Sample records for nanostructure tunneling layers

  1. Temperature quenching of spontaneous emission in tunnel-injection nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talalaev, V. G., E-mail: vadimtalalaev@yandex.com; Novikov, B. V.; Cirlin, G. E.

    2015-11-15

    The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs strapsmore » (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor S{sub T} of the integrated intensity I is S{sub T} = I{sub 5}/I{sub 295} ≈ 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis.« less

  2. Tunneling magnetoresistance sensors with different coupled free layers

    NASA Astrophysics Data System (ADS)

    Liu, Yen-Fu; Yin, Xiaolu; Yang, Yi; Ewing, Dan; De Rego, Paul J.; Liou, Sy-Hwang

    2017-05-01

    Large differences of magnetic coercivity (HC), exchange coupling field (HE), and tunneling magnetoresistance ratio (TMR) in magnetic tunnel junctions with different coupled free layers are discussed. We demonstrate that the magnetization behavior of the free layer is not only dominated by the interfacial barrier layer but also affected largely by the magnetic or non-magnetic coupled free layers. All these parameters are sensitively controlled by the magnetic nanostructure, which can be tuned also by the magnetic annealing process. The optimized sensors exhibit a large field sensitivity of up to 261%/mT in the region of the reversal synthetic ferrimagnet at the pinned layers.

  3. Nanostructured layers of thermoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Jeffrey J.; Lynch, Jared; Coates, Nelson

    This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermallymore » annealed.« less

  4. Nanostructure Neutron Converter Layer Development

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Lowther, Sharon E. (Inventor); Kang, Jin Ho (Inventor); Thibeault, Sheila A. (Inventor); Sauti, Godfrey (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  5. Interfacial scanning tunneling spectroscopy (STS) of chalcogenide/metal hybrid nanostructure

    NASA Astrophysics Data System (ADS)

    Saad, Mahmoud M.; Abdallah, Tamer; Easawi, Khalid; Negm, Sohair; Talaat, Hassan

    2015-05-01

    The electronic structure at the interface of chalcogenide/metal hybrid nanostructure (CdSe-Au tipped) had been studied by UHV scanning tunneling spectroscopy (STS) technique at room temperature. This nanostructure was synthesized by a phase transfer chemical method. The optical absorption of this hybrid nanostructure was recorded, and the application of the effective mass approximation (EMA) model gave dimensions that were confirmed by the direct measurements using the scanning tunneling microscopy (STM) as well as the high-resolution transmission electron microscope (HRTEM). The energy band gap obtained by STS agrees with the values obtained from the optical absorption. Moreover, the STS at the interface of CdSe-Au tipped hybrid nanostructure between CdSe of size about 4.1 ± 0.19 nm and Au tip of size about 3.5 ± 0.29 nm shows a band bending about 0.18 ± 0.03 eV in CdSe down in the direction of the interface. Such a result gives a direct observation of the electron accumulation at the interface of CdSe-Au tipped hybrid nanostructure, consistent with its energy band diagram. The presence of the electron accumulation at the interface of chalcogenides with metals has an important implication for hybrid nanoelectronic devices and the newly developed plasmon/chalcogenide photovoltaic solar energy conversion.

  6. A 3D insight on the catalytic nanostructuration of few-layer graphene

    NASA Astrophysics Data System (ADS)

    Melinte, G.; Florea, I.; Moldovan, S.; Janowska, I.; Baaziz, W.; Arenal, R.; Wisnet, A.; Scheu, C.; Begin-Colin, S.; Begin, D.; Pham-Huu, C.; Ersen, O.

    2014-06-01

    The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets create trenches and tunnels with orientations, lengths and morphologies defined by the crystallography and the topography of the carbon substrate. The cross-sectional analysis of the 3D volumes highlights the role of the active nanoparticle identity on the trench size and shape, with emphasis on the topographical stability of the basal planes within the resulting trenches and channels, no matter the obstacle encountered. The actual study gives a deep insight on the impact of nanoparticles morphology and support topography on the 3D character of nanostructures built up by catalytic cutting.

  7. Tunneling current spectroscopy of a nanostructure junction involving multiple energy levels.

    PubMed

    Kuo, David M-T; Chang, Yia-Chung

    2007-08-24

    A multilevel Anderson model is employed to simulate the system of a nanostructure tunnel junction with any number of one-particle energy levels. The tunneling current, including both shell-tunneling and shell-filling cases, is theoretically investigated via the nonequilibrium Green's function method. We obtain a closed form for the spectral function, which is used to analyze the complicated tunneling current spectra of a quantum dot or molecule embedded in a double-barrier junction. We also show that negative differential conductance can be observed in a quantum dot tunnel junction when the Coulomb interactions with neighboring quantum dots are taken into account.

  8. Role of interface layers on Tunneling Magnetoresistance

    NASA Astrophysics Data System (ADS)

    Yang, See-Hun; Samant, Mahesh; Parkin, Stuart S. P.

    2002-03-01

    Thin non-magnetic metallic layers inserted at the interface between tunneling barriers and the ferromagnetic electrodes in magnetic tunnel junctions quenches the magnetoresistance (TMR) exhibited by some structures[1]. Studies have been carried out on exchange biased magnetic tunnel junction structures in which one of the ferromagnetic electrodes is pinned by coupling to IrMn or PtMn antiferromagnetic layers. For metallic aluminum interface layers thicknesses of just a few angstrom completely suppress the TMR although this characteristic thickness depends on the roughness of the tunneling barrier. A variety of structures will be discussed in which a number of interface layers have been introduced. In particular results for insertion of Cu, Ru and Cr layers on either side of the tunnel barrier will be presented. A number of techniques including XANES, XMCD and high resolution cross-section transmission electron microscopy have been used to study the structure and morphology of the interface layers and to correlate the structure of these layers with the magneto-transport properties of the tunneling junctions. [1] S.S.P. Parkin, US patent 5,764,567 issued by the United States Patent and Trademark Office, June 9, 1998.

  9. Highly doped layer for tunnel junctions in solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fetzer, Christopher M.

    A highly doped layer for interconnecting tunnel junctions in multijunction solar cells is presented. The highly doped layer is a delta doped layer in one or both layers of a tunnel diode junction used to connect two or more p-on-n or n-on-p solar cells in a multijunction solar cell. A delta doped layer is made by interrupting the epitaxial growth of one of the layers of the tunnel diode, depositing a delta dopant at a concentration substantially greater than the concentration used in growing the layer of the tunnel diode, and then continuing to epitaxially grow the remaining tunnel diode.

  10. Modeling the electrostatic field localization in nanostructures based on DLC films using the tunneling microscopy methods

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Akchurin, Garif G.

    2018-04-01

    A model for calculating the electrostatic field in the system "probe of a tunnel microscope - a nanostructure based on a DLC film" was developed. A finite-element modeling of the localization of the field was carried out, taking into account the morphological and topological features of the nanostructure. The obtained results and their interpretation contribute to the development of the concepts to the model of tunnel electric transport processes. The possibility for effective usage of the tunneling microscopy methods in the development of new nanophotonic devices is shown.

  11. Field electron emission based on resonant tunneling in diamond/CoSi2/Si quantum well nanostructures.

    PubMed

    Gu, Changzhi; Jiang, Xin; Lu, Wengang; Li, Junjie; Mantl, Siegfried

    2012-01-01

    Excellent field electron emission properties of a diamond/CoSi(2)/Si quantum well nanostructure are observed. The novel quantum well structure consists of high quality diamond emitters grown on bulk Si substrate with a nanosized epitaxial CoSi(2) conducting interlayer. The results show that the main emission properties were modified by varying the CoSi(2) thickness and that stable, low-field, high emission current and controlled electron emission can be obtained by using a high quality diamond film and a thicker CoSi(2) interlayer. An electron resonant tunneling mechanism in this quantum well structure is suggested, and the tunneling is due to the long electron mean free path in the nanosized CoSi(2) layer. This structure meets most of the requirements for development of vacuum micro/nanoelectronic devices and large-area cold cathodes for flat-panel displays.

  12. Hierarchical concave layered triangular PtCu alloy nanostructures: rational integration of dendritic nanostructures for efficient formic acid electrooxidation.

    PubMed

    Wu, Fengxia; Lai, Jianping; Zhang, Ling; Niu, Wenxin; Lou, Baohua; Luque, Rafael; Xu, Guobao

    2018-05-08

    The rational construction of multi-dimensional layered noble metal nanostructures is a great challenge since noble metals are not layer-structured materials. Herein, we report a one-pot hydrothermal synthetic method for PtCu hierarchical concave layered triangular (HCLT) nanostructures using dl-carnitine, KI, poly(vinylpyrrolidone), CuCl2, and H2PtCl6. The PtCu HCLT nanostructure is comprised of multilayered triangular dendrites. Its layer number is tunable by changing dl-carnitine concentrations, and the concavity/convexity of the PtCu triangle nanostructures is tunable by changing the H2PtCl6/CuCl2 ratio or KI concentrations. Hierarchical trigonal bipyramid nanoframes are also obtained under certain conditions. Because of its advantageous nanostructure and bimetallic synergetic effect, the obtained PtCu HCLT nanostructure exhibits enhanced electrocatalytic activity and prolonged stability to formic acid oxidation compared to commercial Pt black, Pd/C and some other nanostructures.

  13. Field electron emission based on resonant tunneling in diamond/CoSi2/Si quantum well nanostructures

    PubMed Central

    Gu, Changzhi; Jiang, Xin; Lu, Wengang; Li, Junjie; Mantl, Siegfried

    2012-01-01

    Excellent field electron emission properties of a diamond/CoSi2/Si quantum well nanostructure are observed. The novel quantum well structure consists of high quality diamond emitters grown on bulk Si substrate with a nanosized epitaxial CoSi2 conducting interlayer. The results show that the main emission properties were modified by varying the CoSi2 thickness and that stable, low-field, high emission current and controlled electron emission can be obtained by using a high quality diamond film and a thicker CoSi2 interlayer. An electron resonant tunneling mechanism in this quantum well structure is suggested, and the tunneling is due to the long electron mean free path in the nanosized CoSi2 layer. This structure meets most of the requirements for development of vacuum micro/nanoelectronic devices and large-area cold cathodes for flat-panel displays. PMID:23082241

  14. BEOL compatible high tunnel magneto resistance perpendicular magnetic tunnel junctions using a sacrificial Mg layer as CoFeB free layer cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swerts, J., E-mail: Johan.Swerts@imec.be; Mertens, S.; Lin, T.

    Perpendicularly magnetized MgO-based tunnel junctions are envisaged for future generation spin-torque transfer magnetoresistive random access memory devices. Achieving a high tunnel magneto resistance and preserving it together with the perpendicular magnetic anisotropy during BEOL CMOS processing are key challenges to overcome. The industry standard technique to deposit the CoFeB/MgO/CoFeB tunnel junctions is physical vapor deposition. In this letter, we report on the use of an ultrathin Mg layer as free layer cap to protect the CoFeB free layer from sputtering induced damage during the Ta electrode deposition. When Ta is deposited directly on CoFeB, a fraction of the surface ofmore » the CoFeB is sputtered even when Ta is deposited with very low deposition rates. When depositing a thin Mg layer prior to Ta deposition, the sputtering of CoFeB is prevented. The ultra-thin Mg layer is sputtered completely after Ta deposition. Therefore, the Mg acts as a sacrificial layer that protects the CoFeB from sputter-induced damage during the Ta deposition. The Ta-capped CoFeB free layer using the sacrificial Mg interlayer has significantly better electrical and magnetic properties than the equivalent stack without protective layer. We demonstrate a tunnel magneto resistance increase up to 30% in bottom pinned magnetic tunnel junctions and tunnel magneto resistance values of 160% at resistance area product of 5 Ω.μm{sup 2}. Moreover, the free layer maintains perpendicular magnetic anisotropy after 400 °C annealing.« less

  15. Nanostructure templating using low temperature atomic layer deposition

    DOEpatents

    Grubbs, Robert K [Albuquerque, NM; Bogart, Gregory R [Corrales, NM; Rogers, John A [Champaign, IL

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  16. Layer-by-layer deposition of nanostructured CsPbBr3 perovskite thin films

    NASA Astrophysics Data System (ADS)

    Reshetnikova, A. A.; Matyushkin, L. B.; Andronov, A. A.; Sokolov, V. S.; Aleksandrova, O. A.; Moshnikov, V. A.

    2017-11-01

    Layer-by-layer deposition of nanostructured perovskites cesium lead halide thin films is described. The method of deposition is based on alternate immersion of the substrate in the precursor solutions or colloidal solution of nanocrystals and methyl acetate/lead nitrate solution using the device for deposition of films by SILAR and dip-coating techniques. An example of obtaining a photosensitive structure based on nanostructures of ZnO nanowires and layers of CsBbBr3 nanocrystals is also shown.

  17. Fabrication of magnetic tunnel junctions with epitaxial and textured ferromagnetic layers

    DOEpatents

    Chang, Y. Austin; Yang, Jianhua Joshua

    2008-11-11

    This invention relates to magnetic tunnel junctions and methods for making the magnetic tunnel junctions. The magnetic tunnel junctions include a tunnel barrier oxide layer sandwiched between two ferromagnetic layers both of which are epitaxial or textured with respect to the underlying substrate upon which the magnetic tunnel junctions are grown. The magnetic tunnel junctions provide improved magnetic properties, sharper interfaces and few defects.

  18. Sidewall GaAs tunnel junctions fabricated using molecular layer epitaxy

    PubMed Central

    Ohno, Takeo; Oyama, Yutaka

    2012-01-01

    In this article we review the fundamental properties and applications of sidewall GaAs tunnel junctions. Heavily impurity-doped GaAs epitaxial layers were prepared using molecular layer epitaxy (MLE), in which intermittent injections of precursors in ultrahigh vacuum were applied, and sidewall tunnel junctions were fabricated using a combination of device mesa wet etching of the GaAs MLE layer and low-temperature area-selective regrowth. The fabricated tunnel junctions on the GaAs sidewall with normal mesa orientation showed a record peak current density of 35 000 A cm-2. They can potentially be used as terahertz devices such as a tunnel injection transit time effect diode or an ideal static induction transistor. PMID:27877466

  19. Semiconductor tunnel junction with enhancement layer

    DOEpatents

    Klem, John F.; Zolper, John C.

    1997-01-01

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling.

  20. Semiconductor tunnel junction with enhancement layer

    DOEpatents

    Klem, J.F.; Zolper, J.C.

    1997-10-21

    The incorporation of a pseudomorphic GaAsSb layer in a runnel diode structure affords a new degree of freedom in designing runnel junctions for p-n junction device interconnects. Previously only doping levels could be varied to control the tunneling properties. This invention uses the valence band alignment band of the GaAsSb with respect to the surrounding materials to greatly relax the doping requirements for tunneling. 5 figs.

  1. Reflectance analysis of porosity gradient in nanostructured silicon layers

    NASA Astrophysics Data System (ADS)

    Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    In this work we study optical properties of nanostructured layers formed on silicon surface. Nanostructured layers on Si are formed in order to reach high suppression of the light reflectance. Low spectral reflectance is important for improvement of the conversion efficiency of solar cells and for other optoelectronic applications. Effective method of forming nanostructured layers with ultralow reflectance in a broad interval of wavelengths is in our approach based on metal assisted etching of Si. Si surface immersed in HF and H2O2 solution is etched in contact with the Pt mesh roller and the structure of the mesh is transferred on the etched surface. During this etching procedure the layer density evolves gradually and the spectral reflectance decreases exponentially with the depth in porous layer. We analyzed properties of the layer porosity by incorporating the porosity gradient into construction of the layer spectral reflectance theoretical model. Analyzed layer is splitted into 20 sublayers in our approach. Complex dielectric function in each sublayer is computed by using Bruggeman effective media theory and the theoretical spectral reflectance of modelled multilayer system is computed by using Abeles matrix formalism. Porosity gradient is extracted from the theoretical reflectance model optimized in comparison to the experimental values. Resulting values of the structure porosity development provide important information for optimization of the technological treatment operations.

  2. Note: long-range scanning tunneling microscope for the study of nanostructures on insulating substrates.

    PubMed

    Molina-Mendoza, Aday J; Rodrigo, José G; Island, Joshua; Burzuri, Enrique; Rubio-Bollinger, Gabino; van der Zant, Herre S J; Agraït, Nicolás

    2014-02-01

    The scanning tunneling microscope (STM) is a powerful tool for studying the electronic properties at the atomic level, however, it is of relatively small scanning range and the fact that it can only operate on conducting samples prevents its application to study heterogeneous samples consisting of conducting and insulating regions. Here we present a long-range scanning tunneling microscope capable of detecting conducting micro and nanostructures on insulating substrates using a technique based on the capacitance between the tip and the sample and performing STM studies.

  3. Comparison and characterization of different tunnel layers, suitable for passivated contact formation

    NASA Astrophysics Data System (ADS)

    Ling, Zhi Peng; Xin, Zheng; Ke, Cangming; Jammaal Buatis, Kitz; Duttagupta, Shubham; Lee, Jae Sung; Lai, Archon; Hsu, Adam; Rostan, Johannes; Stangl, Rolf

    2017-08-01

    Passivated contacts for solar cells can be realized using a variety of differently formed ultra-thin tunnel oxide layers. Assessing their interface properties is important for optimization purposes. In this work, we demonstrate the ability to measure the interface defect density distribution D it(E) and the fixed interface charge density Q f for ultra-thin passivation layers operating within the tunnel regime (<2 nm). Various promising tunnel layer candidates [i.e., wet chemically formed SiO x , UV photo-oxidized SiO x , and atomic layer deposited (ALD) AlO x ] are investigated for their potential application forming electron or hole selective tunnel layer passivated contacts. In particular, ALD AlO x is identified as a promising tunnel layer candidate for hole-extracting passivated contact formation, stemming from its high (negative) fixed interface charge density in the order of -6 × 1012 cm-2. This is an order of magnitude higher compared to wet chemically or UV photo-oxidized formed silicon oxide tunnel layers, while keeping the density of interface defect states D it at a similar level (in the order of ˜2 × 1012 cm-2 eV-1). This leads to additional field effect passivation and therefore to significantly higher measured effective carrier lifetimes (˜2 orders of magnitude). A surface recombination velocity of ˜40 cm/s has been achieved for a 1.5 nm thin ALD AlO x tunnel layer prior to capping by an additional hole transport material, like p-doped poly-Si or PEDOT:PSS.

  4. Universal method for creating optically active nanostructures on layered materials

    NASA Astrophysics Data System (ADS)

    Kidd, Tim; He, Rui; Stollenwerk, Andrew; Oshea, Aaron; Beck, Ben; Spurgeon, Kyle; Gu, Genda

    2014-03-01

    We report a new method for the creating of nanostructures using a scanning electron microscope. Residual organic molecules on the surface of layered materials can be excited by electron beam radiation to burrow into the open spaces between the layers of these materials, and then are broken down further to form photoluminescent carbon nanoclusters. Surface characterization by atomic force microscopy shows the surface is nearly undamaged at the molecular level by this process, and a lack of nanostructure formation in non-layered materials confirms that the structures are created by sub-surface incorporation. The presence of carbon nanoclusters was determined by Raman Spectroscopy and photoluminescence in the visible light range. The nanostructures are react strongly to visible light, making them readily apparent using an optical microscope even for features measuring only a few nanometers tall. This technique can be used on apparently any layered material, with successful results on dichalcogenides, topological insulators, graphite, and high temperature copper oxide superconductors. This technique can create patterned nanostructures with vertical resolution at the nanometer scale and lateral resolution of tens of nanometers depending on beam spot size. This work is funded by University of Northern Iowa, NSF #DMR-1206530, and DOE #DE-AC02-98CH10886.

  5. Micromechanical Properties of Nanostructured Clay-Oxide Multilayers Synthesized by Layer-by-Layer Self-Assembly.

    PubMed

    Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong

    2016-11-08

    Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.

  6. Electronic resonant tunneling on graphene superlattice heterostructures with a tunable graphene layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shan; Cui, Liyong; Liu, Fen

    We have theoretically investigated the electronic resonant tunneling effect in graphene superlattice heterostructures, where a tunable graphene layer is inserted between two different superlattices. It is found that a complete tunneling state appears inside the enlarged forbidden gap of the heterostructure by changing the thickness of the inserted graphene layer and the transmittance of the tunneling state depends on the thickness of the inserted layer. Furthermore, the frequency of the tunneling state changes with the thickness of the inserted graphene layer but it always located in the little overlapped forbidden gap of two graphene superlattices. Therefore, both a perfect tunnelingmore » state and an ultrawide forbidden gap are realized in such heterostrutures. Since maximum probability densities of the perfect tunneling state are highly localized near the interface between the inserted graphene layer and one graphene superlattice, it can be named as an interface-like state. Such structures are important to fabricate high-Q narrowband electron wave filters.« less

  7. Thin Carbon Layers on Nanostructured Silicon-Properties and Applications

    NASA Astrophysics Data System (ADS)

    Angelescu, Anca; Kleps, Irina; Miu, Mihaela; Simion, Monica; Bragaru, Adina; Petrescu, Stefana; Paduraru, Crina; Raducanu, Aurelia

    Thin carbon layers such as silicon carbide (SiC) and diamond like carbon (DLC) layers on silicon, or on nanostructured silicon substrats were obtained by different methods. This paper is a review of our results in the areas of carbon layer microfabrication technologies and their properties related to different microsystem apllications. So, silicon membranes using a-SiC or DLC layers as etching mask, as well as silicon carbide membranes using a combined porous silicon — DLC structure were fabricated for sensor applications. A detailed evaluation of the field emission (FE) properties of these films was done to demonstrate their capability to be used in field emission devices. Carbon thin layers on nanostructured silicon samples were also investigated with respect to the living cell adhesion on these structures. The experiments indicate that the cell attachment on the surface of carbon coatings can be controlled by deposition parameters during the technological process.

  8. Detection of boundary-layer transitions in wind tunnels

    NASA Technical Reports Server (NTRS)

    Wood, W. R.; Somers, D. M.

    1978-01-01

    Accelerometer replaces stethoscope in technique for detection of laminar-to-turbulent boundary-layer transitions on wind-tunnel models. Technique allows measurements above or below atmospheric pressure because human operator is not required within tunnel. Data may be taken from accelerometer, and pressure transducer simultaneously, and delivered to systems for analysis.

  9. Wall Boundary Layer Measurements for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Bennett, Robert M.

    2007-01-01

    Measurements of the boundary layer parameters in the NASA Langley Transonic Dynamics tunnel were conducted during extensive calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to R-134a. Boundary-layer rakes were mounted on the wind-tunnel walls, ceiling, and floor. Measurements were made over the range of tunnel operation envelope in both heavy gas and air and without a model in the test section at three tunnel stations. Configuration variables included open and closed east sidewall wall slots, for air and R134a test media, reentry flap settings, and stagnation pressures over the full range of tunnel operation. The boundary layer thickness varied considerably for the six rakes. The thickness for the east wall was considerably larger that the other rakes and was also larger than previously reported. There generally was some reduction in thickness at supersonic Mach numbers, but the effect of stagnation pressure, and test medium were not extensive.

  10. Resonant tunneling device with two-dimensional quantum well emitter and base layers

    DOEpatents

    Simmons, J.A.; Sherwin, M.E.; Drummond, T.J.; Weckwerth, M.V.

    1998-10-20

    A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation. 43 figs.

  11. Resonant tunneling device with two-dimensional quantum well emitter and base layers

    DOEpatents

    Simmons, Jerry A.; Sherwin, Marc E.; Drummond, Timothy J.; Weckwerth, Mark V.

    1998-01-01

    A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation.

  12. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celotta, Robert J., E-mail: robert.celotta@nist.gov, E-mail: joseph.stroscio@nist.gov; Hess, Frank M.; Rutter, Gregory M.

    2014-12-15

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report themore » use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.« less

  13. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope.

    PubMed

    Celotta, Robert J; Balakirsky, Stephen B; Fein, Aaron P; Hess, Frank M; Rutter, Gregory M; Stroscio, Joseph A

    2014-12-01

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.

  14. Electrical Characteristics of WSi2 Nanocrystal Capacitors with Barrier-Engineered High-k Tunnel Layers

    NASA Astrophysics Data System (ADS)

    Lee, Hyo Jun; Lee, Dong Uk; Kim, Eun Kyu; You, Hee-Wook; Cho, Won-Ju

    2011-06-01

    Nanocrystal-floating gate capacitors with WSi2 nanocrystals and high-k tunnel layers were fabricated to improve the electrical properties such as retention, programming/erasing speed, and endurance. The WSi2 nanocrystals were distributed uniformly between the tunnel and control gate oxide layers. The electrical performance of the tunnel barrier with the SiO2/HfO2/Al2O3 (2/1/3 nm) (OHA) tunnel layer appeared to be better than that with the Al2O3/HfO2/Al2O3 (2/1/3 nm) (AHA) tunnel layer. When ΔVFB is about 1 V after applying voltage at ±8 V, the programming/erasing speeds of AHA and OHA tunnel layers are 300 ms and 500 µs, respectively. In particular, the device with WSi2 nanocrystals and the OHA tunnel barrier showed a large memory window of about 7.76 V when the voltage swept from 10 to -10 V, and it was maintained at about 2.77 V after 104 cycles.

  15. Performance limits of tunnel transistors based on mono-layer transition-metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xiang-Wei, E-mail: xwjiang@semi.ac.cn; Li, Shu-Shen; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2014-05-12

    Performance limits of tunnel field-effect transistors based on mono-layer transition metal dichalcogenides are investigated through numerical quantum mechanical simulations. The atomic mono-layer nature of the devices results in a much smaller natural length λ, leading to much larger electric field inside the tunneling diodes. As a result, the inter-band tunneling currents are found to be very high as long as ultra-thin high-k gate dielectric is possible. The highest on-state driving current is found to be close to 600 μA/μm at V{sub g} = V{sub d} = 0.5 V when 2 nm thin HfO{sub 2} layer is used for gate dielectric, outperforming most of the conventional semiconductor tunnelmore » transistors. In the five simulated transition-metal dichalcogenides, mono-layer WSe{sub 2} based tunnel field-effect transistor shows the best potential. Deep analysis reveals that there is plenty room to further enhance the device performance by either geometry, alloy, or strain engineering on these mono-layer materials.« less

  16. Design and calibration of the mixing layer and wind tunnel

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1989-01-01

    A detailed account of the design, assembly and calibration of a wind tunnel specifically designed for free-shear layer research is contained. The construction of this new facility was motivated by a strong interest in the study of plane mixing layers with varying initial and operating conditions. The Mixing Layer Wind tunnel is located in the Fluid Mechanics Laboratory at NASA Ames Research Center. The tunnel consists of two separate legs which are driven independently by centrifugal blowers connected to variable speed motors. The blower/motor combinations are sized such that one is smaller than the other, giving maximum flow speeds of about 20 and 40 m/s, respectively. The blower speeds can either be set manually or via the Microvax II computer. The two streams are allowed to merge in the test section at the sharp trailing edge of a slowly tapering splitter plate. The test section is 36 cm in the cross-stream direction, 91 cm in the spanwise direction and 366 cm in length. One test section side-wall is slotted for probe access and adjustable so that the streamwise pressure gradient may be controlled. The wind tunnel is also equipped with a computer controlled, three-dimensional traversing system which is used to investigate the flow fields with pressure and hot-wire instrumentation. The wind tunnel calibration results show that the mean flow in the test section is uniform to within plus or minus 0.25 pct and the flow angularity is less than 0.25 deg. The total streamwise free-stream turbulence intensity level is approximately 0.15 pct. Currently the wind tunnel is being used in experiments designed to study the three-dimensional structure of plane mixing layers and wakes.

  17. Interlayer tunneling in double-layer quantum hall pseudoferromagnets.

    PubMed

    Balents, L; Radzihovsky, L

    2001-02-26

    We show that the interlayer tunneling I-V in double-layer quantum Hall states displays a rich behavior which depends on the relative magnitude of sample size, voltage length scale, current screening, disorder, and thermal lengths. For weak tunneling, we predict a negative differential conductance of a power-law shape crossing over to a sharp zero-bias peak. An in-plane magnetic field splits this zero-bias peak, leading instead to a "derivative" feature at V(B)(B(parallel)) = 2 pi Planck's over 2 pi upsilon B(parallel)d/e phi(0), which gives a direct measurement of the dispersion of the Goldstone mode corresponding to the spontaneous symmetry breaking of the double-layer Hall state.

  18. Surface passivation investigation on ultra-thin atomic layer deposited aluminum oxide layers for their potential application to form tunnel layer passivated contacts

    NASA Astrophysics Data System (ADS)

    Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.

  19. On Controlling the Hydrophobicity of Nanostructured Zinc-Oxide Layers Grown by Pulsed Electrodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klochko, N. P., E-mail: klochko-np@mail.ru; Klepikova, K. S.; Kopach, V. R.

    The possibility of fabricating highly hydrophobic nanostructured zinc-oxide layers by the inexpensive method of pulsed electrodeposition from aqueous solutions without water-repellent coatings, adapted for large-scale production, is shown. The conditions of the deposition of highly hydrophobic nanostructured zinc-oxide layers exhibiting the “rose-petal” effect with specific morphology, optical properties, crystal structure and texture are determined. The grown ZnO nanostructures are promising for micro- and nanoelectronics as an adaptive material able to reversibly transform to the hydrophilic state upon exposure to ultraviolet radiation.

  20. Wind tunnel-sidewall-boundary-layer effects in transonic airfoil testing-some correctable, but some not

    NASA Technical Reports Server (NTRS)

    Lynch, F. T.; Johnson, C. B.

    1988-01-01

    The need to correct transonic airfoil wind tunnel test data for the influence of the tunnel sidewall boundary layers, in addition to the wall accepted corrections for the analytical investigation was carried out in order to evaluate sidewall boundary layer effects on transonic airfoil characteristics, and to validate proposed correction and the limit to their applications. This investigation involved testing of modern airfoil configurations in two different transonic airfoil test facilities, the 15 x 60 inch two-dimensional insert of the National Aeronautical Establishment (NAE) 5 foot tunnel in Ottawa, Canada, and the two-dimensional test section of the NASA Langley 0.3 m Transonic Cryogenic Tunnel (TCT). Results presented included effects of variations in sidewall-boundary layer bleed in both facilities, different sidewall boundary layer correction procedures, tunnel-to tunnel comparisons of correcte results, and flow conditions with and without separation.

  1. Nanomanufacturing : nano-structured materials made layer-by-layer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with thesemore » processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.« less

  2. Shuttle orbiter boundary layer transition at flight and wind tunnel conditions

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Derry, S. M.; Bertin, J. J.

    1983-01-01

    Hypersonic boundary layer transition data obtained on the windward centerline of the Shuttle orbiter during entry for the first five flights are presented and analyzed. Because the orbiter surface is composed of a large number of thermal protection tiles, the transition data include the effects of distributed roughness arising from tile misalignment and gaps. These data are used as a benchmark for assessing and improving the accuracy of boundary layer transition predictions based on correlations of wind tunnel data taken on both aerodynamically rough and smooth orbiter surfaces. By comparing these two data bases, the relative importance of tunnel free stream noise and surface roughness on orbiter boundary layer transition correlation parameters can be assessed. This assessment indicates that accurate predications of transition times can be made for the orbiter at hypersonic flight conditions by using roughness dominated wind tunnel data. Specifically, times of transition onset and completion is accurately predicted using a correlation based on critical and effective values of a roughness Reynolds number previously derived from wind tunnel data.

  3. Magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Ziti, S.; Aouini, S.; Labrim, H.; Bahmad, L.

    2017-02-01

    We study the magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure, under the effect of an external magnetic field. We examine the magnetic properties, of this model of the spin S=1 Ising ferromagnetic in real nanostructure used in several scientific domains. For T=0, we give and discuss the ground state phase diagrams. At non null temperatures, we applied the Monte Carlo simulations giving important results summarized in the form of the phase diagrams. We also analyzed the effect of varying the external magnetic field, and found the layering transitions in the polyamidoamine (PAMAM) dendrimer nano-structure.

  4. High energy storage capacitor by embedding tunneling nano-structures

    DOEpatents

    Holme, Timothy P; Prinz, Friedrich B; Van Stockum, Philip B

    2014-11-04

    In an All-Electron Battery (AEB), inclusions embedded in an active region between two electrodes of a capacitor provide enhanced energy storage. Electrons can tunnel to/from and/or between the inclusions, thereby increasing the charge storage density relative to a conventional capacitor. One or more barrier layers is present in an AEB to block DC current flow through the device. The AEB effect can be enhanced by using multi-layer active regions having inclusion layers with the inclusions separated by spacer layers that don't have the inclusions. The use of cylindrical geometry or wrap around electrodes and/or barrier layers in a planar geometry can enhance the basic AEB effect. Other physical effects that can be employed in connection with the AEB effect are excited state energy storage, and formation of a Bose-Einstein condensate (BEC).

  5. Characterization of gas tunnel type plasma sprayed hydroxyapatite-nanostructure titania composite coatings

    NASA Astrophysics Data System (ADS)

    Yugeswaran, S.; Kobayashi, A.; Ucisik, A. Hikmet; Subramanian, B.

    2015-08-01

    Hydroxyapatite (HA) can be coated onto metal implants as a ceramic biocompatible coating to bridge the growth between implants and human tissue. Meanwhile many efforts have been made to improve the mechanical properties of the HA coatings without affecting its bioactivity. In the present study, nanostructure titania (TiO2) was mixed with HA powder and HA-nanostructure TiO2 composite coatings were produced by gas tunnel type plasma spraying torch under optimized spraying conditions. For this purpose, composition of 10 wt% TiO2 + 90 wt% HA, 20 wt% TiO2 + 80 wt% HA and 30 wt% TiO2 + 70 wt% HA were selected as the feedstock materials. The phase, microstructure and mechanical properties of the coatings were characterized. The obtained results validated that the increase in weight percentage of nanostructure TiO2 in HA coating significantly increased the microhardness, adhesive strength and wear resistance of the coatings. Analysis of the in vitro bioactivity and cytocompatibility of the coatings were done using conventional simulated body fluid (c-SBF) solution and cultured green fluorescent protein (GFP) labeled marrow stromal cells (MSCs) respectively. The bioactivity results revealed that the composite coating has bio-active surface with good cytocompatibility.

  6. Sub-nanometer Atomic Layer Deposition for Spintronics in Magnetic Tunnel Junctions Based on Graphene Spin-Filtering Membranes

    PubMed Central

    2014-01-01

    We report on the successful integration of low-cost, conformal, and versatile atomic layer deposited (ALD) dielectric in Ni–Al2O3–Co magnetic tunnel junctions (MTJs) where the Ni is coated with a spin-filtering graphene membrane. The ALD tunnel barriers, as thin as 0.6 nm, are grown layer-by-layer in a simple, low-vacuum, ozone-based process, which yields high-quality electron-transport barriers as revealed by tunneling characterization. Even under these relaxed conditions, including air exposure of the interfaces, a significant tunnel magnetoresistance is measured highlighting the robustness of the process. The spin-filtering effect of graphene is enhanced, leading to an almost fully inversed spin polarization for the Ni electrode of −42%. This unlocks the potential of ALD for spintronics with conformal, layer-by-layer control of tunnel barriers in magnetic tunnel junctions toward low-cost fabrication and down-scaling of tunnel resistances. PMID:24988469

  7. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    PubMed

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  8. Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih

    Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less

  9. Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes

    DOE PAGES

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; ...

    2016-11-09

    Here, we discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be usedmore » to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range.« less

  10. Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off

    NASA Astrophysics Data System (ADS)

    Chen, Yiqin; Li, Zhiqin; Xiang, Quan; Wang, Yasi; Zhang, Zhiqiang; Duan, Huigao

    2015-10-01

    Lift-off is the most commonly used pattern-transfer method to define lithographic plasmonic metal nanostructures. A typical lift-off process is realized by dissolving patterned resists in solutions, which has the limits of low yield when not using adhesion layers and incompatibility with the fabrication of some specific structures and devices. In this work, we report an alternative ‘dry’ lift-off process to obtain metallic nanostructures via mechanical stripping by using the advantage of poor adhesion between resists and noble metal films. We show that this dry stripping lift-off method is effective for both positive- and negative-tone resists to fabricate sparse and densely-packed plasmonic nanostructures, respectively. In particular, this method is achieved without using an adhesion layer, which enables the mitigation of plasmon damping to obtain larger field enhancement. Dark-field scattering, one-photon luminescence and surface-enhanced Raman scattering measurements were performed to demonstrate the improved quality factor of the plasmonic nanostructures fabricated by this dry lift-off process.

  11. Morphologies, Preparations and Applications of Layered Double Hydroxide Micro-/Nanostructures

    PubMed Central

    Kuang, Ye; Zhao, Lina; Zhang, Shuai; Zhang, Fazhi; Dong, Mingdong; Xu, Sailong

    2010-01-01

    Layered double hydroxides (LDHs), also well-known as hydrotalcite-like layered clays, have been widely investigated in the fields of catalysts and catalyst support, anion exchanger, electrical and optical functional materials, flame retardants and nanoadditives. This feature article focuses on the progress in micro-/nanostructured LDHs in terms of morphology, and also on the preparations, applications, and perspectives of the LDHs with different morphologies. PMID:28883378

  12. Effect of an Interfacial Layer on Electron Tunneling through Atomically Thin Al2O3 Tunnel Barriers.

    PubMed

    Wilt, Jamie; Sakidja, Ridwan; Goul, Ryan; Wu, Judy Z

    2017-10-25

    Electron tunneling through high-quality, atomically thin dielectric films can provide a critical enabling technology for future microelectronics, bringing enhanced quantum coherent transport, fast speed, small size, and high energy efficiency. A fundamental challenge is in controlling the interface between the dielectric and device electrodes. An interfacial layer (IL) will contain defects and introduce defects in the dielectric film grown atop, preventing electron tunneling through the formation of shorts. In this work, we present the first systematic investigation of the IL in Al 2 O 3 dielectric films of 1-6 Å's in thickness on an Al electrode. We integrated several advanced approaches: molecular dynamics to simulate IL formation, in situ high vacuum sputtering atomic layer deposition (ALD) to synthesize Al 2 O 3 on Al films, and in situ ultrahigh vacuum scanning tunneling spectroscopy to probe the electron tunneling through the Al 2 O 3 . The IL had a profound effect on electron tunneling. We observed a reduced tunnel barrier height and soft-type dielectric breakdown which indicate that defects are present in both the IL and in the Al 2 O 3 . The IL forms primarily due to exposure of the Al to trace O 2 and/or H 2 O during the pre-ALD heating step of fabrication. As the IL was systematically reduced, by controlling the pre-ALD sample heating, we observed an increase of the ALD Al 2 O 3 barrier height from 0.9 to 1.5 eV along with a transition from soft to hard dielectric breakdown. This work represents a key step toward the realization of high-quality, atomically thin dielectrics with electron tunneling for the next generation of microelectronics.

  13. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties

    NASA Astrophysics Data System (ADS)

    Palmstrom, Axel F.; Santra, Pralay K.; Bent, Stacey F.

    2015-07-01

    Nanostructured materials offer key advantages for third-generation photovoltaics, such as the ability to achieve high optical absorption together with enhanced charge carrier collection using low cost components. However, the extensive interfacial areas in nanostructured photovoltaic devices can cause high recombination rates and a high density of surface electronic states. In this feature article, we provide a brief review of some nanostructured photovoltaic technologies including dye-sensitized, quantum dot sensitized and colloidal quantum dot solar cells. We then introduce the technique of atomic layer deposition (ALD), which is a vapor phase deposition method using a sequence of self-limiting surface reaction steps to grow thin, uniform and conformal films. We discuss how ALD has established itself as a promising tool for addressing different aspects of nanostructured photovoltaics. Examples include the use of ALD to synthesize absorber materials for both quantum dot and plasmonic solar cells, to grow barrier layers for dye and quantum dot sensitized solar cells, and to infiltrate coatings into colloidal quantum dot solar cell to improve charge carrier mobilities as well as stability. We also provide an example of monolayer surface modification in which adsorbed ligand molecules on quantum dots are used to tune the band structure of colloidal quantum dot solar cells for improved charge collection. Finally, we comment on the present challenges and future outlook of the use of ALD for nanostructured photovoltaics.

  14. Synthesis of Novel Double-Layer Nanostructures of SiC–WOxby a Two Step Thermal Evaporation Process

    PubMed Central

    2009-01-01

    A novel double-layer nanostructure of silicon carbide and tungsten oxide is synthesized by a two-step thermal evaporation process using NiO as the catalyst. First, SiC nanowires are grown on Si substrate and then high density W18O49nanorods are grown on these SiC nanowires to form a double-layer nanostructure. XRD and TEM analysis revealed that the synthesized nanostructures are well crystalline. The growth of W18O49nanorods on SiC nanowires is explained on the basis of vapor–solid (VS) mechanism. The reasonably better turn-on field (5.4 V/μm) measured from the field emission measurements suggest that the synthesized nanostructures could be used as potential field emitters. PMID:20596292

  15. Silicon-ion-implanted PMMA with nanostructured ultrathin layers for plastic electronics

    NASA Astrophysics Data System (ADS)

    Hadjichristov, G. B.; Ivanov, Tz E.; Marinov, Y. G.

    2014-12-01

    Being of interest for plastic electronics, ion-beam produced nanostructure, namely silicon ion (Si+) implanted polymethyl-methacrylate (PMMA) with ultrathin nanostructured dielectric (NSD) top layer and nanocomposite (NC) buried layer, is examined by electric measurements. In the proposed field-effect organic nanomaterial structure produced within the PMMA network by ion implantation with low energy (50 keV) Si+ at the fluence of 3.2 × 1016 cm-2 the gate NSD is ion-nanotracks-modified low-conductive surface layer, and the channel NC consists of carbon nanoclusters. In the studied ion-modified PMMA field-effect configuration, the gate NSD and the buried NC are formed as planar layers both with a thickness of about 80 nm. The NC channel of nano-clustered amorphous carbon (that is an organic semiconductor) provides a huge increase in the electrical conduction of the material in the subsurface region, but also modulates the electric field distribution in the drift region. The field effect via the gate NSD is analyzed. The most important performance parameters, such as the charge carrier field-effect mobility and amplification of this particular type of PMMA- based transconductance device with NC n-type channel and gate NSD top layer, are determined.

  16. Perpendicular magnetic tunnel junctions with Mn-modified ultrathin MnGa layer

    NASA Astrophysics Data System (ADS)

    Suzuki, K. Z.; Miura, Y.; Ranjbar, R.; Bainsla, L.; Ono, A.; Sasaki, Y.; Mizukami, S.

    2018-02-01

    Perpendicular magnetic tunnel junctions (p-MTJs) with a MgO barrier and a 1-nm-thick MnGa electrode were investigated by inserting several monolayers (MLs) of Mn. The tunnel magnetoresistance (TMR) ratio systematically increased when increasing the Mn layer thickness with a maximum of 18 (38.4)% at 300 (5) K for a Mn layer thickness of 0.6-0.8 nm. This ratio is five times higher compared to that without the Mn layer. The perpendicular magnetic anisotropy (PMA) field and the PMA constant of the ultrathin MnGa layer also increased up to 62-90 kOe and 6.2-11.3 Merg/cm3, respectively, with an increase in the Mn interlayer thickness, even for the ultrathin regime of the MnGa layer. For p-MTJs showing a high TMR and PMA, electron microscopy indicated the presence of 3-4 MLs of Mn at the MnGa/MgO interface; thus, the Mn modification enhanced the TMR as well as improved the PMA. This may be a promising finding to develop a Mn-based free layer for spin-transfer-torque devices for high-recording-density magnetoresistive random access memory and a sub-THz oscillator/detector.

  17. Large-area, freestanding, single-layer graphene-gold: a hybrid plasmonic nanostructure.

    PubMed

    Iyer, Ganjigunte R Swathi; Wang, Jian; Wells, Garth; Guruvenket, Srinivasan; Payne, Scott; Bradley, Michael; Borondics, Ferenc

    2014-06-24

    Graphene-based plasmonic devices have recently drawn great attention. However, practical limitations in fabrication and device architectures prevent studies from being carried out on the intrinsic properties of graphene and their change by plasmonic structures. The influence of a quasi-infinite object (i.e., the substrate) on graphene, being a single sheet of carbon atoms, and the plasmonic device is overwhelming. To address this and put the intrinsic properties of the graphene-plasmonic nanostructures in focus, we fabricate large-area, freestanding, single-layer graphene-gold (LFG-Au) sandwich structures and Au nanoparticle decorated graphene (formed via thermal treatment) hybrid plasmonic nanostructures. We observed two distinct plasmonic enhancement routes of graphene unique to each structure via surface-enhanced Raman spectroscopy. The localized electronic structure variation in the LFG due to graphene-Au interaction at the nanoscale is mapped using scanning transmission X-ray microscopy. The measurements show an optical density of ∼0.007, which is the smallest experimentally determined for single-layer graphene thus far. Our results on freestanding graphene-Au plasmonic structures provide great insight for the rational design and future fabrication of graphene plasmonic hybrid nanostructures.

  18. Fabrication of nanostructured ZnO film as a hole-conducting layer of organic photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Kim, Hyomin; Kwon, Yiseul; Choe, Youngson

    2013-05-01

    We have investigated the effect of fibrous nanostructured ZnO film as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the concentration of zinc acetate dihydrate, the changes of performance characteristics were evaluated. Fibrous nanostructured ZnO film was prepared by sol-gel process and annealed on a hot plate. As the concentration of zinc acetate dihydrate increased, ZnO fibrous nanostructure grew from 300 to 600 nm. The obtained ZnO nanostructured fibrous films have taken the shape of a maze-like structure and were characterized by UV-visible absorption, scanning electron microscopy, and X-ray diffraction techniques. The intensity of absorption bands in the ultraviolet region was increased with increasing precursor concentration. The X-ray diffraction studies show that the ZnO fibrous nanostructures became strongly (002)-oriented with increasing concentration of precursor. The bulk heterojunction photovoltaic cells were fabricated using poly(3-hexylthiophene-2,5-diyl) and indene-C60 bisadduct as active layer, and their electrical properties were investigated. The external quantum efficiency of the fabricated device increased with increasing precursor concentration.

  19. Fabrication of nanostructured ZnO film as a hole-conducting layer of organic photovoltaic cell

    PubMed Central

    2013-01-01

    We have investigated the effect of fibrous nanostructured ZnO film as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the concentration of zinc acetate dihydrate, the changes of performance characteristics were evaluated. Fibrous nanostructured ZnO film was prepared by sol-gel process and annealed on a hot plate. As the concentration of zinc acetate dihydrate increased, ZnO fibrous nanostructure grew from 300 to 600 nm. The obtained ZnO nanostructured fibrous films have taken the shape of a maze-like structure and were characterized by UV-visible absorption, scanning electron microscopy, and X-ray diffraction techniques. The intensity of absorption bands in the ultraviolet region was increased with increasing precursor concentration. The X-ray diffraction studies show that the ZnO fibrous nanostructures became strongly (002)-oriented with increasing concentration of precursor. The bulk heterojunction photovoltaic cells were fabricated using poly(3-hexylthiophene-2,5-diyl) and indene-C60 bisadduct as active layer, and their electrical properties were investigated. The external quantum efficiency of the fabricated device increased with increasing precursor concentration. PMID:23680100

  20. Calculation of sidewall boundary-layer parameters from rake measurements for the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1987-01-01

    Correction of airfoil data for sidewall boundary-layer effects requires a knowledge of the boundary-layer displacement thickness and the shape factor with the tunnel empty. To facilitate calculation of these quantities under various test conditions for the Langley 0.3 m Transonic Cryogenic Tunnel, a computer program was written. This program reads the various tunnel parameters and the boundary-layer rake total head pressure measurements directly from the Engineering Unit tapes to calculate the required sidewall boundary-layer parameters. Details of the method along with the results for a sample case are presented.

  1. Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.

    PubMed

    Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F

    2016-08-11

    We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer.

  2. Tunneling Injection and Exciton Diffusion of White Organic Light-Emitting Diodes with Composed Buffer Layers

    NASA Astrophysics Data System (ADS)

    Yang, Su-Hua; Wu, Jian-Ping; Huang, Tao-Liang; Chung, Bin-Fong

    2018-02-01

    Four configurations of buffer layers were inserted into the structure of a white organic light emitting diode, and their impacts on the hole tunneling-injection and exciton diffusion processes were investigated. The insertion of a single buffer layer of 4,4'-bis(carbazol-9-yl)biphenyl (CBP) resulted in a balanced carrier concentration and excellent color stability with insignificant chromaticity coordinate variations of Δ x < 0.023 and Δ y < 0.023. A device with a 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) buffer layer was beneficial for hole tunneling to the emission layer, resulting in a 1.45-fold increase in current density. The tunneling of holes and the diffusion of excitons were confirmed by the preparation of a dual buffer layer of CBP:tris-(phenylpyridine)-iridine (Ir(ppy)3)/BCP. A maximum current efficiency of 12.61 cd/A with a luminance of 13,850 cd/m2 was obtained at 8 V when a device with a dual-buffer layer of CBP:6 wt.% Ir(ppy)3/BCP was prepared.

  3. A low-density boundary-layer wind tunnel facility

    NASA Technical Reports Server (NTRS)

    White, B. R.

    1987-01-01

    This abstract describes a low-density wind-tunnel facility that was established at NASA Ames in order to aid interpretation and understanding of data received from the Mariner and Viking spacecraft through earth-based simulation. The wind tunnel is a boundary-layer type which is capable of operating over a range of air densities ranging from 0.01 to 1.24 kg/cu m, with the lower values being equivalent to the near-surface density of the planet Mars. Although the facility was developed for space and extraterrestrial simulation, it also can serve as a relatively large-scale, low-density aerodynamic test facility. A description of this unique test facility and some Pitot-tube and hot-wire anemometry data acquired in the facility are presented.

  4. Cobalt germanide nanostructure formation and memory characteristic enhancement in silicon oxide films

    NASA Astrophysics Data System (ADS)

    Joo, Beom Soo; Kim, Hyunseung; Jang, Seunghun; Han, Dongwoo; Han, Moonsup

    2018-08-01

    We investigated nano-floating gate memory having a charge trap layer (CTL) composed of cobalt germanide nanostructure (ns-CoGe). A tunneling oxide layer; a CTL containing Co, Ge, and Si; and a blocking oxide layer were sequentially deposited on a p-type silicon substrate by RF magnetron sputtering and low-pressure chemical vapor deposition. We optimized the CTL formation conditions by rapid thermal annealing at a somewhat low temperature (about 830 °C) by considering the differences in Gibbs free energy and chemical enthalpy among the components. To characterize the charge storage properties, capacitance-voltage (C-V) measurements were performed. Further, we used X-ray photoelectron spectroscopy for chemical analysis of the CTL. In this work, we not only report that the C-V measurement shows a remarkable opening of the memory window for the ns-CoGe compared with those of nanostructures composed of Co or Ge alone, but also clarify that the improvement in the memory characteristics originates in the nanostructure formation, which consists mainly of Co-Ge bonds. We expect ns-CoGe to be a strong candidate for fabrication of next-generation memory devices.

  5. The nanostructure and microstructure of SiC surface layers deposited by MWCVD and ECRCVD

    NASA Astrophysics Data System (ADS)

    Dul, K.; Jonas, S.; Handke, B.

    2017-12-01

    Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to investigate ex-situ the surface topography of SiC layers deposited on Si(100) by Microwave Chemical Vapour Deposition (MWCVD) -S1,S2 layers and Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) - layers S3,S4, using silane, methane, and hydrogen. The effects of sample temperature and gas flow on the nanostructure and microstructure have been investigated. The nanostructure was described by three-dimensional surface roughness analysis based on digital image processing, which gives a tool to quantify different aspects of surface features. A total of 13 different numerical parameters used to describe the surface topography were used. The scanning electron image (SEM) of the microstructure of layers S1, S2, and S4 was similar, however, layer S3 was completely different; appearing like grains. Nonetheless, it can be seen that no grain boundary structure is present in the AFM images.

  6. Semiconductor-metal nanostructures: Scanning tunneling microscopy investigation of the fullerene-gold and manganese-germanium-silicon system

    NASA Astrophysics Data System (ADS)

    Liu, Hui

    Nanostructures, assembled from a layer or cluster of atoms with size of the order of nanometers, have attracted much attention for decades, because it has been widely recognized that the properties of nanoscale materials are remarkably different from those of materials of large scale. As one of the most powerful techniques, Scanning Tunneling Microscopy (STM) has become an indispensable technique for studies in nanotechnology. This dissertation is focused on the investigation of the C60-Au system, which is relevant in photovoltaic applications and organic electronic devices, and the Mn-Ge-Si system which is central to the development of advanced spintronics system. The first part of the dissertation focuses on the C60-Au system. Exploring how fullerene molecules interact physically and electronically with each other and with other elements is highly relevant to the advancement of fullerene-based nanotechnology applications. The initial growth stage of C 60 thin film on graphite substrate has been investigated by STM at room temperature. It is observed that the C60 layer grows in a quasi-layer-by-layer mode and forms round 1st layer islands on the graphite surface. The fractal-dendritic growth of the 2nd layer islands has been successfully described by a combination of Monte Carlo simulation and molecular dynamics simulations. As a next step towards the application of fullerenes in device structures, the growth mechanisms of Au clusters on fullerene layers and co-deposition of Au and C60 were explored. The most prominent features of the growth of Au on C60 are the preferential nucleation of Au clusters at the graphite-first fullerene layer islands edge and the co-deposition of C60 and Au on graphite leading to the formation of highly organized structures, in which Au clusters are embedded in a ring of fullerene molecules with a constant width of about 4 nm. The second part of this dissertation concentrates on the Mn-Ge-Si system, a semiconductor/metal system, which

  7. New technique for heterogeneous vapor-phase synthesis of nanostructured metal layers from low-dimensional volatile metal complexes

    NASA Astrophysics Data System (ADS)

    Badalyan, A. M.; Bakhturova, L. F.; Kaichev, V. V.; Polyakov, O. V.; Pchelyakov, O. P.; Smirnov, G. I.

    2011-09-01

    A new technique for depositing thin nanostructured layers on semiconductor and insulating substrates that is based on heterogeneous gas-phase synthesis from low-dimensional volatile metal complexes is suggested and tried out. Thin nanostructured copper layers are deposited on silicon and quartz substrates from low-dimensional formate complexes using a combined synthesis-mass transport process. It is found that copper in layers thus deposited is largely in a metal state (Cu0) and has the form of closely packed nanograins with a characteristic structure.

  8. Dependency of tunneling magneto-resistance on Fe insertion-layer thickness in Co{sub 2}Fe{sub 6}B{sub 2}/MgO-based magnetic tunneling junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Kyo-Suk; Samsung Electronics Co., Ltd., San #16 Banwol-dong, Hwasung-City, Gyeonggi-Do 445-701; Park, Jea-Gun, E-mail: parkjgL@hanyang.ac.kr

    For Co{sub 2}Fe{sub 6}B{sub 2}/MgO-based perpendicular magnetic tunneling junctions spin valves with [Co/Pd]{sub n}-synthetic-antiferromagnetic (SyAF) layers, the tunneling-magneto-resistance (TMR) ratio strongly depends on the nanoscale Fe insertion-layer thickness (t{sub Fe}) between the Co{sub 2}Fe{sub 6}B{sub 2} pinned layer and MgO tunneling barrier. The TMR ratio rapidly increased as t{sub Fe} increased up to 0.4 nm by improving the crystalline linearity of a MgO tunneling barrier and by suppressing the diffusion of Pd atoms from a [Co/Pd]{sub n}-SyAF. However, it abruptly decreased by further increasing t{sub Fe} in transferring interfacial-perpendicular magnetic anisotropy into the IMA characteristic of the Co{sub 2}Fe{sub 6}B{sub 2}more » pinned layer. Thus, the TMR ratio peaked at t{sub Fe} = 0.4 nm: i.e., 120% at 29 Ωμm{sup 2}.« less

  9. Magnetotransport and interdiffusion characteristics of magnetic tunnel junctions comprising nano-oxide layers upon exposure to postdeposition annealing

    NASA Astrophysics Data System (ADS)

    Chu, In Chang; Song, Min Sung; Chun, Byong Sun; Lee, Seong Rae; Kim, Young Keun

    2005-08-01

    Magnetic tunnel junction (MTJ) structures based on underlayer (CoNbZr)/bufferlayer (CoFe)/antiferromagnet (IrMn)/pinned layer (CoFe)/tunnel barrier (AlO x)/free layer (CoFe)/capping (CoNbZr) have been prepared to investigate thermal degradation of magnetoresistive responses. Some junctions possess a nano-oxide layer (NOL) inside either in the underlayer or bufferlayer. The main purpose of the NOL inclusion was to control interdiffusion path of Mn from the antiferromagnet so that improved thermal stability could be achieved. The MTJs with NOLs were found to have reduced interfacial roughness, resulting in improved tunneling magnetoresistance (TMR) and reduced interlayer coupling field. We also confirmed that the NOL effectively suppressed the Mn interdiffusion toward the tunnel barrier by dragging Mn atoms toward NOL during annealing.

  10. The fictitious force method for efficient calculation of vibration from a tunnel embedded in a multi-layered half-space

    NASA Astrophysics Data System (ADS)

    Hussein, M. F. M.; François, S.; Schevenels, M.; Hunt, H. E. M.; Talbot, J. P.; Degrande, G.

    2014-12-01

    This paper presents an extension of the Pipe-in-Pipe (PiP) model for calculating vibrations from underground railways that allows for the incorporation of a multi-layered half-space geometry. The model is based on the assumption that the tunnel displacement is not influenced by the existence of a free surface or ground layers. The displacement at the tunnel-soil interface is calculated using a model of a tunnel embedded in a full space with soil properties corresponding to the soil in contact with the tunnel. Next, a full space model is used to determine the equivalent loads that produce the same displacements at the tunnel-soil interface. The soil displacements are calculated by multiplying these equivalent loads by Green's functions for a layered half-space. The results and the computation time of the proposed model are compared with those of an alternative coupled finite element-boundary element model that accounts for a tunnel embedded in a multi-layered half-space. While the overall response of the multi-layered half-space is well predicted, spatial shifts in the interference patterns are observed that result from the superposition of direct waves and waves reflected on the free surface and layer interfaces. The proposed model is much faster and can be run on a personal computer with much less use of memory. Therefore, it is a promising design tool to predict vibration from underground tunnels and to assess the performance of vibration countermeasures in an early design stage.

  11. Carbon-based layer-by-layer nanostructures: from films to hollow capsules

    NASA Astrophysics Data System (ADS)

    Hong, Jinkee; Han, Jung Yeon; Yoon, Hyunsik; Joo, Piljae; Lee, Taemin; Seo, Eunyong; Char, Kookheon; Kim, Byeong-Su

    2011-11-01

    Over the past years, the layer-by-layer (LbL) assembly has been widely developed as one of the most powerful techniques to prepare multifunctional films with desired functions, structures and morphologies because of its versatility in the process steps in both material and substrate choices. Among various functional nanoscale objects, carbon-based nanomaterials, such as carbon nanotubes and graphene sheets, are promising candidates for emerging science and technology with their unique physical, chemical, and mechanical properties. In particular, carbon-based functional multilayer coatings based on the LbL assembly are currently being actively pursued as conducting electrodes, batteries, solar cells, supercapacitors, fuel cells and sensor applications. In this article, we give an overview on the use of carbon materials in nanostructured films and capsules prepared by the LbL assembly with the aim of unraveling the unique features and their applications of carbon multilayers prepared by the LbL assembly.

  12. Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition.

    PubMed

    Gong, Yunhui; Palacio, Diego; Song, Xueyan; Patel, Rajankumar L; Liang, Xinhua; Zhao, Xuan; Goodenough, John B; Huang, Kevin

    2013-09-11

    We demonstrate that the highly active but unstable nanostructured intermediate-temperature solid oxide fuel cell cathode, La0.6Sr0.4CoO3-δ (LSCo), can retain its high oxygen reduction reaction (ORR) activity with exceptional stability for 4000 h at 700 °C by overcoating its surfaces with a conformal layer of nanoscale ZrO2 films through atomic layer deposition (ALD). The benefits from the presence of the nanoscale ALD-ZrO2 overcoats are remarkable: a factor of 19 and 18 reduction in polarization area-specific resistance and degradation rate over the pristine sample, respectively. The unique multifunctionality of the ALD-derived nanoscaled ZrO2 overcoats, that is, possessing porosity for O2 access to LSCo, conducting both electrons and oxide-ions, confining thermal growth of LSCo nanoparticles, and suppressing surface Sr-segregation is deemed the key enabler for the observed stable and active nanostructured cathode.

  13. Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers.

    PubMed

    Song, Yunwon; Choi, Keorock; Jun, Dong-Hwan; Oh, Jungwoo

    2017-10-02

    GaAs solar cells with nanostructured emitter layers were fabricated via metal-assisted chemical etching. Au nanoparticles produced via thermal treatment of Au thin films were used as etch catalysts to texture an emitter surface with nanohole structures. Epi-wafers with emitter layers 0.5, 1.0, and 1.5 um in thickness were directly textured and a window layer removal process was performed before metal catalyst deposition. A nanohole-textured emitter layer provides effective light trapping capabilities, reducing the surface reflection of a textured solar cell by 11.0%. However, because the nanostructures have high surface area to volume ratios and large numbers of defects, various photovoltaic properties were diminished by high recombination losses. Thus, we have studied the application of nanohole structures to GaAs emitter solar cells and investigated the cells' antireflection and photovoltaic properties as a function of the nanohole structure and emitter thickness. Due to decreased surface reflection and improved shunt resistance, the solar cell efficiency increased from 4.25% for non-textured solar cells to 7.15% for solar cells textured for 5 min.

  14. Spin-dependent tunneling recombination in heterostructures with a magnetic layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, K. S., E-mail: denisokonstantin@gmail.com; Rozhansky, I. V.; Averkiev, N. S.

    We propose a mechanism for the generation of spin polarization in semiconductor heterostructures with a quantum well and a magnetic impurity layer spatially separated from it. The spin polarization of carriers in a quantum well originates from spin-dependent tunneling recombination at impurity states in the magnetic layer, which is accompanied by a fast linear increase in the degree of circular polarization of photoluminescence from the quantum well. Two situations are theoretically considered. In the first case, resonant tunneling to the spin-split sublevels of the impurity center occurs and spin polarization is caused by different populations of resonance levels in themore » quantum well for opposite spin projections. In the second, nonresonant case, the spin-split impurity level lies above the occupied states of electrons in the quantum well and plays the role of an intermediate state in the two-stage coherent spin-dependent recombination of an electron from the quantum well and a hole in the impurity layer. The developed theory allows us to explain both qualitatively and quantitatively the kinetics of photoexcited electrons in experiments with photoluminescence with time resolution in Mn-doped InGaAs heterostructures.« less

  15. FAST TRACK COMMUNICATION: Emission wavelength extension of mid-infrared InAsSb/InP nanostructures using InGaAsSb sandwich layers

    NASA Astrophysics Data System (ADS)

    Lei, W.; Tan, H. H.; Jagadish, C.

    2010-08-01

    This paper presents a study on the emission wavelength extension of InAsSb nanostructures using InGaAsSb sandwich layers. Due to the reduced lattice mismatch between InAsSb nanostructure layer and buffer/capping layer, the introduction of InGaAsSb sandwich layers leads to larger island size, reduced compressive strain and lower confinement barrier for InAsSb nanostructures, thus resulting in a longer emission wavelength. For InGaAsSb sandwich layers with nominal Sb concentration higher than 10%, type II band alignment is observed for the InAsSb/InGaAsSb heterostructure, which also contributes to the extension of emission wavelength. The InGaAsSb sandwich layers provide an effective approach to extend the emission wavelength of InAsSb nanostructures well beyond 2 µm, which is very useful for device applications in the mid-infrared region.

  16. Polymer-mediated tunneling transport between carbon nanotubes in nanocomposites.

    PubMed

    Derosa, Pedro A; Michalak, Tyler

    2014-05-01

    Electron transport in nanocomposites has attracted a good deal of attention for some time now; furthermore, the ability to control its characteristics is a necessary step in the design of multifunctional materials. When conductive nanostructures (for example carbon nanotubes) are inserted in a non-conductive matrix, electron transport below the percolation threshold is dominated by tunneling and thus the conductive characteristics of the composite depends heavily on the characteristics of the tunneling currents between nanoinserts. A parameter-free approach to study tunneling transport between carbon nanotubes across a polymer matrix is presented. The calculation is done with a combination of Density Functional Theory and Green functions (an approach heavily used in molecular electronics) which is shown here to be effective in this non-resonant transport condition. The results show that the method can effectively capture the effect of a dielectric layer in tunneling transport. The current is found to exponentially decrease with the size of the gap for both vacuum and polymer, and that the polymer layer lowers the tunneling barrier enhancing tunneling conduction. For a polyacrylonitrile matrix, a four-fold decrease in the tunneling constant, compared to tunneling in vacuum, is observed, a result that is consistent with available information. The method is very versatile as any DFT functional (or any other quantum mechanics method) can be used and thus the most accurate method for each particular system can be chosen. Furthermore as more methods become available, the calculations can be revised and improved. This approach can be used to design functional materials for fine-tunning the tunneling transport, for instance, the effect of modifying the nanoinsert-matrix interface (for example, by adding functional groups to carbon nanotubes) can be captured and the comparative performance of each interface predicted by simulation.

  17. Design, construction and calibration of a portable boundary layer wind tunnel for field use

    USDA-ARS?s Scientific Manuscript database

    Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...

  18. The effect of a nonmagnetic cap layer on the spin-polarized tunneling and magnetoresistance in double-barrier planar junctions

    NASA Astrophysics Data System (ADS)

    Xie, Zheng-Wei; Li, Bo-Zang; Li, Yu-Xian

    2003-10-01

    Within the framework of the free-electron model, the tunneling magnetoresistance (TMR) and tunneling conductance (TC) in double magnetic tunnel junctions (DMTJ) with nonmagnetic cap layer, i.e. the NM/FM/I/NM/(FM)/I/FM/NM junction is investigated. FM, NM and I represent the ferromagnetic metal, nonmagnetic metal and insulator, respectively, NM(FM) indicates that the middle layer can be NM or FM. Our results show that, due to the spin-dependent interfacial potential barriers, the influences of the thickness of the FM layer on TC and TMR in DMTJ are large, and when the thicknesses of these two FM layers are suitable a large TMR can be obtained. (

  19. Controlled placement and orientation of nanostructures

    DOEpatents

    Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M

    2014-04-08

    A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.

  20. Studies of surface morphology and optical properties of ZnO nanostructures grown on different molarities of TiO{sub 2} seed layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asib, N. A. M., E-mail: amierahasib@yahoo.com; Afaah, A. N.; Aadila, A.

    Titanium dioxide (TiO{sub 2}) seed layer was prepared by using sol-gel spin-coating technique, followed by growth of 0.01 M of Zinc oxide (ZnO) nanostructures by solution-immersion. The molarities of TiO{sub 2} seed layer were varied from 1.1 M to 0.100 M on glass substrates. The nanostructures thin films were characterized by Field Emission Scanning Electrons Microscope (FESEM), Photoluminescence (PL) spectroscopy and Ultraviolet-Visible (UV-Vis) spectroscopy. FESEM images demonstrate that needle-like ZnO nanostructures are formed on all TiO{sub 2} seed layer. The smallest diameter of needle-like ZnO nanostructures (90.3 nm) were deposited on TiO{sub 2} seed layer of 0.100 M. PL spectramore » of the TiO{sub 2}: ZnO nanostructures thin films show the blue shifted emissions in the UV regions compared to the ZnO thin film. Meanwhile, UV-vis spectra of films display high absorption in the UV region and high trasparency in the visible region. The highest absorbance at UV region was recorded for sample which has 0.100 M of TiO{sub 2} seed layer.« less

  1. Nonspecular reflection of light at an inhomogeneous interface between two media and in a nanostructured layer with a quasi-zero refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadomsky, O. N., E-mail: gadomsky@mail.ru; Gadomskaya, I. V.

    2015-02-15

    We have derived formulas for the amplitudes of light reflection and refraction at an inhomogeneous interface between two media and in a nanostructured layer with a quasi-zero refractive index. These formulas are applied to explain the experimental spectra of nonspecular light reflection using a nanostructured (PMMA + Ag) layer with silver nanoparticles on a silicon surface as an example. We show that a surface wave is formed in the nanostructured layer at various angles of light incidence and the layer with a quasi-zero refractive index is an antireflection coating that provides uniform 5% silicon antireflection in the wavelength range frommore » 450 to 1000 nm.« less

  2. Nanostructured composite layers for electromagnetic shielding in the GHz frequency range

    NASA Astrophysics Data System (ADS)

    Suchea, M.; Tudose, I. V.; Tzagkarakis, G.; Kenanakis, G.; Katharakis, M.; Drakakis, E.; Koudoumas, E.

    2015-10-01

    We report on preliminary results regarding the applicability of nanostructured composite layers for electromagnetic shielding in the frequency range of 4-20 GHz. Various combinations of materials were employed including poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), polyaniline, graphene nanoplatelets, carbon nanotubes, Cu nanoparticles and Poly(vinyl alcohol). As shown, paint-like nanocomposite layers consisting of graphene nanoplatelets, polyaniline PEDOT:PSS and Poly(vinyl alcohol) can offer quite effective electromagnetic shielding, similar or even better than that of commercial products, the response strongly depending on their thickness and resistivity.

  3. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  4. Low temperature scanning tunneling microscopy of metallic and organic nanostructures

    NASA Astrophysics Data System (ADS)

    Fölsch, Stefan

    2006-03-01

    Low temperature scanning tunneling microscopy (LT-STM) is capable of both characterizing and manipulating atomic-scale structures at surfaces. It thus provides a powerful experimental tool to gain fundamental insight into how electronic properties evolve when controlling size, geometry, and composition of nanometric model systems at the level of single atoms and molecules. The experiments discussed in this talk employ a Cu(111) surface onto which perfect nanostructures are assembled from native adatoms and organic molecules. Using single Cu adatoms as building blocks, we obtain zero-, one-, and two-dimensional quantum objects (corresponding to the discrete adatom, monatomic adatom chains, and compact adatom assemblies) with intriguing electronic properties. Depending on the structure shape and the number of incorporated atoms we observe the formation of characteristic quantum levels which merge into the sp-derived Shockley surface state in the limit of extended 2D islands; this state exists on many surfaces, such as Cu(111). Our results reveal the natural linkage between this traditional surface property, the quantum confinement in compact adatom structures, and the quasi-atomic state associated with the single adatom. In a second step, we study the interaction of pentacene (C22H14) with Cu adatom chains serving as model quantum wires. We find that STM-based manipulation is capable of connecting single molecules to the chain ends in a defined way, and that the molecule-chain interaction shifts the chain-localized quantum states to higher binding energies. The present system provides an instructive model case to study single organic molecules interacting with metallic nanostructures. The microscopic nature of such composite structures is of importance for any future molecular-based device realization since it determines the contact conductance between the molecular unit and its metal ''contact pad''.

  5. Effects of surface morphology of ZnO seed layers on growth of ZnO nanostructures prepared by hydrothermal method and annealing.

    PubMed

    Yim, Kwang Gug; Kim, Min Su; Leem, Jae-Young

    2013-05-01

    ZnO nanostructures were grown on Si (111) substrates by a hydrothermal method. Prior to growing the ZnO nanostructures, ZnO seed layers with different post-heat temperatures were prepared by a spin-coating process. Then, the ZnO nanostructures were annealed at 500 degrees C for 20 min under an Ar atmosphere. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out at room temperature (RT) to investigate the structural and optical properties of the as-grown and annealed ZnO nanostructures. The surface morphologies of the seed layers changed from a smooth surface to a mountain chain-like structure as the post-heating temperatures increased. The as-grown and annealed ZnO nanostructures exhibited a strong (002) diffraction peak. Compared to the as-grown ZnO nanostructures, the annealed ZnO nanostructures exhibited significantly strong enhancement in the PL intensity ratio by almost a factor of 2.

  6. One-Dimensional Nature of InAs/InP Quantum Dashes Revealed by Scanning Tunneling Spectroscopy.

    PubMed

    Papatryfonos, Konstantinos; Rodary, Guillemin; David, Christophe; Lelarge, François; Ramdane, Abderrahim; Girard, Jean-Christophe

    2015-07-08

    We report on low-temperature cross-sectional scanning tunneling microscopy and spectroscopy on InAs(P)/InGaAsP/InP(001) quantum dashes, embedded in a diode-laser structure. The laser active region consists of nine InAs(P) quantum dash layers separated by the InGaAsP quaternary alloy barriers. The effect of the p-i-n junction built-in potential on the band structure has been evidenced and quantified on large-scale tunneling spectroscopic measurements across the whole active region. By comparing the tunneling current onset channels, a consistent energy shift has been measured in successive quantum dash or barrier layers, either for the ground state energy of similar-sized quantum dashes or for the conduction band edge of the barriers, corresponding to the band-bending slope. The extracted values are in good quantitative agreement with the theoretical band structure calculations, demonstrating the high sensitivity of this spectroscopic measurement to probe the electronic structure of individual nanostructures, relative to local potential variations. Furthermore, by taking advantage of the potential gradient, we compared the local density of states over successive quantum dash layers. We observed that it does not vanish while increasing energy, for any of the investigated quantum dashes, in contrast to what would be expected for discrete level zero-dimensional (0D) structures. In order to acquire further proof and fully address the open question concerning the quantum dash dimensionality nature, we focused on individual quantum dashes obtaining high-energy-resolution measurements. The study of the local density of states clearly indicates a 1D quantum-wirelike nature for these nanostructures whose electronic squared wave functions were subsequently imaged by differential conductivity mapping.

  7. Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions.

    PubMed

    Dvir, T; Massee, F; Attias, L; Khodas, M; Aprili, M; Quay, C H L; Steinberg, H

    2018-02-09

    Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe 2 devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin-orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.

  8. SiN{sub x} layers on nanostructured Si solar cells: Effective for optical absorption and carrier collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Yunae; Kim, Eunah; Gwon, Minji

    2015-10-12

    We compared nanopatterned Si solar cells with and without SiN{sub x} layers. The SiN{sub x} layer coating significantly improved the internal quantum efficiency of the nanopatterned cells at long wavelengths as well as short wavelengths, whereas the surface passivation helped carrier collection of flat cells mainly at short wavelengths. The surface nanostructured array enhanced the optical absorption and also concentrated incoming light near the surface in broad wavelength range. Resulting high density of the photo-excited carriers near the surface could lead to significant recombination loss and the SiN{sub x} layer played a crucial role in the improved carrier collection ofmore » the nanostructured solar cells.« less

  9. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers.

    PubMed

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-12-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO 2 -PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.

  10. Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers

    NASA Astrophysics Data System (ADS)

    Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy

    2017-03-01

    Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO2-PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.

  11. Feature Article: Fast scanning tunnelling microscopy as a tool to understand changes on metal surfaces: from nanostructures to single atoms

    NASA Astrophysics Data System (ADS)

    Morgenstern, Karina

    2005-03-01

    The Feature Article [1] describes how structural changes in metallic nanostructures can be followed with fast scanning tunneling microscopy (STM). The title page shows the same spot of a Ag(111) surface at room temperature, imaged with STM approximately one hour apart. Intrinsic changes to prepared nano-structures are marked as Brownian motion of vacancy islands (rectangle), coalescence of two vacancy islands (hexagon), and decay of an adatom island (circle).Karina Morgenstern is now professor at the University of Hannover. Her research is placed within the field of nanoscience and is in particular devoted to thermally activated processes of metallic nanostructures, electronically activated reactions of molecules on metallic surfaces, and water-metal interactions.The present issue of physica status solidi (b) also contains the article Apperance of copper d9 defect centres in wide-gap CdSe nanoparticles: A high-fequency EPR study by N. R. J. Poolton et al. as Editor's Choice [2] as well as several papers on electrical and nonlinear optical properties from the European Conference on Organised Films (ECOF 2004) chaired by José Antonio de Saja, Valladolid.

  12. Wind Tunnel Study of Turbulent Flow Structure in the Convective Boundary Layer Capped by a Temperature Inversion.

    NASA Astrophysics Data System (ADS)

    Fedorovich, Evgeni; Kaiser, Rolf; Rau, Matthias; Plate, Erich

    1996-05-01

    Experiments on simulating the atmospheric convective boundary layer (CBL), capped by a temperature inversion and affected by surface shear, were carried out in the thermally stratified wind tunnel of the Institute of Hydrology and Water Resources, University of Karlsruhe. The tunnel is of the closed-circuit type, with a test section 10 m long, 1.5 m wide, and 1.5 m high. The return section of the tunnel is subdivided into 10 layers, each driven by its own fan and heating system. By this means, velocity and temperature profiles can be preshaped at the inlet of the test section, which allows for the reproduction of developed CBL over comparatively short fetches. The bottom heating is controlled to produce the constant heat flux through the floor of the test section. The flow velocity components in the tunnel are measured with a laser Doppler system; for temperature measurements, the resistance-wire technique is employed.A quasi-stationary, horizontally evolving CBL was reproduced in the tunnel, with convective Richardson numbers RiT and RiN up to 10 and 20, respectively, and the shear/buoyancy dynamic ratio u(/w( in the range of 0.2-0.5. Within the employed modeling approach, means and other statistics of the flow were calculated by temporal averaging. Deardorff mixed-layer scaling was used as a framework for processing and interpreting the experimental results. The comparison of the wind tunnel data with results of atmospheric, water tank, and numerical studies of the CBL shows the crucial dependence of the turbulence statistics in the upper part of the layer on the parameters of entrainment, as well as the modification of the CBL turbulence regime by the surface shear.

  13. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    NASA Astrophysics Data System (ADS)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam

  14. Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries.

    PubMed

    Wu, Zhen-Guo; Li, Jun-Tao; Zhong, Yan-Jun; Guo, Xiao-Dong; Huang, Ling; Zhong, Ben-He; Agyeman, Daniel-Adjei; Lim, Jin-Myoung; Kim, Du-Ho; Cho, Maeng-Hyo; Kang, Yong-Mook

    2017-06-28

    A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g -1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g -1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.

  15. Laser induced nanostructures created from Au layer on polyhydroxybutyrate

    NASA Astrophysics Data System (ADS)

    Michaljaničová, I.; Slepička, P.; Juřík, P.; Švorčík, V.

    2017-11-01

    Nanostructures as well as composite materials expand the range of materials properties and allow use of these materials in new and highly specific applications. In this paper, we described laser modification of polyhydroxybutyrate films covered with thin gold layer, which led to the formation of various composite structures. The crucial for the composite structures creation was setting of appropriate laser parameters; 15 mJ cm-2 laser fluence and 6 000 pulses were recognized as the best. The morphology of structures was determined by the thickness of the Au layer. The most interesting formations, very porous with the biggest roughness, were observed after treatment of foils covered with 10 nm of Au. The morphology was observed by atomic force microscopy. The influence on roughness and the difference between projected area and surface area was also determined.

  16. Stacked mechanical nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    DOEpatents

    Wang, Zhong L [Marietta, GA; Xu, Sheng [Atlanta, GA

    2011-08-23

    An electric power generator includes a first conductive layer, a plurality of semiconducting piezoelectric nanostructures, a second conductive layer and a plurality of conductive nanostructures. The first conductive layer has a first surface from which the semiconducting piezoelectric nanostructures extend. The second conductive layer has a second surface and is parallel to the first conductive layer so that the second surface faces the first surface of the first conductive layer. The conductive nanostructures depend downwardly therefrom. The second conductive layer is spaced apart from the first conductive layer at a distance so that when a force is applied, the semiconducting piezoelectric nanostructures engage the conductive nanostructures so that the piezoelectric nanostructures bend, thereby generating a potential difference across the at semiconducting piezoelectric nanostructures and also thereby forming a Schottky barrier between the semiconducting piezoelectric nanostructures and the conductive nanostructures.

  17. Observation of a photoinduced, resonant tunneling effect in a carbon nanotube–silicon heterojunction

    PubMed Central

    Ambrosio, Antonio; Boscardin, Maurizio; Castrucci, Paola; Crivellari, Michele; Cilmo, Marco; De Crescenzi, Maurizio; De Nicola, Francesco; Fiandrini, Emanuele; Grossi, Valentina; Maddalena, Pasqualino; Passacantando, Maurizio; Santucci, Sandro; Scarselli, Manuela; Valentini, Antonio

    2015-01-01

    Summary A significant resonant tunneling effect has been observed under the 2.4 V junction threshold in a large area, carbon nanotube–silicon (CNT–Si) heterojunction obtained by growing a continuous layer of multiwall carbon nanotubes on an n-doped silicon substrate. The multiwall carbon nanostructures were grown by a chemical vapor deposition (CVD) technique on a 60 nm thick, silicon nitride layer, deposited on an n-type Si substrate. The heterojunction characteristics were intensively studied on different substrates, resulting in high photoresponsivity with a large reverse photocurrent plateau. In this paper, we report on the photoresponsivity characteristics of the device, the heterojunction threshold and the tunnel-like effect observed as a function of applied voltage and excitation wavelength. The experiments are performed in the near-ultraviolet to near-infrared wavelength range. The high conversion efficiency of light radiation into photoelectrons observed with the presented layout allows the device to be used as a large area photodetector with very low, intrinsic dark current and noise. PMID:25821710

  18. Observation of a photoinduced, resonant tunneling effect in a carbon nanotube-silicon heterojunction.

    PubMed

    Aramo, Carla; Ambrosio, Antonio; Ambrosio, Michelangelo; Boscardin, Maurizio; Castrucci, Paola; Crivellari, Michele; Cilmo, Marco; De Crescenzi, Maurizio; De Nicola, Francesco; Fiandrini, Emanuele; Grossi, Valentina; Maddalena, Pasqualino; Passacantando, Maurizio; Santucci, Sandro; Scarselli, Manuela; Valentini, Antonio

    2015-01-01

    A significant resonant tunneling effect has been observed under the 2.4 V junction threshold in a large area, carbon nanotube-silicon (CNT-Si) heterojunction obtained by growing a continuous layer of multiwall carbon nanotubes on an n-doped silicon substrate. The multiwall carbon nanostructures were grown by a chemical vapor deposition (CVD) technique on a 60 nm thick, silicon nitride layer, deposited on an n-type Si substrate. The heterojunction characteristics were intensively studied on different substrates, resulting in high photoresponsivity with a large reverse photocurrent plateau. In this paper, we report on the photoresponsivity characteristics of the device, the heterojunction threshold and the tunnel-like effect observed as a function of applied voltage and excitation wavelength. The experiments are performed in the near-ultraviolet to near-infrared wavelength range. The high conversion efficiency of light radiation into photoelectrons observed with the presented layout allows the device to be used as a large area photodetector with very low, intrinsic dark current and noise.

  19. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide

    NASA Astrophysics Data System (ADS)

    Lee, Boeun; Yoon, Chong Seung; Lee, Hae Ri; Chung, Kyung Yoon; Cho, Byung Won; Oh, Si Hyoung

    2014-08-01

    Zn-ion batteries are emerging energy storage systems eligible for large-scale applications, such as electric vehicles. These batteries consist of totally environmentally-benign electrode materials and potentially manufactured very economically. Although Zn/α-MnO2 systems produce high energy densities of 225 Wh kg-1, larger than those of conventional Mg-ion batteries, they show significant capacity fading during long-term cycling and suffer from poor performance at high current rates. To solve these problems, the concrete reaction mechanism between α-MnO2 and zinc ions that occur on the cathode must be elucidated. Here, we report the intercalation mechanism of zinc ions into α-MnO2 during discharge, which involves a reversible phase transition of MnO2 from tunneled to layered polymorphs by electrochemical reactions. This transition is initiated by the dissolution of manganese from α-MnO2 during discharge process to form layered Zn-birnessite. The original tunneled structure is recovered by the incorporation of manganese ions back into the layers of Zn-birnessite during charge process.

  20. Improve the refractive index sensitivity of coaxial-cable type gold nanostructure: the effect of dielectric polarization from the separate layer

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu

    2013-06-01

    The separate layer refractive index sensitivity of a coaxial-cable type three-layered gold nanotube has been studied. Theoretical calculation results based on quasi-static model show that the coaxial-cable type gold nanostructure has higher refractive index sensitivity than that of single-layered gold nanotube. This sensitivity could be improved by increasing the inner wire radius or decreasing the total radius of the tube, and the maximum sensitivity may exceed 1,000 nm per refractive index unit. The physical origin was also investigated based on the coupling of the dielectric media induced polarizations and the local electric fields in separate layer and outer surrounding. These separate layer refractive index sensing properties of coaxial-cable type gold nanostructure present well potential for plasmonic biosensing applications.

  1. Resonant tunneling through S- and U-shaped graphene nanoribbons.

    PubMed

    Zhang, Z Z; Wu, Z H; Chang, Kai; Peeters, F M

    2009-10-14

    We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.

  2. Characterization of perovskite layer on various nanostructured silicon wafer

    NASA Astrophysics Data System (ADS)

    Rostan, Nur Fairuz Mohd; Sepeai, Suhaila; Ramli, Noor Fadhilah; Azhari, Ayu Wazira; Ludin, Norasikin Ahmad; Teridi, Mohd Asri Mat; Ibrahim, Mohd Adib; Zaidi, Saleem H.

    2017-05-01

    Crystalline silicon (c-Si) solar cell dominates 90% of photovoltaic (PV) market. The c-Si is the most mature of all PV technologies and expected to remain leading the PV technology by 2050. The attractive characters of Si solar cell are stability, long lasting and higher lifetime. Presently, the efficiency of c-Si solar cell is still stuck at 25% for one and half decades. Tandem approach is one of the attempts to improve the Si solar cell efficiency with higher bandgap layer is stacked on top of Si bottom cell. Perovskite offers a big potential to be inserted into a tandem solar cell. Perovskite with bandgap of 1.6 to 1.9 eV will be able to absorb high energy photons, meanwhile c-Si with bandgap of 1.124 eV will absorb low energy photons. The high carrier mobility, high carrier lifetime, highly compatible with both solution and evaporation techniques makes perovskite an eligible candidate for perovskite-Si tandem configuration. The solution of methyl ammonium lead iodide (MAPbI3) was prepared by single step precursor process. The perovskite layer was deposited on different c-Si surface structure, namely planar, textured and Si nanowires (SiNWs) by using spin-coating technique at different rotation speeds. The nanostructure of Si surface was textured using alkaline based wet chemical etching process and SiNW was grown using metal assisted etching technique. The detailed surface morphology and absorbance of perovskite were studied in this paper. The results show that the thicknesses of MAPbI3 were reduced with the increasing of rotation speed. In addition, the perovskite layer deposited on the nanostructured Si wafer became rougher as the etching time and rotation speed increased. The average surface roughness increased from ˜24 nm to ˜38 nm for etching time range between 5-60 min at constant low rotation speed (2000 rpm) for SiNWs Si wafer.

  3. Optical investigation of carrier tunneling in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Emiliani, V.; Ceccherini, S.; Bogani, F.; Colocci, M.; Frova, A.; Shi, Song Stone

    1997-08-01

    The tunneling dynamics of excitons and free carriers in AlxGa1-xAs/GaAs asymmetric double quantum well and near-surface quantum well structures has been investigated by means of time-resolved optical techniques. The competing processes of carrier tunneling out of the quantum well and exciton formation and recombination inside the quantum well have been thoroughly studied in the range of the excitation densities relevant to device applications. A consistent picture capable of fully describing the carrier and exciton-tunneling mechanisms in both types of structures has been obtained and apparently contrasting results in the recent literature are clarified.

  4. Investigation of Materials for Boundary Layer Control in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Braafladt, Alexander; Lucero, John M.; Hirt, Stefanie M.

    2013-01-01

    During operation of the NASA Glenn Research Center 15- by 15-Centimeter Supersonic Wind Tunnel (SWT), a significant, undesirable corner flow separation is created by the three-dimensional interaction of the wall and floor boundary layers in the tunnel corners following an oblique-shock/ boundary-layer interaction. A method to minimize this effect was conceived by connecting the wall and floor boundary layers with a radius of curvature in the corners. The results and observations of a trade study to determine the effectiveness of candidate materials for creating the radius of curvature in the SWT are presented. The experiments in the study focus on the formation of corner fillets of four different radii of curvature, 6.35 mm (0.25 in.), 9.525 mm (0.375 in.), 12.7 mm (0.5 in.), and 15.875 mm (0.625 in.), based on the observed boundary layer thickness of 11.43 mm (0.45 in.). Tests were performed on ten candidate materials to determine shrinkage, surface roughness, cure time, ease of application and removal, adhesion, eccentricity, formability, and repeatability. Of the ten materials, the four materials which exhibited characteristics most promising for effective use were the heavy body and regular type dental impression materials, the basic sculpting epoxy, and the polyurethane sealant. Of these, the particular material which was most effective, the heavy body dental impression material, was tested in the SWT in Mach 2 flow, and was observed to satisfy all requirements for use in creating the corner fillets in the upcoming experiments on shock-wave/boundary-layer interaction.

  5. Resonant tunneling through discrete quantum states in stacked atomic-layered MoS2.

    PubMed

    Nguyen, Linh-Nam; Lan, Yann-Wen; Chen, Jyun-Hong; Chang, Tay-Rong; Zhong, Yuan-Liang; Jeng, Horng-Tay; Li, Lain-Jong; Chen, Chii-Dong

    2014-05-14

    Two-dimensional crystals can be assembled into three-dimensional stacks with atomic layer precision, which have already shown plenty of fascinating physical phenomena and been used for prototype vertical-field-effect-transistors.1,2 In this work, interlayer electron tunneling in stacked high-quality crystalline MoS2 films were investigated. A trilayered MoS2 film was sandwiched between top and bottom electrodes with an adjacent bottom gate, and the discrete energy levels in each layer could be tuned by bias and gate voltages. When the discrete energy levels aligned, a resonant tunneling peak appeared in the current-voltage characteristics. The peak position shifts linearly with perpendicular magnetic field, indicating formation of Landau levels. From this linear dependence, the effective mass and Fermi velocity are determined and are confirmed by electronic structure calculations. These fundamental parameters are useful for exploitation of its unique properties.

  6. Acoustic Radiation from High-Speed Turbulent Boundary Layers in a Tunnel-Like Environment

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2015-01-01

    Direct numerical simulation of acoustic radiation from a turbulent boundary layer in a cylindrical domain will be conducted under the flow conditions corresponding to those at the nozzle exit of the Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) operated under noisy-flow conditions with a total pressure p(sub t) of 225 kPa and a total temperature of T(sub t) equal to 430 K. Simulations of acoustic radiation from a turbulent boundary layer over a flat surface are used as a reference configuration to illustrate the effects of the cylindrical enclosure. A detailed analysis of acoustic freestream disturbances in the cylindrical domain will be reported in the final paper along with a discussion pertaining to the significance of the flat-plate acoustic simulations and guidelines concerning the modeling of the effects of an axisymmetric tunnel wall on the noise field.

  7. Tuning the Composition and Nanostructure of Pt/Ir Films via Anodized Aluminum Oxide Templated Atomic Layer Deposition

    DTIC Science & Technology

    2010-01-01

    12 ] to dictate fi lm morphology. Such templated deposition is typically con- ducted by either electrodeposition or elec- troless deposition, with...non-enzymatic glucose sensing. [ 34–36 ] In particular, the syn- thesis of such nanostructured fi lms is delineated with a focus on the precise...deposited using alternating exposures to trimethylaluminum and H 2 O to provide a uniform nucleation layer for Pt and Ir fi lms. Nanostructured Pt fi

  8. Engineering few-layer MoTe2 devices by Co/hBN tunnel contacts

    NASA Astrophysics Data System (ADS)

    Zhu, Mengjian; Luo, Wei; Wu, Nannan; Zhang, Xue-ao; Qin, Shiqiao

    2018-04-01

    2H phase Molybdenum ditelluride (MoTe2) is a layered two-dimensional (2D) semiconductor that has recently gained extensive attention for its intriguing properties, demonstrating great potential for nanoelectronics and optoelectronics. Optimizing the electric contacts to MoTe2 is a critical step for realizing high performance devices. Here, we demonstrate Co/hBN tunnel contacts to few-layer MoTe2. In sharp contrast to the p-type conduction of Co contacted MoTe2, Co/hBN tunnel contacted MoTe2 devices show clear n-type transport properties. Our first principles calculation reveals that the inserted few-layer hBN strongly interacts with Co and significantly reduces its work-function by ˜1.2 eV, while MoTe2 itself has a much weaker influence on the work-function of Co. This allows us to build MoTe2 diodes using the mixed Co/hBN and Co contact architecture, which can be switched from p-n type to n-p type by changing the gate-voltage, paving the way for engineering multi-functional devices based on atomically thin 2D semiconductors.

  9. A combined scanning tunneling microscope-atomic layer deposition tool.

    PubMed

    Mack, James F; Van Stockum, Philip B; Iwadate, Hitoshi; Prinz, Fritz B

    2011-12-01

    We have built a combined scanning tunneling microscope-atomic layer deposition (STM-ALD) tool that performs in situ imaging of deposition. It operates from room temperature up to 200 °C, and at pressures from 1 × 10(-6) Torr to 1 × 10(-2) Torr. The STM-ALD system has a complete passive vibration isolation system that counteracts both seismic and acoustic excitations. The instrument can be used as an observation tool to monitor the initial growth phases of ALD in situ, as well as a nanofabrication tool by applying an electric field with the tip to laterally pattern deposition. In this paper, we describe the design of the tool and demonstrate its capability for atomic resolution STM imaging, atomic layer deposition, and the combination of the two techniques for in situ characterization of deposition.

  10. Control of supersonic wind-tunnel noise by laminarization of nozzle-wall boundary layer

    NASA Technical Reports Server (NTRS)

    Beckwith, I. E.; Harvey, W. D.; Harris, J. E.; Holley, B. B.

    1973-01-01

    One of the principal design requirements for a quiet supersonic or hypersonic wind tunnel is to maintain laminar boundary layers on the nozzle walls and thereby reduce disturbance levels in the test flow. The conditions and apparent reasons for laminar boundary layers which have been observed during previous investigations on the walls of several nozzles for exit Mach numbers from 2 to 20 are reviewed. Based on these results, an analysis and an assessment of nozzle design requirements for laminar boundary layers including low Reynolds numbers, high acceleration, suction slots, wall temperature control, wall roughness, and area suction are presented.

  11. Optical fiber sensors based on nanostructured coatings fabricated by means of the layer-by-layer electrostatic self-assembly method

    NASA Astrophysics Data System (ADS)

    Arregui, Francisco J.; Matías, Ignacio R.; Claus, Richard O.

    2007-07-01

    The Layer-by-Layer Electrostatic Self-Assembly (ESA) method has been successfully used for the design and fabrication of nanostructured materials. More specifically, this technique has been applied for the deposition of thin films on optical fibers with the purpose of fabricating different types of optical fiber sensors. In fact, optical fiber sensors for measuring humidity, temperature, pH, hydrogen peroxide, glucose, volatile organic compounds or even gluten have been already experimentally demonstrated. The versatility of this technique allows the deposition of these sensing coatings on flat substrates and complex geometries as well. For instance, nanoFabry-Perots and microgratings have been formed on cleaved ends of optical fibers (flat surfaces) and also sensing coatings have been built onto long period gratings (cylindrical shape), tapered fiber ends (conical shape), biconically tapered fibers or even the internal side of hollow core fibers. Among the different materials used for the construction of these sensing nanostructured coatings, diverse types such as polymers, inorganic semiconductors, colorimetric indicators, fluorescent dyes, quantum dots or even biological elements as enzymes can be found. This technique opens the door to the fabrication of new types of optical fiber sensors.

  12. A study of the factors affecting boundary layer two-dimensionality in wind tunnels

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.; Hoffmann, P. H.

    1986-01-01

    The effect of screens, honeycombs, and centrifugal blowers on the two-dimensionality of a boundary layer on the test section floors of low-speed blower tunnels is studied. Surveys of the spanwise variation in surface shear stress in three blower tunnels revealed that the main component responsible for altering the spanwise properties of the test section boundary layer was the last screen, thus confirming previous findings. It was further confirmed that a screen with varying open-area ratio, produced an unstable flow. However, contrary to popular belief, it was also found that for given incoming conditions and a screen free of imperfections, its open-area ratio alone was not enough to describe its performance. The effect of other geometric parameters such as the type of screen, honeycomb, and blower were investigated. In addition, the effect of the order of components in the settling chamber, and of wire Reynolds number were also studied.

  13. Nanostructuring of Palladium with Low-Temperature Helium Plasma

    PubMed Central

    Fiflis, P.; Christenson, M.P.; Connolly, N.; Ruzic, D.N.

    2015-01-01

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium. PMID:28347109

  14. Nanostructuring of Palladium with Low-Temperature Helium Plasma.

    PubMed

    Fiflis, P; Christenson, M P; Connolly, N; Ruzic, D N

    2015-11-25

    Impingement of high fluxes of helium ions upon metals at elevated temperatures has given rise to the growth of nanostructured layers on the surface of several metals, such as tungsten and molybdenum. These nanostructured layers grow from the bulk material and have greatly increased surface area over that of a not nanostructured surface. They are also superior to deposited nanostructures due to a lack of worries over adhesion and differences in material properties. Several palladium samples of varying thickness were biased and exposed to a helium helicon plasma. The nanostructures were characterized as a function of the thickness of the palladium layer and of temperature. Bubbles of ~100 nm in diameter appear to be integral to the nanostructuring process. Nanostructured palladium is also shown to have better catalytic activity than not nanostructured palladium.

  15. Single layer of Ge quantum dots in HfO2 for floating gate memory capacitors.

    PubMed

    Lepadatu, A M; Palade, C; Slav, A; Maraloiu, A V; Lazanu, S; Stoica, T; Logofatu, C; Teodorescu, V S; Ciurea, M L

    2017-04-28

    High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO 2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2 /floating gate of single layer of Ge QDs in HfO 2 /tunnel HfO 2 /p-Si wafers. Both Ge and HfO 2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 10 15 m -2 is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO 2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO 2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO 2 NCs boundaries, while another part of the Ge atoms is present inside the HfO 2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO 2 , distanced from the Si substrate by the tunnel oxide layer with a precise thickness.

  16. Effect of tunneling layers on the performances of floating-gate based organic thin-film transistor nonvolatile memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei, E-mail: wwei99@jlu.edu.cn; Han, Jinhua; Ying, Jun

    2014-09-22

    Two types of floating-gate based organic thin-film transistor nonvolatile memories (FG-OTFT-NVMs) were demonstrated, with poly(methyl methacrylate co glycidyl methacrylate) (P(MMA-GMA)) and tetratetracontane (TTC) as the tunneling layer, respectively. Their device performances were measured and compared. In the memory with a P(MMA-GMA) tunneling layer, typical unipolar hole transport was obtained with a relatively small mobility of 0.16 cm{sup 2}/V s. The unidirectional shift of turn-on voltage (V{sub on}) due to only holes trapped/detrapped in/from the floating gate resulted in a small memory window of 12.5 V at programming/erasing voltages (V{sub P}/V{sub E}) of ±100 V and a nonzero reading voltage. Benefited from the well-ordered moleculemore » orientation and the trap-free surface of TTC layer, a considerably high hole mobility of 1.7 cm{sup 2}/V s and a visible feature of electrons accumulated in channel and trapped in floating-gate were achieved in the memory with a TTC tunneling layer. High hole mobility resulted in a high on current and a large memory on/off ratio of 600 at the V{sub P}/V{sub E} of ±100 V. Both holes and electrons were injected into floating-gate and overwritten each other, which resulted in a bidirectional V{sub on} shift. As a result, an enlarged memory window of 28.6 V at the V{sub P}/V{sub E} of ±100 V and a zero reading voltage were achieved. Based on our results, a strategy is proposed to optimize FG-OTFT-NVMs by choosing a right tunneling layer to improve the majority carrier mobility and realize ambipolar carriers injecting and trapping in the floating-gate.« less

  17. The aeolian wind tunnel

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1991-01-01

    The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.

  18. Spin-dependent tunneling effects in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Gao, Li

    2009-03-01

    It has long been known that current extracted from magnetic electrodes through ultra thin oxide tunnel barriers is spin polarized. This current gives rise to two important properties: tunneling magnetoresistance (TMR) when the tunnel barrier is sandwiched between two thin magnetic electrodes and, spin momentum transfer, which can be used to manipulate the magnetic state of the magnetic electrodes. In the first part of my talk I show how the structure of thin CoFe layers can be made amorphous by simply sandwiching them between two amorphous layers, one of them the tunnel barrier. No glass forming elements are needed. By slightly changing the thickness of these layers or by heating them above their glass transition temperature they become crystalline. Surprisingly, the TMR of the amorphous structure is significantly higher than of its crystalline counterpart. The tunneling anisotropic magnetoresistance, which has complex voltage dependence, is also discussed. In the second part of my talk I discuss the microwave emission spectrum from magnetic tunnel junctions induced by spin torque from spin polarized dc current passed through the device. We show that the spectrum is very sensitive to small variations in device structures, even in those devices which exhibit similarly high TMR (˜120%) and which have similar resistance-area products (˜4-10 φμm^2). We speculate that these variations are due to non-uniform spatial magnetic excitation arising from inhomogeneous current flow through the tunnel barrier. [In collaboration with Xin Jiang, M. Hayashi, Rai Moriya, Brian Hughes, Teya Topuria, Phil Rice, and Stuart S.P. Parkin

  19. Lateral Hydrogen Diffusion at p-GaN Layers in Nitride-Based Light Emitting Diodes with Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Kuwano, Yuka; Kaga, Mitsuru; Morita, Takatoshi; Yamashita, Kouji; Yagi, Kouta; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu

    2013-08-01

    We demonstrated lateral Mg activation along p-GaN layers underneath n-GaN surface layers in nitride-based light emitting diodes (LEDs) with GaInN tunnel junctions. A high temperature thermal annealing was effective for the lateral Mg activation when the p-GaN layers were partly exposed to an oxygen ambient as etched sidewalls. The activated regions gradually extended from the etched sidewalls to the centers with an increase of annealing time, observed as emission regions with current injection. These results suggest that hydrogen diffuses not vertically thorough the above n-GaN but laterally through the exposed portions of the p-GaN. The lowest voltage drop at the GaInN tunnel junction was estimated to be 0.9 V at 50 mA with the optimized annealing condition.

  20. Application of a transonic similarity rule to correct the effects of sidewall boundary layers in two-dimensional transonic wind tunnels. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Sewall, W. G.

    1982-01-01

    A transonic similarity rule which accounts for the effects of attached sidewall boundary layers is presented and evaluated by comparison with the characteristics of airfoils tested in a two dimensional transonic tunnel with different sidewall boundary layer thicknesses. The rule appears valid provided the sidewall boundary layer both remains attached in the vicinity of the model and occupies a small enough fraction of the tunnel width to preserve sufficient two dimensionality in the tunnel.

  1. Inelastic tunnel diodes

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Power is extracted from plasmons, photons, or other guided electromagnetic waves at infrared to midultraviolet frequencies by inelastic tunneling in metal-insulator-semiconductor-metal diodes. Inelastic tunneling produces power by absorbing plasmons to pump electrons to higher potential. Specifically, an electron from a semiconductor layer absorbs a plasmon and simultaneously tunnels across an insulator into metal layer which is at higher potential. The diode voltage determines the fraction of energy extracted from the plasmons; any excess is lost to heat.

  2. Ferroelectric tunneling element and memory applications which utilize the tunneling element

    DOEpatents

    Kalinin, Sergei V [Knoxville, TN; Christen, Hans M [Knoxville, TN; Baddorf, Arthur P [Knoxville, TN; Meunier, Vincent [Knoxville, TN; Lee, Ho Nyung [Oak Ridge, TN

    2010-07-20

    A tunneling element includes a thin film layer of ferroelectric material and a pair of dissimilar electrically-conductive layers disposed on opposite sides of the ferroelectric layer. Because of the dissimilarity in composition or construction between the electrically-conductive layers, the electron transport behavior of the electrically-conductive layers is polarization dependent when the tunneling element is below the Curie temperature of the layer of ferroelectric material. The element can be used as a basis of compact 1R type non-volatile random access memory (RAM). The advantages include extremely simple architecture, ultimate scalability and fast access times generic for all ferroelectric memories.

  3. Tunneling Spectroscopy of Superconducting MoN and NbTiN Grown by Atomic Layer Deposition.

    DOE PAGES

    Groll, Nickolas; Klug, Jeffrey A.; Cao, Chaoyue; ...

    2014-03-03

    A tunneling spectroscopy study is presented of superconducting MoN and Nbo.8Tio.2N thin films grown by atomic layer deposition (ALD). The films exhibited a superconducting gap of 2meV and 2.4meV, respectively, with a corresponding critical temperature of 11.5K and 13.4 K, among the highest reported Tc values achieved by the ALD technique.Tunnel junctions were obtained using a mechanical contact method with a Au tip. While the native oxides of these films provided poor tunnel barriers, high quality tunnel junctions with low zero bias conductance (below rvl0%) were obtained using an artificial tunnel barrier of Ah03 on the film's surface grown exmore » situ by ALD. We find a large critical current density on the order of 4 x 106Ncm2 at T =0.8Tc for a 60 run MoN film and demonstrate conformal coating capabilities of ALD onto high aspect ratio geometries. These results suggest that the ALD technique offers significant promise for thin film superconducting device applications.« less

  4. Tunneling spectroscopy of superconducting MoN and NbTiN grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Groll, Nickolas R.; Klug, Jeffrey A.; Cao, Chaoyue; Altin, Serdar; Claus, Helmut; Becker, Nicholas G.; Zasadzinski, John F.; Pellin, Michael J.; Proslier, Thomas

    2014-03-01

    A tunneling spectroscopy study is presented of superconducting MoN and Nb0.8Ti0.2N thin films grown by atomic layer deposition (ALD). The films exhibited a superconducting gap of 2 meV and 2.4 meV, respectively, with a corresponding critical temperature of 11.5 K and 13.4 K, among the highest reported Tc values achieved by the ALD technique. Tunnel junctions were obtained using a mechanical contact method with a Au tip. While the native oxides of these films provided poor tunnel barriers, high quality tunnel junctions with low zero bias conductance (below ˜10%) were obtained using an artificial tunnel barrier of Al2O3 on the film's surface grown ex situ by ALD. We find a large critical current density on the order of 4 × 106 A/cm2 at T = 0.8Tc for a 60 nm MoN film and demonstrate conformal coating capabilities of ALD onto high aspect ratio geometries. These results suggest that the ALD technique offers significant promise for thin film superconducting device applications.

  5. Scale effects in wind tunnel modeling of an urban atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kozmar, Hrvoje

    2010-03-01

    Precise urban atmospheric boundary layer (ABL) wind tunnel simulations are essential for a wide variety of atmospheric studies in built-up environments including wind loading of structures and air pollutant dispersion. One of key issues in addressing these problems is a proper choice of simulation length scale. In this study, an urban ABL was reproduced in a boundary layer wind tunnel at different scales to study possible scale effects. Two full-depth simulations and one part-depth simulation were carried out using castellated barrier wall, vortex generators, and a fetch of roughness elements. Redesigned “Counihan” vortex generators were employed in the part-depth ABL simulation. A hot-wire anemometry system was used to measure mean velocity and velocity fluctuations. Experimental results are presented as mean velocity, turbulence intensity, Reynolds stress, integral length scale of turbulence, and power spectral density of velocity fluctuations. Results suggest that variations in length-scale factor do not influence the generated ABL models when using similarity criteria applied in this study. Part-depth ABL simulation compares well with two full-depth ABL simulations indicating the truncated vortex generators developed for this study can be successfully employed in urban ABL part-depth simulations.

  6. Tunneling transport of mono- and few-layers magnetic van der Waals MnPS3

    NASA Astrophysics Data System (ADS)

    Lee, Sungmin; Choi, Ki-Young; Lee, Sangik; Park, Bae Ho; Park, Je-Geun; Emergent Phenomena Group Team; Department of Physics, Konkuk University Collaboration

    We have investigated the tunneling transport of mono- and few-layers of MnPS3 by using conductive atomic force microscopy. Due to the band alignment of indium tin oxide/MnPS3/Pt-Ir tip junction, the key features of both Schottky junction and Fowler-Nordheim tunneling (FNT) were observed for all the samples with varying thickness. Using the FNT model and assuming the effective electron mass (0.5 me) of MnPS3, we estimate the tunneling barrier height to be 1.31 eV and the dielectric breakdown strength as 5.41 MV/cm. The work at the IBS CCES was supported by the research program of Institute for Basic Science. S.L. and B.H.P were supported by the National Research Foundation of Korea (NRF) Grants funded by the Korea government (MSIP).

  7. Flight and wind-tunnel correlation of boundary-layer transition on the AEDC transition cone

    NASA Technical Reports Server (NTRS)

    Fisher, D. L.; Dougherty, N. S., Jr.

    1982-01-01

    Transition and fluctuating surface pressure data were acquired on a 10 deg included angle cone, using the same instrumentation and technique over a wide range of Mach and Reynolds numbers in 23 wind tunnels and in flight. Transition was detected with a traversing pitot-pressure probe in contact with the surface. The surface pressure fluctuations were measured with microphones set flush in the cone surface. Good correlation of end of transition Reynolds number RE(T) was obtained between data from the lower disturbance wind tunnels and flight up to a boundary layer edge Mach number, M(e) = 1.2. Above M(e) = 1.2, however, this correlation deteriorates, with the flight Re(T) being 25 to 30% higher than the wind tunnel Re(T) at M(e) = 1.6. The end of transition Reynolds number correlated within + or - 20% with the surface pressure fluctuations, according to the equation used. Broad peaks in the power spectral density distributions indicated that Tollmien-Schlichting waves were the probable cause of transition in flight and in some of the wind tunnels.

  8. Highly reliable top-gated thin-film transistor memory with semiconducting, tunneling, charge-trapping, and blocking layers all of flexible polymers.

    PubMed

    Wang, Wei; Hwang, Sun Kak; Kim, Kang Lib; Lee, Ju Han; Cho, Suk Man; Park, Cheolmin

    2015-05-27

    The core components of a floating-gate organic thin-film transistor nonvolatile memory (OTFT-NVM) include the semiconducting channel layer, tunneling layer, floating-gate layer, and blocking layer, besides three terminal electrodes. In this study, we demonstrated OTFT-NVMs with all four constituent layers made of polymers based on consecutive spin-coating. Ambipolar charges injected and trapped in a polymer electret charge-controlling layer upon gate program and erase field successfully allowed for reliable bistable channel current levels at zero gate voltage. We have observed that the memory performance, in particular the reliability of a device, significantly depends upon the thickness of both blocking and tunneling layers, and with an optimized layer thickness and materials selection, our device exhibits a memory window of 15.4 V, on/off current ratio of 2 × 10(4), read and write endurance cycles over 100, and time-dependent data retention of 10(8) s, even when fabricated on a mechanically flexible plastic substrate.

  9. The influence of pore-fluid in the soil on ground vibrations from a tunnel embedded in a layered half-space

    NASA Astrophysics Data System (ADS)

    Yuan, Zonghao; Cao, Zhigang; Boström, Anders; Cai, Yuanqiang

    2018-04-01

    A computationally efficient semi-analytical solution for ground-borne vibrations from underground railways is proposed and used to investigate the influence of hydraulic boundary conditions at the scattering surfaces and the moving ground water table on ground vibrations. The arrangement of a dry soil layer with varying thickness resting on a saturated poroelastic half-space, which includes a circular tunnel subject to a harmonic load at the tunnel invert, creates the scenario of a moving water table for research purposes in this paper. The tunnel is modelled as a hollow cylinder, which is made of viscoelastic material and buried in the half-space below the ground water table. The wave field in the dry soil layer consists of up-going and down-going waves while the wave field in the tunnel wall consists of outgoing and regular cylindrical waves. The complete solution for the saturated half-space with a cylindrical hole is composed of down-going plane waves and outgoing cylindrical waves. By adopting traction-free boundary conditions on the ground surface and continuity conditions at the interfaces of the two soil layers and of the tunnel and the surrounding soil, a set of algebraic equations can be obtained and solved in the transformed domain. Numerical results show that the moving ground water table can cause an uncertainty of up to 20 dB for surface vibrations.

  10. Tunneling spin polarization in planar tunnel junctions: measurements using NbN superconducting electrodes and evidence for Kondo-assisted tunneling

    NASA Astrophysics Data System (ADS)

    Yang, Hyunsoo

    2006-03-01

    The fundamental origin of tunneling magnetoresistance in magnetic tunnel junctions (MTJs) is the spin-polarized tunneling current, which can be measured directly using superconducting tunneling spectroscopy (STS). The STS technique was first developed by Meservey and Tedrow using aluminum superconducting electrodes. Al has been widely used because of its low spin orbit scattering. However, measurements must be made at low temperatures (<0.4 K) because of the low superconducting transition temperature of Al. Here, we demonstrate that superconducting electrodes formed from NbN can be used to measure tunneling spin polarization (TSP) at higher temperatures up to ˜1.2K. The tunneling magnetoresistance and polarization of the tunneling current in MTJs is highly sensitive to the detailed structure of the tunneling barrier. Using MgO tunnel barriers we find TSP values as high as 90% at 0.25K. The TMR is, however, depressed by insertion of ultra thin layers of both non-magnetic and magnetic metals in the middle of the MgO barrier. For ultra-thin, discontinuous magnetic layers of CoFe, we find evidence of Kondo assisted tunneling, from increased conductance at low temperatures (<50K) and bias voltage (<20 mV). Over the same temperature and bias voltage regimes the tunneling magnetoresistance is strongly depressed. We present other evidence of Kondo resonance including the logarithmic temperature dependence of the zero bias conductance peak. We infer the Kondo temperature from both the spectra width of this conductance peak as well as the temperature dependence of the TMR depression. The Kondo temperature is sensitive to the thickness of the inserted CoFe layer and decreases with increased CoFe thickness. * performed in collaboration with S-H. Yang, C. Kaiser, and S. Parkin.

  11. Enhanced ferromagnetic resonance linewidth of the free layer in perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Gopman, D. B.; Dennis, C. L.; McMichael, R. D.; Hao, X.; Wang, Z.; Wang, X.; Gan, H.; Zhou, Y.; Zhang, J.; Huai, Y.

    2017-05-01

    We report the frequency dependence of the ferromagnetic resonance linewidth of the free layer in magnetic tunnel junctions with all perpendicular-to-the-plane magnetized layers. While the magnetic-field-swept linewidth nominally shows a linear growth with frequency in agreement with Gilbert damping, an additional frequency-dependent linewidth broadening occurs that shows a strong asymmetry between the absorption spectra for increasing and decreasing external magnetic field. Inhomogeneous magnetic fields produced during reversal of the reference and pinned layer complex is demonstrated to be at the origin of the symmetry breaking and the linewidth enhancement. Consequentially, this linewidth enhancement provides indirect information on the magnetic coercivity of the reference and pinned layers. These results have important implications for the characterization of perpendicular magnetized magnetic random access memory bit cells.

  12. Enhanced annealing stability and perpendicular magnetic anisotropy in perpendicular magnetic tunnel junctions using W layer

    NASA Astrophysics Data System (ADS)

    Chatterjee, Jyotirmoy; Sousa, Ricardo C.; Perrissin, Nicolas; Auffret, Stéphane; Ducruet, Clarisse; Dieny, Bernard

    2017-05-01

    The magnetic properties of the perpendicular storage electrode (buffer/MgO/FeCoB/Cap) were studied as a function of annealing temperature by replacing Ta with W and W/Ta cap layers with variable thicknesses. W in the cap boosts up the annealing stability and increases the effective perpendicular anisotropy by 30% compared to the Ta cap. Correspondingly, an increase in the FeCoB critical thickness characterizing the transition from perpendicular to in-plane anisotropy was observed. Thicker W layer in the W(t)/Ta 1 nm cap layer makes the storage electrode highly robust against annealing up to 570 °C. The stiffening of the overall stack resulting from the W insertion due to its very high melting temperature seems to be the key mechanism behind the extremely high thermal robustness. The Gilbert damping constant of FeCoB with the W/Ta cap was found to be lower when compared with the Ta cap and stable with annealing. The evolution of the magnetic properties of bottom pinned perpendicular magnetic tunnel junctions (p-MTJ) stack with the W2/Ta1 nm cap layer shows back-end-of-line compatibility with increasing tunnel magnetoresistance up to the annealing temperature of 425 °C. The pMTJ thermal budget is limited by the synthetic antiferromagnetic hard layer which is stable up to 425 °C annealing temperature while the storage layer is stable up to 455 °C.

  13. Enhanced interfacial contact between PbS and TiO2 layers in quantum dot solar cells using 2D-arrayed TiO2 hemisphere nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu

    2018-02-01

    Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.

  14. Nanostructured and layered lithium manganese oxide and method of manufacturing the same

    NASA Technical Reports Server (NTRS)

    Singhal, Amit (Inventor); Skandan, Ganesh (Inventor)

    2005-01-01

    Nanostructured and layered lithium manganese oxide powders and methods of producing same. The powders are represented by the chemical formula, LixMn1-yMyO2, where 0.5

  15. Tunneling and Origin of Large Access Resistance in Layered-Crystal Organic Transistors

    NASA Astrophysics Data System (ADS)

    Hamai, Takamasa; Arai, Shunto; Minemawari, Hiromi; Inoue, Satoru; Kumai, Reiji; Hasegawa, Tatsuo

    2017-11-01

    Layered crystallinity of organic semiconductors is crucial to obtaining high-performance organic thin-film transistors (OTFTs), as it allows both smooth-channel-gate-insulator interface formation and efficient two-dimensional carrier transport along the interface. However, the role of vertical transport across the crystalline molecular layers in device operations has not been a crucial subject so far. Here, we show that the interlayer carrier transport causes unusual nonlinear current-voltage characteristics and enormous access resistance in extremely high-quality single-crystal OTFTs based on 2-decyl-7-phenyl[1]-benzothieno[3 ,2 -b ][1]benzothiophene (Ph -BTBT -C10 ) that involve inherent multiple semiconducting π -conjugated layers interposed, respectively, by electrically inert alkyl-chain layers. The output characteristics present layer-number (n )-dependent nonlinearity that becomes more evident at larger n (1 ≤n ≤15 ), demonstrating tunneling across multiple alkyl-chain layers. The n -dependent device mobility and four-probe measurements reveal that the alkyl-chain layers generate a large access resistance that suppresses the device mobility from the intrinsic value of about 20 cm2 V-1 s-1 . Our findings clarify the reason why device characteristics are distributed in single-crystal OTFTs.

  16. Wind-Tunnel Simulation of Weakly and Moderately Stable Atmospheric Boundary Layers

    NASA Astrophysics Data System (ADS)

    Hancock, Philip E.; Hayden, Paul

    2018-07-01

    The simulation of horizontally homogeneous boundary layers that have characteristics of weakly and moderately stable atmospheric flow is investigated, where the well-established wind engineering practice of using `flow generators' to provide a deep boundary layer is employed. Primary attention is given to the flow above the surface layer, in the absence of an overlying inversion, as assessed from first- and second-order moments of velocity and temperature. A uniform inlet temperature profile ahead of a deep layer, allowing initially neutral flow, results in the upper part of the boundary layer remaining neutral. A non-uniform inlet temperature profile is required but needs careful specification if odd characteristics are to be avoided, attributed to long-lasting effects inherent of stability, and to a reduced level of turbulent mixing. The first part of the wind-tunnel floor must not be cooled if turbulence quantities are to vary smoothly with height. Closely horizontally homogeneous flow is demonstrated, where profiles are comparable or closely comparable with atmospheric data in terms of local similarity and functions of normalized height. The ratio of boundary-layer height to surface Obukhov length, and the surface heat flux, are functions of the bulk Richardson number, independent of horizontal homogeneity. Surface heat flux rises to a maximum and then decreases.

  17. Wind-Tunnel Simulation of Weakly and Moderately Stable Atmospheric Boundary Layers

    NASA Astrophysics Data System (ADS)

    Hancock, Philip E.; Hayden, Paul

    2018-02-01

    The simulation of horizontally homogeneous boundary layers that have characteristics of weakly and moderately stable atmospheric flow is investigated, where the well-established wind engineering practice of using `flow generators' to provide a deep boundary layer is employed. Primary attention is given to the flow above the surface layer, in the absence of an overlying inversion, as assessed from first- and second-order moments of velocity and temperature. A uniform inlet temperature profile ahead of a deep layer, allowing initially neutral flow, results in the upper part of the boundary layer remaining neutral. A non-uniform inlet temperature profile is required but needs careful specification if odd characteristics are to be avoided, attributed to long-lasting effects inherent of stability, and to a reduced level of turbulent mixing. The first part of the wind-tunnel floor must not be cooled if turbulence quantities are to vary smoothly with height. Closely horizontally homogeneous flow is demonstrated, where profiles are comparable or closely comparable with atmospheric data in terms of local similarity and functions of normalized height. The ratio of boundary-layer height to surface Obukhov length, and the surface heat flux, are functions of the bulk Richardson number, independent of horizontal homogeneity. Surface heat flux rises to a maximum and then decreases.

  18. Self-organized nano-structuring of CoO islands on Fe(001)

    NASA Astrophysics Data System (ADS)

    Brambilla, A.; Picone, A.; Giannotti, D.; Riva, M.; Bussetti, G.; Berti, G.; Calloni, A.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-01-01

    The realization of nanometer-scale structures through bottom-up strategies can be accomplished by exploiting a buried network of dislocations. We show that, by following appropriate growth steps in ultra-high vacuum molecular beam epitaxy, it is possible to grow nano-structured films of CoO coupled to Fe(001) substrates, with tunable sizes (both the lateral size and the maximum height scale linearly with coverage). The growth mode is discussed in terms of the evolution of surface morphology and chemical interactions as a function of the CoO thickness. Scanning tunneling microscopy measurements reveal that square mounds of CoO with lateral dimensions of less than 25 nm and heights below 10 atomic layers are obtained by growing few-nanometers-thick CoO films on a pre-oxidized Fe(001) surface covered by an ultra-thin Co buffer layer. In the early stages of growth, a network of misfit dislocations develops, which works as a template for the CoO nano-structuring. From a chemical point of view, at variance with typical CoO/Fe interfaces, neither Fe segregation at the surface nor Fe oxidation at the buried interface are observed, as seen by Auger electron spectroscopy and X-ray Photoemission Spectroscopy, respectively.

  19. Electrodeposition of Polymer Nanostructures using Three Diffuse Double Layers: Polymerization beyond the Liquid/Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Divya, Velpula; Sangaranarayanan, M. V.

    2018-04-01

    Nanostructured conducting polymers have received immense attention during the past few decades on account of their phenomenal usefulness in diverse contexts, while the interface between two immiscible liquids is of great interest in chemical and biological applications. Here we propose a novel Electrode(solid)/Electrolyte(aqueous)/Electrolyte(organic) Interfacial assembly for the synthesis of polymeric nanostructures using a novel concept of three diffuse double layers. There exist remarkable differences between the morphologies of the polymers synthesized using the conventional electrode/electrolyte method and that of the new approach. In contrast to the commonly employed electrodeposition at liquid/liquid interfaces, these polymer modified electrodes can be directly employed in diverse applications such as sensors, supercapacitors etc.

  20. Tunneling Plasmonics in Bilayer Graphene.

    PubMed

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  1. Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Barlas, E.; Buckingham, S.; van Beeck, J.

    2016-01-01

    Increasing demand in wind energy has resulted in increasingly clustered wind farms, and raised the interest in wake research dramatically in the last couple of years. To this end, the present work employs an experimental approach with scaled three-bladed wind-turbine models in a large boundary-layer wind-tunnel. Time-resolved measurements are carried out with a three-component hot-wire anemometer in the mid-vertical plane of the wake up to a downstream distance of eleven turbine diameters. The major issue addressed is the wake dynamics i.e. the flow and turbulence characteristics as well as spectral content under two different neutral boundary-layer inflow conditions. The wind tunnel is arranged with and without roughened surfaces in order to mimic moderately rough and smooth conditions. The inflow characterization is carried out by using all three velocity components, while the rest of the study is focused on the streamwise component's evolution. The results show an earlier wake recovery, i.e. the velocity deficit due to the turbine is less persistent for the rough case due to higher incoming turbulence levels. This paves the way for enhanced mixing from higher momentum regions of the boundary layer towards the centre of the wake. The investigation on the turbulent shear stresses is in line with this observation as well. Moreover, common as well as distinguishing features of the turbulent-scales evolution are detected for rough and smooth inflow boundary-layer conditions. Wake meandering disappears for rough inflow conditions but persists for smooth case with a Strouhal number similar to that of a solid disk wake.

  2. Wind-tunnel experiments of turbulent flow over a surface-mounted 2-D block in a thermally-stratified boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-11-01

    Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).

  3. Nondestructive imaging of atomically thin nanostructures buried in silicon

    PubMed Central

    Gramse, Georg; Kölker, Alexander; Lim, Tingbin; Stock, Taylor J. Z.; Solanki, Hari; Schofield, Steven R.; Brinciotti, Enrico; Aeppli, Gabriel; Kienberger, Ferry; Curson, Neil J.

    2017-01-01

    It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) to micrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the characteristics of buried dopant nanostructures could only be inferred from destructive techniques and/or the performance of the final electronic device; this severely limits engineering and manufacture of real-world devices based on atomic-scale lithography. Here, we use scanning microwave microscopy (SMM) to image and electronically characterize three-dimensional phosphorus nanostructures fabricated via scanning tunneling microscope–based lithography. The SMM measurements, which are completely nondestructive and sensitive to as few as 1900 to 4200 densely packed P atoms 4 to 15 nm below a silicon surface, yield electrical and geometric properties in agreement with those obtained from electrical transport and secondary ion mass spectroscopy for unpatterned phosphorus δ layers containing ~1013 P atoms. The imaging resolution was 37 ± 1 nm in lateral and 4 ± 1 nm in vertical directions, both values depending on SMM tip size and depth of dopant layers. In addition, finite element modeling indicates that resolution can be substantially improved using further optimized tips and microwave gradient detection. Our results on three-dimensional dopant structures reveal reduced carrier mobility for shallow dopant layers and suggest that SMM could aid the development of fabrication processes for surface code quantum computers. PMID:28782006

  4. Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures

    NASA Astrophysics Data System (ADS)

    Passoni, Luca; Fumagalli, Francesco; Perego, Andrea; Bellani, Sebastiano; Mazzolini, Piero; Di Fonzo, Fabio

    2017-06-01

    Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al2O3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10-3 Ω cm-1, 11 cm2 V-1 s-1, and 1.62 × 1020 cm-3, resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.

  5. Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures.

    PubMed

    Passoni, Luca; Fumagalli, Francesco; Perego, Andrea; Bellani, Sebastiano; Mazzolini, Piero; Di Fonzo, Fabio

    2017-06-16

    Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO 2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al 2 O 3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10 -3 Ω cm -1 , 11 cm 2 V -1 s -1 , and 1.62 × 10 20 cm -3 , resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.

  6. An Experimental Investigation of Wall-Cooling Effects on Hypersonic Boundary-Layer Stability in a Quiet Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Blanchard, Alan E.; Selby, Gregory V.

    1996-01-01

    One of the primary reasons for developing quiet tunnels is for the investigation of high-speed boundary-layer stability and transition phenomena without the transition-promoting effects of acoustic radiation from tunnel walls. In this experiment, a flared-cone model under adiabatic- and cooled-wall conditions was placed in a calibrated, 'quiet' Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N=10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of continuous spectra data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions.

  7. Seed/catalyst-free vertical growth of high-density electrodeposited zinc oxide nanostructures on a single-layer graphene

    NASA Astrophysics Data System (ADS)

    Aziz, Nur Suhaili Abd; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf

    2014-02-01

    We report the seed/catalyst-free vertical growth of high-density electrodeposited ZnO nanostructures on a single-layer graphene. The absence of hexamethylenetetramine (HMTA) and heat has resulted in the formation of nanoflake-like ZnO structure. The results show that HMTA and heat are needed to promote the formation of hexagonal ZnO nanostructures. The applied current density plays important role in inducing the growth of ZnO on graphene as well as in controlling the shape, size, and density of ZnO nanostructures. High density of vertically aligned ZnO nanorods comparable to other methods was obtained. The quality of the ZnO nanostructures also depended strongly on the applied current density. The growth mechanism was proposed. According to the growth timing chart, the growth seems to involve two stages which are the formation of ZnO nucleation and the enhancement of the vertical growth of nanorods. ZnO/graphene hybrid structure provides several potential applications in electronics and optoelectronics such as photovoltaic devices, sensing devices, optical devices, and photodetectors.

  8. Performance of the active sidewall boundary-layer removal system for the Langley 0.3-meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.; Kilgore, W. Allen; Murthy, A. V.

    1989-01-01

    A performance evaluation of an active sidewall boundary-layer removal system for the Langley 0.3-m Transonic Cryogenic Tunnel (TCT) was evaluated in 1988. This system uses a compressor and two throttling digital valves to control the boundary-layer mass flow removal from the tunnel. The compressor operates near the maximum pressure ratio for all conditions. The system uses a surge prevention and flow recirculation scheme. A microprocessor based controller is used to provide the necessary mass flow and compressor pressure ratio control. Initial tests on the system indicated problems in realizing smooth mass flow control while running the compressor at high speed and high pressure ratios. An alternate method has been conceived to realize boundary-layer mass flow control which avoids the recirculation of the compressor mass flow and operation near the compressor surge point. This scheme is based on varying the speed of the compressor for a sufficient pressure ratio to provide needed mass flow removal. The system has a mass flow removal capability of about 10 percent of test section flow at M = 0.3 and 4 percent at M = 0.8. The system performance has been evaluated in the form of the compressor map, and compressor tunnel interface characteristics covering most of the 0.3-m TCT operational envelope.

  9. Free-layer size dependence of anisotropy field in nanoscale CoFeB/MgO magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Shinozaki, Motoya; Igarashi, Junta; Sato, Hideo; Ohno, Hideo

    2018-04-01

    We investigate free-layer size D dependence of effective anisotropy field in nanoscale CoFeB/MgO magnetic tunnel junctions by homodyne-detected ferromagnetic resonance. The effective anisotropy field HK\\text{eff} monotonically increases with decreasing D for a device with the reference-layer size much larger than the free-layer size. In contrast, HK\\text{eff} does not increase in a monotonic manner for a device with the reference-layer size comparable to the free-layer size. We reveal that the difference can be explained by the variation of the anisotropy field in the vicinity of the device edge.

  10. Scanning tunneling spectroscopy of molecular thin films and semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Gaan, Sandeep

    Work presented in this thesis mostly deals with nano-scale study of electronic properties of organic semiconducting molecules using pentacene (Pn) as a model system and compared with various SiC surfaces to gain more insight into physical processes at nano-scale. In addition, InAs quantum dots (QDs) in a GaAs matrix are studied to probe electronic states of individual QDs. Scanning tunneling microscopy (STM) and spectroscopy (STS) are the primary experimental techniques used to probe local electronic properties on the nano-scale. Vacuum sublimated Pn thin films were deposited onto SiC substrates for STM/STS experiments. STM studies show high quality ordered Pn films. Atomic force microscopy (AFM) images reveal dendritic growth pattern of these films. Local density of states (LDOS) measurements using STS reveals a HOMO-LUMO bandgap. In order to study charge transport properties of Pn films, different amount of charge were injected into the sample by systematically changing the tip-sample separation. Saturation of the tunnel current was observed at positive sample voltages (LUMO states). This effect was attributed to a transport/space charge limitation in tunnel current by treating it as a situation analogous to charge injection into insulators which gives rise to space charge limited current (also previously observed in the case of organic semiconductors). Using a simple model we were able to derive a hopping rate that characterizes nano-scale transport in Pn films at least in the vicinity of the STM probe-tip. We have studied effect of transport limitation in the tunnel current for various semiconductor surfaces. In order to probe surfaces of varying conductivities, we have used Si-rich SiC surfaces such as 3x3 and 3x3 -R30° (both Mott-Hubbard insulators) as well as a highly conducting C-rich graphene surface, and compared those results with the data obtained from Pn. We observe variation of the decay constant kappa (which characterizes the tunneling process) on

  11. Infrared Images of Boundary Layer Transition on the D8 Transport Configuration in the LaRC 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Mason, Michelle L.; Gatlin, Gregory M.

    2015-01-01

    Grit, trip tape, or trip dots are routinely applied on the leading-edge regions of the fuselage, wings, tails or nacelles of wind tunnel models to trip the flow from laminar to turbulent. The thickness of the model's boundary layer is calculated for nominal conditions in the wind tunnel test to determine the effective size of the trip dots, but the flow over the model may not transition as intended for runs with different flow conditions. Temperature gradients measured with an infrared camera can be used to detect laminar to turbulent boundary layer transition on a wind tunnel model. This non-intrusive technique was used in the NASA Langley 14- by 22-Foot Subsonic Tunnel to visualize the behavior of the flow over a D8 transport configuration model. As the flow through the wind tunnel either increased to or decreased from the run conditions, a sufficient temperature difference existed between the air and the model to visualize the transition location (due to different heat transfer rates through the laminar and the turbulent boundary layers) for several runs in this test. Transition phenomena were visible without active temperature control in the atmospheric wind tunnel, whether the air was cooler than the model or vice-versa. However, when the temperature of the model relative to the air was purposely changed, the ability to detect transition in the infrared images was enhanced. Flow characteristics such as a wing root horseshoe vortex or the presence of fore-body vortical flows also were observed in the infrared images. The images of flow features obtained for this study demonstrate the usefulness of current infrared technology in subsonic wind tunnel tests.

  12. [ACTIVITY OF ANTIMICROBIAL NANOSTRUCTURED BARRIER LAYERS BASED ON POLYETHYLENETEREPHTHALATE IN RELATION TO CLINICAL STRAINES OF MICROORGANISMS FOR SICK PERSONS OF GASTROENTEROLOGICAL PROFILE].

    PubMed

    Elinson, V M; Rusanova, E V; Vasilenko, I A; Lyamin, A N; Kostyuchenko, L N

    2015-01-01

    Homeostasis transgressions of enteral medium including disbiotic ones are often accompanying deseases of digestive tract. Espessially it touches upon sick persons connected with probe nourishing. One of the way for solving this problem is normalization of digestion microflore by means of wares with nanotechnological modifications of walls (probes, stomic tubes) which provide them antimicrobial properties and assist to normalization of digestive microbiotis and enteral homeostasis completely. The aim to study is research of antimicrobial activity of of nanostructured barrier layers based on polyethyleneterephthalate (PET) in relation to clinical straines of microorganisms. For barrier layer creation the approach on the base of methods of ion-plasma technology was used including ion-plasma treatment (nanostructuring) of the surface by ions noble and chemically active gases and following formation nanodimensional carbon films on the surface/ For the study of antimicrobial activity in relation to clinical straines of microorganisms we used the technique which allowed to establish the influence of parting degree of microorganisms suspension and time for samples exposing and microorganisms adsorbed on the surface. In experiment clinical straines obtained from different materials were used: Staphylococcus Hly+ and Calbicans--from pharyngeal mucosa, E. coli--from feces, K.pneumoniae--from urine. Sharing out and species identification of microorganisms were fulfilled according with legasy documents. In results of the study itwas obtained not only the presence of staticticaly confirmed antimicrobial activity of PET samples with nanostructured barrier layers in relation to different stimulators of nosocomical infections but also the influence of different factors connected with formation of nanostructured layers and consequently based with them physicochemical characteristics such as, in particular, surface energy, surface relief parameters, surface charg and others, as well

  13. Giant tunneling magnetoresistance and tunneling spin polarization in magnetic tunnel junctions with MgO (100) tunnel barriers

    NASA Astrophysics Data System (ADS)

    Parkin, Stuart

    2006-03-01

    Recent advances in generating, manipulating and detecting spin-polarized electrons and electrical current make possible new classes of spin based sensor, memory and logic devices [1]. One key component of many such devices is the magnetic tunneling junction (MTJ) - a sandwich of thin layers of metallic ferromagnetic electrodes separated by a tunneling barrier, typically an oxide material only a few atoms thick. The magnitude of the tunneling current passing through the barrier can be adjusted by varying the relative magnetic orientation of the adjacent ferromagnetic layers. As a result, MTJs can be used to sense the magnitude of magnetic fields or to store information. The electronic structure of the ferromagnet together with that of the insulator determines the spin polarization of the current through an MTJ -- the ratio of 'up' to 'down' spin electrons. Using conventional amorphous alumina tunnel barriers tunneling spin polarization (TSP) values of up to ˜55% are found for conventional 3d ferromagnets, such as CoFe, but using highly textured crystalline MgO tunnel barriers TSP values of more than 90% can be achieved for otherwise the same ferromagnet [2]. Such TSP values rival those previously observed only with half-metallic ferromagnets. Corresponding giant values of tunneling magnetoresistance (TMR) are found, exceeding 350% at room temperature and nearly 600% at 3K. Perhaps surprisingly the MgO tunnel barrier can be quite rough: its thickness depends on the local crystalline texture of the barrier, which itself is influenced by structural defects in the underlayer. We show that the magnitude and the sign of the TMR is strongly influenced by defects in the tunnel barrier and by the detailed structure of the barrier/ferromagnet interfaces. The observation of Kondo-assisted tunneling phenomena will be discussed as well as the detailed dependence of TMR on chemical bonding at the interfaces [3]. [1] .S.S.P. Parkin, X. Jiang, C. Kaiser, et al., Proc. IEEE 91, 661

  14. Fixed-Gap Tunnel Junction for Reading DNA Nucleotides

    PubMed Central

    2015-01-01

    Previous measurements of the electronic conductance of DNA nucleotides or amino acids have used tunnel junctions in which the gap is mechanically adjusted, such as scanning tunneling microscopes or mechanically controllable break junctions. Fixed-junction devices have, at best, detected the passage of whole DNA molecules without yielding chemical information. Here, we report on a layered tunnel junction in which the tunnel gap is defined by a dielectric layer, deposited by atomic layer deposition. Reactive ion etching is used to drill a hole through the layers so that the tunnel junction can be exposed to molecules in solution. When the metal electrodes are functionalized with recognition molecules that capture DNA nucleotides via hydrogen bonds, the identities of the individual nucleotides are revealed by characteristic features of the fluctuating tunnel current associated with single-molecule binding events. PMID:25380505

  15. Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures.

    PubMed

    Shen, Guozhen; Chen, Di; Chen, Po-Chiang; Zhou, Chongwu

    2009-05-26

    Gallium sulfide (GaS) is a wide direct bandgap semiconductor with uniform layered structure used in photoelectric devices, electrical sensors, and nonlinear optical applications. We report here the controlled synthesis of various high-quality one-dimensional GaS nanostructures (thin nanowires, nanobelts, and zigzag nanobelts) as well as other kinds of GaS products (microbelts, hexagonal microplates, and GaS/Ga(2)O(3) heterostructured nanobelts) via a simple vapor-solid method. The morphology and structures of the products can be easily controlled by substrate temperature and evaporation source. Optical properties of GaS thin nanowires and nanobelts were investigated and both show an emission band centered at 580 nm.

  16. Boundary layer noise subtraction in hydrodynamic tunnel using robust principal component analysis.

    PubMed

    Amailland, Sylvain; Thomas, Jean-Hugh; Pézerat, Charles; Boucheron, Romuald

    2018-04-01

    The acoustic study of propellers in a hydrodynamic tunnel is of paramount importance during the design process, but can involve significant difficulties due to the boundary layer noise (BLN). Indeed, advanced denoising methods are needed to recover the acoustic signal in case of poor signal-to-noise ratio. The technique proposed in this paper is based on the decomposition of the wall-pressure cross-spectral matrix (CSM) by taking advantage of both the low-rank property of the acoustic CSM and the sparse property of the BLN CSM. Thus, the algorithm belongs to the class of robust principal component analysis (RPCA), which derives from the widely used principal component analysis. If the BLN is spatially decorrelated, the proposed RPCA algorithm can blindly recover the acoustical signals even for negative signal-to-noise ratio. Unfortunately, in a realistic case, acoustic signals recorded in a hydrodynamic tunnel show that the noise may be partially correlated. A prewhitening strategy is then considered in order to take into account the spatially coherent background noise. Numerical simulations and experimental results show an improvement in terms of BLN reduction in the large hydrodynamic tunnel. The effectiveness of the denoising method is also investigated in the context of acoustic source localization.

  17. Modeling direct interband tunneling. II. Lower-dimensional structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Andrew, E-mail: pandrew@ucla.edu; Chui, Chi On; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095

    We investigate the applicability of the two-band Hamiltonian and the widely used Kane analytical formula to interband tunneling along unconfined directions in nanostructures. Through comparisons with k·p and tight-binding calculations and quantum transport simulations, we find that the primary correction is the change in effective band gap. For both constant fields and realistic tunnel field-effect transistors, dimensionally consistent band gap scaling of the Kane formula allows analytical and numerical device simulations to approximate non-equilibrium Green's function current characteristics without arbitrary fitting. This allows efficient first-order calibration of semiclassical models for interband tunneling in nanodevices.

  18. Identifying the Assembly Configuration and Fluorescence Spectra of Nanoscale Zinc-Tetraphenylporphyrin Aggregates with Scanning Tunneling Microscopy

    PubMed Central

    Zhang, Xiao-Lei; Jiang, Jian-Wei; Liu, Yi-Ting; Lou, Shi-Tao; Gao, Chun-Lei; Jin, Qing-Yuan

    2016-01-01

    ZnTPP (Zinc-Tetraphenylporphyrin) is one of the most common nanostructured materials, having high stability and excellent optoelectronic properties. In this paper, the fluorescence features of self-assembled ZnTPP monomers and aggregates on Au(111) surface are investigated in detail on the nanometer scale with scanning tunneling microscopy (STM). The formation of ZnTPP dimers is found in thick layers of a layer-by-layer molecular assembly on Au substrate with its specific molecular arrangement well characterized. Tip-induced luminescence shows a red shift from tilted dimers comparing with the behavior from monomers, which can be attributed to the change of vibrational states due to the intermolecular interaction and the increasing dielectric effect. The nanoscale configuration dependence of electroluminescence is demonstrated to provide a powerful tool aiding the design of functional molecular photoelectric devices. PMID:26948654

  19. Homo-endotaxial one-dimensional Si nanostructures

    DOE PAGES

    Song, Jiaming; Hudak, Bethany M.; Sims, Hunter; ...

    2017-11-29

    One-dimensional (1D) nanostructures are highly sought after, both for their novel electronic properties as well as for their improved functionality. However, due to their nanoscale dimensions, these properties are significantly affected by the environment in which they are embedded. Here in this paper, we report on the creation of 1D homo-endotaxial Si nanostructures, i.e. 1D Si nanostructures with a lattice structure that is uniquely different from the Si diamond lattice in which they are embedded. We use scanning tunneling microscopy and spectroscopy, scanning transmission electron microscopy, density functional theory, and conductive atomic force microscopy to elucidate their formation and properties.more » Depending on kinetic constraints during growth, they can be prepared as endotaxial 1D Si nanostructures completely embedded in crystalline Si, or underneath a stripe of amorphous Si containing a large concentration of Bi atoms. Lastly, these homo-endotaxial 1D Si nanostructures have the potential to be useful components in nanoelectronic devices based on the technologically mature Si platform.« less

  20. Hypersonic Boundary Layer Stability over a Flared Cone in a Quiet Tunnel

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona; Wilkinson, Stephen P.

    1996-01-01

    Hypersonic boundary layer measurements were conducted over a flared cone in a quiet wind tunnel. The flared cone was tested at a freestream unit Reynolds number of 2.82x106/ft in a Mach 6 flow. This Reynolds number provided laminar-to-transitional flow over the model in a low-disturbance environment. Point measurements with a single hot wire using a novel constant voltage anemometry system were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the laminar-to-transitional state of the boundary layer and to identify instability modes. Results suggest that the second mode disturbances were the most unstable and scaled with the boundary layer thickness. The integrated growth rates of the second mode compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode sub-harmonic. The sub-harmonic wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that non-linear disturbances are not associated with high free stream disturbance levels.

  1. Characterization of Ag-porous silicon nanostructured layer formed by an electrochemical etching of p-type silicon surface for bio-application

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Al-Mariri, A.; Haj-Mhmoud, N.

    2017-06-01

    Nanostructured layers composed of silver-porous silicon (Ag-PS) have been formed by an electrochemical etching of p-type (1 1 1) silicon substrate in a AgNO3:HF:C2H5OH solution at different etching times (10 min-30 min). Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) results reveal that the produced layers consist of Ag dendrites and a silicon-rich porous structure. The nanostructuring nature of the layer has been confirmed by spatial micro-Raman scattering and x-ray diffraction techniques. The Ag dendrites exhibit a surface-enhanced Raman scattering (SERS) spectrum, while the porous structure shows a typical PS Raman spectrum. Upon increasing the etching time, the average size of silicon nanocrystallite in the PS network decreases, while the average size of Ag nanocrystals is slightly affected. In addition, the immobilization of prokaryote Salmonella typhimurium DNA via physical adsorption onto the Ag-PS layer has been performed to demonstrate its efficiency as a platform for detection of biological molecules using SERS.

  2. Boundary-layer transition on cones at angle of attack in a Mach-6 Quiet Tunnel

    NASA Astrophysics Data System (ADS)

    Swanson, Erick O.

    It is desirable for the boundary layer on a re-entry vehicle (RV) to be laminar during as much of its flight as possible, since a turbulent boundary layer causes several problems, such as high heat flux to the vehicle and larger drag forces. Nosetip roughness can cause the boundary layer to transition downstream on the cone. Surface roughness and nosetip bluntness may cause windside-forward transition on maneuvering RVs. The crossflow instability may also influence transition on yawed RVs. The mechanisms through which these phenomena induce transition are poorly understood. Several experiments have been conducted to study these phenomena. The temperature-sensitive-paint (TSP) and oil-flow techniques were used to observe transition and crossflow vortices on cones at angle of attack in the Purdue Boeing/AFOSR Mach-6 Quiet Tunnel. The high-Reynolds number capability of the tunnel was developed to facilitate these experiments. Improvements were made in the use of the temperature-sensitive-paint technique in the Purdue Mach-6 Quiet Tunnel. The measured heat transfer to cones with sharp and spherically-blunt nosetips at 0° angle-of-attack was within 60% of the values from Navier-Stokes computations. Transition was observed on sharp and spherically-blunt cones at 6° angle-of-attack in noisy flow. Crossflow vortices were observed with both TSP and oil flow under noisy conditions in the turbulent boundary layer on a sharp cone. The vortex angles were about 50% of the surface-streamline angles observed using oil dots. TSP was also used to observe crossflow vortices in quiet flow. The vortices were similar to those seen in noisy flow. An array of roughness elements at x = 2 inches (axially) with a spacing of 9° on a yawed sharp cone in noisy flow influenced transition that was apparently induced by the crossflow instability. No influence of the roughness array was observed in quiet flow.

  3. Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance.

    PubMed

    Roxworthy, Brian J; Toussaint, Kimani C

    2012-04-23

    Using Au bowtie nanoantennas arrays (BNAs), we demonstrate that the performance and capability of plasmonic nanotweezers is strongly influenced by both the material comprising the thin adhesion layer used to fix Au to a glass substrate and the nanostructure orientation with respect to incident illumination. We find that a Ti adhesion layer provides up to 30% larger trap stiffness and efficiency compared to a Cr layer of equal thickness. Orientation causes the BNAs to operate as either (1) a 2D optical trap capable of efficient trapping and manipulation of particles as small as 300 nm in diameter, or (2) a quasi-3D trap, with the additional capacity for size-dependent particle sorting utilizing axial Rayleigh-Bénard convection currents caused by heat generation. We show that heat generation is not necessarily deleterious to plasmonic nanotweezers and achieve dexterous manipulation of nanoparticles with non-resonant illumination of BNAs. © 2012 Optical Society of America

  4. Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer.

    PubMed

    Jia, Yi; Cao, Anyuan; Kang, Feiyu; Li, Peixu; Gui, Xuchun; Zhang, Luhui; Shi, Enzheng; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai

    2012-06-21

    Deposition of nanostructures such as carbon nanotubes on Si wafers to make heterojunction structures is a promising route toward high efficiency solar cells with reduced cost. Here, we show a significant enhancement in the cell characteristics and power conversion efficiency by growing a silicon oxide layer at the interface between the nanotube film and Si substrate. The cell efficiency increases steadily from 0.5% without interfacial oxide to 8.8% with an optimal oxide thickness of about 1 nm. This systematic study reveals that formation of an oxide layer switches charge transport from thermionic emission to a mixture of thermionic emission and tunneling and improves overall diode properties, which are critical factors for tailoring the cell behavior. By controlled formation and removal of interfacial oxide, we demonstrate oscillation of the cell parameters between two extreme states, where the cell efficiency can be reversibly altered by a factor of 500. Our results suggest that the oxide layer plays an important role in Si-based photovoltaics, and it might be utilized to tune the cell performance in various nanostructure-Si heterojunction structures.

  5. Current status of submucosal tunneling endoscopic resection for gastrointestinal submucosal tumors originating from the muscularis propria layer.

    PubMed

    Tan, Yuyong; Huo, Jirong; Liu, Deliang

    2017-11-01

    Gastrointestinal submucosal tumors (SMTs) have been increasingly identified via the use of endoscopic ultrasonography, and removal is often recommended for SMTs that are >2 cm in diameter or symptomatic. Submucosal tunneling endoscopic resection (STER), also known as submucosal endoscopic tumor resection, endoscopic submucosal tunnel dissection or tunneling endoscopic muscularis dissection, is a novel endoscopic technique for treating gastrointestinal SMTs originating from the muscularis propria layer, and has been demonstrated to be effective in the removal of SMTs with a decreased rate of recurrence by clinical studies. STER may be performed for patients with esophageal or cardia SMTs, and its application has expanded beyond these types of SMTs due to modifications to the technique. The present study reviewed the applications, procedure, efficacy and complications associated with STER.

  6. Fabrication and characterization of ultrathin dextran layers: Time dependent nanostructure in aqueous environments revealed by OWLS.

    PubMed

    Saftics, Andras; Kurunczi, Sándor; Szekrényes, Zsolt; Kamarás, Katalin; Khánh, Nguyen Quoc; Sulyok, Attila; Bősze, Szilvia; Horvath, Robert

    2016-10-01

    Surface coatings of the polysaccharide dextran and its derivatives are key ingredients especially in label-free biosensors for the suppression of non-specific binding and for receptor immobilization. Nevertheless, the nanostructure of these ultrathin coatings and its tailoring by the variation of the preparation conditions have not been profoundly characterized and understood. In this work carboxymethylated dextran (CMD) was prepared and used for fabricating ultrathin surface coatings. A grafting method based on covalent coupling to aminosilane- and epoxysilane-functionalized surfaces was applied to obtain thin CMD layers. The carboxyl moiety of the CMD was coupled to the aminated surface by EDC-NHS reagents, while CMD coupling through epoxysilane molecules was performed without any additional reagents. The surface analysis following the grafting procedures consisted of X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared spectroscopy (ATR-IR), spectroscopic ellipsometry, atomic force microscopy (AFM) and optical waveguide lightmode spectroscopy (OWLS). The XPS and AFM measurements showed that the grafting resulted in a very thin dextran layer of a few nanometers. The OWLS method allowed devising the structure of the interfacial dextran layers by the evaluation of the optogeometrical parameters. The alteration in the nanostructure of the CMD layer with the chemical composition of the silane coverage and the pH of the grafting solution was revealed by in situ OWLS, specifically, lain down chains were found to be prevalent on the surface under neutral and basic conditions on epoxysilylated surfaces. The developed methodologies allowed to design and fabricate nanometer scale CMD layers with well-controlled surface structure, which are very difficult to characterize in aqueous environments using present instrumentations and highly hydrated surface layers. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Tables for correcting airfoil data obtained in the Langley 0.3-meter transonic cryogenic tunnel for sidewall boundary-layer effects

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Adcock, J. B.

    1986-01-01

    Tables for correcting airfoil data taken in the Langley 0.3-meter Transonic Cryogenic Tunnel for the presence of sidewall boundary layer are presented. The corrected Mach number and the correction factor are minutely altered by a 20 percent change in the boundary layer virtual origin distance. The sidewall boundary layer displacement thicknesses measured for perforated sidewall inserts and without boundary layer removal agree with the values calculated for solid sidewalls.

  8. Antireflective nanostructures for CPV

    NASA Astrophysics Data System (ADS)

    Buencuerpo, Jeronimo; Torne, Lorena; Alvaro, Raquel; Llorens, Jose Manuel; Dotor, María Luisa; Ripalda, Jose Maria

    2017-09-01

    We have optimized a periodic antireflective nanostructure. The optimal design has a theoretical broadband reflectivity of 0.54% on top of GaInP with an AlInP window layer. Preliminary fabrication attempts have been carried out on top of GaAs substrates. Due to the lack of a window layer, and the need to fine tune the fabrication process, the fabricated nanostructures have a reflectivity of 3.1%, but this is already significantly lower than the theoretical broadband reflectance of standard MgF2/ZnS bilayers (4.5%).

  9. Effective Passivation and Tunneling Hybrid a-SiOx(In) Layer in ITO/n-Si Heterojunction Photovoltaic Device.

    PubMed

    Gao, Ming; Wan, Yazhou; Li, Yong; Han, Baichao; Song, Wenlei; Xu, Fei; Zhao, Lei; Ma, Zhongquan

    2017-05-24

    In this article, using controllable magnetron sputtering of indium tin oxide (ITO) materials on single crystal silicon at 100 °C, the optoelectronic heterojunction frame of ITO/a-SiO x (In)/n-Si is simply fabricated for the purpose of realizing passivation contact and hole tunneling. It is found that the gradation profile of indium (In) element together with silicon oxide (SiO x /In) within the ultrathin boundary zone between ITO and n-Si occurs and is characterized by X-ray photoelectron spectroscopy with the ion milling technique. The atomistic morphology and physical phase of the interfacial layer has been observed with a high-resolution transmission electron microscope. X-ray diffraction, Hall effect measurement, and optical transmittance with Tauc plot have been applied to the microstructure and property analyses of ITO thin films, respectively. The polycrystalline and amorphous phases have been verified for ITO films and SiO x (In) hybrid layer, respectively. For the quantum transport, both direct and defect-assisted tunneling of photogenerated holes through the a-SiO x (In) layer is confirmed. Besides, there is a gap state correlative to the indium composition and located at E v + 4.60 eV in the ternary hybrid a-SiO x (In) layer that is predicted by density functional theory of first-principles calculation, which acts as an "extended delocalized state" for direct tunneling of the photogenerated holes. The reasonable built-in potential (V bi = 0.66 V) and optimally controlled ternary hybrid a-SiO x (In) layer (about 1.4 nm) result in that the device exhibits excellent PV performance, with an open-circuit voltage of 0.540 V, a short-circuit current density of 30.5 mA/cm 2 , a high fill factor of 74.2%, and a conversion efficiency of 12.2%, under the AM 1.5 illumination. The work function difference between ITO (5.06 eV) and n-Si (4.31 eV) is determined by ultraviolet photoemission spectroscopy and ascribed to the essence of the built-in-field of the PV device

  10. Application of electrochemically deposited nanostructured ZnO layers on quartz crystal microbalance for NO2 detection

    NASA Astrophysics Data System (ADS)

    Georgieva, B.; Petrov, M.; Lovchinov, K.; Ganchev, M.; Georgieva, V.; Dimova-Malinovska, D.

    2014-11-01

    The research was fixed on sensing behavior of ZnO nanostructured (NS) films to NO2 concentrations in the environment. The ZnO NS layers are deposited by electrochemical method on quartz resonators with Au electrodes. The sorption properties of ZnO layers were defined by measuring the resonant frequency shift (Δf) of the QCM-ZnO structure for different NO2 concentrations. The measurements were based on the correlation between the frequency shift of the QCM and additional mass loading (Δm) on the resonator calculated using Sauerbrey equation for the AT-cut quartz plate. Frequency - Time Characteristics (FTCs) of the samples were measured as a function of different NO2 concentrations in order to define the sorption abilities of ZnO layers. The experiments were carried out on a special set up in a dynamical regime. From FTCs the response and the recovery times of the QCM-ZnO structure were measured with varying NO2. Frequency shift changed from 23 Hz to 58Hz when NO2 was varied in the range of 250ppm - 5000ppm. The process of sorption was estimated as reversible and the sorption as physical. The obtained results demonstrated that QCM covered with the electrochemically deposited nanostructured ZnO films can be used as application in NO2 sensors.

  11. Buffer layer dependence of magnetoresistance effects in Co2Fe0.4Mn0.6Si/MgO/Co50Fe50 tunnel junctions

    NASA Astrophysics Data System (ADS)

    Sun, Mingling; Kubota, Takahide; Takahashi, Shigeki; Kawato, Yoshiaki; Sonobe, Yoshiaki; Takanashi, Koki

    2018-05-01

    Buffer layer dependence of tunnel magnetoresistance (TMR) effects was investigated in Co2Fe0.4Mn0.6Si (CFMS)/MgO/Co50Fe50 magnetic tunnel junctions (MTJs). Pd, Ru and Cr were selected for the buffer layer materials, and MTJs with three different CFMS thicknesses (30, 5, and 0.8 nm) were fabricated. A maximum TMR ratio of 136% was observed in the Ru buffer layer sample with a 30-nm-thick CFMS layer. TMR ratios drastically degraded for the CFMS thickness of 0.8 nm, and the values were 26% for Cr buffer layer and less than 1% for Pd and Ru buffer layers. From the annealing temperature dependence of the TMR ratios, amounts of interdiffusion and effects from the lattice mismatch were discussed.

  12. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. We demonstrate successful tunneling, charge, and spin transport with a fluorinated graphene tunnel barrier on a graphene channel. We show that while spin transport stops short of room temperature, spin polarization efficiency values are the highest of any graphene spin devices. We also demonstrate that hydrogenation of graphene can also be used to create a tunnel barrier. We begin with a four-layer stack of graphene and hydrogenate the top few layers to decouple them from the graphene transport channel beneath. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies. The measured spin polarization efficiencies for hydrogenated graphene are higher than most oxide tunnel barriers on graphene, but not as high as with fluorinated graphene tunnel barriers. However, here we show that spin transport persists up to room temperature. Our results for the hydrogenated graphene tunnel barriers are compared with fluorinated tunnel barriers and we discuss the

  13. The anisotropic tunneling behavior of spin transport in graphene-based magnetic tunneling junction

    NASA Astrophysics Data System (ADS)

    Pan, Mengchun; Li, Peisen; Qiu, Weicheng; Zhao, Jianqiang; Peng, Junping; Hu, Jiafei; Hu, Jinghua; Tian, Wugang; Hu, Yueguo; Chen, Dixiang; Wu, Xuezhong; Xu, Zhongjie; Yuan, Xuefeng

    2018-05-01

    Due to the theoretical prediction of large tunneling magnetoresistance (TMR), graphene-based magnetic tunneling junction (MTJ) has become an important branch of high-performance spintronics device. In this paper, the non-collinear spin filtering and transport properties of MTJ with the Ni/tri-layer graphene/Ni structure were studied in detail by utilizing the non-equilibrium Green's formalism combined with spin polarized density functional theory. The band structure of Ni-C bonding interface shows that Ni-C atomic hybridization facilitates the electronic structure consistency of graphene and nickel, which results in a perfect spin filtering effect for tri-layer graphene-based MTJ. Furthermore, our theoretical results show that the value of tunneling resistance changes with the relative magnetization angle of two ferromagnetic layers, displaying the anisotropic tunneling behavior of graphene-based MTJ. This originates from the resonant conduction states which are strongly adjusted by the relative magnetization angles. In addition, the perfect spin filtering effect is demonstrated by fitting the anisotropic conductance with the Julliere's model. Our work may serve as guidance for researches and applications of graphene-based spintronics device.

  14. Nanostructured double-layer FeO as nanotemplate for tuning adsorption of titanyl phthalocyanine molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Shuangzan; University of Chinese Academy of Sciences, Beijing 100049; Qin, Zhihui, E-mail: zhqin@wipm.ac.cn

    2014-06-23

    The growth, structure of Pt(111) supported double-layer FeO and the adsorption of titanyl phthalocyanine (TiOPc) molecules with tunable site and orientation were presented. According to the atomic-resolution STM image, the structure was rationalized as (8√3 × 8√3) R30°/Pt(111) nanostructure constructed by Fe species coordinated with different number of oxygen on top of non-rotated (8 × 8) FeO /Pt(111) structure. Due to the modulation of the stacking of Fe atoms in the second layer relative to the O atoms in the second layer and the underlying layer, the interface and total dipole moment periodically vary within (8√3 × 8√3) R30°/Pt(111) structure. The resulted periodically distributed dipole-dipole interactionmore » benefits the growth of TiOPc molecules with area-selective sites and molecular orientations. Thus, this study provides a reliable method to govern the adsorption process of the polar molecules for potential applications in future functional molecular devices.« less

  15. Hypersonic Boundary Layer Stability Experiments in a Quiet Wind Tunnel with Bluntness Effects

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona

    1996-01-01

    Hypersonic boundary layer measurements over a flared cone were conducted in a Mach 6 quiet wind tunnel at a freestream unit Reynolds number of 2.82 million/ft. This Reynolds number provided laminar-to-transitional flow over the cone model in a low-disturbance environment. Four interchangeable nose-tips, including a sharp-tip, were tested. Point measurements with a single hot-wire using a novel constant voltage anemometer were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the transitional state of the boundary layer and to identify instability modes. Results suggest that second mode disturbances were the most unstable and scaled with the boundary layer thickness. The second mode integrated growth rates compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode subharmonic. The subharmonic disturbance wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that nonlinear disturbances are not associated with 'high' free stream disturbance levels. Nose-tip radii greater than 2.7% of the base radius completely stabilized the second mode.

  16. Electronic structure of sputter deposited MgO(100) tunnel barriers in magnetic tunnel junction structures exhibiting giant tunneling magnetoresistance

    NASA Astrophysics Data System (ADS)

    Yang, See-Hun; Samant, Mahesh; Parkin, Stuart

    2007-03-01

    Giant tunneling magnetoresistance (TMR) in magnetic tunnel junctions formed with crystalline MgO tunnel barriers [1] have potential applications in a wide variety of spintronic devices. However, the relationship of the TMR to the detailed chemical and electronic structure of the MgO barrier and its interfaces with the ferromagnetic electrodes is not yet fully understood. We have carried out valence band photoemission spectroscopy and x-ray absorption spectroscopy to characterize the chemical state and electronic structure of sputter deposited, highly oriented, MgO (001) barriers and its interfaces with ferromagnetic electrodes. A large band gap of ˜7.5 eV is found even for ultrathin MgO layers. This is consistent with barrier heights found from fitting current versus voltage curves providing that very small effective electron masses are used. We discuss the role of thin Mg interface layers that we have used to reduce oxidation of the underlying ferromagnetic layer during the MgO layer formation [1]. [1] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, S.-H. Yang, Nature Materials 3, 862 (2004).

  17. Plasmonic resonances in hybrid systems of aluminum nanostructured arrays and few layer graphene within the UV-IR spectral range

    NASA Astrophysics Data System (ADS)

    González-Campuzano, R.; Saniger, J. M.; Mendoza, D.

    2017-11-01

    The size-controllable and ordered Al nanocavities and nanodomes arrays were synthesized by electrochemical anodization of aluminum using phosphoric acid, citric acid and mixture both acids. Few layer graphene (FLG) was transferred directly on top of Al nanostructures and their morphology were evaluated by scanning electron microscopy. The interaction between FLG and the plasmonic properties of Al nanostructures arrays were investigated based on specular reflectivity in the ultraviolet-visible-infrared range and Raman spectroscopy. We found that their optical reflectivity was dramatically reduced as compared with unstructured Al. At the same time pronounced reflectivity dips were detectable in the 200-896 nm wavelength range, which were ascribed to plasmonic resonances. The plasmonic properties of these nanostructures do not exhibit evident changes by the presence of FLG in the UV-vis range of the electromagnetic spectrum. By contrast, the surface-enhanced Raman spectroscopy of FLG was observed in nanocavities and nanodomes structures that result in an intensity increase of the characteristic G and 2D bands of FLG induced by the plasmonic properties of Al nanostructures.

  18. Double-pinned magnetic tunnel junction sensors with spin-valve-like sensing layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Z. H.; Huang, L.; Feng, J. F., E-mail: jiafengfeng@iphy.ac.cn

    2015-08-07

    MgO magnetic tunnel junction (MTJ) sensors with spin-valve-like sensing layers of Ir{sub 22}Mn{sub 78} (6)/Ni{sub 80}Fe{sub 20} (t{sub NiFe} = 20–70)/Ru (0.9)/Co{sub 40}Fe{sub 40}B{sub 20} (3) (unit: nm) have been fabricated. A linear field dependence of magnetoresistance for these MTJ sensors was obtained by carrying out a two-step field annealing process. The sensitivity and linear field range can be tuned by varying the thickness of NiFe layer and annealing temperature, and a high sensitivity of 37%/mT has been achieved in the MTJ sensors with 70 nm NiFe at the optimum annealing temperature of 230 °C. Combining the spin-valve-like sensing structure and a soft magneticmore » NiFe layer, MTJ sensors with relatively wide field sensing range have been achieved and could be promising for showing high sensitivity magnetic field sensing applications.« less

  19. Room-temperature sensitivity to NO2 exposure of electrochemically-deposited nanostructured ZnO layers

    NASA Astrophysics Data System (ADS)

    Lovchinov, K.; Petrov, M.; Ganchev, M.; Georgieva, V.; Nichev, H.; Georgieva, B.; Dimova-Malinovska, D.

    2014-05-01

    This paper reports studies on the sensitivity of ZnO layers to NO2 exposure. ZnO layers were fabricated by electrochemical deposition on the surface of a quartz crystal microbalance (QCM) with Au electrodes. The sensitivity was estimated using the frequency-time characteristics of the QCM. For this purpose, the resonance frequency shift was measured. The sorption process was investigated in a NO2 gas flow. The change in the resonance frequency, f of the QCM as a function of the loaded mass of NO2 was followed for a NO2 concentration of 500 ppm. Under gas exposure, the frequency decreased and reached saturation in five min. A frequency shift of 38 Hz was measured and a mass loading of 8.39 ng was calculated. The resonance frequency showed a very good recovery within two minutes after the NO2 flow was switched off. The results demonstrate that the electrodeposited nanostructured ZnO layers have a potential for application as NO2 gas sensors.

  20. Investigation of magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures

    NASA Astrophysics Data System (ADS)

    Das, Kalipada

    2017-10-01

    In our present study, we address in detail the magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures. In these core-shell nanostructures, well-known half metallic La0.67Sr0.33MnO3 nanoparticles (average particle size, ˜20 nm) are wrapped by the charge ordered antiferromagnetic Pr0.67Ca0.33MnO3 (PCMO) matrix. The intrinsic properties of PCMO markedly modify it into such a core-shell form. The robustness of the PCMO matrix becomes fragile and melts at an external magnetic field (H) of ˜20 kOe. The analysis of magneto-transport data indicates the systematic reduction of the electron-electron and electron-magnon interactions in the presence of an external magnetic field in these nanostructures. The pronounced training effect appears in this phase separated compound, which was analyzed by considering the second order tunneling through the grain boundaries of the nanostructures. Additionally, the analysis of low field magnetoconductance data supports the second order tunneling and shows the close value of the universal limit (˜1.33).

  1. Tunneling STM/STS and break-junction spectroscopy of the layered nitro-chloride superconductors MNCl (M = Ti, Hf, Zr)

    NASA Astrophysics Data System (ADS)

    Ekino, Toshikazu; Sugimoto, Akira; Gabovich, Alexander M.; Zheng, Zhanfeng; Zhang, Shuai; Yamanaka, Shoji

    2014-05-01

    The layered superconductors β-MNCl with the critical temperatures Tc = 14 K (M = Zr) - 25 K (M = Hf) were investigated by means of scanning-tunneling microscopy/spectroscopy and break-junction tunneling spectroscopy. The STM/STS was used to investigate the surface electronic structures in nanometer length scale, while the BJTS was employed to precisely determine the gap characteristics. Both techniques consistently clarified the unusually large size of the superconducting gap. Wide gap distributions with large-scale maximum gap values were also revealed in α-KyTiNCl with a different crystal structure.

  2. Atomistic Insights Into the Oriented Attachment of Tunnel-Based Oxide Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yifei; Wood, Stephen M; He, Kun

    Controlled synthesis of nanomaterials is one of the grand challenges facing materials scientists. In particular, how tunnel-based nanomaterials aggregate during synthesis while maintaining their well-aligned tunneled structure is not fully understood. Here, we describe the atomistic mechanism of oriented attachment (OA) during solution synthesis of tunneled α-MnO2 nanowires based on a combination of in situ liquid cell transmission electron microscopy (TEM), aberration-corrected scanning TEM with subangstrom spatial resolution, and first-principles calculations. It is found that primary tunnels (1 × 1 and 2 × 2) attach along their common {110} lateral surfaces to form interfaces corresponding to 2 × 3 tunnelsmore » that facilitate their short-range ordering. The OA growth of α-MnO2 nanowires is driven by the stability gained from elimination of {110} surfaces and saturation of Mn atoms at {110}-edges. During this process, extra [MnOx] radicals in solution link the two adjacent {110} surfaces and bond with the unsaturated Mn atoms from both surface edges to produce stable nanowire interfaces. Our results provide insights into the controlled synthesis and design of nanomaterials in which tunneled structures can be tailored for use in catalysis, ion exchange, and energy storage applications.« less

  3. Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alimardani, Nasir; Conley, John F., E-mail: jconley@eecs.oregonstate.edu

    Metal-insulator-insulator-metal tunnel diodes with dissimilar work function electrodes and nanolaminate Al{sub 2}O{sub 3}-Ta{sub 2}O{sub 5} bilayer tunnel barriers deposited by atomic layer deposition are investigated. This combination of high and low electron affinity insulators, each with different dominant conduction mechanisms (tunneling and Frenkel-Poole emission), results in improved low voltage asymmetry and non-linearity of current versus voltage behavior. These improvements are due to defect enhanced direct tunneling in which electrons transport across the Ta{sub 2}O{sub 5} via defect based conduction before tunneling directly through the Al{sub 2}O{sub 3}, effectively narrowing the tunnel barrier. Conduction through the device is dominated by tunneling,more » and operation is relatively insensitive to temperature.« less

  4. Experimental demonstration of single electron transistors featuring SiO{sub 2} plasma-enhanced atomic layer deposition in Ni-SiO{sub 2}-Ni tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karbasian, Golnaz, E-mail: Golnaz.Karbasian.1@nd.edu; McConnell, Michael S.; Orlov, Alexei O.

    The authors report the use of plasma-enhanced atomic layer deposition (PEALD) to fabricate single-electron transistors (SETs) featuring ultrathin (≈1 nm) tunnel-transparent SiO{sub 2} in Ni-SiO{sub 2}-Ni tunnel junctions. They show that, as a result of the O{sub 2} plasma steps in PEALD of SiO{sub 2}, the top surface of the underlying Ni electrode is oxidized. Additionally, the bottom surface of the upper Ni layer is also oxidized where it is in contact with the deposited SiO{sub 2}, most likely as a result of oxygen-containing species on the surface of the SiO{sub 2}. Due to the presence of these surface parasitic layersmore » of NiO, which exhibit features typical of thermally activated transport, the resistance of Ni-SiO{sub 2}-Ni tunnel junctions is drastically increased. Moreover, the transport mechanism is changed from quantum tunneling through the dielectric barrier to one consistent with thermally activated resistors in series with tunnel junctions. The reduction of NiO to Ni is therefore required to restore the metal-insulator-metal (MIM) structure of the junctions. Rapid thermal annealing in a forming gas ambient at elevated temperatures is presented as a technique to reduce both parasitic oxide layers. This method is of great interest for devices that rely on MIM tunnel junctions with ultrathin barriers. Using this technique, the authors successfully fabricated MIM SETs with minimal trace of parasitic NiO component. They demonstrate that the properties of the tunnel barrier in nanoscale tunnel junctions (with <10{sup −15} m{sup 2} in area) can be evaluated by electrical characterization of SETs.« less

  5. Enhanced bonding property of cold-sprayed Zn-Al coating on interstitial-free steel substrate with a nanostructured surface layer

    NASA Astrophysics Data System (ADS)

    Liang, Y. L.; Wang, Z. B.; Zhang, J.; Zhang, J. B.; Lu, K.

    2016-11-01

    By means of surface mechanical attrition treatment (SMAT), a gradient nanostructured surface layer was fabricated on a hot-rolled interstitial-free steel plate. A Zn-Al coating was subsequently deposited on the SMAT sample by using cold spray process. The bonding property of the coating on the SMAT substrate was compared with that on the coarse-grained (CG) sample. Stud-pull tests showed that the bonding strength in the as-sprayed SMAT sample is ∼30% higher than that in the as-sprayed CG sample. No further improvement in bonding strength was achieved in the coated SMAT sample after annealing at 400 °C, mostly due to the formation of cracks and intermetallic compounds at the coating/substrate interface in an earlier stage (<30 min) and in a final stage (>90 min), respectively. The enhanced bonding property of the Zn-Al coating on the SMAT sample might be related with the promoted atomic diffusion and hardness in the nanostructured surface layer.

  6. Remote N2 plasma treatment to deposit ultrathin high-k dielectric as tunneling contact layer for single-layer MoS2 MOSFET

    NASA Astrophysics Data System (ADS)

    Qian, Qingkai; Zhang, Zhaofu; Hua, Mengyuan; Wei, Jin; Lei, Jiacheng; Chen, Kevin J.

    2017-12-01

    Remote N2 plasma treatment is explored as a surface functionalization technique to deposit ultrathin high-k dielectric on single-layer MoS2. The ultrathin dielectric is used as a tunneling contact layer, which also serves as an interfacial layer below the gate region for fabricating top-gate MoS2 metal-oxide-semiconductor field-effect transistors (MOSFETs). The fabricated devices exhibited small hysteresis and mobility as high as 14 cm2·V-1·s-1. The contact resistance was significantly reduced, which resulted in the increase of drain current from 20 to 56 µA/µm. The contact resistance reduction can be attributed to the alleviated metal-MoS2 interface reaction and the preserved conductivity of MoS2 below the source/drain metal contact.

  7. Wind-Turbine Wakes in a Convective Boundary Layer: A Wind-Tunnel Study

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey D.; Porté-Agel, Fernando

    2013-02-01

    Thermal stability changes the properties of the turbulent atmospheric boundary layer, and in turn affects the behaviour of wind-turbine wakes. To better understand the effects of thermal stability on the wind-turbine wake structure, wind-tunnel experiments were carried out with a simulated convective boundary layer (CBL) and a neutral boundary layer. The CBL was generated by cooling the airflow to 12-15 °C and heating up the test section floor to 73-75 °C. The freestream wind speed was set at about 2.5 m s-1, resulting in a bulk Richardson number of -0.13. The wake of a horizontal-axis 3-blade wind-turbine model, whose height was within the lowest one third of the boundary layer, was studied using stereoscopic particle image velocimetry (S-PIV) and triple-wire (x-wire/cold-wire) anemometry. Data acquired with the S-PIV were analyzed to characterize the highly three-dimensional turbulent flow in the near wake (0.2-3.2 rotor diameters) as well as to visualize the shedding of tip vortices. Profiles of the mean flow, turbulence intensity, and turbulent momentum and heat fluxes were measured with the triple-wire anemometer at downwind locations from 2-20 rotor diameters in the centre plane of the wake. In comparison with the wake of the same wind turbine in a neutral boundary layer, a smaller velocity deficit (about 15 % at the wake centre) is observed in the CBL, where an enhanced radial momentum transport leads to a more rapid momentum recovery, particularly in the lower part of the wake. The velocity deficit at the wake centre decays following a power law regardless of the thermal stability. While the peak turbulence intensity (and the maximum added turbulence) occurs at the top-tip height at a downwind distance of about three rotor diameters in both cases, the magnitude is about 20 % higher in the CBL than in the neutral boundary layer. Correspondingly, the turbulent heat flux is also enhanced by approximately 25 % in the lower part of the wake, compared to that

  8. Giant Tunnel Magnetoresistance with a Single Magnetic Phase-Transition Electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Chen, X. Z.; Song, C.; Feng, J. F.; Wei, H. X.; Lü, Jing-Tao

    2018-04-01

    The magnetic phase-transition tunnel-magnetoresistance (MPT-TMR) effect with a single magnetic electrode is investigated by first-principles calculations. The calculations show that the MPT-TMR of an α'-FeRh /MgO /Cu tunnel junction can be as high as hundreds of percent when the magnetic structure of α'-FeRh changes from G -type antiferromagnetic (G -AFM ) to ferromagnetic order. This type of MPT-TMR may be superior to the tunnel anisotropic magnetoresistance because of its huge magnetoresistance effect and similar structural simplicity. The main mechanism for the giant MPT-TMR can be attributed to the formation of interface resonant states at the G -AFM FeRh /MgO interface. A direct FeRh /MgO interface is found to be necessary for achieving a high MPT-TMR experimentally. Moreover, we find the α'-FeRh /MgO interface with FeRh in the ferromagnetic phase has nearly full spin polarization due to the negligible majority transmission and significantly different Fermi surface of two spin channels. Thus, it may act as a highly efficient and tunable spin injector. In addition, the electric-field-driven MPT of FeRh-based heteromagnetic nanostructures can be utilized to design various energy-efficient tunnel-junction structures and the corresponding lower-power-consumption devices. We also discuss the consequence of various junction defects on MPT-TMR. The interface oxygen layer is found to be detrimental to MPT-TMR. The sign of MPT-TMR is reversed with Rh termination due to the lack of contribution from the interface resonance states. However, the MPT-TMR may be robust against the oxygen vacancy inside of MgO and the shift of the Fermi energy. Our results will stimulate further experimental investigations of MPT-TMR and other fascinating phenomenon of FeRh-based tunnel junctions that may be promising in antiferromagnetic spintronics.

  9. Spin dependent transport properties of Mn-Ga/MgO/Mn-Ga magnetic tunnel junctions with metal(Mg, Co, Cr) insertion layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, S. H.; Tao, L. L.; Liu, D. P., E-mail: dpliu@iphy.ac.cn

    We report a first principles theoretical investigation of spin polarized quantum transport in Mn{sub 2}Ga/MgO/Mn{sub 2}Ga and Mn{sub 3}Ga/MgO/Mn{sub 3}Ga magnetic tunneling junctions (MTJs) with the consideration of metal(Mg, Co, Cr) insertion layer effect. By changing the concentration of Mn, our calculation shows a considerable disparity in transport properties: A tunneling magnetoresistance (TMR) ratio of 852% was obtained for Mn{sub 2}Ga-based MTJs, however, only a 5% TMR ratio for Mn{sub 3}Ga-based MTJs. In addition, the influence of insertion layer has been considered in our calculation. We found the Co insertion layer can increase the TMR of Mn{sub 2}Ga-based MTJ tomore » 904%; however, the Cr insertion layer can decrease the TMR by 668%; A negative TMR ratio can be obtained with Mg insertion layer. Our work gives a comprehensive understanding of the influence of different insertion layer in Mn-Ga based MTJs. It is proved that, due to the transmission can be modulated by the interfacial electronic structure of insertion, the magnetoresistance ratio of Mn{sub 2}Ga/MgO/Mn{sub 2}Ga MTJ can be improved by inserting Co layer.« less

  10. Van Der Waals heterogeneous layer-layer carbon nanostructures involving π···H-C-C-H···π···H-C-C-H stacking based on graphene and graphane sheets.

    PubMed

    Yuan, Kun; Zhao, Rui-Sheng; Zheng, Jia-Jia; Zheng, Hong; Nagase, Shigeru; Zhao, Sheng-Dun; Liu, Yan-Zhi; Zhao, Xiang

    2017-04-15

    Noncovalent interactions involving aromatic rings, such as π···π stacking, CH···π are very essential for supramolecular carbon nanostructures. Graphite is a typical homogenous carbon matter based on π···π stacking of graphene sheets. Even in systems not involving aromatic groups, the stability of diamondoid dimer and layer-layer graphane dimer originates from C - H···H - C noncovalent interaction. In this article, the structures and properties of novel heterogeneous layer-layer carbon-nanostructures involving π···H-C-C-H···π···H-C-C-H stacking based on [n]-graphane and [n]-graphene and their derivatives are theoretically investigated for n = 16-54 using dispersion corrected density functional theory B3LYP-D3 method. Energy decomposition analysis shows that dispersion interaction is the most important for the stabilization of both double- and multi-layer-layer [n]-graphane@graphene. Binding energy between graphane and graphene sheets shows that there is a distinct additive nature of CH···π interaction. For comparison and simplicity, the concept of H-H bond energy equivalent number of carbon atoms (noted as NHEQ), is used to describe the strength of these noncovalent interactions. The NHEQ of the graphene dimers, graphane dimers, and double-layered graphane@graphene are 103, 143, and 110, indicating that the strength of C-H···π interaction is close to that of π···π and much stronger than that of C-H···H-C in large size systems. Additionally, frontier molecular orbital, electron density difference and visualized noncovalent interaction regions are discussed for deeply understanding the nature of the C-H···π stacking interaction in construction of heterogeneous layer-layer graphane@graphene structures. We hope that the present study would be helpful for creations of new functional supramolecular materials based on graphane and graphene carbon nano-structures. © 2017 Wiley Periodicals, Inc. © 2017 Wiley

  11. Methods for the fabrication of thermally stable magnetic tunnel junctions

    DOEpatents

    Chang, Y Austin [Middleton, WI; Yang, Jianhua J [Madison, WI; Ladwig, Peter F [Hutchinson, MN

    2009-08-25

    Magnetic tunnel junctions and method for making the magnetic tunnel junctions are provided. The magnetic tunnel junctions are characterized by a tunnel barrier oxide layer sandwiched between two ferromagnetic layers. The methods used to fabricate the magnetic tunnel junctions are capable of completely and selectively oxidizing a tunnel junction precursor material using an oxidizing gas containing a mixture of gases to provide a tunnel junction oxide without oxidizing the adjacent ferromagnetic materials. In some embodiments the gas mixture is a mixture of CO and CO.sub.2 or a mixture of H.sub.2 and H.sub.2O.

  12. Shock-induced compaction of nanoparticle layers into nanostructured coating

    NASA Astrophysics Data System (ADS)

    Mayer, Alexander E.; Ebel, Andrei A.

    2017-10-01

    A new process of shock wave consolidation of nanoparticles into a nanocrystalline coating is theoretically considered. In the proposed scheme, the nanoparticle layers, which are attached to the substrate surface by adhesion, are compacted by plane ultra-short shock waves coming from the substrate. The initial adhesion is self-arisen at any contact between the nanoparticles without a pre-compression. The absence of the nanoparticle ejections due to the shock wave action is connected with the strong adhesive forces, which allow nanoparticles to be attached to each other and to substrate while they are being compacted; this should be valid for small enough nanoparticles. Severe plastic deformation of the nanoparticles and the increased temperature due to collapse of voids between them facilitate their compaction into the monolithic nanocrystalline layer. We consider the examples of Cu and Ni nanoparticles on Al substrate using molecular dynamic simulations. We show the efficiency of the action of multiple shock waves with the duration in the range 2-20 ps and the amplitude in the range 4-12 GPa for sequential layerwise compaction of nanoparticles. A series of shock waves can be created by a repetitive powerful pulsed laser irradiation of the opposite surface of the substrate. The method offers the challenge for the formation of nanostructured coatings of various compositions. The thickness of the compacted nanocrystalline coating can be locally varied and controlled by the number of acting pulses.

  13. Zinc oxide nanostructured layers for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Cretí, A.; Luches, A.; Lomascolo, M.; Martino, M.; Rella, R.; Valerini, D.

    2011-03-01

    Various kinds of zinc oxide (ZnO) nanostructures, such as columns, pencils, hexagonal pyramids, hexagonal hierarchical structures, as well as smooth and rough films, were grown by pulsed laser deposition using KrF and ArF excimer lasers, without use of any catalyst. ZnO films were deposited at substrate temperatures from 500 to 700°C and oxygen background pressures of 1, 5, 50, and 100 Pa. Quite different morphologies of the deposited films were observed using scanning electron microscopy when different laser wavelengths (248 or 193 nm) were used to ablate the bulk ZnO target. Photoluminescence studies were performed at different temperatures (down to 7 K). The gas sensing properties of the different nanostructures were tested against low concentrations of NO2. The variation in the photoluminescence emission of the films when exposed to NO2 was used as transduction mechanism to reveal the presence of the gas. The nanostructured films with higher surface-to-volume ratio and higher total surface available for gas adsorption presented higher responses, detecting NO2 concentrations down to 3 ppm at room temperature.

  14. Epitaxial NbN/AlN/NbN tunnel junctions on Si substrates with TiN buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Rui; University of Chinese Academy of Sciences, Beijing 100049; Makise, Kazumasa

    We have developed epitaxial NbN/AlN/NbN tunnel junctions on Si (100) substrates with a TiN buffer layer. A 50-nm-thick (200)-oriented TiN thin film was introduced as the buffer layer for epitaxial growth of NbN/AlN/NbN trilayers on Si substrates. The fabricated NbN/AlN/NbN junctions demonstrated excellent tunneling properties with a high gap voltage of 5.5 mV, a large I{sub c}R{sub N} product of 3.8 mV, a sharp quasiparticle current rise with a ΔV{sub g} of 0.4 mV, and a small subgap leakage current. The junction quality factor R{sub sg}/R{sub N} was about 23 for the junction with a J{sub c} of 47 A/cm{supmore » 2} and was about 6 for the junction with a J{sub c} of 3.0 kA/cm{sup 2}. X-ray diffraction and transmission electron microscopy observations showed that the NbN/AlN/NbN trilayers were grown epitaxially on the (200)-orientated TiN buffer layer and had a highly crystalline structure with the (200) orientation.« less

  15. Temperature dependence of spin-torque driven ferromagnetic resonance in MgO-based magnetic tunnel junction with a perpendicularly free layer

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Feng, Jiafeng; Guo, Peng; Wei, H. X.; Han, X. F.; Fang, B.; Zeng, Z. M.

    2017-12-01

    We report the temperature dependence of the spin-torque (ST) driven ferromagnetic resonance in MgO-based magnetic tunnel junction (MTJ) nanopillars with a perpendicularly free layer and an in-plane reference layer. From the evolution of the resonance frequency with magnetic field, we clearly identify the free-layer resonance mode and reference-layer mode. For the reference layer, we demonstrate a monotonic increase in resonance frequency and the effective damping with decreasing temperature, which suggests the saturated magnetization of the reference layer is dominant. However, for the free layer, the frequency and damping exhibit almost no change with temperature, indicating that the perpendicular magnetic anisotropy plays an important role in magnetization dynamics of the free layer.

  16. Matrix-assisted energy conversion in nanostructured piezoelectric arrays

    DOEpatents

    Sirbuly, Donald J.; Wang, Xianying; Wang, Yinmin

    2013-01-01

    A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of .about.20 nW/cm.sup.2 with heating temperatures of .about.65.degree. C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.

  17. The Effect of the Electron Tunneling on the Photoelectric Hot Electrons Generation in Metallic-Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Elsharif, Asma M.

    2018-01-01

    Semiconductor photonic crystals (MSPhC) were used to convert solar energy into hot electrons. An experimental model was designed by using metallic semiconductor photonic crystals (MSPhC). The designed MSPhC is based on TiO2/Au schottky contact. The model has similar nanocavity structure for broad gold absorption, but the materials on top of the cavity were changed to a metal and a semiconductor in order to collect the hot electrons. Detailed design steps and characterization have shown a broadband sub-bandgap photoresponse at a wavelength of 590 nm. This is due to the surface plasmon absorption by the wafer-scale Au/TiO2 metallic-semiconductor photonic crystal. Analytical calculation of the hot electron transport from the Au thin layer to the TiO2 conduction band is discussed. This theoretical study is based on the quantum tunneling effect. The photo generation of the hot electrons was undertaken at different wavelengths in Au absorber followed by tunneling through a schottky barrier into a TiO2 collector. The presence of a tunnel current from the absorber to the collector under illumination, offers a method to extract carriers from a hot-electron distribution at few bias voltages is presented in this study. The effects of doping different concentrations of the semiconductor on the evolution of the current characteristics were also investigated and discussed. The electrical characteristics were found to be sensitive to any change in the thickness of the barrier.

  18. Magnetostatic effects on switching in small magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bapna, Mukund; Piotrowski, Stephan K.; Oberdick, Samuel D.

    Perpendicular CoFeB/MgO/CoFeB magnetic tunnel junctions with diameters under 100 nm are investigated by conductive atomic force microscopy. Minor loops of the tunnel magnetoresistance as a function of applied magnetic field reveal the hysteresis of the soft layer and an offset due to the magnetostatic field of the hard layer. Within the hysteretic region, telegraph noise is observed in the tunnel current. Simulations show that in this range, the net magnetic field in the soft layer is spatially inhomogeneous, and that antiparallel to parallel switching tends to start near the edge, while parallel to antiparallel reversal favors nucleation in the interior ofmore » the soft layer. As the diameter of the tunnel junction is decreased, the average magnitude of the magnetostatic field increases, but the spatial inhomogeneity across the soft layer is reduced.« less

  19. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons

    NASA Astrophysics Data System (ADS)

    De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E.; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy

    2013-01-01

    The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.

  20. Mn-silicide nanostructures aligned on massively parallel silicon nano-ribbons.

    PubMed

    De Padova, Paola; Ottaviani, Carlo; Ronci, Fabio; Colonna, Stefano; Olivieri, Bruno; Quaresima, Claudio; Cricenti, Antonio; Dávila, Maria E; Hennies, Franz; Pietzsch, Annette; Shariati, Nina; Le Lay, Guy

    2013-01-09

    The growth of Mn nanostructures on a 1D grating of silicon nano-ribbons is investigated at atomic scale by means of scanning tunneling microscopy, low energy electron diffraction and core level photoelectron spectroscopy. The grating of silicon nano-ribbons represents an atomic scale template that can be used in a surface-driven route to control the combination of Si with Mn in the development of novel materials for spintronics devices. The Mn atoms show a preferential adsorption site on silicon atoms, forming one-dimensional nanostructures. They are parallel oriented with respect to the surface Si array, which probably predetermines the diffusion pathways of the Mn atoms during the process of nanostructure formation.

  1. Resonant tunneling modulation in quasi-2D Cu2O/SnO2 p-n horizontal-multi-layer heterostructure for room temperature H2S sensor application

    PubMed Central

    Cui, Guangliang; Zhang, Mingzhe; Zou, Guangtian

    2013-01-01

    Heterostructure material that acts as resonant tunneling system is a major scientific challenge in applied physics. Herein, we report a resonant tunneling system, quasi-2D Cu2O/SnO2 p-n heterostructure multi-layer film, prepared by electrochemical deposition in a quasi-2D ultra-thin liquid layer. By applying a special half-sine deposition potential across the electrodes, Cu2O and SnO2 selectively and periodically deposited according to their reduction potentials. The as-prepared heterostructure film displays excellent sensitivity to H2S at room temperature due to the resonant tunneling modulation. Furthermore, it is found that the laser illumination could enhance the gas response, and the mechanism with laser illumination is discussed. It is the first report on gas sensing application of resonant tunneling modulation. Hence, heterostructure material act as resonant tunneling system is believed to be an ideal candidate for further improvement of room temperature gas sensing. PMID:23409241

  2. Resonant tunneling modulation in quasi-2D Cu(2)O/SnO(2) p-n horizontal-multi-layer heterostructure for room temperature H(2)S sensor application.

    PubMed

    Cui, Guangliang; Zhang, Mingzhe; Zou, Guangtian

    2013-01-01

    Heterostructure material that acts as resonant tunneling system is a major scientific challenge in applied physics. Herein, we report a resonant tunneling system, quasi-2D Cu(2)O/SnO(2) p-n heterostructure multi-layer film, prepared by electrochemical deposition in a quasi-2D ultra-thin liquid layer. By applying a special half-sine deposition potential across the electrodes, Cu(2)O and SnO(2) selectively and periodically deposited according to their reduction potentials. The as-prepared heterostructure film displays excellent sensitivity to H(2)S at room temperature due to the resonant tunneling modulation. Furthermore, it is found that the laser illumination could enhance the gas response, and the mechanism with laser illumination is discussed. It is the first report on gas sensing application of resonant tunneling modulation. Hence, heterostructure material act as resonant tunneling system is believed to be an ideal candidate for further improvement of room temperature gas sensing.

  3. Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions.

    PubMed

    Soni, Rohit; Petraru, Adrian; Meuffels, Paul; Vavra, Ondrej; Ziegler, Martin; Kim, Seong Keun; Jeong, Doo Seok; Pertsev, Nikolay A; Kohlstedt, Hermann

    2014-11-17

    Among recently discovered ferroelectricity-related phenomena, the tunnelling electroresistance (TER) effect in ferroelectric tunnel junctions (FTJs) has been attracting rapidly increasing attention owing to the emerging possibilities of non-volatile memory, logic and neuromorphic computing applications of these quantum nanostructures. Despite recent advances in experimental and theoretical studies of FTJs, many questions concerning their electrical behaviour still remain open. In particular, the role of ferroelectric/electrode interfaces and the separation of the ferroelectric-driven TER effect from electrochemical ('redox'-based) resistance-switching effects have to be clarified. Here we report the results of a comprehensive study of epitaxial junctions comprising BaTiO(3) barrier, La(0.7)Sr(0.3)MnO(3) bottom electrode and Au or Cu top electrodes. Our results demonstrate a giant electrode effect on the TER of these asymmetric FTJs. The revealed phenomena are attributed to the microscopic interfacial effect of ferroelectric origin, which is supported by the observation of redox-based resistance switching at much higher voltages.

  4. Optical response of nanostructured metal/dielectric composites and multilayers

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey B.; Maaroof, Abbas I.; Allan, Rodney S.; Schelm, Stefan; Anstis, Geoffrey R.; Cortie, Michael B.

    2004-08-01

    The homogeneous optical response in conducting nanostructured layers, and in insulating layers containing dense arrays of self assembled conducting nanoparticles separated by organic linkers, is examined experimentally through their effective complex indices (n*, k*). Classical effective medium models, modified to account for the 3-phase nanostructure, are shown to explain (n*, k*) in dense particulate systems but not inhomogeneous layers with macroscopic conductance for which a different approach to homogenisation is discussed. (n*, k*) data on thin granular metal films, thin mesoporous gold, and on thin metal layers containing ordered arrays of voids, is linked to properties of the surface plasmon states which span the nanostructured film. Coupling between evanescent waves at either surface counterbalanced by electron scattering losses must be considered. Virtual bound states for resonant photons result, with the associated transit delay leading to a large rise in n* in many nanostructures. Overcoating n-Ag with alumina is shown to alter (n*, k*) through its impact on the SP coupling. In contrast to classical optical homogenisation, effective indices depend on film thickness. Supporting high resolution SEM images are presented.

  5. Tunnel barrier design in donor nanostructures defined by hydrogen-resist lithography

    NASA Astrophysics Data System (ADS)

    Pascher, Nikola; Hennel, Szymon; Mueller, Susanne; Fuhrer, Andreas

    2016-08-01

    A four-terminal donor quantum dot (QD) is used to characterize potential barriers between degenerately doped nanoscale contacts. The QD is fabricated by hydrogen-resist lithography on Si(001) in combination with n-type doping by phosphine. The four contacts have different separations (d = 9, 12, 16 and 29 nm) to the central 6 nm × 6 nm QD island, leading to different tunnel and capacitive coupling. Cryogenic transport measurements in the Coulomb-blockade (CB) regime are used to characterize these tunnel barriers. We find that field enhancement near the apex of narrow dopant leads is an important effect that influences both barrier breakdown and the magnitude of the tunnel current in the CB transport regime. From CB-spectroscopy measurements, we extract the mutual capacitances between the QD and the four contacts, which scale inversely with the contact separation d. The capacitances are in excellent agreement with numerical values calculated from the pattern geometry in the hydrogen resist. Furthermore, we show that by engineering the source-drain tunnel barriers to be asymmetric, we obtain a much simpler excited-state spectrum of the QD, which can be directly linked to the orbital single-particle spectrum.

  6. Electrical Double Layer-Induced Ion Surface Accumulation for Ultrasensitive Refractive Index Sensing with Nanostructured Porous Silicon Interferometers.

    PubMed

    Mariani, Stefano; Strambini, Lucanos Marsilio; Barillaro, Giuseppe

    2018-03-23

    Herein, we provide the first experimental evidence on the use of electrical double layer (EDL)-induced accumulation of charged ions (using both Na + and K + ions in water as the model) onto a negatively charged nanostructured surface (e.g., thermally growth SiO 2 )-Ion Surface Accumulation, ISA-as a means of improving performance of nanostructured porous silicon (PSi) interferometers for optical refractometric applications. Nanostructured PSi interferometers are very promising optical platforms for refractive index sensing due to PSi huge specific surface (hundreds of m 2 per gram) and low preparation cost (less than $0.01 per 8 in. silicon wafer), though they have shown poor resolution ( R) and detection limit (DL) (on the order of 10 -4 -10 -5 RIU) compared to other plasmonic and photonic platforms ( R and DL on the order of 10 -7 -10 -8 RIU). This can be ascribed to both low sensitivity and high noise floor of PSi interferometers when bulk refractive index variation of the solution infiltrating the nanopores either approaches or is below 10 -4 RIU. Electrical double layer-induced ion surface accumulation (EDL-ISA) on oxidized PSi interferometers allows the interferometer output signal (spectral interferogram) to be impressively amplified at bulk refractive index variation below 10 -4 RIU, increasing, in turn, sensitivity up to 2 orders of magnitude and allowing reliable measurement of refractive index variations to be carried out with both DL and R of 10 -7 RIU. This represents a 250-fold-improvement (at least) with respect to the state-of-the-art literature on PSi refractometers and pushes PSi interferometer performance to that of state-of-the-art ultrasensitive photonics/plasmonics refractive index platforms.

  7. Resonant tunneling with high peak to valley current ratio in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D. Y., E-mail: cdy7659@126.com; Nanjing University of posts and Telecommunications, Nanjing 210046; Sun, Y.

    We have investigated carrier transport in SiO{sub 2}/nc-Si/SiO{sub 2} multi-layers by room temperature current-voltage measurements. Resonant tunneling signatures accompanied by current peaks are observed. Carrier transport in the multi-layers were analyzed by plots of ln(I/V{sup 2}) as a function of 1/V and ln(I) as a function of V{sup 1/2}. Results suggest that besides films quality, nc-Si and barrier sub-layer thicknesses are important parameters that restrict carrier transport. When thicknesses are both small, direct tunneling dominates carrier transport, resonant tunneling occurs only at certain voltages and multi-resonant tunneling related current peaks can be observed but with peak to valley current ratiomore » (PVCR) values smaller than 1.5. When barrier thickness is increased, trap-related and even high field related tunneling is excited, causing that multi-current peaks cannot be observed clearly, only one current peak with higher PVCR value of 7.7 can be observed. While if the thickness of nc-Si is large enough, quantum confinement is not so strong, a broad current peak with PVCR value as high as 60 can be measured, which may be due to small energy difference between the splitting energy levels in the quantum dots of nc-Si. Size distribution in a wide range may cause un-controllability of the peak voltages.« less

  8. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  9. Ion irradiation-induced easy-cone anisotropy in double-MgO free layers for perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Teixeira, B. M. S.; Timopheev, A. A.; Caçoilo, N. F. F.; Auffret, S.; Sousa, R. C.; Dieny, B.; Alves, E.; Sobolev, N. A.

    2018-05-01

    We have used the ferromagnetic resonance in the X-band (9.37 GHz) to investigate the effect of 400 keV Ar+ irradiation on the perpendicular magnetic anisotropy (PMA) and Gilbert damping parameter, α, of double-MgO free layers designed for application in perpendicular magnetic tunnel junctions. The samples comprised a MgO/Fe72Co8B20/X(0.2 nm)/Fe72Co8B20/MgO layer stack, where X stands for an ultrathin Ta or W spacer. Samples with two different total FeCoB layer thicknesses, tFCB = 3.0 nm and tFCB = 2.6 nm, were irradiated with ion fluences ranging from 1012 cm-2 to 1016 cm-2. The effective first-order PMA field, BK1, decreased nearly linearly with the logarithm of the fluence for both FeCoB thicknesses and spacer elements. The decrease in BK1, which is likely caused by an ion-induced intermixing at the FeCoB/MgO interfaces, resulted in a reorientation of the magnetization of the free layers with tFCB = 2.6 nm, initially exhibiting a perpendicular easy-axis anisotropy. For intermediate fluences, 1013 cm-2 and 1014 cm-2, easy-cone states with different cone angles could be induced in the free layer with a W spacer. Importantly, no corresponding increase in the Gilbert damping was observed. This study shows that ion irradiation can be used to tune the easy-cone anisotropy in perpendicular magnetic tunnel junctions, which is interesting for spintronic applications such as spin-torque magnetic memory devices, oscillators, and sensors.

  10. Investigation of Transport Parameters of Graphene-Based Nanostructures

    NASA Astrophysics Data System (ADS)

    Sergeyev, D. M.; Shunkeyev, K. Sh.

    2018-03-01

    The paper presents results of computer simulation of the main transport parameters of nanostructures obtained through the row-by-row removal of carbon atoms from graphene ribbon. Research into the electrical parameters is carried out within the density functional theory using the non-equilibrium Green functions in the local-density approximation. Virtual NanoLab based on Atomistix ToolKit is used to construct structures and analyze simulation results. Current-voltage characteristics, differential conductivity and transmittance spectra of nanostructures are calculated at different values of bias voltage. It is found that there is a large region of negative differential resistance in current-voltage characteristics of nanostructures caused by resonant tunneling of quasi-particles. Differential (dI/dV) characteristic also has similar changes. The obtained results can be useful for building novel electronic devices in the field of nanoelectronics.

  11. Piezo-tunnel effect in Al/Al2O3/Al junctions elaborated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Rafael, R.; Puyoo, E.; Malhaire, C.

    2017-11-01

    In this work, the electrical transport in Al/Al2O3/Al junctions under mechanical stress is investigated in the perspective to use them as strain sensors. The metal/insulator/metal junctions are elaborated with a low temperature process (≤200 °C) fully compatible with CMOS back-end-of-line. The conduction mechanism in the structure is found to be Fowler-Nordheim tunneling, and efforts are made to extract the relevant physical parameters. Gauge factors up to -32.5 were found in the fabricated devices under tensile stress. Finally, theoretical mechanical considerations give strong evidence that strain sensitivity in Al/Al2O3/Al structures originates not only from geometrical deformations but also from the variation of interface barrier height and/or effective electronic mass in the tunneling oxide layer.

  12. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene graphene and graphene substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy andmore » density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.« less

  13. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    DOE PAGES

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; ...

    2016-10-19

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene graphene and graphene substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy andmore » density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite.« less

  14. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging

    PubMed Central

    Wang, Zhu-Jun; Dong, Jichen; Cui, Yi; Eres, Gyula; Timpe, Olaf; Fu, Qiang; Ding, Feng; Schloegl, R.; Willinger, Marc-Georg

    2016-01-01

    In the transition from graphene to graphite, the addition of each individual graphene layer modifies the electronic structure and produces a different material with unique properties. Controlled growth of few-layer graphene is therefore of fundamental interest and will provide access to materials with engineered electronic structure. Here we combine isothermal growth and etching experiments with in situ scanning electron microscopy to reveal the stacking sequence and interlayer coupling strength in few-layer graphene. The observed layer-dependent etching rates reveal the relative strength of the graphene–graphene and graphene–substrate interaction and the resulting mode of adlayer growth. Scanning tunnelling microscopy and density functional theory calculations confirm a strong coupling between graphene edge atoms and platinum. Simulated etching confirms that etching can be viewed as reversed growth. This work demonstrates that real-time imaging under controlled atmosphere is a powerful method for designing synthesis protocols for sp2 carbon nanostructures in between graphene and graphite. PMID:27759024

  15. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    NASA Astrophysics Data System (ADS)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  16. Conductance enhancement due to interface magnons in electron-beam evaporated MgO magnetic tunnel junctions with CoFeB free layer deposited at different pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, P.; Yu, G. Q.; Wei, H. X.

    Electron-beam evaporated MgO-based magnetic tunnel junctions have been fabricated with the CoFeB free layer deposited at Ar pressure from 1 to 4 mTorr, and their tunneling process has been studied as a function of temperature and bias voltage. By changing the growth pressure, the junction dynamic conductance dI/dV, inelastic electron tunneling spectrum d²I/dV², and tunneling magnetoresistance vary with temperature. Moreover, the low-energy magnon cutoff energy E {sub C} derived from the conductance versus temperature curve agrees with interface magnon energy obtained directly from the inelastic electron tunneling spectrum, which demonstrates that interface magnons are involved in the electron tunneling process,more » opening an additional conductance channel and thus enhancing the total conductance.« less

  17. A wind tunnel study of gaseous tracer dispersion in the convective boundary layer capped by a temperature inversion

    NASA Astrophysics Data System (ADS)

    Fedorovich, E.; Thäter, J.

    Results are presented from wind tunnel simulations of gaseous pollutant dispersion in the atmospheric convective boundary layer (CBL) capped by a temperature inversion. The experiments were performed in the thermally stratified wind tunnel of the University of Karlsruhe, Germany. In the tunnel, the case of horizontally evolving, sheared CBL is reproduced. This distinguishes the employed experimental setup from the preceding laboratory and numerical CBL dispersion studies. The diffusive and mixing properties of turbulence in the studied CBL case have been found to be essentially dependent on the stage of the CBL evolution. Effects of the point source elevation on the horizontal variability of the concentration field, and on the ground level concentration as function of distance from the source have been investigated. The applicability of bottom-up/top-down diffusion concept in the simulated CBL case has been evaluated. The influence of surface wind shear and capping inversion strength on the pollutant dispersion and turbulent exchange across the CBL top has been demonstrated. The imposed positive shear across the inversion has been identified as inhibitor of the CBL growth. Comparisons of concentration patterns from the wind tunnel with water tank data are presented.

  18. Enhancement of Electrical Properties of Nanostructured Polysilicon Layers Through Hydrogen Passivation.

    PubMed

    Zhou, D; Xu, T; Lambert, Y; Cristini-Robbe; Stiévenard, D

    2015-12-01

    The light absorption of polysilicon planar junctions can be improved using nanostructured top surfaces due to their enhanced light harvesting properties. Nevertheless, associated with the higher surface, the roughness caused by plasma etching and defects located at the grain boundary in polysilicon, the concentration of the recombination centers increases, leading to electrical performance deterioration. In this work, we demonstrate that wet oxidation combined with hydrogen passivation using SiN(x):H are the key technological processes to significantly decrease the surface recombination and improve the electrical properties of nanostructured n(+)-i-p junctions. Nanostructured surface is fabricated by nanosphere lithography in a low-cost and controllable approach. Furthermore, it has been demonstrated that the successive annealing of silicon nitride films has significant effect on the passivation quality, resulting in some improvements on the efficiency of the Si nanostructure-based solar cell device.

  19. Atomically Thin Al2O3 Films for Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Wilt, Jamie; Gong, Youpin; Gong, Ming; Su, Feifan; Xu, Huikai; Sakidja, Ridwan; Elliot, Alan; Lu, Rongtao; Zhao, Shiping; Han, Siyuan; Wu, Judy Z.

    2017-06-01

    Metal-insulator-metal tunnel junctions are common throughout the microelectronics industry. The industry standard AlOx tunnel barrier, formed through oxygen diffusion into an Al wetting layer, is plagued by internal defects and pinholes which prevent the realization of atomically thin barriers demanded for enhanced quantum coherence. In this work, we employ in situ scanning tunneling spectroscopy along with molecular-dynamics simulations to understand and control the growth of atomically thin Al2O3 tunnel barriers using atomic-layer deposition. We find that a carefully tuned initial H2O pulse hydroxylated the Al surface and enabled the creation of an atomically thin Al2O3 tunnel barrier with a high-quality M -I interface and a significantly enhanced barrier height compared to thermal AlOx . These properties, corroborated by fabricated Josephson junctions, show that atomic-layer deposition Al2O3 is a dense, leak-free tunnel barrier with a low defect density which can be a key component for the next generation of metal-insulator-metal tunnel junctions.

  20. Band Alignment for Rectification and Tunneling Effects in Al2O3 Atomic-Layer-Deposited on Back Contact for CdTe Solar Cell.

    PubMed

    Su, Yantao; Xin, Chao; Feng, Yancong; Lin, Qinxian; Wang, Xinwei; Liang, Jun; Zheng, Jiaxin; Lin, Yuan; Pan, Feng

    2016-10-11

    The present work intends to explain why ultrathin Al 2 O 3 atomic-layer-deposited (ALD) on the back contact with rectification and tunneling effects can significantly improve the performance of CdTe solar cells in our previous work [ Liang , J. ; et al. Appl. Phys. Lett. 2015 , 107 , 013907 ]. Herein, we further study the mechanism through establishing the interfacial energy band diagram configuration of the ALD Al 2 O 3 /Cu x Te by experiment of X-ray photoelectron spectroscopy and first-principles calculations and conclude to find the band alignment with optimized layer thickness (about 1 nm ALD Al 2 O 3 ) as the key factor for rectification and tunneling effects.

  1. Probing semiconductor gap states with resonant tunneling.

    PubMed

    Loth, S; Wenderoth, M; Winking, L; Ulbrich, R G; Malzer, S; Döhler, G H

    2006-02-17

    Tunneling transport through the depletion layer under a GaAs {110} surface is studied with a low temperature scanning tunneling microscope (STM). The observed negative differential conductivity is due to a resonant enhancement of the tunneling probability through the depletion layer mediated by individual shallow acceptors. The STM experiment probes, for appropriate bias voltages, evanescent states in the GaAs band gap. Energetically and spatially resolved spectra show that the pronounced anisotropic contrast pattern of shallow acceptors occurs exclusively for this specific transport channel. Our findings suggest that the complex band structure causes the observed anisotropies connected with the zinc blende symmetry.

  2. Homoepitaxial graphene tunnel barriers for spin transport (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Friedman, Adam L.

    2015-09-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate homoepitaxial tunnel barrier devices in which graphene serves as both the tunnel barrier and the high mobility transport channel. Beginning with multilayer graphene, we fluorinate or hydrogenate the top layer to decouple it from the bottom layer, so that it serves as a single monolayer tunnel barrier for both charge and spin injection into the lower graphene transport channel. We demonstrate successful tunneling by measuring non-linear IV curves, and a weakly temperature dependent zero bias resistance. We perform lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies (~200 ps). However, we also demonstrate the highest spin polarization efficiencies (~45%) yet measured in graphene-based spin devices [1]. [1] A.L. Friedman, et al., Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport, Nat. Comm. 5, 3161 (2014).

  3. Low operation voltage and high thermal stability of a WSi2 nanocrystal memory device using an Al2O3/HfO2/Al2O3 tunnel layer

    NASA Astrophysics Data System (ADS)

    Uk Lee, Dong; Jun Lee, Hyo; Kyu Kim, Eun; You, Hee-Wook; Cho, Won-Ju

    2012-02-01

    A WSi2 nanocrystal nonvolatile memory device was fabricated with an Al2O3/HfO2/Al2O3 (AHA) tunnel layer and its electrical characteristics were evaluated at 25, 50, 70, 100, and 125 °C. The program/erase (P/E) speed at 125 °C was approximately 500 μs under threshold voltage shifts of 1 V during voltage sweeping of 8 V/-8 V. When the applied pulse voltage was ±9 V for 1 s for the P/E conditions, the memory window at 125 °C was approximately 1.25 V after 105 s. The activation energies for the charge losses of 5%, 10%, 15%, 20%, 25%, 30%, and 35% were approximately 0.05, 0.11, 0.17, 0.21, 0.23, 0.23, and 0.23 eV, respectively. The charge loss mechanisms were direct tunneling and Pool-Frenkel emission between the WSi2 nanocrystals and the AHA barrier engineered tunneling layer. The WSi2 nanocrystal memory device with multi-stacked high-K tunnel layers showed strong potential for applications in nonvolatile memory devices.

  4. Submucosal tunneling endoscopic resection using methylene-blue guidance for cardial subepithelial tumors originating from the muscularis propria layer.

    PubMed

    Mao, X-L; Ye, L-P; Zheng, H-H; Zhou, X-B; Zhu, L-H; Zhang, Y

    2017-04-01

    Submucosal tunneling endoscopic resection (STER) of subepithelial tumors (SETs) originating from the muscularis propria (MP) layer in the cardia is rarely performed due to the difficulty of creating a submucosal tunnel for resection. The aim of this study is to evaluate the feasibility of STER using methylene-blue guidance for SETs originating from the MP layer in the cardia. From January 2012 to December 2014, 56 patients with SETs originating from the MP layer in the cardia were treated with STER using methylene-blue guidance. The complete resection rate and adverse event rate were the main outcome measurements. Successful complete resection by STER was achieved in all 56 cases (100%). The median size of the tumor was 1.8 cm. Nine patients (15.3%) had adverse events including subcutaneous emphysema, pneumoperitoneum, pneumothorax, and pleural effusion. These nine patients recovered successfully after conservative treatment without endoscopic or surgical intervention. No residual or recurrent tumors were detected in any patient during the follow-up period (median, 25 months). The adverse event rate was significantly higher for tumors originating in the deeper MP layers (46.7%) than in the superficial MP layers (4.9%) (P < 0.05), differed significantly according to tumor size (5.4% for tumors < 2.0 cm vs. 36.8% for tumors ≥ 2.0 cm; P < 0.05), and also differed significantly in relation to the tumor growth pattern (4.1% for the intraluminal growth vs. 100% for the extraluminal growth; P < 0.001). STER using methylene-blue guidance appears to be a feasible method for removing SETs originating from the MP layer in the cardia. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Submucosal tunneling endoscopic resection using methylene-blue guidance for cardial subepithelial tumors originating from the muscularis propria layer.

    PubMed

    Mao, Xin-Li; Ye, Li-Ping; Zheng, Hai-Hong; Zhou, Xian-Bin; Zhu, Lin-Hong; Zhang, Yu

    2017-02-01

    Submucosal tunneling endoscopic resection (STER) of subepithelial tumors (SETs) originating from the muscularis propria (MP) layer in the cardia is rarely performed due to the difficulty of creating a submucosal tunnel for resection. The aim of this study was to evaluate the feasibility of STER using methylene-blue guidance for SETs originating from the MP layer in the cardia. From January 2012 to December 2014, 56 patients with SETs originating from the MP layer in the cardia were treated with STER using methylene-blue guidance. The complete resection rate and adverse event rate were the main outcome measurements. Successful complete resection by STER was achieved in all 56 cases (100%). The median size of the tumor was 1.8 cm. Nine patients (15.3%) had adverse events including subcutaneous emphysema, pneumoperitoneum, pneumothorax, and pleural effusion. These nine patients recovered successfully after conservative treatment without endoscopic or surgical intervention. No residual or recurrent tumors were detected in any patient during the follow-up period (median, 25 months). The adverse event rate was significantly higher for tumors originating in the deeper MP layers (46.7%) than in the superficial MP layers (4.9%) (P < 0.05), differed significantly according to tumor size (5.4% for tumors < 2.0 cm vs. 36.8% for tumors ≥ 2.0 cm; P < 0.05), and also differed significantly in relation to the tumor growth pattern (4.1% for the intraluminal growth vs. 100% for the extraluminal growth; P < 0.001). STER using methylene-blue guidance appears to be a feasible method for removing SETs originating from the MP layer in the cardia. © 2017 International Society for Diseases of the Esophagus.

  6. Determination of Boundary-Layer Transition on Three Symmetrical Airfoils in the NACA Full-Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Becker, John V

    1938-01-01

    For the purpose of studying the transition from laminar to turbulent flow, boundary-layer measurements were made in the NACA full-scale wind tunnel on three symmetrical airfoils of NACA 0009, 0012, and 0018 sections. The effects of variations in lift coefficient, Reynolds number, and airfoil thickness on transition were investigated. Air speed in the boundary layer was measured by total-head tubes and by hot wires; a comparison of transition as indicated by the two techniques was obtained. The results indicate no unique value of Reynolds number for the transition, whether the Reynolds number is based upon the distance along the chord or upon the thickness of the boundary layer at the transition point. In general, the transition is not abrupt and occurs in a region that varies in length as a function of the test conditions.

  7. Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe₂ nanostructures.

    PubMed

    Bradley, Aaron J; Ugeda, Miguel M; da Jornada, Felipe H; Qiu, Diana Y; Ruan, Wei; Zhang, Yi; Wickenburg, Sebastian; Riss, Alexander; Lu, Jiong; Mo, Sung-Kwan; Hussain, Zahid; Shen, Zhi-Xun; Louie, Steven G; Crommie, Michael F

    2015-04-08

    Despite the weak nature of interlayer forces in transition metal dichalcogenide (TMD) materials, their properties are highly dependent on the number of layers in the few-layer two-dimensional (2D) limit. Here, we present a combined scanning tunneling microscopy/spectroscopy and GW theoretical study of the electronic structure of high quality single- and few-layer MoSe2 grown on bilayer graphene. We find that the electronic (quasiparticle) bandgap, a fundamental parameter for transport and optical phenomena, decreases by nearly one electronvolt when going from one layer to three due to interlayer coupling and screening effects. Our results paint a clear picture of the evolution of the electronic wave function hybridization in the valleys of both the valence and conduction bands as the number of layers is changed. This demonstrates the importance of layer number and electron-electron interactions on van der Waals heterostructures and helps to clarify how their electronic properties might be tuned in future 2D nanodevices.

  8. Nanostructuring of sapphire using time-modulated nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Zagoranskiy, I.; Ehrhardt, M.; Bayer, L.; Zimmer, K.

    2017-02-01

    The nanostructuring of dielectric surfaces using laser radiation is still a challenge. The IPSM-LIFE (laser-induced front side etching using in-situ pre-structured metal layer) method allows the easy, large area and fast laser nanostructuring of dielectrics. At IPSM-LIFE a metal covered dielectric is irradiated where the structuring is assisted by a self-organized molten metal layer deformation process. The IPSM-LIFE can be divided into two steps: STEP 1: The irradiation of thin metal layers on dielectric surfaces results in a melting and nanostructuring process of the metal layer and partially of the dielectric surface. STEP 2: A subsequent high laser fluence treatment of the metal nanostructures result in a structuring of the dielectric surface. At this study a sapphire substrate Al2O3(1-102) was covered with a 10 nm thin molybdenum layer and irradiated by an infrared laser with an adjustable time-dependent pulse form with a time resolution of 1 ns (wavelength λ = 1064 nm, pulse duration Δtp = 1 - 600 ns, Gaussian beam profile). The laser treatment allows the fabrication of different surface structures into the sapphire surface due to a pattern transfer process. The resultant structures were investigated by scanning electron microscopy (SEM). The process was simulated and the simulation results were compared with experimental results.

  9. Multiple-layered effective medium approximation approach to modeling environmental effects on alumina passivated highly porous silicon nanostructured thin films measured by in-situ Mueller matrix ellipsometry

    NASA Astrophysics Data System (ADS)

    Mock, Alyssa; Carlson, Timothy; VanDerslice, Jeremy; Mohrmann, Joel; Woollam, John A.; Schubert, Eva; Schubert, Mathias

    2017-11-01

    Optical changes in alumina passivated highly porous silicon slanted columnar thin films during controlled exposure to toluene vapor are reported. Electron-beam evaporation glancing angle deposition and subsequent atomic layer deposition are utilized to deposit alumina passivated nanostructured porous silicon thin films. In-situ Mueller matrix generalized spectroscopic ellipsometry in an environmental cell is then used to determine changes in optical properties of the nanostructured thin films by inspection of individual Mueller matrix elements, each of which exhibit sensitivity to adsorption. The use of a multiple-layered effective medium approximation model allows for accurate description of the inhomogeneous nature of toluene adsorption onto alumina passivated highly porous silicon slanted columnar thin films.

  10. Nanostructured antistatic and antireflective thin films made of indium tin oxide and silica over-coat layer

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Hong, Jeong-Jin; Yang, Seung-Man; Choi, Chul-Jin

    2010-08-01

    Stable dispersion of colloidal indium tin oxide nanoparticles was prepared by using indium tin oxide nanopowder, organic solvent, and suitable dispersants through attrition process. Various comminution parameters during the attrition step were studied to optimize the process for the stable dispersion of indium tin oxide sol. The transparent and conductive films were fabricated on glass substrate using the indium tin oxide sol by spin coating process. To obtain antireflective function, partially hydrolyzed alkyl silicate was deposited as over-coat layer on the pre-fabricated indium tin oxide film by spin coating technique. This double-layered structure of the nanostructured film was characterized by measuring the surface resistance and reflectance spectrum in the visible wavelength region. The final film structure was enough to satisfy the TCO regulations for EMI shielding purposes.

  11. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  12. Soft Nanoimprint Lithography for Direct Printing of Crystalline Metal Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Kothari, Rohit; Beaulieu, Michael; Watkins, James

    2015-03-01

    We demonstrate a solution-based soft nanoimprint lithography technique to directly print dimensionally-stable crystalline metal oxide nanostructures. A patterned PDMS stamp is used in combination with a UV/thermal cure step to imprint a resist containing high concentrations of crystalline nanoparticles in an inorganic/organic binder phase. The as-imprinted nanostructures are highly crystalline and therefore undergo little shrinkage (less than 5% in some cases) upon thermal annealing. High aspect ratio nanostructures and sub-100 nm features are easily realized. Residual layer free direct imprinting (no etching) was achieved by choosing the resist with the appropriate surface energy to ensure dewetting at stamp-substrate interface. The technique was further extended to stack the nanostructures by deploying a layer-by-layer imprint strategy. The method is scalable and can produce large area device quality nanostructures in a rapid fashion at a low cost. CeO2, ITO and TiO2 nanopatterns are illustrated for their potential use in fuel cell electrodes, solar cell electrodes and photonic devices, respectively.

  13. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  14. DIFFUSION IN THE VICINITY OF STANDARD-DESIGN NUCLEAR POWER PLANTS-I. WIND-TUNNEL EVALUATION OF DIFFUSIVE CHARACTERISTICS OF A SIMULATED SUBURBAN NEUTRAL ATMOSPHERIC BOUNDARY LAYER

    EPA Science Inventory

    A large meteorological wind tunnel was used to simulate a suburban atmospheric boundary layer. The model-prototype scale was 1:300 and the roughness length was approximately 1.0 m full scale. The model boundary layer simulated full scale dispersion from ground-level and elevated ...

  15. Natural melanin composites by layer-by-layer assembly

    NASA Astrophysics Data System (ADS)

    Eom, Taesik; Shim, Bong Sub

    2015-04-01

    Melanin is an electrically conductive and biocompatible material, because their conjugated backbone structures provide conducting pathways from human skin, eyes, brain, and beyond. So there is a potential of using as materials for the neural interfaces and the implantable devices. Extracted from Sepia officinalis ink, our natural melanin was uniformly dispersed in mostly polar solvents such as water and alcohols. Then, the dispersed melanin was further fabricated to nano-thin layered composites by the layer-by-layer (LBL) assembly technique. Combined with polyvinyl alcohol (PVA), the melanin nanoparticles behave as an LBL counterpart to from finely tuned nanostructured films. The LBL process can adjust the smart performances of the composites by varying the layering conditions and sandwich thickness. We further demonstrated the melanin loading degree of stacked layers, combination nanostructures, electrical properties, and biocompatibility of the resulting composites by UV-vis spectrophotometer, scanning electron microscope (SEM), multimeter, and in-vitro cell test of PC12, respectively.

  16. Ultrafast optical measurements of surface waves on a patterned layered nanostructure

    NASA Astrophysics Data System (ADS)

    Daly, Brian; Bjornsson, Matteo; Connolly, Aine; Mahat, Sushant; Rachmilowitz, Bryan; Antonelli, George; Myers, Alan; Yoo, Hui-Jae; Singh, Kanwal; King, Sean

    2015-03-01

    We report ultrafast optical pump-probe measurements of 12 - 54 GHz surface acoustic waves (SAWs) on patterned layered nanostructures. These very high frequency SAWs were generated and detected on the following patterned film stack: 25 nm physically vapor deposited TiN / 180 nm porous PECVD-grown a-SiOC:H dielectric / 12 nm non-porous PECVD-grown a-SiOC:H etch-stop / 100 nm CVD-grown a-SiO2 / Si (100) substrate. The TiN layer was dry plasma etched to form lines of rectangular cross section with pitches of 420 nm, 250 nm, 180 nm, and 168 nm and the lines were oriented parallel to the [110] direction on the wafer surface. The absorption of ultrafast pulses from a Ti:sapphire oscillator operating at 800 nm generated SAWs that were detected by time-delayed probe pulses from the same oscillator via a reflectivity change (ΔR) . In each of the four cases the SAW frequency increased with decreasing pitch, but not in a linear way as had been seen in previous experiments of this sort. By comparing the results with mechanical simulations, we present evidence for the detection of different types of SAWs in each case, including Rayleigh-like waves, Sezawa waves, and leaky or radiative waves. This work was supported by NSF Award DMR1206681.

  17. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures

    DOE PAGES

    Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan; ...

    2018-05-03

    Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less

  18. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan

    Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less

  19. Copper and nickel hexacyanoferrate nanostructures with graphene-coated stainless steel sheets for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Sung; Lyu, Li-Jyun; Syu, Jhih-Hao

    2015-11-01

    Copper and nickel hexacyanoferrate (CuHCF and NiHCF) nanostructures featuring three-dimensional open-framework tunnels are prepared using a solution-based coprecipitation process. CuHCF shows superior supercapacitive behavior than the NiHCF, due to the presence of numerous macropores in CuHCF particles for facilitating the transport of electrolyte. Both CuHCF and NiHCF electrodes with stainless steel (SS) substrate tend to lose their electroactivity towards intercalation/deintercalation of hydrated potassium ions owing to the partial corrosion of SS. Formation of a protective and conductive carbon layer in between SS and CuHCF (NiHCF) film is of paramount importance for improving the irreversible loss of electroactivity. Thin and compact graphene (GN) layer without observable holes in its normal plane is the most effective way to suppress the corrosion of SS compared with porous carbon nanotube and activated carbon layers. Specific capacitance of CuHCF electrode with GN layer (CuHCF/GN/SS) reaches 570 F g-1, which is even better than that of CuHCF with Pt substrate (500 F g-1) at 1 A g-1. The CuHCF/GN/SS exhibits high stability with 96% capacitance retention over 1000 cycles, greater than the CuHCF with Pt (75%).

  20. Interlayer tunnel field-effect transistor (ITFET): physics, fabrication and applications

    NASA Astrophysics Data System (ADS)

    Kang, Sangwoo; Mou, Xuehao; Fallahazad, Babak; Prasad, Nitin; Wu, Xian; Valsaraj, Amithraj; Movva, Hema C. P.; Kim, Kyounghwan; Tutuc, Emanuel; Register, Leonard F.; Banerjee, Sanjay K.

    2017-09-01

    The scaling challenges of complementary metal oxide semiconductors (CMOS) are increasing with the pace of scaling showing marked signs of slowing down. This slowing has brought about a widespread search for an alternative beyond-CMOS device concept. While the charge tunneling phenomenon has been known for almost a century, and tunneling based transistors have been studied in the past few decades, its possibilities are being re-examined with the emergence of a new class of two-dimensional (2D) materials. By stacking varying 2D materials together, with two electrode layers sandwiching a tunnel dielectric layer, it could be possible to make vertical tunnel transistors without the limitations that have plagued such devices implemented within other material systems. When the two electrode layers are of the same material, under certain conditions, one can achieve resonant tunneling between the two layers, manifesting as negative differential resistance (NDR) in the interlayer current-voltage characteristics. We call this type of device an interlayer tunnel FET (ITFET). We review the basic operation principles of this device, experimental and theoretical studies, and benchmark simulation results for several digital logic gates based on a compact model that we developed. The results are placed in the context of work going on in other groups.

  1. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    NASA Astrophysics Data System (ADS)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  2. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  3. Tunable Electron and Hole Injection Enabled by Atomically Thin Tunneling Layer for Improved Contact Resistance and Dual Channel Transport in MoS2/WSe2 van der Waals Heterostructure.

    PubMed

    Khan, Muhammad Atif; Rathi, Servin; Lee, Changhee; Lim, Dongsuk; Kim, Yunseob; Yun, Sun Jin; Youn, Doo Hyeb; Kim, Gil-Ho

    2018-06-25

    Two-dimensional (2D) materials based heterostructures provide a unique platform where interaction between stacked 2D layers can enhance the electrical and opto-electrical properties as well as give rise to interesting new phenomena. Here, operation of a van der Waals heterostructure device comprising of vertically stacked bi-layer MoS 2 and few layered WSe 2 has been demonstrated in which atomically thin MoS 2 layer has been employed as a tunneling layer to the underlying WSe 2 layer. In this way, simultaneous contacts to both MoS 2 and WSe 2 2D layers have been established by forming direct MS (metal semiconductor) to MoS 2 and tunneling based MIS (metal insulator semiconductor) contacts to WSe 2 , respectively. The use of MoS 2 as a dielectric tunneling layer results in improved contact resistance (80 kΩ-µm) for WSe 2 contact, which is attributed to reduction in effective Schottky barrier height and is also confirmed from the temperature dependent measurement. Further, this unique contact engineering and type II band alignment between MoS 2 and WSe 2 enables a selective and independent carrier transport across the respective layers. This contact engineered dual channel heterostructure exhibits an excellent gate control and both channel current and carrier types can be modulated by the vertical electric field of the gate electrode, which is also reflected in on/off ratio of 10 4 for both electrons (MoS 2 ) and holes (WSe 2 ) channels. Moreover, the charge transfer at the heterointerface is studied quantitatively from the shift in the threshold voltage of the pristine MoS 2 and heterostructure device, which agrees with the carrier recombination induced optical quenching as observed in the Raman spectra of the pristine and heterostructure layers. This observation of dual channel ambipolar transport enabled by the hybrid tunneling contacts and strong interlayer coupling can be utilized for high performance opto-electrical devices and applications.

  4. Diffusive tunneling for alleviating Knudsen-layer reactivity reduction under hydrodynamic mix

    NASA Astrophysics Data System (ADS)

    Tang, Xianzhu; McDevitt, Chris; Guo, Zehua

    2017-10-01

    Hydrodynamic mix will produce small features for intermixed deuterium-tritium fuel and inert pusher materials. The geometrical characteristics of the mix feature have a large impact on Knudsen layer yield reduction. We considered two features. One is planar structure, and the other is fuel cells segmented by inert pusher material which can be represented by a spherical DT bubble enclosed by a pusher shell. The truly 3D fuel feature, the spherical bubble, has the largest degree of yield reduction, due to fast ions being lost in all directions. The planar fuel structure, which can be regarded as 1D features, has modest amount of potential for yield degradation. While the increasing yield reduction with increasing Knudsen number of the fuel region is straightforwardly anticipated, we also show, by a combination of direct simulation and simple model, that once the pusher materials is stretched sufficiently thin by hydrodynamic mix, the fast fuel ions diffusively tunnel through them with minimal energy loss, so the Knudsen layer yield reduction becomes alleviated. This yield recovery can occur in a chunk-mixed plasma, way before the far more stringent, asymptotic limit of an atomically homogenized fuel and pusher assembly. Work supported by LANL LDRD program.

  5. Boundary layer separation on isolated boattail nozzles. M.S. Thesis; [conducted in the Langley 16-foot transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Abeyounis, W. K.

    1977-01-01

    The phenomenon of separated flow on a series of circular-arc afterbodies was investigated using the Langley 16-foot transonic tunnel at free-stream Mach numbers from 0.40 to 0.95 at 0 deg angle of attack. Both high-pressure air and solid circular cylinders with a diameter equal to the nozzle exit diameter were used to simulate jet exhausts. A detailed data base of boundary layer separation locations was obtained using oil-flow techniques. The results indicate that boundary layer separation is most extensive on steep boattails at high Mach numbers.

  6. Boundary-Layer Transition on the N.A.C.A. 0012 and 23012 Airfoils in the 8-Foot High-Speed Wind Tunnel, Special Report

    NASA Technical Reports Server (NTRS)

    Becker, John V.

    1940-01-01

    Determinations of boundary-layer transition on the NACA 0012 and 2301 airfoils were made in the 8-foot high-speed wind tunnel over a range of Reynolds Numbers from 1,600,000 to 16,800,000. The results are of particular significance as compared with flight tests and tests in wind tunnels of appreciable turbulence because of the extremely low turbulence in the high-speed tunnel. A comparison of the results obtained on NACA 0012 airfoils of 2-foot and 5-foot chord at the same Reynolds Number permitted an evaluation of the effect of compressibility on transition. The local skin friction along the surface of the NACA 0012 airfoil was measured at a Reynolds Number of 10,000,000. For all the lift coefficient at which tests were made, transition occurred in the region of estimated laminar separation at the low Reynolds Numbers and approach the point of minimum static pressure as a forward limit at the high Reynolds Numbers. The effect of compressibility on transition was slight. None of the usual parameters describing the local conditions in the boundary layer near the transition point served as an index for locating the transition point. As a consequence of the lower turbulence in the 8-foot high-speed tunnel, the transition points occurred consistently farther back along the chord than those measured in the NACA full-scale tunnel. An empirical relation for estimating the location of the transition point for conventional airfoils on the basis of static-pressure distribution and Reynolds Number is presented.

  7. Improved out-coupling efficiency of organic light emitting diodes fabricated on a TiO2 planarization layer with embedded Si oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Sung, Young Hoon; Jung, Pil-Hoon; Han, Kyung-Hoon; Kim, Yang Doo; Kim, Jang-Joo; Lee, Heon

    2017-10-01

    In order to increase the out-coupling efficiency of organic light emitting diodes, conical Si oxide nanostructures were formed on a glass substrate using nanoimprint lithography with hydrogen silsesquioxane. Then, the substrate was planarized with TiO2 nanoparticles. Since TiO2 nanoparticles have a higher refractive index than Si oxide, the surface of substrate is physically flat, but optically undulated in a manner that enables optical scattering and suppression of total internal reflection. Subsequently, OLEDs formed on a substrate with nanostructured Si oxide and a TiO2 planarization layer exhibit a 25% increase in out-coupling efficiency by suppressing total internal reflection.

  8. Fabrication of magnetic tunnel junctions connected through a continuous free layer to enable spin logic devices

    NASA Astrophysics Data System (ADS)

    Wan, Danny; Manfrini, Mauricio; Vaysset, Adrien; Souriau, Laurent; Wouters, Lennaert; Thiam, Arame; Raymenants, Eline; Sayan, Safak; Jussot, Julien; Swerts, Johan; Couet, Sebastien; Rassoul, Nouredine; Babaei Gavan, Khashayar; Paredis, Kristof; Huyghebaert, Cedric; Ercken, Monique; Wilson, Christopher J.; Mocuta, Dan; Radu, Iuliana P.

    2018-04-01

    Magnetic tunnel junctions (MTJs) interconnected via a continuous ferromagnetic free layer were fabricated for spin torque majority gate (STMG) logic. The MTJs are biased independently and show magnetoelectric response under spin transfer torque. The electrical control of these devices paves the way to future spin logic devices based on domain wall (DW) motion. In particular, it is a significant step towards the realization of a majority gate. To our knowledge, this is the first fabrication of a cross-shaped free layer shared by several perpendicular MTJs. The fabrication process can be generalized to any geometry and any number of MTJs. Thus, this framework can be applied to other spin logic concepts based on magnetic interconnect. Moreover, it allows exploration of spin dynamics for logic applications.

  9. The effect of the wind tunnel wall boundary layer on the acoustic testing of propellers

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1989-01-01

    An approximation based on the representation of the boundary layer by lamina of uniform flow with suitable interlayer boundary conditions is shown to be accurate, efficient, and compatible with finite element formulations. The approximation has been implemented using existing codes to produce a model for assessing the suitability of the acoustic environment in a wind tunnel for the acoustic testing of propellers. It is found that, with suitable acoustic treatment and with measurements made near the propeller and well removed from the walls, the free field directivity and level can be reproduced with good fidelity.

  10. Ultrafast demagnetization enhancement in CoFeB/MgO/CoFeB magnetic tunneling junction driven by spin tunneling current.

    PubMed

    He, Wei; Zhu, Tao; Zhang, Xiang-Qun; Yang, Hai-Tao; Cheng, Zhao-Hua

    2013-10-07

    The laser-induced ultrafast demagnetization of CoFeB/MgO/CoFeB magnetic tunneling junction is exploited by time-resolved magneto-optical Kerr effect (TRMOKE) for both the parallel state (P state) and the antiparallel state (AP state) of the magnetizations between two magnetic layers. It was observed that the demagnetization time is shorter and the magnitude of demagnetization is larger in the AP state than those in the P state. These behaviors are attributed to the ultrafast spin transfer between two CoFeB layers via the tunneling of hot electrons through the MgO barrier. Our observation indicates that ultrafast demagnetization can be engineered by the hot electrons tunneling current. It opens the door to manipulate the ultrafast spin current in magnetic tunneling junctions.

  11. Antibacterial Carbon Nanotubes by Impregnation with Copper Nanostructures

    NASA Astrophysics Data System (ADS)

    Palza, Humberto; Saldias, Natalia; Arriagada, Paulo; Palma, Patricia; Sanchez, Jorge

    2017-08-01

    The addition of metal-based nanoparticles on carbon nanotubes (CNT) is a relevant method producing multifunctional materials. In this context, CNT were dispersed in an ethanol/water solution containing copper acetate for their impregnation with different copper nanostructures by either a non-thermal or a thermal post-synthesis treatment. Our simple method is based on pure CNT in an air atmosphere without any other reagents. Particles without thermal treatment were present as a well-dispersed layered copper hydroxide acetate nanostructures on CNT, as confirmed by scanning and transmission (TEM) electron microscopies, and showing a characteristic x-ray diffraction peak at 6.6°. On the other hand, by thermal post-synthesis treatment at 300°C, these layered nanostructures became Cu2O nanoparticles of around 20 nm supported on CNT, as confirmed by TEM images and x-ray diffraction peaks. These copper nanostructures present on the CNT surface rendered antibacterial behavior to the resulting hybrid materials against both Staphylococcus aureus and Escherichia coli. These findings present for the first time a simple method for producing antibacterial CNT by direct impregnation of copper nanostructures.

  12. Subnanometer Ga2O3 tunnelling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells.

    PubMed

    Chandiran, Aravind Kumar; Tetreault, Nicolas; Humphry-Baker, Robin; Kessler, Florian; Baranoff, Etienne; Yi, Chenyi; Nazeeruddin, Mohammad Khaja; Grätzel, Michael

    2012-08-08

    Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator. After ALD of only a few angstroms of Ga(2)O(3), the electron back reaction is reduced by more than an order of magnitude, while charge collection efficiency and fill factor are increased by 30% and 15%, respectively. The photogenerated exciton separation processes of electron injection into the TiO(2) conduction band and the hole injection into the electrolyte are characterized in detail.

  13. Fabrication of 3D nano-structures using reverse imprint lithography

    NASA Astrophysics Data System (ADS)

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures. UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  14. Biomimetic plasmonic color generated by the single-layer coaxial honeycomb nanostructure arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Jiancun; Gao, Bo; Li, Haoyong; Yu, Xiaochang; Yang, Xiaoming; Yu, Yiting

    2017-07-01

    We proposed a periodic coaxial honeycomb nanostructure array patterned in a silver film to realize the plasmonic structural color, which was inspired from natural honeybee hives. The spectral characteristics of the structure with variant geometrical parameters are investigated by employing a finite-difference time-domain method, and the corresponding colors are thus derived by calculating XYZ tristimulus values corresponding with the transmission spectra. The study demonstrates that the suggested structure with only a single layer has high transmission, narrow full-width at half-maximum, and wide color tunability by changing geometrical parameters. Therefore, the plasmonic colors realized possess a high color brightness, saturation, as well as a wide color gamut. In addition, the strong polarization independence makes it more attractive for practical applications. These results indicate that the recommended color-generating plasmonic structure has various potential applications in highly integrated optoelectronic devices, such as color filters and high-definition displays.

  15. Magnetic-sensor performance evaluated from magneto-conductance curve in magnetic tunnel junctions using in-plane or perpendicularly magnetized synthetic antiferromagnetic reference layers

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Oogane, M.; Furuichi, T.; Ando, Y.

    2018-04-01

    The automotive industry requires magnetic sensors exhibiting highly linear output within a dynamic range as wide as ±1 kOe. A simple model predicts that the magneto-conductance (G-H) curve in a magnetic tunnel junction (MTJ) is perfectly linear, whereas the magneto-resistance (R-H) curve inevitably contains a finite nonlinearity. We prepared two kinds of MTJs using in-plane or perpendicularly magnetized synthetic antiferromagnetic (i-SAF or p-SAF) reference layers and investigated their sensor performance. In the MTJ with the i-SAF reference layer, the G-H curve did not necessarily show smaller nonlinearities than those of the R-H curve with different dynamic ranges. This is because the magnetizations of the i-SAF reference layer start to rotate at a magnetic field even smaller than the switching field (Hsw) measured by a magnetometer, which significantly affects the tunnel magnetoresistance (TMR) effect. In the MTJ with the p-SAF reference layer, the G-H curve showed much smaller nonlinearities than those of the R-H curve, thanks to a large Hsw value of the p-SAF reference layer. We achieved a nonlinearity of 0.08% FS (full scale) in the G-H curve with a dynamic range of ±1 kOe, satisfying our target for automotive applications. This demonstrated that a reference layer exhibiting a large Hsw value is indispensable in order to achieve a highly linear G-H curve.

  16. TOPICAL REVIEW: Spin-dependent tunnelling in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Tsymbal, Evgeny Y.; Mryasov, Oleg N.; LeClair, Patrick R.

    2003-02-01

    The phenomenon of electron tunnelling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunnelling (SDT) in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunnelling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible applications in non-volatile random-access memories and next-generation magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. In this review article we present an overview of this field of research. We discuss various factors that control the spin polarization and magnetoresistance in MTJs. Starting from early experiments on SDT and their interpretation, we consider thereafter recent experiments and models which highlight the role of the electronic structure of the ferromagnets, the insulating layer, and the ferromagnet/insulator interfaces. We also discuss the role of disorder in the barrier and in the ferromagnetic electrodes and their influence on TMR.

  17. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  18. Reduced thermal conductivity of nanotwinned random layer structures: a promising nanostructuring towards efficient Si and Si/Ge thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Samaraweera, Nalaka; Chan, Kin L.; Mithraratne, Kumar

    2018-05-01

    Si and Si/Ge based nanostructures of reduced lattice thermal conductivity are widely attractive for developing efficient thermoelectric materials. In this study, we demonstrate the reduced thermal conductivity of Si nanotwinned random layer (NTRL) structures over corresponding superlattice and twin-free counterparts. The participation ratio analysis of vibrational modes shows that a possible cause of thermal conductivity reduction is phonon localization due to the random arrangement of twin boundaries. Via non-equilibrium molecular dynamic simulations, it is shown that ~23 and ~27% reductions over superlattice counterparts and ~55 and 53% over twin-free counterparts can be attained for the structures of total lengths of 90 and 170 nm, respectively. Furthermore, a random twin boundary distribution is applied for Si/Ge random layer structures seeking further reduction of thermal conductivity. A significant reduction in thermal conductivity of Si/Ge structures exceeding the thermal insulating performance of the corresponding amorphous Si structure by ~31% for a total length of 90 nm can be achieved. This reduction is as high as ~98% compared to the twin-free Si counterpart. It is demonstrated that application of randomly organised nanoscale twin boundaries is a promising nanostructuring strategy towards developing efficient Si and Si/Ge based thermoelectric materials in the future.

  19. In situ manufacture of magnetic tunnel junctions by a direct-write process

    NASA Astrophysics Data System (ADS)

    Costanzi, Barry N.; Riazanova, Anastasia V.; Dan Dahlberg, E.; Belova, Lyubov M.

    2014-06-01

    In situ construction of Co/SiO2/Co magnetic tunnel junctions using direct-write electron-beam-induced deposition is described. Proof-of-concept devices were built layer by layer depositing the specific components one at a time, allowing device manufacture using a strictly additive process. The devices exhibit a magnetic tunneling signature which agrees qualitatively with the Slonczewski model of magnetic tunneling.

  20. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for two- or three-dimensional contractions installed on small, low-speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a three-dimensional numerical panel method. The pressure or velocity distributions are then fed into two-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low-speed contractions it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs if justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a fifth-order polynomial was selected for installation on a newly designed mixing layer wind tunnel.

  1. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current

    NASA Astrophysics Data System (ADS)

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-02-01

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters.

  2. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current

    PubMed Central

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-01-01

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters. PMID:26842997

  3. Array of titanium dioxide nanostructures for solar energy utilization

    DOEpatents

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  4. Layer-by-Layer Templated Assembly of Silica at the Nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinestrosa, Juan Pablo; Sutton, Jonathan E.; Allison, David P.

    2013-01-29

    Bioinspired bottom-up assembly and layer-by-layer (LbL) construction of inorganic materials from lithographically defined organic templates enables the fabrication of nanostructured systems under mild temperature and pH conditions. Such processes open the door to low-impact manufacturing and facile recycling of hybrid materials for energy, biology, and information technologies. Here, templated LbL assembly of silica was achieved using a combination of electron beam lithography, chemical lift-off, and aqueous solution chemistry. Nanopatterns of lines, honeycomb-lattices, and dot arrays were defined in polymer resist using electron beam lithography. Following development, exposed areas of silicon were functionalized with a vapor deposited amine-silane monolayer. Silicic acidmore » solutions of varying pH and salt content were reacted with the patterned organic amine-functional templates. Vapor treatment and solution reaction could be repeated, allowing LbL deposition. Conditions for the silicic acid deposition had a strong effect on thickness of each layer, and the morphology of the amorphous silica formed. Defects in the arrays of silica nanostructures were minor and do not affect the overall organization of the layers. In conclusion, the bioinspired method described here facilitates the bottom-up assembly of inorganic nanostructures defined in three dimensions and provides a path, via LbL processing, for the construction of layered hybrid materials under mild conditions.« less

  5. Magnetic tunnel junctions utilizing diamond-like carbon tunnel barriers

    NASA Astrophysics Data System (ADS)

    Cadieu, F. J.; Chen, Li; Li, Biao

    2002-05-01

    We have devised a method whereby thin particulate-free diamond-like carbon films can be made with good adhesion onto even room-temperature substrates. The method employs a filtered ionized carbon beam created by the vacuum impact of a high-energy, approximately 1 J per pulse, 248 nm excimer laser onto a carbon target. The resultant deposition beam can be steered and deflected by magnetic and electric fields to paint a specific substrate area. An important aspect of this deposition method is that the resultant films are particulate free and formed only as the result of atomic species impact. The vast majority of magnetic tunnel junctions utilizing thin metallic magnetic films have employed a thin oxidized layer of aluminum to form the tunnel barrier. This has presented reproducibility problems because the indicated optimal barrier thickness is only approximately 13 Å thick. Magnetic tunnel junctions utilizing Co and permalloy films made by evaporation and sputtering have been fabricated with an intervening diamond-like carbon tunnel barrier. The diamond-like carbon thickness profile has been tapered so that seven junctions with different barrier thickness can be formed at once. Magnetoresistive (MR) measurements made between successive permalloy strip ends include contributions from two junctions and from the permalloy and Co strips that act as current leads to the junctions. Magnetic tunnel junctions with thicker carbon barriers exhibit MR effects that are dominated by that of the permalloy strips. Since these tunnel barriers are formed without the need for oxygen, complete tunnel junctions can be formed with all high-vacuum processing.

  6. Effect of geometric nanostructures on the absorption edges of 1-D and 2-D TiO₂ fabricated by atomic layer deposition.

    PubMed

    Chang, Yung-Huang; Liu, Chien-Min; Cheng, Hsyi-En; Chen, Chih

    2013-05-01

    2-Dimensional (2-D) TiO2 thin films and 1-dimensional (1-D) TiO2 nanotube arrays were fabricated on Si and quartz substrates using atomic layer deposition (ALD) with an anodic aluminum oxide (AAO) template at 400 °C. The film thickness and the tube wall thickness can be precisely controlled using the ALD approach. The intensities of the absorption spectra were enhanced by an increase in the thickness of the TiO2 thin film and tube walls. A blue-shift was observed for a decrease in the 1-D and 2-D TiO2 nanostructure thicknesses, indicating a change in the energy band gap with the change in the size of the TiO2 nanostructures. Indirect and direct interband transitions were used to investigate the change in the energy band gap. The results indicate that both quantum confinement and interband transitions should be considered when the sizes of 1-D and 2-D TiO2 nanostructures are less than 10 nm.

  7. Micro arc oxidized HAp-TiO 2 nanostructured hybrid layers-part I: Effect of voltage and growth time

    NASA Astrophysics Data System (ADS)

    Abbasi, S.; Bayati, M. R.; Golestani-Fard, F.; Rezaei, H. R.; Zargar, H. R.; Samanipour, F.; Shoaei-Rad, V.

    2011-05-01

    Micro arc oxidation was employed to grow hydroxyapatite-TiO 2 nanostructured porous composite layers. The layers were synthesized on the titanium substrates in the electrolytes consisting of calcium acetate and sodium β-glycerophosphate salts under different applied voltages for various times. SEM and AFM investigations revealed a porous structure and rough surface where the pores size and the surface roughness were respectively determined as 70-650 nm and 9.8-12.7 nm depending on the voltage and time. Chemical composition and phase structure of the layers were evaluated using EDX, XPS, and XRD methods. The layers consisted of the hydroxyapatite, anatase, α-TCP, and calcium titanatephases with a varying fraction depending on the growth conditions. The hydroxyapatite crystalline size was also determined as ˜42 nm. The sample fabricated under the voltage of 350 V for 3 min exhibited the most appropriate Ca/P ratio (˜1.60) as well as the highest amount of the hydroxyapatite phase. This sample had a fine surface morphology and a high pores density.

  8. Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: preparation, characterization and analytical applications.

    PubMed

    Lanzellotto, C; Favero, G; Antonelli, M L; Tortolini, C; Cannistraro, S; Coppari, E; Mazzei, F

    2014-05-15

    In this work a novel electrochemical biosensing platform based on the coupling of two different nanostructured materials (gold nanoparticles and fullerenols) displaying interesting electrochemical features, has been developed and characterized. Gold nanoparticles (AuNPs) exhibit attractive electrocatalytic behavior stimulating in the last years, several sensing applications; on the other hand, fullerene and its derivatives are a very promising family of electroactive compounds although they have not yet been fully employed in biosensing. The methodology proposed in this work was finalized to the setup of a laccase biosensor based on a multilayer material consisting in AuNPs, fullerenols and Trametes versicolor Laccase (TvL) assembled layer by layer onto a gold (Au) electrode surface. The influence of different modification step procedures on the electroanalytical performance of biosensors has been evaluated. Cyclic voltammetry, chronoamperometry, surface plasmon resonance (SPR) and scanning tunneling microscopy (STM) were used to characterize the modification of surface and to investigate the bioelectrocatalytic biosensor response. This biosensor showed fast amperometric response to gallic acid, which is usually considered a standard for polyphenols analysis of wines, with a linear range 0.03-0.30 mmol L(-1) (r(2)=0.9998), with a LOD of 0.006 mmol L(-1) or expressed as polyphenol index 5.0-50 mg L(-1) and LOD 1.1 mg L(-1). A tentative application of the developed nanostructured enzyme-based biosensor was performed evaluating the detection of polyphenols either in buffer solution or in real wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Submucosal tunneling techniques: current perspectives.

    PubMed

    Kobara, Hideki; Mori, Hirohito; Rafiq, Kazi; Fujihara, Shintaro; Nishiyama, Noriko; Ayaki, Maki; Yachida, Tatsuo; Matsunaga, Tae; Tani, Johji; Miyoshi, Hisaaki; Yoneyama, Hirohito; Morishita, Asahiro; Oryu, Makoto; Iwama, Hisakazu; Masaki, Tsutomu

    2014-01-01

    Advances in endoscopic submucosal dissection include a submucosal tunneling technique, involving the introduction of tunnels into the submucosa. These tunnels permit safer offset entry into the peritoneal cavity for natural orifice transluminal endoscopic surgery. Technical advantages include the visual identification of the layers of the gut, blood vessels, and subepithelial tumors. The creation of a mucosal flap that minimizes air and fluid leakage into the extraluminal cavity can enhance the safety and efficacy of surgery. This submucosal tunneling technique was adapted for esophageal myotomy, culminating in its application to patients with achalasia. This method, known as per oral endoscopic myotomy, has opened up the new discipline of submucosal endoscopic surgery. Other clinical applications of the submucosal tunneling technique include its use in the removal of gastrointestinal subepithelial tumors and endomicroscopy for the diagnosis of functional and motility disorders. This review suggests that the submucosal tunneling technique, involving a mucosal safety flap, can have potential values for future endoscopic developments.

  10. Hybrid tunnel junction contacts to III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-02-01

    In this work, we demonstrate highly doped GaN p-n tunnel junction (TJ) contacts on III-nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10-4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a (20\\bar{2}\\bar{1}) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  11. Effect of precursor concentration and film thickness deposited by layer on nanostructured TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Sol-gel spin coating method is used in the production of nanostructured TiO2 thin film. The surface topology and morphology was observed using the Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The electrical properties were investigated by using two probe current-voltage (I-V) measurements to study the electrical resistivity behavior, hence the conductivity of the thin film. The solution concentration will be varied from 14.0 to 0.01wt% with 0.02wt% interval where the last concentration of 0.02 to 0.01wt% have 0.01wt% interval to find which concentrations have the highest conductivity then the optimized concentration's sample were chosen for the thickness parameter based on layer by layer deposition from 1 to 6 layer. Based on the result, the lowest concentration of TiO2, the surface becomes more uniform and the conductivity will increase. As the result, sample of 0.01wt% concentration have conductivity value of 1.77E-10 S/m and will be advanced in thickness parameter. Whereas in thickness parameter, the 3layer deposition were chosen as its conductivity is the highest at 3.9098E9 S/m.

  12. Thermoelectric properties of nanostructured porous silicon

    NASA Astrophysics Data System (ADS)

    Martín-Palma, R. J.; Cabrera, H.; Martín-Adrados, B.; Korte, D.; Pérez-Cappe, E.; Mosqueda, Y.; Frutis, M. A.; Danguillecourt, E.

    2018-01-01

    In this work we report on the thermoelectric properties of nanostructured porous silicon (nanoPS) layers grown onto silicon substrates. More specifically, nanoPS layers of different porosity, nanocrystal size, and thickness were fabricated and their electrical conductivities, Seebeck coefficients, and thermal conductivities were subsequently measured. It was found that these parameters show a strong dependence on the characteristics of the nanoPS layers and thus can be controlled.

  13. Superlattice-induced minigaps in graphene band structure due to underlying one-dimensional nanostructuration

    NASA Astrophysics Data System (ADS)

    Celis, A.; Nair, M. N.; Sicot, M.; Nicolas, F.; Kubsky, S.; Malterre, D.; Taleb-Ibrahimi, A.; Tejeda, A.

    2018-05-01

    We have studied the influence of one-dimensional periodic nanostructured substrates on graphene band structure. One-monolayer-thick graphene is extremely sensitive to periodic terrace arrays, as demonstrated on two different nanostructured substrates, namely Ir(332) and multivicinal curved Pt(111). Photoemission shows the presence of minigaps related to the spatial periodicity. The potential barrier strength of the one-dimensional periodic nanostructuration can be tailored with the step-edge type and the nature of the substrate. The minigap opening further demonstrates the presence of backward scattered electronic waves on the surface and the absence of Klein tunneling on the substrate, probably due to the fast variation of the potential, of a spatial extent of the order of the lattice parameter of graphene.

  14. Layer-by-layer charging in non-volatile memory devices using embedded sub-2 nm platinum nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramalingam, Balavinayagam; Zheng, Haisheng; Gangopadhyay, Shubhra, E-mail: gangopadhyays@missouri.edu

    In this work, we demonstrate multi-level operation of a non-volatile memory metal oxide semiconductor capacitor by controlled layer-by-layer charging of platinum nanoparticle (PtNP) floating gate devices with defined gate voltage bias ranges. The device consists of two layers of ultra-fine, sub-2 nm PtNPs integrated between Al{sub 2}O{sub 3} tunneling and separation layers. PtNP size and interparticle distance were varied to control the particle self-capacitance and associated Coulomb charging energy. Likewise, the tunneling layer thicknesses were also varied to control electron tunneling to the first and second PtNP layers. The final device configuration with optimal charging behavior and multi-level programming was attainedmore » with a 3 nm Al{sub 2}O{sub 3} initial tunneling layer, initial PtNP layer with particle size 0.54 ± 0.12 nm and interparticle distance 4.65 ± 2.09 nm, 3 nm Al{sub 2}O{sub 3} layer to separate the PtNP layers, and second particle layer with 1.11 ± 0.28 nm PtNP size and interparticle distance 2.75 ± 1.05 nm. In this device, the memory window of the first PtNP layer saturated over a programming bias range of 7 V to 14 V, after which the second PtNP layer starts charging, exhibiting a multi-step memory window with layer-by-layer charging.« less

  15. What makes a feather shine? A nanostructural basis for glossy black colours in feathers.

    PubMed

    Maia, Rafael; D'Alba, Liliana; Shawkey, Matthew D

    2011-07-07

    Colours in feathers are produced by pigments or by nanostructurally organized tissues that interact with light. One of the simplest nanostructures is a single layer of keratin overlying a linearly organized layer of melanosomes that create iridescent colours of feather barbules through thin-film interference. Recently, it has been hypothesized that glossy (i.e. high specular reflectance) black feathers may be evolutionarily intermediate between matte black and iridescent feathers, and thus have a smooth keratin layer that produces gloss, but not the layered organization of melanosomes needed for iridescence. However, the morphological bases of glossiness remain unknown. Here, we use a theoretical approach to generate predictions about morphological differences between matte and glossy feathers that we then empirically test. Thin-film models predicted that glossy spectra would result from a keratin layer 110-180 nm thick and a melanin layer greater than 115 nm thick. Transmission electron microscopy data show that nanostructure of glossy barbules falls well within that range, but that of matte barbules does not. Further, glossy barbules had a thinner and more regular keratin cortex, as well as a more continuous underlying melanin layer, than matte barbules. Thus, their quasi-ordered nanostructures are morphologically intermediate between matte black and iridescent feathers, and perceived gloss may be a form of weakly chromatic iridescence.

  16. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.

    PubMed

    Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei

    2015-10-07

    Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.

  17. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for 2- or 3-dimensional contractions installed on small, low speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a 3-dimensional numerical panel method. The pressure or velocity distributions are then fed into 2-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low speed contractions, it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs is justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a 5th order polynomial was selected for newly designed mixing wind tunnel installation.

  18. Generation of high-power terahertz radiation by nonlinear photon-assisted tunneling transport in plasmonic metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Pai-Yen; Salas, Rodolfo; Farhat, Mohamed

    2017-12-01

    We propose an optoelectronic terahertz oscillator based on the quantum tunneling effect in a plasmonic metamaterial, utilizing a nanostructured metal-insulator-metal (MIM) tunneling junction. The collective resonant response of meta-atoms can achieve >90% optical absorption and strongly localized optical fields within the MIM plasmonic nanojunction. By properly tailoring the radiation aperture, the nonlinear quantum conductance induced by the metamaterial-enhanced, photon-assisted tunneling may produce miliwatt-level terahertz radiation through the optical beating (or heterodyne down conversion) of two lasers with a slight frequency offset. We envisage that the interplay between photon-assisted tunneling and plasmon coupling within the MIM metamaterial/diode may substantially enhance the modulated terahertz photocurrent, and may therefore realize a practical high-power, room-temperature source in applications of terahertz electronics.

  19. LDV measurement of boundary layer on rotating blade surface in wind tunnel

    NASA Astrophysics Data System (ADS)

    Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Suzuki, Daiki; Kaga, Norimitsu; Kagisaki, Yosuke

    2014-12-01

    Wind turbines generate electricity due to extracting energy from the wind. The rotor aerodynamics strongly depends on the flow around blade. The surface flow on the rotating blade affects the sectional performance. The wind turbine surface flow has span-wise component due to span-wise change of airfoil section, chord length, twisted angle of blade and centrifugal force on the flow. These span-wise flow changes the boundary layer on the rotating blade and the sectional performance. Hence, the thorough understanding of blade surface flow is important to improve the rotor performance. For the purpose of clarification of the flow behaviour around the rotor blade, the velocity in the boundary layer on rotating blade surface of an experimental HAWT was measured in a wind tunnel. The velocity measurement on the blade surface was carried out by a laser Doppler velocimeter (LDV). As the results of the measurement, characteristics of surface flow are clarified. In optimum tip speed operation, the surface flow on leading edge and r/R=0.3 have large span-wise velocity which reaches 20% of sectional inflow velocity. The surface flow inboard have three dimensional flow patterns. On the other hand, the flow outboard is almost two dimensional in cross sectional plane.

  20. Effect of nickel seed layer on growth of α-V2O5 nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Rabindar Kumar; Kant, Chandra; Kumar, Prabhat; Singh, Megha; Reddy, G. B.

    2015-08-01

    In this communication, we reported the role of Ni seed layer on the growth of vanadium pentoxide (α-V2O5) nanostructured thin films (NSTs) using plasma assisted sublimation process (PASP). Two different substrates, simple glass substrate and the Ni coated glass substrate (Ni thickness ˜ 100 nm) are employing in the present work. The influence of seed layer on structural, morphological, and vibrational properties have been studied systematically. The structural analysis divulged that both films deposited on simple glass as well as on Ni coated glass shown purely orthorhombic phase, no other phases are detected. The morphological studies of V2O5 film deposited on both substrates are carried out by SEM, revealed that features of V2O5 NSTs is completely modified in presence of Ni seed layer and the film possessing the excellent growth of nanorods (NRs) on Ni coated glass rather than simple glass. The HRTEM analysis of NRs is performed at very high magnification, shows very fine fringe pattern, which confirmed the single crystalline nature of nanorods. The vibrational study of NRs is performed using micro-Raman spectroscopy, which strongly support the XRD observations.

  1. Study of Growth Kinetics in One Dimensional and Two Dimensional ZnO Nanostructures

    NASA Astrophysics Data System (ADS)

    Yin, Xin

    Because of the merits arising from the unique geometry, nanostructure materials have been an essential class of materials, which have shown great potentials in the fields of electronics, photonics, and biology. With various nanostructures being intensively investigated and successfully complemented into device applications, there has been one increasing demand to the investigation of the growth mechanism devoted to the controlled nanostructure synthesis. Motivated by this situation, this thesis is focused on the fundamental understanding of the nanostructure growth. Specifically, by taking zinc oxide as an example material, through controlling the basic driving force, that is, the supersaturation, I have rationally designed and synthesized various of nanostructures, and further applied the classical layer-by-layer growth mechanism to the understanding on the formation of these nanostructures, they are, the convex-plate-capped nanowires, the concave-plate-capped nanowires, the facet evolution at the tip of the nanowires, and the ultrathin 2D nanosheets.

  2. Atomic Structures of Silicene Layers Grown on Ag(111): Scanning Tunneling Microscopy and Noncontact Atomic Force Microscopy Observations

    PubMed Central

    Resta, Andrea; Leoni, Thomas; Barth, Clemens; Ranguis, Alain; Becker, Conrad; Bruhn, Thomas; Vogt, Patrick; Le Lay, Guy

    2013-01-01

    Silicene, the considered equivalent of graphene for silicon, has been recently synthesized on Ag(111) surfaces. Following the tremendous success of graphene, silicene might further widen the horizon of two-dimensional materials with new allotropes artificially created. Due to stronger spin-orbit coupling, lower group symmetry and different chemistry compared to graphene, silicene presents many new interesting features. Here, we focus on very important aspects of silicene layers on Ag(111): First, we present scanning tunneling microscopy (STM) and non-contact Atomic Force Microscopy (nc-AFM) observations of the major structures of single layer and bi-layer silicene in epitaxy with Ag(111). For the (3 × 3) reconstructed first silicene layer nc-AFM represents the same lateral arrangement of silicene atoms as STM and therefore provides a timely experimental confirmation of the current picture of the atomic silicene structure. Furthermore, both nc-AFM and STM give a unifying interpretation of the second layer (√3 × √3)R ± 30° structure. Finally, we give support to the conjectured possible existence of less stable, ~2% stressed, (√7 × √7)R ± 19.1° rotated silicene domains in the first layer. PMID:23928998

  3. Comparison of propeller cruise noise data taken in the NASA Lewis 8- by 6-foot wind tunnel with other tunnel and flight data

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1989-01-01

    The noise of advanced high speed propeller models measured in the NASA 8- by 6-foot wind tunnel has been compared with model propeller noise measured in another tunnel and with full-scale propeller noise measured in flight. Good agreement was obtained for the noise of a model counterrotation propeller tested in the 8- by 6-foot wind tunnel and in the acoustically treated test section of the Boeing Transonic Wind Tunnel. This good agreement indicates the relative validity of taking cruise noise data on a plate in the 8- by 6-foot wind tunnel compared with the free-field method in the Boeing tunnel. Good agreement was also obtained for both single rotation and counter-rotation model noise comparisons with full-scale propeller noise in flight. The good scale model to full-scale comparisons indicate both the validity of the 8- by 6-foot wind tunnel data and the ability to scale to full size. Boundary layer refraction on the plate provides a limitation to the measurement of forward arc noise in the 8- by 6-foot wind tunnel at the higher harmonics of the blade passing tone. The use of a validated boundary layer refraction model to adjust the data could remove this limitation.

  4. Comparison of propeller cruise noise data taken in the NASA Lewis 8- by 6-foot wind tunnel with other tunnel and flight data

    NASA Technical Reports Server (NTRS)

    Dittmar, James

    1989-01-01

    The noise of advanced high speed propeller models measured in the NASA 8- by 6-foot wind tunnel has been compared with model propeller noise measured in another tunnel and with full-scale propeller noise measured in flight. Good agreement was obtained for the noise of a model counterrotation propeller tested in the 8- by 6-foot wind tunnel and in the acoustically treated test section of the Boeing Transonic Wind Tunnel. This good agreement indicates the relative validity of taking cruise noise data on a plate in the 8- by 6-foot wind tunnel compared with the free-field method in the Boeing tunnel. Good agreement was also obtained for both single rotation and counter-rotation model noise comparisons with full-scale propeller noise in flight. The good scale model to full-scale comparisons indicate both the validity of the 8- by 6-foot wind tunnel data and the ability to scale to full size. Boundary layer refraction on the plate provides a limitation to the measurement of forward arc noise in the 8- by 6-foot wind tunnel at the higher harmonics of the blade passing tone. The sue of a validated boundary layer refraction model to adjust the data could remove this limitation.

  5. A Large Scale Wind Tunnel for the Study of High Reynolds Number Turbulent Boundary Layer Physics

    NASA Astrophysics Data System (ADS)

    Priyadarshana, Paththage; Klewicki, Joseph; Wosnik, Martin; White, Chris

    2008-11-01

    Progress and the basic features of the University of New Hampshire's very large multi-disciplinary wind tunnel are reported. The refinement of the overall design has been greatly aided through consultations with an external advisory group. The facility test section is 73 m long, 6 m wide, and 2.5 m nominally high, and the maximum free stream velocity is 30 m/s. A very large tunnel with relatively low velocities makes the small scale turbulent motions resolvable by existing measurement systems. The maximum Reynolds number is estimated at &+circ;= δuτ/ν˜50000, where δ is the boundary layer thickness and uτ is the friction velocity. The effects of scale separation on the generation of the Reynolds stress gradient appearing in the mean momentum equation are briefly discussed to justify the need to attain &+circ; in excess of about 40000. Lastly, plans for future utilization of the facility as a community-wide resource are outlined. This project is supported through the NSF-EPSCoR RII Program, grant number EPS0701730.

  6. Wind Tunnel Measurements of Turbulent Boundary Layer over Hypothetical Urban Roughness Elements

    NASA Astrophysics Data System (ADS)

    Ho, Y. K.; Liu, C. H.

    2012-04-01

    Urban morphology affects the near-ground atmospheric boundary layer that in turn modifies the wind flows and pollutant dispersion over urban areas. A number of numerical models (large-eddy simulation, LES and k-ɛ turbulence models) have been developed to elucidate the transport processes in and above urban street canyons. To complement the modelling results, we initiated a wind tunnel study to examine the influence of idealized urban roughness on the flow characteristics and pollutant dispersion mechanism over 2D idealized street canyons placed in cross flows. Hot-wire anemometry (HWA) was employed in this study to measure the flows over 2D street canyons in the wind tunnel in our university. Particular focus in the beginning stage was on the fabrication of hot-wire probes, data acquisition system, and signal processing technique. Employing the commonly adopted hot-wire universal function, we investigated the relationship in between and developed a scaling factor which could generalize the output of our hot-wire probes to the standardized one as each hot-wire probes has its unique behaviour. Preliminary experiments were performed to measure the wind flows over street canyons of unity aspect ratio. Vertical profiles of the ensemble average velocity and fluctuations at three different segments over the street canyons were collected. The results were then compared with our LES that show a good argument with each other. Additional experiments are undertaken to collect more data in order to formulate the pollutant dispersion mechanism of street canyons and urban areas.

  7. Effect of the intrinsic spin-orbit interaction on the tunnel magnetoresistance in graphenelike nanoflakes

    NASA Astrophysics Data System (ADS)

    Weymann, Ireneusz; Krompiewski, Stefan

    2016-12-01

    This paper is devoted to examining the effect of intrinsic spin-orbit interaction on the possible appearance of edge magnetic moments and spin-dependent transport in graphenelike nanoflakes. In the case of finite-size graphenelike nanostructures it is shown that, on one hand, energetically the most advantageous configuration corresponds to magnetic moments located at zigzag edges with the in-plane antiferromagnetic inter-edge coupling. On the other hand, the tunnel magnetoresistance and the shot noise also have thoroughly been tested both for the in-plane configuration as well as for the out-of-plane one (for comparison reasons). Transport properties are described in terms of the mean-field Kane-Mele-Hubbard model with spin mixing correlations, supplemented by additional terms describing external leads, charging energy, and lead-nanostructure tunneling. The results show that Coulomb blockade stability spectra of graphenelike nanoflakes with ferromagnetic contacts provide information on both the intrinsic spin-orbit interaction and the expected edge magnetism.

  8. Gold nanoparticle plasmon resonance in near-field coupled Au NPs layer/Al film nanostructure: Dependence on metal film thickness

    NASA Astrophysics Data System (ADS)

    Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.

    2018-05-01

    We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.

  9. Encoding, training and retrieval in ferroelectric tunnel junctions

    NASA Astrophysics Data System (ADS)

    Xu, Hanni; Xia, Yidong; Xu, Bo; Yin, Jiang; Yuan, Guoliang; Liu, Zhiguo

    2016-05-01

    Ferroelectric tunnel junctions (FTJs) are quantum nanostructures that have great potential in the hardware basis for future neuromorphic applications. Among recently proposed possibilities, the artificial cognition has high hopes, where encoding, training, memory solidification and retrieval constitute a whole chain that is inseparable. However, it is yet envisioned but experimentally unconfirmed. The poor retention or short-term store of tunneling electroresistance, in particular the intermediate states, is still a key challenge in FTJs. Here we report the encoding, training and retrieval in BaTiO3 FTJs, emulating the key features of information processing in terms of cognitive neuroscience. This is implemented and exemplified through processing characters. Using training inputs that are validated by the evolution of both barrier profile and domain configuration, accurate recalling of encoded characters in the retrieval stage is demonstrated.

  10. Tunneling interferometry and measurement of the thickness of ultrathin metallic Pb(111) films

    NASA Astrophysics Data System (ADS)

    Ustavshchikov, S. S.; Putilov, A. V.; Aladyshkin, A. Yu.

    2017-10-01

    Spectra of the differential tunneling conductivity for ultrathin lead films grown on Si(111) 7 × 7 single crystals with a thickness of 9 to 50 ML have been studied by low-temperature scanning tunneling microscopy and spectroscopy. The presence of local maxima of the tunneling conductivity is characteristic of such systems. The energies of maxima of the differential conductivity are determined by the spectrum of quantum-confined states of electrons in a metallic layer and, consequently, the local thickness of the layer. It has been shown that features of the microstructure of substrates, such as steps of monatomic height, structural defects, and inclusions of other materials covered with a lead layer, can be visualized by bias-modulation scanning tunneling spectroscopy.

  11. Hydrothermal synthesis of alpha- and beta-HgS nanostructures

    NASA Astrophysics Data System (ADS)

    Galain, Isabel; María, Pérez Barthaburu; Ivana, Aguiar; Laura, Fornaro

    2017-01-01

    We synthesized HgS nanostructures by the hydrothermal method in order to use them as electron acceptors in hybrid organic-inorganic solar cells. We employed different mercury sources (HgO and Hg(CH3COO)2) and polyvinylpyrrolidone (PVP) or hexadecanethiol (HDT) as stabilizing/capping agent for controlling size, crystallinity, morphology and stability of the obtained nanostructures. We also used thiourea as sulfur source, and a temperature of 180 °C during 6 h. Synthesized nanostructures were characterized by powder X-Ray Diffraction, Diffuse Reflectance Infrared Fourier Transform and Transmission Electron Microscopy. When PVP acts as stabilizing agent, the mercury source has influence on the size -but not in morphology- of the beta-HgS obtained nansostructures. HDT has control over nanostructures' size and depending on the relation Hg:HDT, we obtained a mixture of alpha and beta HgS which can be advantageous in the application in solar cells, due their absorption in different spectral regions. The smallest nanostructures obtained have a mean diameter of 20 nm when using HDT as capping agent. Also, we deposited the aforementioned nanostructures onto flat glass substrates by the spin coating technique as a first approach of an active layer of a solar cell. The depositions were characterized by atomic force microscopy. We obtained smaller particle deposition and higher particle density -but a lower area coverage (5%) - in samples with HDT as capping agent. This work presents promising results on nanostructures for future application on hybrid solar cells. Further efforts will be focused on the deposition of organic-inorganic layers.

  12. Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors

    NASA Astrophysics Data System (ADS)

    Vaziri, S.; Belete, M.; Dentoni Litta, E.; Smith, A. D.; Lupina, G.; Lemme, M. C.; Östling, M.

    2015-07-01

    Vertical graphene-based device concepts that rely on quantum mechanical tunneling are intensely being discussed in the literature for applications in electronics and optoelectronics. In this work, the carrier transport mechanisms in semiconductor-insulator-graphene (SIG) capacitors are investigated with respect to their suitability as electron emitters in vertical graphene base transistors (GBTs). Several dielectric materials as tunnel barriers are compared, including dielectric double layers. Using bilayer dielectrics, we experimentally demonstrate significant improvements in the electron injection current by promoting Fowler-Nordheim tunneling (FNT) and step tunneling (ST) while suppressing defect mediated carrier transport. High injected tunneling current densities approaching 103 A cm-2 (limited by series resistance), and excellent current-voltage nonlinearity and asymmetry are achieved using a 1 nm thick high quality dielectric, thulium silicate (TmSiO), as the first insulator layer, and titanium dioxide (TiO2) as a high electron affinity second layer insulator. We also confirm the feasibility and effectiveness of our approach in a full GBT structure which shows dramatic improvement in the collector on-state current density with respect to the previously reported GBTs. The device design and the fabrication scheme have been selected with future CMOS process compatibility in mind. This work proposes a bilayer tunnel barrier approach as a promising candidate to be used in high performance vertical graphene-based tunneling devices.

  13. Magnetization reversal mechanism of magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Liu, Cun-Ye; Li, Jian; Wang, Yue; Chen, Jian-Yong; Xu, Qing-Yu; Ni, Gang; Sang, Hai; Du, You-Wei

    2002-01-01

    Using the ion-beam-sputtering technique, we have fabricated Fe/Al2O3/Fe magnetic tunnelling junctions (MTJs). We have observed double-peaked shapes of curves, which have a level summit and a symmetrical feature, showing the magnetoresistance of the junction as a function of applied field. We have measured the tunnel conductance of MTJs which have insulating layers of different thicknesses. We have studied the dependence of the magnetoresistance of MTJs on tunnel conductance. The microstructures of hard- and soft-magnetic layers and interfaces of ferromagnets and insulators were probed. Analysing the influence of MJT microstructures, including those having clusters or/and granules in magnetic and non-magnetic films, a magnetization reversal mechanism (MRM) is proposed, which suggests that the MRM of tunnelling junctions may be explained by using a group-by-group reversal model of magnetic moments of the mesoscopical particles. We discuss the influence of MTJ microstructures, including those with clusters or/and granules in the ferromagnetic and non-magnetic films, on the MRM.

  14. Nanostructured ZnO - its challenging properties and potential for device applications

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, D.

    2017-01-01

    Nanostructured ZnO possessing interesting structural and optical properties offers challenging opportunities for innovative applications. In this lecture the review of the optical and structural properties of ZnO nanostructured layers is presented. It is shown that they have a direct impact on the parameters of devices involving ZnO. An analysis of current trends in the photovoltaic (PV) field shows that improved light harvesting and efficiency of solar cells can be obtained by implementing nanostructured ZnO layers to process advanced solar cell structures. Because of amenability to doping, high chemical stability, sensitivity to different adsorbed gases, nontoxicity and low cost ZnO attracted much attention for application as gas sensors. The sensitivity of nano-grain ZnO gas elements is comparatively high because of the grain-size effect. Application of nanostructured ZnO for gas sensors and for increasing of light harvesting in solar cells is demonstrated.

  15. Subterahertz acoustical pumping of electronic charge in a resonant tunneling device.

    PubMed

    Young, E S K; Akimov, A V; Henini, M; Eaves, L; Kent, A J

    2012-06-01

    We demonstrate that controlled subnanosecond bursts of electronic charge can be transferred through a resonant tunneling diode by successive picosecond acoustic pulses. The effect exploits the nonlinear current-voltage characteristics of the device and its asymmetric response to the compressive and tensile components of the strain pulse. This acoustoelectronic pump opens new possibilities for the control of quantum phenomena in nanostructures.

  16. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface

    NASA Astrophysics Data System (ADS)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.; Rathje, Christopher; Hornig, Graham J.; Sharum, Haille M.; Hoffman, James R.; Freeman, Mark R.; Hegmann, Frank A.

    2017-06-01

    Ultrafast control of current on the atomic scale is essential for future innovations in nanoelectronics. Extremely localized transient electric fields on the nanoscale can be achieved by coupling picosecond duration terahertz pulses to metallic nanostructures. Here, we demonstrate terahertz scanning tunnelling microscopy (THz-STM) in ultrahigh vacuum as a new platform for exploring ultrafast non-equilibrium tunnelling dynamics with atomic precision. Extreme terahertz-pulse-driven tunnel currents up to 107 times larger than steady-state currents in conventional STM are used to image individual atoms on a silicon surface with 0.3 nm spatial resolution. At terahertz frequencies, the metallic-like Si(111)-(7 × 7) surface is unable to screen the electric field from the bulk, resulting in a terahertz tunnel conductance that is fundamentally different than that of the steady state. Ultrafast terahertz-induced band bending and non-equilibrium charging of surface states opens new conduction pathways to the bulk, enabling extreme transient tunnel currents to flow between the tip and sample.

  17. Evidence for Defect-Mediated Tunneling in Hexagonal Boron Nitride-Based Junctions.

    PubMed

    Chandni, U; Watanabe, K; Taniguchi, T; Eisenstein, J P

    2015-11-11

    We investigate electron tunneling through atomically thin layers of hexagonal boron nitride (hBN). Metal (Cr/Au) and semimetal (graphite) counter-electrodes are employed. While the direct tunneling resistance increases nearly exponentially with barrier thickness as expected, the thicker junctions also exhibit clear signatures of Coulomb blockade, including strong suppression of the tunnel current around zero bias and step-like features in the current at larger biases. The voltage separation of these steps suggests that single-electron charging of nanometer-scale defects in the hBN barrier layer are responsible for these signatures. We find that annealing the metal-hBN-metal junctions removes these defects and the Coulomb blockade signatures in the tunneling current.

  18. Polarization-induced Zener tunnel diodes in GaN/InGaN/GaN heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xiaodong; Li, Wenjun; Islam, S. M.

    By the insertion of thin In{sub x}Ga{sub 1−x}N layers into Nitrogen-polar GaN p-n junctions, polarization-induced Zener tunnel junctions are studied. The reverse-bias interband Zener tunneling current is found to be weakly temperature dependent, as opposed to the strongly temperature-dependent forward bias current. This indicates tunneling as the primary reverse-bias current transport mechanism. The Indium composition in the InGaN layer is systematically varied to demonstrate the increase in the interband tunneling current. Comparing the experimentally measured tunneling currents to a model helps identify the specific challenges in potentially taking such junctions towards nitride-based polarization-induced tunneling field-effect transistors.

  19. Silver nanostructures synthesis via optically induced electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Li, Pan; Liu, Na; Yu, Haibo; Wang, Feifei; Liu, Lianqing; Lee, Gwo-Bin; Wang, Yuechao; Li, Wen Jung

    2016-06-01

    We present a new digitally controlled, optically induced electrochemical deposition (OED) method for fabricating silver nanostructures. Projected light patterns were used to induce an electrochemical reaction in a specialized sandwich-like microfluidic device composed of one indium tin oxide (ITO) glass electrode and an optically sensitive-layer-covered ITO electrode. Silver polyhedral nanoparticles, triangular and hexagonal nanoplates, and nanobelts were controllably synthesized in specific positions at which projected light was illuminated. The silver nanobelts had rectangular cross-sections with an average width of 300 nm and an average thickness of 100 nm. By controlling the applied voltage, frequency, and time, different silver nanostructure morphologies were obtained. Based on the classic electric double-layer theory, a dynamic process of reduction and crystallization can be described in terms of three phases. Because it is template- and surfactant-free, the digitally controlled OED method facilitates the easy, low cost, efficient, and flexible synthesis of functional silver nanostructures, especially quasi-one-dimensional nanobelts.

  20. The release kinetics, antimicrobial activity and cytocompatibility of differently prepared collagen/hydroxyapatite/vancomycin layers: Microstructure vs. nanostructure.

    PubMed

    Suchý, Tomáš; Šupová, Monika; Klapková, Eva; Adamková, Václava; Závora, Jan; Žaloudková, Margit; Rýglová, Šárka; Ballay, Rastislav; Denk, František; Pokorný, Marek; Sauerová, Pavla; Hubálek Kalbáčová, Marie; Horný, Lukáš; Veselý, Jan; Voňavková, Tereza; Průša, Richard

    2017-03-30

    The aim of this study was to develop an osteo-inductive resorbable layer allowing the controlled elution of antibiotics to be used as a bone/implant bioactive interface particularly in the case of prosthetic joint infections, or as a preventative procedure with respect to primary joint replacement at a potentially infected site. An evaluation was performed of the vancomycin release kinetics, antimicrobial efficiency and cytocompatibility of collagen/hydroxyapatite layers containing vancomycin prepared employing different hydroxyapatite concentrations. Collagen layers with various levels of porosity and structure were prepared using three different methods: by means of the lyophilisation and electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite and 10wt% of vancomycin, and by means of the electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite followed by impregnation with 10wt% of vancomycin. The maximum concentration of the released active form of vancomycin characterised by means of HPLC was achieved via the vancomycin impregnation of the electrospun layers, whereas the lowest concentration was determined for those layers electrospun directly from a collagen solution containing vancomycin. Agar diffusion testing revealed that the electrospun impregnated layers exhibited the highest level of activity. It was determined that modification using hydroxyapatite exerts no strong effect on vancomycin evolution. All the tested samples exhibited sufficient cytocompatibility with no indication of cytotoxic effects using human osteoblastic cells in direct contact with the layers or in 24-hour infusions thereof. The results herein suggest that nano-structured collagen-hydroxyapatite layers impregnated with vancomycin following cross-linking provide suitable candidates for use as local drug delivery carriers. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Electron Tunneling in Junctions Doped with Semiconductors and Metals.

    NASA Astrophysics Data System (ADS)

    Bell, Lloyd Douglas, II

    In this study, tunnel junctions incorporating thin layers of semiconductors and metals have been analyzed. Inelastic electron tunneling spectroscopy (IETS) was employed to yield high-resolution vibrational spectra of surface species deposited at the oxide-M_2 interface of M_1-M_1O _{rm x}-M _2 tunneling samples. Analysis was also performed on the elastic component of the tunneling current, yielding information on the tunnel barrier shape. The samples in this research exhibit a wide range of behavior. The IETS for Si, SiO_2, and Ge doped samples show direct evidence of SiH _{rm x} and GeH_ {rm x} formation. The particular species formed is shown to depend on the form of the evaporated dopant. Samples were also made with organic dopants deposited over the evaporated dopants. Many such samples show marked effects of the evaporated dopants on the inelastic peak intensities of the organic dopants. These alterations are correlated with the changed reactivity of the oxide surface coupled with a change in the OH dipole layer density on the oxide. Thicker organic dopant layers cause large changes in the elastic tunneling barrier due to OH layer alterations or the low barrier attributes of the evaporated dopant. In the cases of the thicker layers an extra current-carrying mechanism is shown to be contributing. Electron ejection from charge traps is proposed as an explanation for this extra current. The trend of barrier shape with dopant thickness is examined. Many of these dopants also produce a voltage-induced shift in the barrier shape which is stable at low temperature but relaxes at high temperature. This effect is similar to that produced by certain organic dopants and is explained by metastable bond formation between the surface OH and dopant. Other dopants, such as Al, Mg, and Fe, produce different effects. These dopants cause large I-V nonlinearity at low voltages. This nonlinearity is modeled as a giant zero-bias anomaly (ZBA) and fits are presented which show good

  2. Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks

    NASA Astrophysics Data System (ADS)

    Butscher, Christoph; Einstein, Herbert H.; Huggenberger, Peter

    2011-11-01

    Swelling of clay-sulfate rocks is a major threat in tunneling. It is triggered by the transformation of the sulfate mineral anhydrite into gypsum as a result of water inflow in anhydrite-containing layers after tunnel excavation. The present study investigates the hydraulic effects of tunneling on groundwater flow and analyzes how hydraulic changes caused by excavation lead to water inflow into anhydrite-containing layers in the tunnel area. Numerical groundwater models are used to conduct scenario simulations that allow one to relate hydrogeological conditions to rock swelling. The influence of the topographic setting, the excavation-damaged zone around the tunnel, the sealing effect of the tunnel liner, and the geological configuration are analyzed separately. The analysis is performed for synthetic situations and is complemented by a case study from a tunnel in Switzerland. The results illustrate the importance of geological and hydraulic information when assessing the risk of swelling at an actual site.

  3. Assembly, Structure, and Functionality of Metal-Organic Networks and Organic Semiconductor Layers at Surfaces

    NASA Astrophysics Data System (ADS)

    Tempas, Christopher D.

    Self-assembled nanostructures at surfaces show promise for the development of next generation technologies including organic electronic devices and heterogeneous catalysis. In many cases, the functionality of these nanostructures is not well understood. This thesis presents strategies for the structural design of new on-surface metal-organic networks and probes their chemical reactivity. It is shown that creating uniform metal sites greatly increases selectivity when compared to ligand-free metal islands. When O2 reacts with single-site vanadium centers, in redox-active self-assembled coordination networks on the Au(100) surface, it forms one product. When O2 reacts with vanadium metal islands on the same surface, multiple products are formed. Other metal-organic networks described in this thesis include a mixed valence network containing Pt0 and PtII and a network where two Fe centers reside in close proximity. This structure is stable to temperatures >450 °C. These new on-surface assemblies may offer the ability to perform reactions of increasing complexity as future heterogeneous catalysts. The functionalization of organic semiconductor molecules is also shown. When a few molecular layers are grown on the surface, it is seen that the addition of functional groups changes both the film's structure and charge transport properties. This is due to changes in both first layer packing structure and the pi-electron distribution in the functionalized molecules compared to the original molecule. The systems described in this thesis were studied using high-resolution scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy. Overall, this work provides strategies for the creation of new, well-defined on-surface nanostructures and adds additional chemical insight into their properties.

  4. High efficient light absorption and nanostructure-dependent birefringence of a metal-dielectric symmetrical layered structure

    NASA Astrophysics Data System (ADS)

    Jen, Yi-Jun; Jhang, Yi-Ciang; Liu, Wei-Chih

    2017-08-01

    A multilayer that comprises ultra-thin metal and dielectric films has been investigated and applied as a layered metamaterial. By arranging metal and dielectric films alternatively and symmetrically, the equivalent admittance and refractive index can be tailored separately. The tailored admittance and refractive index enable us to design optical filters with more flexibility. The admittance matching is achieved via the admittance tracing in the normalized admittance diagram. In this work, an ultra-thin light absorber is designed as a multilayer composed of one or several cells. Each cell is a seven-layered film stack here. The design concept is to have the extinction as large as possible under the condition of admittance matching. For a seven-layered symmetrical film stack arranged as Ta2O5 (45 nm)/ a-Si (17 nm)/ Cr (30 nm)/ Al (30 nm)/ Cr (30 nm)/ a-Si (17 nm)/ Ta2O5 (45 nm), its mean equivalent admittance and extinction coefficient over the visible regime is 1.4+0.2i and 2.15, respectively. The unit cell on a transparent BK7 glass substrate absorbs 99% of normally incident light energy for the incident medium is glass. On the other hand, a transmission-induced metal-dielectric film stack is investigated by using the admittance matching method. The equivalent anisotropic property of the metal-dielectric multilayer varied with wavelength and nanostructure are investigated here.

  5. Fast Low-Current Spin-Orbit-Torque Switching of Magnetic Tunnel Junctions through Atomic Modifications of the Free-Layer Interfaces

    NASA Astrophysics Data System (ADS)

    Shi, Shengjie; Ou, Yongxi; Aradhya, S. V.; Ralph, D. C.; Buhrman, R. A.

    2018-01-01

    Future applications of spin-orbit torque will require new mechanisms to improve the efficiency of switching nanoscale magnetic tunnel junctions (MTJs), while also controlling the magnetic dynamics to achieve fast nanosecond-scale performance with low-write-error rates. Here, we demonstrate a strategy to simultaneously enhance the interfacial magnetic anisotropy energy and suppress interfacial spin-memory loss by introducing subatomic and monatomic layers of Hf at the top and bottom interfaces of the ferromagnetic free layer of an in-plane magnetized three-terminal MTJ device. When combined with a β -W spin Hall channel that generates spin-orbit torque, the cumulative effect is a switching current density of 5.4 ×106 A /cm2 .

  6. Resonant and nondissipative tunneling in independently contacted graphene structures

    NASA Astrophysics Data System (ADS)

    Vasko, F. T.

    2013-02-01

    The tunneling processes between independently contacted graphene sheets separated by thin insulator are restricted by the momentum and energy conservation laws. Because of this, both dissipative tunneling transitions, with momentum transfer due to disorder scattering, and nondissipative regime of tunneling, which appears due to intersection of electron and hole branches of energy spectrum, must be taken into account. The tunneling current density is calculated for the graphene-boron nitride-graphene layers, which is described by the tight-binding approach, and for the predominant momentum scattering by static disorder. Dependencies of current on concentrations in top and bottom graphene layers, which are governed by the voltages applied through independent contacts and gates, are considered for the back- and double-gated structures. The current-voltage characteristics of the back-gated structure are in agreement with the recent experiment [ScienceSCIEAS0036-807510.1126/science.1218461 335, 947 (2012)]. For the double-gated structures, the resonant dissipative tunneling causes a 10-fold enhancement of response which is important for transistor applications.

  7. 3D-fabrication of tunable and high-density arrays of crystalline silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Wilbers, J. G. E.; Berenschot, J. W.; Tiggelaar, R. M.; Dogan, T.; Sugimura, K.; van der Wiel, W. G.; Gardeniers, J. G. E.; Tas, N. R.

    2018-04-01

    In this report, a procedure for the 3D-nanofabrication of ordered, high-density arrays of crystalline silicon nanostructures is described. Two nanolithography methods were utilized for the fabrication of the nanostructure array, viz. displacement Talbot lithography (DTL) and edge lithography (EL). DTL is employed to perform two (orthogonal) resist-patterning steps to pattern a thin Si3N4 layer. The resulting patterned double layer serves as an etch mask for all further etching steps for the fabrication of ordered arrays of silicon nanostructures. The arrays are made by means of anisotropic wet etching of silicon in combination with an isotropic retraction etch step of the etch mask, i.e. EL. The procedure enables fabrication of nanostructures with dimensions below 15 nm and a potential density of 1010 crystals cm-2.

  8. Experiments on integral length scale control in atmospheric boundary layer wind tunnel

    NASA Astrophysics Data System (ADS)

    Varshney, Kapil; Poddar, Kamal

    2011-11-01

    Accurate predictions of turbulent characteristics in the atmospheric boundary layer (ABL) depends on understanding the effects of surface roughness on the spatial distribution of velocity, turbulence intensity, and turbulence length scales. Simulation of the ABL characteristics have been performed in a short test section length wind tunnel to determine the appropriate length scale factor for modeling, which ensures correct aeroelastic behavior of structural models for non-aerodynamic applications. The ABL characteristics have been simulated by using various configurations of passive devices such as vortex generators, air barriers, and slot in the test section floor which was extended into the contraction cone. Mean velocity and velocity fluctuations have been measured using a hot-wire anemometry system. Mean velocity, turbulence intensity, turbulence scale, and power spectral density of velocity fluctuations have been obtained from the experiments for various configuration of the passive devices. It is shown that the integral length scale factor can be controlled using various combinations of the passive devices.

  9. Hydrothermal Synthesis of Nanostructured Vanadium Oxides

    PubMed Central

    Livage, Jacques

    2010-01-01

    A wide range of vanadium oxides have been obtained via the hydrothermal treatment of aqueous V(V) solutions. They exhibit a large variety of nanostructures ranging from molecular clusters to 1D and 2D layered compounds. Nanotubes are obtained via a self-rolling process while amazing morphologies such as nano-spheres, nano-flowers and even nano-urchins are formed via the self-assembling of nano-particles. This paper provides some correlation between the molecular structure of precursors in the solution and the nanostructure of the solid phases obtained by hydrothermal treatment. PMID:28883325

  10. Controlled Growth of Ordered III-Nitride Core-Shell Nanostructure Arrays for Visible Optoelectronic Devices

    DOE PAGES

    Rishinaramangalam, Ashwin K.; Mishkat Ul Masabih, Saadat; Fairchild, Michael N.; ...

    2014-10-21

    In our paper, we demonstrate the growth of ordered arrays of nonpolar {101 ¯ 0} core–shell nanowalls and semipolar {101 ¯ 1} core–shell pyramidal nanostripes on c-plane (0001) sapphire substrates using selective-area epitaxy and metal organic chemical vapor deposition. The nanostructure arrays are controllably patterned into LED mesa regions, demonstrating a technique to impart secondary lithography features into the arrays. Moreover, we study the dependence of the nanostructure cores on the epitaxial growth conditions and show that the geometry and morphology are strongly influenced by growth temperature, V/III ratio, and pulse interruption time. We also demonstrate the growth of InGaNmore » quantum well shells on the nanostructures and characterize the structures by using micro-photoluminescence and cross-section scanning tunneling electron microscopy.« less

  11. F-8 supercritical wing flight pressure, Boundary layer, and wake measurements and comparisons with wind tunnel data

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Banner, R. D.

    1977-01-01

    Data for speeds from Mach 0.50 to Mach 0.99 are presented for configurations with and without fuselage area-rule additions, with and without leading-edge vortex generators, and with and without boundary-layer trips on the wing. The wing pressure coefficients are tabulated. Comparisons between the airplane and model data show that higher second velocity peaks occurred on the airplane wing than on the model wing. The differences were attributed to wind tunnel wall interference effects that caused too much rear camber to be designed into the wing. Optimum flow conditions on the outboard wing section occurred at Mach 0.98 at an angle of attack near 4 deg. The measured differences in section drag with and without boundary-layer trips on the wing suggested that a region of laminar flow existed on the outboard wing without trips.

  12. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells

    DOE PAGES

    Wang, Qi; Dong, Qingfeng; Li, Tao; ...

    2016-05-17

    Here, we demonstrated that inserting a tunneling layer between perovskite and electron transport layer could significantly increase device performance by suppressing carrier recombination at the cathode contact. The tunneling layer can also serve as an encapsulation layer to prevent perovskite film from damage caused by water or moisture. This method is simple because it does not need lattice matching between the buffer layer and perovskite. The low temperature solution process makes it compatible with many types of perovskite materials, and may be applied for anode contact as well. The freedom to choose any insulating layer for contact enables more devicemore » designs and manufacturing.« less

  13. Fabrication of 3D nano-structures using reverse imprint lithography.

    PubMed

    Han, Kang-Soo; Hong, Sung-Hoon; Kim, Kang-In; Cho, Joong-Yeon; Choi, Kyung-Woo; Lee, Heon

    2013-02-01

    In spite of the fact that the fabrication process of three-dimensional nano-structures is complicated and expensive, it can be applied to a range of devices to increase their efficiency and sensitivity. Simple and inexpensive fabrication of three-dimensional nano-structures is necessary. In this study, reverse imprint lithography (RIL) with UV-curable benzylmethacrylate, methacryloxypropyl terminated poly-dimethylsiloxane (M-PDMS) resin and ZnO-nano-particle-dispersed resin was used to fabricate three-dimensional nano-structures.UV-curable resins were placed between a silicon stamp and a PVA transfer template, followed by a UV curing process. Then, the silicon stamp was detached and a 2D pattern layer was transferred to the substrate using diluted UV-curable glue. Consequently, three-dimensional nano-structures were formed by stacking the two-dimensional nano-patterned layers. RIL was applied to a light-emitting diode (LED) to evaluate the optical effects of a nano-patterned layer. As a result, the light extraction of the patterned LED was increased by about 12% compared to an unpatterned LED.

  14. Surface-enhanced Raman scattering of amorphous TiO2 thin films by gold nanostructures: Revealing first layer effect with thickness variation

    NASA Astrophysics Data System (ADS)

    Degioanni, S.; Jurdyc, A.-M.; Bessueille, F.; Coulm, J.; Champagnon, B.; Vouagner, D.

    2013-12-01

    In this paper, amorphous titanium dioxide (TiO2) thin films have been deposited on a commercially available Klarite substrate using the sol-gel process to produce surface-enhanced Raman scattering (SERS). The substrate consists of square arrays of micrometer-sized pyramidal pits in silicon with a gold coating. Several thin TiO2 layers have been deposited on the surface to study the influence of film thickness. Ultimately, we obtained information on SERS of an amorphous TiO2 layer by gold nanostructures, whose range is less than a few nanometers. Mechanisms responsible for the enhancement are the product of concomitant chemical and electromagnetic effects with an important contribution from plasmon-induced charge transfer.

  15. Wall Interference in Two-Dimensional Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.

    1986-01-01

    Viscosity and tunnel-wall constraints introduced via boundary conditions. TWINTN4 computer program developed to implement method of posttest assessment of wall interference in two-dimensional wind tunnels. Offers two methods for combining sidewall boundary-layer effects with upper and lower wall interference. In sequential procedure, Sewall method used to define flow free of sidewall effects, then assessed for upper and lower wall effects. In unified procedure, wind-tunnel flow equations altered to incorporate effects from all four walls at once. Program written in FORTRAN IV for batch execution.

  16. Fast Laser Holographic Interferometry For Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Lee, George

    1989-01-01

    Proposed system makes holographic interferograms quickly in wind tunnels. Holograms reveal two-dimensional flows around airfoils and provide information on distributions of pressure, structures of wake and boundary layers, and density contours of flow fields. Holograms form quickly in thermoplastic plates in wind tunnel. Plates rigid and left in place so neither vibrations nor photgraphic-development process degrades accuracy of holograms. System processes and analyzes images quickly. Semiautomatic micro-computer-based desktop image-processing unit now undergoing development moves easily to wind tunnel, and its speed and memory adequate for flows about airfoils.

  17. Ultrathin Carbon with Interspersed Graphene/Fullerene-like Nanostructures: A Durable Protective Overcoat for High Density Magnetic Storage.

    PubMed

    Dwivedi, Neeraj; Satyanarayana, Nalam; Yeo, Reuben J; Xu, Hai; Ping Loh, Kian; Tripathy, Sudhiranjan; Bhatia, Charanjit S

    2015-06-25

    One of the key issues for future hard disk drive technology is to design and develop ultrathin (<2 nm) overcoats with excellent wear- and corrosion protection and high thermal stability. Forming carbon overcoats (COCs) having interspersed nanostructures by the filtered cathodic vacuum arc (FCVA) process can be an effective approach to achieve the desired target. In this work, by employing a novel bi-level surface modification approach using FCVA, the formation of a high sp(3) bonded ultrathin (~1.7 nm) amorphous carbon overcoat with interspersed graphene/fullerene-like nanostructures, grown on magnetic hard disk media, is reported. The in-depth spectroscopic and microscopic analyses by high resolution transmission electron microscopy, scanning tunneling microscopy, time-of-flight secondary ion mass spectrometry, and Raman spectroscopy support the observed findings. Despite a reduction of ~37% in COC thickness, the FCVA-processed thinner COC (~1.7 nm) shows promising functional performance in terms of lower coefficient of friction (~0.25), higher wear resistance, lower surface energy, excellent hydrophobicity and similar/better oxidation corrosion resistance than current commercial COCs of thickness ~2.7 nm. The surface and tribological properties of FCVA-deposited COC was further improved after deposition of lubricant layer.

  18. Ultrathin Carbon with Interspersed Graphene/Fullerene-like Nanostructures: A Durable Protective Overcoat for High Density Magnetic Storage

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Satyanarayana, Nalam; Yeo, Reuben J.; Xu, Hai; Ping Loh, Kian; Tripathy, Sudhiranjan; Bhatia, Charanjit S.

    2015-06-01

    One of the key issues for future hard disk drive technology is to design and develop ultrathin (<2 nm) overcoats with excellent wear- and corrosion protection and high thermal stability. Forming carbon overcoats (COCs) having interspersed nanostructures by the filtered cathodic vacuum arc (FCVA) process can be an effective approach to achieve the desired target. In this work, by employing a novel bi-level surface modification approach using FCVA, the formation of a high sp3 bonded ultrathin (~1.7 nm) amorphous carbon overcoat with interspersed graphene/fullerene-like nanostructures, grown on magnetic hard disk media, is reported. The in-depth spectroscopic and microscopic analyses by high resolution transmission electron microscopy, scanning tunneling microscopy, time-of-flight secondary ion mass spectrometry, and Raman spectroscopy support the observed findings. Despite a reduction of ~37 % in COC thickness, the FCVA-processed thinner COC (~1.7 nm) shows promising functional performance in terms of lower coefficient of friction (~0.25), higher wear resistance, lower surface energy, excellent hydrophobicity and similar/better oxidation corrosion resistance than current commercial COCs of thickness ~2.7 nm. The surface and tribological properties of FCVA-deposited COC was further improved after deposition of lubricant layer.

  19. Ultrathin Carbon with Interspersed Graphene/Fullerene-like Nanostructures: A Durable Protective Overcoat for High Density Magnetic Storage

    PubMed Central

    Dwivedi, Neeraj; Satyanarayana, Nalam; Yeo, Reuben J.; Xu, Hai; Ping Loh, Kian; Tripathy, Sudhiranjan; Bhatia, Charanjit S.

    2015-01-01

    One of the key issues for future hard disk drive technology is to design and develop ultrathin (<2 nm) overcoats with excellent wear- and corrosion protection and high thermal stability. Forming carbon overcoats (COCs) having interspersed nanostructures by the filtered cathodic vacuum arc (FCVA) process can be an effective approach to achieve the desired target. In this work, by employing a novel bi-level surface modification approach using FCVA, the formation of a high sp3 bonded ultrathin (~1.7 nm) amorphous carbon overcoat with interspersed graphene/fullerene-like nanostructures, grown on magnetic hard disk media, is reported. The in-depth spectroscopic and microscopic analyses by high resolution transmission electron microscopy, scanning tunneling microscopy, time-of-flight secondary ion mass spectrometry, and Raman spectroscopy support the observed findings. Despite a reduction of ~37 % in COC thickness, the FCVA-processed thinner COC (~1.7 nm) shows promising functional performance in terms of lower coefficient of friction (~0.25), higher wear resistance, lower surface energy, excellent hydrophobicity and similar/better oxidation corrosion resistance than current commercial COCs of thickness ~2.7 nm. The surface and tribological properties of FCVA-deposited COC was further improved after deposition of lubricant layer. PMID:26109208

  20. Automatic control of cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with

  1. Atomically Traceable Nanostructure Fabrication.

    PubMed

    Ballard, Josh B; Dick, Don D; McDonnell, Stephen J; Bischof, Maia; Fu, Joseph; Owen, James H G; Owen, William R; Alexander, Justin D; Jaeger, David L; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J; Wallace, Robert M; Reidy, Richard; Silver, Richard M; Randall, John N; Von Ehr, James

    2015-07-17

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure.

  2. Atomically Traceable Nanostructure Fabrication

    PubMed Central

    Ballard, Josh B.; Dick, Don D.; McDonnell, Stephen J.; Bischof, Maia; Fu, Joseph; Owen, James H. G.; Owen, William R.; Alexander, Justin D.; Jaeger, David L.; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J.; Wallace, Robert M.; Reidy, Richard; Silver, Richard M.; Randall, John N.; Von Ehr, James

    2015-01-01

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure. PMID:26274555

  3. Boundary-layer transition on a flared cone in a Mach 6 quiet wind tunnel

    NASA Astrophysics Data System (ADS)

    Hofferth, Jerrod; Saric, William

    2010-11-01

    The Mach 6 Quiet Tunnel at Texas A&M is a low-disturbance blowdown facility suitable for boundary-layer stability and transition research. Following its reactivation in 2009, initial testing confirmed the presence of low-disturbance (< 0.1% Pt^'/Pt) freestream flow at select locations on the centerline of the nozzle for settling chamber pressures up to 10 atm, and a fully-traversed freestream flow-quality assessment is currently underway. As a third performance benchmark to complement these direct measurements, the present work measures the transition location on the NASA Langley 93-10 flared-cone model. This model has a 0.5m length, beginning as a 5^o half-angle circular cone. At the X=254mm station, a flare of surface radius 2.35m begins which is intended to induce transition within the quiet test core. Boundary-layer transition is detected on the thin-walled model by an observed surface temperature rise using an array of 51 embedded thermocouples. Transition data are presented for a sharp (2.5 μm) nose-tip radius case for comparison with the Lachowicz & Chokani (1996 data). Data for larger-radius nose-tips are also presented.

  4. Boundary-layer instability & transition on a flared cone in a Mach 6 quiet wind tunnel

    NASA Astrophysics Data System (ADS)

    Hofferth, Jerrod; Saric, William

    2011-11-01

    Measurements of boundary-layer transition location and instability growth on a sharp-tipped 5°-half-angle flared cone were conducted in a low-disturbance Mach 6 wind tunnel at a freestream unit Reynolds number of 10 × 106/m. Under quiet flow at these conditions, the boundary layer becomes transitional near the base of the cone, where significant second-mode instability growth is evident. Transition location is determined using an array of embedded thermocouples, and instability development is observed in mean and fluctuating mass flux data using hotwire anemometry. The present work seeks to reproduce and build upon previous experiments which used the same test article and similar diagnostics in the facility's former installation at NASA Langley. Together with comprehensive measurements of the freestream disturbance environment, these baseline cone data characterize the facility's performance relative to that in its previous installation. In addition, the current campaign establishes experimental readiness for future research, which will study the effects of periodic surface roughness and controlled-input disturbances. AFOSR/NASA National Center for Hypersonic Research in Laminar-Turbulent Transition; Grant FA9550-09-1-0341.

  5. Design and optimization of ARC less InGaP/GaAs single-/multi-junction solar cells with tunnel junction and back surface field layers

    NASA Astrophysics Data System (ADS)

    Chee, Kuan W. A.; Hu, Yuning

    2018-07-01

    There has always been an inexorable interest in the solar industry in boosting the photovoltaic conversion efficiency. This paper presents a theoretical and numerical simulation study of the effects of key design parameters on the photoelectric performance of single junction (InGaP- or GaAs-based) and dual junction (InGaP/GaAs) inorganic solar cells. The influence of base layer thickness, base doping concentration, junction temperature, back surface field layer composition and thickness, and tunnel junction material, were correlated with open circuit voltage, short-circuit current, fill factor and power conversion efficiency performance. The InGaP/GaAs dual junction solar cell was optimized with the tunnel junction and back surface field designs, yielding a short-circuit current density of 20.71 mAcm-2 , open-circuit voltage of 2.44 V and fill factor of 88.6%, and guaranteeing an optimal power conversion efficiency of at least 32.4% under 1 sun AM0 illumination even without an anti-reflective coating.

  6. Resonant tunnelling and negative differential conductance in graphene transistors

    PubMed Central

    Britnell, L.; Gorbachev, R. V.; Geim, A. K.; Ponomarenko, L. A.; Mishchenko, A.; Greenaway, M. T.; Fromhold, T. M.; Novoselov, K. S.; Eaves, L.

    2013-01-01

    The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report resonant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonance occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance in the device characteristics persists up to room temperature and is gate voltage-tuneable due to graphene’s unique Dirac-like spectrum. Although conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices. PMID:23653206

  7. Tunneling Spectroscopy of MoN and NbxTi1-xN Thin Films Grown by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Cao, Chaoyue; Groll, Nickolas; Klug, Jeffrey; Becker, Nicholas; Altin, Serdar; Proslier, Thomas; Zasadzinski, John

    2014-03-01

    Tunneling I(V) and dI/dV vs. V are reported on superconducting thin films of MoN and NbxTi1-xN using a point contact method with a Au tip. The films are grown by the chemical process of atomic layer deposition (ALD) onto various substrates (Si, quartz, sapphire) held at 450 C. Resistively measured superconducting Tc values up to 12K and 13K are found for the MoN and NbxTi1-xN respectively. Artificial tunnel barriers (1-3 nm thick) of Al2O3, also grown by ALD, are shown to provide much improved tunneling characteristics compared to the native oxides. Relatively high quality gap features are observed with zero-bias conductance values as low as ~ 10% of the high bias values. Gap parameters Δ ~ 2.0meV are found for the MoN and Δ ~ 2.0-2.4 meV for the NbxTi1-xN which follow the BCS temperature dependence and close near the measured film Tc indicating bulk superconductivity at the surface. The suitability of such conformal ALD grown films for potential superconducting devices is discussed. This work was supported by the U.S. Department of Energy, Office of Science under contract No. DE-AC02-06CH11357.

  8. Heat-flux gage measurements on a flat plate at a Mach number of 4.6 in the VSD high speed wind tunnel, a feasibility test (LA28). [wind tunnel tests of measuring instruments for boundary layer flow

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The feasibility of employing thin-film heat-flux gages was studied as a method of defining boundary layer characteristics at supersonic speeds in a high speed blowdown wind tunnel. Flow visualization techniques (using oil) were employed. Tabulated data (computer printouts), a test facility description, and photographs of test equipment are given.

  9. Spin-transfer torque in spin filter tunnel junctions

    NASA Astrophysics Data System (ADS)

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek

    2014-12-01

    Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.

  10. Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer

    PubMed Central

    Chen, Hong-Yan; Lu, Hong-Liang; Sun, Long; Ren, Qing-Hua; Zhang, Hao; Ji, Xin-Ming; Liu, Wen-Jun; Ding, Shi-Jin; Yang, Xiao-Feng; Zhang, David Wei

    2016-01-01

    Nowadays, the multi-crystalline silicon (mc-Si) solar cells dominate the photovoltaic industry. However, the current acid etching method on mc-Si surface used by firms can hardly suppress the average reflectance value below 25% in the visible light spectrum. Meanwhile, the nitric acid and the hydrofluoric contained in the etching solution is both environmental unfriendly and highly toxic to human. Here, a mc-Si solar cell based on ZnO nanostructures and an Al2O3 spacer layer is demonstrated. The eco-friendly fabrication is realized by low temperature atomic layer deposition of Al2O3 layer as well as ZnO seed layer. Moreover, the ZnO nanostructures are prepared by nontoxic and low cost hydro-thermal growth process. Results show that the best passivation quality of the n+ -type mc-Si surface can be achieved by balancing the Si dangling bond saturation level and the negative charge concentration in the Al2O3 film. Moreover, the average reflectance on cell surface can be suppressed to 8.2% in 400–900 nm range by controlling the thickness of ZnO seed layer. With these two combined refinements, a maximum solar cell efficiency of 15.8% is obtained eventually. This work offer a facile way to realize the environmental friendly fabrication of high performance mc-Si solar cells. PMID:27924911

  11. Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Yan; Lu, Hong-Liang; Sun, Long; Ren, Qing-Hua; Zhang, Hao; Ji, Xin-Ming; Liu, Wen-Jun; Ding, Shi-Jin; Yang, Xiao-Feng; Zhang, David Wei

    2016-12-01

    Nowadays, the multi-crystalline silicon (mc-Si) solar cells dominate the photovoltaic industry. However, the current acid etching method on mc-Si surface used by firms can hardly suppress the average reflectance value below 25% in the visible light spectrum. Meanwhile, the nitric acid and the hydrofluoric contained in the etching solution is both environmental unfriendly and highly toxic to human. Here, a mc-Si solar cell based on ZnO nanostructures and an Al2O3 spacer layer is demonstrated. The eco-friendly fabrication is realized by low temperature atomic layer deposition of Al2O3 layer as well as ZnO seed layer. Moreover, the ZnO nanostructures are prepared by nontoxic and low cost hydro-thermal growth process. Results show that the best passivation quality of the n+ -type mc-Si surface can be achieved by balancing the Si dangling bond saturation level and the negative charge concentration in the Al2O3 film. Moreover, the average reflectance on cell surface can be suppressed to 8.2% in 400-900 nm range by controlling the thickness of ZnO seed layer. With these two combined refinements, a maximum solar cell efficiency of 15.8% is obtained eventually. This work offer a facile way to realize the environmental friendly fabrication of high performance mc-Si solar cells.

  12. Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition

    DOE PAGES

    Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng; ...

    2015-04-02

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less

  13. Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less

  14. Novel nano-semiconductor film layer supported nano-Pd Complex Nanostructured Catalyst Pd/Ⓕ-MeOx/AC for High Efficient Selective Hydrogenation of Phenol to Cyclohexanone.

    PubMed

    Si, Jiaqi; Ouyang, Wenbing; Zhang, Yanji; Xu, Wentao; Zhou, Jicheng

    2017-04-28

    Supported metal as a type of heterogeneous catalysts are the most widely used in industrial processes. High dispersion of the metal particles of supported catalyst is a key factor in determining the performance of such catalysts. Here we report a novel catalyst Pd/Ⓕ-MeO x /AC with complex nanostructured, Pd nanoparticles supported on the platelike nano-semiconductor film/activated carbon, prepared by the photocatalytic reduction method, which exhibited high efficient catalytic performance for selective hydrogenation of phenol to cyclohexanone. Conversion of phenol achieved up to more than 99% with a lower mole ratio (0.5%) of active components Pd and phenol within 2 h at 70 °C. The synergistic effect of metal nanoparticles and nano-semiconductors support layer and the greatly increasing of contact interface of nano-metal-semiconductors may be responsible for the high efficiency. This work provides a clear demonstration that complex nanostructured catalysts with nano-metal and nano-semiconductor film layer supported on high specific surface AC can yield enhanced catalytic activity and can afford promising approach for developing new supported catalyst.

  15. Semiconductor nanostructures for plasma energetic systems

    NASA Astrophysics Data System (ADS)

    Mustafaev, Alexander; Smerdov, Rostislav; Klimenkov, Boris

    2017-10-01

    In this talk we discuss the research results of the three types of ultrasmall electrodes namely the nanoelectrode arrays based on composite nanostructured porous silicon (PS) layers, porous GaP and nanocrystals of ZnO. These semiconductor materials are of great interest to nano- and optoelectronic applications by virtue of their high specific surface area and extensive capability for surface functionalization. The use of semiconductor (GaN) cathodes in photon-enhanced thermionic emission systems has also proved to be effective although only a few (less than 1%) of the incident photons exceed the 3.3 eV GaN band gap. This significant drawback provided us with a solid foundation for our research in the field of nanostructured PS, and composite materials based on it exhibiting nearly optimal parameters in terms of the band gap (1.1 eV). The band gap modification for PS nanostructured layers is possible in the range of less than 1 eV and 3 eV due to the existence of quantum confinement effect and the remarkable possibilities of PS surface alteration thus providing us with a suitable material for both cathode and anode fabrication. The obtained results are applicable for solar concentration and thermionic energy conversion systems. Dr. Sci., Ph.D, Principal Scientist, Professor.

  16. Nano-structured surface plasmon resonance sensor for sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ho; Kim, Hyo-Sop; Kim, Jin-Ho; Choi, Sung-Wook; Cho, Yong-Jin

    2008-08-01

    A new nano-structured SPR sensor was devised to improve its sensitivity. Nano-scaled silica particles were used as the template to fabricate nano-structure. The surface of the silica particles was modified with thiol group and a single layer of the modified silica particles was attached on the gold or silver thin film using Langmuir-Blodgett (LB) method. Thereafter, gold or silver was coated on the template by an e-beam evaporator. Finally, the nano-structured surface with basin-like shape was obtained after removing the silica particles by sonication. Applying the new developed SPR sensor to a model food of alcoholic beverage, the sensitivities for the gold and silver nano-structured sensors, respectively, had 95% and 126% higher than the conventional one.

  17. Material optimization of multi-layered enhanced nanostructures

    NASA Astrophysics Data System (ADS)

    Strobbia, Pietro

    The employment of surface enhanced Raman scattering (SERS)-based sensing in real-world scenarios will offer numerous advantages over current optical sensors. Examples of these advantages are the intrinsic and simultaneous detection of multiple analytes, among many others. To achieve such a goal, SERS substrates with throughput and reproducibility comparable to commonly used fluorescence sensors have to be developed. To this end, our lab has discovered a multi-layer geometry, based on alternating films of a metal and a dielectric, that amplifies the SERS signal (multi-layer enhancement). The advantage of these multi-layered structures is to amplify the SERS signal exploiting layer-to-layer interactions in the volume of the structures, rather than on its surface. This strategy permits an amplification of the signal without modifying the surface characteristics of a substrate, and therefore conserving its reproducibility. Multi-layered structures can therefore be used to amplify the sensitivity and throughput of potentially any previously developed SERS sensor. In this thesis, these multi-layered structures were optimized and applied to different SERS substrates. The role of the dielectric spacer layer in the multi-layer enhancement was elucidated by fabricating spacers with different characteristics and studying their effect on the overall enhancement. Thickness, surface coverage and physical properties of the spacer were studied. Additionally, the multi-layered structures were applied to commercial SERS substrates and to isolated SERS probes. Studies on the dependence of the multi-layer enhancement on the thickness of the spacer demonstrated that the enhancement increases as a function of surface coverage at sub-monolayer thicknesses, due to the increasing multi-layer nature of the substrates. For fully coalescent spacers the enhancement decreases as a function of thickness, due to the loss of interaction between proximal metallic films. The influence of the

  18. Observation of layered antiferromagnetism in self-assembled parallel NiSi nanowire arrays on Si(110) by spin-polarized scanning tunneling spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Ie-Hong; Hsu, Hsin-Zan

    2018-03-01

    The layered antiferromagnetism of parallel nanowire (NW) arrays self-assembled on Si(110) have been observed at room temperature by direct imaging of both the topographies and magnetic domains using spin-polarized scanning tunneling microscopy/spectroscopy (SP-STM/STS). The topographic STM images reveal that the self-assembled unidirectional and parallel NiSi NWs grow into the Si(110) substrate along the [\\bar{1}10] direction (i.e. the endotaxial growth) and exhibit multiple-layer growth. The spatially-resolved SP-STS maps show that these parallel NiSi NWs of different heights produce two opposite magnetic domains, depending on the heights of either even or odd layers in the layer stack of the NiSi NWs. This layer-wise antiferromagnetic structure can be attributed to an antiferromagnetic interlayer exchange coupling between the adjacent layers in the multiple-layer NiSi NW with a B2 (CsCl-type) crystal structure. Such an endotaxial heterostructure of parallel magnetic NiSi NW arrays with a layered antiferromagnetic ordering in Si(110) provides a new and important perspective for the development of novel Si-based spintronic nanodevices.

  19. Quiet Supersonic Wind Tunnel Development

    NASA Technical Reports Server (NTRS)

    King, Lyndell S.; Kutler, Paul (Technical Monitor)

    1994-01-01

    The ability to control the extent of laminar flow on swept wings at supersonic speeds may be a critical element in developing the enabling technology for a High Speed Civil Transport (HSCT). Laminar boundary layers are less resistive to forward flight than their turbulent counterparts, thus the farther downstream that transition from laminar to turbulent flow in the wing boundary layer is extended can be of significant economic impact. Due to the complex processes involved experimental studies of boundary layer stability and transition are needed, and these are performed in "quiet" wind tunnels capable of simulating the low-disturbance environment of free flight. At Ames, a wind tunnel has been built to operate at flow conditions which match those of the HSCT laminar flow flight demonstration 'aircraft, the F-16XL, i.e. at a Mach number of 1.6 and a Reynolds number range of 1 to 3 million per foot. This will allow detailed studies of the attachment line and crossflow on the leading edge area of the highly swept wing. Also, use of suction as a means of control of transition due to crossflow and attachment line instabilities can be studied. Topics covered include: test operating conditions required; design requirements to efficiently make use of the existing infrastructure; development of an injector drive system using a small pilot facility; plenum chamber design; use of computational tools for tunnel and model design; and early operational results.

  20. Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Giddings, T. A.

    1984-01-01

    An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce.

  1. Magnetotransport in magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Panchula, Alex F.

    The unifying theme of this dissertation is the exploration of novel magnetic thin film materials to improve our understanding of spin-dependent transport in such materials, especially with regard to their use in the nascent field of spin based devices. Such devices, which rely on controlling the electron's spin rather than its charge as in conventional micro-electronics, may be important for applications in sensing, memory and computation. This dissertation covers research performed at the IBM Almaden Research Center between 2000 and 2003. One class of spin-based devices are magnetic tunnel junctions (MTJs), which display large changes in resistance in small magnetic fields. This tunneling magnetoresistance (TMR) is derived from changes in the relative alignment of the magnetic moments of thin ferromagnetic layers which are separated by thin insulating layers. The tunneling current spin polarization (TSP) determines the magnitude of the TMR. For typical transition-metal ferromagnets and their alloys the TSP is ˜50% although it is anticipated that half-metals should display nearly 100%. Confirming theoretical predictions, MTJs with electrodes of magnetite and a conventional ferromagnet such as a CoFe alloy, display an inverted TMR, consistent with negatively spin polarized magnetite electrodes. However, the magnitude of TSP of -48% at low temperatures, is not much larger than that exhibited by conventional 3d transition metal ferromagnets. At high temperatures, transport through the MTJ is dominated by tunneling across the alumina tunnel barrier, while at low temperatures the bulk properties of the magnetite dominates at low bias voltage. Another class of half-metals, the semi-heuslers exhibit low TSP, most likely due to surface disorder and, as revealed in this work, the possible formation of MnSb. The MnSb alloys studied in MTJs are found to behave as typical ferromagnets with a small positive TMR. Also considered are MTJs whose barriers are comprised of the wide

  2. GdN nanoisland-based GaN tunnel junctions.

    PubMed

    Krishnamoorthy, Sriram; Kent, Thomas F; Yang, Jing; Park, Pil Sung; Myers, Roberto C; Rajan, Siddharth

    2013-06-12

    Tunnel junctions could have a great impact on gallium nitride and aluminum nitride-based devices such as light-emitting diodes and lasers by overcoming critical challenges related to hole injection and p-contacts. This paper demonstrates the use of GdN nanoislands to enhance interband tunneling and hole injection into GaN p-n junctions by several orders of magnitude, resulting in low tunnel junction specific resistivity (1.3 × 10(-3) Ω-cm(2)) compared to the previous results in wide band gap semiconductors. Tunnel injection of holes was confirmed by low-temperature operation of GaN p-n junction with a tunneling contact layer, and strong electroluminescence down to 20 K. The low tunnel junction resistance combined with low optical absorption loss in GdN is very promising for incorporation in GaN-based light emitters.

  3. Quantum rotor in nanostructured superconductors

    PubMed Central

    Lin, Shi-Hsin; Milošević, M. V.; Covaci, L.; Jankó, B.; Peeters, F. M.

    2014-01-01

    Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos. PMID:24686241

  4. Tunnel-injected sub-260 nm ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Bajaj, Sanyam; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Rajan, Siddharth

    2017-05-01

    We report on tunnel-injected deep ultraviolet light emitting diodes (UV LEDs) configured with a polarization engineered Al0.75Ga0.25 N/In0.2Ga0.8 N tunnel junction structure. Tunnel-injected UV LED structure enables n-type contacts for both bottom and top contact layers. However, achieving Ohmic contact to wide bandgap n-AlGaN layers is challenging and typically requires high temperature contact metal annealing. In this work, we adopted a compositionally graded top contact layer for non-alloyed metal contact and obtained a low contact resistance of ρc = 4.8 × 10-5 Ω cm2 on n-Al0.75Ga0.25 N. We also observed a significant reduction in the forward operation voltage from 30.9 V to 19.2 V at 1 kA/cm2 by increasing the Mg doping concentration from 6.2 × 1018 cm-3 to 1.5 × 1019 cm-3. Non-equilibrium hole injection into wide bandgap Al0.75Ga0.25 N with Eg>5.2 eV was confirmed by light emission at 257 nm. This work demonstrates the feasibility of tunneling hole injection into deep UV LEDs and provides a structural design towards high power deep-UV emitters.

  5. Boundary Layer Measurements in a Supersonic Wind Tunnel Using Doppler Global Velocimetry

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Cavone, Angelo A.

    2010-01-01

    A modified Doppler Global Velocimeter (DGV) was developed to measure the velocity within the boundary layer above a flat plate in a supersonic flow. Classic laser velocimetry (LV) approaches could not be used since the model surface was composed of a glass-ceramic insulator in support of heat-transfer measurements. Since surface flare limited the use of external LV techniques and windows placed in the model would change the heat transfer characteristics of the flat plate, a novel approach was developed. The input laser beam was divided into nine equal power beams and each transmitted through optical fibers to a small cavity within the model. The beams were then directed through 1.6-mm diameter orifices to form a series of orthogonal beams emitted from the model and aligned with the tunnel centerline to approximate a laser light sheet. Scattered light from 0.1-micron diameter water condensation ice crystals was collected by four 5-mm diameter lenses and transmitted by their respective optical fiber bundles to terminate at the image plane of a standard two-camera DGV receiver. Flow measurements were made over a range from 0.5-mm above the surface to the freestream at Mach 3.51 in steady state and heat pulse injected flows. This technique provides a unique option for measuring boundary layers in supersonic flows where seeding the flow is problematic or where the experimental apparatus does not provide the optical access required by other techniques.

  6. Methods to induce perpendicular magnetic anisotropy in full-Heusler Co2FeSi thin layers in a magnetic tunnel junction structure

    NASA Astrophysics Data System (ADS)

    Shinohara, Koki; Suzuki, Takahiro; Takamura, Yota; Nakagawa, Shigeki

    2018-05-01

    In this study, to obtain perpendicular magnetic tunnel junctions (p-MTJs) using half-metallic ferromagnets (HMFs), several methods were developed to induce perpendicular magnetic anisotropy (PMA) in full-Heusler Co2FeSi (CFS) alloy thin layers in an MTJ multilayer composed of a layered CFS/MgO/CFS structure. Oxygen exposure at 2.0 Pa for 10 min after deposition of the bottom CFS layer was effective for obtaining PMA in the CFS layer. One of the reasons for the PMA is the formation of nearly ideal CFS/MgO interfaces due to oxygen exposure before the deposition of the MgO layer. The annealing process was effective for obtaining PMA in the top CFS layer capped with a Pd layer. PMA was clearly observed in the top CFS layer of a Cr(40 nm)/Pd(50 nm)/bottom CFS(0.6 nm)/MgO(2.0 nm)/top CFS(0.6 nm)/ Pd(10 nm) multilayer, where the top CFS and Pd thin films were deposited at RT and subsequently annealed at 300°C. In addition to the continuous layer growth of the films, the crystalline orientation alignment at the top CFS/Pd interface probably attributes to the origin of PMA at the top CFS layer.

  7. Tunneling of heat: Beyond linear response regime

    NASA Astrophysics Data System (ADS)

    Walczak, Kamil; Saroka, David

    2018-02-01

    We examine nanoscale processes of heat (energy) transfer as carried by electrons tunneling via potential barriers and molecular interconnects between two heat reservoirs (thermal baths). For that purpose, we use Landauer-type formulas to calculate thermal conductance and quadratic correction to heat flux flowing via quantum systems. As an input, we implement analytical expressions for transmission functions related to simple potential barriers and atomic bridges. Our results are discussed with respect to energy of tunneling electrons, temperature, the presence of resonant states, and specific parameters characterizing potential barriers as well as heat carriers. The simplicity of semi-analytical models developed by us allows to fit experimental data and extract crucial information about the values of model parameters. Further investigations are expected for more realistic transmission functions, while time-dependent aspects of nanoscale heat transfer may be addressed by using the concept of wave packets scattered on potential barriers and point-like defects within regular (periodic) nanostructures.

  8. Gate-tunable resonant tunneling in double bilayer graphene heterostructures.

    PubMed

    Fallahazad, Babak; Lee, Kayoung; Kang, Sangwoo; Xue, Jiamin; Larentis, Stefano; Corbet, Christopher; Kim, Kyounghwan; Movva, Hema C P; Taniguchi, Takashi; Watanabe, Kenji; Register, Leonard F; Banerjee, Sanjay K; Tutuc, Emanuel

    2015-01-14

    We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron nitride (hBN) dielectric. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potentials indicates that the resonance occurs when the energy bands of the two bilayer graphene are aligned. We discuss the tunneling resistance dependence on the interlayer hBN thickness, as well as the resonance width dependence on mobility and rotational alignment.

  9. Wind tunnel testing of low-drag airfoils

    NASA Technical Reports Server (NTRS)

    Harvey, W. Donald; Mcghee, R. J.; Harris, C. D.

    1986-01-01

    Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils.

  10. Enhanced voltage-controlled magnetic anisotropy in magnetic tunnel junctions with an MgO/PZT/MgO tunnel barrier

    NASA Astrophysics Data System (ADS)

    Chien, Diana; Li, Xiang; Wong, Kin; Zurbuchen, Mark A.; Robbennolt, Shauna; Yu, Guoqiang; Tolbert, Sarah; Kioussis, Nicholas; Khalili Amiri, Pedram; Wang, Kang L.; Chang, Jane P.

    2016-03-01

    Compared with current-controlled magnetization switching in a perpendicular magnetic tunnel junction (MTJ), electric field- or voltage-induced magnetization switching reduces the writing energy of the memory cell, which also results in increased memory density. In this work, an ultra-thin PZT film with high dielectric constant was integrated into the tunneling oxide layer to enhance the voltage-controlled magnetic anisotropy (VCMA) effect. The growth of MTJ stacks with an MgO/PZT/MgO tunnel barrier was performed using a combination of sputtering and atomic layer deposition techniques. The fabricated MTJs with the MgO/PZT/MgO barrier demonstrate a VCMA coefficient, which is ˜40% higher (19.8 ± 1.3 fJ/V m) than the control sample MTJs with an MgO barrier (14.3 ± 2.7 fJ/V m). The MTJs with the MgO/PZT/MgO barrier also possess a sizeable tunneling magnetoresistance (TMR) of more than 50% at room temperature, comparable to the control MTJs with an MgO barrier. The TMR and enhanced VCMA effect demonstrated simultaneously in this work make the MgO/PZT/MgO barrier-based MTJs potential candidates for future voltage-controlled, ultralow-power, and high-density magnetic random access memory devices.

  11. Wind tunnel experiments to study chaparral crown fires

    Treesearch

    Jeanette Cobian-Iñiguez; AmirHessam Aminfar; Joey Chong; Gloria Burke; Albertina Zuniga; David R. Weise; Marko Princevac

    2017-01-01

    The present protocol presents a laboratory technique designed to study chaparral crown fire ignition and spread. Experiments were conducted in a low velocity fire wind tunnel where two distinct layers of fuel were constructed to represent surface and crown fuels in chaparral. Chamise, a common chaparral shrub, comprised the live crown layer. The dead fuel surface layer...

  12. Nanoscale magnetic characterization of tunneling magnetoresistance spin valve head by electron holography.

    PubMed

    Park, Hyun Soon; Hirata, Kei; Yanagisawa, Keiichi; Ishida, Yoichi; Matsuda, Tsuyoshi; Shindo, Daisuke; Tonomura, Akira

    2012-12-07

    Nanostructured magnetic materials play an important role in increasing miniaturized devices. For the studies of their magnetic properties and behaviors, nanoscale imaging of magnetic field is indispensible. Here, using electron holography, the magnetization distribution of a TMR spin valve head of commercial design is investigated without and with a magnetic field applied. Characterized is the magnetic flux distribution in complex hetero-nanostructures by averaging the phase images and separating their component magnetic vectors and electric potentials. The magnetic flux densities of the NiFe (shield and 5 nm-free layers) and the CoPt (20 nm-bias layer) are estimated to be 1.0 T and 0.9 T, respectively. The changes in the magnetization distribution of the shield, bias, and free layers are visualized in situ for an applied field of 14 kOe. This study demonstrates the promise of electron holography for characterizing the magnetic properties of hetero-interfaces, nanostructures, and catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Visualizing period fluctuations in strained-layer superlattices with scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Kanedy, K.; Lopez, F.; Wood, M. R.; Gmachl, C. F.; Weimer, M.; Klem, J. F.; Hawkins, S. D.; Shaner, E. A.; Kim, J. K.

    2018-01-01

    We show how cross-sectional scanning tunneling microscopy (STM) may be used to accurately map the period fluctuations throughout epitaxial, strained-layer superlattices based on the InAs/InAsSb and InGaAs/InAlAs material systems. The concept, analogous to Bragg's law in high-resolution x-ray diffraction, relies on an analysis of the [001]-convolved reciprocal-space satellite peaks obtained from discrete Fourier transforms of individual STM images. Properly implemented, the technique enables local period measurements that reliably discriminate vertical fluctuations localized to within ˜5 superlattice repeats along the [001] growth direction and orthogonal, lateral fluctuations localized to within ˜40 nm along <110> directions in the growth plane. While not as accurate as x-ray, the inherent, single-image measurement error associated with the method may be made as small as 0.1%, allowing the vertical or lateral period fluctuations contributing to inhomogeneous energy broadening and carrier localization in these structures to be pinpointed and quantified. The direct visualization of unexpectedly large, lateral period fluctuations on nanometer length scales in both strain-balanced systems supports a common understanding in terms of correlated interface roughness.

  14. Force and light tuning vertical tunneling current in the atomic layered MoS2.

    PubMed

    Li, Feng; Lu, Zhixing; Lan, Yann-Wen; Jiao, Liying; Xu, Minxuan; Zhu, Xiaoyang; Zhang, Xiankun; Wu, Hualin; Qi, Junjie

    2018-07-06

    In this work, the vertical electrical transport behavior of bilayer MoS 2 under the coupling of force and light was explored by the use of conductive atomic force microscopy. We found that the current-voltage behavior across the tip-MoS 2 -Pt junction is a tunneling current that can be well fitted by a Simmons approximation. The transport behavior is direct tunneling at low bias and Fowler-Nordheim tunneling at high bias, and the transition voltage and tunnel barrier height are extracted. The effect of force and light on the effective band gap of the junction is investigated. Furthermore, the source-drain current drops surprisingly when we continually increase the force, and the dropping point is altered by the provided light. This mechanism is responsible for the tuning of tunneling barrier height and width by force and light. These results provide a new way to design devices that take advantage of ultrathin two-dimensional materials. Ultrashort channel length electronic components that possess tunneling current are important for establishing high-efficiency electronic and optoelectronic systems.

  15. Ex post manipulation of barriers in InGaAs tunnel injection devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talalaev, Vadim G.; Fock Institute of Physics, St. Petersburg State University, St. Petersburg 198504; Cirlin, George E.

    Ex post manipulation of ∼1.1 μm emitting InGaAs/GaAs-based quantum dot–quantum well tunnel injection light emitting devices is demonstrated experimentally. The devices were operated at elevated forward currents until irreversible alterations were observed. As a result, changes in the steady-state optical spectra (electroluminescence, photoluminescence, and photocurrent), in carrier kinetics, in transport properties, and real structure are found. Except for degradation effects, e.g., of larger quantum dots, also restoration/annealing effects such as increased tunnel barriers are observed. The results furnish evidence for a generic degradation mode of nanostructures. We qualitatively interpret the mechanisms involved on both the nanoscopic and the device scales.

  16. Turbine endwall two-cylinder program. [wind tunnel and water tunnel investigation of three dimensional separation of fluid flow

    NASA Technical Reports Server (NTRS)

    Langston, L. S.

    1980-01-01

    Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.

  17. Room-Temperature Chemical Welding and Sintering of Metallic Nanostructures by Capillary Condensation.

    PubMed

    Yoon, Sung-Soo; Khang, Dahl-Young

    2016-06-08

    Room-temperature welding and sintering of metal nanostructures, nanoparticles and nanowires, by capillary condensation of chemical vapors have successfully been demonstrated. Nanoscale gaps or capillaries that are abundant in layers of metal nanostructures have been found to be the preferred sites for the condensation of chemically oxidizing vapor, H2O2 in this work. The partial dissolution and resolidification at such nanogaps completes the welding/sintering of metal nanostructures within ∼10 min at room-temperature, while other parts of nanostructures remain almost intact due to negligible amount of condensation on there. The welded networks of Ag nanowires have shown much improved performances, such as high electrical conductivity, mechanical flexibility, optical transparency, and chemical stability. Chemically sintered layers of metal nanoparticles, such as Ag, Cu, Fe, Ni, and Co, have also shown orders of magnitude increase in electrical conductivity and improved environmental stability, compared to nontreated ones. Pertinent mechanisms involved in the chemical welding/sintering process have been discussed. Room-temperature welding and sintering of metal nanostructures demonstrated here may find widespread application in diverse fields, such as displays, deformable electronics, wearable heaters, and so forth.

  18. Simple, Green, and High-Yield Production of Boron-Based Nanostructures with Diverse Morphologies by Dissolution and Recrystallization of Layered Magnesium Diboride Crystals in Water.

    PubMed

    Gunda, Harini; Das, Saroj Kumar; Jasuja, Kabeer

    2018-04-05

    Layered metal diborides that contain metal atoms sandwiched between boron honeycomb planes offer a rich opportunity to access graphenic forms of boron. We recently demonstrated that magnesium diboride (MgB 2 ) could be exfoliated by ultrasonication in water to yield boron-based nanosheets. However, knowledge of the fate of metal boride crystals in aqueous phases is still in its incipient stages. This work presents our preliminary findings on the discovery that MgB 2 crystals can undergo dissolution in water under ambient conditions to result in precursors (prenucleation clusters) that, upon aging, undergo nonclassical crystallization preferentially growing in lateral directions by two-dimensional (2D) oriented attachment. We show that this recrystallization can be utilized as an avenue to obtain a high yield (≈92 %) of boron-based nanostructures, including nanodots, nanograins, nanoflakes, and nanosheets. These nanostructures comprise boron honeycomb planes chemically modified with hydride and oxy functional groups, which results in an overall negative charge on their surfaces. This ability of MgB 2 crystals to yield prenucleation clusters that can self-seed to form nanostructures comprising chemically modified boron honeycomb planes presents a new facet to the physicochemical interaction of MgB 2 with water. These findings also open newer avenues to obtain boron-based nanostructures with tunable morphologies by varying the chemical milieu during recrystallization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Thin-film fractal nanostructures formed by electrical breakdown

    NASA Astrophysics Data System (ADS)

    Tadtaev, P. O.; Bobkov, A. A.; Borodzyulya, V. F.; Lamkin, I. A.; Mihailov, I. I.; Moshnikov, V. A.; Permyakov, N. V.; Solomonov, A. V.; Sudar, N. T.; Tarasov, S. A.

    2017-11-01

    This is a study of the fractal micro- and nanostructures formation caused by the electrical breakdown of the indium-tin oxide (ITO) covered with various organic coatings. The samples were created by covering a glass substrate with a 1 to 10um-thick layer of indium-tin oxide. Some of the samples were then coated with organic layers of polycarbonate, poly(methyl methacrylate) and others. In order to create high local electrical field densities a special setup based on a eutectic GaIn liquid needle was created: it allowed for the contact area of 60um in diameter and application of the step voltage swept from 20 to 300 volts. The setup also contained a spectrometer for measuring the spectra of the breakdown optical effects. The results showed that the destruction of ITO led to the formation of the spiral fractal nanostructures, parameters of which depended on the thickness of the layer and the presence of the organic cover. In case of the latter, polymer coating was shown to visualize and zoom the topography of the nanostructures which might be used as a method of “polymer photography” for such fractal formations. The analysis of the spectra showed their dependence on the parameters of the structures which proves the possibility of conducting optical diagnostics of the created structures.

  20. Spin injection in n-type resonant tunneling diodes.

    PubMed

    Orsi Gordo, Vanessa; Herval, Leonilson Ks; Galeti, Helder Va; Gobato, Yara Galvão; Brasil, Maria Jsp; Marques, Gilmar E; Henini, Mohamed; Airey, Robert J

    2012-10-25

    We have studied the polarized resolved photoluminescence of n-type GaAs/AlAs/GaAlAs resonant tunneling diodes under magnetic field parallel to the tunnel current. Under resonant tunneling conditions, we have observed two emission lines attributed to neutral (X) and negatively charged excitons (X-). We have observed a voltage-controlled circular polarization degree from the quantum well emission for both lines, with values up to -88% at 15 T at low voltages which are ascribed to an efficient spin injection from the 2D gases formed at the accumulation layers.

  1. Pseudocapacitive Sodium Storage by Ferroelectric Sn2 P2 S6 with Layered Nanostructure.

    PubMed

    Huang, Sheng; Meng, Chao; Xiao, Min; Ren, Shan; Wang, Shuanjin; Han, Dongmei; Li, Yuning; Meng, Yuezhong

    2018-04-19

    Sodium ion batteries (SIB) are considered promising alternative candidates for lithium ion batteries (LIB) because of the wide availability and low cost of sodium, therefore the development of alternative sodium storage materials with comparable performance to LIB is urgently desired. The sodium ions with larger sizes resist intercalation or alloying because of slow reaction kinetics. Most pseudocapacitive sodium storage materials are based on subtle nanomaterial engineering, which is difficult for large-scale production. Here, ferroelectric Sn 2 P 2 S 6 with layered nanostructure is developed as sodium ion storage material. The ferroelectricity-enhanced pseudocapacitance of sodium ion in the interlayer spacing makes the electrochemical reaction easier and faster, endowing the Sn 2 P 2 S 6 electrode with excellent rate capability and cycle stability. Furthermore, the facile solid state reaction synthesis and common electrode fabrication make the Sn 2 P 2 S 6 that becomes a promising anode material of SIB. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A three-dimensional dual potential procedure with applications to wind tunnel inlets and interacting boundary layers

    NASA Technical Reports Server (NTRS)

    Rao, K. V.; Pletcher, R. H.; Steger, J. L.; Vandalsem, W. R.

    1987-01-01

    A dual potential decomposition of the velocity field into a scalar and a vector potential function is extended to three dimensions and used in the finite-difference simulation of steady three-dimensional inviscid rotational flows and viscous flow. The finite-difference procedure was used to simulate the flow through the 80 by 120 ft wind tunnel at NASA Ames Research Center. Rotational flow produced by the stagnation pressure drop across vanes and screens which are located at the entrance of the inlet is modeled using actuator disk theory. Results are presented for two different inlet vane and screen configurations. The numerical predictions are in good agreement with experimental data. The dual potential procedure was also applied to calculate the viscous flow along two and three dimensional troughs. Viscous effects are simulated by injecting vorticity which is computed from a boundary layer algorithm. For attached flow over a three dimensional trough, the present calculations are in good agreement with other numerical predictions. For separated flow, it is shown from a two dimensional analysis that the boundary layer approximation provides an accurate measure of the vorticity in regions close to the wall; whereas further away from the wall, caution has to be exercised in using the boundary-layer equations to supply vorticity to the dual potential formulation.

  3. Reusable three-dimensional nanostructured substrates for surface-enhanced Raman scattering.

    PubMed

    Zhu, Zhendong; Li, Qunqing; Bai, Benfeng; Fan, Shoushan

    2014-01-13

    To date, fabricating three-dimensional (3D) nanostructured substrate with small nanogap was a laborious challenge by conventional fabrication techniques. In this article, we address a simple, low-cost, large-area, and spatially controllable method to fabricate 3D nanostructures, involving hemisphere, hemiellipsoid, and pyramidal pits based on nanosphere lithography (NSL). These 3D nanostructures were used as surface-enhanced Raman scattering (SERS) substrates of single Rhodamine 6G (R6G) molecule. The average SERS enhancement factor achieved up to 1011. The inevitably negative influence of the adhesion-promoting intermediate layer of Cr or Ti was resolved by using such kind of 3D nanostructures. The nanostructured quartz substrate is a free platform as a SERS substrate and is nondestructive when altering with different metal films and is recyclable, which avoids the laborious and complicated fabricating procedures.

  4. Reusable three-dimensional nanostructured substrates for surface-enhanced Raman scattering

    PubMed Central

    2014-01-01

    To date, fabricating three-dimensional (3D) nanostructured substrate with small nanogap was a laborious challenge by conventional fabrication techniques. In this article, we address a simple, low-cost, large-area, and spatially controllable method to fabricate 3D nanostructures, involving hemisphere, hemiellipsoid, and pyramidal pits based on nanosphere lithography (NSL). These 3D nanostructures were used as surface-enhanced Raman scattering (SERS) substrates of single Rhodamine 6G (R6G) molecule. The average SERS enhancement factor achieved up to 1011. The inevitably negative influence of the adhesion-promoting intermediate layer of Cr or Ti was resolved by using such kind of 3D nanostructures. The nanostructured quartz substrate is a free platform as a SERS substrate and is nondestructive when altering with different metal films and is recyclable, which avoids the laborious and complicated fabricating procedures. PMID:24417892

  5. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Lee, Gwan-Hyoung; Yu, Young-Jun; Lee, Changgu; Dean, Cory; Shepard, Kenneth L.; Kim, Philip; Hone, James

    2011-12-01

    Electron tunneling through atomically flat and ultrathin hexagonal boron nitride (h-BN) on gold-coated mica was investigated using conductive atomic force microscopy. Low-bias direct tunneling was observed in mono-, bi-, and tri-layer h-BN. For all thicknesses, Fowler-Nordheim tunneling (FNT) occurred at high bias, showing an increase of breakdown voltage with thickness. Based on the FNT model, the barrier height for tunneling (3.07 eV) and dielectric strength (7.94 MV/cm) of h-BN are obtained; these values are comparable to those of SiO2.

  6. Thin-film chemical sensors based on electron tunneling

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Lambe, J.; Leduc, H. G.; Thakoor, A. P.

    1985-01-01

    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer.

  7. Uniform Fe3O4 coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption.

    PubMed

    Wan, Gengping; Wang, Guizhen; Huang, Xianqin; Zhao, Haonan; Li, Xinyue; Wang, Kan; Yu, Lei; Peng, Xiange; Qin, Yong

    2015-11-21

    An elegant atomic layer deposition (ALD) method has been employed for controllable preparation of a uniform Fe3O4-coated ZnO (ZnO@Fe3O4) core-shell flower-like nanostructure. The Fe3O4 coating thickness of the ZnO@Fe3O4 nanostructure can be tuned by varying the cycle number of ALD Fe2O3. When serving as additives for microwave absorption, the ZnO@Fe3O4-paraffin composites exhibit a higher absorption capacity than the ZnO-paraffin composites. For ZnO@500-Fe3O4, the effective absorption bandwidth below -10 dB can reach 5.2 GHz and the RL values below -20 dB also cover a wide frequency range of 11.6-14.2 GHz when the coating thickness is 2.3 mm, suggesting its potential application in the treatment of the electromagnetic pollution problem. On the basis of experimental observations, a mechanism has been proposed to understand the enhanced microwave absorption properties of the ZnO@Fe3O4 composites.

  8. PREFACE: Self-organized nanostructures

    NASA Astrophysics Data System (ADS)

    Rousset, Sylvie; Ortega, Enrique

    2006-04-01

    In order to fabricate ordered arrays of nanostructures, two different strategies might be considered. The `top-down' approach consists of pushing the limit of lithography techniques down to the nanometre scale. However, beyond 10 nm lithography techniques will inevitably face major intrinsic limitations. An alternative method for elaborating ultimate-size nanostructures is based on the reverse `bottom-up' approach, i.e. building up nanostructures (and eventually assemble them to form functional circuits) from individual atoms or molecules. Scanning probe microscopies, including scanning tunnelling microscopy (STM) invented in 1982, have made it possible to create (and visualize) individual structures atom by atom. However, such individual atomic manipulation is not suitable for industrial applications. Self-assembly or self-organization of nanostructures on solid surfaces is a bottom-up approach that allows one to fabricate and assemble nanostructure arrays in a one-step process. For applications, such as high density magnetic storage, self-assembly appears to be the simplest alternative to lithography for massive, parallel fabrication of nanostructure arrays with regular sizes and spacings. These are also necessary for investigating the physical properties of individual nanostructures by means of averaging techniques, i.e. all those using light or particle beams. The state-of-the-art and the current developments in the field of self-organization and physical properties of assembled nanostructures are reviewed in this issue of Journal of Physics: Condensed Matter. The papers have been selected from among the invited and oral presentations of the recent summer workshop held in Cargese (Corsica, France, 17-23 July 2005). All authors are world-renowned in the field. The workshop has been funded by the Marie Curie Actions: Marie Curie Conferences and Training Courses series named `NanosciencesTech' supported by the VI Framework Programme of the European Community, by

  9. ZnO-based ultra-violet light emitting diodes and nanostructures fabricated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Chen, Miin-Jang; Yang, Jer-Ren; Shiojiri, Makoto

    2012-07-01

    We have investigated ZnO-based light-emitting diodes (LEDs) fabricated by atomic layer deposition (ALD), demonstrating that ALD is one of the noteworthy techniques to prepare high-quality ZnO required for ultraviolet (UV) photonic devices. Here, we review our recent investigations on different ZnO-based heterojunction LEDs such as n-ZnO/p-GaN LEDS, n-ZnO:Al/ZnO nanodots-SiO2 composite/p-GaN LEDS, n-ZnO/ZnO nanodots-SiO2 composite/p-AlGaN LEDs, n-ZnO:Al/i-ZnO/p-SiC(4H) LEDs, and also on ZnO-based nanostructures including ZnO quantum dots embedded in SiO2 nanoparticle layer, ZnO nanopillars on sapphire substrates, Al-doped ZnO films on sapphire substrate and highly (0 0 0 1)-oriented ZnO films on amorphous glass substrate. The latest investigation also demonstrated p-type ZnO:P films prepared on amorphous silica substrates, which allow us to fabricate ZnO-based homojunction LEDs. These devices and structures were studied by x-ray diffraction and various analytical electron microscopy observations as well as electric and electro-optical measurements.

  10. Numerical investigation of metal-semiconductor-insulator-semiconductor passivated hole contacts based on atomic layer deposited AlO x

    NASA Astrophysics Data System (ADS)

    Ke, Cangming; Xin, Zheng; Ling, Zhi Peng; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    Excellent c-Si tunnel layer surface passivation has been obtained recently in our lab, using atomic layer deposited aluminium oxide (ALD AlO x ) in the tunnel layer regime of 0.9 to 1.5 nm, investigated to be applied for contact passivation. Using the correspondingly measured interface properties, this paper compares the theoretical collection efficiency of a conventional metal-semiconductor (MS) contact on diffused p+ Si to a metal-semiconductor-insulator-semiconductor (MSIS) contact on diffused p+ Si or on undoped n-type c-Si. The influences of (1) the tunnel layer passivation quality at the tunnel oxide interface (Q f and D it), (2) the tunnel layer thickness and the electron and hole tunnelling mass, (3) the tunnel oxide material, and (4) the semiconductor capping layer material properties are investigated numerically by evaluation of solar cell efficiency, open-circuit voltage, and fill factor.

  11. Forced Boundary-Layer Transition on X-43 (Hyper-X) in NASA LaRC 20-Inch Mach 6 Air Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; DiFulvio, Michael; Kowalkowski, Matthew K.

    2000-01-01

    Aeroheating and boundary layer transition characteristics for the X-43 (Hyper-X) configuration have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 15.4 million; and inlet cowl door both open and closed. The effects of discrete roughness elements on the forebody boundary layer, which included variations in trip configuration and height, were investigated. This document is intended to serve as a release of preliminary data to the Hyper-X program; analysis is limited to observations of the experimental trends in order to expedite dissemination.

  12. Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.

    PubMed

    Udalov, O G; Beloborodov, I S

    2017-05-04

    We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.

  13. Interconnected magnetic tunnel junctions for spin-logic applications

    NASA Astrophysics Data System (ADS)

    Manfrini, Mauricio; Vaysset, Adrien; Wan, Danny; Raymenants, Eline; Swerts, Johan; Rao, Siddharth; Zografos, Odysseas; Souriau, Laurent; Gavan, Khashayar Babaei; Rassoul, Nouredine; Radisic, Dunja; Cupak, Miroslav; Dehan, Morin; Sayan, Safak; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Mocuta, Dan; Radu, Iuliana P.

    2018-05-01

    With the rapid progress of spintronic devices, spin-logic concepts hold promises of energy-delay conscious computation for efficient logic gate operations. We report on the electrical characterization of domain walls in interconnected magnetic tunnel junctions. By means of spin-transfer torque effect, domains walls are produced at the common free layer and its propagation towards the output pillar sensed by tunneling magneto-resistance. Domain pinning conditions are studied quasi-statically showing a strong dependence on pillar size, ferromagnetic free layer width and inter-pillar distance. Addressing pinning conditions are detrimental for cascading and fan-out of domain walls across nodes, enabling the realization of domain-wall-based logic technology.

  14. Spin transport and spin accumulation signals in Si studied in tunnel junctions with a Fe/Mg ferromagnetic multilayer and an amorphous SiOxNy tunnel barrier

    NASA Astrophysics Data System (ADS)

    Nakane, Ryosho; Hada, Takato; Sato, Shoichi; Tanaka, Masaaki

    2018-04-01

    We studied the spin accumulation signals in phosphorus-doped n+-Si (8 × 1019 cm-3) by measuring the spin transport in three-terminal vertical devices with Fe(3 nm)/Mg(0 and 1 nm)/SiOxNy(1 nm)/n+-Si(001) tunnel junctions, where the amorphous SiOxNy layer was formed by oxnitridation of the Si substrate with radio frequency plasma. Obvious spin accumulation signals were observed at 4-300 K in the spin extraction geometry when the thickness of the Mg insertion layer was 1 nm. We found that by inserting a thin (1 nm) Mg layer, intermixing of Fe and SiOxNy is suppressed, leading to the appearance of the spin accumulation signals, and this result is consistent with the dead layer model recently proposed by our group [S. Sato et al., Appl. Phys. Lett. 107, 032407 (2015)]. We obtained relatively high spin polarization (PS) of electrons tunneling through the junction and long spin lifetime (τS): PS = 16% and τS = 5.6 ns at 4 K and PS = 7.5% and τS = 2.7 ns at 300 K. Tunnel junctions with an amorphous SiOxNy tunnel barrier are very promising for Si-based spintronic devices, since they can be formed by the method compatible with the silicon complementary metal-oxide-semiconductor technology.

  15. Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application

    DOEpatents

    Hawkins, G.A.; Clarke, J.

    1975-10-31

    A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.

  16. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors.

    PubMed

    Roy, Tania; Tosun, Mahmut; Cao, Xi; Fang, Hui; Lien, Der-Hsien; Zhao, Peida; Chen, Yu-Ze; Chueh, Yu-Lun; Guo, Jing; Javey, Ali

    2015-02-24

    Two-dimensional layered semiconductors present a promising material platform for band-to-band-tunneling devices given their homogeneous band edge steepness due to their atomically flat thickness. Here, we experimentally demonstrate interlayer band-to-band tunneling in vertical MoS2/WSe2 van der Waals (vdW) heterostructures using a dual-gate device architecture. The electric potential and carrier concentration of MoS2 and WSe2 layers are independently controlled by the two symmetric gates. The same device can be gate modulated to behave as either an Esaki diode with negative differential resistance, a backward diode with large reverse bias tunneling current, or a forward rectifying diode with low reverse bias current. Notably, a high gate coupling efficiency of ∼80% is obtained for tuning the interlayer band alignments, arising from weak electrostatic screening by the atomically thin layers. This work presents an advance in the fundamental understanding of the interlayer coupling and electron tunneling in semiconductor vdW heterostructures with important implications toward the design of atomically thin tunnel transistors.

  17. Detailed Uncertainty Analysis for Ares I Ascent Aerodynamics Wind Tunnel Database

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Hanke, Jeremy L.; Walker, Eric L.; Houlden, Heather P.

    2008-01-01

    A detailed uncertainty analysis for the Ares I ascent aero 6-DOF wind tunnel database is described. While the database itself is determined using only the test results for the latest configuration, the data used for the uncertainty analysis comes from four tests on two different configurations at the Boeing Polysonic Wind Tunnel in St. Louis and the Unitary Plan Wind Tunnel at NASA Langley Research Center. Four major error sources are considered: (1) systematic errors from the balance calibration curve fits and model + balance installation, (2) run-to-run repeatability, (3) boundary-layer transition fixing, and (4) tunnel-to-tunnel reproducibility.

  18. L10-MnGa based magnetic tunnel junction for high magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Zhao, X. P.; Lu, J.; Mao, S. W.; Yu, Z. F.; Wang, H. L.; Wang, X. L.; Wei, D. H.; Zhao, J. H.

    2017-07-01

    We report on the investigation of the magnetic tunnel junction structure designed for high magnetic field sensors with a perpendicularly magnetized L10-MnGa reference layer and an in-plane magnetized Fe sensing layer. A large linear tunneling magnetoresistance ratio up to 27.4% and huge dynamic range up to 5600 Oe have been observed at 300 K, with a low nonlinearity of 0.23% in the optimized magnetic tunnel junction (MTJ). The field response of tunneling magnetoresistance is discussed to explain the field sensing properties in the dynamic range. These results indicate that L10-MnGa based orthogonal MTJ is a promising candidate for a high performance magnetic field sensor with a large dynamic range, high endurance and low power consumption.

  19. Fabrication of GaAs/Al0.3Ga0.7As multiple quantum well nanostructures on (100) si substrate using a 1-nm InAs relief layer.

    PubMed

    Oh, H J; Park, S J; Lim, J Y; Cho, N K; Song, J D; Lee, W; Lee, Y J; Myoung, J M; Choi, W J

    2014-04-01

    Nanometer scale thin InAs layer has been incorporated between Si (100) substrate and GaAs/Al0.3Ga0.7As multiple quantum well (MQW) nanostructure in order to reduce the defects generation during the growth of GaAs buffer layer on Si substrate. Observations based on atomic force microscopy (AFM) and transmission electron microscopy (TEM) suggest that initiation and propagation of defect at the Si/GaAs interface could be suppressed by incorporating thin (1 nm in thickness) InAs layer. Consequently, the microstructure and resulting optical properties improved as compared to the MQW structure formed directly on Si substrate without the InAs layer. It was also observed that there exists some limit to the desirable thickness of the InAs layer since the MQW structure having thicker InAs layer (4 nm-thick) showed deteriorated properties.

  20. Recent modifications and calibration of the Langley low-turbulence pressure tunnel

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.; Foster, J. M.

    1984-01-01

    Modifications to the Langley Low-Turbulence Pressure Tunnel are presented and a calibration of the mean flow parameters in the test section is provided. Also included are the operational capability of the tunnel and typical test results for both single-element and multi-element airfoils. Modifications to the facility consisted of the following: replacement of the original cooling coils and antiturbulence screens and addition of a tunnel-shell heating system, a two dimensional model-support and force-balance system, a sidewall boundary layer control system, a remote-controlled survey apparatus, and a new data acquisition system. A calibration of the mean flow parameters in the test section was conducted over the complete operational range of the tunnel. The calibration included dynamic-pressure measurements, Mach number distributions, flow-angularity measurements, boundary-layer characteristics, and total-pressure profiles. In addition, test-section turbulence measurements made after the tunnel modifications have been included with these calibration data to show a comparison of existing turbulence levels with data obtained for the facility in 1941 with the original screen installation.

  1. Design of a High-Reynolds Number Recirculating Water Tunnel

    NASA Astrophysics Data System (ADS)

    Daniel, Libin; Elbing, Brian

    2014-11-01

    An experimental fluid mechanics laboratory focused on turbulent boundary layers, drag reduction techniques, multiphase flows and fluid-structure interactions has recently been established at Oklahoma State University. This laboratory has three primary components; (1) a recirculating water tunnel, (2) a multiphase pipe flow loop, and (3) a multi-scale flow visualization system. The design of the water tunnel is the focus of this talk. The criteria used for the water tunnel design was that it had to produce a momentum-thickness based Reynolds number in excess of 104, negligible flow acceleration due to boundary layer growth, maximize optical access for use of the flow visualization system, and minimize inlet flow non-uniformity. This Reynolds number was targeted to bridge the gap between typical university/commercial water tunnels (103) and the world's largest water tunnel facilities (105) . These objectives were achieved with a 152 mm (6-inch) square test section that is 1 m long and has a maximum flow speed of 10 m/s. The flow non-uniformity was mitigated with the use of a tandem honeycomb configuration, a settling chamber and an 8.5:1 contraction. The design process that produced this final design will be presented along with its current status.

  2. Heusler Alloyed Electrodes Integrated in Magnetic Tunnel-Junctions

    NASA Astrophysics Data System (ADS)

    Hütten, Andreas; Kämmerer, Sven; Schmalhorst, Jan; Reiss, Günter

    As a consequence of the growing theoretically predictions of 100% spin polarized half- and full-Heusler compounds over the past 6 years, Heusler alloys are among the most promising materials class for future magnetoelectronic and spintronic applications. We have integrated Co2MnSi as a representative of the full-Heusler compound family as one magnetic electrode into technological relevant magnetic tunnel junctions. The resulting tunnel magnetoresistance at 20 K was determined to be 95% corresponding to a Co2MnSi spin polarization of 66% in combination with an AlOx barrier thickness of 1.8 nm. For magnetic tunnel junctions prepared with an initially larger Al layer prior to oxidation the tunnel magnetoresistance at 20 K increases to about 108% associated with a Co2MnSi spin polarization of 72% clearly proving that Co2MnSi is already superior to 3d-based magnetic elements or their alloys. The corresponding room temperature values of the tunnel magnetoresistance are 33% and 41%, respectively. Structural and magnetic properties of the Co2MnSi AlOx - barrier interface have been studied with X-ray diffraction, electron and X-ray absorption spectroscopy and X-ray magnetic circular dichroism and it is shown that the ferromagnetic order of Mn and Co spins at this interface is only induced in optimally annealed Co2MnSi layer. The underlying atomic ordering mechanism responsible for achieving about its theoretical magnetic moment could be assigned to the elimination of Co-Si antisite defects whereas the reduction of Co-Mn antisite defects results in large tunnel magnetoresistance. The presence of a step like tunnel barrier which is already created during plasma oxidation while preparing the AlOx tunnel barrier has been identified as the current limitation to achieve larger tunnel magnetoresistance and hence larger spin polarization and is a direct consequence of the oxygen affinity of the Co2MnSi - Heusler elements Mn and Si.

  3. PREFACE: Nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real

  4. Resonant tunneling across a ferroelectric domain wall

    NASA Astrophysics Data System (ADS)

    Li, M.; Tao, L. L.; Velev, J. P.; Tsymbal, E. Y.

    2018-04-01

    Motivated by recent experimental observations, we explore electron transport properties of a ferroelectric tunnel junction (FTJ) with an embedded head-to-head ferroelectric domain wall, using first-principles density-functional theory calculations. We consider a FTJ with L a0.5S r0.5Mn O3 electrodes separated by a BaTi O3 barrier layer and show that an in-plane charged domain wall in the ferroelectric BaTi O3 can be induced by polar interfaces. The resulting V -shaped electrostatic potential profile across the BaTi O3 layer creates a quantum well and leads to the formation of a two-dimensional electron gas, which stabilizes the domain wall. The confined electronic states in the barrier are responsible for resonant tunneling as is evident from our quantum-transport calculations. We find that the resonant tunneling is an orbital selective process, which leads to sharp spikes in the momentum- and energy-resolved transmission spectra. Our results indicate that domain walls embedded in FTJs can be used to control the electron transport.

  5. As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance

    PubMed Central

    Li, Yun-Fei; Dong, Feng-Xi; Chen, Yang; Zhang, Xu-Lin; Wang, Lei; Bi, Yan-Gang; Tian, Zhen-Nan; Liu, Yue-Feng; Feng, Jing; Sun, Hong-Bo

    2016-01-01

    The transfer-free fabrication of the high quality graphene on the metallic nanostructures, which is highly desirable for device applications, remains a challenge. Here, we develop the transfer-free method by direct chemical vapor deposition of the graphene layers on copper (Cu) nanoparticles (NPs) to realize the hybrid nanostructures. The graphene as-grown on the Cu NPs permits full electric contact and strong interactions, which results in a strong localization of the field at the graphene/copper interface. An enhanced intensity of the localized surface plasmon resonances (LSPRs) supported by the hybrid nanostructures can be obtained, which induces a much enhanced fluorescent intensity from the dye coated hybrid nanostructures. Moreover, the graphene sheets covering completely and uniformly on the Cu NPs act as a passivation layer to protect the underlying metal surface from air oxidation. As a result, the stability of the LSPRs for the hybrid nanostructures is much enhanced compared to that of the bare Cu NPs. The transfer-free hybrid nanostructures with enhanced intensity and stability of the LSPRs will enable their much broader applications in photonics and optoelectronics. PMID:27872494

  6. Zinc-oxide-based nanostructured materials for heterostructure solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A., E-mail: vamoshnikov@mail.ru

    Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.

  7. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels.

    PubMed

    Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei

    2016-11-25

    In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel.

  8. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels

    PubMed Central

    Wang, Yanhui; Zhang, Fucheng; Yang, Zhinan; Lv, Bo; Zheng, Chunlei

    2016-01-01

    In the present work, the nanostructured bainitic microstructures were obtained at the surfaces of a carburized steel and a high-C steel. The rolling contact fatigue (RCF) performances of the two alloy steels with the same volume fraction of undissolved carbide were studied under lubrication. Results show that the RCF life of the carburized nanostructured bainitic steel is superior to that of the high-C nanostructured bainitic steel in spite of the chemical composition, phase constituent, plate thickness of bainitic ferrite, hardness, and residual compressive stress value of the contact surfaces of the two steels under roughly similar conditions. The excellent RCF performance of the carburized nanostructured bainitic steel is mainly attributed to the following reasons: finer carbide dispersion distribution in the top surface, the higher residual compressive stress values in the carburized layer, the deeper residual compressive stress layer, the higher work hardening ability, the larger amount of retained austenite transforming into martensite at the surface and the more stable untransformed retained austenite left in the top surface of the steel. PMID:28774081

  9. Semi-span wind tunnel testing without conventional peniche

    NASA Astrophysics Data System (ADS)

    Skinner, S. N.; Zare-Behtash, H.

    2017-12-01

    Low-speed wind tunnel tests of a flexible wing semi-span model have been implemented in the 9× 7 ft de Havilland wind tunnel at the University of Glasgow. The main objective of this investigation is to quantify the effect of removing the traditional peniche boundary layer spacer utilised in this type of testing. Removal of the peniche results in a stand-off gap between the wind tunnel wall and the model's symmetry plane. This offers the advantage of preventing the development of a horseshoe vortex in front of the model, at the peniche/wall juncture. The formation of the horseshoe vortex is known to influence the flow structures around the entire model and thus alters the model's aerodynamic behaviours. To determine the influence of the stand-off gap, several gap heights have been tested for a range of angles of attack at Re=1.5× 10^6, based on the wing mean aerodynamic chord (MAC). Force platform data have been used to evaluate aerodynamic coefficients, and how they vary with stand-off heights. Stereoscopic Particle Imaging Velocimetry (sPIV) was used to examine the interaction between the tunnel boundary layer and model's respective stand-off gap. In addition, clay and tuft surface visualisation enhanced the understanding of how local flow structures over the length of the fuselage vary with stand-off height and angle of attack. The presented results show that a stand-off gap of four-to-five times the displacement thickness of the tunnel wall boundary layer is capable of achieving a flow field around the model fuselage that is representative of what would be expected for an equivalent full-span model in free-air—this cannot be achieved with the application of a peniche.

  10. Growth and characterizations of various GaN nanostructures on C-plane sapphire using laser MBE

    NASA Astrophysics Data System (ADS)

    Ch., Ramesh; Tyagi, P.; Maurya, K. K.; Kumar, M. Senthil; Kushvaha, S. S.

    2017-05-01

    We have grown various GaN nanostructures such as three-dimensional islands, nanowalls and nanocolumns on c-plane sapphire substrates using laser assisted molecular beam epitaxy (LMBE) system. The shape of the GaN nanostructures was controlled by using different nucleation surfaces such as bare and nitridated sapphire with GaN or AlN buffer layers. The structural and surface morphological properties of grown GaN nanostructures were characterized by ex-situ high resolution x-ray diffraction, Raman spectroscopy and field emission scanning electron microscopy. The symmetric x-ray rocking curve along GaN (0002) plane shows that the GaN grown on pre-nitridated sapphire with GaN or AlN buffer layer possesses good crystalline quality compared to sapphire without nitridation. The Raman spectroscopy measurements revealed the wurtzite phase for all the GaN nanostructures grown on c-sapphire.

  11. Reduction of acoustic disturbances in the test section of supersonic wind tunnels by laminarizing their nozzle and test section wall boundary layers by means of suction

    NASA Technical Reports Server (NTRS)

    Pfenninger, W.; Syberg, J.

    1974-01-01

    The feasibility of quiet, suction laminarized, high Reynolds number (Re) supersonic wind tunnel nozzles was studied. According to nozzle wall boundary layer development and stability studies, relatively weak area suction can prevent amplified nozzle wall TS (Tollmien-Schlichting) boundary layer oscillations. Stronger suction is needed in and shortly upstream of the supersonic concave curvature nozzle area to avoid transition due to amplified TG (Taylor-Goertler) vortices. To control TG instability, moderately rapid and slow expansion nozzles require smaller total suction rates than rapid expansion nozzles, at the cost of larger nozzle length Re and increased TS disturbances. Test section mean flow irregularities can be minimized with suction through longitudinal or highly swept slots (swept behind local Mach cone) as well as finely perforated surfaces. Longitudinal slot suction is optimized when the suction-induced crossflow velocity increases linearly with surface distance from the slot attachment line toward the slot (through suitable slot geometry). Suction in supersonic blowdown tunnels may be operated by one or several individual vacuum spheres.

  12. 230% room-temperature magnetoresistance in CoFeB /MgO/CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Djayaprawira, David D.; Tsunekawa, Koji; Nagai, Motonobu; Maehara, Hiroki; Yamagata, Shinji; Watanabe, Naoki; Yuasa, Shinji; Suzuki, Yoshishige; Ando, Koji

    2005-02-01

    Magnetoresistance (MR) ratio up to 230% at room temperature (294% at 20 K) has been observed in spin-valve-type magnetic tunnel junctions (MTJs) using MgO tunnel barrier layer fabricated on thermally oxidized Si substrates. We found that such a high MR ratio can be obtained when the MgO barrier layer was sandwiched with amorphous CoFeB ferromagnetic electrodes. Microstructure analysis revealed that the MgO layer with (001) fiber texture was realized when the MgO layer was grown on amorphous CoFeB rather than on polycrystalline CoFe. Since there have been no theoretical studies on the MTJs with a crystalline tunnel barrier and amorphous electrodes, the detailed mechanism of the huge tunneling MR effect observed in this study is not clear at the present stage. Nevertheless, the present work is of paramount importance in realizing high-density magnetoresistive random access memory and read head for ultra high-density hard-disk drives into practical use.

  13. Spin injection in n-type resonant tunneling diodes

    PubMed Central

    2012-01-01

    We have studied the polarized resolved photoluminescence of n-type GaAs/AlAs/GaAlAs resonant tunneling diodes under magnetic field parallel to the tunnel current. Under resonant tunneling conditions, we have observed two emission lines attributed to neutral (X) and negatively charged excitons (X−). We have observed a voltage-controlled circular polarization degree from the quantum well emission for both lines, with values up to −88% at 15 T at low voltages which are ascribed to an efficient spin injection from the 2D gases formed at the accumulation layers. PMID:23098559

  14. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures.

    PubMed

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-16

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd 150 nm /Ag 80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks (~ 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from ~ 510 to ~ 475 nm along with the decreased average size of alloy nanostructures.

  15. Modulation of Morphology and Optical Property of Multi-Metallic PdAuAg and PdAg Alloy Nanostructures

    NASA Astrophysics Data System (ADS)

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-05-01

    In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd150 nm/Ag80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks ( 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from 510 to 475 nm along with the decreased average size of alloy nanostructures.

  16. Ethanol gas sensing performance of high-dimensional fuzz metal oxide nanostructure

    NASA Astrophysics Data System (ADS)

    Ibano, Kenzo; Kimura, Yoshihiro; Sugahara, Tohru; Lee, Heun Tae; Ueda, Yoshio

    2018-04-01

    Gas sensing ability of the He plasma induced fiber-like nanostructure, so-called fuzz structure, was firstly examined. A thin Mo layer deposited on a quartz surface was irradiated by He plasma to form the fuzz structure and oxidized by annealing in a quartz furnace. Electric conductivity of the fuzz Mo oxide layer was then measured through the Au electrodes deposited on the layer. Changes in electric conductivity by C2H5OH gas flow were examined as a function of temperature from 200 to 400 °C. Improved sensitivities were observed for the specimens after a fuzz nanostructure formation. However, the sensor developed in this study showed lower sensitivities than previously reported MoO3 nano-rod sensor, further optimization of oxidation is needed to improve the sensitivity.

  17. Single-photon-multi-layer-interference lithography for high-aspect-ratio and three-dimensional SU-8 micro-/nanostructures.

    PubMed

    Ghosh, Siddharth; Ananthasuresh, G K

    2016-01-04

    We report microstructures of SU-8 photo-sensitive polymer with high-aspect-ratio, which is defined as the ratio of height to in-plane feature size. The highest aspect ratio achieved in this work exceeds 250. A multi-layer and single-photon lithography approach is used in this work to expose SU-8 photoresist of thickness up to 100 μm. Here, multi-layer and time-lapsed writing is the key concept that enables nanometer localised controlled photo-induced polymerisation. We use a converging monochromatic laser beam of 405 nm wavelength with a controllable aperture. The reflection of the converging optics from the silicon substrate underneath is responsible for a trapezoidal edge profile of SU-8 microstructure. The reflection induced interfered point-spread-function and multi-layer-single-photon exposure helps to achieve sub-wavelength feature sizes. We obtained a 75 nm tip diameter on a pyramid shaped microstructure. The converging beam profile determines the number of multiple optical focal planes along the depth of field. These focal planes are scanned and exposed non-concurrently with varying energy dosage. It is notable that an un-automated height axis control is sufficient for this method. All of these contribute to realising super-high-aspect-ratio and 3D micro-/nanostructures using SU-8. Finally, we also address the critical problems of photoresist-based micro-/nanofabrication and their solutions.

  18. Aeroheating Measurement of Apollo Shaped Capsule with Boundary Layer Trip in the Free-piston Shock Tunnel HIEST

    NASA Technical Reports Server (NTRS)

    Hideyuki, TANNO; Tomoyuki, KOMURO; Kazuo, SATO; Katsuhiro, ITOH; Lillard, Randolph P.; Olejniczak, Joseph

    2013-01-01

    An aeroheating measurement test campaign of an Apollo capsule model with laminar and turbulent boundary layer was performed in the free-piston shock tunnel HIEST at JAXA Kakuda Space Center. A 250mm-diameter 6.4%-scaled Apollo CM capsule model made of SUS-304 stainless steel was applied in this study. To measure heat flux distribution, the model was equipped with 88 miniature co-axial Chromel-Constantan thermocouples on the heat shield surface of the model. In order to promote boundary layer transition, a boundary layer trip insert with 13 "pizza-box" isolated roughness elements, which have 1.27mm square, were placed at 17mm below of the model geometric center. Three boundary layer trip inserts with roughness height of k=0.3mm, 0.6mm and 0.8mm were used to identify the appropriate height to induce transition. Heat flux records with or without roughness elements were obtained for model angles of attack 28º under stagnation enthalpy between H(sub 0)=3.5MJ/kg to 21MJ/kg and stagnation pressure between P(sub 0)=14MPa to 60MPa. Under the condition above, Reynolds number based on the model diameter was varied from 0.2 to 1.3 million. With roughness elements, boundary layer became fully turbulent less than H(sub 0)=9MJ/kg condition. However, boundary layer was still laminar over H(sub 0)=13MJ/kg condition even with the highest roughness elements. An additional experiment was also performed to correct unexpected heat flux augmentation observed over H(sub 0)=9MJ/kg condition.

  19. Effect of nickel seed layer on growth of α-V{sub 2}O{sub 5} nanostructured thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rabindar Kumar; Kant, Chandra; Kumar, Prabhat

    In this communication, we reported the role of Ni seed layer on the growth of vanadium pentoxide (α-V{sub 2}O{sub 5}) nanostructured thin films (NSTs) using plasma assisted sublimation process (PASP). Two different substrates, simple glass substrate and the Ni coated glass substrate (Ni thickness ∼ 100 nm) are employing in the present work. The influence of seed layer on structural, morphological, and vibrational properties have been studied systematically. The structural analysis divulged that both films deposited on simple glass as well as on Ni coated glass shown purely orthorhombic phase, no other phases are detected. The morphological studies of V{sub 2}O{submore » 5} film deposited on both substrates are carried out by SEM, revealed that features of V{sub 2}O{sub 5} NSTs is completely modified in presence of Ni seed layer and the film possessing the excellent growth of nanorods (NRs) on Ni coated glass rather than simple glass. The HRTEM analysis of NRs is performed at very high magnification, shows very fine fringe pattern, which confirmed the single crystalline nature of nanorods. The vibrational study of NRs is performed using micro-Raman spectroscopy, which strongly support the XRD observations.« less

  20. Forced Boundary-Layer Transition on X-43 (Hyper-X) in NASA LaRC 31-Inch Mach 10 Air Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; DiFulvio, Michael; Kowalkowski, Matthew K.

    2000-01-01

    Aeroheating and boundary layer transition characteristics for the X-43 (Hyper-X) configuration have been experimentally examined in the Langley 31-Inch Mach 10 Air Tunnel. Global surface heat transfer distributions, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, 3-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 5.1 million; and inlet cowl door both open and closed. The effects of discrete roughness elements on the forebody boundary layer, which included variations in trip configuration and height, were investigated. This document is intended to serve as a release of preliminary data to the Hyper-X program; analysis is limited to observations of the experimental trends in order to expedite dissemination.

  1. Could Nano-Structured Materials Enable the Improved Pressure Vessels for Deep Atmospheric Probes?

    NASA Technical Reports Server (NTRS)

    Srivastava, D.; Fuentes, A.; Bienstock, B.; Arnold, J. O.

    2005-01-01

    A viewgraph presentation on the use of Nano-Structured Materials to enable pressure vessel structures for deep atmospheric probes is shown. The topics include: 1) High Temperature/Pressure in Key X-Environments; 2) The Case for Use of Nano-Structured Materials Pressure Vessel Design; 3) Carbon based Nanomaterials; 4) Nanotube production & purification; 5) Nanomechanics of Carbon Nanotubes; 6) CNT-composites: Example (Polymer); 7) Effect of Loading sequence on Composite with 8% by volume; 8) Models for Particulate Reinforced Composites; 9) Fullerene/Ti Composite for High Strength-Insulating Layer; 10) Fullerene/Epoxy Composite for High Strength-Insulating Layer; 11) Models for Continuous Fiber Reinforced Composites; 12) Tensile Strength for Discontinuous Fiber Composite; 13) Ti + SWNT Composites: Thermal/Mechanical; 14) Ti + SWNT Composites: Tensile Strength; and 15) Nano-structured Shell for Pressure Vessels.

  2. Analytical model for vibration prediction of two parallel tunnels in a full-space

    NASA Astrophysics Data System (ADS)

    He, Chao; Zhou, Shunhua; Guo, Peijun; Di, Honggui; Zhang, Xiaohui

    2018-06-01

    This paper presents a three-dimensional analytical model for the prediction of ground vibrations from two parallel tunnels embedded in a full-space. The two tunnels are modelled as cylindrical shells of infinite length, and the surrounding soil is modelled as a full-space with two cylindrical cavities. A virtual interface is introduced to divide the soil into the right layer and the left layer. By transforming the cylindrical waves into the plane waves, the solution of wave propagation in the full-space with two cylindrical cavities is obtained. The transformations from the plane waves to cylindrical waves are then used to satisfy the boundary conditions on the tunnel-soil interfaces. The proposed model provides a highly efficient tool to predict the ground vibration induced by the underground railway, which accounts for the dynamic interaction between neighbouring tunnels. Analysis of the vibration fields produced over a range of frequencies and soil properties is conducted. When the distance between the two tunnels is smaller than three times the tunnel diameter, the interaction between neighbouring tunnels is highly significant, at times in the order of 20 dB. It is necessary to consider the interaction between neighbouring tunnels for the prediction of ground vibrations induced underground railways.

  3. Self assembly of organic nanostructures and dielectrophoretic assembly of inorganic nanowires.

    NASA Astrophysics Data System (ADS)

    Dholakia, Geetha; Kuo, Steven; Allen, E. L.

    2007-03-01

    Self assembly techniques enable the organization of organic molecules into nanostructures. Currently engineering strategies for efficient assembly and routine integration of inorganic nanoscale objects into functional devices is very limited. AC Dielectrophoresis is an efficient technique to manipulate inorganic nanomaterials into higher dimensional structures. We used an alumina template based sol-gel synthesis method for the growth of various metal oxide nanowires with typical diameters of 100-150 nm, ranging in length from 3-10 μm. Here we report the dielectrophoretic assembly of TiO2 nanowires, an important material for photocatalysis and photovoltaics, onto interdigitated devices. Self assembly in organic nanostructures and its dependence on structure and stereochemistry of the molecule and dielectrophoretic field dependence in the assembly of inorganic nanowires will be compared and contrasted. Tunneling spectroscopy and DOS of these nanoscale systems will also be discussed.

  4. Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy.

    PubMed

    Anderson, William J; Nowinska, Kamila; Hutter, Tanya; Mahajan, Sumeet; Fischlechner, Martin

    2018-04-19

    Surface-enhanced Raman spectroscopy (SERS) is well known for its high sensitivity that emerges due to the plasmonic enhancement of electric fields typically on gold and silver nanostructures. However, difficulties associated with the preparation of nanostructured substrates with uniform and reproducible features limit reliability and quantitation using SERS measurements. In this work we use layer-by-layer (LbL) self-assembly to incorporate multiple functional building blocks of collaborative assemblies of nanoparticles on colloidal spheres to fabricate SERS sensors. Gold nanoparticles (AuNPs) are packaged in discrete layers, effectively 'freezing nano-gaps', on spherical colloidal cores to achieve multifunctionality and reproducible sensing. Coupling between layers tunes the plasmon resonance for optimum SERS signal generation to achieve a 10 nM limit of detection. Significantly, using the layer-by-layer construction, SERS-active AuNP layers are spaced out and thus optically isolated. This uniquely allows the creation of an internal standard within each colloidal sensor to enable highly reproducible self-calibrated sensing. By using 4-mercaptobenzoic acid (4-MBA) as the internal standard adenine concentrations are quantified to an accuracy of 92.6-99.5%. Our versatile approach paves the way for rationally designed yet quantitative colloidal SERS sensors and their use in a variety of sensing applications.

  5. Tuning the morphology of silver nanostructures photochemically coated on glass substrates: an effective approach to large-scale functional surfaces

    NASA Astrophysics Data System (ADS)

    Zaier, Mohamed; Vidal, Loic; Hajjar-Garreau, Samar; Bubendorff, Jean-Luc; Balan, Lavinia

    2017-03-01

    This paper reports on a simple and environmentally friendly photochemical process capable of generating nano-layers (8-22 nm) of silver nanostructures directly onto glass surfaces. This approach opens the way to large-scale functionalized surfaces with plasmonic properties through a single light-induced processing. Thus, Ag nanostructures top-coated were obtained through photo-reduction, at room temperature, of a photosensitive formulation containing a metal precursor, free from extra toxic stabilizers or reducing agents. The reactive formulation was confined between two glass slides and exposed to a continuous near-UV source. In this way, stable silver nano-layers can be generated directly on the substrate with a very good control of the morphology of as-synthesized nanostructures that allows tailoring the optical properties of the coated layers. The position and width of the corresponding surface plasmon resonance bands can be adjusted over a broad spectral window. By extension, this low-cost and easy-to-apply process can also be used to coat ultra thin layers of metal nanostructures on a variety of substrates. The possibility of controlling of nanostructures shape should achieve valuable developments in many fields, as diverse as plasmonics, surface enhanced Raman scattering, nano-electronic circuitry, or medical devices.

  6. Growth mechanism, surface and optical properties of ZnO nanostructures deposited on various Au-seeded thickness obtained by mist-atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com

    2016-07-06

    In this paper, growth mechanisms of ZnO nanostructures on non-seeded glass, 6 nm and 12 nm Au seed layer obtained by mist-atomization was proposed. ZnO films were successfully deposited on glass substrate with different thickness of Au seed layer i.e. 6 nm and 12 nm. The surface and optical properties of the prepared samples were investigated using Field emission scanning electron microscopy (FESEM) and photoluminescence (PL). FESEM micrograph show that ZnO nanostructure deposited on 6 nm Au seed layer has uniform formation and well distributed. From PL spectroscopy, the UV emission shows that ZnO deposited on 6 nm Au seedmore » layer has the more intense UV intensity which proved that high crystal quality of nanostructured ZnO deposited on 6 nm Au seed layer.« less

  7. Wind-Tunnel Experiments for Gas Dispersion in an Atmospheric Boundary Layer with Large-Scale Turbulent Motion

    NASA Astrophysics Data System (ADS)

    Michioka, Takenobu; Sato, Ayumu; Sada, Koichi

    2011-10-01

    Large-scale turbulent motions enhancing horizontal gas spread in an atmospheric boundary layer are simulated in a wind-tunnel experiment. The large-scale turbulent motions can be generated using an active grid installed at the front of the test section in the wind tunnel, when appropriate parameters for the angular deflection and the rotation speed are chosen. The power spectra of vertical velocity fluctuations are unchanged with and without the active grid because they are strongly affected by the surface. The power spectra of both streamwise and lateral velocity fluctuations with the active grid increase in the low frequency region, and are closer to the empirical relations inferred from field observations. The large-scale turbulent motions do not affect the Reynolds shear stress, but change the balance of the processes involved. The relative contributions of ejections to sweeps are suppressed by large-scale turbulent motions, indicating that the motions behave as sweep events. The lateral gas spread is enhanced by the lateral large-scale turbulent motions generated by the active grid. The large-scale motions, however, do not affect the vertical velocity fluctuations near the surface, resulting in their having a minimal effect on the vertical gas spread. The peak concentration normalized using the root-mean-squared value of concentration fluctuation is remarkably constant over most regions of the plume irrespective of the operation of the active grid.

  8. Light-emitting Si nanostructures formed by swift heavy ions in stoichiometric SiO2 layers

    NASA Astrophysics Data System (ADS)

    Kachurin, G. A.; Cherkova, S. G.; Marin, D. V.; Kesler, V. G.; Volodin, V. A.; Skuratov, V. A.

    2012-07-01

    Three hundred and twenty nanometer-thick SiO2 layers were thermally grown on the Si substrates. The layers were irradiated with 167 MeV Xe ions to the fluences ranging between 1012 cm-2 and 1014 cm-2, or with 700 MeV Bi ions in the fluence range of 3 × 1012-1 × 1013 cm-2. After irradiation the yellow-orange photoluminescence (PL) band appeared and grew with the ion fluences. In parallel optical absorption in the region of 950-1150 cm-1, Raman scattering and X-ray photoelectron spectroscopy evidenced a decrease in the number of Si-O bonds and an increase in the number of Si-coordinated atoms. The results obtained are interpreted as the formation of the light-emitting Si-enriched nanostructures inside the tracks of swift heavy ions through the disproportionation of SiO2. Ionization losses of the ions are regarded as responsible for the processes observed. Difference between the dependences of the PL intensity on the fluences of Xe and Bi ions are ascribed to their different stopping energy, therewith the diameters of the tracks of Xe and Bi ions were assessed as <3 nm and ˜10 nm, respectively. The observed shift of the PL bands, induced by Xe and Bi ions, agrees with the predictions of the quantum confinement theory.

  9. The Sustainable Release of Vancomycin and Its Degradation Products From Nanostructured Collagen/Hydroxyapatite Composite Layers.

    PubMed

    Suchý, Tomáš; Šupová, Monika; Klapková, Eva; Horný, Lukáš; Rýglová, Šárka; Žaloudková, Margit; Braun, Martin; Sucharda, Zbyněk; Ballay, Rastislav; Veselý, Jan; Chlup, Hynek; Denk, František

    2016-03-01

    Infections of the musculoskeletal system present a serious problem with regard to the field of orthopedic and trauma medicine. The aim of the experiment described in this study was to develop a resorbable nanostructured composite layer with the controlled elution of antibiotics. The layer is composed of collagen, hydroxyapatite nanoparticles, and vancomycin hydrochloride (10 wt%). The stability of the collagen was enhanced by means of cross-linking. Four cross-linking agents were studied, namely an ethanol solution, a phosphate buffer solution of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide, genipin, and nordihydroguaiaretic acid. High performance liquid chromatography was used so as to characterize the in vitro release rates of the vancomycin and its crystalline degradation antibiotically inactive products over a 21-day period. The maximum concentration of the released active form of vancomycin (approximately 265 mg/L) exceeded the minimum inhibitory concentration up to an order of 17 times without triggering the burst releasing effect. At the end of the experiment, the minimum inhibitory concentration was exceeded by up to 6 times (approximately 100 mg/L). It was determined that the modification of collagen with hydroxyapatite nanoparticles does not negatively influence the sustainable release of vancomycin. The balance of vancomycin and its degradation products was observed after 14 days of incubation. Copyright © 2016. Published by Elsevier Inc.

  10. Cross-sectional scanning tunneling microscopy of antiphase boundaries in epitaxially grown GaP layers on Si(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prohl, Christopher; Lenz, Andrea, E-mail: alenz@physik.tu-berlin.de; Döscher, Henning

    2016-05-15

    In a fundamental cross-sectional scanning tunneling microscopy investigation on epitaxially grown GaP layers on a Si(001) substrate, differently oriented antiphase boundaries are studied. They can be identified by a specific contrast and by surface step edges starting/ending at the position of an antiphase boundary. Moreover, a change in the atomic position of P and Ga atoms along the direction of growth is observed in agreement with the structure model of antiphase boundaries in the GaP lattice. This investigation opens the perspective to reveal the orientation and position of the antiphase boundaries at the atomic scale due to the excellent surfacemore » sensitivity of this method.« less

  11. One-Dimensional Hetero-Nanostructures for Rechargeable Batteries.

    PubMed

    Mai, Liqiang; Sheng, Jinzhi; Xu, Lin; Tan, Shuangshuang; Meng, Jiashen

    2018-04-17

    Rechargeable batteries are regarded as one of the most practical electrochemical energy storage devices that are able to convert and store the electrical energy generated from renewable resources, and they function as the key power sources for electric vehicles and portable electronics. The ultimate goals for electrochemical energy storage devices are high power and energy density, long lifetime, and high safety. To achieve the above goals, researchers have tried to apply various morphologies of nanomaterials as the electrodes to enhance the electrochemical performance. Among them, one-dimensional (1D) materials show unique superiorities, such as cross-linked structures for external stress buffering and large draw ratios for internal stress dispersion. However, a homogeneous single-component electrode material can hardly have the characteristics of high electronic/ionic conductivity and high stability in the electrochemical environment simultaneously. Therefore, designing well-defined functional 1D hetero-nanostructures that combine the advantages and overcome the limitations of different electrochemically active materials is of great significance. This Account summarizes fabrication strategies for 1D hetero-nanostructures, including nucleation and growth, deposition, and melt-casting and electrospinning. Besides, the chemical principles for each strategy are discussed. The nucleation and growth strategy is suitable for growing and constructing 1D hetero-nanostructures of partial transition metal compounds, and the experimental conditions for this strategy are relatively accessible. Deposition is a reliable strategy to synthesize 1D hetero-nanostructures by decorating functional layers on 1D substrate materials, on the condition that the preobtained substrate materials must be stable in the following deposition process. The melt-casting strategy, in which 1D hetero-nanostructures are synthesizes via a melting and molding process, is also widely used. Additionally

  12. Negative tunneling magnetoresistance of Fe/MgO/NiO/Fe magnetic tunnel junction: Role of spin mixing and interface state

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yan, X. H.; Guo, Y. D.; Xiao, Y.

    2017-08-01

    Motivated by a recent tunneling magnetoresistance (TMR) measurement in which the negative TMR is observed in MgO/NiO-based magnetic tunnel junctions (MTJs), we have performed systematic calculations of transmission, current, and TMR of Fe/MgO/NiO/Fe MTJ with different thicknesses of NiO and MgO layers based on noncollinear density functional theory and non-equilibrium Green's function theory. The calculations show that, as the thickness of NiO and MgO layers is small, the negative TMR can be obtained which is attributed to the spin mixing effect and interface state. However, in the thick MTJ, the spin-flipping scattering becomes weaker, and thus, the MTJs recover positive TMR. Based on our theoretical results, we believe that the interface state at Fe/NiO interface and the spin mixing effect induced by noncollinear interfacial magnetization will play important role in determining transmission and current of Fe/MgO/NiO/Fe MTJ. The results reported here will be important in understanding the electron tunneling in MTJ with the barrier made by transition metal oxide.

  13. Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr

    2009-07-01

    With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs)more » are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was

  14. First-principles design of nanostructured hybrid photovoltaics based on layered transition metal phosphates

    DOE PAGES

    Lentz, Levi C.; Kolpak, Alexie M.

    2017-04-28

    The performance of bulk organic and hybrid organic-inorganic heterojunction photovoltaics is often limited by high carrier recombination arising from strongly bound excitons and low carrier mobility. Structuring materials to minimize the length scales required for exciton separation and carrier collection is therefore a promising approach for improving efficiency. In this work, first-principles computations are employed to design and characterize a new class of photovoltaic materials composed of layered transition metal phosphates (TMPs) covalently bound to organic absorber molecules to form nanostructured superlattices. Using a combination of transition metal substitution and organic functionalization, the electronic structure of these materials is systematicallymore » tuned to design a new hybrid photovoltaic material predicted to exhibit very low recombination due to the presence of a local electric field and spatially isolated, high mobility, two-dimensional electron and hole conducting channels. Furthermore, this material is predicted to have a large open-circuit voltage of 1.7 V. Here, this work suggests that hybrid TMPs constitute an interesting class of materials for further investigation in the search for achieving high efficiency, high power, and low cost photo Zirconium phosphate was chosen, in part, due to previous experiment voltaics.« less

  15. First-principles design of nanostructured hybrid photovoltaics based on layered transition metal phosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, Levi C.; Kolpak, Alexie M.

    The performance of bulk organic and hybrid organic-inorganic heterojunction photovoltaics is often limited by high carrier recombination arising from strongly bound excitons and low carrier mobility. Structuring materials to minimize the length scales required for exciton separation and carrier collection is therefore a promising approach for improving efficiency. In this work, first-principles computations are employed to design and characterize a new class of photovoltaic materials composed of layered transition metal phosphates (TMPs) covalently bound to organic absorber molecules to form nanostructured superlattices. Using a combination of transition metal substitution and organic functionalization, the electronic structure of these materials is systematicallymore » tuned to design a new hybrid photovoltaic material predicted to exhibit very low recombination due to the presence of a local electric field and spatially isolated, high mobility, two-dimensional electron and hole conducting channels. Furthermore, this material is predicted to have a large open-circuit voltage of 1.7 V. Here, this work suggests that hybrid TMPs constitute an interesting class of materials for further investigation in the search for achieving high efficiency, high power, and low cost photo Zirconium phosphate was chosen, in part, due to previous experiment voltaics.« less

  16. Dependency of anti-ferro-magnetic coupling strength on Ru spacer thickness of [Co/Pd]{sub n}-synthetic-anti-ferro-magnetic layer in perpendicular magnetic-tunnel-junctions fabricated on 12-inch TiN electrode wafer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Kyo-Suk; Samsung Electronics Co., Ltd., San #16 Banwol-dong, Hwasung-City, Gyeonggi-Do 445-701; Shim, Tae-Hun

    We investigated the Ru spacer-thickness effect on the anti-ferro-magnetic coupling strength (J{sub ex}) of a [Co/Pd]{sub n}-synthetic-anti-ferro-magnetic layer fabricated with Co{sub 2}Fe{sub 6}B{sub 2}/MgO based perpendicular-magnetic-tunneling-junction spin-valves on 12-in. TiN electrode wafers. J{sub ex} peaked at a certain Ru spacer-thickness: specifically, a J{sub ex} of 0.78 erg/cm{sup 2} at 0.6 nm, satisfying the J{sub ex} criteria for realizing the mass production of terra-bit-level perpendicular-spin-transfer-torque magnetic-random-access-memory. Otherwise, J{sub ex} rapidly degraded when the Ru spacer-thickness was less than or higher than 0.6 nm. As a result, the allowable Ru thickness variation should be controlled less than 0.12 nm to satisfy the J{sub ex} criteria. However,more » the Ru spacer-thickness did not influence the tunneling-magneto-resistance (TMR) and resistance-area (RA) of the perpendicular-magnetic-tunneling-junction (p-MTJ) spin-valves since the Ru spacer in the synthetic-anti-ferro-magnetic layer mainly affects the anti-ferro-magnetic coupling efficiency rather than the crystalline linearity of the Co{sub 2}Fe{sub 6}B{sub 2} free layer/MgO tunneling barrier/Co{sub 2}Fe{sub 6}B{sub 2} pinned layer, although Co{sub 2}Fe{sub 6}B{sub 2}/MgO based p-MTJ spin-valves ex-situ annealed at 275 °C achieved a TMR of ∼70% at a RA of ∼20 Ω μm{sup 2}.« less

  17. Metal oxide nanostructures for gas detection

    NASA Astrophysics Data System (ADS)

    Maziarz, Wojciech; Pisarkiewicz, Tadeusz; Rydosz, Artur; Wysocka, Kinga; Czyrnek, Grzegorz

    2013-07-01

    Currently, most of gas sensors on the market are produced in thin or thick film technologies with the use of ceramic substrates. It is expected that the miniature sensors needed in portable applications will be based on one-dimensional structures due to their low power consumption, fast and stable time response, small dimensions and possibility of embedding in integrated circuit together with signal conditioning electronics. The authors manufactured resistance type gas sensors based on ZnO and WO3 nanostructures. ZnO:Al nanorods with good cristallinity were obtained with electrodeposition method, while ZnO:Al nanofibres with varying diameters were obtained by electrospinning method. The sensors were built as a nanowire network. WO3 films with nanocrystalline surface were manufactured by deposition of a three layer WO3/W/WO3 structure by RF sputtering and successive annealing of the structure in appropriate temperature range. In effect a uniform nanostructurized metal oxide layer was formed. Investigation of sensors characteristics revealed good sensitivity to nitrogen dioxide at temperatures lower than these for conventional conductometric type sensors.

  18. Planar edge Schottky barrier-tunneling transistors using epitaxial graphene/SiC junctions.

    PubMed

    Kunc, Jan; Hu, Yike; Palmer, James; Guo, Zelei; Hankinson, John; Gamal, Salah H; Berger, Claire; de Heer, Walt A

    2014-09-10

    A purely planar graphene/SiC field effect transistor is presented here. The horizontal current flow over one-dimensional tunneling barrier between planar graphene contact and coplanar two-dimensional SiC channel exhibits superior on/off ratio compared to conventional transistors employing vertical electron transport. Multilayer epitaxial graphene (MEG) grown on SiC(0001̅) was adopted as the transistor source and drain. The channel is formed by the accumulation layer at the interface of semi-insulating SiC and a surface silicate that forms after high vacuum high temperature annealing. Electronic bands between the graphene edge and SiC accumulation layer form a thin Schottky barrier, which is dominated by tunneling at low temperatures. A thermionic emission prevails over tunneling at high temperatures. We show that neglecting tunneling effectively causes the temperature dependence of the Schottky barrier height. The channel can support current densities up to 35 A/m.

  19. A procedure for predicting internal and external noise fields of blowdown wind tunnels

    NASA Technical Reports Server (NTRS)

    Hosier, R. N.; Mayes, W. H.

    1972-01-01

    The noise generated during the operation of large blowdown wind tunnels is considered. Noise calculation procedures are given to predict the test-section overall and spectrum level noise caused by both the tunnel burner and turbulent boundary layer. External tunnel noise levels due to the tunnel burner and circular jet exhaust flow are also calculated along with their respective cut-off frequency and spectrum peaks. The predicted values are compared with measured data, and the ability of the prediction procedure to estimate blowdown-wind-tunnel noise levels is shown.

  20. Capacitorless one-transistor dynamic random-access memory based on asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor with n-doped boosting layer and drain-underlap structure

    NASA Astrophysics Data System (ADS)

    Yoon, Young Jun; Seo, Jae Hwa; Kang, In Man

    2018-04-01

    In this work, we present a capacitorless one-transistor dynamic random-access memory (1T-DRAM) based on an asymmetric double-gate Ge/GaAs-heterojunction tunneling field-effect transistor (TFET) for DRAM applications. The n-doped boosting layer and gate2 drain-underlap structure is employed in the device to obtain an excellent 1T-DRAM performance. The n-doped layer inserted between the source and channel regions improves the sensing margin because of a high rate of increase in the band-to-band tunneling (BTBT) probability. Furthermore, because the gate2 drain-underlap structure reduces the recombination rate that occurs between the gate2 and drain regions, a device with a gate2 drain-underlap length (L G2_D-underlap) of 10 nm exhibited a longer retention performance. As a result, by applying the n-doped layer and gate2 drain-underlap structure, the proposed device exhibited not only a high sensing margin of 1.11 µA/µm but also a long retention time of greater than 100 ms at a temperature of 358 K (85 °C).

  1. FDTD simulations of localization and enhancements on fractal plasmonics nanostructures.

    PubMed

    Buil, Stéphanie; Laverdant, Julien; Berini, Bruno; Maso, Pierre; Hermier, Jean-Pierre; Quélin, Xavier

    2012-05-21

    A parallelized 3D FDTD (Finite-Difference Time-Domain) solver has been used to study the near-field electromagnetic intensity upon plasmonics nanostructures. The studied structures are obtained from AFM (Atomic Force Microscopy) topography measured on real disordered gold layers deposited by thermal evaporation under ultra-high vacuum. The simulation results obtained with these 3D metallic nanostructures are in good agreement with previous experimental results: the localization of the electromagnetic intensity in subwavelength areas ("hot spots") is demonstrated; the spectral and polarization dependences of the position of these "hot spots" are also satisfactory; the enhancement factors obtained are realistic compared to the experimental ones. These results could be useful to further our understanding of the electromagnetic behavior of random metal layers.

  2. Largely Enhanced Single-molecule Fluorescence in Plasmonic Nanogaps formed by Hybrid Silver Nanostructures

    PubMed Central

    Zhang, Jian; Lakowicz, Joseph R.

    2013-01-01

    It has been suggested that narrow gaps between metallic nanostructures can be practical for producing large field enhancement. We design a hybrid silver nanostructure geometry in which fluorescent emitters are sandwiched between silver nanoparticles and silver island film (SIF). A desired number of polyelectrolyte layers are deposited on the SIF surface before the self-assembly of a second silver nanoparticle layer. Layer-by-layer configuration provides a well-defined dye position. It allows us to study the photophyical behaviors of fluorophores in the resulting gap at the single molecule level. The enhancement factor of a fluorophore located in the gap is much higher than those on silver surfaces alone and on glass. These effects may be used for increased detectability of single molecules bound to surfaces which contain metallic structures for either biophysical studies or high sensitivity assays. PMID:23373787

  3. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  4. Tunnel-injected sub 290 nm ultra-violet light emitting diodes with 2.8% external quantum efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Yuewei; Jamal-Eddine, Zane; Akyol, Fatih; Bajaj, Sanyam; Johnson, Jared M.; Calderon, Gabriel; Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.; Hwang, Jinwoo; Rajan, Siddharth

    2018-02-01

    We report on the high efficiency tunnel-injected ultraviolet light emitting diodes (UV LEDs) emitting at 287 nm. Deep UV LED performance has been limited by the severe internal light absorption in the p-type contact layers and low electrical injection efficiency due to poor p-type conduction. In this work, a polarization engineered Al0.65Ga0.35N/In0.2Ga0.8N tunnel junction layer is adopted for non-equilibrium hole injection to replace the conventionally used direct p-type contact. A reverse-graded AlGaN contact layer is further introduced to realize a low resistance contact to the top n-AlGaN layer. This led to the demonstration of a low tunnel junction resistance of 1.9 × 10-3 Ω cm2 obtained at 1 kA/cm2. Light emission at 287 nm with an on-wafer peak external quantum efficiency of 2.8% and a wall-plug efficiency of 1.1% was achieved. The measured power density at 1 kA/cm2 was 54.4 W/cm2, confirming the efficient hole injection through interband tunneling. With the benefits of the minimized internal absorption and efficient hole injection, a tunnel-injected UV LED structure could enable future high efficiency UV emitters.

  5. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  6. Laser-induced atomic assembling of periodic layered nanostructures of silver nanoparticles in fluoro-polymer film matrix

    NASA Astrophysics Data System (ADS)

    Bagratashvili, V. N.; Rybaltovsky, A. O.; Minaev, N. V.; Timashev, P. S.; Firsov, V. V.; Yusupov, V. I.

    2010-05-01

    Fluorinated acrylic polymer (FAP) films have been impregnated with silver precursor (Ag(hfac)COD) by supercritical fluid technique and next irradiated with laser (λ = 532 nm). Laser-chemically reduced Ag atoms have been assembled into massifs of Ag nanoparticles (3 - 8 nm) in FAP/Ag(hfac)COD films matrix in the form of periodic layered nanostructures (horizontal to film surface) with unexpectedly short period (90 - 180 nm). The wavelet analysis of TEM images reveals the existence of even shorter-period structures in such films. Photolysis with non-coherent light or pyrolysis of FAP/Ag(hfac)COD film results in formation of Ag nanoparticles massifs but free of any periodic nanoparticle assemblies. Our interpretation of the observed effect of laser formation of short-period nano-sized Ag nanoparticle assemblies is based on self-enhanced interference process in the course of modification of optical properties of film.

  7. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, John; Saunders, John

    2014-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  8. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, J. W.; Saunders, J. D.

    2015-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  9. Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells.

    PubMed

    Choi, Jongmin; Song, Seulki; Hörantner, Maximilian T; Snaith, Henry J; Park, Taiho

    2016-06-28

    An electron transporting layer (ETL) plays an important role in extracting electrons from a perovskite layer and blocking recombination between electrons in the fluorine-doped tin oxide (FTO) and holes in the perovskite layers, especially in planar perovskite solar cells. Dense TiO2 ETLs prepared by a solution-processed spin-coating method (S-TiO2) are mainly used in devices due to their ease of fabrication. Herein, we found that fatal morphological defects at the S-TiO2 interface due to a rough FTO surface, including an irregular film thickness, discontinuous areas, and poor physical contact between the S-TiO2 and the FTO layers, were inevitable and lowered the charge transport properties through the planar perovskite solar cells. The effects of the morphological defects were mitigated in this work using a TiO2 ETL produced from sputtering and anodization. This method produced a well-defined nanostructured TiO2 ETL with an excellent transmittance, single-crystalline properties, a uniform film thickness, a large effective area, and defect-free physical contact with a rough substrate that provided outstanding electron extraction and hole blocking in a planar perovskite solar cell. In planar perovskite devices, anodized TiO2 ETL (A-TiO2) increased the power conversion efficiency by 22% (from 12.5 to 15.2%), and the stabilized maximum power output efficiency increased by 44% (from 8.9 to 12.8%) compared with S-TiO2. This work highlights the importance of the ETL geometry for maximizing device performance and provides insights into achieving ideal ETL morphologies that remedy the drawbacks observed in conventional spin-coated ETLs.

  10. Note: Fabrication and characterization of molybdenum tips for scanning tunneling microscopy and spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrozzo, P.; Tumino, F.; Facibeni, A.

    We present a method for the preparation of bulk molybdenum tips for Scanning Tunneling Microscopy and Spectroscopy and we assess their potential in performing high resolution imaging and local spectroscopy by measurements on different single crystal surfaces in UHV, namely, Au(111), Si(111)-7 × 7, and titanium oxide 2D ordered nanostructures supported on Au(111). The fabrication method is versatile and can be extended to other metals, e.g., cobalt.

  11. Synthesis and processing of nanostructured BN and BN/Ti composites

    NASA Astrophysics Data System (ADS)

    Horvath, Robert Steven

    Superhard materials, such as cubic-BN, are widely used in machine tools, grinding wheels, and abrasives. Low density combined with high hardness makes c-BN and its composites attractive candidate materials for personnel and vehicular armor. However, improvements in toughness, and ballistic-impact performance, are needed to meet anticipated performance requirements. To achieve such improvements, we have targeted for development nanostructured c-BN, and its composites with Ti. Current research utilizes an experimental high pressure/high temperature (HPHT) method to produce these materials on a laboratory scale. Results from this work should transfer well into the industrial arena, utilizing high-tonnage presses used in the production of synthetic diamond and c-BN. Progress has been made in: (1) HPHT synthesis of cBN powder using Mg as catalyst; (2) HPHT consolidation of cBN powder to produce nanostructured cBN; (3) reactive-HPHT consolidation of mixed cBN/Ti powder to produce nanostructured Ti- or TiB2/TiN-bonded cBN; and (4) reactive-HPHT consolidation of mixed hBN/Ti powder to produce nanostructured Ti-bonded TiB2/TiN or TiB2/TiN. Even so, much remains to be done to lay a firm scientific foundation to enable the reproducible fabrication of large-area panels for armor applications. To this end, Rutgers has formed a partnership with a major producer of hard and superhard materials. The ability to produce hard and superhard nanostructured composites by reacting cBN or hBN with Ti under high pressure also enables multi-layered structures to be developed. Such structures may be designed to satisfy impedance-mismatch requirements for high performance armor, and possibly provide a multi-hit capability. A demonstration has been made of reactive-HPHT processing of multi-layered composites, consisting of alternating layers of superhard Ti-bonded cBN and tough Ti. It is noteworthy that the pressure requirements for processing Ti-bonded cBN, Ti-bonded TiB2/TiN, and their

  12. Tunnel Magneto Resistance of Fe/Insulator/Fe

    NASA Astrophysics Data System (ADS)

    Aryee, Dennis; Seifu, Dereje

    Tri-layer thin films of Fe/Insulator/Fe were synthesized using magnetron DC/ RF sputtering with MgO insulator and Bi2Te3 topological insulators as middle buffer layer. The multi-layered samples thus produced were studied using in-house built magneto-optic Kerr effect (MOKE) instrument, vibrating sample magnetometer (VSM), torque magnetometer (TMM), AFM, MFM, and magneto-resistance (MR). This system, that is Fe/Insulator/Fe on MgO(100) substrate, is a well-known tunnel magneto resistance (TMR) structure often used in magnetic tunnel junction (MTJ) devices. TMR effect is a method by which MTJs are used in developing magneto-resistive random access memory (MRAM), magnetic sensors, and novel logic devices. The main purpose behind this research is to measure the magnetic anisotropy of Fe/Insulator /Fe structure and correlate it to magneto-resistance. In this presentation, we will present results from MOKE, VSM, TMM, AFM, MFM, and MR studies of Fe/Insulator/Fe on MgO(100). We would like to acknowledge support by NSF-MRI-DMR-1337339.

  13. Impact of semiconducting electrodes on the electroresistance of ferroelectric tunnel junctions

    NASA Astrophysics Data System (ADS)

    Asa, M.; Bertacco, R.

    2018-02-01

    Ferroelectric tunnel junctions are promising candidates for the realization of energy-efficient digital memories and analog memcomputing devices. In this work, we investigate the impact of a semiconducting layer in series to the junction on the sign of electroresistance. To this scope, we compare tunnel junctions fabricated out of Pt/BaTiO3/La1/3Sr2/3MnO3 (LSMO) and Pt/BaTiO3/Nb:SrTiO3 (Nb:STO) heterostructures, displaying an opposite sign of the electroresistance. By capacitance-voltage profiling, we observe a behavior typical of Metal-Oxide-Semiconductor tunnel devices in both cases but compatible with the opposite sign of charge carriers in the semiconducting layer. While Nb:STO displays the expected n-type semiconducting character, metallic LSMO develops an interfacial p-type semiconducting layer. The different types of carriers at the semiconducting interfaces and the modulation of the depleted region by the ferroelectric charge have a deep impact on electroresistance, possibly accounting for the different sign observed in the two systems.

  14. Results of tests on a Rockwell International space shuttle orbiter (-139 configuration) 0.0175-scale model (no. 29-0) in AEDC tunnel B to determine boundary layer characteristics

    NASA Technical Reports Server (NTRS)

    Quan, M.

    1975-01-01

    Results of wind tunnel tests were conducted to determine boundary layer characteristics on the lower surface of a space shuttle orbiter. Total pressure and temperature profile data at various model stations were obtained using a movable, four-degree-of-freedom probe mechanism and static pressure taps on the model surface. During a typical run, the probe was located over a preselected model location, then driven down through the bondary layer until contact was made with the model surface.

  15. Nanostructured tracers for laser-based diagnostics in high-speed flows

    NASA Astrophysics Data System (ADS)

    Ghaemi, S.; Schmidt-Ott, A.; Scarano, F.

    2010-10-01

    The potential application of aggregates of nanoparticles for high-speed flow diagnostics is investigated. Aluminum nanoparticles around 10 nm in diameter are produced by spark discharge in argon gas. Through rapid coagulation and oxidation, aggregates of small effective density are formed. They are characterized by microscopy and their aerodynamics and optical properties are theoretically evaluated. The performance of the aggregates is experimentally investigated across an oblique shock wave in a supersonic wind tunnel of 3 × 3 cm2 cross-section at Mach 2. Particle image velocimetry is used to quantify the time response of the aggregates. The investigations are also carried out on compact titanium agglomerates to provide a base for comparison. The results yield a relaxation time of 0.27 µs for the nanostructured aluminum aggregates, which is an order of magnitude reduction with respect to the compact titanium nanoparticles. This work demonstrates the applicability of nanostructured aggregates for laser-based diagnostics in supersonic and hypersonic flows.

  16. Circular polarization in a non-magnetic resonant tunneling device.

    PubMed

    Dos Santos, Lara F; Gobato, Yara Galvão; Teodoro, Márcio D; Lopez-Richard, Victor; Marques, Gilmar E; Brasil, Maria Jsp; Orlita, Milan; Kunc, Jan; Maude, Duncan K; Henini, Mohamed; Airey, Robert J

    2011-01-25

    We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects.

  17. Circular polarization in a non-magnetic resonant tunneling device

    PubMed Central

    2011-01-01

    We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects. PMID:21711613

  18. Optical properties of hybrid quantum-well–dots nanostructures grown by MOCVD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mintairov, S. A., E-mail: mintairov@scell.ioffe.ru; Kalyuzhnyy, N. A.; Nadtochiy, A. M.

    The deposition of In{sub x}Ga{sub 1–x}As with an indium content of 0.3–0.5 and an average thickness of 3–27 single layers on a GaAs wafer by metalorganic chemical vapor deposition (MOCVD) at low temperatures results in the appearance of thickness and composition modulations in the layers being formed. Such structures can be considered to be intermediate nanostructures between ideal quantum wells and quantum dots. Depending on the average thickness and composition of the layers, the wavelength of the photoluminescence peak for the hybrid InGaAs quantum well–dots nanostructures varies from 950 to 1100 nm. The optimal average In{sub x}Ga{sub 1–x}As thicknesses andmore » compositions at which the emission wavelength is the longest with a high quantum efficiency retained are determined.« less

  19. Resonant tunnelling in a quantum oxide superlattice

    DOE PAGES

    Choi, Woo Seok; Lee, Sang A.; You, Jeong Ho; ...

    2015-06-24

    Resonant tunneling is a quantum mechanical process that has long been attracting both scientific and technological attention owing to its intriguing underlying physics and unique applications for high-speed electronics. The materials system exhibiting resonant tunneling, however, has been largely limited to the conventional semiconductors, partially due to their excellent crystalline quality. Here we show that a deliberately designed transition metal oxide superlattice exhibits a resonant tunneling behaviour with a clear negative differential resistance. The tunneling occurred through an atomically thin, lanthanum δ- doped SrTiO 3 layer, and the negative differential resistance was realized on top of the bi-polar resistance switchingmore » typically observed for perovskite oxide junctions. This combined process resulted in an extremely large resistance ratio (~10 5) between the high and low resistance states. Lastly, the unprecedentedly large control found in atomically thin δ-doped oxide superlattices can open a door to novel oxide-based high-frequency logic devices.« less

  20. Tunneling spectroscopy measurements on hydrogen-bonded supramolecular polymers.

    PubMed

    Vonau, François; Shokri, Roozbeh; Aubel, Dominique; Bouteiller, Laurent; Guskova, Olga; Sommer, Jens-Uwe; Reiter, Günter; Simon, Laurent

    2014-07-21

    We studied the formation of hydrogen-bonded supramolecular polymers of Ethyl Hexyl Urea Toluene (EHUT) on a gold (111) surface by low temperature scanning tunneling microscopy. Tunneling spectroscopy performed along an individual molecule embedded in a self-assembled layer revealed strong changes in the value of the HOMO-LUMO gap. A variation of the LUMO state is attributed to the effect of space charge accumulation resulting from anisotropic adhesion of the molecule. In addition, for specific tunneling conditions, changes induced through the formation of hydrogen bonds became visible in the differential conductance (dI/dV) maps; isolated molecules, hydrogen bonded dimers and supramolecular polymers of EHUT were distinguishable through their electronic properties.

  1. Tunneling spectroscopy measurements on hydrogen-bonded supramolecular polymers

    NASA Astrophysics Data System (ADS)

    Vonau, François; Shokri, Roozbeh; Aubel, Dominique; Bouteiller, Laurent; Guskova, Olga; Sommer, Jens-Uwe; Reiter, Günter; Simon, Laurent

    2014-06-01

    We studied the formation of hydrogen-bonded supramolecular polymers of Ethyl Hexyl Urea Toluene (EHUT) on a gold (111) surface by low temperature scanning tunneling microscopy. Tunneling spectroscopy performed along an individual molecule embedded in a self-assembled layer revealed strong changes in the value of the HOMO-LUMO gap. A variation of the LUMO state is attributed to the effect of space charge accumulation resulting from anisotropic adhesion of the molecule. In addition, for specific tunneling conditions, changes induced through the formation of hydrogen bonds became visible in the differential conductance (dI/dV) maps; isolated molecules, hydrogen bonded dimers and supramolecular polymers of EHUT were distinguishable through their electronic properties.

  2. Enthalpy effects on hypervelocity boundary layers

    NASA Astrophysics Data System (ADS)

    Adam, Philippe H.

    Shots with air and carbon dioxide were carried out in the T5 shock tunnel at GALCIT to study enthalpy effects on hypervelocity boundary layers. The model tested was a 1-meter long, 5-deg half-angle cone. It was instrumented with 51 chromel-constantan coaxial thermocouples and the surface heat transfer rate was computed to deduce the state of the boundary layer. Transitional boundary layers obtained confirm the stabilizing effect of enthalpy. As the reservoir enthalpy is increased, the transition Reynolds number evaluated at the reference conditions increases. This stabilizing effect is more rapid in gases with lower dissociation energy and it seems to level off when no further dissociation can be achieved. Normalizing the reservoir enthalpy with the edge enthalpy appears to collapse the data for all gases onto a single curve. A similar collapse is obtained when normalizing both the transition location and the reservoir enthalpy with the maximum temperature conditions obtained with BLIMPK, a nonequilibrium boundary layer code. The observation that reference conditions are more appropriate to normalize high enthalpy transition data was taken a step further by comparing the tunnel data with results from a reentry experiment. When the edge conditions are used, the tunnel and flight data are around an order of magnitude apart. This is commonly attributed to high disturbance levels in tunnels that cause the boundary layer to transition early. However, when the reference conditions are used instead, the tunnel and flight data come within striking distance of one another although the trends with enthalpy are reversed. This difference could be due to the cone bending and nose blunting. Experimental laminar heat transfer levels were compared to numerical results obtained with BLIMPK. Results for air indicate that the reactions are probably in nonequilibrium and that the wall is catalytic. The catalycity is seen to yield higher surface heat transfer rates than the

  3. Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors

    PubMed Central

    Jeong, Seong-Jun; Gu, Yeahyun; Heo, Jinseong; Yang, Jaehyun; Lee, Chang-Seok; Lee, Min-Hyun; Lee, Yunseong; Kim, Hyoungsub; Park, Seongjun; Hwang, Sungwoo

    2016-01-01

    The downscaling of the capacitance equivalent oxide thickness (CET) of a gate dielectric film with a high dielectric constant, such as atomic layer deposited (ALD) HfO2, is a fundamental challenge in achieving high-performance graphene-based transistors with a low gate leakage current. Here, we assess the application of various surface modification methods on monolayer graphene sheets grown by chemical vapour deposition to obtain a uniform and pinhole-free ALD HfO2 film with a substantially small CET at a wafer scale. The effects of various surface modifications, such as N-methyl-2-pyrrolidone treatment and introduction of sputtered ZnO and e-beam-evaporated Hf seed layers on monolayer graphene, and the subsequent HfO2 film formation under identical ALD process parameters were systematically evaluated. The nucleation layer provided by the Hf seed layer (which transforms to the HfO2 layer during ALD) resulted in the uniform and conformal deposition of the HfO2 film without damaging the graphene, which is suitable for downscaling the CET. After verifying the feasibility of scaling down the HfO2 thickness to achieve a CET of ~1.5 nm from an array of top-gated metal-oxide-graphene field-effect transistors, we fabricated graphene heterojunction tunnelling transistors with a record-low subthreshold swing value of <60 mV/dec on an 8″ glass wafer. PMID:26861833

  4. Control of Alq3 wetting layer thickness via substrate surface functionalization.

    PubMed

    Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J

    2007-06-05

    The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.

  5. Promising features of low-temperature grown Ge nanostructures on Si(001) substrates

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Wang, Shuguang; Yin, Yefei; Liu, Tao; Lin, Dongdong; Li, De-hui; Yang, Xinju; Jiang, Zuimin; Zhong, Zhenyang

    2017-03-01

    High-quality Ge nanostructures are obtained by molecular beam epitaxy of Ge on Si(001) substrates at 200 °C and ex situ annealing at 400 °C. Their structural properties are comprehensively characterized by atomic force microscopy, transmission electron microscopy and Raman spectroscopy. It is disclosed that they are almost defect free except for some defects at the Ge/Si interface and in the subsequent Si capping layer. The misfit strain in the nanostructure is substantially relaxed. Dramatically strong photoluminescence (PL) from the Ge nanostructures is observed. Detailed analyses on the power- and temperature-dependent PL spectra, together with a self-consistent calculation, indicate the confinement and the high quantum efficiency of excitons within the Ge nanostructures. Our results demonstrate that the Ge nanostructures obtained via the present feasible route may have great potential in optoelectronic devices for monolithic optical-electronic integration circuits.

  6. Fluctuating disturbances in a Mach 5 wind tunnel

    NASA Technical Reports Server (NTRS)

    Anders, J. B.; Stainback, P. C.; Beckwith, I. E.; Keefe, L. R.

    1976-01-01

    An experimental investigation has been conducted to determine the source and nature of disturbances in the settling chamber and test section of a Mach 5 wind tunnel. Various changes in the air supply piping to the wind tunnel are shown to influence the disturbance levels in the settling chamber. These levels were reduced by the use of an acoustic muffler section in the settling chamber. Three nozzles were tested with the same settling chamber and hot-wire measurements indicated that the test section disturbances were entirely acoustic. Significant reductions in the test section noise levels were obtained with an electroplated nozzle utilizing boundary-layer removal upstream of the throat. The source of test section noise is shown to be different for laminar and turbulent nozzle-wall boundary layers.

  7. Nanostructures by ion beams

    NASA Astrophysics Data System (ADS)

    Schmidt, B.

    Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.

  8. An experimental investigation of the effect of boundary layer refraction on the noise from a high-speed propeller

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Burns, R. J.; Leciejewski, D. J.

    1984-01-01

    Models of supersonic propellers were previously tested for acoustics in the Lewis 8- by 6-Foot Wind Tunnel using pressure transducers mounted in the tunnel ceiling. The boundary layer on the tunnel ceiling is believed to refract some of the propeller noise away from the measurement transducers. Measurements were made on a plate installed in the wind tunnel which had a thinner boundary layer than the ceiling boundary layer. The plate was installed in two locations for comparison with tunnel ceiling noise data and with fuselage data taken on the NASA Dryden Jetstar airplane. Analysis of the data indicates that the refraction increases with: increasing boundary layer thickness; increasing free stream Mach number; increasing frequency; and decreasing sound radiation angle (toward the inlet axis). At aft radiation angles greater than about 100 deg there was little or no refraction. Comparisons with the airplane data indicated that not only is the boundary layer thickness important but also the shape of the velocity profile. Comparisons with an existing two-dimensional theory, using an idealized shear layer to approximate the boundary layer, showed that the theory and data had the same trends. Analysis of the data taken in the tunnel at two different distances from the propeller indicates a decay with distance in the wind tunnel at high Mach numbers but the decay at low Mach numbers is not as clear.

  9. Some anomalies between wind tunnel and flight transition results

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.; Bobbitt, P. J.

    1981-01-01

    A review of environmental disturbance influence and boundary layer transition measurements on a large collection of reference sharp cone tests in wind tunnels and of recent transonic-supersonic cone flight results have previously demonstrated the dominance of free-stream disturbance level on the transition process from the beginning to end. Variation of the ratio of transition Reynolds number at onset-to-end with Mach number has been shown to be consistently different between flight and wind tunnels. Previous correlations of the end of transition with disturbance level give good results for flight and large number of tunnels, however, anomalies occur for similar correlation based on transition onset. Present cone results with a tunnel sonic throat reduced the disturbance level by an order of magnitude with transition values comparable to flight.

  10. Wind-Tunnel Modeling of Flow Diffusion over an Urban Complex.

    DTIC Science & Technology

    URBAN AREAS, *ATMOSPHERIC MOTION, *AIR POLLUTION, ATMOSPHERIC MOTION, WIND TUNNEL MODELS, HEAT, DIFFUSION , TURBULENT BOUNDARY LAYER, WIND, SKIN FRICTION, MATHEMATICAL MODELS, URBAN PLANNING, INDIANA.

  11. Spin injection into silicon in three-terminal vertical and four-terminal lateral devices with Fe/Mg/MgO/Si tunnel junctions having an ultrathin Mg insertion layer

    NASA Astrophysics Data System (ADS)

    Sato, Shoichi; Nakane, Ryosho; Hada, Takato; Tanaka, Masaaki

    2017-12-01

    We demonstrate that the spin injection/extraction efficiency is enhanced by an ultrathin Mg insertion layer (⩽2 nm) in Fe /Mg /MgO /n+-Si tunnel junctions. In diode-type vertical three-terminal devices fabricated on a Si substrate, we observe the narrower three-terminal Hanle (N-3TH) signals indicating true spin injection into Si and estimate the spin polarization in Si to be 16% when the thickness of the Mg insertion layer is 1 nm, whereas no N-3TH signal is observed without the Mg insertion. This means that the spin injection/extraction efficiency is enhanced by suppressing the formation of a magnetically dead layer at the Fe/MgO interface. We also observe clear spin transport signals, such as nonlocal Hanle signals and spin-valve signals, in a lateral four-terminal device with the same Fe /Mg /MgO /n+-Si tunnel junctions fabricated on a Si-on-insulator substrate. It is found that both the intensity and linewidth of the spin signals are affected by the geometrical effects (device geometry and size). We have derived analytical functions taking into account the device structures, including channel thickness and electrode size, and estimated important parameters: spin lifetime and spin polarization. Our analytical functions explain the experimental results very well. Our study shows the importance of suppressing a magnetically dead layer and provides a unified understanding of spin injection/detection signals in different device geometries.

  12. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures.

    PubMed

    Mishchenko, A; Tu, J S; Cao, Y; Gorbachev, R V; Wallbank, J R; Greenaway, M T; Morozov, V E; Morozov, S V; Zhu, M J; Wong, S L; Withers, F; Woods, C R; Kim, Y-J; Watanabe, K; Taniguchi, T; Vdovin, E E; Makarovsky, O; Fromhold, T M; Fal'ko, V I; Geim, A K; Eaves, L; Novoselov, K S

    2014-10-01

    Recent developments in the technology of van der Waals heterostructures made from two-dimensional atomic crystals have already led to the observation of new physical phenomena, such as the metal-insulator transition and Coulomb drag, and to the realization of functional devices, such as tunnel diodes, tunnel transistors and photovoltaic sensors. An unprecedented degree of control of the electronic properties is available not only by means of the selection of materials in the stack, but also through the additional fine-tuning achievable by adjusting the built-in strain and relative orientation of the component layers. Here we demonstrate how careful alignment of the crystallographic orientation of two graphene electrodes separated by a layer of hexagonal boron nitride in a transistor device can achieve resonant tunnelling with conservation of electron energy, momentum and, potentially, chirality. We show how the resonance peak and negative differential conductance in the device characteristics induce a tunable radiofrequency oscillatory current that has potential for future high-frequency technology.

  13. Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-08-01

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.

  14. Spine-like nanostructured carbon interconnected by graphene for high-performance supercapacitors.

    PubMed

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-08-19

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp(2) carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp(2) carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance.

  15. Spine-like Nanostructured Carbon Interconnected by Graphene for High-performance Supercapacitors

    PubMed Central

    Park, Sang-Hoon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Han, Joong Tark; Park, Hae-Woong; Han, Joah; Yun, Seok-Min; Jeong, Han Gi; Roh, Kwang Chul; Kim, Kwang-Bum

    2014-01-01

    Recent studies on supercapacitors have focused on the development of hierarchical nanostructured carbons by combining two-dimensional graphene and other conductive sp2 carbons, which differ in dimensionality, to improve their electrochemical performance. Herein, we report a strategy for synthesizing a hierarchical graphene-based carbon material, which we shall refer to as spine-like nanostructured carbon, from a one-dimensional graphitic carbon nanofiber by controlling the local graphene/graphitic structure via an expanding process and a co-solvent exfoliation method. Spine-like nanostructured carbon has a unique hierarchical structure of partially exfoliated graphitic blocks interconnected by thin graphene sheets in the same manner as in the case of ligaments. Owing to the exposed graphene layers and interconnected sp2 carbon structure, this hierarchical nanostructured carbon possesses a large, electrochemically accessible surface area with high electrical conductivity and exhibits high electrochemical performance. PMID:25134517

  16. Wind Tunnel Modeling Of Wind Flow Over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Banks, D.; Cochran, B.

    2010-12-01

    This presentation will describe the finding of an atmospheric boundary layer (ABL) wind tunnel study conducted as part of the Bolund Experiment. This experiment was sponsored by Risø DTU (National Laboratory for Sustainable Energy, Technical University of Denmark) during the fall of 2009 to enable a blind comparison of various air flow models in an attempt to validate their performance in predicting airflow over complex terrain. Bohlund hill sits 12 m above the water level at the end of a narrow isthmus. The island features a steep escarpment on one side, over which the airflow can be expected to separate. The island was equipped with several anemometer towers, and the approach flow over the water was well characterized. This study was one of only two only physical model studies included in the blind model comparison, the other being a water plume study. The remainder were computational fluid dynamics (CFD) simulations, including both RANS and LES. Physical modeling of air flow over topographical features has been used since the middle of the 20th century, and the methods required are well understood and well documented. Several books have been written describing how to properly perform ABL wind tunnel studies, including ASCE manual of engineering practice 67. Boundary layer wind tunnel tests are the only modelling method deemed acceptable in ASCE 7-10, the most recent edition of the American Society of Civil Engineers standard that provides wind loads for buildings and other structures for buildings codes across the US. Since the 1970’s, most tall structures undergo testing in a boundary layer wind tunnel to accurately determine the wind induced loading. When compared to CFD, the US EPA considers a properly executed wind tunnel study to be equivalent to a CFD model with infinitesimal grid resolution and near infinite memory. One key reason for this widespread acceptance is that properly executed ABL wind tunnel studies will accurately simulate flow separation

  17. Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot

    PubMed Central

    Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2015-01-01

    Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures. PMID:26416582

  18. Theoretical description of excited state dynamics in nanostructures

    NASA Astrophysics Data System (ADS)

    Rubio, Angel

    2009-03-01

    There has been much progress in the synthesis and characterization of nanostructures however, there remain immense challenges in understanding their properties and interactions with external probes in order to realize their tremendous potential for applications (molecular electronics, nanoscale opto-electronic devices, light harvesting and emitting nanostructures). We will review the recent implementations of TDDFT to study the optical absorption of biological chromophores, one-dimensional polymers and layered materials. In particular we will show the effect of electron-hole attraction in those systems. Applications to the optical properties of solvated nanostructures as well as excited state dynamics in some organic molecules will be used as text cases to illustrate the performance of the approach. Work done in collaboration with A. Castro, M. Marques, X. Andrade, J.L Alonso, Pablo Echenique, L. Wirtz, A. Marini, M. Gruning, C. Rozzi, D. Varsano and E.K.U. Gross.

  19. Scanning tunneling spectroscopy study of the proximity effect in a disordered two-dimensional metal.

    PubMed

    Serrier-Garcia, L; Cuevas, J C; Cren, T; Brun, C; Cherkez, V; Debontridder, F; Fokin, D; Bergeret, F S; Roditchev, D

    2013-04-12

    The proximity effect between a superconductor and a highly diffusive two-dimensional metal is revealed in a scanning tunneling spectroscopy experiment. The in situ elaborated samples consist of superconducting single crystalline Pb islands interconnected by a nonsuperconducting atomically thin disordered Pb wetting layer. In the vicinity of each superconducting island the wetting layer acquires specific tunneling characteristics which reflect the interplay between the proximity-induced superconductivity and the inherent electron correlations of this ultimate diffusive two-dimensional metal. The observed spatial evolution of the tunneling spectra is accounted for theoretically by combining the Usadel equations with the theory of dynamical Coulomb blockade; the relevant length and energy scales are extracted and found in agreement with available experimental data.

  20. Rectified tunneling current response of bio-functionalized metal-bridge-metal junctions.

    PubMed

    Liu, Yaqing; Offenhäusser, Andreas; Mayer, Dirk

    2010-01-15

    Biomolecular bridged nanostructures allow direct electrical addressing of electroactive biomolecules, which is of interest for the development of bioelectronic and biosensing hybrid junctions. In the present paper, the electroactive biomolecule microperoxidase-11 (MP-11) was integrated into metal-bridge-metal (MBM) junctions assembled from a scanning tunneling microscope (STM) setup. Before immobilization of MP-11, the Au working electrode was first modified by a self-assembled monolayer of 1-undecanethiol (UDT). A symmetric and potential independent response of current-bias voltage (I(t)/V(b)) was observed for the Au (substrate)/UDT/Au (tip) junction. However, the I(t)/V(b) characteristics became potential dependent and asymmetrical after binding of MP-11 between the electrodes of the junction. The rectification ratio of the asymmetric current response varies with gate electrode modulation. A resonant tunneling process between metal electrode and MP-11 enhances the tunneling current and is responsible for the observed rectification. Our investigations demonstrated that functional building blocks of proteins can be reassembled into new conceptual devices with operation modes deviating from their native function, which could prove highly useful in the design of future biosensors and bioelectronic devices. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Optically controlled resonant tunneling in a double-barrier diode

    NASA Astrophysics Data System (ADS)

    Kan, S. C.; Wu, S.; Sanders, S.; Griffel, G.; Yariv, A.

    1991-03-01

    The resonant tunneling effect is optically enhanced in a GaAs/GaAlAs double-barrier structure that has partial lateral current confinement. The peak current increases and the valley current decreases simultaneously when the device surface is illuminated, due to the increased conductivity of the top layer of the structure. The effect of the lateral current confinement on the current-voltage characteristic of a double-barrier resonant tunneling structure was also studied. With increased lateral current confinement, the peak and valley current decrease at a different rate such that the current peak-to-valley ratio increases up to three times. The experimental results are explained by solving the electrostatic potential distribution in the structure using a simple three-layer model.

  2. Novel multi-layered 1-D nanostructure exhibiting the theoretical capacity of silicon for a super-enhanced lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Sun; Yang, Ho-Sung; Jung, Heechul; Jeon, Seung-Yeol; Jung, Changhoon; Kim, Sang-Won; Bae, Jihyun; Choong, Chwee-Lin; Im, Jungkyun; Chung, U.-In; Park, Jong-Jin; Yu, Woong-Ryeol

    2014-05-01

    Silicon/carbon (Si/C) nanocomposites have recently received much attention as Li-ion battery negative electrodes due to their mutual synergetic effects in capacity and mechanical integrity. The contribution of Si to the total capacity of the Si/C nanocomposites determines their structural efficiency. Herein, we report on a multi-layered, one-dimensional nanostructure that exhibits the theoretical specific capacity of Si in the nanocomposite. Concentrically tri-layered, compartmentalized, C-core/Si-medium/C-shell nanofibers were fabricated by triple coaxial electrospinning. The pulverization of Si was accommodated inside the C-shell, whereas the conductive pathway of the Li-ions and electrons was provided by the C-core, which was proven by ex situ Raman spectroscopy. The compartmentalized Si in between the C-core and C-shell led to excellent specific capacity at a high current rate (>820 mA h g-1 at 12000 mA g-1) and the realization of the theoretical specific capacity of the Li15Si4 phase of Si nanoparticles (3627 mA h g-1). The electrochemical characterization and inductively coupled plasma-atomic emission spectrometry provided direct evidence of full participation of Si in the electrochemical reactions.Silicon/carbon (Si/C) nanocomposites have recently received much attention as Li-ion battery negative electrodes due to their mutual synergetic effects in capacity and mechanical integrity. The contribution of Si to the total capacity of the Si/C nanocomposites determines their structural efficiency. Herein, we report on a multi-layered, one-dimensional nanostructure that exhibits the theoretical specific capacity of Si in the nanocomposite. Concentrically tri-layered, compartmentalized, C-core/Si-medium/C-shell nanofibers were fabricated by triple coaxial electrospinning. The pulverization of Si was accommodated inside the C-shell, whereas the conductive pathway of the Li-ions and electrons was provided by the C-core, which was proven by ex situ Raman spectroscopy

  3. Shock layer vacuum UV spectroscopy in an arc-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Palumbo, G.

    1990-01-01

    An experimental program is being developed to obtain measurements of the incident surface radiation in the 1000 A to 2000 A range from the shock stagnation region of a blunt model in the Ames 20 MW Arc-Jet Wind Tunnel. The setup consists of a water-cooled blunt model, with a magnesium fluoride forward-viewing window. Radiation incident on the window is optically imaged via an evacuated system and reflective optical elements onto the entrance slit of a spectrograph. The model will be exposed to the supersonic plasma stream from the exit nozzle of the arc-jet tunnel. The resulting bow shock radiation will be measured. It is expected that this experiment will help evaluate the importance of atomic N and O lines to the radiative heating of future Aeroassist Space Transfer Vehicles (ASTVs).

  4. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures

    NASA Astrophysics Data System (ADS)

    Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A.; Park, Jiwoong

    2017-10-01

    High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides--which represent one- and three-atom-thick two-dimensional building blocks, respectively--have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.

  5. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures.

    PubMed

    Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A; Park, Jiwoong

    2017-10-12

    High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides-which represent one- and three-atom-thick two-dimensional building blocks, respectively-have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.

  6. Stable Au–C bonds to the substrate for fullerene-based nanostructures

    PubMed Central

    Chutora, Taras; Redondo, Jesús; de la Torre, Bruno; Švec, Martin

    2017-01-01

    We report on the formation of fullerene-derived nanostructures on Au(111) at room temperature and under UHV conditions. After low-energy ion sputtering of fullerene films deposited on Au(111), bright spots appear at the herringbone corner sites when measured using a scanning tunneling microscope. These features are stable at room temperature against diffusion on the surface. We carry out DFT calculations of fullerene molecules having one missing carbon atom to simulate the vacancies in the molecules resulting from the sputtering process. These modified fullerenes have an adsorption energy on the Au(111) surface that is 1.6 eV higher than that of C60 molecules. This increased binding energy arises from the saturation by the Au surface of the bonds around the molecular vacancy defect. We therefore interpret the observed features as adsorbed fullerene-derived molecules with C vacancies. This provides a pathway for the formation of fullerene-based nanostructures on Au at room temperature. PMID:28685108

  7. Fabrication of Ag nanostructures with remarkable narrow plasmonic resonances by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Abbasian, Sara; Moshaii, Ahmad; Vayghan, Nader Sobhkhiz; Nikkhah, Maryam

    2018-05-01

    Glancing angle deposition (GLAD) is an efficient and inexpensive method to fabricate nanostructures with diverse complexities. However, this method has a limitation in fabrication of plasmonic nanostructures with narrow resonance peaks causing that the GLAD-nanostructures have rarely been used for refractive-index sensing. In this work, we proposed two approaches to overcome this limitation of GLAD and to fabricate Ag nanostructures with narrow plasmonic peaks. In the first approach, we introduce an effective method for seeding modification of the substrate and then growing the Ag nanocolumns on such seeded layer. The optical characterization shows that such pre-seeding of the substrate leads to nearly 40% narrowing of the plasmonic peak. In another approach, the nanostructures are grown by GLAD on a bare substrate and then are annealed at 200-400 °C. Such annealing converts the nanostructures to nanodomes with large inter-particle distances and about 60% reduction of their plasmonic width. Also, the annealing of the nanostructures at 400 °C provides a twofold improvement in figure of merit of sensing of the nanostructures. This improvement makes the GLAD comparative to other expensive alternate methods for fabrication of plasmonic sensors. In addition, the experimental plasmonic peaks are reproduced in a proper numerical simulation for similar nanostructures.

  8. Nanostructures produced by phase-separation during growth of (III-V).sub.1-x(IV.sub.2).sub.x alloys

    DOEpatents

    Norman, Andrew G [Evergreen, CO; Olson, Jerry M [Lakewood, CO

    2007-06-12

    Nanostructures (18) and methods for production thereof by phase separation during metal organic vapor-phase epitaxy (MOVPE). An embodiment of one of the methods may comprise providing a growth surface in a reaction chamber and introducing a first mixture of precursor materials into the reaction chamber to form a buffer layer (12) thereon. A second mixture of precursor materials may be provided into the reaction chamber to form an active region (14) on the buffer layer (12), wherein the nanostructure (18) is embedded in a matrix (16) in the active region (14). Additional steps are also disclosed for preparing the nanostructure (18) product for various applications.

  9. Numerical and Experimental Study of Wake Redirection Techniques in a Boundary Layer Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Wang, J.; Foley, S.; Nanos, E. M.; Yu, T.; Campagnolo, F.; Bottasso, C. L.; Zanotti, A.; Croce, A.

    2017-05-01

    The aim of the present paper is to validate a wind farm LES framework in the context of two distinct wake redirection techniques: yaw misalignment and individual cyclic pitch control. A test campaign was conducted using scaled wind turbine models in a boundary layer wind tunnel, where both particle image velocimetry and hot-wire thermo anemometers were used to obtain high quality measurements of the downstream flow. A LiDAR system was also employed to determine the non-uniformity of the inflow velocity field. A high-fidelity large-eddy simulation lifting-line model was used to simulate the aerodynamic behavior of the system, including the geometry of the wind turbine nacelle and tower. A tuning-free Lagrangian scale-dependent dynamic approach was adopted to improve the sub-grid scale modeling. Comparisons with experimental measurements are used to systematically validate the simulations. The LES results are in good agreement with the PIV and hot-wire data in terms of time-averaged wake profiles, turbulence intensity and Reynolds shear stresses. Discrepancies are also highlighted, to guide future improvements.

  10. Gold coated metal nanostructures grown by glancing angle deposition and pulsed electroplating

    NASA Astrophysics Data System (ADS)

    Grüner, Christoph; Reeck, Pascal; Jacobs, Paul-Philipp; Liedtke, Susann; Lotnyk, Andriy; Rauschenbach, Bernd

    2018-05-01

    Nickel based nanostructures are grown by glancing angle deposition (GLAD) on flat and pre-patterned substrates. These fabricated porous thin films were subsequently coated by pulsed electroplating with gold. The morphology and conformity of the gold coating were investigated by scanning electron microscopy and X-ray diffraction. Controlled growth of closed gold layers on the nanostructures could be achieved, while the open-pore structure of the nanosculptured thin films was preserved. Such gold coated nanostructures are a candidate for optical sensing and catalysis applications. The demonstrated method can be applied for numerous material combinations, allowing to provide GLAD thin films with new surface properties.

  11. Three novel electrochemical electrodes for the fabrication of conducting polymer/SWCNTs layered nanostructures and their thermoelectric performance.

    PubMed

    Shi, Hui; Liu, Congcong; Jiang, Qinglin; Xu, Jingkun; Lu, Baoyang; Jiang, Fengxing; Zhu, Zhengyou

    2015-06-19

    Single-walled carbon nanotubes (SWCNTs), PSS/SWCNTs, and SWCNTs/ PSS nanofilms were used as working electrodes to electrodeposit polyaniline (PANI) in a mixed alcohol solution of isopropyl alcohol (IPA), boron trifluoride ethyl ether (BFEE), and polyethylene glycol (PEG). The thermoelectric (TE) performances of the resulting nanofilms were systematically investigated. SWCNTs/ PSS/PANI nanofilms showed a relatively high electrical conductivity value of 232.0 S cm(-1). The Seebeck coefficient was enhanced and exhibited the values of 33.8, 25.6, and 23.0 μV K(-1) for the SWCNTs/PANI, PEDOT:PSS/SWCNTs/PANI, and SWCNTs/ PSS/PANI films, respectively. The maximum power factor achieved was 12.3 μW m(-1) K(-2). This technique offers a facile and versatile approach to a class of layered nanostructures, and it may provide a general strategy for fabricating a new generation of conducting polymer/SWCNTs materials for further practical applications.

  12. Engineering and characterizing inverse tunneling magnetoresistance magnetic tunnel junctions with novel ferromagnetic electrodes

    NASA Astrophysics Data System (ADS)

    Xiang, Hua

    Magnetic tunnel junctions (MTJs) have attracted great interest for applications in read heads and nonvolatile magnetic random access memories. MTJs exhibit tunneling magnetoresistance (TMR), which is proportional to the spin polarization (SP) of ferromagnetic (FM) electrodes. This thesis describes the fabrication and characterization of inverse TMR MTJs with novel FM electrodes and tunnel barriers, including Fe3O4 and Fe4N electrodes and Ta2O5 tunnel barriers. Fe3O4 has been predicted to have perfect negative SP at the Fermi level, making it a promising FM electrode for inverse TMR MTJs. Two approaches were developed to grow epitaxial Fe3O 4 films on Si substrates, reactive sputtering and selective oxidation, and the physical properties were characterized. Epitaxial Fe3O 4 films with smooth surfaces were achieved using a TiN buffer and low temperature selective oxidation. Fe4N has also been predicted to have nearly perfect negative SP. Epitaxial Fe4N films were fabricated on Si substrates by reactive sputtering, and the magnetic properties and thermal stability were characterized. Fe4N is metastable with respect to decomposition into Fe and N 2. During room temperature air oxidation, an epitaxial Fe3O 4 layer formed on Fe4N surface, by incorporation of oxygen, decomposition of Fe4N, and release of N. We fabricated Fe4N/AlOx/Fe MTJs and found normal TMR for the as-prepared junction but inverse TMR with abnormal bias dependence after annealing. The TMR inversion is caused by an Fe3O4 layer at the Fe4N/AlO, interface. The abnormal bias dependence is caused by an imperfect Fe3O4/AlOx interface. Fe3O4 (or Fe4N)/Ta2O5/Fe MTJs show relatively low junction resistance and noisy TMR signals, due to the difficulty of preparing high quality Ta2O5 barriers. The effect of composition of bcc Co100-xFex electrodes on the TMR for AlOx-based MTJs has been studied. The TMR increases with x until it reaches a maximum of 66.7% at 28 at.% Fe, and then decreases. The reason for this TMR

  13. High Temperature Fracture Characteristics of a Nanostructured Ferritic Alloy (NFA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Thak Sang; Kim, Jeoung H; Ji Hyun, Yoon

    2010-01-01

    High temperature fracture behavior has been investigated for the nanostructured ferritic alloy 14YWT (SM10). The fracture toughness of the alloy was above 140 MPa m at low temperatures, room temperature (RT) and 200 C, but decreased to a low fracture toughness range of 52 82 MPa m at higher temperatures up to 700 C. This behavior was explained by the fractography results indicating that the unique nanostructure of 14YWT alloy produced shallow plasticity layers at high temperatures and a low-ductility grain boundary debonding occurred at 700 C.

  14. Numerical Simulation and Monitoring of Surface Environment Influence of Waterless Sand Layer Shield Tunneling

    NASA Astrophysics Data System (ADS)

    Shang, Yanliang; Han, Tongyin; Shi, Wenjun; Du, Shouji; Qin, Zhichao

    2017-10-01

    The development of urban subway is becoming more and more rapid and plays an increasingly important role. The shield tunneling method has become the first choice for the construction of urban subway tunnel in the construction of urban subway. The paper takes the interval of Shijiazhuang Metro Line 3 Administrative Center Station and Garden Park Station as the engineering background. The establishment of double shield finite difference model by considering the thickness of covering soil, tunnel excavation and excavation at the same time, distance and other factors, the surface deformation, and soil thickness. The ground deformation law is obtained, the surface settlement is inversely proportional to the overburden thickness and the double line spacing, and the gradual excavation is smaller than the synchronous excavation.

  15. Spin-Polarization in Quasi-Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Xie, Zheng-Wei; Li, Ling

    2017-05-01

    Spin polarization in ferromagnetic metal/insulator/spin-filter barrier/nonmagnetic metal, referred to as quasi-magnetic tunnel junctions, is studied within the free-electron model. Our results show that large positive or negative spin-polarization can be obtained at high bias in quasi-magnetic tunnel junctions, and within large bias variation regions, the degree of spin-polarization can be linearly tuned by bias. These linear variation regions of spin-polarization with bias are influenced by the barrier thicknesses, barrier heights and molecular fields in the spin-filter (SF) layer. Among them, the variations of thickness and heights of the insulating and SF barrier layers have influence on the value of spin-polarization and the linear variation regions of spin-polarization with bias. However, the variations of molecular field in the SF layer only have influence on the values of the spin-polarization and the influences on the linear variation regions of spin-polarization with bias are slight. Supported by the Key Natural Science Fund of Sichuan Province Education Department under Grant Nos 13ZA0149 and 16ZA0047, and the Construction Plan for Scientific Research Innovation Team of Universities in Sichuan Province under Grant No 12TD008.

  16. Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pearce, Stuart J.; Pollard, Michael E.; Oo, SweZin; Chen, Ruiqi; Kalsi, Sumit; Charlton, Martin D. B.

    2014-01-01

    Limitations of current sensors include large dimensions, sometimes limited sensitivity and inherent single-parameter measurement capability. Surface-enhanced Raman spectroscopy can be utilized for environment and pharmaceutical applications with the intensity of the Raman scattering enhanced by a factor of 10. By fabricating and characterizing an integrated optical waveguide beneath a nanostructured precious metal coated surface a new surface-enhanced Raman spectroscopy sensing arrangement can be achieved. Nanostructured sensors can provide both multiparameter and high-resolution sensing. Using the slab waveguide core to interrogate the nanostructures at the base allows for the emission to reach discrete sensing areas effectively and should provide ideal parameters for maximum Raman interactions. Thin slab waveguide films of silicon oxynitride were etched and gold coated to create localized nanostructured sensing areas of various pitch, diameter, and shape. These were interrogated using a Ti:Sapphire laser tuned to 785-nm end coupled into the slab waveguide. The nanostructured sensors vertically projected a Raman signal, which was used to actively detect a thin layer of benzyl mercaptan attached to the sensors.

  17. A new spatially scanning 2.7 µm laser hygrometer and new small-scale wind tunnel for direct analysis of the H2O boundary layer structure at single plant leaves

    NASA Astrophysics Data System (ADS)

    Wunderle, K.; Rascher, U.; Pieruschka, R.; Schurr, U.; Ebert, V.

    2015-01-01

    A new spatially scanning TDLAS in situ hygrometer based on a 2.7-µm DFB diode laser was constructed and used to analyse the water vapour concentration boundary layer structure at the surface of a single plant leaf. Using an absorption length of only 5.4 cm, the TDLAS hygrometer permits a H2O vapour concentration resolution of 31 ppmv. This corresponds to a normalized precision of 1.7 ppm m. In order to preserve and control the H2O boundary layer on an individual leaf and to study the boundary layer dependence on the wind speed to which the leaf might be exposed in nature, we also constructed a new, application specific, small-scale, wind tunnel for individual plant leaves. The rectangular, closed-loop tunnel has overall dimensions of 1.2 × 0.6 m and a measurement chamber dimension of 40 × 54 mm (H × W). It allows to generate a laminar flow with a precisely controlled wind speed at the plant leaf surface. Combining honeycombs and a miniaturized compression orifice, we could generate and control stable wind speeds from 0.1 to 0.9 m/s, and a highly laminar and homogeneous flow with an excellent relative spatial homogeneity of 0.969 ± 0.03. Combining the spectrometer and the wind tunnel, we analysed (for the first time) non-invasively the wind speed-dependent vertical structure of the H2O vapour distribution within the boundary layer of a single plant leaf. Using our time-lag-free data acquisition procedure for phase locked signal averaging, we achieved a temporal resolution of 0.2 s for an individual spatial point, while a complete vertical spatial scan at a spatial resolution of 0.18 mm took 77 s. The boundary layer thickness was found to decrease from 6.7 to 3.6 mm at increasing wind speeds of 0.1-0.9 m/s. According to our knowledge, this is the first experimental quantification of wind speed-dependent H2O vapour boundary layer concentration profiles of single plant leaves.

  18. Modes of interaction between nanostructured metal and a conducting mirror as a function of separation and incident polarization

    NASA Astrophysics Data System (ADS)

    Bonnie, F.; Arnold, M. D.; Smith, G. B.; Gentle, A. R.

    2013-09-01

    The optical resonances that occur in nanostructured metal layers are modulated in thin film stacks if the nanostructured layer is separated from a reflecting conducting layer by various thicknesses of thin dielectric. We have measured and modeled the optical response of interacting silver layers, with alumina spacer thickness ranging from a few nm to 50 nm, for s- and p-polarized incident light, and a range of incident angles. Standard thin film models, including standard effective medium models for the nanostructured layer, will break down for spacer thickness below a critical threshold. For example, with polarisation in the film plane and some nano-islands, it may occur at around 10 nm depending on spacer refractive index. Of particular interest here are novel effects observed with the onset of percolation in the nanolayer. Hot spot effects can be modified by nearby mirrors. Other modes to consider include (a) a two-particle mode involving a particle and its mirror image (b) A Fano resonance from hybridisation of localized and de-localised plasmon modes (c) a Babinet's core-(partial) shell particle with metal core-dielectric shell in metal (d) spacing dependent phase modulation (e) the impact of field gradients induced by the mirror at the nano-layer.

  19. An ancient underground water tunnel as a proxy for environmental change

    NASA Astrophysics Data System (ADS)

    Sabri, Raghid; Merkel, Broder

    2014-05-01

    Carbonate samples taken from a Roman water tunnel in Nablus, Palestine, were investigated with respect to geochemistry and mineralogy. This tunnel runs under the Roman Cardo of Neapolis and dates back to the 2nd century. Carbonate deposits samples were taken from the sidewall of the tunnel. Thin sections of the deposits were made along the growth axis and were analyzed using optical microscope and scanning electron microscope (SEM) and showed alternated lamination with dark and light zones. The microstructures of the deposits show a range of change of crystal formation change. It is also obvious that at one layer the crystals are pure with columnar fabric while the next layer has many impurities with mosaic fabric. This means, that the columnar layer had a sufficient time to grow, where the mosaic layer had only limited time. On the other hand, thirty seven points in the carbonate deposits around 40mm along the growth axis were measured using SEM. The measurement showed that C, Ca and O value fluctuates between each two measurement points. Si, Cl and Mg values also fluctuate but with reduced intensity and unpredicted pattern. The high fluctuation can be referred to seasonal change of the water quantity and quality. On the other hand, the low fluctuation values are referred to extreme events.

  20. Factors Affecting the Tunneling Behavior of the Western Subterranean Termite, Reticulitermes Hesperus Banks

    Treesearch

    James L. Smith; Michael K. Rust

    1991-01-01

    Laboratory studies were conducted to determine factors that affect the tunneling behavior of the western subterranean termite (Reticulitermes hesperus Banks). Soil particle sizes between 2.36 and 0.84 mm prevented tunneling. Exposure to solid layers of calcium, magnesium, or zinc borate did not repel workers, but produced >87 percent kill...

  1. A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector

    DTIC Science & Technology

    2002-01-01

    Proc. Vol. 692 © 2002 Materials Research Society H4.2 A Bowtie Antenna Coupled Tunable Photon-Assisted Tunneling Double Quantum Well (DQW) THz Detector ...on photon-assisted tunneling (PAT) between the two electron layers in a double quantum well (DQW) heterostructure, will be explained. The detector is...the frequency and strength of that radiation. The THz detector discussed in this paper makes use of photon- assisted tunnelling (PAT) between multiple

  2. STM-induced light emission enhanced by weakly coupled organic ad-layers

    NASA Astrophysics Data System (ADS)

    Cottin, M. C.; Ekici, E.; Bobisch, C. A.

    2018-03-01

    We analyze the light emission induced by the tunneling current flowing in a scanning tunneling microscopy experiment. In particular, we study the influence of organic ad-layers on the light emission on the initial monolayer of bismuth (Bi) on Cu(111) in comparison to the well-known case of organic ad-layers on Ag(111). On the Bi/Cu(111)-surface, we find that the scanning tunneling microscopy-induced light emission is considerably enhanced if an organic layer, e.g., the fullerene C60 or the perylene derivate perylene-tetracarboxylic-dianhydride, is introduced into the tip-sample junction. The enhancement can be correlated with a peculiarly weak interaction between the adsorbed molecules and the underlying Bi/Cu(111) substrate as compared to the Ag(111) substrate. This allows us to efficiently enhance and tune the coupling of the tunneling current to localized excitations of the tip-sample junction, which in turn couple to radiative decay channels.

  3. Improving Osteoblast Response In Vitro by a Nanostructured Thin Film with Titanium Carbide and Titanium Oxides Clustered around Graphitic Carbon.

    PubMed

    Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d'Abusco, Anna; Superti, Fabiana; Misiano, Carlo; Zanoni, Robertino; Politi, Laura; Mazzola, Luca; Iosi, Francesca; Mura, Francesco; Scandurra, Roberto

    2016-01-01

    Recently, we introduced a new deposition method, based on Ion Plating Plasma Assisted technology, to coat titanium implants with a thin but hard nanostructured layer composed of titanium carbide and titanium oxides, clustered around graphitic carbon. The nanostructured layer has a double effect: protects the bulk titanium against the harsh conditions of biological tissues and in the same time has a stimulating action on osteoblasts. The aim of this work is to describe the biological effects of this layer on osteoblasts cultured in vitro. We demonstrate that the nanostructured layer causes an overexpression of many early genes correlated to proteins involved in bone turnover and an increase in the number of surface receptors for α3β1 integrin, talin, paxillin. Analyses at single-cell level, by scanning electron microscopy, atomic force microscopy, and single cell force spectroscopy, show how the proliferation, adhesion and spreading of cells cultured on coated titanium samples are higher than on uncoated titanium ones. Finally, the chemistry of the layer induces a better formation of blood clots and a higher number of adhered platelets, compared to the uncoated cases, and these are useful features to improve the speed of implant osseointegration. In summary, the nanostructured TiC film, due to its physical and chemical properties, can be used to protect the implants and to improve their acceptance by the bone.

  4. Improving Osteoblast Response In Vitro by a Nanostructured Thin Film with Titanium Carbide and Titanium Oxides Clustered around Graphitic Carbon

    PubMed Central

    Longo, Giovanni; Ioannidu, Caterina Alexandra; Scotto d’Abusco, Anna; Superti, Fabiana; Misiano, Carlo; Zanoni, Robertino; Politi, Laura; Mazzola, Luca; Iosi, Francesca; Mura, Francesco; Scandurra, Roberto

    2016-01-01

    Introduction Recently, we introduced a new deposition method, based on Ion Plating Plasma Assisted technology, to coat titanium implants with a thin but hard nanostructured layer composed of titanium carbide and titanium oxides, clustered around graphitic carbon. The nanostructured layer has a double effect: protects the bulk titanium against the harsh conditions of biological tissues and in the same time has a stimulating action on osteoblasts. Results The aim of this work is to describe the biological effects of this layer on osteoblasts cultured in vitro. We demonstrate that the nanostructured layer causes an overexpression of many early genes correlated to proteins involved in bone turnover and an increase in the number of surface receptors for α3β1 integrin, talin, paxillin. Analyses at single-cell level, by scanning electron microscopy, atomic force microscopy, and single cell force spectroscopy, show how the proliferation, adhesion and spreading of cells cultured on coated titanium samples are higher than on uncoated titanium ones. Finally, the chemistry of the layer induces a better formation of blood clots and a higher number of adhered platelets, compared to the uncoated cases, and these are useful features to improve the speed of implant osseointegration. Conclusion In summary, the nanostructured TiC film, due to its physical and chemical properties, can be used to protect the implants and to improve their acceptance by the bone. PMID:27031101

  5. Interlayer tunneling in a strongly correlated electron-phonon system

    NASA Astrophysics Data System (ADS)

    Mierzejewski, M.; Zieliński, J.

    1996-10-01

    We discuss the role of interlayer tunneling for superconducting properties of strongly correlated (U-->∞ limit) two-layer Hubbard model coupled to phonons. Strong correlations are taken into account within the mean-field approximation for auxiliary boson fields. To consider phonon-mediated and interlayer tunneling contribution to superconductivity on equal footing we incorporate the tunneling term into the generalized Eliashberg equations. This leads to the modification of the phonon-induced pairing kernel and implies a pronounced enhancement of the superconducting transition temperature in the d-wave channel for moderate doping. In numerical calculations the two-dimensional band structure has been explicitly taken into account. The relevance of our results for high-temperature superconductors is briefly discussed.

  6. Spin-Polarized Tunneling at Interfaces Between Oxides and Metals or Semiconductors

    DTIC Science & Technology

    2006-09-01

    solution 3 3. Several miscellaneous compounds , including molecular oxygen and organic biradicals 4. Metals When a variable magnetic field is...substrate layer) Heusler alloys are considered to be prime candidates, because they show great potential for spin-injection contacts to compound and...usually employ simple parabolic bands and/or momentum and energy independent tunneling matrix elements. The classical theory of tunneling assumes that the

  7. Metamorphic quantum dots: Quite different nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seravalli, L.; Frigeri, P.; Nasi, L.

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantummore » dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.« less

  8. GaN and ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Fündling, Sönke; Sökmen, Ünsal; Behrends, Arne; Al-Suleiman, Mohamed Aid Mansur; Merzsch, Stephan; Li, Shunfeng; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas; Lähnemann, Jonas; Jahn, Uwe; Trampert, Achim; Riechert, Henning

    2010-07-01

    GaN and ZnO are both wide band gap semiconductors with interesting properties concerning optoelectronic and sensor device applications. Due to the lack or the high costs of native substrates, alternatives like sapphire, silicon, or silicon carbide are taken, but the resulting lattice and thermal mismatches lead to increased defect densities which reduce the material quality. In contrast, nanostructures with high aspect ratio have lower defect densities as compared to layers. In this work, we give an overview on our results achieved on both ZnO as well as GaN based nanorods. ZnO nanostructures were grown by a wet chemical approach as well as by VPT on different substrates - even on flexible polymers. To compare the growth results we analyzed the structures by XRD and PL and show possible device applications. The GaN nano- and microstructures were grown by metal organic vapor phase epitaxy either in a self- organized process or by selective area growth for a better control of shape and material composition. Finally we take a look onto possible device applications, presenting our attempts, e.g., to build LEDs based on GaN nanostructures.

  9. Study of boundary-layer transition using transonic cone Preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Abu-Mostafa, A.

    1982-01-01

    Laminar layer Preston tube data on a sharp nose, ten degree cone obtained in the Ames 11 ft TWT and in flight tests are analyzed. During analyses of the laminar-boundary layer data, errors were discovered in both the wind tunnel and the flight data. A correction procedure for errors in the flight data is recommended which forces the flight data to exhibit some of the orderly characteristics of the wind tunnel data. From corrected wind tunnel data, a correlation is developed between Preston tube pressures and the corresponding values of theoretical laminar skin friction. Because of the uncertainty in correcting the flight data, a correlation for the unmodified data is developed, and, in addition, three other correlations are developed based on different correction procedures. Each of these correlations are used in conjunction with the wind tunnel correlation to define effective freestream unit Reynolds numbers for the 11 ft TWT over a Mach number range of 0.30 to 0.95. The maximum effective Reynolds numbers are approximately 6.5% higher than the normal values. These maximum values occur between freestream Mach numbers of 0.60 and 0.80. Smaller values are found outside this Mach number range. These results indicate wind tunnel noise affects the average laminar skin friction much less than it affects boundary layer transition. Data on the onset, extent, and end of boundary layer transition are summarized. Application of a procedure for studying the relative effects of varying nose radius on a ten degree cone at supercritical speeds indicates that increasing nose radius promotes boundary layer transition and separation of laminar boundary layers.

  10. Effect of morphology on the non-ohmic conduction in ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Praveen, E.; Jayakumar, K.

    2016-05-01

    Nanostructures of ZnO is synthesized with nanoflower like morphology by simple wet chemical method. The structural, morphological and electrical characterization have been carried out. The temperature dependent electrical characterization of ZnO pellets of thickness 1150 µm is made by the application of 925MPa pressure. The morphological dependence of non-ohmic conduction beyond some arbitrary tunneling potential and grain boundary barrier thickness is compared with the commercially available bulk ZnO. Our results show the suitability of nano-flower like ZnO for the devices like sensors, rectifiers etc.

  11. Strongly Enhanced Tunneling at Total Charge Neutrality in Double-Bilayer Graphene-WSe_{2} Heterostructures.

    PubMed

    Burg, G William; Prasad, Nitin; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; MacDonald, Allan H; Register, Leonard F; Tutuc, Emanuel

    2018-04-27

    We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe_{2} barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.

  12. Strongly Enhanced Tunneling at Total Charge Neutrality in Double-Bilayer Graphene-WSe2 Heterostructures

    NASA Astrophysics Data System (ADS)

    Burg, G. William; Prasad, Nitin; Kim, Kyounghwan; Taniguchi, Takashi; Watanabe, Kenji; MacDonald, Allan H.; Register, Leonard F.; Tutuc, Emanuel

    2018-04-01

    We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe2 barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.

  13. Dependence of seed layer thickness on sensitivity of nano-ZnO cholesterol biosensor

    NASA Astrophysics Data System (ADS)

    Lu, Yang-Ming; Wang, Po-Chin; Tang, Jian-Fu; Chu, Sheng-Yuan

    2017-01-01

    The anemone-like ZnO nanostructures have been synthesized by hydrothermal method and were further adsorbed immobilized cholesterol oxidase (ChOx) as a nano-biosensor. In this study, the sensitivity of biosensor were improved by varying the thickness of the ZnO seed layer. The SEM analysis showed changes in thickness of seed layer will not affect the morphologies of anemone-like ZnO nanostructures. The X-ray Diffraction patterns showed that the (002) plane of anemone-like ZnO grown on various thickness of the seed layer was more prouded than other crystal plane. Abioelectrode (ChOx/ZnO/ITO/glass) grown on the 30nm of ZnO seed layer with high sensitivity of 57.533μAmM-1cm-2 (1.488 μA (mg/dl) -1cm-2), a wide sensitive range from 25 to 500 mg/dl. It is concluded that the thinner sputtered ZnO seed layer for growing anemone-like ZnO nanostructure can effectively improve the sensitivity of the ZnO biosensor.

  14. Obtaining phase velocity of turbulent boundary layer pressure fluctuations at high subsonic Mach number from wind tunnel data affected by strong background noise

    NASA Astrophysics Data System (ADS)

    Haxter, Stefan; Brouwer, Jens; Sesterhenn, Jörn; Spehr, Carsten

    2017-08-01

    Boundary layer measurements at high subsonic Mach number are evaluated in order to obtain the dominant phase velocities of boundary layer pressure fluctuations. The measurements were performed in a transonic wind tunnel which had a very strong background noise. The phase velocity was taken from phase inclination and from the convective peak in one- and two-dimensional wavenumber spectra. An approach was introduced to remove the acoustic noise from the data by applying a method based on CLEAN-SC on the two-dimensional spectra, thereby increasing the frequency range where information about the boundary layer was retrievable. A comparison with prediction models showed some discrepancies in the low-frequency range. Therefore, pressure data from a DNS calculation was used to substantiate the results of the analysis in this frequency range. Using the measured data, the DNS results and a review of the models used for comparison it was found that the phase velocity decreases at low frequencies.

  15. Nanostructured Origami (Trademark) 3D Fabrication and Self Assembly Process for Soldier Combat Systems

    DTIC Science & Technology

    2004-12-01

    the Japanese art of “ origami ”) involves patterning adjacent 2D membranes that can be lifted off (using methods we have developed) of a silicon...innovative process holds immense potential for the Army’s Objective Force Warrior. Nanostructured Origami enables many practical and promising...Nanostructured Origami allows such devices to be formed from a single, micro/nanofabricated layer. In addition, nanoarchitecture can be added

  16. Scaling between Wind Tunnels-Results Accuracy in Two-Dimensional Testing

    NASA Astrophysics Data System (ADS)

    Rasuo, Bosko

    The establishment of exact two-dimensional flow conditions in wind tunnels is a very difficult problem. This has been evident for wind tunnels of all types and scales. In this paper, the principal factors that influence the accuracy of two-dimensional wind tunnel test results are analyzed. The influences of the Reynolds number, Mach number and wall interference with reference to solid and flow blockage (blockage of wake) as well as the influence of side-wall boundary layer control are analyzed. Interesting results are brought to light regarding the Reynolds number effects of the test model versus the Reynolds number effects of the facility in subsonic and transonic flow.

  17. Extreme wettability of nanostructured glass fabricated by non-lithographic, anisotropic etching

    PubMed Central

    Yu, Eusun; Kim, Seul-Cham; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-01-01

    Functional glass surfaces with the properties of superhydrophobicity/or superhydrohydrophilicity, anti-condensation or low reflectance require nano- or micro-scale roughness, which is difficult to fabricate directly on glass surfaces. Here, we report a novel non-lithographic method for the fabrication of nanostructures on glass; this method introduces a sacrificial SiO2 layer for anisotropic plasma etching. The first step was to form nanopillars on SiO2 layer-coated glass by using preferential CF4 plasma etching. With continuous plasma etching, the SiO2 pillars become etch-resistant masks on the glass; thus, the glass regions covered by the SiO2 pillars are etched slowly, and the regions with no SiO2 pillars are etched rapidly, resulting in nanopatterned glass. The glass surface that is etched with CF4 plasma becomes superhydrophilic because of its high surface energy, as well as its nano-scale roughness and high aspect ratio. Upon applying a subsequent hydrophobic coating to the nanostructured glass, a superhydrophobic surface was achieved. The light transmission of the glass was relatively unaffected by the nanostructures, whereas the reflectance was significantly reduced by the increase in nanopattern roughness on the glass. PMID:25791414

  18. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    NASA Astrophysics Data System (ADS)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-02-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  19. Local oxidation using scanning probe microscope for fabricating magnetic nanostructures.

    PubMed

    Takemura, Yasushi

    2010-07-01

    Local oxidation technique using atomic force microscope (AFM) was studied. The local oxidation of ferromagnetic metal thin films was successfully performed by AFM under both contact and dynamic force modes. Modification of magnetic and electrical properties of magnetic devices fabricated by the AFM oxidation was achieved. Capped oxide layers deposited on the ferromagnetic metal films are advantageous for stable oxidation due to hydrophilic surface of oxide. The oxide layer is also expected to prevent magnetic devices from degradation by oxidation of ferromagnetic metal. As for modification of magnetic property, the isolated region of CoFe layer formed by nanowires of CoFe-oxide exhibited peculiar characteristic attributed to the isolated magnetization property and pinning of domain wall during magnetization reversal. Temperature dependence of current-voltage characteristic of the planar-type tunnel junction consisting of NiFe/NiFe-oxide/NiFe indicated that the observed current was dominated by intrinsic tunneling current at the oxide barrier.

  20. Highly ductile multilayered films by layer-by-layer assembly of oppositely charged polyurethanes for biomedical applications.

    PubMed

    Podsiadlo, Paul; Qin, Ming; Cuddihy, Meghan; Zhu, Jian; Critchley, Kevin; Kheng, Eugene; Kaushik, Amit K; Qi, Ying; Kim, Hyoung-Sug; Noh, Si-Tae; Arruda, Ellen M; Waas, Anthony M; Kotov, Nicholas A

    2009-12-15

    Multilayered thin films prepared with the layer-by-layer (LBL) assembly technique are typically "brittle" composites, while many applications such as flexible electronics or biomedical devices would greatly benefit from ductile, and tough nanostructured coatings. Here we present the preparation of highly ductile multilayered films via LBL assembly of oppositely charged polyurethanes. Free-standing films were found to be robust, strong, and tough with ultimate strains as high as 680% and toughness of approximately 30 MJ/m(3). These results are at least 2 orders of magnitude greater than most LBL materials presented until today. In addition to enhanced ductility, the films showed first-order biocompatibility with animal and human cells. Multilayered structures incorporating polyurethanes open up a new research avenue into the preparation of multifunctional nanostructured films with great potential in biomedical applications.