storage behavior by thermal treatment.

    PubMed

    Kong, Hye Jeong; Kim, Saerona; Le, Thanh-Hai; Kim, Yukyung; Park, Geunsu; Park, Chul Soon; Kwon, Oh Seok; Yoon, Hyeonseok

    2017-11-16

    3D nanostructured carbonaceous electrode materials with tunable capacitive phases were successfully developed using graphene/particulate polypyrrole (PPy) nanohybrid (GPNH) precursors without a separate process for incorporating heterogeneous species. The electrode material, namely carbonized GPNHs (CGPNHs) featured a mesophase capacitance consisting of both electric double-layer (EDL) capacitive and pseudocapacitive elements at the molecular level. The ratio of EDL capacitive element to pseudocapacitive element (E-to-P) in the mesophase electrode materials was controlled by varying the PPy-to-graphite weight (P w /G w ) ratio and by heat treatment (T H ), which was demonstrated by characterizing the CGPNHs with elemental analysis, cyclic voltammetry, and a charge/discharge test. The concept of the E-to-P ratio (EPR) index was first proposed to easily identify the capacitive characteristics of the mesophase electrode using a numerical algorithm, which was reasonably consistent with the experimental findings. Finally, the CGPNHs were integrated into symmetric two-electrode capacitor cells, which rendered excellent energy and power densities in both aqueous and ionic liquid electrolytes. It is anticipated that our approach could be widely extended to fabricating versatile hybrid electrode materials with estimation of their capacitive characteristics.

  17. Nanostructured Thermal Protection Systems for Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Chen, Y. K.; Squire, T.; Srivastava, D.; Allen, G., Jr.; Stackpoole, M.; Goldstein, H. E.; Venkatapathy, E.; Loomis, M. P.

    2005-01-01

    Strong research and development programs in nanotechnology and Thermal Protection Systems (TPS) exist at NASA Ames. Conceptual studies have been undertaken to determine if new, nanostructured materials (composites of existing TPS materials and nanostructured composite fibers) could improve the performance of TPS. To this end, we have studied various candidate heatshields, some composed of existing TPS materials (with known material properties), to provide a baseline for comparison with others that are admixtures of such materials and a nanostructured material. In the latter case, some assumptions were made about the thermal conductivity and strength of the admixture, relative to the baseline TPS material. For the purposes of this study, we have made the conservative assumption that only a small fraction of the remarkable properties of carbon nanotubes (for example) will be realized in the material properties of the admixtures employing them. The heatshields studied included those for Sharp leading edges (appropriate to out-of-orbit entry and aero-maneuvering), probes, an out-of-orbit Apollo Command Module (as a surrogate for NASA's new Crew Exploration Vehicle [CEV]), a Mars Sample Return Vehicle and a large heat shield for Mars aerocapture missions. We report on these conceptual studies, which show that in some cases (not all), significant improvements in the TPS can be achieved through the use of nanostructured materials.

  18. First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices

    NASA Astrophysics Data System (ADS)

    Paul, Sujata

    In the course of my PhD I have worked on a broad range of problems using simulations from first principles: from catalysis and chemical reactions at surfaces and on nanostructures, characterization of carbon-based systems and devices, and surface and interface physics. My research activities focused on the application of ab-initio electronic structure techniques to the theoretical study of important aspects of the physics and chemistry of materials for energy and environmental applications and nano-electronic devices. A common theme of my research is the computational study of chemical reactions of environmentally important molecules (CO, CO2) using high performance simulations. In particular, my principal aim was to design novel nano-structured functional catalytic surfaces and interfaces for environmentally relevant remediation and recycling reactions, with particular attention to the management of carbon dioxide. We have studied the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), both in the presence and absence of hydrogen, on graphitic edges. Using first-principles calculations we have studied several reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self-sustained. Using statistical mechanics, we have also studied the conditions under which the conversion of CO to graphene and carbon dioxide is thermodynamically favorable, both in the presence and in the absence of hydrogen. These results are a first step toward the development of processes for the carbon-mediated partial sequestration and selective oxidation of CO in a hydrogen atmosphere. We have elucidated the atomic scale mechanisms of activation and reduction of carbon dioxide on specifically designed catalytic surfaces via the rational manipulation of the surface properties that can be achieved by combining transition metal thin films on oxide

  19. Nanostructured LiMPO4 (M = Fe, Mn, Co, Ni) - carbon composites as cathode materials for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Dimesso, L.; Spanheimer, C.; Nguyen, T. T. D.; Hausbrand, R.; Jaegermann, W.

    2012-10-01

    Nanostructured materials are considered to be strong candidates for fundamental advances in efficient storage and/or conversion. In nanostructured materials transport kinetics and surface processes play determining roles. This work describes recent developments in the synthesis and characterization of composites which consist of lithium metal phosphates (LiMPO4, M = Fe, Mn, Co, Ni) coated on nanostructured carbon supports (unordered nanofibers, foams). The composites have been prepared by coating the carbon structures in aqueous (or polyols) solutions containing lithium, metal ions and phosphates. After drying out, the composites have been thermally treated at different temperatures (between 600-780°C) for 5-12 hours under nitrogen. The formation of the olivine structured phase was confirmed by the X-ray diffraction analysis on powders prepared under very similar conditions. The surface investigation revealed the formation of an homogeneous coating of the olivine phase on the carbon structures. The electrochemical performance on the composites showed a dramatic improvement of the discharge specific capacity (measured at a discharge rate of C/25 and room temperature) compared to the prepared powders. The delivered values were 105 mAhg-1 for M = Fe, 100 mAhg-1 for M = Co, 70 mAhg-1 for M = Mn and 30 mAhg-1 for M = Ni respectively.

  20. Design and function of biomimetic multilayer water purification membranes

    PubMed Central

    Ling, Shengjie; Qin, Zhao; Huang, Wenwen; Cao, Sufeng; Kaplan, David L.; Buehler, Markus J.

    2017-01-01

    Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences. PMID:28435877

  1. Design and function of biomimetic multilayer water purification membranes.

    PubMed

    Ling, Shengjie; Qin, Zhao; Huang, Wenwen; Cao, Sufeng; Kaplan, David L; Buehler, Markus J

    2017-04-01

    Multilayer architectures in water purification membranes enable increased water throughput, high filter efficiency, and high molecular loading capacity. However, the preparation of membranes with well-organized multilayer structures, starting from the nanoscale to maximize filtration efficiency, remains a challenge. We report a complete strategy to fully realize a novel biomaterial-based multilayer nanoporous membrane via the integration of computational simulation and experimental fabrication. Our comparative computational simulations, based on coarse-grained models of protein nanofibrils and mineral plates, reveal that the multilayer structure can only form with weak interactions between nanofibrils and mineral plates. We demonstrate experimentally that silk nanofibril (SNF) and hydroxyapatite (HAP) can be used to fabricate highly ordered multilayer membranes with nanoporous features by combining protein self-assembly and in situ biomineralization. The production is optimized to be a simple and highly repeatable process that does not require sophisticated equipment and is suitable for scaled production of low-cost water purification membranes. These membranes not only show ultrafast water penetration but also exhibit broad utility and high efficiency of removal and even reuse (in some cases) of contaminants, including heavy metal ions, dyes, proteins, and other nanoparticles in water. Our biomimetic design and synthesis of these functional SNF/HAP materials have established a paradigm that could lead to the large-scale, low-cost production of multilayer materials with broad spectrum and efficiency for water purification, with applications in wastewater treatment, biomedicine, food industry, and the life sciences.

  2. Multilayer thin film design as far ultraviolet quarterwave retarders

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Torr, Douglas T.; Wilson, Michele M.

    1993-01-01

    At short wavelengths, such as FUV, transparent, optically active materials are scarce. Reflection phase retardation by a multilayer thin film can be a good alternative in this wavelength region. We design a multilayer quarterwave retarder by calculating the electric fields at each boundary in the multilayer thin film. Using this method, we achieve designs of FUV multilayers which provide high, matched reflectances for both s- and p-polarization states, and at the same time a phase difference between these two states of nearly 90 deg. For example, a quarterwave retarder designed at the Lyman-alpha line (121.6 nm) has 81.05 percent reflectance for the s-polarization and 81.04 percent for the p-polarization state. The phase difference between these two polarization states is 90.07 deg. For convenience the retarders are designed for 45 deg angle of incidence, but our design approach can be used for any other angle of incidence. Aluminum and MgF2 are used as film materials and an opaque thick film of aluminum as the substrate.

  3. Control of Heat and Charge Transport in Nanostructured Hybrid Materials

    DTIC Science & Technology

    2015-07-21

    measurements in our groups have yielded device ZT values of 0.4 on thermoelectric modules consisting of vertically oriented silicon nanowires . This is... nanowires with aspect ratio’s exceeding 10,000. Temperature differences as high as 800 °C are achievable for both types. The bulk nanostructured...thermal conductivity of the silicon nanostructures. Specifically, experiments on an array of 20 nm diameter vertically oriented silicon nanowires have

  4. On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles.

    PubMed

    Castro-Mayorga, Jinneth Lorena; Fabra, Maria Jose; Cabedo, Luis; Lagaron, Jose Maria

    2016-12-29

    Electro-hydrodynamic processing, comprising electrospraying and electrospinning techniques, has emerged as a versatile technology to produce nanostructured fiber-based and particle-based materials. In this work, an antimicrobial active multilayer system comprising a commercial polyhydroxyalkanoate substrate (PHA) and an electrospun PHA coating containing in situ-stabilized silver nanoparticles (AgNPs) was successfully developed and characterized in terms of morphology, thermal, mechanical, and barrier properties. The obtained materials reduced the bacterial population of Salmonella enterica below the detection limits at very low silver loading of 0.002 ± 0.0005 wt %. As a result, this study provides an innovative route to generate fully renewable and biodegradable materials that could prevent microbial outbreaks in food packages and food contact surfaces.

  5. Overall and specific migration from multilayer high barrier food contact materials - kinetic study of cyclic polyester oligomers migration.

    PubMed

    Úbeda, Sara; Aznar, Margarita; Vera, Paula; Nerín, Cristina; Henríquez, Luis; Taborda, Laura; Restrepo, Claudia

    2017-10-01

    Most multilayer high barrier materials used in food packaging have a polyurethane adhesive layer in their structures. In order to assess the safety of these materials, it is important to determine the compounds intentionally added to the adhesives (IAS) as well as those non-intentionally added substances (NIAS). During the manufacture of polyurethane adhesives, some by-products can be formed, such as cyclic polyester oligomers coming from the reaction between dicarboxylic acids and glycols. Since these compounds are not listed in the Regulation 10/2011/EU, they should not be found in migration above 0.01 mg/kg of simulant. In this study two flexible multilayer packaging materials were used and migration was evaluated in simulant A (ethanol 10% v/v), simulant B (acetic acid 3% w/v) and simulant ethanol 95% v/v during 10 days at 60ºC. Identification and quantification of non-volatile compounds was carried out by UPLC-MS-QTOF. Most of migrants were oligomers such as cyclic polyesters and caprolactam oligomers. Overall migration and specific migration of adipic acid-diethylene glycol and phthalic acid-diethylene glycol were monitored over time and analysed by UPLC-MS-TQ. In most cases, ethanol 95% v/v was the simulant with the highest concentration values. Overall migration kinetics followed a similar pattern than specific migration kinetics.

  6. Carbon Nanotube-Multilayered Graphene Edge Plane Core-Shell Hybrid Foams for Ultrahigh-Performance Electromagnetic-Interference Shielding.

    PubMed

    Song, Qiang; Ye, Fang; Yin, Xiaowei; Li, Wei; Li, Hejun; Liu, Yongsheng; Li, Kezhi; Xie, Keyu; Li, Xuanhua; Fu, Qiangang; Cheng, Laifei; Zhang, Litong; Wei, Bingqing

    2017-08-01

    Materials with an ultralow density and ultrahigh electromagnetic-interference (EMI)-shielding performance are highly desirable in fields of aerospace, portable electronics, and so on. Theoretical work predicts that 3D carbon nanotube (CNT)/graphene hybrids are one of the most promising lightweight EMI shielding materials, owing to their unique nanostructures and extraordinary electronic properties. Herein, for the first time, a lightweight, flexible, and conductive CNT-multilayered graphene edge plane (MLGEP) core-shell hybrid foam is fabricated using chemical vapor deposition. MLGEPs are seamlessly grown on the CNTs, and the hybrid foam exhibits excellent EMI shielding effectiveness which exceeds 38.4 or 47.5 dB in X-band at 1.6 mm, while the density is merely 0.0058 or 0.0089 g cm -3 , respectively, which far surpasses the best values of reported carbon-based composite materials. The grafted MLGEPs on CNTs can obviously enhance the penetration losses of microwaves in foams, leading to a greatly improved EMI shielding performance. In addition, the CNT-MLGEP hybrids also exhibit a great potential as nano-reinforcements for fabricating high-strength polymer-based composites. The results provide an alternative approach to fully explore the potentials of CNT and graphene, for developing advanced multifunctional materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode.

    PubMed

    Chang, Jingbo; Huang, Xingkang; Zhou, Guihua; Cui, Shumao; Hallac, Peter B; Jiang, Junwei; Hurley, Patrick T; Chen, Junhong

    2014-02-01

    Multilayered Si/RGO anode nanostructures, featuring alternating Si nanoparticle (NP) and RGO layers, good mechanical stability, and high electrical conductivity, allow Si NPs to easily expand between RGO layers, thereby leading to high reversible capacity up to 2300 mAh g(-1) at 0.05 C (120 mA g(-1) ) and 87% capacity retention (up to 630 mAh g(-1) ) at 10 C after 152 cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dynamic Processes in Nanostructured Crystals Under Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Uglov, V. V.; Kvasov, N. T.; Shimanski, V. I.; Safronov, I. V.; Komarov, N. D.

    2018-02-01

    The paper presents detailed investigations of dynamic processes occurring in nanostructured Si(Fe) material under the radiation exposure, namely: heating, thermoelastic stress generation, elastic disturbances of the surrounding medium similar to weak shock waves, and dislocation generation. The performance calculations are proposed for elastic properties of the nanostructured material with a glance to size effects in nanoparticles.

  9. Novel preparation of highly photocatalytically active copper chromite nanostructured material via a simple hydrothermal route

    PubMed Central

    Beshkar, Farshad; Zinatloo-Ajabshir, Sahar; Bagheri, Samira; Salavati-Niasari, Masoud

    2017-01-01

    Highly photocatalytically active copper chromite nanostructured material were prepared via a novel simple hydrothermal reaction between [Cu(en)2(H2O)2]Cl2 and [Cr(en)3]Cl3.3H2O at low temperature, without adding any pH regulator or external capping agent. The as-synthesized nanostructured copper chromite was analyzed by transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Results of the morphological investigation of the as-synthesized products illustrate that the shape and size of the copper chromite depended on the surfactant sort, reaction duration and temperature. Moreover, the photocatalytic behavior of as-obtained copper chromite was evaluated by photodegradation of acid blue 92 (anionic dye) as water pollutant. PMID:28582420

  10. Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications.

    PubMed

    Lu, Xin; Qu, Hang; Skorobogatiy, Maksim

    2017-02-28

    We report an all-polymer flexible piezoelectric fiber that uses both judiciously chosen geometry and advanced materials in order to enhance fiber piezoelectric response. The microstructured/nanostructured fiber features a soft hollow polycarbonate core surrounded by a spiral multilayer cladding consisting of alternating layers of piezoelectric nanocomposites (polyvinylidene enhanced with BaTiO 3 , PZT, or CNT) and conductive polymer (carbon-filled polyethylene). The conductive polymer layers serve as two electrodes, and they also form two spatially offset electric connectors on the fiber surface designed for the ease of connectorization. Kilometer-long piezoelectric fibers of sub-millimeter diameters are thermally drawn from a macroscopic preform. The fibers exhibit high output voltage of up to 6 V under moderate bending, and they show excellent mechanical and electrical durability in a cyclic bend-release test. The micron/nanosize multilayer structure enhances in-fiber poling efficiency due to the small distance between the conducting electrodes sandwiching the piezoelectric composite layers. Additionally, the spiral structure greatly increases the active area of the piezoelectric composite, thus promoting higher voltage generation and resulting in 10-100 higher power generation efficiency over the existing piezoelectric cables. Finally, we weave the fabricated piezoelectric fibers into technical textiles and demonstrate their potential applications in power generation when used as a sound detector, smart car seat upholstery, or wearable materials.

  11. Design of hybrid two-dimensional and three-dimensional nanostructured arrays for electronic and sensing applications

    NASA Astrophysics Data System (ADS)

    Ko, Hyunhyub

    This dissertation presents the design of organic/inorganic hybrid 2D and 3D nanostructured arrays via controlled assembly of nanoscale building blocks. Two representative nanoscale building blocks such as carbon nanotubes (one-dimension) and metal nanoparticles (zero-dimension) are the core materials for the study of solution-based assembly of nanostructured arrays. The electrical, mechanical, and optical properties of the assembled nanostructure arrays have been investigated for future device applications. We successfully demonstrated the prospective use of assembled nanostructure arrays for electronic and sensing applications by designing flexible carbon nanotube nanomembranes as mechanical sensors, highly-oriented carbon nanotubes arrays for thin-film transistors, and gold nanoparticle arrays for SERS chemical sensors. In first section, we fabricated highly ordered carbon nanotube (CNT) arrays by tilted drop-casting or dip-coating of CNT solution on silicon substrates functionalized with micropatterned self-assembled monolayers. We further exploited the electronic performance of thin-film transistors based on highly-oriented, densely packed CNT micropatterns and showed that the carrier mobility is largely improved compared to randomly oriented CNTs. The prospective use of Raman-active CNTs for potential mechanical sensors has been investigated by studying the mechano-optical properties of flexible carbon nanotube nanomembranes, which contain freely-suspended carbon nanotube array encapsulated into ultrathin (<50 nm) layer-by-layer (LbL) polymer multilayers. In second section, we fabricated 3D nano-canal arrays of porous alumina membranes decorated with gold nanoparticles for prospective SERS sensors. We showed extraordinary SERS enhancement and suggested that the high performance is associated with the combined effects of Raman-active hot spots of nanoparticle aggregates and the optical waveguide properties of nano-canals. We demonstrated the ability of this

  12. Synthesis and Characterization of Polymer-Metal Nanostructured Membranes

    DTIC Science & Technology

    ions creating unique polymer -metal nanostructured membranes. A comprehensive materials characterization study was performed to understand their...fluoropolymers were also investigated. First the polymer -metal nanostructure of Nafion with several counter-ions was studied upon supercritical fluid CO2...processing. Then, novel fluorinated block copolymers were synthesized using atom transfer radical polymerization (ATRP) and their resulting nanostructure was

  13. Active multilayered capsules for in vivo bone formation

    PubMed Central

    Facca, S.; Cortez, C.; Mendoza-Palomares, C.; Messadeq, N.; Dierich, A.; Johnston, A. P. R.; Mainard, D.; Voegel, J.-C.; Caruso, F.; Benkirane-Jessel, N.

    2010-01-01

    Interest in the development of new sources of transplantable materials for the treatment of injury or disease has led to the convergence of tissue engineering with stem cell technology. Bone and joint disorders are expected to benefit from this new technology because of the low self-regenerating capacity of bone matrix secreting cells. Herein, the differentiation of stem cells to bone cells using active multilayered capsules is presented. The capsules are composed of poly-L-glutamic acid and poly-L-lysine with active growth factors embedded into the multilayered film. The bone induction from these active capsules incubated with embryonic stem cells was demonstrated in vitro. Herein, we report the unique demonstration of a multilayered capsule-based delivery system for inducing bone formation in vivo. This strategy is an alternative approach for in vivo bone formation. Strategies using simple chemistry to control complex biological processes would be particularly powerful, as they make production of therapeutic materials simpler and more easily controlled. PMID:20160118

  14. Localized entrapment of green fluorescent protein within nanostructured polymer films

    NASA Astrophysics Data System (ADS)

    Ankner, John; Kozlovskaya, Veronika; O'Neill, Hugh; Zhang, Qiu; Kharlampieva, Eugenia

    2012-02-01

    Protein entrapment within ultrathin polymer films is of interest for applications in biosensing, drug delivery, and bioconversion, but controlling protein distribution within the films is difficult. We report on nanostructured protein/polyelectrolyte (PE) materials obtained through incorporation of green fluorescent protein (GFP) within poly(styrene sulfonate)/poly(allylamine hydrochloride) multilayer films assembled via the spin-assisted layer-by-layer method. By using deuterated GFP as a marker for neutron scattering contrast we have inferred the architecture of the films in both normal and lateral directions. We find that films assembled with a single GFP layer exhibit a strong localization of the GFP without intermixing into the PE matrix. The GFP volume fraction approaches the monolayer density of close-packed randomly oriented GFP molecules. However, intermixing of the GFP with the PE matrix occurs in multiple-GFP layer films. Our results yield new insight into the organization of immobilized proteins within polyelectrolyte matrices and open opportunities for fabrication of protein-containing films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.

  15. Nanostructured carbon materials based electrothermal air pump actuators

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong

    2014-05-01

    Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg-1), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa).Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid

  16. Highly Ordered Block Copolymer Templates for the Generation of Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Bhoje Gowd, E.; Nandan, Bhanu; Bigall, Nadja C.; Eychmuller, Alexander; Stamm, Manfred

    2009-03-01

    Among many different types of self-assembled materials, block copolymers have attracted immense interest for applications in nanotechnology. Block copolymer thin film can be used as a template for patterning of hard inorganic materials such as metal nanoparticles. In the present work, we demonstrate a new approach to fabricate highly ordered arrays of nanoscopic inorganic dots and wires using switchable block copolymer thin films. Various inorganic nanoparticles from a simple aqueous solution were directly deposited on the surface reconstructed block copolymer templates. The preferential interaction of the nanoparticles with one of the blocks is mainly responsible for the lateral distribution of the nanoparticles in addition to the capillary forces. Subsequent stabilization by UV-irradiation followed by pyrolysis in air at 450 ^oC removes the polymer to produce highly ordered metallic nanostructures. This method is highly versatile as the procedure used here is simple, eco-friendly and provides a facile approach to fabricate a broad range of nanoscaled architectures with tunable lateral spacing.

  17. Zone compensated multilayer laue lens and apparatus and method of fabricating the same

    DOEpatents

    Conley, Raymond P.; Liu, Chian Qian; Macrander, Albert T.; Yan, Hanfei; Maser, Jorg; Kang, Hyon Chol; Stephenson, Gregory Brian

    2015-07-14

    A multilayer Laue Lens includes a compensation layer formed in between a first multilayer section and a second multilayer section. Each of the first and second multilayer sections includes a plurality of alternating layers made of a pair of different materials. Also, the thickness of layers of the first multilayer section is monotonically increased so that a layer adjacent the substrate has a minimum thickness, and the thickness of layers of the second multilayer section is monotonically decreased so that a layer adjacent the compensation layer has a maximum thickness. In particular, the compensation layer of the multilayer Laue lens has an in-plane thickness gradient laterally offset by 90.degree. as compared to other layers in the first and second multilayer sections, thereby eliminating the strict requirement of the placement error.

  18. Nanostructured TiOx as a catalyst support material for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Phillips, Richard S.

    Recent interest in the development of new catalyst support materials for proton exchange membrane fuel cells (PEMFCs) has stimulated research into the viability of TiO2-based support structures. Specifically, substoichiometric TiO2 (TiOx) has been reported to exhibit a combination of high conductivity, stability, and corrosion resistance. These properties make TiOx-based support materials a promising prospect when considering the inferior corrosion resistance of traditional carbon-based supports. This document presents an investigation into the formation of conductive and stable TiOx thin films employing atomic layer deposition (ALD) and a post deposition oxygen reducing anneal (PDORA). Techniques for manufacturing TiOx-based catalyst support nanostructures by means of ALD in conjunction with carbon black (CB), anodic aluminum oxide (AAO) and silicon nanowires (SiNWs) will also be presented. The composition and thickness of resulting TiOx thin films was determined with the aid of Auger electron spectroscopy (AES), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Film crystal structure was determined with X-ray diffraction (XRD) analysis. Film conductivity was calculated using four-point probe (4-PP) and film thickness measurement data. Resulting thin films show a significant decrease of oxygen in ALD TiOx films corresponding with a great increase in conductivity following the PDORA. The effectiveness of the PDORA was also found to be highly dependent on ALD process parameters. TiOx-based nanostructures were coated with platinum using one of three Pt deposition techniques. First, liquid phase deposition (LPD), which was performed at room temperature, provided equal access to catalyst support material surfaces which were suspended in solution. Second, plasma enhanced atomic layer deposition (PEALD), which was performed at 450°C, provided good Pt

  19. Confine Clay in an Alternating Multilayered Structure through Injection Molding: A Simple and Efficient Route to Improve Barrier Performance of Polymeric Materials.

    PubMed

    Yu, Feilong; Deng, Hua; Bai, Hongwei; Zhang, Qin; Wang, Ke; Chen, Feng; Fu, Qiang

    2015-05-20

    Various methods have been devoted to trigger the formation of multilayered structure for wide range of applications. These methods are often complicated with low production efficiency or require complex equipment. Herein, we demonstrate a simple and efficient method for the fabrication of polymeric sheets containing multilayered structure with enhanced barrier property through high speed thin-wall injection molding (HSIM). To achieve this, montmorillonite (MMT) is added into PE first, then blended with PP to fabricate PE-MMT/PP ternary composites. It is demonstrated that alternating multilayer structure could be obtained in the ternary composites because of low interfacial tension and good viscosity match between different polymer components. MMT is selectively dispersed in PE phase with partial exfoliated/partial intercalated microstructure. 2D-WAXD analysis indicates that the clay tactoids in PE-MMT/PP exhibits an uniplanar-axial orientation with their surface parallel to the molded part surface, while the tactoids in binary PE-MMT composites with the same overall MMT contents illustrate less orientation. The enhanced orientation of nanoclay in PE-MMT/PP could be attributed to the confinement of alternating multilayer structure, which prohibits the tumbling and rotation of nanoplatelets. Therefore, the oxygen barrier property of PE-MMT/PP is superior to that of PE-MMT because of increased gas permeation pathway. Comparing with the results obtained for PE based composites in literature, outstanding barrier property performance (45.7% and 58.2% improvement with 1.5 and 2.5 wt % MMT content, respectively) is achieved in current study. Two issues are considered responsible for such improvement: enhanced MMT orientation caused by the confinement in layered structure, and higher local density of MMT in layered structure induced denser assembly. Finally, enhancement in barrier property by confining impermeable filler into alternating multilayer structure through such

  20. Study of self-ion irradiated nanostructured ferritic alloy (NFA) and silicon carbide-nanostructured ferritic alloy (SiC-NFA) cladding materials

    NASA Astrophysics Data System (ADS)

    Ning, Kaijie; Bai, Xianming; Lu, Kathy

    2018-07-01

    Silicon carbide-nanostructured ferritic alloy (SiC-NFA) materials are expected to have the beneficial properties of each component for advanced nuclear claddings. Fabrication of pure NFA (0 vol% SiC-100 vol% NFA) and SiC-NFAs (2.5 vol% SiC-97.5 vol% NFA, 5 vol% SiC-95 vol% NFA) has been reported in our previous work. This paper is focused on the study of radiation damage in these materials under 5 MeV Fe++ ion irradiation with a dose up to ∼264 dpa. It is found that the material surfaces are damaged to high roughness with irregularly shaped ripples, which can be explained by the Bradley-Harper (B-H) model. The NFA matrix shows ion irradiation induced defect clusters and small dislocation loops, while the crystalline structure is maintained. Reaction products of Fe3Si and Cr23C6 are identified in the SiC-NFA materials, with the former having a partially crystalline structure but the latter having a fully amorphous structure upon irradiation. The different radiation damage behaviors of NFA, Fe3Si, and Cr23C6 are explained using the defect reaction rate theory.

  1. Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications.

    PubMed

    Lanzellotto, C; Favero, G; Antonelli, M L; Tortolini, C; Cannistraro, S; Coppari, E; Mazzei, F

    2014-05-15

    In this work a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features, has been developed and characterized. Gold nanoparticles (AuNPs) exhibit attractive electrocatalytic behavior stimulating in the last years, several sensing applications; on the other hand, fullerene and its derivatives are a very promising family of electroactive compounds although they have not yet been fully employed in biosensing. The methodology proposed in this work was finalized to the setup of a laccase biosensor based on a multilayer material consisting in AuNPs, fullerenols and Trametes versicolor Laccase (TvL) assembled layer by layer onto a gold (Au) electrode surface. The influence of different modification step procedures on the electroanalytical performance of biosensors has been evaluated. Cyclic voltammetry, chronoamperometry, surface plasmon resonance (SPR) and scanning tunneling microscopy (STM) were used to characterize the modification of surface and to investigate the bioelectrocatalytic biosensor response. This biosensor showed fast amperometric response to gallic acid, which is usually considered a standard for polyphenols analysis of wines, with a linear range 0.03-0.30 mmol L(-1) (r(2)=0.9998), with a LOD of 0.006 mmol L(-1) or expressed as polyphenol index 5.0-50 mg L(-1) and LOD 1.1 mg L(-1). A tentative application of the developed nanostructured enzyme-based biosensor was performed evaluating the detection of polyphenols either in buffer solution or in real wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Self-assembled metal nano-multilayered film prepared by co-sputtering method

    NASA Astrophysics Data System (ADS)

    Xie, Tianle; Fu, Licai; Qin, Wen; Zhu, Jiajun; Yang, Wulin; Li, Deyi; Zhou, Lingping

    2018-03-01

    Nano-multilayered film is usually prepared by the arrangement deposition of different materials. In this paper, a self-assembled nano-multilayered film was deposited by simultaneous sputtering of Cu and W. The Cu/W nano-multilayered film was accumulated by W-rich layer and Cu-rich layer. Smooth interfaces with consecutive composition variation and semi-coherent even coherent relationship were identified, indicating that a spinodal-like structure with a modulation wavelength of about 20 nm formed during co-deposition process. The participation of diffusion barrier element, such as W, is believed the essential to obtain the nano-multilayered structure besides the technological parameters.

  3. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.

    PubMed

    Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung

    2014-10-28

    Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.

  4. Melanin-templated rapid synthesis of silver nanostructures

    PubMed Central

    2014-01-01

    Background As a potent antimicrobial agent, silver nanostructures have been used in nanosensors and nanomaterial-based assays for the detection of food relevant analytes such as organic molecules, aroma, chemical contaminants, gases and food borne pathogens. In addition silver based nanocomposites act as an antimicrobial for food packaging materials. In this prospective, the food grade melanin pigment extracted from sponge associated actinobacterium Nocardiopsis alba MSA10 and melanin mediated synthesis of silver nanostructures were studied. Based on the present findings, antimicrobial nanostructures can be developed against food pathogens for food industrial applications. Results Briefly, the sponge associated actinobacterium N. alba MSA10 was screened and fermentation conditions were optimized for the production of melanin pigment. The Plackett-Burman design followed by a Box-Behnken design was developed to optimize the concentration of most significant factors for improved melanin yield. The antioxidant potential, reductive capabilities and physiochemical properties of Nocardiopsis melanin was characterized. The optimum production of melanin was attained with pH 7.5, temperature 35°C, salinity 2.5%, sucrose 25 g/L and tyrosine 12.5 g/L under submerged fermentation conditions. A highest melanin production of 3.4 mg/ml was reached with the optimization using Box-Behnken design. The purified melanin showed rapid reduction and stabilization of silver nanostructures. The melanin mediated process produced uniform and stable silver nanostructures with broad spectrum antimicrobial activity against food pathogens. Conclusions The melanin pigment produced by N. alba MSA10 can be used for environmentally benign synthesis of silver nanostructures and can be useful for food packaging materials. The characteristics of broad spectrum of activity against food pathogens of silver nanostructures gives an insight for their potential applicability in incorporation of food

  5. Processes for fabricating composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  6. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications.

    PubMed

    Li, Xuanhua; Zhu, Jinmeng; Wei, Bingqing

    2016-06-07

    Hybrid nanostructures composed of graphene or other two-dimensional (2D) nanomaterials and plasmonic metal components have been extensively studied. The unusual properties of 2D materials are associated with their atomically thin thickness and 2D morphology, and many impressive structures enable the metal nanomaterials to establish various interesting hybrid nanostructures with outstanding plasmonic properties. In addition, the hybrid nanostructures display unique optical characteristics that are derived from the close conjunction of plasmonic optical effects and the unique physicochemical properties of 2D materials. More importantly, the hybrid nanostructures show several plasmonic electrical effects including an improved photogeneration rate, efficient carrier transfer, and a plasmon-induced "hot carrier", playing a significant role in enhancing device performance. They have been widely studied for plasmon-enhanced optical signals, photocatalysis, photodetectors (PDs), and solar cells. In this review, the developments in the field of metal/2D hybrid nanostructures are comprehensively described. Preparation of hybrid nanostructures is first presented according to the 2D material type, as well as the metal nanomaterial morphology. The plasmonic properties and the enabled applications of the hybrid nanostructures are then described. Lastly, possible future research in this promising field is discussed.

  7. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, Andrew Lee

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes themore » design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs

  8. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    PubMed

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Magnetic multilayer structure

    DOEpatents

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  10. Magnetic multilayer structure

    DOEpatents

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2017-03-21

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  11. Synthesis of In2O3 nanostructures with different morphologies as potential supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Tuzluca, Fatma Nur; Yesilbag, Yasar Ozkan; Ertugrul, Mehmet

    2018-01-01

    In this study performed using a chemical vapor deposition (CVD) system, one-dimensional (1-D) single crystal indium oxide (In2O3) nanotowers, nanobouqets, nanocones, and nanowires were investigated as a candidate for a supercapacitor electrode material. These nanostructures were grown via Vapor-Liquid-Solid (VLS) and Vapor-Solid (VS) mechanisms according to temperature differences (1000-600 °C). The morphologies, growth mechanisms and crystal structures of these 1-D single crystal In2O3 nanostructures were defined by Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HR-TEM), X-Ray Diffraction (XRD) and Raman Spectroscopy analyses. The elemental analyses of the nanostructures were carried out by energy dispersive X-Ray Spectroscopy (EDS); they gave photoluminescence (PL) spectra with 3.39, 2.65, and 1.95 eV band gap values, corresponding to 365 nm, 467 nm, and 633 wavelengths, respectively. The electrochemical performances of these 1-D single crystal In2O3 nanostructures in an aqueous electrolyte solution (1 M Na2SO4) were determined by Cyclic Voltammetry (CV), Galvanostatic Charge Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS) analyses. According to GCD measurements at 0.04 mA cm-2 current density, areal capacitance values were 10.1 mF cm-2 and 6.7 mF cm-2 for nanotowers, 12.5 mF cm-2 for nanobouquets, 4.9 mF cm-2 for nanocones, and 16.6 mF cm-2 for nanowires. The highest areal capacitance value was observed in In2O3 nanowires, which retained 66.8% of their initial areal capacitance after a 10000 charge-discharge cycle, indicating excellent cycle stability.

  12. Ceramic nanostructures and methods of fabrication

    DOEpatents

    Ripley, Edward B [Knoxville, TN; Seals, Roland D [Oak Ridge, TN; Morrell, Jonathan S [Knoxville, TN

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  13. Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity

    DOE PAGES

    Jamison, Ryan Dale; Shen, Yu -Lin

    2015-08-13

    Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayermore » material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.« less

  14. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications

    NASA Astrophysics Data System (ADS)

    Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han

    2015-08-01

    Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical

  15. Parallel macromolecular delivery and biochemical/electrochemical interface to cells employing nanostructures

    DOEpatents

    McKnight, Timothy E; Melechko, Anatoli V; Griffin, Guy D; Guillorn, Michael A; Merkulov, Vladimir L; Simpson, Michael L

    2015-03-31

    Systems and methods are described for parallel macromolecular delivery and biochemical/electrochemical interface to whole cells employing carbon nanostructures including nanofibers and nanotubes. A method includes providing a first material on at least a first portion of a first surface of a first tip of a first elongated carbon nanostructure; providing a second material on at least a second portion of a second surface of a second tip of a second elongated carbon nanostructure, the second elongated carbon nanostructure coupled to, and substantially parallel to, the first elongated carbon nanostructure; and penetrating a boundary of a biological sample with at least one member selected from the group consisting of the first tip and the second tip.

  16. Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuks, D.; Komisarchik, G.; Kaller, M.

    2016-08-15

    Doping of materials for thermoelectric applications is widely used nowadays to control the type of conductivity. We report the results of ab-initio calculations aimed at developing the consistent scheme for determining the role of impurities that may change the type of conductivity in two attractive thermoelectric classes of materials. It is demonstrated that alloying of TiNiSn with Cu makes the material of n-type, and alloying with Fe leads to p-type conductivity. Similar calculations for PbTe with small amount of Na substituting for Pb leads to p-type conductivity, while Cl substituting for Te makes PbTe an n-type material. It is shownmore » also that for nano-grained materials the n-type conductivity should be observed. The effect of impurities segregating to the grain boundaries in nano-structured PbTe is also discussed. - Highlights: • Bulk and nano-grained TE materials were analyzed by DFT. • The electronic effects on both PbTe and TiNiSn were demonstrated. • The role of impurities on the conductivity type was analyzed. • Interfacial states in nano-grained PbTe affect the conductivity type.« less

  17. Thermal stress prediction in mirror and multilayer coatings.

    PubMed

    Cheng, Xianchao; Zhang, Lin; Morawe, Christian; Sanchez Del Rio, Manuel

    2015-03-01

    Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision.

  18. In vivo and in vitro investigations of a nanostructured coating material – a preclinical study

    PubMed Central

    Adam, Martin; Ganz, Cornelia; Xu, Weiguo; Sarajian, Hamid-Reza; Götz, Werner; Gerber, Thomas

    2014-01-01

    Immediate loading of dental implants is only possible if a firm bone-implant anchorage at early stages is developed. This implies early and high bone apposition onto the implant surface. A nanostructured coating material based on an osseoinductive bone grafting is investigated in relation to the osseointegration at early stages. The goal is to transmit the structure (silica matrix with embedded hydroxyapatite) and the properties of the bone grafting into a coating material. The bone grafting substitute offers an osseoinductive potential caused by an exchange of the silica matrix in vivo accompanied by vascularization. X-ray diffraction and transmission electron microscopy analysis show that the coating material consists of a high porous silica matrix with embedded nanocrystalline hydroxyapatite with the same morphology as human hydroxyapatite. An in vitro investigation shows the early interaction between coating and human blood. Energy-dispersive X-ray analysis showed that the silica matrix was replaced by an organic matrix within a few minutes. Uncoated and coated titanium implants were inserted into the femora of New Zealand White rabbits. The bone-to-implant contact (BIC) was measured after 2, 4, and 6 weeks. The BIC of the coated implants was increased significantly at 2 and 4 weeks. After 6 weeks, the BIC was decreased to the level of the control group. A histological analysis revealed high bone apposition on the coated implant surface after 2 and 4 weeks. Osteoblastic and osteoclastic activities on the coating material indicated that the coating participates in the bone-remodeling process. The nanostructure of the coating material led to an exchange of the silica matrix by an autologous, organic matrix without delamination of the coating. This is the key issue in understanding initial bone formation on a coated surface. PMID:24627631

  19. Finite-element modelling of multilayer X-ray optics.

    PubMed

    Cheng, Xianchao; Zhang, Lin

    2017-05-01

    Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100-300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7 ) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6 ), which causes low solution accuracy; and the number of elements is still very large (10 6 ). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.

  20. Finite-element modelling of multilayer X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xianchao; Zhang, Lin

    Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical sizemore » 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6), which causes low solution accuracy; and the number of elements is still very large (10 6). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.« less

  1. Using laser-driven flyer plates to study the shock initiation of nanoenergetic materials

    NASA Astrophysics Data System (ADS)

    Shaw, William; Dlott, Dana

    2013-06-01

    A tabletop system has been developed to launch aluminum laser-driven flyer plates at speeds up to 4 km/s. The flyer plates are used to initiate a variety of nanoenergetic materials including aluminum/iron oxide particles produced by arrested ball milling, and multi-layer nano-thermites produced by sputtering. The initiation process is probed by a variety of high-speed diagnostics including time-resolved emission spectroscopy. Impact velocity initiation thresholds for different thickness flyer plates, producing different duration shocks, were determined. The durations of the emission bursts and the effects of nanostructure and microstructure on these bursts were used to investigate the fundamental mechanisms of impact initiation.

  2. Robust Guar Gum/Cellulose Nanofibrils Multilayer Films with Good Barrier Properties.

    PubMed

    Dai, Lei; Long, Zhu; Chen, Jie; An, Xingye; Cheng, Dong; Khan, Avik; Ni, Yonghao

    2017-02-15

    The pursuit of sustainable functional materials requires development of materials based on renewable resources and efficient fabrication methods. Hereby, we fabricated all-polysaccharides multilayer films using cationic guar gum (CGG) and anionic cellulose nanofibrils (i.e., TEMPO-oxidized cellulose nanofibrils, TOCNs) through a layer-by-layer casting method. This technique is based on alternate depositions of oppositely charged water-based CGG and TOCNs onto laminated films. The resultant polyelectrolyte multilayer films were transparent, ductile, and strong. More importantly, the self-standing films exhibited excellent gas (water vapor and oxygen) and oil barrier performances. Another outstanding feature of these resultant films was their resistance to various organic solvents including methanol, acetone, N,N-dimethylacetamide (DMAc) and tetrahydrofuran (THF). The proposed film fabrication process is environmentally benign, cost-effective, and easy to scale-up. The developed CGG/TOCNs multilayer films can be used as a renewable material for industrial applications such as packaging.

  3. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    NASA Astrophysics Data System (ADS)

    Qi, Jingshan; Li, Xiao; Qian, Xiaofeng

    2016-06-01

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z2 invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route to manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.

  4. Carbon Nanostructures in Bone Tissue Engineering

    PubMed Central

    Perkins, Brian Lee; Naderi, Naghmeh

    2016-01-01

    Background: Recent advances in developing biocompatible materials for treating bone loss or defects have dramatically changed clinicians’ reconstructive armory. Current clinically available reconstructive options have certain advantages, but also several drawbacks that prevent them from gaining universal acceptance. A wide range of synthetic and natural biomaterials is being used to develop tissue-engineered bone. Many of these materials are currently in the clinical trial stage. Methods: A selective literature review was performed for carbon nanostructure composites in bone tissue engineering. Results: Incorporation of carbon nanostructures significantly improves the mechanical properties of various biomaterials to mimic that of natural bone. Recently, carbon-modified biomaterials for bone tissue engineering have been extensively investigated to potentially revolutionize biomaterials for bone regeneration. Conclusion: This review summarizes the chemical and biophysical properties of carbon nanostructures and discusses their functionality in bone tissue regeneration. PMID:28217212

  5. Subwavelength resolution from multilayered structure (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cheng, Bo Han; Jen, Yi-Jun; Liu, Wei-Chih; Lin, Shan-wen; Lan, Yung-Chiang; Tsai, Din Ping

    2016-10-01

    Breaking optical diffraction limit is one of the most important issues needed to be overcome for the demand of high-density optoelectronic components. Here, a multilayered structure which consists of alternating semiconductor and dielectric layers for breaking optical diffraction limitation at THz frequency region are proposed and analyzed. We numerically demonstrate that such multilayered structure not only can act as a hyperbolic metamaterial but also a birefringence material via the control of the external temperature (or magnetic field). A practical approach is provided to control all the diffraction signals toward a specific direction by using transfer matrix method and effective medium theory. Numerical calculations and computer simulation (based on finite element method, FEM) are carried out, which agree well with each other. The temperature (or magnetic field) parameter can be tuned to create an effective material with nearly flat isofrequency feature to transfer (project) all the k-space signals excited from the object to be resolved to the image plane. Furthermore, this multilayered structure can resolve subwavelength structures at various incident THz light sources simultaneously. In addition, the resolution power for a fixed operating frequency also can be tuned by only changing the magnitude of external magnetic field. Such a device provides a practical route for multi-functional material, photolithography and real-time super-resolution image.

  6. Current Advances in Lanthanide‐Doped Upconversion Nanostructures for Detection and Bioapplication

    PubMed Central

    Chen, Cailing

    2016-01-01

    Along with the development of science and technology, lanthanide‐doped upconversion nanostructures as a new type of materials have taken their place in the field of nanomaterials. Upconversion luminescence is a nonlinear optical phenomenon, which absorbs two or more photons and emits one photon. Compared with traditional luminescence materials, upconversion nanostructures have many advantages, such as weak background interference, long lifetime, low excitation energy, and strong tissue penetration. These interesting nanostructures can be applied in anticounterfeit, solar cell, detection, bioimaging, therapy, and so on. This review is focused on the current advances in lanthanide‐doped upconversion nanostructures, covering not only basic luminescence mechanism, synthesis, and modification methods but also the design and fabrication of upconversion nanostructures, like core–shell nanoparticles or nanocomposites. At last, this review emphasizes the application of upconversion nanostructure in detection and bioimaging and therapy. Learning more about the advances of upconversion nanostructures can help us better exploit their excellent performance and use them in practice. PMID:27840794

  7. On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles

    PubMed Central

    Castro-Mayorga, Jinneth Lorena; Fabra, Maria Jose; Cabedo, Luis; Lagaron, Jose Maria

    2016-01-01

    Electro-hydrodynamic processing, comprising electrospraying and electrospinning techniques, has emerged as a versatile technology to produce nanostructured fiber-based and particle-based materials. In this work, an antimicrobial active multilayer system comprising a commercial polyhydroxyalkanoate substrate (PHA) and an electrospun PHA coating containing in situ-stabilized silver nanoparticles (AgNPs) was successfully developed and characterized in terms of morphology, thermal, mechanical, and barrier properties. The obtained materials reduced the bacterial population of Salmonella enterica below the detection limits at very low silver loading of 0.002 ± 0.0005 wt %. As a result, this study provides an innovative route to generate fully renewable and biodegradable materials that could prevent microbial outbreaks in food packages and food contact surfaces. PMID:28336838

  8. Nanoparticle Decorated Ultrathin Porous Nanosheets as Hierarchical Co3O4 Nanostructures for Lithium Ion Battery Anode Materials

    PubMed Central

    Mujtaba, Jawayria; Sun, Hongyu; Huang, Guoyong; Mølhave, Kristian; Liu, Yanguo; Zhao, Yanyan; Wang, Xun; Xu, Shengming; Zhu, Jing

    2016-01-01

    We report a facile synthesis of a novel cobalt oxide (Co3O4) hierarchical nanostructure, in which crystalline core-amorphous shell Co3O4 nanoparticles with a bimodal size distribution are uniformly dispersed on ultrathin Co3O4 nanosheets. When tested as anode materials for lithium ion batteries, the as-prepared Co3O4 hierarchical electrodes delivered high lithium storage properties comparing to the other Co3O4 nanostructures, including a high reversible capacity of 1053.1 mAhg−1 after 50 cycles at a current density of 0.2 C (1 C = 890 mAg−1), good cycling stability and rate capability. PMID:26846434

  9. Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures

    NASA Astrophysics Data System (ADS)

    Passoni, Luca; Fumagalli, Francesco; Perego, Andrea; Bellani, Sebastiano; Mazzolini, Piero; Di Fonzo, Fabio

    2017-06-01

    Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al2O3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10-3 Ω cm-1, 11 cm2 V-1 s-1, and 1.62 × 1020 cm-3, resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.

  10. Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures.

    PubMed

    Passoni, Luca; Fumagalli, Francesco; Perego, Andrea; Bellani, Sebastiano; Mazzolini, Piero; Di Fonzo, Fabio

    2017-06-16

    Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO 2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al 2 O 3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10 -3 Ω cm -1 , 11 cm 2 V -1 s -1 , and 1.62 × 10 20 cm -3 , resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.

  11. Facile synthesis of nanostructured TiNb2O7 anode materials with superior performance for high-rate lithium ion batteries.

    PubMed

    Lou, Shuaifeng; Ma, Yulin; Cheng, Xinqun; Gao, Jinlong; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping

    2015-12-18

    One-dimensional nanostructured TiNb2O7 was prepared by a simple solution-based process and subsequent thermal annealing. The obtained anode materials exhibited excellent electrochemical performance with superior reversible capacity, rate capability and cyclic stability.

  12. The role of energetic ions from plasma in the creation of nanostructured materials and stable polymer surface treatments

    NASA Astrophysics Data System (ADS)

    Bilek, M. M. M.; Newton-McGee, K.; McKenzie, D. R.; McCulloch, D. G.

    2006-01-01

    Plasma processes for the synthesis of new materials as thin films have enabled the production of a wide variety of new materials. These include meta-stable phases, which are not readily found in nature, and more recently, materials with structure on the nanoscale. Study of plasma synthesis processes at the fundamental level has revealed that ion energy, depositing flux and growth surface temperature are the critical parameters affecting the microstructure and the properties of the thin film materials formed. In this paper, we focus on the role of ion flux and impact energy in the creation of thin films with nanoscale structure in the form of multilayers. We describe three synthesis strategies, based on the extraction of ions from plasma sources and involving modulation of ion flux and ion energy. The microstructure, intrinsic stress and physical properties of the multilayered samples synthesized are studied and related back to the conditions at the growth surface during deposition. When energetic ions of a non-condensing species are used, it is possible to place active groups on the surfaces of materials such as polymers. These active groups can then be used as bonding sites in subsequent chemical attachment of proteins or other macromolecules. If the energy of the non-condensing ions is increased to a few keV then modified layers buried under the surface can be produced. Here we describe a method by which the aging effect, which is often observed in plasma surface modifications on polymers, can be reduced and even eliminated using high energy ion bombardment.

  13. Nanowires, nanostructures and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2005-04-19

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  14. Observation of van Hove Singularities in Twisted Silicene Multilayers

    PubMed Central

    2016-01-01

    Interlayer interactions perturb the electronic structure of two-dimensional materials and lead to new physical phenomena, such as van Hove singularities and Hofstadter’s butterfly pattern. Silicene, the recently discovered two-dimensional form of silicon, is quite unique, in that silicon atoms adopt competing sp2 and sp3 hybridization states leading to a low-buckled structure promising relatively strong interlayer interaction. In multilayer silicene, the stacking order provides an important yet rarely explored degree of freedom for tuning its electronic structures through manipulating interlayer coupling. Here, we report the emergence of van Hove singularities in the multilayer silicene created by an interlayer rotation. We demonstrate that even a large-angle rotation (>20°) between stacked silicene layers can generate a Moiré pattern and van Hove singularities due to the strong interlayer coupling in multilayer silicene. Our study suggests an intriguing method for expanding the tunability of the electronic structure for electronic applications in this two-dimensional material. PMID:27610412

  15. Observation of van Hove Singularities in Twisted Silicene Multilayers.

    PubMed

    Li, Zhi; Zhuang, Jincheng; Chen, Lan; Ni, Zhenyi; Liu, Chen; Wang, Li; Xu, Xun; Wang, Jiaou; Pi, Xiaodong; Wang, Xiaolin; Du, Yi; Wu, Kehui; Dou, Shi Xue

    2016-08-24

    Interlayer interactions perturb the electronic structure of two-dimensional materials and lead to new physical phenomena, such as van Hove singularities and Hofstadter's butterfly pattern. Silicene, the recently discovered two-dimensional form of silicon, is quite unique, in that silicon atoms adopt competing sp(2) and sp(3) hybridization states leading to a low-buckled structure promising relatively strong interlayer interaction. In multilayer silicene, the stacking order provides an important yet rarely explored degree of freedom for tuning its electronic structures through manipulating interlayer coupling. Here, we report the emergence of van Hove singularities in the multilayer silicene created by an interlayer rotation. We demonstrate that even a large-angle rotation (>20°) between stacked silicene layers can generate a Moiré pattern and van Hove singularities due to the strong interlayer coupling in multilayer silicene. Our study suggests an intriguing method for expanding the tunability of the electronic structure for electronic applications in this two-dimensional material.

  16. Multilayer Brain Networks

    NASA Astrophysics Data System (ADS)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  17. Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material.

    PubMed

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs.

  18. Fast Synthesis of Multilayer Carbon Nanotubes from Camphor Oil as an Energy Storage Material

    PubMed Central

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs. PMID:25258714

  19. Reflectance analysis of porosity gradient in nanostructured silicon layers

    NASA Astrophysics Data System (ADS)

    Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    In this work we study optical properties of nanostructured layers formed on silicon surface. Nanostructured layers on Si are formed in order to reach high suppression of the light reflectance. Low spectral reflectance is important for improvement of the conversion efficiency of solar cells and for other optoelectronic applications. Effective method of forming nanostructured layers with ultralow reflectance in a broad interval of wavelengths is in our approach based on metal assisted etching of Si. Si surface immersed in HF and H2O2 solution is etched in contact with the Pt mesh roller and the structure of the mesh is transferred on the etched surface. During this etching procedure the layer density evolves gradually and the spectral reflectance decreases exponentially with the depth in porous layer. We analyzed properties of the layer porosity by incorporating the porosity gradient into construction of the layer spectral reflectance theoretical model. Analyzed layer is splitted into 20 sublayers in our approach. Complex dielectric function in each sublayer is computed by using Bruggeman effective media theory and the theoretical spectral reflectance of modelled multilayer system is computed by using Abeles matrix formalism. Porosity gradient is extracted from the theoretical reflectance model optimized in comparison to the experimental values. Resulting values of the structure porosity development provide important information for optimization of the technological treatment operations.

  20. New local joining technique for metal materials using exothermic heat of Al/Ni multilayer powder

    NASA Astrophysics Data System (ADS)

    Izumi, Taisei; Kametani, Nagamasa; Miyake, Shugo; Kanetsuki, Shunsuke; Namazu, Takahiro

    2018-06-01

    The use of Al/Ni multilayer powders as a new heat source has been expected for metal joining technique owing to their instantaneous reaction and enormous amount of exothermic heat. In this study, the effects of the amount of Al/Ni multilayer powders on the electrical and mechanical properties of the joining part of Al strip specimens were examined. These electrical and mechanical properties were estimated by electric resistivity measurement using the four-terminal method and shear test, respectively. Experimental results show that Al specimens are successful joined under a limited condition and exhibit low electrical resistance and sufficiently high strength to maintain the joined state. However, overheating increases the amount of Al/Ni multilayer powder in the joined part, which causes considerable damage such as voids and dissolved loss. It is found that optimization of the amount of Al/Ni multilayer powder enables us to realize reliable joining of Al foils in electronics fields in the future.

  1. Interfacing nanostructures to biological cells

    DOEpatents

    Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

    2012-09-04

    Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

  2. Electrically controlled band gap and topological phase transition in two-dimensional multilayer germanane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Jingshan, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu; Li, Xiao; Qian, Xiaofeng, E-mail: qijingshan@jsnu.edu.cn, E-mail: feng@tamu.edu

    2016-06-20

    Electrically controlled band gap and topological electronic states are important for the next-generation topological quantum devices. In this letter, we study the electric field control of band gap and topological phase transitions in multilayer germanane. We find that although the monolayer and multilayer germananes are normal insulators, a vertical electric field can significantly reduce the band gap of multilayer germananes owing to the giant Stark effect. The decrease of band gap eventually leads to band inversion, transforming them into topological insulators with nontrivial Z{sub 2} invariant. The electrically controlled topological phase transition in multilayer germananes provides a potential route tomore » manipulate topologically protected edge states and design topological quantum devices. This strategy should be generally applicable to a broad range of materials, including other two-dimensional materials and ultrathin films with controlled growth.« less

  3. Novel Investigation on Nanostructured Multilayer and Functionally Graded Ni-P Electroless Coatings on Stainless Steel

    NASA Astrophysics Data System (ADS)

    Anvari, S. R.; Monirvaghefi, S. M.; Enayati, M. H.

    2015-06-01

    In this study, step-wise multilayer and functionally graded Ni-P coatings were deposited with electroless in which the content of phosphorus and nickel would be changed gradually and step-wise through the thickness of the coatings, respectively. To compare the properties of these coatings with Ni-P single-layer coatings, three types of coatings with different phosphorus contents were deposited. Heat treatment of coatings was performed at 400 °C for 1 h. The microstructure and phase transformation of coatings were characterized by SEM/EDS, TEM, and XRD. The mechanical properties of coatings were studied by nanoindentation test. According to the results of the single-layer coatings, low P coating had the maximum hardness and also the ratio of hardness ( H) to elasticity modulus ( E) for the mentioned coating was maximum. In addition, low and medium P coatings had crystalline and semi-crystalline structure, respectively. The mentioned coatings had <111> texture and after heat treatment their texture didn't change. While high P coating had amorphous structure, after heat treatment it changed to crystalline structure with <100> texture for nickel grains. Furthermore, the results showed that functionally graded and step-wise multilayer coatings were deposited successfully by using the same initial bath and changing the temperature and pH during deposition. Nanoindentation test results showed that the hardness of the mentioned coatings changed from 670 Hv near the substrate to 860 Hv near the top surface of coatings. For functionally graded coating the hardness profile had gradual changes, while step-wise multilayer coating had step-wise hardness profile. After heat treatment trend of hardness profiles was changed, so that near the substrate, hardness was measured 1400 Hv and changed to 1090 Hv at the top coat.

  4. Investigation of multilayer magnetic domain lattice file

    NASA Technical Reports Server (NTRS)

    Torok, E. J.; Kamin, M.; Tolman, C. H.

    1980-01-01

    The feasibility of the self structured multilayered bubble domain memory as a mass memory medium for satellite applications is examined. Theoretical considerations of multilayer bubble supporting materials are presented, in addition to the experimental evaluation of current accessed circuitry for various memory functions. The design, fabrication, and test of four device designs is described, and a recommended memory storage area configuration is presented. Memory functions which were demonstrated include the current accessed propagation of bubble domains and stripe domains, pinning of stripe domain ends, generation of single and double bubbles, generation of arrays of coexisting strip and bubble domains in a single garnet layer, and demonstration of different values of the strip out field for single and double bubbles indicating adequate margins for data detection. All functions necessary to develop a multilayer self structured bubble memory device were demonstrated in individual experiments.

  5. Development of nanostructured biocompatible materials for chemical and biological sensors

    NASA Astrophysics Data System (ADS)

    Curley, Michael; Chilvery, Ashwith K.; Kukhatreva, Tatiana; Sharma, Anup; Corda, John; Farley, Carlton

    2012-10-01

    This research is focused on the fabrication of thin films followed by Surface Enhanced Raman Spectroscopy (SERS) testing of these films for various applications. One technique involves the mixture of nanoparticles with twophoton material to be used as an indicator dye. Another method involved embedding silver nanoparticles in a ceramic nano-membrane. The substrates were characterized by both Atom Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). We applied the nanostructured substrate to measure the SERS spectra of 10-6 Mol/L Rhodomine 6G(Rh6G), e-coli bacteria and RDX explosive. Our results showed that silver coated ceramic membranes can serve as appropriate substrates to enhance Raman signals. In addition, we demonstrated that the in-house-made colloidal silver can work for enhancement of the Raman spectra for bacteria. We measured the Raman spectra of Rh6G molecules on a substrate absorbed by a nanofluid of silver. We observed several strong Raman bands - 613cm-1,768 cm-1,1308cm-1 1356 cm-1,1510cm-1, which correspond to Rh6G vibrational modes υ53,υ65,υ115,υ117,υ146 respectively, using a ceramic membrane coated by silver. The Raman spectra of Rh6G absorbed by silver nanofluid showed strong enhancement of Raman bands 1175cm-1 and 1529cm-1, 1590 cm-1. Those correspond to vibrational frequency modes - υ103,υ151,152. We also measured the Raman spectra of e-coli bacteria, both absorbed by silver nanofluid, and on nanostructured substrate. In addition, the Fourier Transfer Infrared Spectra (FTIR) of the bacteria was measured.

  6. Nanostructured SnSe: Synthesis, doping, and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Liu, Shuhao; Sun, Naikun; Liu, Mei; Sucharitakul, Sukrit; Gao, Xuan P. A.

    2018-03-01

    IV-VI monochalcogenide SnSe or SnS has recently been proposed as a promising two-dimensional (2D) material for valleytronics and thermoelectrics. We report the synthesis of SnSe nanoflakes and nanostructured thin films with chemical vapor deposition method and their thermoelectric properties. As grown SnSe nanostructures are found to be intrinsically p-type and the single SnSe nanoflake field effect transistor was fabricated. By Ag doping, the power factor of SnSe nanostructured thin films can be improved by up to one order of magnitude compared to the "intrinsic" as grown materials. Our work provides an initial step in the pursuit of IV-VI monochalcogenides as novel 2D semiconductors for electronics and thermoelectrics.

  7. Layer-by-layer design method for soft-X-ray multilayers

    NASA Technical Reports Server (NTRS)

    Yamamoto, Masaki; Namioka, Takeshi

    1992-01-01

    A new design method effective for a nontransparent system has been developed for soft-X-ray multilayers with the aid of graphic representation of the complex amplitude reflectance in a Gaussian plane. The method provides an effective means of attaining the absolute maximum reflectance on a layer-by-layer basis and also gives clear insight into the evolution of the amplitude reflectance on a multilayer as it builds up. An optical criterion is derived for the selection of a proper pair of materials needed for designing a high-reflectance multilayer. Some examples are given to illustrate the usefulness of this design method.

  8. The research Of Multilayer Thermal Insulation With Mechanical Properties Based On Model Analysis Test

    NASA Astrophysics Data System (ADS)

    Lianhua, Yin

    The heat shield of aircraft is made of the major thrusts structure with multilayer thermal insulation part. For protecting against thermo-radiation from larger thrusting force engine,the heat shield is installed around this engine nearby.The multilayer thermal insulation part with multilayer radiation/reflection structure is made of reflection layer and interval layer.At vacuum condition,these materials is higher heat insulation capability than other material,is applied for lots of pats on aircraft extensively.But because of these material is made of metal and nonmetal,it is impossible to receive it's mechanical properties of materials from mechanical tests.These paper describes a new measure of mechanical properties of materials in the heat shield based on model analysis test.At the requirement for the first order lateral frequency,these measure provide for the FEM analysis foundation on the optimization structure of the heat shield.

  9. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Mirkarimi, Paul B.; Montcalm, Claude

    2000-01-01

    A buffer-layer located between a substrate and a multilayer for counteracting stress in the multilayer. Depositing a buffer-layer having a stress of sufficient magnitude and opposite in sign reduces or cancels out deformation in the substrate due to the stress in the multilayer. By providing a buffer-layer between the substrate and the multilayer, a tunable, near-zero net stress results, and hence results in little or no deformation of the substrate, such as an optic for an extreme ultraviolet (EUV) lithography tool. Buffer-layers have been deposited, for example, between Mo/Si and Mo/Be multilayer films and their associated substrate reducing significantly the stress, wherein the magnitude of the stress is less than 100 MPa and respectively near-normal incidence (5.degree.) reflectance of over 60% is obtained at 13.4 nm and 11.4 nm. The present invention is applicable to crystalline and non-crystalline materials, and can be used at ambient temperatures.

  10. Study of Growth Kinetics in One Dimensional and Two Dimensional ZnO Nanostructures

    NASA Astrophysics Data System (ADS)

    Yin, Xin

    Because of the merits arising from the unique geometry, nanostructure materials have been an essential class of materials, which have shown great potentials in the fields of electronics, photonics, and biology. With various nanostructures being intensively investigated and successfully complemented into device applications, there has been one increasing demand to the investigation of the growth mechanism devoted to the controlled nanostructure synthesis. Motivated by this situation, this thesis is focused on the fundamental understanding of the nanostructure growth. Specifically, by taking zinc oxide as an example material, through controlling the basic driving force, that is, the supersaturation, I have rationally designed and synthesized various of nanostructures, and further applied the classical layer-by-layer growth mechanism to the understanding on the formation of these nanostructures, they are, the convex-plate-capped nanowires, the concave-plate-capped nanowires, the facet evolution at the tip of the nanowires, and the ultrathin 2D nanosheets.

  11. Plasmonic Nanostructures for Nano-Scale Bio-Sensing

    PubMed Central

    Chung, Taerin; Lee, Seung-Yeol; Song, Eui Young; Chun, Honggu; Lee, Byoungho

    2011-01-01

    The optical properties of various nanostructures have been widely adopted for biological detection, from DNA sequencing to nano-scale single molecule biological function measurements. In particular, by employing localized surface plasmon resonance (LSPR), we can expect distinguished sensing performance with high sensitivity and resolution. This indicates that nano-scale detections can be realized by using the shift of resonance wavelength of LSPR in response to the refractive index change. In this paper, we overview various plasmonic nanostructures as potential sensing components. The qualitative descriptions of plasmonic nanostructures are supported by the physical phenomena such as plasmonic hybridization and Fano resonance. We present guidelines for designing specific nanostructures with regard to wavelength range and target sensing materials. PMID:22346679

  12. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOEpatents

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  13. Si nanocrystals-based multilayers for luminescent and photovoltaic device applications

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Li, Dongke; Cao, Yunqing; Xu, Jun; Chen, Kunji

    2018-06-01

    Low dimensional Si materials have attracted much attention because they can be developed in many kinds of new-generation nano-electronic and optoelectronic devices, among which Si nanocrystals-based multilayered material is one of the most promising candidates and has been extensively studied. By using multilayered structures, the size and distribution of nanocrystals as well as the barrier thickness between two adjacent Si nanocrystal layers can be well controlled, which is beneficial to the device applications. This paper presents an overview of the fabrication and device applications of Si nanocrystals, especially in luminescent and photovoltaic devices. We first introduce the fabrication methods of Si nanocrystals-based multilayers. Then, we systematically review the utilization of Si nanocrystals in luminescent and photovoltaic devices. Finally, some expectations for further development of the Si nanocrystals-based photonic and photovoltaic devices are proposed. Project supported by the National Natural Science Foundation of China (Nos. 11774155, 11274155).

  14. Preparation of nanostructured materials having improved ductility

    DOEpatents

    Zhao, Yonghao; Zhu, Yuntian T.

    2010-04-20

    A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy, then refining the grain size of the workpiece at a temperature at or below room temperature, and then aging the workpiece to precipitate second phase particles in the nanosized grains of the workpiece that increase the ductility without decreasing the strength of the workpiece.

  15. A multilayered supramolecular self-assembled structure from soybean oil by in situ polymerization and its applications.

    PubMed

    Kavitha, Varadharajan; Gnanamani, Arumugam

    2013-05-01

    The present study emphasizes in situ transformation of soybean oil to self-assembled supramolecular multilayered biopolymer material. The said polymer material was characterized and the entrapment efficacy of both hydrophilic and hydrophobic moieties was studied. In brief, soybean oil at varying concentration was mixed with mineral medium and incubated under agitation (200 rpm) at 37 degrees C for 240 h. Physical observations were made till 240 h and the transformed biopolymer was separated and subjected to physical, chemical and functional characterization. The maximum size of the polymer material was measured as 2 cm in diameter and the cross sectional view displayed the multilayered onion rings like structures. SEM analysis illustrated the presence of multilayered honeycomb channeled structures. Thermal analysis demonstrated the thermal stability (200 degrees C) and high heat enthalpy (1999 J/g). Further, this multilayered assembly was able to entrap both hydrophilic and hydrophobic components simultaneously, suggesting the potential industrial application of this material.

  16. Heat transport by phonons in crystalline materials and nanostructures

    NASA Astrophysics Data System (ADS)

    Koh, Yee Kan

    This dissertation presents experimental studies of heat transport by phonons in crystalline materials and nanostructures, and across solid-solid interfaces. Particularly, this dissertation emphasizes advancing understanding of the mean-free-paths (i.e., the distance phonons propagate without being scattered) of acoustic phonons, which are the dominant heat carriers in most crystalline semiconductor nanostructures. Two primary tools for the studies presented in this dissertation are time-domain thermoreflectance (TDTR) for measurements of thermal conductivity of nanostructures and thermal conductance of interfaces; and frequency-domain thermoreflectance (FDTR), which I developed as a direct probe of the mean-free-paths of dominant heat-carrying phonons in crystalline solids. The foundation of FDTR is the dependence of the apparent thermal conductivity on the frequency of periodic heat sources. I find that the thermal conductivity of semiconductor alloys (InGaP, InGaAs, and SiGe) measured by TDTR depends on the modulation frequency, 0.1 ≤ f ≤ 10 MHz, used in TDTR measurements. Reduction in the thermal conductivity of the semiconductor alloys at high f compares well to the reduction in the thermal conductivity of epitaxial thin films, indicating that frequency dependence and thickness dependence of thermal conductivity are fundamentally equivalent. I developed the frequency dependence of thermal conductivity into a convenient probe of phonon mean-free-paths, a technique which I call frequency-domain thermoreflectance (FDTR). In FDTR, I monitor the changes in the intensity of the reflected probe beam as a function of the modulation frequency. To facilitate the analysis of FDTR measurements, I developed a nonlocal theory for heat conduction by phonons at high heating frequencies. Calculations of the nonlocal theory confirm my experimental findings that phonons with mean-free-paths longer than two times the penetration depth do not contribute to the apparent thermal

  17. Optofluidic Modulation of Self-Associated Nanostructural Units Forming Planar Bragg Microcavities.

    PubMed

    Oliva-Ramirez, Manuel; Barranco, Angel; Löffler, Markus; Yubero, Francisco; González-Elipe, Agustin R

    2016-01-26

    Bragg microcavities (BMs) formed by the successive stacking of nanocolumnar porous SiO2 and TiO2 layers with slanted, zigzag, chiral, and vertical configurations are prepared by physical vapor deposition at oblique angles while azimuthally varying the substrate orientation during the multilayer growth. The slanted and zigzag BMs act as wavelength-selective optical retarders when they are illuminated with linearly polarized light, while no polarization dependence is observed for the chiral and vertical cavities. This distinct optical behavior is attributed to a self-nanostructuration mechanism involving a fence-bundling association of nanocolumns as observed by focused ion beam scanning electron microscopy in the slanted and zigzag microcavities. The outstanding retarder response of the optically active BMs can be effectively modulated by dynamic infiltration of nano- and mesopores with liquids of different refraction indices acting as a switch of the polarization behavior. The unprecedented polarization and tunable optofluidic properties of these nanostructured photonic systems have been successfully simulated with a simple model that assumes a certain birefringence for the individual stacked layers and accounts for the light interference phenomena developed in the BMs. The possibilities of this type of self-arranged nanostructured and optically active BMs for liquid sensing and monitoring applications are discussed.

  18. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  19. The green hydrothermal synthesis of nanostructured Cu2ZnSnSe4 as solar cell material and study of their structural, optical and morphological properties

    NASA Astrophysics Data System (ADS)

    Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.

    2017-12-01

    Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.

  20. Antibacterial Carbon Nanotubes by Impregnation with Copper Nanostructures

    NASA Astrophysics Data System (ADS)

    Palza, Humberto; Saldias, Natalia; Arriagada, Paulo; Palma, Patricia; Sanchez, Jorge

    2017-08-01

    The addition of metal-based nanoparticles on carbon nanotubes (CNT) is a relevant method producing multifunctional materials. In this context, CNT were dispersed in an ethanol/water solution containing copper acetate for their impregnation with different copper nanostructures by either a non-thermal or a thermal post-synthesis treatment. Our simple method is based on pure CNT in an air atmosphere without any other reagents. Particles without thermal treatment were present as a well-dispersed layered copper hydroxide acetate nanostructures on CNT, as confirmed by scanning and transmission (TEM) electron microscopies, and showing a characteristic x-ray diffraction peak at 6.6°. On the other hand, by thermal post-synthesis treatment at 300°C, these layered nanostructures became Cu2O nanoparticles of around 20 nm supported on CNT, as confirmed by TEM images and x-ray diffraction peaks. These copper nanostructures present on the CNT surface rendered antibacterial behavior to the resulting hybrid materials against both Staphylococcus aureus and Escherichia coli. These findings present for the first time a simple method for producing antibacterial CNT by direct impregnation of copper nanostructures.

  1. Precipitate strengthening of nanostructured aluminium alloy.

    PubMed

    Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J

    2012-11-01

    Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals.

  2. Multilayer polymer dielectric films for hollow glass waveguides

    NASA Astrophysics Data System (ADS)

    Kendall, Wesley; Harrington, James A.

    2018-02-01

    Hollow glass waveguides (HGWs) have been extensively investigated for the transmission of broadband, high-power radiation, particularly in the mid-infrared. One area of particular interest is the deposition of dielectric thin films within the hollow core of the HGW in order to reduce the losses at desired wavelengths. By implementing a thin film multilayer structure with high index mismatch between adjacent films, it is possible to dramatically improve the losses of the waveguides due to the thin film interference effect. Existing multilayer film research has utilized heavy metal halides, which although provide considerable index contrast, are toxic and unsuitable for clinical applications in which they are often used. Polymer dielectric thin films provide desirable optical properties for HGWs but are hindered by solvent compatibility in the deposition procedure. This work demonstrates implementation of a polymer multilayer dielectric thin film stack within a HGW, using ChemoursTM Teflon AF (n = 1.29) as the low-index material and polystyrene (n = 1.59) as the high-index material. These two polymers were deposited using liquid phase techniques within a HGW; the absorption spectra of waveguide as each layer was deposited on was analyzed in the mid-IR with an FTIR, and straight and bending losses were measured on a CO2 laser. Appreciable losses were realized with the addition of the second polymer film and the interference bands red-shifted with the second layer, suggesting the successful creation of the multilayer structure.

  3. Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality.

    PubMed

    Han, Arum; Wang, Olivia; Graff, Mason; Mohanty, Swomitra K; Edwards, Thayne L; Han, Ki-Ho; Bruno Frazier, A

    2003-08-01

    This paper describes an approach for fabricating multi-layer microfluidic systems from a combination of glass and plastic materials. Methods and characterization results for the microfabrication technologies underlying the process flow are presented. The approach is used to fabricate and characterize multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality. Hot embossing, heat staking of plastics, injection molding, microstenciling of electrodes, and stereolithography were combined with conventional MEMS fabrication techniques to realize the multi-layer systems. The approach enabled the integration of multiple plastic/glass materials into a single monolithic system, provided a solution for the integration of electrical functionality throughout the system, provided a mechanism for the inclusion of microactuators such as micropumps/valves, and provided an interconnect technology for interfacing fluids and electrical components between the micro system and the macro world.

  4. Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.

    PubMed

    Ren, Wenhao; Zhu, Zixuan; An, Qinyou; Mai, Liqiang

    2017-06-01

    Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg -1 , and an NaCrO 2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm

    PubMed Central

    Al-Shabib, Nasser A.; Husain, Fohad Mabood; Ahmed, Faheem; Khan, Rais Ahmad; Ahmad, Iqbal; Alsharaeh, Edreese; Khan, Mohd Shahnawaz; Hussain, Afzal; Rehman, Md Tabish; Yusuf, Mohammad; Hassan, Iftekhar; Khan, Javed Masood; Ashraf, Ghulam Md; Alsalme, Ali Mohammed; Al-Ajmi, Mohamed F.; Tarasov, Vadim V.; Aliev, Gjumrakch

    2016-01-01

    Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative. PMID:27917856

  6. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm.

    PubMed

    Al-Shabib, Nasser A; Husain, Fohad Mabood; Ahmed, Faheem; Khan, Rais Ahmad; Ahmad, Iqbal; Alsharaeh, Edreese; Khan, Mohd Shahnawaz; Hussain, Afzal; Rehman, Md Tabish; Yusuf, Mohammad; Hassan, Iftekhar; Khan, Javed Masood; Ashraf, Ghulam Md; Alsalme, Ali Mohammed; Al-Ajmi, Mohamed F; Tarasov, Vadim V; Aliev, Gjumrakch

    2016-12-05

    Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative.

  7. Is there a shift to "active nanostructures"?

    NASA Astrophysics Data System (ADS)

    Subramanian, Vrishali; Youtie, Jan; Porter, Alan L.; Shapira, Philip

    2010-01-01

    It has been suggested that an important transition in the long-run trajectory of nanotechnology development is a shift from passive to active nanostructures. Such a shift could present different or increased societal impacts and require new approaches for risk assessment. An active nanostructure "changes or evolves its state during its operation," according to the National Science Foundation's (2006) Active Nanostructures and Nanosystems grant solicitation. Active nanostructure examples include nanoelectromechanical systems (NEMS), nanomachines, self-healing materials, targeted drugs and chemicals, energy storage devices, and sensors. This article considers two questions: (a) Is there a "shift" to active nanostructures? (b) How can we characterize the prototypical areas into which active nanostructures may emerge? We build upon the NSF definition of active nanostructures to develop a research publication search strategy, with a particular intent to distinguish between passive and active nanotechnologies. We perform bibliometric analyses and describe the main publication trends from 1995 to 2008. We then describe the prototypes of research that emerge based on reading the abstracts and review papers encountered in our search. Preliminary results suggest that there is a sharp rise in active nanostructures publications in 2006, and this rise is maintained in 2007 and through to early 2008. We present a typology that can be used to describe the kind of active nanostructures that may be commercialized and regulated in the future.

  8. Nanostructures based on alumina hydroxides inhibit tumor growth

    NASA Astrophysics Data System (ADS)

    Fomenko, A. N.; Korovin, M. S.

    2017-09-01

    Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less research attention has been payed to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with AlOOH nanoparticles.

  9. Soft Magnetic Multilayered Thin Films for HF Applications

    NASA Astrophysics Data System (ADS)

    Loizos, George; Giannopoulos, George; Serletis, Christos; Maity, Tuhin; Roy, Saibal; Lupu, Nicoleta; Kijima, Hanae; Yamaguchi, Masahiro; Niarchos, Dimitris

    Multilayered thin films from various soft magnetic materials were successfully prepared by magnetron sputtering in Ar atmosphere. The magnetic properties and microstructure were investigated. It is found that the films show good soft magnetic properties: magnetic coercivity of 1-10 Oe and saturation magnetization higher than 1T. The initial permeability of the films is greater than 300 and flattens up to 600 MHz. The multilayer thin film properties in combination with their easy, fast and reproducible fabrication indicate that they are potential candidates for high frequency applications.

  10. Infrared metamaterial by RF magnetron sputtered ZnO/Al:ZnO multilayers

    NASA Astrophysics Data System (ADS)

    Santiago, Kevin C.; Mundle, Rajeh; White, Curtis; Bahoura, Messaoud; Pradhan, Aswini K.

    2018-03-01

    Hyperbolic metamaterials create artificial anisotropy using metallic wires suspended in dielectric media or alternating layers of a metal and dielectric (Type I or Type II). In this study we fabricated ZnO/Al:ZnO (AZO) multilayers by the RF magnetron sputtering deposition technique. Our fabricated multilayers satisfy the requirements for a type II hyperbolic metamaterial. The optical response of individual AZO and ZnO films, as well as the multilayered film were investigated via UV-vis-IR transmittance and spectroscopic ellipsometry. The optical response of the multilayered system is calculated using the nonlocal-corrected Effective Medium Approximation (EMA). The spectroscopic ellipsometry data of the multilayered system was modeled using a uniaxial material model and EMA model. Both theoretical and experimental studies validate the fabricated multilayers undergo a hyperbolic transition at a wavelength of 2.2 μm. To our knowledge this is the first AZO/ZnO type II hyperbolic metamaterial system fabricated by magnetron sputtering deposition method.

  11. Recent patents on perovskite ferroelectric nanostructures.

    PubMed

    Zhu, Xinhua

    2009-01-01

    Ferroelectric oxide materials with a perovskite structure have promising applications in electronic devices such as random access memories, sensors, actuators, infrared detectors, and so on. Recent advances in science and technology of ferroelectrics have resulted in the feature sizes of ferroelectric-based electronic devices entering into nanoscale dimensions. At nanoscale perovskite ferroelectric materials exhibit a pronounced size effect manifesting itself in a significant deviation of the properties of low-dimensional structures from the bulk and film counterparts. One-dimensional perovskite ferroelectric nanotube/nanowire systems, offer fundamental scientific opportunities for investigating the intrinsic size effects in ferroelectrics. In the past several years, much progress has been made both in fabrication and physical property testing of perovskite ferroelectric nanostructures. In the first part of this paper, the recent patents and literatures for fabricating ferroelectric nanowires, nanorods, nanotubes, and nanorings with promising features, are reviewed. The second part deals with the recent advances on the physical property testing of perovskite ferroelectric nanostructures. The third part summarizes the recently patents and literatures about the microstructural characterizations of perovskite ferroelectric nanostructures, to improve their crystalline quality, morphology and uniformity. Finally, we conclude this review with personal perspectives towards the potential future developments of perovskite ferroelectric nanostructures.

  12. Recent advances in MoS2 nanostructured materials for energy and environmental applications - A review

    NASA Astrophysics Data System (ADS)

    Theerthagiri, J.; Senthil, R. A.; Senthilkumar, B.; Reddy Polu, Anji; Madhavan, J.; Ashokkumar, Muthupandian

    2017-08-01

    Molybdenum disulfide (MoS2), a layered transition metal dichalcogenide with an analogous structure to graphene, has attracted enormous attention worldwide owing to its use in a variety of applications such as energy storage, energy conversion, environmental remediation and sensors. MoS2 and graphene have almost similar functional properties such as high charge carrier transport, high wear resistance and good mechanical strength and friction. However, MoS2 is advantageous over graphene due to its low-cost, abundancy, tailorable morphologies and tuneable band gap with good visible light absorption properties. In this review, we have focussed mainly on recent advances in MoS2 nanostructured materials for the applications in the broad area of energy and environment. Special attention has been paid to their applications in dye-sensitized solar cells, supercapacitor, Li-ion battery, hydrogen evolution reaction, photocatalysis for the degradation of organic pollutants, chemical/bio sensors and gas sensors. Finally, the challenges to design MoS2 nanostructures suitable for energy and environmental applications are also highlighted.

  13. Synthesis of hierarchical three-dimensional copper oxide nanostructures through a biomineralization-inspired approach

    NASA Astrophysics Data System (ADS)

    Fei, Xiang; Shao, Zhengzhong; Chen, Xin

    2013-08-01

    Three-dimensional (3D) copper oxide (CuO) nanostructures were synthesized in a regenerated Bombyx mori silk fibroin aqueous solution at room temperature. In the synthesis process, silk fibroin served as the template and helped to form the hierarchical CuO nanostructures by self-assembly. Cu(OH)2 nanowires were formed initially, and then they transformed into almond-like CuO nanostructures with branched edges and a compact middle. The size of the final CuO nanostructures can be tuned by varying the concentration of silk fibroin in the reaction system. A possible mechanism has been proposed based on various characterization techniques, such as scanning and transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis. The synthesized CuO nanostructured material has been evaluated as an anode material for lithium ion batteries, and the result showed that they had a good electrochemical performance. The straightforward energy-saving method developed in this research may provide a useful preparation strategy for other functional inorganic materials through an environmentally friendly process.Three-dimensional (3D) copper oxide (CuO) nanostructures were synthesized in a regenerated Bombyx mori silk fibroin aqueous solution at room temperature. In the synthesis process, silk fibroin served as the template and helped to form the hierarchical CuO nanostructures by self-assembly. Cu(OH)2 nanowires were formed initially, and then they transformed into almond-like CuO nanostructures with branched edges and a compact middle. The size of the final CuO nanostructures can be tuned by varying the concentration of silk fibroin in the reaction system. A possible mechanism has been proposed based on various characterization techniques, such as scanning and transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis. The synthesized CuO nanostructured material has been evaluated as an anode material for lithium ion batteries, and the result

  14. Microwave plasma enabled synthesis of free standing carbon nanostructures at atmospheric pressure conditions.

    PubMed

    Bundaleska, N; Tsyganov, D; Dias, A; Felizardo, E; Henriques, J; Dias, F M; Abrashev, M; Kissovski, J; Tatarova, E

    2018-05-23

    An experimental and theoretical study on microwave (2.45 GHz) plasma enabled assembly of carbon nanostructures, such as multilayer graphene sheets and nanoparticles, was performed. The carbon nanostructures were fabricated at different Ar-CH4 gas mixture composition and flows at atmospheric pressure conditions. The synthesis method is based on decomposition of the carbon-containing precursor (CH4) in the "hot" microwave plasma environment into carbon atoms and molecules, which are further converted into solid carbon nuclei in the "colder" plasma zones. By tailoring of the plasma environment, a controlled synthesis of graphene sheets and diamond-like nanoparticles was achieved. Selective synthesis of graphene flakes was achieved at a microwave power of 1 kW, Ar and methane flow rates of 600 sccm and 2 sccm respectively, while the predominant synthesis of diamond-like nanoparticles was obtained at the same power, but with higher flow rates, i.e. 1000 and 7.5 sccm, respectively. Optical emission spectroscopy was applied to detect the plasma emission related to carbon species from the 'hot' plasma zone and to determine the main plasma parameters. Raman spectroscopy and scanning electron microscopy have been applied to characterize the synthesized nanostructures. A previously developed theoretical model was further updated and employed to understand the mechanism of CH4 decomposition and formation of the main building units, i.e. C and C2, of the carbon nanostructures. An insight into the physical chemistry of carbon nanostructure formation in a high energy density microwave plasma environment is presented.

  15. Apparatus and method for intra-layer modulation of the material deposition and assist beam and the multilayer structure produced therefrom

    NASA Technical Reports Server (NTRS)

    Wadley, Hadyn N. G. (Inventor); Zhou, Xiaowang (Inventor); Quan, Junjie (Inventor)

    2002-01-01

    A method of producing a multilayer structure that has reduced interfacial roughness and interlayer mixing by using a physical-vapor deposition apparatus. In general the method includes forming a bottom layer having a first material wherein a first plurality of monolayers of the first material is deposited on an underlayer using a low incident adatom energy. Next, a second plurality of monolayers of the first material is deposited on top of the first plurality of monolayers of the first material using a high incident adatom energy. Thereafter, the method further includes forming a second layer having a second material wherein a first plurality of monolayers of the second material is deposited on the second plurality of monolayers of the first material using a low incident adatom energy. Next, a second plurality of monolayers of the second material is deposited on the first plurality of monolayers of the second material using a high incident adatom energy.

  16. Energy transfer through a multi-layer liner for shaped charges

    DOEpatents

    Skolnick, Saul; Goodman, Albert

    1985-01-01

    This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

  17. Surface Modification for Improved Design and Functionality of Nanostructured Materials and Devices

    NASA Astrophysics Data System (ADS)

    Keiper, Timothy Keiper

    Progress in nanotechnology is trending towards applications which require the integration of soft (organic or biological) and hard (semiconductor or metallic) materials. Many applications for functional nanomaterials are currently being explored, including chemical and biological sensors, flexible electronics, molecular electronics, etc., with researchers aiming to develop new paradigms of nanoelectronics through manipulation of the physical properties by surface treatments. This dissertation focuses on two surface modification techniques important for integration of hard and soft materials: thermal annealing and molecular modification of semiconductors. First, the effects of thermal annealing are investigated directly for their implication in the fundamental understanding of transparent conducting oxides with respect to low resistivity contacts for electronic and optoelectronic applications and the response to environmental stimuli for sensing applications. The second focus of this dissertation covers two aspects of the importance of molecular modification on semiconductor systems. The first of these is the formation of self-assembled monolayers in patterned arrays which leads explicitly to the directed self-assembly of nanostructures. The second aspect concerns the modification of the underlying magnetic properties of the preeminent dilute magnetic semiconductor, manganese-doped gallium arsenide. Tin oxide belongs to a class of materials known as transparent conducting oxides which have received extensive interest due to their sensitivity to environmental stimuli and their potential application in transparent and flexible electronics. Nanostructures composed of SnO2 have been demonstrated as an advantageous material for high performance, point-of-care nanoelectronic sensors, capable of detecting and distinguishing gaseous or biomolecular interactions on unprecedented fast timescales. Through bottom-up fabrication techniques, binary oxide nanobelts synthesized

  18. Ionic self-assembly for functional hierarchical nanostructured materials.

    PubMed

    Faul, Charl F J

    2014-12-16

    CONSPECTUS: The challenge of constructing soft functional materials over multiple length scales can be addressed by a number of different routes based on the principles of self-assembly, with the judicious use of various noncovalent interactions providing the tools to control such self-assembly processes. It is within the context of this challenge that we have extensively explored the use of an important approach for materials construction over the past decade: exploiting electrostatic interactions in our ionic self-assembly (ISA) method. In this approach, cooperative assembly of carefully chosen charged surfactants and oppositely charged building blocks (or tectons) provides a facile noncovalent route for the rational design and production of functional nanostructured materials. Generally, our research efforts have developed with an initial focus on establishing rules for the construction of novel noncovalent liquid-crystalline (LC) materials. We found that the use of double-tailed surfactant species (especially branched double-tailed surfactants) led to the facile formation of thermotropic (and, in certain cases, lyotropic) phases, as demonstrated by extensive temperature-dependent X-ray and light microscopy investigations. From this core area of activity, research expanded to cover issues beyond simple construction of anisotropic materials, turning to the challenge of inclusion and exploitation of switchable functionality. The use of photoactive azobenzene-containing ISA materials afforded opportunities to exploit both photo-orientation and surface relief grating formation. The preparation of these anisotropic LC materials was of interest, as the aim was the facile production of disposable and low-cost optical components for display applications and data storage. However, the prohibitive cost of the photo-orientation processes hampered further exploitation of these materials. We also expanded our activities to explore ISA of biologically relevant tectons

  19. Controlled synthesis of different metal oxide nanostructures by direct current arc discharge.

    PubMed

    Su, Yanjie; Zhang, Jing; Zhang, Liling; Zhang, Yafei

    2013-02-01

    Direct current (DC) arc discharge method gives high temperature in a short time, which has been widely used to prepare carbon nanotubes. We use this simple approach to synthesize metal oxide nanostructures (MgO, SnO2) without any catalyst. Different morphologies (nanowires, nanobelts, nanocubes, and nanodisks) of metal oxide nanostructures can be controllably synthesized by changing the content of air in buffer gas. The growth mechanisms for these nanostructures are discussed in detail. Oxygen partial pressure is supposed to be one of the most important key factors. The methodology might be used to synthesize similar nanostructures of other functional oxide materials and non-oxide materials.

  20. Plasmonic nanostructures through DNA-assisted lithography

    PubMed Central

    Shen, Boxuan; Linko, Veikko; Tapio, Kosti; Pikker, Siim; Lemma, Tibebe; Gopinath, Ashwin; Gothelf, Kurt V.; Kostiainen, Mauri A.; Toppari, J. Jussi

    2018-01-01

    Programmable self-assembly of nucleic acids enables the fabrication of custom, precise objects with nanoscale dimensions. These structures can be further harnessed as templates to build novel materials such as metallic nanostructures, which are widely used and explored because of their unique optical properties and their potency to serve as components of novel metamaterials. However, approaches to transfer the spatial information of DNA constructions to metal nanostructures remain a challenge. We report a DNA-assisted lithography (DALI) method that combines the structural versatility of DNA origami with conventional lithography techniques to create discrete, well-defined, and entirely metallic nanostructures with designed plasmonic properties. DALI is a parallel, high-throughput fabrication method compatible with transparent substrates, thus providing an additional advantage for optical measurements, and yields structures with a feature size of ~10 nm. We demonstrate its feasibility by producing metal nanostructures with a chiral plasmonic response and bowtie-shaped nanoantennas for surface-enhanced Raman spectroscopy. We envisage that DALI can be generalized to large substrates, which would subsequently enable scale-up production of diverse metallic nanostructures with tailored plasmonic features. PMID:29423446

  1. Coherent multilayer crystals and method of making

    DOEpatents

    Schuller, Ivan K.; Falco, Charles M.

    1984-01-01

    A new material consisting of a multilayer crystalline structure which is coherent perpendicular to the layers and where each layer is composed of a single crystalline element. The individual layers may vary from 2.ANG. to 100.ANG. or more in thickness.

  2. Graphical method to design multilayer phase retarders.

    PubMed

    Apfel, J H

    1981-03-15

    When multilayer reflectors are used at nonnormal incidence, the two planes of polarization generally have different phase shifts. This difference, known as phase retardance, depends on the multilayer design, the incidence angle, and the wavelength. Heretofore, the design of reflectors with specific phase retardance has been carried out by computer optimization except for the case of a single layer on a metal substrate. A graph of phase retardance D vs the average phase shift A as a function of layer thickness provides a means for visualization that is useful in reflector designs. A D-A graph predicts the phase properties of a reflector as a function of the index and thickness of an added layer. Graphs of phase retardance vs average phase for two different materials can be superposed to predict the composite performance of a multilayer reflector. This graphical technique is employed to design and analyze reflectors with specified phase retardance.

  3. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    NASA Astrophysics Data System (ADS)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  4. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    NASA Technical Reports Server (NTRS)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  5. Migration from printing inks in multilayer food packaging materials by GC-MS analysis and pattern recognition with chemometrics.

    PubMed

    Clemente, Isabel; Aznar, Margarita; Nerín, Cristina; Bosetti, Osvaldo

    2016-01-01

    Inks and varnishes used in food packaging multilayer materials can contain different substances that are potential migrants when packaging is in contact with food. Although printing inks are applied on the external layer, they can migrate due to set-off phenomena. In order to assess food safety, migration tests were performed from two materials sets: set A based on paper and set B based on PET; both contained inks. Migration was performed to four food simulants (EtOH 50%, isooctane, EtOH 95% and Tenax(®)) and the volatile compounds profile was analysed by GC-MS. The effect of presence/absence of inks and varnishes and also their position in the material was studied. A total of 149 volatile compounds were found in migration from set A and 156 from set B materials, some of them came from inks. Quantitative analysis and a principal component analysis were performed in order to identify patterns among sample groups.

  6. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  7. A study of 3-dimensionally periodic carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Bleiweiss, Michael; Amirzadeh, Jafar; Datta, Timir; Arammash, Fouzi

    2012-02-01

    Electronic structures with intricate periodic 3-dimensional arrangements at the submicron scale were investigated. These may be fabricated using artificial porous opal substrates as the templates in which the targeted conducting medium is introduced. In the past these materials were reported to show interesting electronic behaviors. [Michael Bleiweiss, et al ``Localization and Related Phenomena in Multiply Connected Nanostructured,'' BAPS, Z30.011, Nanostructured Materials Session, March 2001, Seattle]. Several materials were studied in particular disordered carbon which has been reported to show quantum transport including fractional hall steps. The results of these measurements, including the observation of localization phenomena, will be discussed. Comparisons will be made with literature data.

  8. Coherent multilayer crystals and method of making

    DOEpatents

    Schuller, I.K.; Falco, C.M.

    A new material consisting of a multilayer crystalline structure is described which is coherent perpendicular to the layers and where each layer is composed of a single crystallilne element. The individual layers may vary from 2A to 100A or more in thickness.

  9. Molecular level assessment of thermal transport and thermoelectricity in materials: From bulk alloys to nanostructures

    NASA Astrophysics Data System (ADS)

    Kinaci, Alper

    The ability to manipulate material response to dynamical processes depends on the extent of understanding of transport properties and their variation with chemical and structural features in materials. In this perspective, current work focuses on the thermal and electronic transport behavior of technologically important bulk and nanomaterials. Strontium titanate is a potential thermoelectric material due to its large Seebeck coefficient. Here, first principles electronic band structure and Boltzmann transport calculations are employed in studying the thermoelectric properties of this material in doped and deformed states. The calculations verified that excessive carrier concentrations are needed for this material to be used in thermoelectric applications. Carbon- and boron nitride-based nanomaterials also offer new opportunities in many applications from thermoelectrics to fast heat removers. For these materials, molecular dynamics calculations are used to evaluate lattice thermal transport. To do this, first, an energy moment term is reformulated for periodic boundary conditions and tested to calculate thermal conductivity from Einstein relation in various systems. The influences of the structural details (size, dimensionality) and defects (vacancies, Stone-Wales defects, edge roughness, isotopic disorder) on the thermal conductivity of C and BN nanostructures are explored. It is observed that single vacancies scatter phonons stronger than other type of defects due to unsatisfied bonds in their structure. In pristine states, BN nanostructures have 4-6 times lower thermal conductivity compared to C counterparts. The reason of this observation is investigated on the basis of phonon group velocities, life times and heat capacities. The calculations show that both phonon group velocities and life times are smaller in BN systems. Quantum corrections are also discussed for these classical simulations. The chemical and structural diversity that could be attained by

  10. Multilayer optical dielectric coating

    DOEpatents

    Emmett, John L.

    1990-01-01

    A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.

  11. Transition from poor ductility to room-temperature superplasticity in a nanostructured aluminum alloy.

    PubMed

    Edalati, Kaveh; Horita, Zenji; Valiev, Ruslan Z

    2018-04-30

    Recent developments of nanostructured materials with grain sizes in the nanometer to submicrometer range have provided ground for numerous functional properties and new applications. However, in terms of mechanical properties, bulk nanostructured materials typically show poor ductility despite their high strength, which limits their use for structural applications. The present article shows that the poor ductility of nanostructured alloys can be changed to room-temperature superplastisity by a transition in the deformation mechanism from dislocation activity to grain-boundary sliding. We report the first observation of room-temperature superplasticity (over 400% tensile elongations) in a nanostructured Al alloy by enhanced grain-boundary sliding. The room-temperature grain-boundary sliding and superplasticity was realized by engineering the Zn segregation along the Al/Al boundaries through severe plastic deformation. This work introduces a new boundary-based strategy to improve the mechanical properties of nanostructured materials for structural applications, where high deformability is a requirement.

  12. Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications

    PubMed Central

    Wang, Yiran; Wei, Huige; Lu, Yang; Wei, Suying; Wujcik, Evan K.; Guo, Zhanhu

    2015-01-01

    Carbon nanostructures—including graphene, fullerenes, etc.—have found applications in a number of areas synergistically with a number of other materials.These multifunctional carbon nanostructures have recently attracted tremendous interest for energy storage applications due to their large aspect ratios, specific surface areas, and electrical conductivity. This succinct review aims to report on the recent advances in energy storage applications involving these multifunctional carbon nanostructures. The advanced design and testing of multifunctional carbon nanostructures for energy storage applications—specifically, electrochemical capacitors, lithium ion batteries, and fuel cells—are emphasized with comprehensive examples. PMID:28347034

  13. Semiconductor nanostructures for plasma energetic systems

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Smerdov, Rostislav; Klimenkov, Boris

    2017-10-01

    In this talk we discuss the research results of the three types of ultrasmall electrodes namely the nanoelectrode arrays based on composite nanostructured porous silicon (PS) layers, porous GaP and nanocrystals of ZnO. These semiconductor materials are of great interest to nano- and optoelectronic applications by virtue of their high specific surface area and extensive capability for surface functionalization. The use of semiconductor (GaN) cathodes in photon-enhanced thermionic emission systems has also proved to be effective although only a few (less than 1%) of the incident photons exceed the 3.3 eV GaN band gap. This significant drawback provided us with a solid foundation for our research in the field of nanostructured PS, and composite materials based on it exhibiting nearly optimal parameters in terms of the band gap (1.1 eV). The band gap modification for PS nanostructured layers is possible in the range of less than 1 eV and 3 eV due to the existence of quantum confinement effect and the remarkable possibilities of PS surface alteration thus providing us with a suitable material for both cathode and anode fabrication. The obtained results are applicable for solar concentration and thermionic energy conversion systems. Dr. Sci., Ph.D, Principal Scientist, Professor.

  14. Design and development of multilayer vascular graft

    NASA Astrophysics Data System (ADS)

    Madhavan, Krishna

    2011-07-01

    Vascular graft is a widely-used medical device for the treatment of vascular diseases such as atherosclerosis and aneurysm as well as for the use of vascular access and pediatric shunt, which are major causes of mortality and morbidity in this world. Dysfunction of vascular grafts often occurs, particularly for grafts with diameter less than 6mm, and is associated with the design of graft materials. Mechanical strength, compliance, permeability, endothelialization and availability are issues of most concern for vascular graft materials. To address these issues, we have designed a biodegradable, compliant graft made of hybrid multilayer by combining an intimal equivalent, electrospun heparin-impregnated poly-epsilon-caprolactone nanofibers, with a medial equivalent, a crosslinked collagen-chitosan-based gel scaffold. The intimal equivalent is designed to build mechanical strength and stability suitable for in vivo grafting and to prevent thrombosis. The medial equivalent is designed to serve as a scaffold for the activity of the smooth muscle cells important for vascular healing and regeneration. Our results have shown that genipin is a biocompatible crosslinker to enhance the mechanical properties of collagen-chitosan based scaffolds, and the degradation time and the activity of smooth muscle cells in the scaffold can be modulated by the crosslinking degree. For vascular grafting and regeneration in vivo, an important design parameter of the hybrid multilayer is the interface adhesion between the intimal and medial equivalents. With diametrically opposite affinities to water, delamination of the two layers occurs. Physical or chemical modification techniques were thus used to enhance the adhesion. Microscopic examination and graft-relevant functional characterizations have been performed to evaluate these techniques. Results from characterization of microstructure and functional properties, including burst strength, compliance, water permeability and suture

  15. SiC/Mg multilayer coatings for SCORE coronagraph: long term stability analysis

    NASA Astrophysics Data System (ADS)

    Pelizzo, Maria Guglielmina; Fineschi, Silvano; Zuppella, Paola; Corso, Alain Jody; Windt, David L.; Nicolosi, Piergiorgio

    2011-10-01

    SiC/Mg multilayers have been used as coatings of the Sounding-rocket CORonagraphic Experiment (SCORE) telescope mirrors launched during the NASA HERSCHEL program. This materials couple has been largely studied by researchers since it provides higher performances than a standard Mo/Si multilayer; the SCORE mirrors show in fact a peak reflectance of around 40% at HeII 30.4 nm. Nevertheless, long term stability of this coating is an open problem. A study on the aging and stability of this multilayer has been carried on. SiC/Mg multilayer samples characterized by different structural parameters have been deposited. They have been measured just after deposition and four years later to verify degradation based on natural aging. Experimental results and analysis are presented.

  16. Simulation of Electron Scattering in Complex Nanostructures: Lithography, Metrology, and Characterization.

    NASA Astrophysics Data System (ADS)

    Johnson, Sylvester, IV

    A CAE (Computer Aided Engineering) tool called SEEL (Simulation of Electron Energy Loss) is described in detail. SEEL simulates in any material the energy loss and trajectories of electrons in the complex, multilayered nanostructures typical of ULSI, at beam energies from 1 to 50 keV. Structures and materials are defined in the input file rather than in the source code of the program, for which flowcharts are included in addition to an explanation of the algorithms implemented. Satisfactory comparisons of simulated with experimental results are made of both secondary electron (SE) and backscattered electron (BSE) linescans across an array of MOS gate structures capped by rough oxide. Many other comparisons are made. The effects of varying line edge slopes on SE linescan peak shape are simulated and analyzed. A data library containing the simulated variation of the FWHM, peak height, and peak location with slope for different materials, line heights or trench depths, widths, beam energies, and nominal diameters could be used to find the edge location relative to the peak for improvement of the accuracy of linewidth measurement algorithms. An investigation indicates that the use of such a library would be complicated by the effect of surface roughness on the SE signal at the edge of a feature. SEEL can be used as the first module in a series of programs that simulate energy deposition in resist structures and correct the exposure of a circuit pattern. Pixel by pixel convolution for prediction of the proximity effect is time-consuming. Another method of proximity effect prediction based on the reciprocity of the RED is described. Such programs could be used to reduce the number of iterations in the lab required to optimize resist structures and exposure parameters. For both smooth and rough interfaces between a bottom layer of PMMA in a multilayer resist structure and a W film, the simulated exposure contrast declines from that with an oxide film beneath the structure

  17. Modeling multilayer x-ray reflectivity using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Sánchez del Río, M.; Pareschi, G.; Michetschläger, C.

    2000-06-01

    The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thickness, density, roughness). Non-linear fitting of experimental data with simulations requires the use of initial values sufficiently close to the optimum value. This is a difficult task when the topology of the space of the variables is highly structured. We apply global optimization methods to fit multilayer reflectivity. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (selection, crossover, mutation, etc.) on the members of the parent generation. The pressure of selection drives the population to include "good" individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C and W/Si multilayers using genetic algorithms are presented. This method can also be applied to design multilayers optimized for a target application.

  18. Attosecond nanotechnology: NEMS of energy storage and nanostructural transformations in materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beznosyuk, Sergey A., E-mail: bsa1953@mail.ru; Maslova, Olga A., E-mail: maslova-o.a@mail.ru; Zhukovsky, Mark S., E-mail: zhukovsky@list.ru

    2015-10-27

    The attosecond technology of the nanoelectromechanical system (NEMS) energy storage as active center fast transformation of nanostructures in materials is considered. The self-organizing relaxation of the NEMS active center containing nanocube of 256-atoms limited by planes (100) in the FCC lattice matrix of 4d-transition metals (Ru, Rh, Pd) is described by the quantum NEMS-kinetics (NK) method. Typical for these metals change of the NEMS active center physicochemical characteristics during the time of relaxation is presented. There are three types of intermediate quasistationary states of the NEMS active center. Their forms are plainly distinguishable. The full relaxed NEMS active centers (Ru{submore » 256}, Rh{sub 256}, Pd{sub 256}) accumulate next storage energies: E{sub Ru} = 2.27 eV/at, E{sub Rh} = 1.67 eV/at, E{sub Pd} = 3.02 eV/at.« less

  19. Basic analysis of reflectometry data software package for the analysis of multilayered structures according to reflectometry data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astaf'ev, S. B., E-mail: bard@ns.crys.ras.ru; Shchedrin, B. M.; Yanusova, L. G.

    2012-01-15

    The main principles of developing the Basic Analysis of Reflectometry Data (BARD) software package, which is aimed at obtaining a unified (standardized) tool for analyzing the structure of thin multilayer films and nanostructures of different nature based on reflectometry data, are considered. This software package contains both traditionally used procedures for processing reflectometry data and the authors' original developments on the basis of new methods for carrying out and analyzing reflectometry experiments. The structure of the package, its functional possibilities, examples of application, and prospects of development are reviewed.

  20. Electrode Nanostructures in Lithium-Based Batteries.

    PubMed

    Mahmood, Nasir; Hou, Yanglong

    2014-12-01

    Lithium-based batteries possessing energy densities much higher than those of the conventional batteries belong to the most promising class of future energy devices. However, there are some fundamental issues related to their electrodes which are big roadblocks in their applications to electric vehicles (EVs). Nanochemistry has advantageous roles to overcome these problems by defining new nanostructures of electrode materials. This review article will highlight the challenges associated with these chemistries both to bring high performance and longevity upon considering the working principles of the various types of lithium-based (Li-ion, Li-air and Li-S) batteries. Further, the review discusses the advantages and challenges of nanomaterials in nanostructured electrodes of lithium-based batteries, concerns with lithium metal anode and the recent advancement in electrode nanostructures.

  1. Diffusion-Based Design of Multi-Layered Ophthalmic Lenses for Controlled Drug Release

    PubMed Central

    Pimenta, Andreia F. R.; Serro, Ana Paula; Paradiso, Patrizia; Saramago, Benilde

    2016-01-01

    The study of ocular drug delivery systems has been one of the most covered topics in drug delivery research. One potential drug carrier solution is the use of materials that are already commercially available in ophthalmic lenses for the correction of refractive errors. In this study, we present a diffusion-based mathematical model in which the parameters can be adjusted based on experimental results obtained under controlled conditions. The model allows for the design of multi-layered therapeutic ophthalmic lenses for controlled drug delivery. We show that the proper combination of materials with adequate drug diffusion coefficients, thicknesses and interfacial transport characteristics allows for the control of the delivery of drugs from multi-layered ophthalmic lenses, such that drug bursts can be minimized, and the release time can be maximized. As far as we know, this combination of a mathematical modelling approach with experimental validation of non-constant activity source lamellar structures, made of layers of different materials, accounting for the interface resistance to the drug diffusion, is a novel approach to the design of drug loaded multi-layered contact lenses. PMID:27936138

  2. 3D Nanostructured materials: TiO2 nanoparticles incorporated gellan gum scaffold for photocatalyst and biomedical Applications

    NASA Astrophysics Data System (ADS)

    Hasmizam Razali, Mohd; Arifah Ismail, Nur; Zulkafli, Mohd Farhan Azly Mohd; Anuar Mat Amin, Khairul

    2018-03-01

    A unique three-dimensional (3D) nanostructured gellan gum (GG) is fabricated by incorporating TiO2 nanoparticles (GG + TiO2NPs) scaffold by freeze-drying. The fabricated GG + TiO2NPs were characterized using Fourier transform infrared (FTIR), x-ray diffraction (XRD), and scanning electron microscopy (SEM) to study their physiochemical properties. FTIR was used to investigate the intermolecular interactions in the scaffolds. The crystal structure was determined by bulk analysis using XRD and SEM for microstructure observation of scaffold surfaces. The performance of synthesized GG + TiO2NPs scaffold 3D nanostructured materials was evaluated as a photocatalyst for methyl orange (MO) degradation and for biomedical applications. The results showed that the scaffold possessed good photocatalytic activity for removal of methyl orange with 88.24% degradation after 3 h of UV irradiation. The scaffold also induces the cell growth, thus offering a good candidate for biomedical applications.

  3. Synthesis of Ammonia-Assisted Porous Nickel Ferrite (NiFe₂O₄) Nanostructures as an Electrode Material for Supercapacitors.

    PubMed

    Bhojane, Prateek; Sharma, Alfa; Pusty, Manojit; Kumar, Yogendra; Sen, Somaditya; Shirage, Parasharam

    2017-02-01

    In this work, we report a low cost, facile synthesis method for Nickel ferrite (NiFe₂O₄) nanostructures obtained by chemical bath deposition method for alternate transition metal oxide electrode material as a solution for clean energy. We developed a template free ammonia assisted method for obtaining porous structure which offering better supercapacitive performance of NiFe₂O₄ electrode material than previously reported for pure NiFe₂O₄. Here we explore the physical characterizations X-ray diffraction, FESEM, HRTEM performed to under-stand its crystal structure and morphology as well as the electrochemical measurements was performed to understand the electrochemical behaviour of the material. Here ammonia plays an important role in governing the structure/morphology of the material and enhances the electrochemical performance. The specific capacitance of 541 Fg⁻¹ is achieved at 2 mVs⁻¹ scan rate which is highest for the pure NiFe₂O₄ electrode material without using any addition of carbon based material, heterostructure or template based method.

  4. Fossilized Biophotonic Nanostructures Reveal the Original Colors of 47-Million-Year-Old Moths

    PubMed Central

    McNamara, Maria E.; Briggs, Derek E. G.; Orr, Patrick J.; Wedmann, Sonja; Noh, Heeso; Cao, Hui

    2011-01-01

    Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors are generated by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of iridescence (change in hue with viewing angle) achieved via two separate optical mechanisms: extensive perforation, and concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in lepidopterans by the mid-Eocene. PMID:22110404

  5. Fossilized biophotonic nanostructures reveal the original colors of 47-million-year-old moths.

    PubMed

    McNamara, Maria E; Briggs, Derek E G; Orr, Patrick J; Wedmann, Sonja; Noh, Heeso; Cao, Hui

    2011-11-01

    Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood. Existing hypotheses based on phylogenetic and/or structural data are controversial and do not incorporate data from fossils. Here we report the first example of structurally colored scales in fossil lepidopterans; specimens are from the 47-million-year-old Messel oil shale (Germany). The preserved colors are generated by a multilayer reflector comprised of a stack of perforated laminae in the scale lumen; differently colored scales differ in their ultrastructure. The original colors were altered during fossilization but are reconstructed based upon preserved ultrastructural detail. The dorsal surface of the forewings was a yellow-green color that probably served as a dual-purpose defensive signal, i.e. aposematic during feeding and cryptic at rest. This visual signal was enhanced by suppression of iridescence (change in hue with viewing angle) achieved via two separate optical mechanisms: extensive perforation, and concave distortion, of the multilayer reflector. The fossils provide the first evidence, to our knowledge, for the function of structural color in fossils and demonstrate the feasibility of reconstructing color in non-metallic lepidopteran fossils. Plastic scale developmental processes and complex optical mechanisms for interspecific signaling had clearly evolved in lepidopterans by the mid-Eocene.

  6. High-performance axicon lenses based on high-contrast, multilayer gratings

    NASA Astrophysics Data System (ADS)

    Doshay, Sage; Sell, David; Yang, Jianji; Yang, Rui; Fan, Jonathan A.

    2018-01-01

    Axicon lenses are versatile optical elements that can convert Gaussian beams to Bessel-like beams. In this letter, we demonstrate that axicons operating with high efficiencies and at large angles can be produced using high-contrast, multilayer gratings made from silicon. Efficient beam deflection of incident monochromatic light is enabled by higher-order optical modes in the silicon structure. Compared to diffractive devices made from low-contrast materials such as silicon dioxide, our multilayer devices have a relatively low spatial profile, reducing shadowing effects and enabling high efficiencies at large deflection angles. In addition, the feature sizes of these structures are relatively large, making the fabrication of near-infrared devices accessible with conventional optical lithography. Experimental lenses with deflection angles as large as 40° display field profiles that agree well with theory. Our concept can be used to design optical elements that produce higher-order Bessel-like beams, and the combination of high-contrast materials with multilayer architectures will more generally enable new classes of diffractive photonic structures.

  7. Multilayered Electromagnetic Interference Shielding Structures for Suppressing Magnetic Field Coupling

    NASA Astrophysics Data System (ADS)

    Watanabe, Atom O.; Raj, Pulugurtha Markondeya; Wong, Denny; Mullapudi, Ravi; Tummala, Rao

    2018-05-01

    Control of electromagnetic interference (EMI) represents a major challenge for emerging consumer electronics, the Internet of Things, automotive electronics, and wireless communication systems. This paper discusses innovative EMI shielding materials and structures that offer higher shielding effectiveness compared with copper. To create high shielding effectiveness in the frequency range of 1 MHz to 100 MHz, multilayered shielding topologies with electrically conductive and nanomagnetic materials were modeled, designed, fabricated, and characterized. In addition, suppression of out-of-plane and in-plane magnetic-field coupling noise with these structures is compared with that of traditional single-layer copper or nickel-iron films. Compared with single-layered copper shields, multilayered structures consisting of copper, nickel-iron, and titanium showed a 3.9 times increase in shielding effectiveness in suppressing out-of-plane or vertically coupled noise and 1.3 times increase in lateral coupling. The superiority of multilayered thin-film shields over conventional shielding enables greater design flexibility, higher shielding effectiveness, and further miniaturization of emerging radiofrequency (RF) and power modules.

  8. Guided wave energy trapping to detect hidden multilayer delamination damage

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Seebo, Jeffrey P.

    2015-03-01

    Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) simulation tools capable of modeling three-dimensional (3D) realistic energy-damage interactions are needed for aerospace composites. Current practice in NDE/SHM simulation for composites commonly involves over-simplification of the material parameters and/or a simplified two-dimensional (2D) approach. The unique damage types that occur in composite materials (delamination, microcracking, etc) develop as complex 3D geometry features. This paper discusses the application of 3D custom ultrasonic simulation tools to study wave interaction with multilayer delamination damage in carbon-fiber reinforced polymer (CFRP) composites. In particular, simulation based studies of ultrasonic guided wave energy trapping due to multilayer delamination damage were performed. The simulation results show changes in energy trapping at the composite surface as additional delaminations are added through the composite thickness. The results demonstrate a potential approach for identifying the presence of hidden multilayer delamination damage in applications where only single-sided access to a component is available. The paper also describes recent advancements in optimizing the custom ultrasonic simulation code for increases in computation speed.

  9. Formation of superhydrophobic/superhydrophilic patterns by combination of nanostructure-imprinted perfluoropolymer and nanostructured silicon oxide for biological droplet generation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo; Shimizu, Kazunori; Kaizuma, Yoshihiro; Konishi, Satoshi

    2011-03-01

    In this letter, we report a technology for fabricating superhydrophobic/superhydrophilic patterns using a combination of a nanostructure-imprinted perfluoropolymer and nanostructured silicon oxide. In our previous study, we used a combination of hydrophobic and superhydrophilic materials. However, it was difficult to split low-surface-tension liquids such as biological liquids into droplets solely using hydrophobic/hydrophilic patterns. In this study, the contact angle of the hydrophobic region was enhanced from 109.3° to 155.6° by performing nanostructure imprinting on a damage-reduced perfluoropolymer. The developed superhydrophobic/superhydrophilic patterns allowed the splitting of even those media that contained fetal bovine serum into droplets of a desired shape.

  10. Quantum dot behavior in transition metal dichalcogenides nanostructures

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Zhang, Zhuo-Zhi; Li, Hai-Ou; Song, Xiang-Xiang; Deng, Guang-Wei; Cao, Gang; Xiao, Ming; Guo, Guo-Ping

    2017-08-01

    Recently, transition metal dichalcogenides (TMDCs) semiconductors have been utilized for investigating quantum phenomena because of their unique band structures and novel electronic properties. In a quantum dot (QD), electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. Beyond the definition of graphene QDs by opening an energy gap in nanoconstrictions, with the presence of a bandgap, gate-defined QDs can be achieved on TMDCs semiconductors. In this paper, we review the confinement and transport of QDs in TMDCs nanostructures. The fabrication techniques for demonstrating two-dimensional (2D) materials nanostructures such as field-effect transistors and QDs, mainly based on e-beam lithography and transfer assembly techniques are discussed. Subsequently, we focus on electron transport through TMDCs nanostructures and QDs. With steady improvement in nanoscale materials characterization and using graphene as a springboard, 2D materials offer a platform that allows creation of heterostructure QDs integrated with a variety of crystals, each of which has entirely unique physical properties.

  11. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors.

    PubMed

    Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan

    2015-04-28

    Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.

  12. Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Wong, Herman M. K.; Dezfouli, Mohsen Kamandar; Axelrod, Simon; Hughes, Stephen; Helmy, Amr S.

    2017-11-01

    We theoretically investigate the enhancement of surface enhanced Raman spectroscopy (SERS) using hyperbolic stratified nanostructures and compare to metal nanoresonators. The photon Green function of each nanostructure within its environment is first obtained from a semianalytical modal theory, which is used in a quantum optics formalism of the molecule-nanostructure interaction to model the SERS spectrum. An intuitive methodology is presented for calculating the single-molecule enhancement factor (SMEF), which is also able to predict known experimental SERS enhancement factors of a gold nanodimer. We elucidate the important figures-of-merit of the enhancement and explore these for different designs. We find that the use of hyperbolic stratified materials can enhance the photonic local density of states (LDOS) by close to two times in comparison to pure metal nanostructures, when both designed to work at the same operating wavelengths. However, the increased LDOS is accompanied by higher electric field concentration within the lossy hyperbolic material, which leads to increased quenching that serves to reduce the overall detected SERS enhancement in the far field. For nanoresonators with resonant localized surface plasmon wavelengths in the near-infrared, the SMEF for the hyperbolic stratified nanostructure is approximately one order of magnitude lower than the pure metal counterpart. Conversely, we show that by detecting the Raman signal using a near-field probe, hyperbolic materials can provide an improvement in SERS enhancement compared to using pure metal nanostructures when the probe is sufficiently close (<50 nm ) to the Raman active molecule at the plasmonic hotspot.

  13. Q-factor control of multilayer micromembrane using PZT composite material

    NASA Astrophysics Data System (ADS)

    Čekas, Elingas; Janušas, Giedrius; Palevicius, Arvydas; Janušas, Tomas; Ciganas, Justas

    2018-02-01

    Cantilever and membrane based sensors, which are capable of providing accurate detection of target analytes have been always an important research topic of medical diagnostics, food testing, and environmental monitoring fields. Here, the mechanical detection is achieved by micro- and nano-scale cantilevers for stress sensing and mass sensing, or micro- and nano-scale plates or membranes. High sensitivity is a major issue for the active element and it could be achieved via increased Q-factor. The ability to control the Q factor expands the range of application of the device and allows to achieve more accurate results. The aim of this paper is to investigate the mechanical and electrical properties, as well as, the ability to control the Q factor of the membrane with PZT nanocomposite. This multilayered membrane was formatted using the n-type <100> silicon substrate by implementing the Low Pressure Chemical Vapor Deposition (LPCVD), photolithography by using photomask with defined dimensions, deep etching, and e-beam evaporation techniques. Dynamic and electrical characteristics of the membrane were numerically investigated using COMSOL Multiphysics software. The use of the multilayered membrane can range from simple monitoring of particles concentration in a closed environment to inspecting glucose levels in human fluids (blood, tears, sweat, etc.).

  14. Passivating overcoat bilayer for multilayer reflective coatings for extreme ultraviolet lithography

    DOEpatents

    Montcalm, Claude; Stearns, Daniel G.; Vernon, Stephen P.

    1999-01-01

    A passivating overcoat bilayer is used for multilayer reflective coatings for extreme ultraviolet (EUV) or soft x-ray applications to prevent oxidation and corrosion of the multilayer coating, thereby improving the EUV optical performance. The overcoat bilayer comprises a layer of silicon or beryllium underneath at least one top layer of an elemental or a compound material that resists oxidation and corrosion. Materials for the top layer include carbon, palladium, carbides, borides, nitrides, and oxides. The thicknesses of the two layers that make up the overcoat bilayer are optimized to produce the highest reflectance at the wavelength range of operation. Protective overcoat systems comprising three or more layers are also possible.

  15. semiconducting nanostructures: morphology and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Culebras, Mario; Torán, Raquel; Gómez, Clara M.; Cantarero, Andrés

    2014-08-01

    Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1- x Ca x MnO 3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.

  16. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    PubMed Central

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-01-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10–20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed. PMID:28291246

  17. Manipulating Adsorption-Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Shen; Xiao, Lifen; Sushko, Maria L.

    Hard carbon is one of the most promising anode materials for sodium-ion batteries, but the low coulombic efficiency is still a key barrier. In this paper we synthesized a series of nanostructured hard carbon materials with controlled architectures. Using a combination of in-situ XRD mapping, ex-situ NMR, EPR, electrochemical techniques and simulations, an “adsorption-intercalation” (A-I) mechanism is established for Na ion storage. During the initial stages of Na insertion, Na ions adsorb on the defect sites of hard carbon with a wide adsorption energy distribution, producing a sloping voltage profile. In the second stage, Na ions intercalate into graphitic layersmore » with suitable spacing to form NaCx compounds similar to the Li ion intercalation process in graphite, producing a flat low voltage plateau. The cation intercalation with a flat voltage plateau should be enhanced and the sloping region should be avoided. Guided by this knowledge, non-porous hard carbon material has been developed which has achieved high reversible capacity and coulombic efficiency to fulfill practical application.« less

  18. Contemporary ultrasonic signal processing approaches for nondestructive evaluation of multilayered structures

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ming; Harvey, David M.

    2012-03-01

    Various signal processing techniques have been used for the enhancement of defect detection and defect characterisation. Cross-correlation, filtering, autoregressive analysis, deconvolution, neural network, wavelet transform and sparse signal representations have all been applied in attempts to analyse ultrasonic signals. In ultrasonic nondestructive evaluation (NDE) applications, a large number of materials have multilayered structures. NDE of multilayered structures leads to some specific problems, such as penetration, echo overlap, high attenuation and low signal-to-noise ratio. The signals recorded from a multilayered structure are a class of very special signals comprised of limited echoes. Such signals can be assumed to have a sparse representation in a proper signal dictionary. Recently, a number of digital signal processing techniques have been developed by exploiting the sparse constraint. This paper presents a review of research to date, showing the up-to-date developments of signal processing techniques made in ultrasonic NDE. A few typical ultrasonic signal processing techniques used for NDE of multilayered structures are elaborated. The practical applications and limitations of different signal processing methods in ultrasonic NDE of multilayered structures are analysed.

  19. A mobile precursor determines protein resistance on nanostructured surfaces.

    PubMed

    Wang, Kang; Chen, Ye; Gong, Xiangjun; Xia, Jianlong; Zhao, Junpeng; Shen, Lei

    2018-05-09

    Biomaterials are often engineered with nanostructured surfaces to control interactions with proteins and thus regulate their biofunctions. However, the mechanism of how nanostructured surfaces resist or attract proteins together with the underlying design rules remains poorly understood at a molecular level, greatly limiting attempts to develop high-performance biomaterials and devices through the rational design of nanostructures. Here, we study the dynamics of nonspecific protein adsorption on block copolymer nanostructures of varying adhesive domain areas in a resistant matrix. Using surface plasmon resonance and single molecule tracking techniques, we show that weakly adsorbed proteins with two-dimensional diffusivity are critical precursors to protein resistance on nanostructured surfaces. The adhesive domain areas must be more than tens or hundreds of times those of the protein footprints to slow down the 2D-mobility of the precursor proteins for their irreversible adsorption. This precursor model can be used to quantitatively analyze the kinetics of nonspecific protein adsorption on nanostructured surfaces. Our method is applicable to precisely manipulate protein adsorption and resistance on various nanostructured surfaces, e.g., amphiphilic, low-surface-energy, and charged nanostructures, for the design of protein-compatible materials.

  20. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    PubMed Central

    Banerjee, Arghya Narayan

    2011-01-01

    Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and

  1. Multilayer composition coatings for cutting tools: formation and performance properties

    NASA Astrophysics Data System (ADS)

    Tabakov, Vladimir P.; Vereschaka, Anatoly S.; Vereschaka, Alexey A.

    2018-03-01

    The paper considers the concept of a multi-layer architecture of the coating in which each layer has a predetermined functionality. Latest generation of coatings with multi-layered architecture for cutting tools secure a dual nature of the coating, in which coatings should not only improve the mechanical and physical characteristics of the cutting tool material, but also reduce the thermo-mechanical effect on the cutting tool determining wear intensity. Here are presented the results of the development of combined methods of forming multi-layer coatings with improved properties. Combined method of forming coatings using a pulsed laser allowed reducing excessively high levels of compressive residual stress and increasing micro hardness of the multilayered coatings. The results in testing coated HSS tools showed that the use of additional pulse of laser processing increases tool life up to 3 times. Using filtered cathodic vacuum arc deposition for the generation of multilayer coatings based on TiAlN compound has increased the wear-resistance of carbide tools by 2 fold compared with tool life of cutting tool with commercial TiN coatings. The aim of this study was to develop an innovative methodological approach to the deposition of multilayer coatings for cutting tools with functional architectural selection, properties and parameters of the coating based on sound knowledge of coating failure in machining process.

  2. Integrated Multilayer Insulation

    NASA Technical Reports Server (NTRS)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  3. Application of nanodimensional particles and aluminum hydroxide nanostructures for cancer diagnosis and therapy

    NASA Astrophysics Data System (ADS)

    Korovin, M. S.; Fomenko, A. N.

    2017-09-01

    Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less researchers' attention has been paid to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However, recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with different aluminum oxide/hydroxide nanoparticles and nanostructures.

  4. Multi-layer micro/nanofluid devices with bio-nanovalves

    DOEpatents

    Li, Hao; Ocola, Leonidas E.; Auciello, Orlando H.; Firestone, Millicent A.

    2013-01-01

    A user-friendly multi-layer micro/nanofluidic flow device and micro/nano fabrication process are provided for numerous uses. The multi-layer micro/nanofluidic flow device can comprise: a substrate, such as indium tin oxide coated glass (ITO glass); a conductive layer of ferroelectric material, preferably comprising a PZT layer of lead zirconate titanate (PZT) positioned on the substrate; electrodes connected to the conductive layer; a nanofluidics layer positioned on the conductive layer and defining nanochannels; a microfluidics layer positioned upon the nanofluidics layer and defining microchannels; and biomolecular nanovalves providing bio-nanovalves which are moveable from a closed position to an open position to control fluid flow at a nanoscale.

  5. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.

    PubMed

    Li, Ming; Li, Rui; Li, Chang Ming; Wu, Nianqiang

    2011-06-01

    Nanomaterials and nanostructures exhibit unique size-tunable and shape-dependent physicochemical properties that are different from those of bulk materials. Advances of nanomaterials and nanostructures open a new door to develop various novel biosensors. The present work has reviewed the recent progress in electrochemical, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescent biosensors based on nanomaterials and nanostructures. An emphasis is put on the research that demonstrates how the performance of biosensors such as the limit of detection, sensitivity and selectivity is improved by the use of nanomaterials and nanostructures.

  6. Electrode Nanostructures in Lithium‐Based Batteries

    PubMed Central

    Mahmood, Nasir

    2014-01-01

    Lithium‐based batteries possessing energy densities much higher than those of the conventional batteries belong to the most promising class of future energy devices. However, there are some fundamental issues related to their electrodes which are big roadblocks in their applications to electric vehicles (EVs). Nanochemistry has advantageous roles to overcome these problems by defining new nanostructures of electrode materials. This review article will highlight the challenges associated with these chemistries both to bring high performance and longevity upon considering the working principles of the various types of lithium‐based (Li‐ion, Li‐air and Li‐S) batteries. Further, the review discusses the advantages and challenges of nanomaterials in nanostructured electrodes of lithium‐based batteries, concerns with lithium metal anode and the recent advancement in electrode nanostructures. PMID:27980896

  7. Nanostructured 2D cellular materials in silicon by sidewall transfer lithography NEMS

    NASA Astrophysics Data System (ADS)

    Syms, Richard R. A.; Liu, Dixi; Ahmad, Munir M.

    2017-07-01

    Sidewall transfer lithography (STL) is demonstrated as a method for parallel fabrication of 2D nanostructured cellular solids in single-crystal silicon. The linear mechanical properties of four lattices (perfect and defected diamond; singly and doubly periodic honeycomb) with low effective Young’s moduli and effective Poisson’s ratio ranging from positive to negative are modelled using analytic theory and the matrix stiffness method with an emphasis on boundary effects. The lattices are fabricated with a minimum feature size of 100 nm and an aspect ratio of 40:1 using single- and double-level STL and deep reactive ion etching of bonded silicon-on-insulator. Nanoelectromechanical systems (NEMS) containing cellular materials are used to demonstrate stretching, bending and brittle fracture. Predicted edge effects are observed, theoretical values of Poisson’s ratio are verified and failure patterns are described.

  8. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    PubMed

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  9. GaN and ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Fündling, Sönke; Sökmen, Ünsal; Behrends, Arne; Al-Suleiman, Mohamed Aid Mansur; Merzsch, Stephan; Li, Shunfeng; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas; Lähnemann, Jonas; Jahn, Uwe; Trampert, Achim; Riechert, Henning

    2010-07-01

    GaN and ZnO are both wide band gap semiconductors with interesting properties concerning optoelectronic and sensor device applications. Due to the lack or the high costs of native substrates, alternatives like sapphire, silicon, or silicon carbide are taken, but the resulting lattice and thermal mismatches lead to increased defect densities which reduce the material quality. In contrast, nanostructures with high aspect ratio have lower defect densities as compared to layers. In this work, we give an overview on our results achieved on both ZnO as well as GaN based nanorods. ZnO nanostructures were grown by a wet chemical approach as well as by VPT on different substrates - even on flexible polymers. To compare the growth results we analyzed the structures by XRD and PL and show possible device applications. The GaN nano- and microstructures were grown by metal organic vapor phase epitaxy either in a self- organized process or by selective area growth for a better control of shape and material composition. Finally we take a look onto possible device applications, presenting our attempts, e.g., to build LEDs based on GaN nanostructures.

  10. Poloidal and toroidal plasmons and fields of multilayer nanorings

    NASA Astrophysics Data System (ADS)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A.

    2017-04-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  11. Poloidal and toroidal plasmons and fields of multilayer nanorings

    DOE PAGES

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; ...

    2017-04-17

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit andmore » obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.« less

  12. Graphene-assisted room-temperature synthesis of 2D nanostructured hybrid electrode materials: dramatic acceleration of the formation rate of 2D metal oxide nanoplates induced by reduced graphene oxide nanosheets.

    PubMed

    Sung, Da-Young; Gunjakar, Jayavant L; Kim, Tae Woo; Kim, In Young; Lee, Yu Ri; Hwang, Seong-Ju

    2013-05-27

    A new prompt room temperature synthetic route to 2D nanostructured metal oxide-graphene-hybrid electrode materials can be developed by the application of colloidal reduced graphene oxide (RGO) nanosheets as an efficient reaction accelerator for the synthesis of δ-MnO2 2D nanoplates. Whereas the synthesis of the 2D nanostructured δ-MnO2 at room temperature requires treating divalent manganese compounds with persulfate ions for at least 24 h, the addition of RGO nanosheet causes a dramatic shortening of synthesis time to 1 h, underscoring its effectiveness for the promotion of the formation of 2D nanostructured metal oxide. To the best of our knowledge, this is the first example of the accelerated synthesis of 2D nanostructured hybrid material induced by the RGO nanosheets. The observed acceleration of nanoplate formation upon the addition of RGO nanosheets is attributable to the enhancement of the oxidizing power of persulfate ions, the increase of the solubility of precursor MnCO3, and the promoted crystal growth of δ-MnO2 2D nanoplates. The resulting hybridization between RGO nanosheets and δ-MnO2 nanoplates is quite powerful not only in increasing the surface area of manganese oxide nanoplate but also in enhancing its electrochemical activity. Of prime importance is that the present δ-MnO2 -RGO nanocomposites show much superior electrode performance over most of 2D nanostructured manganate systems including a similar porous assembly of RGO and layered MnO2 nanosheets. This result underscores that the present RGO-assisted solution-based synthesis can provide a prompt and scalable method to produce nanostructured hybrid electrode materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of substrate material selection on polychromatic integral diffraction efficiency for multilayer diffractive optics in oblique incident situation

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Cui, Qingfeng; Piao, Mingxu

    2018-05-01

    The effect of substrate material selection for multilayer diffractive optical elements (MLDOEs) on polychromatic integral diffraction efficiency (PIDE) is studied in the oblique incident situation. A mathematical model of substrate material selection is proposed to obtain the high PIDE with large incident angle. The extended expression of the microstructure heights with consideration of incident angle is deduced to calculate the PIDE difference Δ η bar(λ) for different substrate material combinations. The smaller value of Δ η bar(λ) indicates the more optimal substrate material combination in a wide incident angle range. Based on the deduced mathematical model, different MLDOEs are analyzed in visible and infrared wavebands. The results show that the three-layer DOEs can be applied in larger incident angle situation than the double-layer DOEs in visible waveband. When the two substrate materials are the same, polycarbonate (PC) is more reasonable than poly(methyl methacrylate) (PMMA) as the middle filling optical material for the three-layer DOEs. In the infrared waveband, the PIDE decreases in the LWIR are obviously smaller than that in the MWIR for the same substrate material combination, and the PIDE cannot be calculated when the incident angle larger than critical angle. The analysis results can be used to guide the hybrid optical system design with MLDOEs.

  14. Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light.

    PubMed

    Saito, Koichiro; Tatsuma, Tetsu

    2018-05-09

    The chirality of materials results in a wide variety of advanced technologies including image display, data storage, light management including negative refraction, and enantioselective catalysis and sensing. Here, we introduce chirality to plasmonic nanostructures by using circularly polarized light as the sole chiral source for the first time. Gold nanocuboids as precursors on a semiconductor were irradiated with circularly polarized light to localize electric fields at specific corners of the cuboids depending on the handedness of light and deposited dielectric moieties as electron oscillation boosters by the localized electric field. Thus, plasmonic nanostructures with high chirality were developed. The present bottom-up method would allow the large-scale and cost-effective fabrication of chiral materials and further applications to functional materials and devices.

  15. NbTiN Based SIS Multilayer Structures for SRF Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valente, Anne-marie; Eremeev, Grigory; Phillips, H

    2013-09-01

    For the past three decades, bulk niobium has been the material of choice for SRF cavities applications. RF cavity performance is now approaching the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, Superconductor Insulator - Superconductor (SIS) multilayer structures (as recently proposed by Alex Gurevich) present the theoretical prospect to reach RF performance beyond bulk Nb, using thinly layered higher-Tc superconductors with enhanced Hc1. Jefferson Lab (JLab) is pursuing this approach with the development of NbTiN and AlN based multilayer SIS structures. This paper presents the results on the characteristics of NbTiNmore » films and the first RF measurements on NbTiN-based multilayer structure on thick Nb films.« less

  16. Mitigation of substrate defects in reticles using multilayer buffer layers

    DOEpatents

    Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.

    2001-01-01

    A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.

  17. Magnetic properties of sputtered Permalloy/molybdenum multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romera, M.; Ciudad, D.; Maicas, M.

    2011-10-15

    In this work, we report the magnetic properties of sputtered Permalloy (Py: Ni{sub 80}Fe{sub 20})/molybdenum (Mo) multilayer thin films. We show that it is possible to maintain a low coercivity and a high permeability in thick sputtered Py films when reducing the out-of-plane component of the anisotropy by inserting thin film spacers of a non-magnetic material like Mo. For these kind of multilayers, we have found coercivities which are close to those for single layer films with no out-of-plane anisotropy. The coercivity is also dependent on the number of layers exhibiting a minimum value when each single Py layer hasmore » a thickness close to the transition thickness between Neel and Bloch domain walls.« less

  18. Method for fabricating beryllium-based multilayer structures

    DOEpatents

    Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.

    2003-02-18

    Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).

  19. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications

    PubMed Central

    Gentile, Antonella; Ruffino, Francesco; Grimaldi, Maria Grazia

    2016-01-01

    Due to their peculiar qualities, metal-based nanostructures have been extensively used in applications such as catalysis, electronics, photography, and information storage, among others. New applications for metals in areas such as photonics, sensing, imaging, and medicine are also being developed. Significantly, most of these applications require the use of metals in the form of nanostructures with specific controlled properties. The properties of nanoscale metals are determined by a set of physical parameters that include size, shape, composition, and structure. In recent years, many research fields have focused on the synthesis of nanoscale-sized metallic materials with complex shape and composition in order to optimize the optical and electrical response of devices containing metallic nanostructures. The present paper aims to overview the most recent results—in terms of fabrication methodologies, characterization of the physico-chemical properties and applications—of complex-morphology metal-based nanostructures. The paper strongly focuses on the correlation between the complex morphology and the structures’ properties, showing how the morphological complexity (and its nanoscale control) can often give access to a wide range of innovative properties exploitable for innovative functional device production. We begin with an overview of the basic concepts on the correlation between structural and optical parameters of nanoscale metallic materials with complex shape and composition, and the possible solutions offered by nanotechnology in a large range of applications (catalysis, electronics, photonics, sensing). The aim is to assess the state of the art, and then show the innovative contributions that can be proposed in this research field. We subsequently report on innovative, versatile and low-cost synthesis techniques, suitable for providing a good control on the size, surface density, composition and geometry of the metallic nanostructures. The main

  20. Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors.

    PubMed

    Zhang, Chunli; Yin, Huanhuan; Han, Min; Dai, Zhihui; Pang, Huan; Zheng, Yulin; Lan, Ya-Qian; Bao, Jianchun; Zhu, Jianmin

    2014-04-22

    Due to their unique electronic and optoelectronic properties, tin selenide nanostructures show great promise for applications in energy storage and photovoltaic devices. Despite the great progress that has been achieved, the phase-controlled synthesis of two-dimensional (2D) tin selenide nanostructures remains a challenge, and their use in supercapacitors has not been explored. In this paper, 2D tin selenide nanostructures, including pure SnSe2 nanodisks (NDs), mixed-phase SnSe-SnSe2 NDs, and pure SnSe nanosheets (NSs), have been synthesized by reacting SnCl2 and trioctylphosphine (TOP)-Se with borane-tert-butylamine complex (BTBC) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone. Utilizing the interplay of TOP and BTBC and changing only the amount of BTBC, the phase-controlled synthesis of 2D tin selenide nanostructures is realized for the first time. Phase-dependent pseudocapacitive behavior is observed for the resulting 2D nanostructures. The specific capacitances of pure SnSe2 NDs (168 F g(-1)) and SnSe NSs (228 F g(-1)) are much higher than those of other reported materials (e.g., graphene-Mn3O4 nanorods and TiN mesoporous spheres); thus, these tin selenide materials were used to fabricate flexible, all-solid-state supercapacitors. Devices fabricated with these two tin selenide materials exhibited high areal capacitances, good cycling stabilities, excellent flexibilities, and desirable mechanical stabilities, which were comparable to or better than those reported recently for other solid-state devices based on graphene and 3D GeSe2 nanostructures. Additionally, the rate capability of the SnSe2 NDs device was much better than that of the SnSe NS device, indicating that SnSe2 NDs are promising active materials for use in high-performance, flexible, all-solid-state supercapacitors.