Science.gov

Sample records for nanostructured dye solar

  1. Monitoring the dye impregnation time of nanostructured photoanodes for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shahzad, N.; Pugliese, D.; Lamberti, A.; Sacco, A.; Virga, A.; Gazia, R.; Bianco, S.; Shahzad, M. I.; Tresso, E.; Pirri, C. F.

    2013-06-01

    Dye-sensitized solar cells (DSSCs) are getting increasing attention as low-cost, easy-to-prepare and colored photovoltaic devices. In the current work, in view of optimizing the fabrication procedures and understanding the mechanisms of dye attachment to the semiconductor photoanode, absorbance measurements have been performed at different dye impregnation times ranging from few minutes to 24 hours using UV-Vis spectroscopy. In addition to the traditional absorbance experiments, based on diffuse and specular reflectance on dye impregnated thin films and on the desorption of dye molecules from the photoanodes by means of a basic solution, an alternative in-situ solution depletion measurement, which enables fast and continuous evaluation of dye uptake, is presented. Photoanodes have been prepared with two different nanostructured semiconducting films: mesoporous TiO2, using a commercially available paste from Solaronix, and sponge-like ZnO obtained in our laboratory from sputtering and thermal annealing. Two different dyes have been analyzed: Ruthenizer 535-bisTBA (N719), which is widely used because it gives optimal photovoltaic performances, and a new metal-free organic dye based on a hemisquaraine molecule (CT1). Dye sensitized cells were fabricated using a customized microfluidic architecture. The results of absorbance measurements are presented and discussed in relation to the obtained solar energy conversion efficiencies and the incident photon-to-electron conversion efficiencies (IPCE).

  2. Progress in nanostructured photoanodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Xueyang; Fang, Jian; Liu, Yong; Lin, Tong

    2016-09-01

    Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.

  3. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  4. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TiO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  5. Branched nanostructured anodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Alayashi, Wissal

    The high relative efficiency demonstrated in dye-sensitized solar cells (DSSCs) arises from a combination of light scattering within, and photo-generated electron transport through, the porous structure of a TiO2 anodes. However, the convoluted conduction path for extracting photo-generated electrons through the sponge-like structure of conventional DSSC anodes has limited further improvement. This thesis is an investigation of thin film deposited TiO2 anodes with branched tree-like structures that mimic the highly-efficient natural flow structures of trees, rivers, and the human vascular system, which can providing uninterrupted paths for photo-generated electron transport through the hierarchical branches. The main goal has been the development of a robust fabrication process for the study of DSSCs with anodes deposited with glancing angle deposition (GLAD) as it is a new area of research and the first DSSCs produced in our lab. The anodes are deposited as thin films using electron-beam evaporation with two different source of material: metallic Ti and TiO2. Ti films are shown to exhibit highly branched characteristics, with distinct branches when deposited at rate of 15 A/s versus 5 A/s (i.e. rate dependence). A thermal oxidation study for these films is performed using H2/ O2 at 450°C-520°C. For TiO2 films, post deposition annealing is performed in O2 at 450°C. Two methods are explored to create defined active areas of the films: dilute hydrofluoric acid (HF) wet etching, and lift-off lithography. DSSCs are constructed using standard components (N719 dye, I-/I3- electrolyte, and Pt cathode) paired with the photoanodes. The films are characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD). The properties of DSSCs are investigated with current density-voltage measurements (J-V). Annealed TiO2 films with thickness ranging from 1 microm-3.3 microm exhibit power conversion efficiency of DSSC of 0.5% -3.7%, respectively, which are high

  6. Alternative materials and processing techniques for optimized nanostructures in dye-sensitized solar cells.

    PubMed

    Hart, Judy N; Cheng, Yi-Bing; Simon, George P; Spiccia, Leone

    2008-05-01

    Dye-sensitized solar cells (DSSCs) represent an exciting application of nanotechnology and offer an appealing alternative to conventional solar cells based on photovoltaic devices, with significantly reduced production and material costs. However, further improvements are required to enhance the commercial viability of these solar cells. These improvements may be achieved through the careful manipulation of the structure at the nanoscale and the application of novel processing techniques, which may help to increase the efficiency of these solar cells, improve the ease of manufacture and allow the production of flexible, solid-state solar cells. For example, the use of a nanometre-thick coating of an insulating oxide over the semiconducting film in these solar cells may reduce recombination losses. Also, selective heating techniques such as microwave heating may assist in the production of efficient solar cells on polymer, rather than glass, substrates, by allowing a rapid heat treatment to be applied to the titanium dioxide film at a higher temperature than would be possible with conventional heating. Some novel approaches to the production of semiconducting thin films for dye-sensitized solar cells, as well as the use of alternative materials and nanostructures, are reviewed.

  7. TiO2 hierarchical nanostructures: Hydrothermal fabrication and application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liang, Jia; Zhang, Gengmin; Yang, Jin; Sun, Wentao; Shi, Mingji

    2015-01-01

    Arrays of TiO2 hierarchical nanostructures that consisted of rutile nanorods and anatase branches were hydrothermally fabricated and employed as photoanodes in dye-sensitized solar cells (DSSCs). Each hierarchical nanostructure array was attained in two steps. First, a primary nanorod array was synthesized in aqueous solutions of hydrochloric acid (HCl) and tetrabutyl titanate (C16H36O4Ti); subsequently, secondary branches were grown on the nanorods in aqueous solutions of ammonium hexafluorotitanate ((NH4)2TiF6) and boric acid (H3BO3). The secondary anatase branches filled part of the space among the primary rutile nanorods and gave rise to a larger surface area. Light-harvesting capability of the DSSCs with TiO2 hierarchical nanostructures as photoanodes was appreciably improved because more dye molecules could be loaded on the photoanodes and more light could be scattered inside the DSSCs. Therefore, the conversion efficiencies of the DSSCs were doubled by replacing the photoanode of primary TiO2 nanorod array with the photoanodes of TiO2 hierarchical nanostructure arrays. Furthermore, in order to reach a compromise between the photoanode surface area and the inter-nanorod space volume, the growth time of the secondary TiO2 anatase branches was optimized.

  8. Nanostructured Solar Cells

    PubMed Central

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  9. Nanostructured Solar Cells.

    PubMed

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  10. Enhanced Performance of Dye-Sensitized Solar Cells with Nanostructure InN Compact Layer

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Chiang; Chen, Lung-Chien; Kuo, Shu-Jung

    2013-05-01

    This study presents a dye-sensitized solar cells (DSSCs) with a nanostructured InN compact layer (InN-CPL). The effect of a nanostructured InN-CPL in a DSSC structure prepared by radio frequency magnetron sputtering was examined. The InN-CPL effectively reduces the back reaction at the interface between the indium tin oxide (ITO) transparent conductive film and the electrolyte in the DSSC. DSSCs fabricated on ITO/InN-CPL/TiO2/D719 exhibited a short-circuit current density (JSC), open-circuit voltage (VOC), and power conversion efficiency (η) of 23.2 mA/cm2, 0.7 V, and 8.9%, respectively.

  11. Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures

    NASA Astrophysics Data System (ADS)

    Passoni, Luca; Fumagalli, Francesco; Perego, Andrea; Bellani, Sebastiano; Mazzolini, Piero; Di Fonzo, Fabio

    2017-06-01

    Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al2O3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10-3 Ω cm-1, 11 cm2 V-1 s-1, and 1.62 × 1020 cm-3, resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.

  12. Improving Light Harvesting in Dye-Sensitized Solar Cells Using Hybrid Bimetallic Nanostructures

    SciTech Connect

    Zarick, Holly F.; Erwin, William R.; Boulesbaa, Abdelaziz; Hurd, Olivia K.; Webb, Joseph A.; Puretzky, Alexander A.; Geohegan, David B.; Bardhan, Rizia

    2016-01-25

    In this paper, we demonstrate improved light trapping in dye-sensitized solar cells (DSSCs) with hybrid bimetallic gold core/silver shell nanostructures. Silica-coated bimetallic nanostructures (Au/Ag/SiO2 NSs) integrated in the active layer of DSSCs resulted in 7.51% power conversion efficiency relative to 5.97% for reference DSSCs, giving rise to 26% enhancement in device performance. DSSC efficiencies were governed by the particle density of Au/Ag/SiO2 NSs with best performing devices utilizing only 0.44 wt % of nanostructures. We performed transient absorption spectroscopy of DSSCs with variable concentrations of Au/Ag/SiO2 NSs and observed an increase in amplitude and decrease in lifetime with increasing particle density relative to reference. Finally, we attributed this trend to plasmon resonant energy transfer and population of the singlet excited states of the sensitizer molecules at the optimum concentration of NSs promoting enhanced exciton generation and rapid charge transfer into TiO2.

  13. Polypyrrole thin films decorated with copper nanostructures as counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ghani, Sheeba; Sharif, Rehana; Bashir, Saima; Zaidi, Azhar A.; Rafique, M. S.; Ashraf, Ayesha; Shahzadi, Shamaila; Rafique, Shaista; Kamboh, Afzal H.

    2015-05-01

    A two-step electrochemical polymerization method for the fabrication of polypyrrole (PPY) thin films decorated with copper nanostructures on a stainless steel has been employed. The PPY film thickness affects the size, shape, and the number density of the copper nanostructures and provides an easy approach to control the morphology of these nanostructures. SEM images show nanorod like structures of copper on 200 nm PPY film. By employing this composite film as counter electrode (CE), a dye-sensitized solar cell (DSSC) achieves a conversion efficiency of 7.42%, which is greater than Pt CE based DSSC (5.63%). The superior photovoltaic efficiency for the Cu-PPY film is attributed to unique porous PPY thin film and copper nanorods structure that leads to higher cathodic current density (5.38 mA/cm2), large electrocatalytic activity, and small charge transfer resistance(1.92 Ω cm-2). Therefore, Cu-PPY composite can be considered a competitive and promising CE material with the traditional and expensive Pt CE, for large-scale DSSCs production.

  14. Improving Light Harvesting in Dye-Sensitized Solar Cells Using Hybrid Bimetallic Nanostructures

    DOE PAGES

    Zarick, Holly F.; Erwin, William R.; Boulesbaa, Abdelaziz; ...

    2016-01-25

    In this paper, we demonstrate improved light trapping in dye-sensitized solar cells (DSSCs) with hybrid bimetallic gold core/silver shell nanostructures. Silica-coated bimetallic nanostructures (Au/Ag/SiO2 NSs) integrated in the active layer of DSSCs resulted in 7.51% power conversion efficiency relative to 5.97% for reference DSSCs, giving rise to 26% enhancement in device performance. DSSC efficiencies were governed by the particle density of Au/Ag/SiO2 NSs with best performing devices utilizing only 0.44 wt % of nanostructures. We performed transient absorption spectroscopy of DSSCs with variable concentrations of Au/Ag/SiO2 NSs and observed an increase in amplitude and decrease in lifetime with increasing particlemore » density relative to reference. Finally, we attributed this trend to plasmon resonant energy transfer and population of the singlet excited states of the sensitizer molecules at the optimum concentration of NSs promoting enhanced exciton generation and rapid charge transfer into TiO2.« less

  15. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy

    PubMed Central

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-01-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells. PMID:27443236

  16. Development of titania nanostructures for the exploration of electron transport in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chou, Tammy P.; Fryxell, Glen E.; Li, Xiaohong S.; Cao, Guozhong

    2004-10-01

    Dye-sensitized solar cells (DSSC) utilizing titania (TiO2) nanomaterials in conjunction with a light-absorbing dye have been extensively explored for the last few decades. Earlier efforts to surpass the 10% overall light conversion efficiency of these devices emphasized the synthesis of dyes with enhanced light-absorbing capabilities, but slow progress in the increase in efficiency has directed attention to the exploration into the modification of the TiO2 nanostructure. Up to this point, the most efficient electrodes in DSSC devices have consisted of 10 micron-thick mesoporous TiO2 film with an interconnected network of 15-20nm particles. This type of structure has shown to impart a large enough surface area for efficient light absorption and charge formation, but the random distribution of nanometer-sized particles is thought to be the limiting factor for enhanced electron transport, hindering further progress in achieving higher efficiencies. Our research utilizes TiO2 nanorods in an attempt to explore and compare the electron transport pathways associated with 1) a random distribution of nanoparticles and 2) a straightforward arrangement of nanorods within the TiO2 nanostructure. It is assumed that a more ordered structure of nanorods would minimize inefficient electron percolation pathways and improve ion diffusion at the TiO2-dye-electrolyte interface by eliminating the randomization of the particle network, by increasing contact points for good electrical connection, and by decreasing small necking points that have shown to develop between adjacently-bound particles in the current TiO2 nanoparticle structure after sintering. The current-voltage (I-V) behavior of three solar cell electrode structures consisting of (1) TiO2 nanoparticle film, (2) TiO2 nanoparticle-nanorod film, and (3) TiO2 nanorod film were compared and analyzed to determine whether the nanorod structure provided a more efficient pathway for effective electron conduction. SEM analysis was

  17. Experimental and Theoretical Studies of Nanostructured Electrodes for Use in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Gong, Jiawei

    Among various photovoltaic technologies available in the emerging market, dye-sensitized solar cells (DSSCs) are deemed as an effective, competitive solution to the increasing demand for high-efficiency PV devices. To move towards full commercialization, challenges remain in further improvement of device stability as well as reduction of material and manufacturing costs. This study aims at rational synthesis and photovoltaic characterization of two nanostructured electrode materials (i.e. SnO2 nanofibers and activated graphene nanoplatelets) for use as photoanode and counter electrode in dye-sensitized solar cells. The main objective is to explore the favorable charge transport features of SnO2 nanofiber network and simultaneously replace the high-priced conventional electrocatalytic nanomaterials (e.g. Pt nanoparticles) used in existing counter electrode of DSSCs. To achieve this objective, a multiphysics model of electrode kinetics was developed to optimize various design parameters and cell configurations. The porous hollow SnO2 nanofibers were successfully synthesized via a facile route consisting of electrospinning precursor polymer nanofibers, followed by controlled carbonization. The novel SnO2/TiO2 composite photoanode materials carry advantages of SnO2 nanofiber network (e.g. nanostructural continuity, high electron mobility) and TiO2 nanoparticles (e.g. high specific area), and therefore show excellent photovoltaic properties including improved short-circuit current and fill factors. In addition, hydrothermally activated graphene nanoplatelets (aGNP) were used as a catalytic counter electrode material to substitute for conventionally used platinum nanoparticles. Improved catalytic performance of aGNP electrode was achieved through increased surface area and better control of morphology. Dye-sensitized solar cells using these aGNP electrodes had power conversion efficiencies comparable to those using platinum nanoparticles with I-/I3- redox mediators

  18. Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures.

    PubMed

    Passoni, Luca; Fumagalli, Francesco; Perego, Andrea; Bellani, Sebastiano; Mazzolini, Piero; Di Fonzo, Fabio

    2017-06-16

    Monolithic dye-sensitized solar cell (DSC) architectures hold great potential for building-integrated photovoltaics applications. They indeed benefit from lower weight and manufacturing costs as they avoid the use of a transparent conductive oxide (TCO)-coated glass counter electrode. In this work, a transparent monolithic DSC comprising a hierarchical 1D nanostructure stack is fabricated by physical vapor deposition techniques. The proof of concept device comprises hyperbranched TiO2 nanostructures, sensitized by the prototypical N719, as photoanode, a hierarchical nanoporous Al2O3 spacer, and a microporous indium tin oxide (ITO) top electrode. An overall 3.12% power conversion efficiency with 60% transmittance outside the dye absorption spectral window is demonstrated. The introduction of a porous TCO layer allows an efficient trade-off between transparency and power conversion. The porous ITO exhibits submicrometer voids and supports annealing temperatures above 400 °C without compromising its optoelectronical properties. After thermal annealing at 500 °C, the resistivity, mobility, and carrier concentration of the 800 nm-thick porous ITO layer are found to be respectively 2.3 × 10(-3) Ω cm(-1), 11 cm(2) V(-1) s(-1), and 1.62 × 10(20) cm(-3), resulting in a series resistance in the complete device architecture of 45 Ω. Electrochemical impedance and intensity-modulated photocurrent/photovoltage spectroscopy give insight into the electronic charge dynamic within the hierarchical monolithic DSCs, paving the way for potential device architecture improvements.

  19. Surfactant free most probable TiO2 nanostructures via hydrothermal and its dye sensitized solar cell properties

    PubMed Central

    Mali, Sawanta S.; Kim, Hyungjin; Shim, Chang Su; Patil, Pramod S.; Kim, Jin Hyeok; Hong, Chang Kook

    2013-01-01

    Tailoring the nano-morphology and nano-architecture of titanium dioxide (TiO2) is the most important task in the third generation solar cells (Dye sensitized solar cells/Quantum dot sensitized solar cells) (DSSCs/QDSSCs). In this article we present complete study of surfactant free synthesis of TiO2 nanostructures by a simple and promising hydrothermal route. The plethora of nanostructures like nanoparticles clusters, 1D tetragonal nanorods, 3D dendrites containing nanorods having <30 nm diameter and 3D hollow urchin like have been synthesized. These nanostructures possess effective large surface area and thus useful in DSSCs. In the present work, 7.16% power conversion efficiency has been demonstrated for 3D dendritic hollow urchin like morphology. Our synthetic strategy provides an effective solution for surfactant free synthesis of efficient TiO2 nanoarchitectures. PMID:24141599

  20. TiO2 derived by titanate route from electrospun nanostructures for high-performance dye-sensitized solar cells.

    PubMed

    Nair, A Sreekumaran; Zhu, Peining; Babu, V Jagadeesh; Yang, Shengyuan; Krishnamoorthy, Thirumal; Murugan, Rajendiran; Peng, Shengjie; Ramakrishna, Seeram

    2012-04-17

    We report the use of highly porous, dense, and anisotropic TiO(2) derived from electrospun TiO(2)-SiO(2) nanostructures through titanate route in dye-sensitized solar cells. The titanate-derived TiO(2) of high surface areas exhibited superior photovoltaic parameters (efficiency > 7%) in comparison to the respective electrospun TiO(2) nanomaterials and commercially available P-25.

  1. One-dimensional and (001) facetted nanostructured TiO2 photoanodes for dye-sensitized solar cells.

    PubMed

    Lin, Hong; Wang, Xiao; Hao, Feng

    2013-01-01

    As one of the most important components in dye-sensitized solar cells (DSCs), photoanode materials have attracted massive interest and been greatly developed through the efforts of various research institutions in recent years. Photoanode materials not only provide a large surface for the sensitizer to favor charge separation, but also conduct the electrons to the collection electrode. In recent years, one-dimensional (1D) nanostructures (nanotubes (NT), nanowires (NW) and nanorods(NR)), which offer direct pathways for electron transport, and nanostructures (nanosheets (NS) and nanoparticles (NP)) with (001) crystal facets which possess higher surface energies have been widely employed as photoanode materials. In this review, the progress of 1D nanostructures and those with (001) crystal facets, as well as their photovoltaic performance in DSCs will be discussed briefly. Further efforts are needed to provide theoretical research for 1D and (001) facet nanostructured TiO2 and to improve DSC performances based on these photoanodes.

  2. Morphology control of ZnO nanostructures for high efficient dye-sensitized solar cells

    SciTech Connect

    Fang, Jiawen; Fan, Huiqing; Tian, Hailin; Dong, Guangzhi

    2015-10-15

    Dye-sensitized solar cells (DSSCs) were fabricated based on different ZnO nanostructures with controllable morphologies synthesized via capping agent-assisted hydrothermal method. The capping agent hindered the growth along (001) direction, so the morphology evolved from rods to nanosheets with increasing the amounts of capping agents. The kinetics of the photoelectrochemical properties in DSSCs were also evaluated via electrochemical impedance spectroscopy with focusing on exploring the electron lifetime, electron diffusion coefficient and effective diffusion length of the cells in a quantitative manner based on an equivalent circuit model. The physical properties, such as specific surface area, photoluminescence and ultraviolet–vis diffuse reflectance spectra (DRS), were also extensively characterized in detail. DSSCs fabricated with ZnO nanosheets/rod hierarchical structures as photoanodes showed significantly improved photovoltaic performance with open-circuit voltage increasing from 0.45 V to 0.73 V, as well as the overall conversion efficiency 5.69 times better than that of ZnO rod. It was attributed to higher surface area (21.96 m{sup 2}·g{sup −1}) and more efficient light absorption, as well as more efficient electron transfer process. - Highlights: • Controlled morphologies from rods to nanosheets were manipulated by hydrothermal method. • Different ZnO morphologies based DSSCs were investigated by IV and EIS with forward biases. • DSSCs based on nano hierarchical structures yield 5.67 times higher of power conversion efficiency than that of rods.

  3. Semiconductor nanostructure-based photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Genqiang; Finefrock, Scott; Liang, Daxin; Yadav, Gautam G.; Yang, Haoran; Fang, Haiyu; Wu, Yue

    2011-06-01

    Substantial efforts have been devoted to design, synthesize, and integrate various semiconductor nanostructures for photovoltaic (PV) solar cells. In this article, we will review the recent progress in this exciting area and cover the material chemistry and physics related to all-inorganic nanostructure solar cells, hybrid inorganic nanostructure-conductive polymer composite solar cells, and dye-sensitized solar cells.

  4. Semiconductor nanostructure-based photovoltaic solar cells.

    PubMed

    Zhang, Genqiang; Finefrock, Scott; Liang, Daxin; Yadav, Gautam G; Yang, Haoran; Fang, Haiyu; Wu, Yue

    2011-06-01

    Substantial efforts have been devoted to design, synthesize, and integrate various semiconductor nanostructures for photovoltaic (PV) solar cells. In this article, we will review the recent progress in this exciting area and cover the material chemistry and physics related to all-inorganic nanostructure solar cells, hybrid inorganic nanostructure-conductive polymer composite solar cells, and dye-sensitized solar cells.

  5. Plasmonic copper nanowire@TiO2 nanostructures for improving the performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Zhou, Ning; Zhang, Keqin; Yan, Feng

    2017-02-01

    Plasmonic copper nanowires@TiO2 (Cu NWs@TiO2) core-shell nanostructures are synthesized and applied for dye sensitized solar cells (DSSCs). Both experimental and theoretical studies (Finite Difference Time Domain Simulation) reveal that doping of the Cu NWs@TiO2 nanostructures into the TiO2 photoanodes can enhance the light absorption of dye molecules and the carrier's separation through the localized surface plasmon resonance (LSPR) and plasmonic waveguide (PW) effects, and thus significantly improve the light harvesting efficiency of the device. The optimized doped DSSCs show the best power conversion efficiency (PCE) of 9.44%, which is 23.40% higher than that of undoped DSSCs (7.65%).

  6. Synthesis of nanostructured CuInS2 thin films and their application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Luo, Fazhi; Zhuang, Mixue; Liu, Zhen; Wei, Aixiang; Liu, Jun

    2016-03-01

    CuInS2 (CIS) nanostructure thin films were successfully synthesized on FTO conductive glass substrates by solvothermal method. It is found that the surface morphology and microstructure of CIS thin films can be tailored by simply adjusting the concentration of oxalic acid. CIS nanostructure films with texture of "nanosheet array" and "flower-like microsphere" were obtained and used as Pt-free counter electrode for dye-sensitized solar cells (DSSCs). The nanosheet array CIS was found to have a better electrocatalytic activity than the flower-like microsphere one. DSSCs based on nanosheet array CIS thin film counter electrode show conversion efficiency of 3.33 %, which is comparable to the Pt-catalyzed DSSCs. The easy synthesis, low cost, morphology tunable and excellent electrocatalytic property may make the CuInS2 nanostructure competitive as counter electrode in DSSCs.

  7. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  8. Dye sensitized solar cells.

    PubMed

    Wei, Di

    2010-03-16

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  9. Enhanced photovoltaic properties of dye-sensitized solar cell based on ultrathin 2D TiO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Putao; Hu, Zhiqiang; Wang, Yan; Qin, Yiying; Sun, Xiao Wei; Li, Wenqin; Wang, Jinmin

    2016-04-01

    Ultrathin two-dimensional (2D) TiO2 nanostructures with a thickness of ∼5 nm and a specific surface area of 257.3 m2 g-1 were synthesized by a hydrothermal process. The 2D TiO2 nanostructures and P25 nanoparticles were introduced as scattering layer and underlayer to construct a bi-layer photoanode in a dye-sensitized solar cell (DSSC). The as-prepared DSSC exhibits an enhanced power conversion efficiency (5.14%), which is 23.9% higher than that of pure P25 DSSC (4.15%). Electrochemical impedance spectroscopy (EIS) indicates that DSSC based on P25-2D TiO2 nanostructures shows a longer life time and a larger recombination resistance. The enhanced photovoltaic properties are attributed to the excellent light scattering capability and high capacity for dye adsorption of 2D TiO2 nanostructures, which makes them a promising candidate as an efficient scattering layer in high-performance DSSCs.

  10. Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells.

    PubMed

    Vega-Poot, Alberto G; Macías-Montero, Manuel; Idígoras, Jesus; Borrás, Ana; Barranco, Angel; Gonzalez-Elipe, Agustín R; Lizama-Tzec, Francisco I; Oskam, Gerko; Anta, Juan A

    2014-04-14

    ZnO is an attractive material for applications in dye-sensitized solar cells and related devices. This material has excellent electron-transport properties in the bulk but its electron diffusion coefficient is much smaller in mesoporous films. In this work the electron-transport properties of two different kinds of dye-sensitized ZnO nanostructures are investigated by small-perturbation electrochemical techniques. For nanoparticulate ZnO photoanodes prepared via a wet-chemistry technique, the diffusion coefficient is found to reproduce the typical behavior predicted by the multiple-trapping and the hopping models, with an exponential increase with respect to the applied bias. In contrast, in ZnO nanostructured thin films of controlled texture and crystallinity prepared via a plasma chemical vapor deposition method, the diffusion coefficient is found to be independent of the electrochemical bias. This observation suggests a different transport mechanism not controlled by trapping and electron accumulation. In spite of the quite different transport features, the recombination kinetics, the electron-collection efficiency and the photoconversion efficiency are very similar for both kinds of photoanodes, an observation that indicates that surface properties rather than electron transport is the main efficiency-determining factor in solar cells based on ZnO nanostructured photoanodes.

  11. Preparation of nanostructured TiO2 photoelectrode for flexible dye-sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Karuppuchamy, S.; Andou, Y.; Endo, T.

    2013-08-01

    Nanocrystalline titanium dioxide (TiO2) thin film was successfully prepared by simple electrodeposition method from alkaline aqueous solution containing potassium titanium oxalate and hydroxylamine. Surface characterization of the electrodeposited films indicates the formation of crystalline TiO2. The dye solar cell constructed from dye-modified electrodeposited TiO2 film achieved an overall light-to-electricity conversion efficiency of 2.1 % under 1 sun illumination, indicating its high potential as a photoelectrode material for the DSCs.

  12. Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO(2) hollow fibers.

    PubMed

    Ghadiri, Elham; Taghavinia, Nima; Zakeeruddin, Shaik M; Grätzel, Michael; Moser, Jacques-E

    2010-05-12

    Nanostructured TiO(2) hollow fibers have been prepared using natural cellulose fibers as a template. This cheap and easily processed material was used to produce highly porous photoanodes incorporated in dye-sensitized solar cells and exhibited remarkably enhanced electron transport properties compared to mesoscopic films made of spherical nanoparticles. Photoinjected electron lifetime, in particular, was multiplied by 3-4 in the fiber morphology, while the electron transport rate within the fibrous photoanaode was doubled. A nearly quantitative absorbed photon-to-electrical current conversion yield exceeding 95% was achieved upon excitation at 550 nm and a photovoltaic power conversion efficiency of 7.2% reached under simulated AM 1.5 (100 mW cm(-2)) solar illumination.

  13. Nanostructured materials and their charge transport properties in photoanodes of dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ponsaing, Anita Kristine

    Since the big progress of dye sensitized solar cells (DSCs) by adopting TiO2 nanoparticles for a photoanode in 1991, DSCs have been intensively studied as an alternative to conventional Si-based solar cells. As a main component of DSCs, a photoanode composed of a nanostructured semiconducting oxide network plays a significant role in determining performances of DSCs in terms of light harvesting efficiency (LHE) and charge collection efficiency related to charge transport and recombination. Nanomaterials with various morphologies, such as particles, rods and tubes have been fabricated and investigated to improve performances of DSCs. Among them, submicrometer-sized aggregates of nanocrystallites have demonstrated to be promising as a photoanode of DSCs for higher power conversion efficiency. Such hierarchical structures make it possible to have both high specific surface area for dye molecule adsorption and internal light scattering within the photoanode, leading to a much enhanced LHE. This work focused on the surface modification and charge transport characterization of such hierarchically structured photoanodes. First, a core-shell configuration was fabricated by atomic layer deposition (ALD) process, which was achieved by depositing ultrathin TiO2 layer on inner surface of ZnO aggregate film in which the TiO2 shell was anticipated to act as a chemical and energy barrier. Although the ALD-TiO2 coating failed to improve chemical stability of the ZnO aggregate against to an acidic dye solution due to the ultrathin thickness (< 1 nm), the ALD-TiO2 shell layer effectively suppressed charge recombination at the interface. As a result of the reduced charge recombination, Voc, and FF of DSCs were increased, leading to 20 % enhancement of power conversion efficiency. Second, effects of annealing temperatures on ALD-TiO2 coated aggregates of ZnO nanocrystallites were investigated in terms of sintering behavior and charge transport. 350 °C as the maximum temperature was

  14. Hierarchical Oriented Anatase TiO2 Nanostructure arrays on Flexible Substrate for Efficient Dye-sensitized Solar Cells

    PubMed Central

    Wu, Wu-Qiang; Rao, Hua-Shang; Xu, Yang-Fan; Wang, Yu-Fen; Su, Cheng-Yong; Kuang, Dai-Bin

    2013-01-01

    The vertically oriented anatase single crystalline TiO2 nanostructure arrays (TNAs) consisting of TiO2 truncated octahedrons with exposed {001} facets or hierarchical TiO2 nanotubes (HNTs) consisting of numerous nanocrystals on Ti-foil substrate were synthesized via a two-step hydrothermal growth process. The first step hydrothermal reaction of Ti foil and NaOH leads to the formation of H-titanate nanowire arrays, which is further performed the second step hydrothermal reaction to obtain the oriented anatase single crystalline TiO2 nanostructures such as TiO2 nanoarrays assembly with truncated octahedral TiO2 nanocrystals in the presence of NH4F aqueous or hierarchical TiO2 nanotubes with walls made of nanocrystals in the presence of pure water. Subsequently, these TiO2 nanostructures were utilized to produce dye-sensitized solar cells in a backside illumination pattern, yielding a significant high power conversion efficiency (PCE) of 4.66% (TNAs, JSC = 7.46 mA cm−2, VOC = 839 mV, FF = 0.75) and 5.84% (HNTs, JSC = 10.02 mA cm−2, VOC = 817 mV, FF = 0.72), respectively. PMID:23715529

  15. Hierarchical Oriented Anatase TiO2 Nanostructure arrays on Flexible Substrate for Efficient Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Qiang; Rao, Hua-Shang; Xu, Yang-Fan; Wang, Yu-Fen; Su, Cheng-Yong; Kuang, Dai-Bin

    2013-05-01

    The vertically oriented anatase single crystalline TiO2 nanostructure arrays (TNAs) consisting of TiO2 truncated octahedrons with exposed {001} facets or hierarchical TiO2 nanotubes (HNTs) consisting of numerous nanocrystals on Ti-foil substrate were synthesized via a two-step hydrothermal growth process. The first step hydrothermal reaction of Ti foil and NaOH leads to the formation of H-titanate nanowire arrays, which is further performed the second step hydrothermal reaction to obtain the oriented anatase single crystalline TiO2 nanostructures such as TiO2 nanoarrays assembly with truncated octahedral TiO2 nanocrystals in the presence of NH4F aqueous or hierarchical TiO2 nanotubes with walls made of nanocrystals in the presence of pure water. Subsequently, these TiO2 nanostructures were utilized to produce dye-sensitized solar cells in a backside illumination pattern, yielding a significant high power conversion efficiency (PCE) of 4.66% (TNAs, JSC = 7.46 mA cm-2, VOC = 839 mV, FF = 0.75) and 5.84% (HNTs, JSC = 10.02 mA cm-2, VOC = 817 mV, FF = 0.72), respectively.

  16. Fabrication of a multi-scale nanostructure of TiO2 for application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kuo, Cheng-Yu; Lu, Shih-Yuan

    2008-03-01

    We propose a highly ordered multi-scale nanostructure of TiO2 for applications as an anode in dye-sensitized solar cells (DSSCs). The structure is composed of a TiO2 blocking layer, a TiO2 inverse opal main body, regularly arranged transport channels between contacting spherical voids of the TiO2 inverse opal, and TiO2 nanoparticles coated on the spherical surfaces of the voids. The ordered and continuous backbone of the inverse opal serves as the fast electron transport pathways while the regularly arranged transport channels enable easy transport of dye and electrolyte within the structure. A multi-cycle procedure was developed to enable fabrication of thick inverse opals and easy adjustment of the inverse opal thickness. An example structure was constructed, involving a blocking layer of 90 nm thickness, an inverse opal of 100 nm voids, transport channels of 30-50 nm openings, and nanoparticles 10-15 nm in size. An open-circuit voltage decay investigation showed a significant improvement in electron lifetime for the proposed multi-scale TiO2 nanostructure based DSSC than that of a TiO2 nanoparticle film based DSSC, revealing the superior electron recombination characteristic offered by the proposed TiO2 nanostructure. The conversion efficiency of the DSSC assembled from such an anode structure can reach 4% with a short-circuit current density (Jsc) of 8.7 mA cm-2 and open-circuit potential (Voc) of 0.76 V under AM 1.5 (100 mW cm-2) illumination.

  17. Nanostructured Zinc Oxide Materials for Use as Dye Sensitized Solar Cell Working Electrodes and Photocatalysts

    NASA Astrophysics Data System (ADS)

    Chang, Roger

    Since their invention in 1991, dye-sensitized solar cells (DSCs) have been the subject of intense research interest owing to their low cost, ease of manufacture and potential for low-light applications. In this thesis, the focus is on replacing TiO2 with ZnO, a semiconductor that exhibits much higher electron mobility. The shape of the ZnO nanomaterial is investigated in order to determine if shape and connectivity play a role in how best to exploit the high electron mobility of ZnO. When ZnO nanoparticles are replaced with 1-D nanowires in a DSC, it has been shown that electron transport is improved as measured by faster electron transport times and high electron diffusion coefficients. However, despite these electron transport advantages, ZnO nanowire-based DSCs still suffer from lower efficiencies than ZnO nanoparticle-based DSCs because of their much smaller surface area for dye loading. In the thesis work, zinc oxide nanorods are introduced as a compromise material that can maintain a large surface area, while taking advantage of 1-D fast electron transport. It is shown that by changing the shape of the semiconductor nanomaterial to elongated nanorods, electron transport time, electron lifetime, electron diffusivity and other measures of DSC performance are enhanced. Additionally, electrodeposition into hard templates was used to fabricate ZnO nanowires with magnetic Ni caps. The electrodeposited Ni-ZnO nanowires are shown to be useful in catalyzing the photodegradation of methylene blue (MB) , a model organic dye, and the result is compared to ZnO nanoparticles. The elongated shape of the nanowires is expected to prevent the aggregation that reduces the catalytic efficacy of ZnO nanoparticles, whereas the Ni segment is expected to enhance photocatalysis by increasing the production of radical hydroxide species that degrade the dye. Our experiments show that Ni-ZnO nanowires are more effective photocatalysts than ZnO nanoparticles as measured by the decrease

  18. Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes

    PubMed Central

    Wang, Hao; Wang, Baoyuan; Yu, Jichao; Hu, Yunxia; Xia, Chen; Zhang, Jun; Liu, Rong

    2015-01-01

    The single–crystalline TiO2 nanorod arrays with rutile phase have attracted much attention in the dye sensitized solar cells (DSSCs) applications because of their superior chemical stability, better electron transport properties, higher refractive index and low production cost. However, it suffers from a low surface area as compared with TiO2 nanoparticle films. In order to enlarge the surface area of TiO2 nanorod arrays, the 1D nanorods/3D nanotubes sample was synthesized using a facile two-step hydrothermal process involving hydrothermal growth 1D/3D nanorods and followed by post-etching treatment. In such bi-layer structure, the oriented TiO2 nanorods layer could provide direct pathway for fast electron transportation, and the 3D nanotubes layer offers a higher surface area for dye loading, therefore, the 1D nanorods/3D nanotubes photoanode exhibited faster electron transport and higher surface area than either 1D or 3D nanostructures alone, and an highest efficiency of 7.68% was achieved for the DSSCs based on 1D nanorods/3D nanotubes photoanode with further TiCl4 treatment. PMID:25800933

  19. Influence of niobium doping in hierarchically organized titania nanostructure on performance of dye-sensitized solar cells.

    PubMed

    Park, Jong Hoon; Noh, Jun Hong; Han, Byung Suh; Shin, Seong Sik; Park, Ik Jae; Kim, Dong Hoe; Hong, Kug Sun

    2012-06-01

    Niobium doped hierarchically organized TiO2 nanostructures composed of 20 nm size anatase nanocrystals were synthesized using pulsed laser deposition (PLD). The Nb doping concentration could be facilely controlled by adjusting the concentration of Nb in target materials. We could investigate the influence of Nb doping in the TiO2 photoelectrode on the cell performance of dye-sensitized solar cells (DSSCs) by the exclusion of morphological effects using the prepared Nb-doped TiO2 anostructures. We found no significant change in short circuit current density (Jsc) as a function of Nb doping concentration. However, open circuit voltage (Voc) and fill factor (FF) monotonously decrease with increasing Nb concentration. Dark current characteristics of the DSSCs reveal that the decrease in Voc and FF is attributed to the decrease in shunt resistance due to the increase in conductivity TiO2 by Nb doping. However, electrochemical impedance spectra (EIS) analysis at open circuit condition under illumination showed that the resistance at the TiO2/dye/electrolyte interface increases with Nb concentration, revealing that Nb doping suppress the charge recombination at the interface. In addition, electron life time obtained using characteristic frequency in Bode plot increases from 14 msec to 56 msec with increasing Nb concentration from 0 to 1.2 at%. This implies that the improved light harvesting can be achieved by increasing diffusion length through Nb-doping in the conventional TiO2 photoelectrode.

  20. Solid-state synthesis of ZnO nanostructures for quasi-solid dye-sensitized solar cells with high efficiencies up to 6.46%.

    PubMed

    Shi, Yantao; Wang, Kai; Du, Yi; Zhang, Hong; Gu, Junfu; Zhu, Chao; Wang, Lin; Guo, Wei; Hagfeldt, Anders; Wang, Ning; Ma, Tingli

    2013-08-27

    Solid-state synthesis of ZnO nanostructured building blocks is presented in this work for the fabrication of high efficiency quasi-solid dye-sensitized solar cells (DSSCs). The sponge-like photoanode has high optical density and better connections. Baking the photoanode at low temperature, photoconversion efficiencies of up to 6.46% are yielded by the quasi-solid DSSCs. Furthermore, we demonstrate better stability of our ZnO quasi-solid DSSCs.

  1. Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells.

    PubMed

    He, Ziming; Guai, Guanhong; Liu, Jing; Guo, Chunxian; Loo, Joachim Say Chye; Li, Chang Ming; Tan, Timothy Thatt Yang

    2011-11-01

    We present a one-step solvothermal approach to prepare uniform graphene-TiO(2) nanocomposites with delicately controlled TiO(2) nanostructures, including ultra-small 2 nm nanoparticles, 12 nm nanoparticles and nanorods. Using three composites as photoanode materials, the effect of nanostructure of graphene-composited TiO(2) on the performance of dye-sensitized solar cells was investigated, and results showed that the ultra-small 2 nm TiO(2)-graphene composite based photoanode exhibited the highest power conversion efficiency of 7.25%.

  2. EDITORIAL: Nanostructured solar cells Nanostructured solar cells

    NASA Astrophysics Data System (ADS)

    Greenham, Neil C.; Grätzel, Michael

    2008-10-01

    Conversion into electrical power of even a small fraction of the solar radiation incident on the Earth's surface has the potential to satisfy the world's energy demands without generating CO2 emissions. Current photovoltaic technology is not yet fulfilling this promise, largely due to the high cost of the electricity produced. Although the challenges of storage and distribution should not be underestimated, a major bottleneck lies in the photovoltaic devices themselves. Improving efficiency is part of the solution, but diminishing returns in that area mean that reducing the manufacturing cost is absolutely vital, whilst still retaining good efficiencies and device lifetimes. Solution-processible materials, e.g. organic molecules, conjugated polymers and semiconductor nanoparticles, offer new routes to the low-cost production of solar cells. The challenge here is that absorbing light in an organic material produces a coulombically bound exciton that requires dissociation at a donor-acceptor heterojunction. A thickness of at least 100 nm is required to absorb the incident light, but excitons only diffuse a few nanometres before decaying. The problem is therefore intrinsically at the nano-scale: we need composite devices with a large area of internal donor-acceptor interface, but where each carrier has a pathway to the respective electrode. Dye-sensitized and bulk heterojunction cells have nanostructures which approach this challenge in different ways, and leading research in this area is described in many of the articles in this special issue. This issue is not restricted to organic or dye-sensitized photovoltaics, since nanotechnology can also play an important role in devices based on more conventional inorganic materials. In these materials, the electronic properties can be controlled, tuned and in some cases completely changed by nanoscale confinement. Also, the techniques of nanoscience are the natural ones for investigating the localized states, particularly at

  3. Hydrothermal fabrication of quasi-one-dimensional single-crystalline anatase TiO2 nanostructures on FTO glass and their applications in dye-sensitized solar cells.

    PubMed

    Liao, Jin-Yun; Lei, Bing-Xin; Wang, Yu-Fen; Liu, Jun-Min; Su, Cheng-Yong; Kuang, Dai-Bin

    2011-01-24

    One-dimensional and quasi-one-dimensional semiconductor nanostructures are desirable for dye-sensitized solar cells (DSSCs), since they can provide direct pathways for the rapid collection of photogenerated electrons, which could improve the photovoltaic performance of the device. Quasi-1D single-crystalline anatase TiO(2) nanostructures have been successfully prepared on transparent, conductive fluorine-doped tin oxide (FTO) glass with a growth direction of [101] through a facile hydrothermal approach. The influences of the initial titanium n-butoxide (TBT) concentration, hydrothermal reaction temperature, and time on the length of quasi-1D anatase TiO(2) nanostructures and on the photovoltaic performance of DSSCs have been investigated in detail. A power conversion efficiency of 5.81% has been obtained based on the prepared TiO(2) nanostructure photoelectrode 6.7 μm thick and commercial N719 dye, with a short-circuit current density of 13.3 mA cm(-2) , an open-circuit voltage of 810 mV, and a fill factor of 0.54. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Surfactant mediated one- and two-dimensional ZnO nanostructured thin films for dye sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Mummoorthi, M.; Rajendran, S.; Ravi, G.

    2015-01-01

    One-dimensional (1D) and two-dimensional (2D) nanostructured zinc oxide (ZnO) thin films were electrodeposited from aqueous zinc chloride on FTO glass substrates. The effects of organic surfactant such as cetyltrimethyl ammonium bromide (CTAB) and polyvinyl alcohol (PVA) on structural, morphological, crystal quality and optical properties of electrodeposited ZnO films were investigated. The x-ray diffraction pattern revealed that the prepared thin films were pure wutrzite hexagonal structure. The thin films deposited using organic surfactant in this work showed different morphologies such as nanoplatelet and flower. The hexagonal platelet and flower-like nanostructures were obtained in the presence of CTAB and PVA surfactant, respectively. The crystal quality and atomic vacancies of the prepared nanostructured thin films were investigated by micro Raman spectroscopic technique. The emission properties and optical quality of the films were studied by photoluminescence spectrometry. PEMA-LiClO4-EC gel polymer electrolyte has been used to replace the liquid electrolyte for reducing the leakage problem. Graphene counter electrode was used as an alternative for platinum electrode. Eosin yellow dye was used as a sensitizer. J-V characterizations were carried out for different 1D and 2D nanostructures. The nanoflower structure exhibited higher efficiency (η = 0.073%) than the other two nanostructures.

  5. Anthocyanin extracted from Hibiscus (Hibiscus rosa sinensis L.) as a photosensitizer on nanostructured-TiO2 dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ramelan, A. H.; Wahyuningsih, S.; Rosyida, N. A.; Supriyanto, E.; Saputro, S.; Hanif, Q. A.; Rinawati, L.

    2016-02-01

    Anthocyanin extracted from Hibiscus (Hibiscus rosa sinensis L) as a photosensitizer in nanostructured-TiO2 dye sensitized solar cells has been fabricated. Ultravisible visible absorption spectra of anthocyanin show an ability absorbing light in the visible region. While the nanostructed-TiO2 powder in this research was prepared by sol-gel method following annealled at a temperature of 600°C. Subsequently, the TiO2 nanostructures were characterized by XRD, XRF, and SEM. The difractogram X-ray results shown that TiO2 was built from f anatase and rutile phase. Element analysis of synthesized TiO2 by X-ray Fluorecence (XRF) shown the TiO2 content of 98,67 wt%. TiO2 layer prepared at different thickness showed the average size of cavity about 0.83 µm. These several thickness of solar cells were fabricated and were immersed into anthocyanin for 24 hours to gain sensitized TiO2 photoanode for Dye sensitised solar cells (DSSCs). These DSSCS performance were measured using I-V Keithley 2602A. The results exhibited that the sample with a TiO2 layer thickness of 4.75 ± 0.8 µm has the highest efficiency.

  6. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.

    PubMed

    Salvador, P; Hidalgo, M Gonzalez; Zaban, Arie; Bisquert, Juan

    2005-08-25

    The open-circuit voltage (V(oc)) dependence on the illumination intensity (phi0) under steady-state conditions in both bare and coated (blocked) nanostructured TiO2 dye-sensitized solar cells (DSSCs) is analyzed. This analysis is based on a recently reported model [Bisquert, J.; Zaban, A.; Salvador, P. J. Phys. Chem. B 2002, 106, 8774] which describes the rate of interfacial electron transfer from the conduction band of TiO2 to acceptor electrolyte levels (recombination). The model involves two possible mechanisms: (1) direct, isoenergetic electron injection from the conduction band and (2) a two-step process involving inelastic electron trapping by band-gap surface states and subsequent isoenergetic transfer of trapped electrons to electrolyte levels. By considering the variation of V(oc) over a wide range of illumination intensities (10(10) < phi0 < 10(16) cm(-2) s(-1)), three major regions with different values of dV(oc)/d phi0 can be distinguished and interpreted. At the lower illumination intensities, recombination mainly involves localized band-gap, deep traps at about 0.6 eV below the conduction band edge; at intermediate photon fluxes, recombination is apparently controlled by a tail of shallow traps, while, for high enough phi0 values, conduction band states control the recombination process. The high phi0 region is characterized by a slope of dV(oc)/d log phi0 congruent with 60 mV, which indicates a recombination of first order in the free electron concentration. The study, which was extended to different solar cells, shows that the energy of the deep traps seems to be an intrinsic property of the nanostructured TiO2 material, while their concentration and also the density ([symbol: see text]t approximately 10(18)-10(19) cm(-3)) and distribution of shallow traps, which strongly affects the shape of the V(oc) vs phi0 curves, change from sample to sample and are quite sensitive to the electrode preparation. The influence of the back-reaction of electrons

  7. Pt-free and efficient counter electrode with nanostructured CoNi2S4 for dye-sensitized solar cells

    PubMed Central

    Shi, Zhiwei; Deng, Kaimo; Li, Liang

    2015-01-01

    The counter electrode has a great influence on the performance of the dye-sensitized solar cells (DSSCs). The research and development of Pt-free counter electrode is becoming one of the hot areas in the field of DSSCs. Herein, we successfully synthesized a ternary metal sulfide (CoNi2S4) nanostructure on FTO substrate by hydrothermal method and investigated its application as counter electrode. The as-synthesized sample could exhibit better electrocatalystic property than that of Pt, and corresponding DSSCs have comparable conversion efficiency with typical Pt catalyzed cells. The easy synthesis, low cost and excellent electrocatalytic property may help the CoNi2S4 nanostructure stand out as an alternative counter electrode in DSSCs. PMID:25799125

  8. Pt-free and efficient counter electrode with nanostructured CoNi2S4 for dye-sensitized solar cells.

    PubMed

    Shi, Zhiwei; Deng, Kaimo; Li, Liang

    2015-03-23

    The counter electrode has a great influence on the performance of the dye-sensitized solar cells (DSSCs). The research and development of Pt-free counter electrode is becoming one of the hot areas in the field of DSSCs. Herein, we successfully synthesized a ternary metal sulfide (CoNi2S4) nanostructure on FTO substrate by hydrothermal method and investigated its application as counter electrode. The as-synthesized sample could exhibit better electrocatalystic property than that of Pt, and corresponding DSSCs have comparable conversion efficiency with typical Pt catalyzed cells. The easy synthesis, low cost and excellent electrocatalytic property may help the CoNi2S4 nanostructure stand out as an alternative counter electrode in DSSCs.

  9. Pt-free and efficient counter electrode with nanostructured CoNi2S4 for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shi, Zhiwei; Deng, Kaimo; Li, Liang

    2015-03-01

    The counter electrode has a great influence on the performance of the dye-sensitized solar cells (DSSCs). The research and development of Pt-free counter electrode is becoming one of the hot areas in the field of DSSCs. Herein, we successfully synthesized a ternary metal sulfide (CoNi2S4) nanostructure on FTO substrate by hydrothermal method and investigated its application as counter electrode. The as-synthesized sample could exhibit better electrocatalystic property than that of Pt, and corresponding DSSCs have comparable conversion efficiency with typical Pt catalyzed cells. The easy synthesis, low cost and excellent electrocatalytic property may help the CoNi2S4 nanostructure stand out as an alternative counter electrode in DSSCs.

  10. Dye-sensitized composite semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Tennakone, K.; Bandaranayake, P. K. M.; Jayaweera, P. V. V.; Konno, A.; Kumara, G. R. R. A.

    2002-04-01

    Understanding of the charge transport and recombination mechanisms of dye-sensitized solar cells based on semiconductor nanostructures is essential for the improvement of their performance. A great deal of information on these systems have been obtained from studies on a single material (mostly TiO 2 and to a lesser extent ZnO and SnO 2). We have conducted extensive measurements on composite dye-sensitized nanosturctures and found that the composite systems possess unusual properties. Dye-sensitized photoelectrochemical cells made from nanocrystalline films of some materials (e.g., SnO 2) yield comparatively small open-circuit voltages and energy and quantum conversion efficiencies, despite excellent dye-semiconductor interaction. However, on deposition of ultra-thin shells of insulators or high band gap semiconductors on the crystallites, a dramatic increase in the above parameters is observed. Outer shells were found to have insignificant or in most cases a negative effect on TiO 2 films. We explain the above findings on the basis of vast differences in the leakage rates of trapped electrons in different materials which is sensitive to the effective electron mass. Electrons injected to the conduction band in dye-sensitization enter into shallow traps from which they get thermally reemitted to the conduction band. The building up of the electron quasi-fermi level and transport depends on this process. The spread of the hydrogenic wave function of a trapped electron increases inverse exponentially with the effective mass so that the electron leakage and their recombination with acceptors ‘outside’ become severe when the crystallite size is comparable to the Bohr radius of the trapped electron. Such recombinations are effectively suppressed by deposition of thin films on the crystallites. Excited dye molecules anchored to the outer shell injects electrons to the conduction band via tunneling.

  11. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures.

    PubMed

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-03-07

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.

  12. The preparation and characterization of nanostructured TiO{sub 2}-ZrO{sub 2} mixed oxide electrode for efficient dye-sensitized solar cells

    SciTech Connect

    Kitiyanan, Athapol; Ngamsinlapasathian, Supachai; Pavasupree, Soropong; Yoshikawa, Susumu . E-mail: s-yoshi@iae.kyoto-u.ac.jp

    2005-04-15

    The preparation of nanostructured mixed metal oxide based on a sol-gel method with surfactant-assisted mechanism, and its application for dye-sensitized solar cell (DSSC) are reported. The mixed zirconia (ZrO{sub 2}) and titania (TiO{sub 2}) mesoporous powder possessed larger surface area than the corresponding titania. For the UV action spectra of unsensitized photochemical cell, the mixed zirconia/titania electrode can absorb UV light below 380nm, corresponding to band gap (E{sub g}) around 3.27eV, which is higher than that of pure component of titania (E{sub g}=3.2eV). Both of these improved properties, i.e., BET surface area and band gap, contributed to the improvement on a short-circuit photocurrent up to 11%, an open-circuit voltage up to 4%, and a solar energy conversion efficiency up to 17%, for the DSSC fabricated by mesoporous zirconia/titania mixed system when compared to the cell that was fabricated only by nanostructured TiO{sub 2}. The cell fabricated by 5{mu}m thick mixed TiO{sub 2}-ZrO{sub 2} electrode gave the short-circuit photocurrent about 13mA/cm{sup 2}, open-circuit voltage about 600 mV and the conversion efficiency 5.4%.

  13. One-dimensional hierarchical nanostructures of TiO(2) nanosheets on SnO(2) nanotubes for high efficiency solid-state dye-sensitized solar cells.

    PubMed

    Ahn, Sung Hoon; Kim, Dong Jun; Chi, Won Seok; Kim, Jong Hak

    2013-09-20

    Hierarchical nanostructures of TiO2 nanosheets on SnO2 nanotubes (SNT@TNS) are uniformly dispersed in an organized mesoporous (OM) TiO2 film with large pores, high porosity, and good interconnectivity. The solid-state dye sensitized solar cells (ssDSSCs) fabricated with 10 wt% SNT@TNS dispersed in a OM-TiO2 film show an energy conversion efficiency of 7.7% at 100 mW cm(-2) , which is one of the highest values for N719-based ssDSSCs and much larger than that of a randomly oriented TiO2 nanoparticles-based cell (4.0%).

  14. Our Expedition in Linear Neutral Platinum-Acetylide Complexes: The Preparation of Micro/nanostructure Materials, Complicated Topologies, and Dye-Sensitized Solar Cells.

    PubMed

    Xu, Lin; Yang, Hai-Bo

    2016-06-01

    During the past few decades, the construction of various kinds of platinum-acetylide complexes has attracted considerable attention, because of their wide applications in photovoltaic cells, non-linear optics, and bio-imaging materials. Among these platinum-acetylide complexes, the linear neutral platinum-acetylide complexes, due to their attractive properties, such as well-defined linear geometry, synthetic accessibility, and intriguing photoproperties, have emerged as a rising star in this field. In this personal account, we will discuss how we entered the field of linear neutral platinum-acetylide chemistry and what we found in this field. The preparation of various types of linear neutral platinum-acetylide complexes and their applications in the areas of micro/nanostructure materials, complicated topologies, and dye-sensitized solar cells will be summarized in this account.

  15. Double-sided brush-shaped TiO2 nanostructure assemblies with highly ordered nanowires for dye-sensitized solar cells.

    PubMed

    Zha, Chenyang; Shen, Liming; Zhang, Xiaoyan; Wang, Yifeng; Korgel, Brian A; Gupta, Arunava; Bao, Ningzhong

    2014-01-08

    We describe a seeded hydrothermal process for the growth of unique double-sided brush-shaped (DSBS) TiO2 nanostructure assemblies consisting of highly ordered rutile nanowires vertically aligned around an annealed TiO2 nanoparticle layer. The annealed TiO2 nanoparticle layer seeds the nanowire growth and also supports the DSBS structure. The morphology of the DSBS TiO2 nanostructure depends on the hydrothermal reaction time. The diameter of the nanowires is about 6.6 nm, and with increasing reaction time from 1 to 8 h the nanowire length increases from 0.6 to 6.2 μm, whereas the thickness of the nanoparticle layer decreases from 4.3 to 2.8 μm. These free-standing nanowire arrays provide large internal surface area, which is essential for minimizing carrier recombination in high performance photovoltaic devices. Furthermore, the nanowire architecture can help increase the rate of charge transport as compared to particulate films because of lower concentration of grain boundaries. The power conversion efficiency of backside (DSBS TiO2/FTO photoanode) illuminated dye-sensitized solar cells fabricated using the DSBS TiO2 nanostructure assembly is found to be depended on the nanowire length. A cell fabricated using 15.2 μm thick nanostructures sensitized by N719 has a short-circuit current density of 12.18 mA cm(-2), 0.78 V open circuit potential, and a 0.59 filling factor, yielding a maximum power conversion efficiency of 5.61% under AM 1.5 illumination.

  16. TiO2 Nanostructure Synthesized by Sol-Gel for Dye Sensitized Solar Cells as Renewable Energy Source

    NASA Astrophysics Data System (ADS)

    Ramelan, A. H.; Wahyuningsih, S.; Saputro, S.; Supriyanto, E.; Hanif, Q. A.

    2017-02-01

    The use of renewable materials as a constituent of a smart alternative energy such as the use of natural dyes for light harvesting needs to be developed. Synthesis of anatase titanium dioxide (TiO2) and fabrication Dye-Sensitized Solar Cell (DSSC) using dye-based of anthocyanin from purple sweet potato (Ipomoea batatas L.) as a photosensitizer had been done. Synthesis TiO2 through sol-gel process with the addition of triblock copolymer Pluronic F127 template was controlled at pH 3 whereas calcination was carried out at a temperature of 500 °C, 550 °C and 600 °C. The obtained TiO2 were analyzed by XRD, SAA, and SEM. The conclusion is anatase TiO2 obtained until annealing up to 600 °C. Self-assembly Pluronic F127 triblock copolymer capable of restraining the growth of TiO2 crystals. Retention growth of TiO2 mesoporous produces material character that can be used as builders photoanode DSSC with natural sensitizer anthocyanin from purple sweet potatoes. Based on the analysis of X-ray diffraction patterns and surface area analyser, the higher the calcination temperature the greater the size of the anatase crystals is obtained, however, the smaller its surface area. Purple sweet potato anthocyanin’s dyed on to TiO2 was obtained a good enough performance for DSSC’s and gain the optimum performance from DSSC’s system built with mesoporous TiO2 annealed 550 °C using flavylium form anthocyanin.

  17. Incorporation of graphenes in nanostructured TiO(2) films via molecular grafting for dye-sensitized solar cell application.

    PubMed

    Tang, Yong-Bing; Lee, Chun-Sing; Xu, Jun; Liu, Zeng-Tao; Chen, Zhen-Hua; He, Zhubing; Cao, Yu-Lin; Yuan, Guodong; Song, Haisheng; Chen, Limiao; Luo, Linbao; Cheng, Hui-Ming; Zhang, Wen-Jun; Bello, Igor; Lee, Shuit-Tong

    2010-06-22

    This paper presents a systematic investigation on the incorporation of chemical exfoliation graphene sheets (GS) in TiO(2) nanoparticle films via a molecular grafting method for dye-sensitized solar cells (DSSCs). By controlling the oxidation time in the chemical exfoliation process, both high conductivity of reduced GS and good attachment of TiO(2) nanoparticles on the GS were achieved. Uniform GS/TiO(2) composite films with large areas on conductive glass were prepared by electrophoretic deposition, and the incorporation of GS significantly improved the conductivity of the TiO(2) nanoparticle film by more than 2 orders of magnitude. Moreover, the power conversion efficiency for DSSC based on GS/TiO(2) composite films is more than 5 times higher than that based on TiO(2) alone, indicating that the incorporation of GS is an efficient means for enhancing the photovoltaic (PV) performance. The better PV performance of GS/TiO(2) DSSC is also attributed to the better dye loading of GS/TiO(2) film than that of TiO(2) film. The effect of GS content on the PV performances was also investigated. It was found that the power conversion efficiency increased first and then decreased with the increasing of GS concentration due to the decrease in the transmittance at high GS content. Further improvements can be expected by fully optimizing fabrication conditions and device configuration, such as increasing dye loading via thicker films. The present synthetic strategy is expected to lead to a family of composites with designed properties.

  18. Holographic modification of TiO{sub 2} nanostructure for enhanced charge transport in dye-sensitized solar cell

    SciTech Connect

    Lee, Jinsoo; Yoon, Junghwan; Jin, Minhea; Lee, Myeongkyu

    2012-08-15

    We show that the photocurrent and energy conversion efficiency of dye-sensitized solar cells can be greatly enhanced with holographic modification to the morphology of TiO{sub 2} electrode. The nanoporous electrode coated onto conducting glass was irradiated by three interfering laser beams at 1064 nm incident from the backside of the substrate. This generated two-dimensional periodic pillars of higher density in the electrode, through which the photoexcited electrons could be extracted more effectively. The cells fabricated with modified electrodes exhibited average photocurrent and efficiency of 17.14 mA/cm{sup 2} and 9.03%, while 14.91 mA/cm{sup 2} and 7.83% were obtained from the reference cells. It was attributed to the enhanced charge transport accompanied by the reduction of internal resistance of the electrode.

  19. Holographic modification of TiO2 nanostructure for enhanced charge transport in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Lee, Jinsoo; Yoon, Junghwan; Jin, Minhea; Lee, Myeongkyu

    2012-08-01

    We show that the photocurrent and energy conversion efficiency of dye-sensitized solar cells can be greatly enhanced with holographic modification to the morphology of TiO2 electrode. The nanoporous electrode coated onto conducting glass was irradiated by three interfering laser beams at 1064 nm incident from the backside of the substrate. This generated two-dimensional periodic pillars of higher density in the electrode, through which the photoexcited electrons could be extracted more effectively. The cells fabricated with modified electrodes exhibited average photocurrent and efficiency of 17.14 mA/cm2 and 9.03%, while 14.91 mA/cm2 and 7.83% were obtained from the reference cells. It was attributed to the enhanced charge transport accompanied by the reduction of internal resistance of the electrode.

  20. Hybrid Titania Photoanodes with a Nanostructured Multi-Layer Configuration for Highly Efficient Dye-Sensitized Solar Cells.

    PubMed

    Wu, Hui-Ping; Lan, Chi-Ming; Hu, Jyun-Yu; Huang, Wei-Kai; Shiu, Jia-Wei; Lan, Zih-Jian; Tsai, Cheng-Ming; Su, Chun-Hsien; Diau, Eric Wei-Guang

    2013-05-02

    To construct a hybrid titania photoanode containing nanoparticles and nanorods of varied size in a multilayer (ML) configuration for dye-sensitized solar cells, the essence of our ML design is a bilayer system with additional layers of nanorods of well-controlled size inserted between the transparent and the scattering layers to enhance the light-harvesting capability for photosensitizers with small absorptivity, such as Z907. We measured charge-extraction and intensity-modulated photoelectric spectra to show the advantages of one-dimensional nanorods with an improved electron-transport property and an upward shift of the potential band edge; a favorable ML configuration was constructed to have a cascade potential feature for feasible electron transport from long nanorods, to normal nanorods, to small nanoparticles. On the basis of the ML system reported herein, we demonstrate how the performance of a Z907 device is improved to attain η ∼10%, which is a milestone for its future commercialization.

  1. The effect of substrate temperature on the spray-deposited TiO2 nanostructured films for dye-sensitized solar cells.

    PubMed

    Hossain, Md Faruk; Takahashi, Takakazu

    2011-04-01

    The nanostructured TiO2 films have deposited on SnO2:F (FTO) coated glass substrate by spray pyrolysis technique at different substrate temperatures of 200-500 degrees C. The structural, surface morphological and optical properties of TiO2 films significantly vary with the substrate temperature. The surface of the TiO2 films deposited at 400 degrees C shows the nanoflakes and short nanorods (approximately 130 nm) like structures while the TiO2 films prepared at 500 degrees C shows only the nanoflakes like structures. The band gap of the TiO2 films prepared at higher temperatures (300-500 degrees C) becomes narrow due to presence the rutile phases in their crystal structure. Ruthenium (II) complex as a dye, KI/I2 as an electrolyte and carbon on FTO glass as a counter electrode has used to fabricate the dye-sensitized solar cell (DSC). The TiO2 film deposited at 400 degrees C has showed the best photovoltaic performance in DSC with the efficiency of 3.81%, the photovoltage of 773 mV, the photocurrent of 8.34 mA/cm2, and the fill factor of 56.17%. The photovoltage of the DSC increases with the increase of substrate temperature during the deposition of TiO2 films. Moreover, all the DSCs exhibit reasonably high fill factor value.

  2. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures

    NASA Astrophysics Data System (ADS)

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-02-01

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb

  3. Nanostructured TiO2 films for dye-sensitized solar cells prepared by the sol-gel method.

    PubMed

    Jin, Young Sam; Kim, Kyung Hwan; Park, Sang Joon; Yoon, Hyon Hee; Choi, Hyung Wook

    2011-12-01

    TiO2 films were prepared on glass substrates using the sol-gel process for a dye-sensitized solar cell application. The TiO2 sol was prepared using hydrolysis/polycondensation. Titanium (IV) Tetra Isopropoxide (TTIP) was used as precursor and Nitric acid (HNO3) was used as a catalyst for the peptization. The crystal structure and morphology of the prepared materials were characterized by XRD, and an SEM. The observations confirmed the nanocrystalline nature of the TiO2. The reaction parameters, such as the catalyst concentrations, the calcination time, and the calcination temperature were varied during the synthesis in order to achieve nanosize TiO2 particles. The prepared TiO2 particles were coated onto FTO glass using a screen printing technique. The prepared TiO2 films were characterized by UV-vis. The TiO2 particles calcinated at low temperatures showed an anatase phase they grew into a rutile phase when the calcination temperature increased. The size and structure of the TiO2 particles were adjusted to specific surface areas. It was found that the conversion efficiency of the DSSC was highly affected by the properties of the TiO2 particles.

  4. Optical properties and dye-sensitized solar cell applications of ZnO nanostructures prepared by microwave combustion synthesis.

    PubMed

    Manikandan, A; Vijaya, J Judith; Ragupathi, C; Kennedy, L John

    2014-03-01

    In the present study, ZnO nanoparticles (ZNPs) and nanoflakes (ZNFs) were prepared by conventional combustion method and microwave combustion method, respectively. The structural phase and morphology were investigated by using X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM) and high resolution transmission electron microscopy (HR-TEM). The crystallite size was calculated using Scherrer formula, and it lies in the range of 20-21 nm for ZNFs and 23-28 nm for ZNPs. The elemental analysis was investigated by energy dispersive X-ray analysis (EDX). Also, absorbance and emission spectra were measured by using diffuse reflectance (DRS) and photoluminescence (PL) studies. The band gap was measured using Kubelka-Munk model and it shows 3.47 eV for ZNFs and 3.26 eV for ZNPs. A fill factor (FF) of 0.57, short-circuit current (J(sc)) of 8.02 mA/cm2, open-circuit voltage (V(oc)) of 0.70 V and an overall light to electricity conversion efficiency (eta) of 1.62% were obtained from the dye-sensitized solar cell (DSSCs) based on ZNFs.

  5. Facile one-step synthesis of highly branched ZnO nanostructures on titanium foil for flexible dye-sensitized solar cells.

    PubMed

    Zhang, Juntao; He, Meng; Fu, Nianqing; Li, Jianye; Yin, Xiong

    2014-04-21

    Highly branched ZnO (HBZ) nanostructures were prepared on titanium (Ti) foil using a facile, one-step vapor confined chemical vapor deposition technique. The as-prepared ZnO layer showed a good connection with the Ti foil even after 50 bending cycles, and the resultant HBZ/Ti electrode possessed high bendability. The HBZ/Ti electrode was composed of four different layers, including a highly branched ZnO layer, a ZnO compact layer, a Ti-Zn alloy layer and Ti foil. The good adhesion of the as-prepared ZnO layer to Ti foil was ascribed to the formation of a Ti-Zn alloy layer and a ZnO compact layer during the growth process. A flexible dye-sensitized solar cell was assembled using the D149-sensitized HBZ/Ti as a photoanode, and a power conversion efficiency (PCE) of 3.3% was achieved with an open-circuit photovoltage of 0.664 V, a short-circuit current density of 7.53 mA cm(-2), and a fill factor of 0.66 measured under rear-side illumination (AM 1.5, 100 mW cm(-2)). The power conversion efficiency of the device remained at 92% of the initial value even after 50 bending cycles. These results indicate that the vapor confined chemical vapor deposition method which does not necessarily use any catalyst or seed is a facile, one-step approach to obtain highly branched ZnO nanostructures with high bendability on Ti foil. The tight bonding between the highly branched ZnO layer and Ti substrate by a Ti-Zn alloy layer and a ZnO compact layer makes the vapor confined CVD method very attractive for the preparation of high-performance flexible photoanodes.

  6. Facile one-step synthesis of highly branched ZnO nanostructures on titanium foil for flexible dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Juntao; He, Meng; Fu, Nianqing; Li, Jianye; Yin, Xiong

    2014-03-01

    Highly branched ZnO (HBZ) nanostructures were prepared on titanium (Ti) foil using a facile, one-step vapor confined chemical vapor deposition technique. The as-prepared ZnO layer showed a good connection with the Ti foil even after 50 bending cycles, and the resultant HBZ/Ti electrode possessed high bendability. The HBZ/Ti electrode was composed of four different layers, including a highly branched ZnO layer, a ZnO compact layer, a Ti-Zn alloy layer and Ti foil. The good adhesion of the as-prepared ZnO layer to Ti foil was ascribed to the formation of a Ti-Zn alloy layer and a ZnO compact layer during the growth process. A flexible dye-sensitized solar cell was assembled using the D149-sensitized HBZ/Ti as a photoanode, and a power conversion efficiency (PCE) of 3.3% was achieved with an open-circuit photovoltage of 0.664 V, a short-circuit current density of 7.53 mA cm-2, and a fill factor of 0.66 measured under rear-side illumination (AM 1.5, 100 mW cm-2). The power conversion efficiency of the device remained at 92% of the initial value even after 50 bending cycles. These results indicate that the vapor confined chemical vapor deposition method which does not necessarily use any catalyst or seed is a facile, one-step approach to obtain highly branched ZnO nanostructures with high bendability on Ti foil. The tight bonding between the highly branched ZnO layer and Ti substrate by a Ti-Zn alloy layer and a ZnO compact layer makes the vapor confined CVD method very attractive for the preparation of high-performance flexible photoanodes.

  7. Screen-Printing of ZnO Nanostructures from Sol-Gel Solutions for Their Application in Dye-Sensitized Solar Cells.

    PubMed

    Sarkar, Kuhu; Braden, Erik V; Bonke, Shannon A; Bach, Udo; Müller-Buschbaum, Peter

    2015-08-24

    Diblock copolymers have been used in sol-gel synthesis to successfully tailor the nanoscale morphology of thin ZnO films. As the fabrication of several-micron-thick mesoporous films such as those required in dye-sensitized solar cells (DSSCs) was difficult with this approach, we exploited the benefits of diblock-copolymer-directed synthesis that made it compatible with screen printing. The simple conversion of the diblock copolymer ZnO precursor sol to a screen-printing paste was not possible as it resulted in poor film properties. To overcome this problem, an alternative route is proposed in which the diblock copolymer ZnO precursor sol is first blade coated and calcined, then converted to a screen-printing paste. This allows the benefits of diblock-copolymer-directed particle formation to be compatible with printing methods. The morphologies of the ZnO nanostructures were studied by SEM and correlated with the current density-voltage characteristics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dye- and quantum dot-sensitized solar cells based on nanostructured wide-bandgap semiconductors via an integrated experimental and modeling study

    NASA Astrophysics Data System (ADS)

    Xin, Xukai

    Dye-sensitized solar cells (DSSCs) and quantum dot-sensitized solar cells (QDSSCs) are two promising alternative, cost-effective concepts for solar-to-electric energy conversion that have been offered to challenge conventional Si solar cells over the past decade. The configuration of a DSSC or a QDSSC consists of sintered TiO2 nanoparticle films, ruthenium-based dyes or quantum dots (QDs) (i.e., sensitizers), and electrolytes. Upon the absorption of photons, the dyes or QDs generate excitons (i.e., electron-hole pairs). Subsequently, the electrons inject into the TiO2 photoanode to generate photocurrent; scavenged by a redox couple, holes transport to the cathode. The overall power conversion efficiency (PCE) of a DSSC or QDSSC is dictated by the light harvest efficiency, quantum yield for charge injection, and charge collection efficiency at the electrodes. The goal of our research is to understand the fundamental physics and performance of DSSCs and QDSSCs with improved PCE at the low cost based on rational engineering of TiO2 nanostructures, sensitizers, and electrodes through an integrated experimental and modeling study. In this presentation, I will discuss three aspects that I have accomplished over the last several years. (1) Effects of surface treatment and structural modification of photoanode on the performance of DSSCs. First, our research indicates that the surface treatment with both TiCl4 and oxygen plasma yields the most efficient dye-sensitized TiO2-nanoparticle solar cells. A maximum PCE is achieved with a 21 microm thick TiO2 film; the PCE further increases to 8.35% after TiCl4 and O 2 plasma treatments, compared to the untreated TiO2 ( PCE = 3.86%). Second, we used a layer of TiO2 nanoparticle film coated on the FTO glass, and a bilayer of TiO2nanoparticle/freestanding TiO2 nanotube film deposited on the FTO glass as photoanodes. The J˜V parameter analysis acquired by equivalent circuit model simulation reveals that nanotubular structures are

  9. Effect of growth solution concentration on the performance of gallium doped ZnO nanostructures dye sensitized solar cells (DSSCs)

    NASA Astrophysics Data System (ADS)

    Iwantono, I.; Tugirin, S.; Anggelina, F.; Awitdrus, Taer, Erman; Roza, L.; Umar, A. A.

    2016-02-01

    This paper reports the synthesis of gallium doped ZnO nanostructures via seed mediated growth hydrothermal technique and their application as photo-anode in DSSC. ZnO nanostructures have been grown on Flourin Tin Oxide (FTO). The precursor used in this research was zinc-nitrate-hexahydrate (Zn (NO3)2.6H2O) and hexa-metylene-tetramine (HMT) was chosen as surfactant. The growth process was carried out at various precursor solution concentrations, 0.1, 0.2, 0.3 and 0.4 M at 90°C for 8 hours. The growth solution was then doped with 1% wt gallium nitrate hydrate. The grown ZnO nanostructures were characterized by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray (EDX) and UV-Vis Spectroscopy. The samples were crystalline with wurtzite-hexagonal and their crystal orientation was (100), (002), (101), and (110). The morphological shape of the samples changed with the concentration of the precursor. The optical absorption decreased as the concentration increased. As can be seen from SEM images that the diameter of the particles ranged from 95 to 500 nm and the thickness ranged from 1540 to 3640 nm (1.54-3.64 µm). The best performance of DSSC was obtained from the sample utilizing the ZnO nanostructures prepared at 0.1 M precursor, with their photovoltaic parameters were the Jsc of 2.190 mA cm-2, FF of 0.39, and η of 0.41%, respectively.

  10. Nanostructure Developments of TiO2 Nanocrystals and Aerogels and Their Dye-Sensitized Solar Cell Application.

    PubMed

    Kim, Chang-Yeoul; Park, Yu-Sik

    2015-07-01

    We synthesized TiO2 nanoparticles (TPs) as a reference via hydrothermal method and also TiO2 aerogels (TAs) via CO2 supercritical drying method. We investigated crystal phase transformation behavior of TPs and TAs with temperature. As-prepared TPs are anatase and rutile phase transformation from anatase starts at 600 °C and was complete at 700 °C. However, TAs are amorphous phase until 300 °C and the crystallization to anatase occurs at 400 °C, and remains anantase phase until 700 °C. At the results of nitrogen adsorption and desorption analyses, TPs with specific surface area of 209 m2/g at 100 °C showed the decrease of the specific surface area and pore volume with increasing temperature and 95% of decrease at 700 °C. TAs showed higher specific surface area, 498 m2/g at 100 °C, and the decreasing trend according to temperature is similar with those of TPs. We prepared three types of photoelectrodes, TPs, TAs, and TATPs (1:1 TAs and TPs composite photoelectrode). After results of DSC photocurrent conversion efficiency measurements of the three type cells, we found that TATPs showed the improved cell efficiency by 1% point, compared with a reference TPs below 15 micrometer thickness. In conclusion, the introduction of nanoporous TAs can improve the photocurrent conversion efficiency due to their high specific surface area for high dye adsorption without degrading of electron transfer.

  11. Feasibility of solar-pumped dye lasers

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1987-01-01

    Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.

  12. Key Physical Mechanisms in Nanostructured Solar Cells

    SciTech Connect

    Dr Stephan Bremner

    2010-07-21

    The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

  13. A Comparative Study of Nanostructured TiO2, ZnO and Bilayer TiO2/ZnO Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Rani, Mamta; Tripathi, S. K.

    2015-04-01

    Titanium dioxide (TiO2), Zinc oxide (ZnO) and bilayer TiO2/ZnO (TZO) based cells have been developed and sensitized with five organic dyes and one cocktail dye composed of five dyes. Photovoltaic performance of TiO2 and ZnO solar cell sensitized with six dyes is compared to that of bilayer TZO cells. The forward current is found to increase with applied voltage in the range V ≤ 0.4 V, which is dominated by thermionic emission, whereas in 0.4 ≤ V ≤ 0.7 V, the current transport is due to space charge-limited current controlled by exponential trap distribution in all devices. The combined properties of the materials enhance the efficiency of composite TZO cells. TiO2 permits the formation of an energy barrier at the ZnO electrode/electrolyte interface, which reduces the back electron transfer from the conduction band of ZnO to I3 - in the electrolyte. Also, due to the TiO2 layer on the ZnO, the latter forms a compact layer between flourine-doped tin oxide (FTO)/TiO2 which benefits the fast electron transfer from TiO2 to ZnO to FTO glass. This reduces the charge recombination occurring at the ZnO/FTO interface leading to higher open circuit voltage ( V oc), higher short circuit current ( J sc), lower series resistance ( R s), and in turn higher efficiency in TZO solar cells as compared to ZnO cells. Among the six dyes, Eosin-Y and Rose Bengal dye gave the best performance as sensitizers with TZO.

  14. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  15. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  16. Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    PubMed Central

    2009-01-01

    The current global energy problem can be attributed to insufficient fossil fuel supplies and excessive greenhouse gas emissions resulting from increasing fossil fuel consumption. The huge demand for clean energy potentially can be met by solar-to-electricity conversions. The large-scale use of solar energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells. Nanostructured materials have offered new opportunities to design more efficient solar cells, particularly one-dimensional (1-D) nanomaterials for enhancing solar cell efficiencies. These 1-D nanostructures, including nanotubes, nanowires, and nanorods, offer significant opportunities to improve efficiencies of solar cells by facilitating photon absorption, electron transport, and electron collection; however, tremendous challenges must be conquered before the large-scale commercialization of such cells. This review specifically focuses on the use of 1-D nanostructures for enhancing solar cell efficiencies. Other nanostructured solar cells or solar cells based on bulk materials are not covered in this review. Major topics addressed include dye-sensitized solar cells, quantum-dot-sensitized solar cells, and p-n junction solar cells.

  17. Color-sensitive photoconductivity of nanostructured ZnO/fast green dye hybrid films

    NASA Astrophysics Data System (ADS)

    Rani, Mamta; Tripathi, S. K.

    2013-06-01

    Nanostructured ZnO/dye hybrid films prepared by sol gel method have been investigated in conductivity and photoconductivity measurements in view of applications in dye-sensitized solar cells (DSSC). The absorption of ZnO film sensitized by Fast Green dye (FGF) has been studied by UV spectroscopy which indicates that after the dye is adsorbed on the ZnO electrode, its absorption spectra showed red-shift in the peak position compared to the absorbance spectra of dye in ethanol. The films, in which dye molecules are located within the ZnO crystals, are found to show higher sensitivity to illumination with visible light in photoconductivity measurements due to a high proportion of surface dye molecules are being excited by π-electrons acting as sensitizers.

  18. Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Hossein Habibi, Mohammad; Askari, Elham; Habibi, Mehdi; Zendehdel, Mahmoud

    2013-03-01

    Zinc zirconate (ZnZrO3) (ZZ), zinc oxide (ZnO) (ZO) and zirconium oxide (ZrO2) (ZRO) nano-particles were synthesized by simple sol-gel method. ZZ, ZO and ZRO nano-particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectrum (DRS). Nanoporous ZZ, ZO and ZRO thin films were prepared doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in dye sensitized solar cells (DSSC). Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)3](PF6)2, [Co(pby)3](PF6)3, LiClO4, and 4-tert-butylpyridine (TBP). The properties of DSSC have been studied by measuring their short-circuit photocurrent density (Jsc), open-circuit voltage (VOC) and fill factor (ff). The application of ZnZrO3 as working electrode produces a significant improvement in the fill factor (ff) of the dye-sensitized solar cells (ff = 56%) compared to ZnO working electrode (ff = 40%) under the same condition.

  19. Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell.

    PubMed

    Hossein Habibi, Mohammad; Askari, Elham; Habibi, Mehdi; Zendehdel, Mahmoud

    2013-03-01

    Zinc zirconate (ZnZrO(3)) (ZZ), zinc oxide (ZnO) (ZO) and zirconium oxide (ZrO(2)) (ZRO) nano-particles were synthesized by simple sol-gel method. ZZ, ZO and ZRO nano-particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectrum (DRS). Nanoporous ZZ, ZO and ZRO thin films were prepared doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in dye sensitized solar cells (DSSC). Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)(3)](PF(6))(2), [Co(pby)(3)](PF(6))(3), LiClO(4), and 4-tert-butylpyridine (TBP). The properties of DSSC have been studied by measuring their short-circuit photocurrent density (Jsc), open-circuit voltage (VOC) and fill factor (ff). The application of ZnZrO(3) as working electrode produces a significant improvement in the fill factor (ff) of the dye-sensitized solar cells (ff=56%) compared to ZnO working electrode (ff=40%) under the same condition.

  20. Dye-sensitized solar cells with natural dyes extracted from plant seeds

    NASA Astrophysics Data System (ADS)

    El-Ghamri, Hatem S.; El-Agez, Taher M.; Taya, Sofyan A.; Abdel-Latif, Monzir S.; Batniji, Amal Y.

    2014-12-01

    The application of natural dyes extracted from plant seeds in the fabrication of dye-sensitized solar cells (DSSCs) has been explored. Ten dyes were extracted from different plant seeds and used as sensitizers for DSSCs. The dyes were characterized using UV-Vis spectrophotometry. DSSCs were prepared using TiO2 and ZnO nanostructured mesoporous films. The highest conversion efficiency of 0.875 % was obtained with an allium cepa (onion) extract-sensitized TiO2 solar cell. The process of TiO2-film sintering was studied and it was found that the sintering procedure significantly affects the response of the cell. The short circuit current of the DSSC was found to be considerably enhanced when the TiO2 semiconducting layer was sintered gradually.

  1. Magnetron sputtering in the creation of photonic nanostructures derived from Sasakia Charonda Formosana-butterfly wings for applied in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Niu, Haihong; Zhou, Ru; Cheng, Cong; Zhang, Gonghai; Hu, Yu; Huang, Bin; Zhang, Shouwei; Shang, Xin; Xia, Mei; Xu, Jinzhang

    2016-09-01

    Creating new functional materials derived from the structures seen on butterfly wings has achieved interest in a variety of research topics. However, there need a concision approach could result in a high-quality, precise, and convenient process for the fabrication of complex nanostructures replication with unique functionalities based on the butterfly wings. Here we developed a pithy approach based on a magnetron sputtering metal Ti process for biotemplating used to refine hierarchically porous titanium dioxide photonic crystal nanostructures (TiO2sbnd PCN), themselves derived from nanostructures present on the wings of Sasakia Charonda Formosana (S. Charonda) butterflies. For the first time, the TiO2sbnd PCN were deposited on the top of the P25 active layer and were used to fabricate DSSCs as the light-scattering layers of photoanodes with power conversion efficiencies of up to 8.7%. Remarkably, a much enhanced photocurrent density and a prominent photoelectrochemical conversion capability have been achieved, which are exceeding most of the previously reported photoanodes as well as a similar butterflies replication-based device structure. Our study suggests many exciting opportunities of developing artificially engineered butterfly wing-based solar-to-fuel conversion.

  2. Fruit based Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Ung, M. C.; Sipaut, C. S.; Dayou, J.; Liow, K. S.; Kulip, J.; Mansa, R. F.

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) was first discovered in 1991 by O’regan and Gratzel. This new type of solar cell was reported to have lower production cost with efficiency as high as 12% which is comparable to conventional silicon solar cell. Initially, it uses ruthenium dye as light sensitizer for the operation. However, DSSC with ruthenium dyes are facing environment friendly issues due to the toxic chemicals and costly purification in processing ruthenium dye. Regardless of the poor performance in DSSC, natural dyes which are easy to prepare, cheap and environmental friendly still appear to be an alternative as dye sensitizer. In this study, dye sensitized solar cells (DSSCs) were fabricated using anthocyanin source dyes extracted from several local fruits. All the extracts absorb a wide range of the visible light and ultraviolet spectrum. Therefore, all of the natural dyes show light absorption properties which is important for a dye sensitizer. A DSSC is comprised of conductive substrate, nanoporous semiconductor TiO2 layer, dye sensitizer, electrolyte with redox couple and a counter electrode with catalyst. In this study, the effect of different light source and different counter electrode are been investigated. However, it is vital to know that further research need to do more on the locally Borneo sourced dyes to evaluate and enhance their performance in Dye Sensitized Solar Cell.

  3. Surface modified TiO2 nanostructure with 3D urchin-like morphology for dye-sensitized solar cell application.

    PubMed

    Shin, Seong Sik; Kim, Dong Wook; Lee, Sangwook; Cho, In-Sun; Kim, Dong Hoe; Park, Jong Hoon; Hong, Kug Sun

    2012-02-01

    Three-dimensional (3D) urchin-like rutile TiO2 powders were synthesized by a mild hydrothermal method without any templates. An individual urchin-like TiO2 powder consists of self-assembled nanorods with a length of about 150 nm and width of about 10 nm. Additionally, the urchin-like TiO2 nanopowders were coated with an ultra-thin ZnO layer in order to modify the surface properties of the nanopowders, and the ZnO layer was confirmed by high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analysis. The ZnO-modified TiO2 was used as a photoelectrode of a dye-sensitized solar cell (DSSC) and the solar cell performances were investigated. In comparison with bare TiO2, ZnO-modified TiO2 improved the photovoltaic performances, i.e., energy conversion efficiency, open circuit voltage, and short circuit current were increased. The higher DSSC performance of ZnO-modified TiO2 was attributed to its higher dye loading and lower charge recombination rate.

  4. Facile synthesis of Zn1-xCoxO/ZnO core/shell nanostructures and their application to dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Manthina, Venkata; Agrios, Alexander G.

    2017-04-01

    Heterostructures consisting of Co-doped ZnO nanorod cores encased in an undoped ZnO shell were successfully synthesized to serve as photoanodes for dye-sensitized solar cells (DSSCs) by a two-step chemical bath deposition (CBD) technique. This yields a highly favorable structure in which electrons injected from the dye into the ZnO then step down in energy into the Co-doped core, where the electron is transported to the collector while the ZnO shell acts as a barrier to recombination with the electrolyte. Incorporation of the core/shell structures into DSSCs resulted in large improvements in photocurrent and photovoltage in comparison to pure ZnO nanorod-based DSSCs. SEM and XRD characterization indicate incorporation of the Co2+ into the ZnO matrix, without separation of the Co into other phases, providing no energy barriers. In addition, the ability of these heterostructures to reduce recombination rates in redox couples with fast recombination rates was probed by comparing DSSC device performance in both iodide/triiodide-based and ferrocene/ferrocenium-based electrolytes.

  5. Improved dye-sensitized solar cell with a ZnO nanotree photoanode by hydrothermal method.

    PubMed

    Kuo, Shou-Yi; Yang, Jui-Fu; Lai, Fang-I

    2014-01-01

    This study investigated the influence of ZnO nanostructures on dye adsorption to increase the photovoltaic conversion efficiency of solar cells. ZnO nanostructures were grown in both tree-like and nanorod (NR) arrays on an AZO/FTO film structure by using a hydrothermal method. The results were observed in detail using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM), UV-visible spectrophotometry, electrochemical impedance spectroscopy, and solar simulation. The selective growth of tree-like ZnO was found to exhibit higher dye adsorption loading and conversion efficiency than ZnO NRs. The multiple 'branches' of 'tree-like nanostructures' increases the surface area for higher light harvesting and dye loading while reducing charge recombination. These improvements result in a 15% enhancement in power conversion. The objective of this study is to facilitate the development of a ZnO-based dye-sensitized solar cell.

  6. Nanostructured Materials for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Castro, Stephanie; Fahey, S.; Gennett, T.; Tin, P.

    2003-01-01

    The use of both inorganic and organic nanostructured materials in producing high efficiency photovoltaics is discussed in this paper. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of semiconductor quantum dots in an ordinary p-i-n solar cell. In addition, it has also recently been demonstrated that quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. A similar improvement in these types of cells has also been observed by employing single wall carbon nanotubes. This relatively new carbon allotrope may assist both in the disassociation of excitons as well as carrier transport through the composite material. This paper reviews the efforts that are currently underway to produce and characterize these nanoscale materials and to exploit their unique properties.

  7. Enhancement of Spectral Response of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Chang, Shuai

    ruthenium-based/organic dyes for co-sensitized DSSCs are also investigated. Another approach is to increase light utility in DSSCs exploiting surface plasmon resonance (SPR) of noble metal nanostructures (e.g. Au, Ag). In this thesis, I will show that the strong longitudinal plasmonic absorption of Au nanorods (NRs) can be used to increase the low-photon energy sunlight harvesting in DSSCs, broadening strong light response of the devices. In specific, a remarkable improvement in photocurrent generation at 600-720 nm is achieved. This enhancement mechanism is anticipated to be applied to other kind of DSSCs with various dye molecules. In another approach, AuNRs/TiO2 core-shell nanostructures are employed as scattering layer for plasmon-enhanced light harvesting in DSSCs and also obtained positive results. Evolved from DSSCs, perovskite solar cells (PSCs) now become a new favorite in the field of photovoltaics. An intrinsic problem of this kind of solar cells is the use of lead based materials, which is of high toxicity and prohibited by the European Union and some other countries. I have conducted some fundamental research for lead-free PSCs using tin-based perovskite and have observed a surface plasmon resonance absorption of the organometal perovskite film of CH3NH3SnI3, which has potential applications for IR-absorption in the future solar photovoltaics. I believe the improved understanding on the co-sensitization mechanisms and the plasmonic effect to broaden the spectral response in DSSCs are luciferous for the design and fabrication of the new generation solar cells with high-efficiency and low-cost.

  8. Nanostructured organic and hybrid solar cells.

    PubMed

    Weickert, Jonas; Dunbar, Ricky B; Hesse, Holger C; Wiedemann, Wolfgang; Schmidt-Mende, Lukas

    2011-04-26

    This Progress Report highlights recent developments in nanostructured organic and hybrid solar cells. The authors discuss novel approaches to control the film morphology in fully organic solar cells and the design of nanostructured hybrid solar cells. The motivation and recent results concerning fabrication and effects on device physics are emphasized. The aim of this review is not to give a summary of all recent results in organic and hybrid solar cells, but rather to focus on the fabrication, device physics, and light trapping properties of nanostructured organic and hybrid devices.

  9. Effects of Dye Structure in Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Hoskins, Anna R.

    Dye sensitized solar cells (DSSCs) are photovoltaic devices that may compete with standard silicon solar cells due to their ease of construction and lower cost [32]. Ruthenium dye structures, such as N3 (Ru -- (4,4' -- dicarboxylic acid -- 2,2' -- bipyridine)2(NCS)2), have shown promise for collection efficiencies near silicon photovoltaic levels [20, 33]. DSSCs have not achieved the reproducibility and maximum efficiency of silicon solar cells [33, 34]. Altering ligands on the dye molecules may affect the energies of light that are absorbed by the DSSC. Photovoltaic testing, including current versus voltage tests, of DSSCs with both narrow band monochromated light sources and broadband (AM1.5 solar simulator) allows comparison between maximum efficiency, short-circuit current, open circuit voltage, and spectral response (SR) for the dye molecules. By studying how the efficiency and power output change with different dye structures, the nature of how to increase efficiency of the DSSC can be addressed. Conjugation length of the ligands in ruthenium dye molecules can be shown, through square-well and Huckel theory calculations, to have a role in changing the HOMO-LUMO gap of the molecules and the absorption of specific wavelengths of light by the DSSC. The efficiency, max power, short circuit current, open circuit voltage, and SR were all measured for the DSSCs at wavelengths from 350 nm to 690 nm using a monochromated light source. Measurements taken at 20 nm steps reveal trends in the photon acceptance for dye molecules that can be linked to the conjugation length of the ligands in the dye through the SR. The change in the SR centroid and UV-VIS measurements indicate a trend toward increasing optimal wavelength with increasing conjugation length in the dye molecules; however these trends are not as pronounced as theoretical calculations for the dyes. This difference in wavelength shift occurs due to the theoretical calculations accounting for only the ligands

  10. Plasmonic Nanostructures for Solar and Biological Application

    NASA Astrophysics Data System (ADS)

    Neumann, Oara

    The electromagnetic absorption properties of plasmonic nanostructures were utilized to develop mesoscopic sites for highly efficient photothermal generation steam, SERS biosensing, and light-triggered cellular delivery uptake. Plasmonic nanostructures embedded in common thermal solutions produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Solar illuminated aqueous nanoparticle solution can drive water-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation and also produced saturated steam destroying Geobacillus stearothermophilus bacteria in a compact solar powered autoclave. Subwavelength biosensing sites were developed using the plasmonic properties of gold nanoshells to investigate the properties of aptamer (DNA) target complexes. Nanoshells are tunable core-shell nanoparticles whose resonant absorption and scattering properties are dependent on core/shell thickness ratio. Nanoshells were used to develop a label free detection method using SERS to monitor conformational change induced by aptamer target binding. The conformational changes to the aptamers induced by target binding were probed by monitoring the aptamer SERS spectra reproducibility. Furthermore, nanoshells can serve as a nonviral light-controlled delivery vector for the precise temporal and spatial control of molecular delivery in vitro. The drug delivery concept using plasmonic vectors was shown using a monolayer of ds-DNA attached to the nanoshell surface and the small molecular "parcel" intercalated inside ds-DNA loops. DAPI, a fluorescent dye, was used as the molecular parcel to visualize the release process in living cells. Upon laser illumination at the absorption resonance the nanoshell converts photon energy into heat producing a

  11. -coated nanostructures for dye photo-degradation in water

    NASA Astrophysics Data System (ADS)

    Scuderi, Viviana; Impellizzeri, Giuliana; Romano, Lucia; Scuderi, Mario; Nicotra, Giuseppe; Bergum, Kristin; Irrera, Alessia; Svensson, Bengt G.; Privitera, Vittorio

    2014-09-01

    The photocatalytic efficiency of a thin-film TiO2-coated nanostructured template is studied by dye degradation in water. The nanostructured template was synthesized by metal-assisted wet etching of Si and used as substrate for the deposition of a thin film of TiO2 (10 nm thick) by atomic layer deposition. A complete structural characterization was made by scanning and transmission electron microscopies. The significant photocatalytic performance was evaluated by the degradation of two dyes in water: methylene blue and methyl orange. The relevance of the reported results is discussed, opening the route toward the application of the synthesized nanostructured TiO2 for water purification.

  12. Arylamine organic dyes for dye-sensitized solar cells.

    PubMed

    Liang, Mao; Chen, Jun

    2013-04-21

    Arylamine organic dyes with donor (D), π-bridge (π) and acceptor (A) moieties for dye-sensitized solar cells (DSCs) have received great attention in the last decade because of their high molar absorption coefficient, low cost and structural variety. In the early stages, the efficiency of DSCs with arylamine organic dyes with D-π-A character was far behind that of DSCs with ruthenium(II) complexes partly due to the lack of information about the relationship between the chemical structures and the photovoltaic performance. However, exciting progress has been recently made, and power conversion efficiencies over 10% were obtained for DSCs with arylamine organic dyes. It is thus that the recent research and development in the field of arylamine organic dyes employing an iodide/triiodide redox couple or polypyridyl cobalt redox shuttles as the electrolytes for either DSCs or solid-state DSCs has been summarized. The cell performance of the arylamine organic dyes are compared, providing a comprehensive overview of arylamine organic dyes, demonstrating the advantages/disadvantages of each class, and pointing out the field that needs to reinforce the research direction in the further application of DSCs.

  13. Opaline backreflector coating in dye-sensitized solar cell.

    PubMed

    Herman, Lia Agustine; Yip, Chan Hoe; Wong, Chee Cheong

    2010-07-01

    Photonic crystals are ordered nanostructures that are designed to manipulate the propagation of light. The periodicity of a photonic crystal can be engineered to be highly reflective at selected wavelengths. In this work, a mono-layer and double-layer colloidal photonic crystal film were self-assembled on a glass substrate to be used as backreflectors in a dye-sensitized solar cell (DSSC). The colloidal photonic crystal film consists of different polystyrene monodispersed particles with sizes between 200 nm and 290 nm. Making use of flow controlled vertical deposition (FCVD) method, opaline films of Bragg's reflection wavelength between 450 nm to 750 nm were achieved. These wavelengths were designed to match the absorption spectrum of the Ruthenium-complex dye used in DSSC. An enhancement in incident photon-to-current conversion efficiency (IPCE) of the opaline backreflector DSSC of about 30% at Bragg's peak wavelength has been achieved.

  14. Photoinduced translational molecular mobility in solid nanostructured azo dye films

    SciTech Connect

    Ezhov, A A; Kozenkov, V M; Magnitskii, Sergey A; Nagorskii, Nikolay M; Panov, Vladimir I

    2011-11-30

    A new mechanism controlling the molecular motion in thin azo-containing films during a photoinduced change in the surface nanorelief is found. It is shown experimentally that exposure of a solid AD-1 azo dye, deposited on a glass substrate, to incoherent linearly polarised light leads to formation of nanostructures with a characteristic size of 200 nm, which are similar to droplets of melt of this dye on the same substrate. It is shown that photoinduced mass transport in a solid AD-1 azo dye film can be explained by the mobility of molecules related to their trans-cis-photoisomerisation, which leads to film softening with subsequent formation of spherical protrusions under surface tension forces.

  15. Performance enhancement of dye-sensitized solar cells (DSSCs) using a natural sensitizer

    NASA Astrophysics Data System (ADS)

    Arifin, Zainal; Soeparman, Sudjito; Widhiyanuriyawan, Denny; Sutanto, Bayu; Suyitno

    2017-01-01

    Dye-sensitized solar cells (DSSCs) based on natural sensitizers have become a topic of significant research because of their urgency and importance in the energy conversion field and the following advantages: ease of fabrication, low-cost solar cell, and usage of nontoxic materials. The natural sensitizer in DSSCs is responsible for the absorption of light as well as the injection of charges to the conduction band of the semiconductor such as TiO2 nanoparticles. In this study, the chlorophyll extracted from papaya leaves was used as a natural sensitizer. Dye molecules were adsorbed by TiO2 nanoparticle surfaces when submerged in the dye solution for 24 h. The concentration of the dye solution influences both the amount of dye loading and the DSSC performance. The amount of adsorbed dye molecules by TiO2 nanoparticle was calculated using a desorption method. As the concentration of dye solution was increased, the dye loading capacity and power conversion efficiency increased. Above 90 mM dye solution concentration, however, the DSSC efficiency decreased because dye precipitated on the TiO2 nanostructure. These characteristics of DSSCs were analyzed under the irradiation of 100 mW/cm2. The best performance of DSSCs was obtained at 90 mM dye solution, with the values of Voc, Jsc, FF, and efficiency of DSSCs being 0.561 V, 0.402 mA/cm2, 41.65%, and 0.094%, respectively.

  16. Stretchable, wearable dye-sensitized solar cells.

    PubMed

    Yang, Zhibin; Deng, Jue; Sun, Xuemei; Li, Houpu; Peng, Huisheng

    2014-05-01

    A stretchable, wearable dye-sensitized solar-cell textile is developed from elastic, electrically conducting fiber as a counter electrode and spring-like titanium wire as the working electrode. Dyesensitized solar cells are demonstrated with energy-conversion efficiencies up to 7.13%. The high energy-conversion efficiencies can be well maintained under stretch by 30% and after stretch for 20 cycles.

  17. Dye-sensitized Schottky barrier solar cells

    DOEpatents

    Skotheim, Terje A.

    1978-01-01

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  18. Artificial evolution of coumarin dyes for dye sensitized solar cells.

    PubMed

    Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre

    2015-11-07

    The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists. This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-based dye sensitizers with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from the existing databases of structures) is carried out with respect to user-adaptable set of rules. Rather than using computationally intensive density functional theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property relationship (QSPR) models (calibrated from empirical data) for rapid estimation of the property of interest, which in this case is the product of short circuit current (Jsc) and open circuit voltage (Voc). Since QSPR models have limited validity, pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked structures provides supporting evidence of their potential for dye sensitized solar cell applications.

  19. Titanium dioxide nanostructure synthesized by sol-gel for organic solar cells using natural dyes extracted from black and red sticky rice

    NASA Astrophysics Data System (ADS)

    Ramelan, A. H.; Harjana, H.; Sakti, L. S.

    2012-06-01

    Nanocrystalline semiconductor metal oxides have achieved a great importance in our industrial world today. They may be defined as metal oxides with crystal size between 1 and 100 nm. TiO2 nanosize particles have attracted significant interest of materials scientists and physicists due to their special properties and have attained a great importance in several technological applications such as photocatalysis, sensors, solar cells and memory devices. TiO2 nanoparticles can be produced by a variety of techniques ranging from simple chemical to mechanical to vacuum methods, including many variants of physical and chemical vapour deposition techniques. In the present research work we report the synthesis of TiO2 nanoparticles by Sol-Gel technique. The characterization of particles was carried out by XRD and XRF techniques. The importance and applications of these nanoparticles for solar cells are also discussed in this work.

  20. Nanocarbon counterelectrode for dye sensitized solar cells

    SciTech Connect

    Ramasamy, Easwaramoorthi; Lee, Won Jae; Lee, Dong Yoon; Song, Jae Sung

    2007-04-23

    Nanosize carbon powders were deposited on conducting glass substrate for counterelectrode application in dye sensitized solar cell (DSSC). Electrochemical impedance measurement shows that charge transfer resistance of carbon electrode in liquid electrolyte is 0.74 {omega} cm{sup -2}, which is two times less than that of screen printed platinum. Using such counterelectrode and dye sensitized TiO{sub 2} working electrode, DSSC was fabricated. Under one sun illumination (AM1.5, P{sub in} of 100 mW cm{sup -2}), carbon counterelectrode DSSC shows 6.73% overall energy conversion efficiency with good stability.

  1. Elongated nanostructures for radial junction solar cells.

    PubMed

    Kuang, Yinghuan; Vece, Marcel Di; Rath, Jatindra K; Dijk, Lourens van; Schropp, Ruud E I

    2013-10-01

    In solar cell technology, the current trend is to thin down the active absorber layer. The main advantage of a thinner absorber is primarily the reduced consumption of material and energy during production. For thin film silicon (Si) technology, thinning down the absorber layer is of particular interest since both the device throughput of vacuum deposition systems and the stability of the devices are significantly enhanced. These features lead to lower cost per installed watt peak for solar cells, provided that the (stabilized) efficiency is the same as for thicker devices. However, merely thinning down inevitably leads to a reduced light absorption. Therefore, advanced light trapping schemes are crucial to increase the light path length. The use of elongated nanostructures is a promising method for advanced light trapping. The enhanced optical performance originates from orthogonalization of the light's travel path with respect to the direction of carrier collection due to the radial junction, an improved anti-reflection effect thanks to the three-dimensional geometric configuration and the multiple scattering between individual nanostructures. These advantages potentially allow for high efficiency at a significantly reduced quantity and even at a reduced material quality, of the semiconductor material. In this article, several types of elongated nanostructures with the high potential to improve the device performance are reviewed. First, we briefly introduce the conventional solar cells with emphasis on thin film technology, following the most commonly used fabrication techniques for creating nanostructures with a high aspect ratio. Subsequently, several representative applications of elongated nanostructures, such as Si nanowires in realistic photovoltaic (PV) devices, are reviewed. Finally, the scientific challenges and an outlook for nanostructured PV devices are presented.

  2. Elongated nanostructures for radial junction solar cells

    NASA Astrophysics Data System (ADS)

    Kuang, Yinghuan; Di Vece, Marcel; Rath, Jatindra K.; van Dijk, Lourens; Schropp, Ruud E. I.

    2013-10-01

    In solar cell technology, the current trend is to thin down the active absorber layer. The main advantage of a thinner absorber is primarily the reduced consumption of material and energy during production. For thin film silicon (Si) technology, thinning down the absorber layer is of particular interest since both the device throughput of vacuum deposition systems and the stability of the devices are significantly enhanced. These features lead to lower cost per installed watt peak for solar cells, provided that the (stabilized) efficiency is the same as for thicker devices. However, merely thinning down inevitably leads to a reduced light absorption. Therefore, advanced light trapping schemes are crucial to increase the light path length. The use of elongated nanostructures is a promising method for advanced light trapping. The enhanced optical performance originates from orthogonalization of the light's travel path with respect to the direction of carrier collection due to the radial junction, an improved anti-reflection effect thanks to the three-dimensional geometric configuration and the multiple scattering between individual nanostructures. These advantages potentially allow for high efficiency at a significantly reduced quantity and even at a reduced material quality, of the semiconductor material. In this article, several types of elongated nanostructures with the high potential to improve the device performance are reviewed. First, we briefly introduce the conventional solar cells with emphasis on thin film technology, following the most commonly used fabrication techniques for creating nanostructures with a high aspect ratio. Subsequently, several representative applications of elongated nanostructures, such as Si nanowires in realistic photovoltaic (PV) devices, are reviewed. Finally, the scientific challenges and an outlook for nanostructured PV devices are presented.

  3. Efficiency enhancement of dye-sensitized solar cells (DSSC) by addition of synthetic dye into natural dye (anthocyanin)

    NASA Astrophysics Data System (ADS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2017-02-01

    This article reported combination of anthocyanin and synthetic dyes in dye-sensitized solar cells (DSSC) applications. This study aims was to improve the performance of DSSC by addition of synthetic dye into anthocyanin dye. Anthocyanin dye was extracted from red cabbage and synthetic dye was obtained from N719. We prepared anthocyanin and synthetic dyes at 2 different volume, anthocyanin dye at volume of 10 ml and combination dyes with anthocyanin and synthetic dyes at volume of 8 mL : 2 mL. The DSSCs were designed into sandwich structure on the fluorine-doped tin oxide (FTO) substrates using TiO2 electrode, carbon electrode, anthocyanin and synthetic dyes, and redox electrolyte. The absorption wavelength of anthocyanin dye of red cabbage was 450 nm – 580 nm, the combination of anthocyanin and synthetic dyes can increase the absorbance peak only. The IPCE characteristic with anthocyanin dye of red cabbage and combination dyes resulted quantum efficiency of 0.081% and 0.092% at wavelength maximum about 430 nm. The DSSC by anthocyanin dye of red cabbage achieved a conversion efficiency of 0.024%, while the DSSC by combination dyes achieved a conversion efficiency of 0.054%, combination dyes by addition synthetic dye into anthocyanin dye enhanced the conversion efficiency up to 125%.

  4. Photocurrent generation in nanostructured organic solar cells.

    PubMed

    Yang, Fan; Forrest, Stephen R

    2008-05-01

    Photocurrent generation in nanostructured organic solar cells is simulated using a dynamical Monte Carlo model that includes the generation and transport properties of both excitons and free charges. Incorporating both optical and electrical properties, we study the influence of the heterojunction nanostructure (e.g., planar vs bulk junctions) on donor-acceptor organic solar cell efficiencies based on the archetype materials copper phthalocyanine (CuPc) and C(60). Structures considered are planar and planar-mixed heterojunctions, homogeneous and phase-separated donor-acceptor (DA) mixtures, idealized structures composed of DA pillars, and nanocrystalline DA networks. The thickness dependence of absorption, exciton diffusion, and carrier collection efficiencies is studied for different morphologies, yielding results similar to those experimentally observed. The influences of charge mobility and exciton diffusion length are studied, and optimal device thicknesses are proposed for various structures. Simulations show that, with currently available materials, nanocrystalline network solar cells optimize both exciton diffusion and carrier collection, thus providing for highly efficient solar energy conversion. Estimations of achievable energy conversion efficiencies are made for the various nanostructures based on current simulations used in conjunction with experimentally obtained fill factors and open-circuit voltages for conventional small molecular weight materials combinations.

  5. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells

    PubMed Central

    Selopal, Gurpreet Singh; Wu, Hui-Ping; Lu, Jianfeng; Chang, Yu-Cheng; Wang, Mingkui; Vomiero, Alberto; Concina, Isabella; Diau, Eric Wei-Guang

    2016-01-01

    We report the synthesis and characterization of new metal-free organic dyes (namely B18, BTD-R, and CPTD-R) which designed with D-π-A concept to extending the light absorption region by strong conjugation group of π-linker part and applied as light harvester in dye sensitized solar cells (DSSCs). We compared the photovoltaic performance of these dyes in two different photoanodes: a standard TiO2 mesoporous photoanode and a ZnO photoanode composed of hierarchically assembled nanostructures. The results demonstrated that B18 dye has better photovoltaic properties compared to other two dyes (BTD-R and CPTD-R) and each dye has higher current density (Jsc) when applied to hierarchical ZnO nanocrystallites than the standard TiO2 mesoporous film. Transient photocurrent and photovoltage decay measurements (TCD/TVD) were applied to systematically study the charge transport and recombination kinetics in these devices, showing the electron life time (τR) of B18 dye in ZnO and TiO2 based DSSCs is higher than CPTD-R and BTD-R based DSSCs, which is consistent with the photovoltaic performances. The conversion efficiency in ZnO based DSSCs can be further boosted by 35%, when a compact ZnO blocking layer (BL) is applied to inhibit electron back reaction. PMID:26738698

  6. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Selopal, Gurpreet Singh; Wu, Hui-Ping; Lu, Jianfeng; Chang, Yu-Cheng; Wang, Mingkui; Vomiero, Alberto; Concina, Isabella; Diau, Eric Wei-Guang

    2016-01-01

    We report the synthesis and characterization of new metal-free organic dyes (namely B18, BTD-R, and CPTD-R) which designed with D-π-A concept to extending the light absorption region by strong conjugation group of π-linker part and applied as light harvester in dye sensitized solar cells (DSSCs). We compared the photovoltaic performance of these dyes in two different photoanodes: a standard TiO2 mesoporous photoanode and a ZnO photoanode composed of hierarchically assembled nanostructures. The results demonstrated that B18 dye has better photovoltaic properties compared to other two dyes (BTD-R and CPTD-R) and each dye has higher current density (Jsc) when applied to hierarchical ZnO nanocrystallites than the standard TiO2 mesoporous film. Transient photocurrent and photovoltage decay measurements (TCD/TVD) were applied to systematically study the charge transport and recombination kinetics in these devices, showing the electron life time (τR) of B18 dye in ZnO and TiO2 based DSSCs is higher than CPTD-R and BTD-R based DSSCs, which is consistent with the photovoltaic performances. The conversion efficiency in ZnO based DSSCs can be further boosted by 35%, when a compact ZnO blocking layer (BL) is applied to inhibit electron back reaction.

  7. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells.

    PubMed

    Selopal, Gurpreet Singh; Wu, Hui-Ping; Lu, Jianfeng; Chang, Yu-Cheng; Wang, Mingkui; Vomiero, Alberto; Concina, Isabella; Diau, Eric Wei-Guang

    2016-01-07

    We report the synthesis and characterization of new metal-free organic dyes (namely B18, BTD-R, and CPTD-R) which designed with D-π-A concept to extending the light absorption region by strong conjugation group of π-linker part and applied as light harvester in dye sensitized solar cells (DSSCs). We compared the photovoltaic performance of these dyes in two different photoanodes: a standard TiO2 mesoporous photoanode and a ZnO photoanode composed of hierarchically assembled nanostructures. The results demonstrated that B18 dye has better photovoltaic properties compared to other two dyes (BTD-R and CPTD-R) and each dye has higher current density (Jsc) when applied to hierarchical ZnO nanocrystallites than the standard TiO2 mesoporous film. Transient photocurrent and photovoltage decay measurements (TCD/TVD) were applied to systematically study the charge transport and recombination kinetics in these devices, showing the electron life time (τR) of B18 dye in ZnO and TiO2 based DSSCs is higher than CPTD-R and BTD-R based DSSCs, which is consistent with the photovoltaic performances. The conversion efficiency in ZnO based DSSCs can be further boosted by 35%, when a compact ZnO blocking layer (BL) is applied to inhibit electron back reaction.

  8. Nanostructures for photon management in solar cells

    NASA Astrophysics Data System (ADS)

    Narasimhan, Vijay Kris; Cui, Yi

    2013-07-01

    The concurrent development of high-performance materials, new device and system architectures, and nanofabrication processes has driven widespread research and development in the field of nanostructures for photon management in photovoltaics. The fundamental goals of photon management are to reduce incident light reflection, improve absorption, and tailor the optical properties of a device for use in different types of energy conversion systems. Nanostructures rely on a core set of phenomena to attain these goals, including gradation of the refractive index, coupling to waveguide modes through surface structuring, and modification of the photonic band structure of a device. In this review, we present recent developments in the field of nanostructures for photon management in solar cells with applications across different materials and system architectures. We focus both on theoretical and numerical studies and on progress in fabricating solar cells containing photonic nanostructures. We show that nanoscale light management structures have yielded real efficiency gains in many types of photovoltaic devices; however, we note that important work remains to ensure that improved optical performance does not come at the expense of poor electrical properties.

  9. Dye-sensitized Solar Cells for Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Roy, M. S.; Deol, Y. S.; Kumar, Manish; Prasad, Narottam; Janu, Yojana

    2011-10-01

    Dye-sensitized solar cells (DSSCs) also known as Gratzel cells, have attracted the interests of researchers to a great extent because of its cost effective and easy manufacturing process without involving highly sophisticated lithographic technique and high cost raw materials as usually seen in conventional solar cell. Based on simple photo-electrochemical process, it has got immense potential in converting solar energy to electrical power in remote and desert area where the supply of conventional power is not possible. The overall peak power-production efficiency of dye-sensitized solar cells has been reported around 11 percent, so they are best suited to low-density applications and the price-to-performance ratio obtained through these solar cells is superior to others. DSSCs have ability to absorb even diffused sunlight and therefore work in cloudy whether as well without much impact over the efficiency. The present communication deals with a review of our work on DSSCs wherein we have used cost effective natural dyes/pigments as a sensitizer of nc-TiO2 and discussed about various key factors affecting the conversion efficiency of DSSC.

  10. Solar thermophotovoltaic system using nanostructures

    DOE PAGES

    Ungaro, Craig; Gray, Stephen K.; Gupta, Mool C.

    2015-08-20

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is bothmore » easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.« less

  11. Solar thermophotovoltaic system using nanostructures.

    PubMed

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C

    2015-09-21

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.

  12. Solar thermophotovoltaic system using nanostructures

    SciTech Connect

    Ungaro, Craig; Gray, Stephen K.; Gupta, Mool C.

    2015-08-20

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.

  13. Threshold pump power of a solar-pumped dye laser

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1988-01-01

    Threshold solar power for dye laser pumping has been determined by measuring the gain of a rhodamine 6G dye laser amplifier at various solar-simulated irradiances on an amplifier cell. The measured threshold was 20,000 solar constants (2.7 kW/sq cm) for the dye volume of 2 x 5 x 40 cu mm and the optimum dye concentration of 0.001 M. The threshold is about one-third of that achievable with a high-intensity solar concentrator.

  14. Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hemmatzadeh, Reza; Mohammadi, Ahmad

    2013-11-01

    Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

  15. Effects of pH of Dyes on Characteristics of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Furukawa, Shoji; Iino, Hiroshi; Kukita, Koudai; Kaminosono, Kaoru

    Dye-sensitized solar cells were fabricated using natural dyes and synthesized dyes in which rear metal was not contained. Effects of pH of dyes on the characteristics of the dye-sensitized solar cells were also examined. As a result, it was found that the conversion efficiency of the dye-sensitized solar cell fabricated using red-cabbage dye with a pH of 2.5 was 0.10 point larger than that of the solar cell fabricated using red-cabbage dye with a pH of 4.0. It was also found that the conversion efficiency of the solar cell fabricated using red-perilla dye with a pH of 3.1 was 0.10 point larger than that of the solar cell fabricated using red-perilla dye with a pH of 5.8. The results are discussed on the bases of the molecular structure of mainly contained dye and the optical absorption spectra.

  16. Nanostructured refractory thin films for solar applications

    NASA Astrophysics Data System (ADS)

    Ollier, E.; Dunoyer, N.; Dellea, O.; Szambolics, H.

    2014-08-01

    Selective solar absorbers are key elements of all solar thermal systems. Solar thermal panels and Concentrated Solar Power (CSP) systems aim respectively at producing heat and electricity. In both cases, a surface receives the solar radiation and is designed to have the highest optical absorption (lowest optical reflectivity) of the solar radiation in the visible wavelength range where the solar intensity is the highest. It also has a low emissivity in the infrared (IR) range in order to avoid radiative thermal losses. Current solutions in the state of the art usually consist in deposited interferential thin films or in cermets [1]. Structured surfaces have been proposed and have been simulated because they are supposed to be more efficient when the solar radiation is not normal to the receiving surface and because they could potentially be fabricated with refractory materials able to sustain high operating temperatures. This work presents a new method to fabricate micro/nanostructured surfaces on molybdenum (refractory metal with a melting temperature of 2623°C). This method now allows obtaining a refractory selective surface with an excellent optical selectivity and a very high absorption in the visible range. This high absorption performance was obtained by achieving a double structuration at micro and nano scales thanks to an innovative process flow.

  17. One-dimensional semiconductor nanostructures as absorber layers in solar cells.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2005-11-01

    The one-dimensional (1-D) nanostructures of cadmium chalcogenides (Il-VI: CdSe, CdTe), InP and GaAs (III-V), and the ternary chalcopyrites CulnS2, CulnSe2, and CulnTe2 (I-III-VI2) are the candidate semiconductors of interest as absorber layers in solar cells. In the confinement regime (approximately 1-10 nm) of these 1-D nanostructures, the electronic energy levels are quantized so that the oscillator strength and the resultant absorption of solar energy are enhanced. Moreover, the discrete energy levels effectively separate the electrons and holes at the two electrodes or at the interfaces with a polymer in a hybrid structure, so that an oriented and 1-D nanostructured absorber layer is expected to improve the conversion efficiency of solar cells. The intrinsic anisotropy of Il-VI and l-lll-VI2 crystal lattices and the progress in various growth processes are assessed to derive suitable morphological features of these 1-D semiconductor nanostructures. The present status of research in nanorod-based solar cells is reviewed and possible routes are identified to improve the performance of nanorod-based solar cells. Finally, the characteristics of nanorod-based solar cells are compared with the dye-sensitized and organic solar cells.

  18. Incorporating multiple energy relay dyes in liquid dye-sensitized solar cells.

    PubMed

    Yum, Jun-Ho; Hardin, Brian E; Hoke, Eric T; Baranoff, Etienne; Zakeeruddin, Shaik M; Nazeeruddin, Mohammad K; Torres, Tomas; McGehee, Michael D; Grätzel, Michael

    2011-02-25

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400-590 nm matching the optical window of the zinc phthalocyanine sensitizer was observed due to Förster resonance energy transfer (FRET) from the two energy relay dyes to the sensitizing dye. The complementary absorption spectra of the energy relay dyes and high excitation transfer efficiencies result in a 35% increase in photovoltaic performance.

  19. Investigating dye-sensitised solar cells

    NASA Astrophysics Data System (ADS)

    Tobin, Laura L.; O'Reilly, Thomas; Zerulla, Dominic; Sheridan, John T.

    2010-05-01

    At present there is considerable global concern in relation to environmental issues and future energy supplies, for instance climate change (global warming) and the rapid depletion of fossil fuel resources. This trepidation has initiated a more critical investigation into alternative and renewable sources of power such as geothermal, biomass, hydropower, wind and solar energy. The immense dependence on electrical power in today's society has prompted the manufacturing of devices such as photovoltaic (PV) cells to help alleviate and replace current electrical demands of the power grid. The most popular and commercially available PV cells are silicon solar cells which have to date the greatest efficiencies for PV cells. The drawback however is that the manufacturing of these cells is complex and costly due to the expense and difficulty of producing and processing pure silicon. One relatively inexpensive alternative to silicon PV cells that we are currently studying are dye-sensitised solar cells (DSSC or Grätzel Cells). DSSC are biomimetic solar cells which are based on the process of photosynthesis. The SFI Strategic Research Centre for Solar Energy Conversion is a research cluster based in Ireland formed with the express intention of bringing together industry and academia to produce renewable energy solutions. Our specific research area is in DSSC and their electrical properties. We are currently developing testing equipment for arrays of DSSC and developing optoelectronic models which todescribe the performance and behaviour of DSSCs.

  20. Dye ingredients and energy conversion efficiency at natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Özbay Karakuş, Mücella; Koca, İrfan; Er, Orhan; Çetin, Hidayet

    2017-04-01

    In this work, natural dyes extracted from the same genus but different species flowers were used as sensitizer in Dye Sensitized Solar Cell (DSSC). To clearly show dye ingredients effect on electrical characteristics, the same genus flowers were selected. The dye ingredients were analyzed by Gas Chromatography Mass Spectrometer (GC-MS). The dyes were modified by a procedure that includes refluxing in acetone. All results indicate a relationship between gallic acid quantity in dyes and solar cell efficiency. To gain further insight, the solar cell parameters were obtained by using the single-diode and double-diode models and they were compared to each other. It was observed that the applied process causes a decrease in series resistance. How the modification process and gallic acid affect energy conversion efficiency were argued in detail in the frame of results that were obtained from solar cell models.

  1. Single-crystalline self-branched anatase titania nanowires for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Zhenquan; Yang, Huang; Wu, Fei; Fu, Jianxun; Wang, Linjun; Yang, Weiguang

    2017-03-01

    The morphology of the anatase titania plays an important role in improving the photovoltaic performance in dye-sensitized solar cells. In this work, single-crystalline self-branched anatase TiO2 nanowires have been synthesized by hydrothermal method using TBAH and CTAB as morphology controlling agents. The obtained self-branched TiO2 nanowires dominated by a large percentage of (010) facets. The photovoltaic conversion efficiency (6.37%) of dye-sensitized solar cell (DSSC) based on the self-branched TiO2 nanowires shows a significant improvement (26.6%) compared to that of P25 TiO2 (5.03%). The enhanced performance of the self-branched TiO2 nanowires-based DSSC is due to heir large percent of exposed (010) facets which have strong dye adsorption capacity and effective charge transport of the self-branched 1D nanostructures.

  2. Single-crystalline self-branched anatase titania nanowires for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Zhenquan; Yang, Huang; Wu, Fei; Fu, Jianxun; Wang, Linjun; Yang, Weiguang

    2016-12-01

    The morphology of the anatase titania plays an important role in improving the photovoltaic performance in dye-sensitized solar cells. In this work, single-crystalline self-branched anatase TiO2 nanowires have been synthesized by hydrothermal method using TBAH and CTAB as morphology controlling agents. The obtained self-branched TiO2 nanowires dominated by a large percentage of (010) facets. The photovoltaic conversion efficiency (6.37%) of dye-sensitized solar cell (DSSC) based on the self-branched TiO2 nanowires shows a significant improvement (26.6%) compared to that of P25 TiO2 (5.03%). The enhanced performance of the self-branched TiO2 nanowires-based DSSC is due to heir large percent of exposed (010) facets which have strong dye adsorption capacity and effective charge transport of the self-branched 1D nanostructures.

  3. Improved dye-sensitized solar cell with a ZnO nanotree photoanode by hydrothermal method

    PubMed Central

    2014-01-01

    This study investigated the influence of ZnO nanostructures on dye adsorption to increase the photovoltaic conversion efficiency of solar cells. ZnO nanostructures were grown in both tree-like and nanorod (NR) arrays on an AZO/FTO film structure by using a hydrothermal method. The results were observed in detail using X-ray diffraction, field-emission scanning electron microscopy (FE-SEM), UV-visible spectrophotometry, electrochemical impedance spectroscopy, and solar simulation. The selective growth of tree-like ZnO was found to exhibit higher dye adsorption loading and conversion efficiency than ZnO NRs. The multiple ‘branches’ of ‘tree-like nanostructures’ increases the surface area for higher light harvesting and dye loading while reducing charge recombination. These improvements result in a 15% enhancement in power conversion. The objective of this study is to facilitate the development of a ZnO-based dye-sensitized solar cell. PMID:24872799

  4. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    SciTech Connect

    Black, Marcie

    2014-10-30

    This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.

  5. Analysis of dye degradation products and assessment of the dye purity in dye-sensitized solar cells.

    PubMed

    Rendon, Sabine M K; Mavrynsky, Denys; Meierjohann, Axel; Tiihonen, Armi; Miettunen, Kati; Asghar, Imran; Halme, Janne; Kronberg, Leif; Leino, Reko

    2015-12-15

    For commercialization of dye-sensitized solar cells (DSSCs), improvement of their long-term stability and efficiency is important. A key component in solar cells is the dye, its high purity and high stability. Here, methods for dye extraction and purification, and for determination of dye purity and dye degradation in DSSCs, were developed. A method was developed for extraction of the dye Z907 from intact solar cells using a water/ethanol mixture containing tetrabutylammonium hydroxide. The N719 dye synthesized in our laboratory was purified by gel filtration on Sephadex LH20. These dyes, along with the dyes N3 and RuL2 (NC)2, were analyzed using nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography coupled to an electrospray ionization quadrupole-time-of-flight mass analyzer (LC/MS) operating in negative ionization mode. Purification of the synthesized N719 removed several impurities, including its undesired isomer with the thiocyanate ligand attached to ruthenium through sulfur instead of nitrogen. The dyes N719 and Z907 were successfully extracted from solar cells and together with N3 and RuL2 (NC)2 analyzed by LC/MS, although N719 isomerized almost immediately in basic aqueous solution. The [M-H](-1) ions were observed and the measured mass was within a ±6 ppm range from the exact mass. LC/MS in combination with NMR spectroscopy was shown to provide useful information on dye structure, purity, and on the efficiency of the purification methods. These methods allow for further studies of solar cell dyes, which may provide the detailed information needed for the improvement and eventual commercialization of the solar cell technology. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Review on the application of nanostructure materials in solar cells

    NASA Astrophysics Data System (ADS)

    Afshar, Elham N.; Xosrovashvili, Georgi; Rouhi, Rasoul; Gorji, Nima E.

    2015-07-01

    In recent years, nanostructure materials have opened a promising route to future of the renewable sources, especially in the solar cells. This paper considers the advantages of nanostructure materials in improving the performance and stability of the solar cell structures. These structures have been employed for various performance/energy conversion enhancement strategies. Here, we have investigated four types of nanostructures applied in solar cells, where all of them are named as quantum solar cells. We have also discussed recent development of quantum dot nanoparticles and carbon nanotubes enabling quantum solar cells to be competitive with the conventional solar cells. Furthermore, the advantages, disadvantages and industrializing challenges of nanostructured solar cells have been investigated.

  7. Modeling materials and processes in dye-sensitized solar cells: understanding the mechanism, improving the efficiency.

    PubMed

    Pastore, Mariachiara; De Angelis, Filippo

    2014-01-01

    We present a review of recent first-principles computational modeling studies on dye-sensitized solar cells (DSCs), focusing on the materials and processes modeling aspects which are key to the functioning of this promising class of photovoltaic devices. Crucial to the DSCs functioning is the photoinduced charge separation occurring at the heterointerface(s) between a dye-sensitized nanocrystalline, mesoporous metal oxide electrode and a redox shuttle. Theoretical and computational modeling of isolated cell components (e.g., dye, semiconductor nanoparticles, redox shuttle, etc…) as well as of combined dye/semiconductor/redox shuttle systems can successfully assist the experimental research by providing basic design rules of new sensitizers and a deeper comprehension of the fundamental chemical and physical processes governing the cell functioning and its performances. A computational approach to DSCs modeling can essentially be cast into a stepwise problem, whereby one first needs to simulate accurately the individual DSCs components to move to relevant pair (or higher order) interactions characterizing the device functioning. This information can contribute to enhancing further the target DSCs characteristics, such as temporal stability and optimization of device components. After presenting selected results for isolated dyes, including the computational design of new dyes, and model semiconductors, including realistic nanostructure models, we focus in the remainder of this review on the interaction between dye-sensitizers and semiconductor oxides, covering organic as well as metallorganic dyes.

  8. Aqueous dye-sensitized solar cells.

    PubMed

    Bella, Federico; Gerbaldi, Claudio; Barolo, Claudia; Grätzel, Michael

    2015-06-07

    Nowadays, dye-sensitized solar cells (DSSCs) are the most extensively investigated systems for the conversion of solar energy into electricity, particularly for implementation in devices where low cost and good performance are required. Nevertheless, a key aspect is still to be addressed, being considered strongly harmful for a long time, which is the presence of water in the cell, either in the electrolyte or at the electrode/electrolyte interface. Here comes the present review, in the course of which we try our best to address the highly topical role of water in DSSCs, trying to figure out if it is a poisoner or the keyword to success, by means of a thoroughly detailed analysis of all the established phenomena in an aqueous environment. Actually, in the last few years the scientific community has suddenly turned its efforts in the direction of using water as a solvent, as demonstrated by the amount of research articles being published in the literature. Indeed, by means of DSSCs fabricated with water-based electrolytes, reduced costs, non-flammability, reduced volatility and improved environmental compatibility could be easily achieved. As a result, an increasing number of novel electrodes, dyes and electrolyte components are continuously proposed, being highly challenging from the materials science viewpoint and with the golden thread of producing truly water-based DSSCs. If the initial purpose of DSSCs was the construction of an artificial photosynthetic system able to convert solar light into electricity, the use of water as the key component may represent a great step forward towards their widespread diffusion in the market.

  9. Squaraine dyes for dye-sensitized solar cells: recent advances and future challenges.

    PubMed

    Qin, Chuanjiang; Wong, Wai-Yeung; Han, Liyuan

    2013-08-01

    In the past few years, squaraine dyes have received increasing attention as a sensitizer for application in dye-sensitized solar cells. This class of dyes not only leaves open a good opportunity to afford conventional high performance dyes but also holds great promise for applications in transparent solar cells due to its low absorption intensity in the eye-sensitive region. This review provides a summary of the developments on squaraine dyes in the field of dye-sensitized solar cells and the opportunities used to improve their overall energy conversion efficiency. In particular, the main factors responsible for the low values of open-circuit voltage, short-circuit photocurrent and fill factor are discussed in detail. Future directions in research and development of near-infrared (NIR) organic materials and their applications are proposed from a personal perspective.

  10. High excitation transfer efficiency from energy relay dyes in dye-sensitized solar cells.

    PubMed

    Hardin, Brian E; Yum, Jun-Ho; Hoke, Eric T; Jun, Young Chul; Péchy, Peter; Torres, Tomás; Brongersma, Mark L; Nazeeruddin, Md Khaja; Grätzel, Michael; McGehee, Michael D

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (ETE) of 96% inside TT1-covered, mesostructured TiO(2) films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients.

  11. In-Situ Spectroscopic Analyses of the Dye Uptake on ZnO and TiO2 Photoanodes for Dye-Sensitized Solar Cells.

    PubMed

    Shahzad, Nadia; Pugliese, Diego; Shahzad, Muhammad Imran; Tresso, Elena

    2015-08-01

    UV-Vis spectroscopic measurements have been performed on Dye-Sensitized Solar Cell (DSSC) photoanodes at different dye impregnation times ranging from few minutes to 24 hours. In addition to the traditional absorbance experiments, based on diffuse and specular reflectance of dye impregnated thin films and on the desorption of dye molecules from the photoanodes by means of a basic solution, an alternative in-situ solution depletion measurement, which enables fast and continuous evaluation of dye uptake, has been employed. Two different nanostructured semiconducting oxide films (mesoporous TiO2 and sponge-like ZnO) and two different dyes, the traditional Ruthenizer 535-bisTBA (N719) and a newly introduced metal-free organic dye based on a hemi-squaraine molecule (CT1), have been analyzed. DSSCs have been fabricated with the dye-impregnated photoanodes using a customized microfluidic architecture. The dye adsorption results are discussed and correlated to the obtained DSSC electrical performances such as photovoltaic conversion efficiencies and Incident Photon-to-electron Conversion Efficiency (IPCE) spectra. It is shown that simple UV-Vis measurements can give useful insights on the dye adsorption mechanisms and on the evaluation of the optimal impregnation times.

  12. Interplay between transparency and efficiency in dye sensitized solar cells.

    PubMed

    Tagliaferro, Roberto; Colonna, Daniele; Brown, Thomas M; Reale, Andrea; Di Carlo, Aldo

    2013-02-11

    In this paper we analyze the interplay between transparency and efficiency in dye sensitized solar cells by varying fabrication parameters such as the thickness of the nano-crystalline TiO(2) layer, the dye loading and the dye type. Both transparency and efficiency show a saturation trend when plotted versus dye loading. By introducing the transparency-efficiency plot, we show that the relation between transparency and efficiency is linear and is almost independent on the TiO(2) thickness for a certain thickness range. On the contrary, the relation between transparency and efficiency depends strongly on the type of the dye. Moreover, we show that co-sensitization techniques can be effectively used to access regions of the transparency-efficiency space that are forbidden for single dye sensitization. The relation found between transparency and efficiency (T&E) can be the general guide for optimization of Dye Solar Cells in building integration applications.

  13. Superior Adsorption and Regenerable Dye Adsorbent Based on Flower-Like Molybdenum Disulfide Nanostructure

    PubMed Central

    Han, Sancan; Liu, Kerui; Hu, Linfeng; Teng, Feng; Yu, Pingping; Zhu, Yufang

    2017-01-01

    Herein we report superior dye-adsorption performance for flower-like nanostructure composed of two dimensional (2D) MoS2 nanosheets by a facile hydrothermal method, more prominent adsorption of cationic dye compared with anodic dye indicates the dye adsorption performance strongly depends on surface charge of MoS2 nanosheets. The adsorption mechanism of dye is analyzed, the kinetic data of dye adsorption fit well with the pseudo-second-order model, meanwhile adsorption capability at different equilibrium concentrations follows Langmuir model, indicating the favorability and feasibility of dye adsorption. The regenerable property for MoS2 with full adsorption of dye molecules by using alkaline solution were demonstrated, showing the feasibility of reuse for the MoS2, which is promising in its practical water treatment application. PMID:28272411

  14. Superior Adsorption and Regenerable Dye Adsorbent Based on Flower-Like Molybdenum Disulfide Nanostructure

    NASA Astrophysics Data System (ADS)

    Han, Sancan; Liu, Kerui; Hu, Linfeng; Teng, Feng; Yu, Pingping; Zhu, Yufang

    2017-03-01

    Herein we report superior dye-adsorption performance for flower-like nanostructure composed of two dimensional (2D) MoS2 nanosheets by a facile hydrothermal method, more prominent adsorption of cationic dye compared with anodic dye indicates the dye adsorption performance strongly depends on surface charge of MoS2 nanosheets. The adsorption mechanism of dye is analyzed, the kinetic data of dye adsorption fit well with the pseudo-second-order model, meanwhile adsorption capability at different equilibrium concentrations follows Langmuir model, indicating the favorability and feasibility of dye adsorption. The regenerable property for MoS2 with full adsorption of dye molecules by using alkaline solution were demonstrated, showing the feasibility of reuse for the MoS2, which is promising in its practical water treatment application.

  15. Nano-TiO2 for dye-sensitized solar cells.

    PubMed

    Baraton, Marie-Isabelle

    2012-01-01

    Photovoltaics are amongst the most popular renewable energy sources and low-cost solar cell technologies are making progress to the market. Research on dye-sensitized solar cells (DSSCs) usually based on nanocrystalline TiO2 has been extensively pursued, and the number of papers and patents published in this area has grown exponentially over the last ten years. Research efforts have largely focused on the optimization of the dye, but recently the TiO2 nanocrystalline electrode itself has attracted more attention. It has been shown that particle size and shape, crystallinity, surface morphology and chemistry of the TiO2 material are key parameters to be controlled for optimized performance of the solar cell. This article will review the most recent research activities on nanostructured TiO2 for improvement of the DSSC performance.

  16. Light management of tandem solar cells on nanostructured substrates

    NASA Astrophysics Data System (ADS)

    Chin, Alan H.; Keshavarz, Majid; Wang, Guo; Yu, Rosaline; Niu, Xinwei; Yang, Liyou

    2017-04-01

    We report the use of nanostructured substrates as a simple approach to improve the performance of tandem micromorph silicon solar cells. In the proposed approach, nanostructured substrates are produced using a low-cost, self-assembled growth process. The use of a nanostructured substrate coated with a thick transparent conductive oxide electrode layer enables the conformal deposition of the tandem solar cell absorber layers while allowing the solar cell to exhibit a modified surface morphology caused by the underlying nanostructured morphology. Using this nanostructured substrate approach, we demonstrated a 78% relative enhancement in the conversion efficiency of a tandem micromorph silicon cell on a nanostructured substrate compared to a standard tandem micromorph cell deposited onto a flat substrate.

  17. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes.

    PubMed

    Abdou, E M; Hafez, H S; Bakir, E; Abdel-Mottaleb, M S A

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k=1.6, 2.1 and 1.9×10(-3)min(-1) for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100mWcm(-2), reveals highly stable DSSCs.

  18. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    NASA Astrophysics Data System (ADS)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  19. Efficiency enhancement in solid state dye sensitized solar cells by including inverse opals with controlled layer thicknesses

    NASA Astrophysics Data System (ADS)

    Zheng, Hanbin; Shah, Said Karim; Abbas, Mamatimin; Ly, Isabelle; Rivera, Thomas; Almeida, Rui M.; Hirsch, Lionel; Toupance, Thierry; Ravaine, Serge

    2016-09-01

    The photoconversion efficiency of dye sensitized solar cells can be enhanced by the incorporation of light management nanostructures such as photonic crystals. Here, we present a facile route to incorporate titania inverse opals into solid state dye sensitized solar cells and report photoconversion efficiency enhancements of up to 56% compared with a model system without the inverse opal. Our approach is based on the precise design of titania inverse opals with a predetermined thickness that can be controlled at the individual layer level. By choosing an inverse opal exhibiting a photonic bandgap which overlaps the absorption bands of the dye, our results show that there is an optimal thickness of the inverse opal structure for maximum efficiency enhancement of the cell. This is the first experimental proof that the thickness of a titania inverse opal plays a pivotal role in cell efficiency enhancement in solid state dye sensitized solar cells.

  20. Nanomaterials Enabled Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Dong, Pei

    Dye sensitized solar cells (DSCs), as the third generation of solar cells, have attracted tremendous attention for their unique properties. The semi-transparent nature, low-cost, environmental friendliness, and convenient manufacturing conditions of this generation of solar cells are promising aspects of DSCs that make them competitive in their future applications. However, much improvement in many aspects of DSCs' is required for the realization of its full potential. In this thesis, various nanomaterials, such as graphene, multi wall carbon nanotubes, vertically aligned single wall carbon nanotubes, hybrid structures and etc, have been used to improve the performance of DSCs. First, the application of graphene covered metal grids as transparent conductive electrodes in DSCs is explored. It is demonstrated that the mechanical properties of these flexible hybrid transparent electrodes, in both bending and stretching tests, are better than their oxide-based counter parts. Moreover, different kinds of carbon nanotubes, for instance vertically aligned single wall carbon nanotubes, have been used as a replacement for traditional platinum counter electrodes, in both iodine electrolyte, and sulfide-electrolyte. Further, a flexible, seamlessly connected, 3-dimensional vertically-aligned few wall carbon nanotubes graphene hybrid structures on Ni foil as DSCs' counter electrodes improve their efficiency significantly. All these nanomaterials enabled DSCs architectures achieve a comparable or better performance than standard brittle platinum/fluorine doped tin oxide combination. The large surface area of such nanomaterials in addition to the high electrical conductivity and their mechanical robustness provides a platform for significant enhancements in DSCs' performance.

  1. ZnO disk-like structures and their application in dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Yang, Y.; Sun, X. W.

    2016-08-01

    Hexagonal ZnO nanodisks, nanorings and porous nanodisks were synthesized by a simple hydrothermal method. The morphologies, structure and their optical properties of the various ZnO disk-like structures were characterized and their growth mechanism was investigated. The prepared ZnO disk-like nanostructures were used in the fabrication of the dye-sensitized solar cells. Improved photovoltaic properties were achieved for the porous disk solar cells due to their special geometry enabled better light harvesting and reduced recombination.

  2. Dye-sensitized solar cells based on purple corn sensitizers

    NASA Astrophysics Data System (ADS)

    Phinjaturus, Kawin; Maiaugree, Wasan; Suriharn, Bhalang; Pimanpaeng, Samuk; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan

    2016-09-01

    Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  3. Carbonaceous Dye-Sensitized Solar Cell Photoelectrodes.

    PubMed

    Batmunkh, Munkhbayar; Biggs, Mark J; Shapter, Joseph G

    2015-03-01

    High photovoltaic efficiency is one of the most important keys to the commercialization of dye sensitized solar cells (DSSCs) in the quickly growing renewable electricity generation market. The heart of the DSSC system is a wide bandgap semiconductor based photoelectrode film that helps to adsorb dye molecules and transport the injected electrons away into the electrical circuit. However, charge recombination, poor light harvesting efficiency and slow electron transport of the nanocrystalline oxide photoelectrode film are major issues in the DSSC's performance. Recently, semiconducting composites based on carbonaceous materials (carbon nanoparticles, carbon nanotubes (CNTs), and graphene) have been shown to be promising materials for the photoelectrode of DSSCs due to their fascinating properties and low cost. After a brief introduction to development of nanocrystalline oxide based films, this Review outlines advancements that have been achieved in the application of carbonaceous-based materials in the photoelectrode of DSSCs and how these advancements have improved performance. In addition, several of the unsolved issues in this research area are discussed and some important future directions are also highlighted.

  4. Discovery of black dye crystal structure polymorphs: Implications for dye conformational variation in dye-sensitized solar cells

    DOE PAGES

    Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun

    2015-11-24

    Here, we present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world’s leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiple conformationsmore » more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO2 interfaces in DSSCs, at least for ruthenium-based dye complexes.« less

  5. Discovery of black dye crystal structure polymorphs: Implications for dye conformational variation in dye-sensitized solar cells

    SciTech Connect

    Cole, Jacqueline M.; Low, Kian Sing; Gong, Yun

    2015-11-24

    Here, we present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world’s leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiple conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO2 interfaces in DSSCs, at least for ruthenium-based dye complexes.

  6. Discovery of Black Dye Crystal Structure Polymorphs: Implications for Dye Conformational Variation in Dye-Sensitized Solar Cells.

    PubMed

    Cole, Jacqueline M; Low, Kian Sing; Gong, Yun

    2015-12-23

    We present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world's leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiple conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO2 interfaces in DSSCs, at least for ruthenium-based dye complexes.

  7. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Raj, C. Clement; Prasanth, R.

    2016-06-01

    In a dye sensitized solar cell the photoanode performs a dual role of acting as a matrix for dye adsorption and as a charge transport medium for electron transport. The surface area and the electronic property of the material determine the current output of the device. So the performance of dye sensitized solar cell is significantly affected by our choice of material to be used as photoanode. High surface area, optimum carrier density, low impedance and efficient carrier transport are requirements for an efficient photoanode material in a DSSC. The goal of this review article is to highlight the fabrication methods used for the preparation of efficient nanostructured photoanodes. The application of these nanostructured photoanode materials and their impact on the device efficiency has been described in detail. The enhancement in the surface area of the material and its impact on the dye adsorption and current generation has been discussed. A detailed analysis of the role of different blocking layers used in improving the open circuit voltage of the device has been done. The outlook and future directions in improving the device performance are also discussed.

  8. Characteristics of dye Rhoeo spathacea in dye sensitizer solar cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Sumardiasih, Sri; Obina, Wilfrida M.; Cari; Supriyanto, Agus; Septiawan, Trio Y.; Khairuddin

    2017-01-01

    Dye-sensitized solar cell (DSSC) is a device that converts solar energy into electrical energy. The magnitude of the efficiency of DSSC is mainly based on the amount of dye absorbed by the surface of TiO2. In this work, used natural dye extracted from leaves Rhoeo spathacea. The dye partially used to immerse of TiO2 as working electrodes, and the rest are directly mixed TiO2 paste to obtain dye titanium dioxide.The paste TiO2 and dye titanium dioxide coated onto the fluorine-doped tin oxide (FTO) glass plate by spin coating method. The absorbance spectra of the dye, dye titanium dioxide and TiO2 were obtained by UV-Vis spectroscopy. The conductivity of the dye, dye titanium dioxide, and TiO2 was measured by two point probe El-Kahfi 100. The DSSC based on dye titanium dioxide that stirring for 5 hours the highest efficiency of 0,0520 % whereas those based on TiO2 immersed for 36 hours showed achieved 0,0501 % obtained from I-V characterization.

  9. Review on light management by nanostructures in chalcopyrite solar cells

    NASA Astrophysics Data System (ADS)

    Schmid, M.

    2017-04-01

    Light management has gained wide interest for various types of solar cells. This paper reviews the application of nanostructures for light management to chalcopyrite (CIGSe) type solar cells. Firstly, the relevance of light management for CIGSe solar cells will be introduced and concepts of nanostructures for absorption enhancement discussed. The development of ultra-thin CIGSe solar cells and examples for nanoparticle fabrication techniques together with their chances and challenges for application to CIGSe will be presented. Particular attention will be paid to nanostructures that have been applied to CIGSe solar cells, revealing many theoretical and some experimental results. Metallic and dielectric nanostructures as well as intrinsic nanotextures will be covered. For the future, combined considerations of optical and electrical properties will gain in importance.

  10. Predicting with confidence the efficiency of new dyes in dye sensitized solar cells.

    PubMed

    Ip, Chung Man; Eleuteri, Antonio; Troisi, Alessandro

    2014-09-28

    We ask whether it is possible to predict the efficiency of a new dye in dye sensitized solar cells (DSSCs) on the basis of the known performance of existing dyes in the same type of device. We evaluate a number of computable predictors of the efficiency for a large set of dyes whose experimental efficiency is known. We have then used statistical regression methods to establish the relation between the predictors and the efficiency. Our predictions are associated with a rigorously determined confidence level. For a new dye of the same family we are able to predict the probability that its efficiency in a DSSC is larger than a certain threshold. This method is useful for accelerating the discovery of new dyes and establishing more rigorously the existence of specific correlations between structure and properties. Within the properties considered we find that the dye efficiency correlates more strongly with its oxidation potential and reorganization energy.

  11. Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages.

    PubMed

    Simon, Sarah J C; Parlane, Fraser G L; Swords, Wesley B; Kellett, Cameron W; Du, Chuan; Lam, Brian; Dean, Rebecca K; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-08-24

    We report here an enhancement in photovoltage for dye-sensitized solar cells (DSSCs) where halogen-bonding interactions exist between a nucleophilic electrolyte species (I(-)) and a photo-oxidized dye immobilized on a TiO2 surface. The triarylamine-based dyes under investigation showed larger rate constants for dye regeneration (kreg) by the nucleophilic electrolyte species when heavier halogen substituents were positioned on the dye. The open-circuit voltages (VOC) tracked these kreg values. This analysis of a homologous series of dyes that differ only in the identity of two halogen substituents provides compelling evidence that the DSSC photovoltage is sensitive to kreg. This study also provides the first direct evidence that halogen-bonding interactions between the dye and the electrolyte can bolster DSSC performance.

  12. Capturing the Potential of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Benson, James

    2010-10-01

    Dye-sensitized solar cells are a continually developing type of low-cost solar cells that have commercial efficiency around 6-10%. The proposed research here will be focusing on the photo-bleaching and improving techniques for electron transport. Nature has given us a goal to reach towards with proven techniques for converting light into energy with around 30-40% efficiency, however, chlorophyll, the light absorber in plants, is expensive and it is not practical to make solar cells with only chlorophyll as the absorber. One such alternative to chlorophyll is phthalocyanines which is a common industrial dye used in many applications. This dye has a common similar ring without the long phytol chain that chlorophyll has. Previous research has shown that encapsulating organic dyes can magnify the properties of dye from the increased concentration with a possible benefit of stabilizing the dye allowing it to slow down the photo bleaching significantly. Likewise, such encapsulation may help with thermal stability since many dye-sensitized solar cells require a liquid or gel solution that is sensitive to thermal expansion. Many researchers are also finding new ways to encapsulate the dyes or dope the p-n layers with nano and meso tubes to help with electron transport or build the p-n layers right in the tubes. This allows for countless layers and an overall more efficient design.

  13. Computational study of diketopyrrolopyrrole-based organic dyes for dye sensitized solar cell applications.

    PubMed

    Fan, Wenjie; Tan, Dazhi; Zhang, Qijian; Wang, Huaxing

    2015-04-01

    Four diketopyrrolopyrrole (DPP)-based organic dyes utilizing the donor-π-acceptor motif were investigated by density functional theory (DFT) and time-dependent DFT (TDDFT) approaches. The four dyes were composed of different donor groups, i.e. indoline, carbazole, triphenylamine, and coumarin. We investigated the effects of the DPP unit and different donors on the spectra and electrochemical properties of the dyes, respectively. In comparison with the model dye which adopts a phenylene unit as the π-spacer, the DPP dyes all display remarkably enhanced spectral responses in the visible region of the solar spectrum. The key to this increase was the incorporation of electron-deficient DPP moieties to the molecular core, which significantly lowers LUMO levels and therefore reduces the band gap. The dye/(TiO2)46 anatase nanoparticle systems were also simulated to show the electronic structures at the interface. We studied some key properties including absorption spectra, light-harvesting efficiency, molecular orbital distributions, and injection time of electrons from the excited state of dye to the conduction band of TiO2. The dye DPP-I with indoline moiety as the electron donor demonstrates desirable energetic, electronic, and spectroscopic parameters for dye sensitized solar cells (DSSCs) applications. Our theoretical study is expected to provide valuable insights into the molecular design of novel DPP-based organic dyes for the optimizations of DSSCs.

  14. Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells.

    PubMed

    Ooyama, Yousuke; Harima, Yutaka

    2012-12-21

    Dye-sensitized solar cells (DSSCs) based on organic dyes adsorbed on oxide semiconductor electrodes, such as TiO(2), ZnO, or NiO, which have emerged as a new generation of sustainable photovoltaic devices, have attracted much attention from chemists, physicists, and engineers because of enormous scientific interest in not only their construction and operational principles, but also in their high incident-solar-light-to-electricity conversion efficiency and low cost of production. To develop high-performance DSSCs, it is important to create efficient organic dye sensitizers, which should be optimized for the photophysical and electrochemical properties of the dyes themselves, with molecular structures that provide good light-harvesting features, good electron communication between the dye and semiconductor electrode and between the dye and electrolyte, and to control the molecular orientation and arrangement of the dyes on a semiconductor surface. The aim of this Review is not to make a list of a number of organic dye sensitizers developed so far, but to provide a new direction in the epoch-making molecular design of organic dyes for high photovoltaic performance and long-term stability of DSSCs, based on the accumulated knowledge of their photophysical and electrochemical properties, and molecular structures of the organic dye sensitizers developed so far.

  15. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    PubMed

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-05

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  16. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    NASA Astrophysics Data System (ADS)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  17. Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices.

    PubMed

    Leung, Siu-Fung; Zhang, Qianpeng; Tavakoli, Mohammad Mahdi; He, Jin; Mo, Xiaoliang; Fan, Zhiyong

    2016-05-01

    Integrating devices with nanostructures is considered a promising strategy to improve the performance of solar energy harvesting devices such as photovoltaic (PV) devices and photo-electrochemical (PEC) solar water splitting devices. Extensive efforts have been exerted to improve the power conversion efficiencies (PCE) of such devices by utilizing novel nanostructures to revolutionize device structural designs. The thicknesses of light absorber and material consumption can be substantially reduced because of light trapping with nanostructures. Meanwhile, the utilization of nanostructures can also result in more effective carrier collection by shortening the photogenerated carrier collection path length. Nevertheless, performance optimization of nanostructured solar energy harvesting devices requires a rational design of various aspects of the nanostructures, such as their shape, aspect ratio, periodicity, etc. Without this, the utilization of nanostructures can lead to compromised device performance as the incorporation of these structures can result in defects and additional carrier recombination. The design guidelines of solar energy harvesting devices are summarized, including thin film non-uniformity on nanostructures, surface recombination, parasitic absorption, and the importance of uniform distribution of photo-generated carriers. A systematic view of the design concerns will assist better understanding of device physics and benefit the fabrication of high performance devices in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Peptide-templating dye-sensitized solar cells.

    PubMed

    Han, Tae Hee; Moon, Hyoung-Seok; Hwang, Jin Ok; Seok, Sang Il; Im, Sang Hyuk; Kim, Sang Ouk

    2010-05-07

    A hollow TiO(2) nanoribbon network electrode for dye-sensitized solar cells (DSSC) was fabricated by a biotemplating process combining peptide self-assembly and atomic layer deposition (ALD). An aromatic peptide of diphenylalanine was assembled into a three-dimensional network consisting of highly entangled nanoribbons. A thin TiO(2) layer was deposited at the surface of the peptide template via the ALD process. After the pyrolysis of the peptide template, a highly entangled nanotubular TiO(2) framework was successfully prepared. Evolution of the crystal phase and crystallite size of the TiO(2) nanostructure was exploited by controlling the calcination temperature. Finally, the hollow TiO(2) nanoribbon network electrode was integrated into DSSC devices and their photochemical performances were investigated. Hollow TiO(2) nanoribbon-based DSSCs exhibited a power conversion efficiency of 3.8%, which is comparable to the conventional TiO(2) nanoparticle-based DSSCs (3.5%). Our approach offers a novel pathway for DSSCs consisting of TiO(2) electrodes via biotemplating.

  19. Nanostructured Semiconductor Device Design in Solar Cells

    NASA Astrophysics Data System (ADS)

    Dang, Hongmei

    We demonstrate the use of embedded CdS nanowires in improving spectral transmission loss and the low mechanical and electrical robustness of planar CdS window layer and thus enhancing the quantum efficiency and the reliability of the CdS-CdTe solar cells. CdS nanowire window layer enables light transmission gain at 300nm-550nm. A nearly ideal spectral response of quantum efficiency at a wide spectrum range provides an evidence for improving light transmission in the window layer and enhancing absorption and carrier generation in absorber. Nanowire CdS/CdTe solar cells with Cu/graphite/silver paste as back contacts, on SnO2/ITO-soda lime glass substrates, yield the highest efficiency of 12% in nanostructured CdS-CdTe solar cells. Reliability is improved by approximately 3 times over the cells with the traditional planar CdS counterpart. Junction transport mechanisms are delineated for advancing the basic understanding of device physics at the interface. Our results prove the efficacy of this nanowire approach for enhancing the quantum efficiency and the reliability in windowabsorber type solar cells (CdS-CdTe, CdS-CIGS and CdS-CZTSSe etc) and other optoelectronic devices. We further introduce MoO3-x as a transparent, low barrier back contact. We design nanowire CdS-CdTe solar cells on flexible foils of metals in a superstrate device structure, which makes low-cost roll-to-roll manufacturing process feasible and greatly reduces the complexity of fabrication. The MoO3 layer reduces the valence band offset relative to the CdTe, and creates improved cell performance. Annealing as-deposited MoO3 in N 2 reduces series resistance from 9.98 O/cm2 to 7.72 O/cm2, and hence efficiency of the nanowire solar cell is improved from 9.9% to 11%, which efficiency comparable to efficiency of planar counterparts. When the nanowire solar cell is illuminated from MoO 3-x /Au side, it yields an efficiency of 8.7%. This reduction in efficiency is attributed to decrease in Jsc from 25.5m

  20. Exploiting nanocarbons in dye-sensitized solar cells.

    PubMed

    Kavan, Ladislav

    2014-01-01

    Fullerenes, carbon nanotubes, nanodiamond, and graphene find various applications in the development of solar cells, including dye sensitized solar cells. Nanocarbons can be used as (1) active light-absorbing component, (2) current collector, (3) photoanode additive, or (4) counter electrode. Graphene-based materials have attracted considerable interest for catalytic counter electrodes, particularly in state-of-the-art dye sensitized solar cells with Co-mediators. The understanding of electrochemical charge-transfer at carbon surfaces is key to optimization of these solar cells, but the electrocatalysis on carbon surfaces is still a subject of conflicting debate. Due to the rich palette of problems at the interface of nanocarbons and photovoltaics, this review is selective rather than comprehensive. Its motivation was to highlight selected prospective inputs from nanocarbon science towards the development of novel dye sensitized solar cells with improved efficiency, durability, and cost.

  1. Vegetable-based dye-sensitized solar cells.

    PubMed

    Calogero, Giuseppe; Bartolotta, Antonino; Di Marco, Gaetano; Di Carlo, Aldo; Bonaccorso, Francesco

    2015-05-21

    There is currently a large effort to improve the performance of low cost renewable energy devices. Dye-sensitized solar cells (DSSCs) are emerging as one of the most promising low cost photovoltaic technologies, addressing "secure, clean and efficient solar energy conversion". Vegetable dyes, extracted from algae, flowers, fruit and leaves, can be used as sensitizers in DSSCs. Thus far, anthocyanin and betalain extracts together with selected chlorophyll derivatives are the most successful vegetable sensitizers. This review analyses recent progress in the exploitation of vegetable dyes for solar energy conversion and compares them to the properties of synthetic dyes. We provide an in-depth discussion on the main limitation of cell performance e.g. dye degradation, effective electron injection from the dye into the conduction band of semiconducting nanoparticles, such as titanium dioxide and zinc oxide, outlining future developments for the use of vegetable sensitizers in DSSCs. We also discuss the cost of vegetable dyes and how their versatility can boost the advancement of new power management solutions, especially for their integration in living environments, making the practical application of such systems economically viable. Finally, we present our view on future prospects in the development of synthetic analogues of vegetable dyes as sensitizers in DSSCs.

  2. Spectral Studies of UV and Solar Photocatalytic Degradation of AZO Dye and Textile Dye Effluents Using Green Synthesized Silver Nanoparticles.

    PubMed

    Mariselvam, R; Ranjitsingh, A J A; Mosae Selvakumar, P; Alarfaj, Abdullah A; Munusamy, Murugan A

    2016-01-01

    The photocatalytic degradation of the chemical dye AZO and dye effluents in different time duration has been investigated using biologically synthesized silver nanoparticles. Dye industry effluents and AZO dye undergo degradation to form harmless intermediate and colourless products following irradiation by UV and solar light in the presence of green synthesized silver nanoparticles. The degree of degradation was tested under the experimental conditions such as P(H), temperature, and absorbance of the dye in UV and solar light was measured. The degradation was higher in the UV light source than in the solar light source. Green synthesized silver nanoparticles in the UV light source were found to expedite the dye degradation process.

  3. Spectral Studies of UV and Solar Photocatalytic Degradation of AZO Dye and Textile Dye Effluents Using Green Synthesized Silver Nanoparticles

    PubMed Central

    Mariselvam, R.; Ranjitsingh, A. J. A.; Mosae Selvakumar, P.; Alarfaj, Abdullah A.; Munusamy, Murugan A.

    2016-01-01

    The photocatalytic degradation of the chemical dye AZO and dye effluents in different time duration has been investigated using biologically synthesized silver nanoparticles. Dye industry effluents and AZO dye undergo degradation to form harmless intermediate and colourless products following irradiation by UV and solar light in the presence of green synthesized silver nanoparticles. The degree of degradation was tested under the experimental conditions such as PH, temperature, and absorbance of the dye in UV and solar light was measured. The degradation was higher in the UV light source than in the solar light source. Green synthesized silver nanoparticles in the UV light source were found to expedite the dye degradation process. PMID:27382364

  4. Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells.

    PubMed

    Hardin, Brian E; Sellinger, Alan; Moehl, Thomas; Humphry-Baker, Robin; Moser, Jacques-E; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael; McGehee, Michael D

    2011-07-13

    Cosensitization of broadly absorbing ruthenium metal complex dyes with highly absorptive near-infrared (NIR) organic dyes is a clear pathway to increase near-infrared light harvesting in liquid-based dye-sensitized solar cells (DSCs). In cosensitized DSCs, dyes are intimately mixed, and intermolecular charge and energy transfer processes play an important role in device performance. Here, we demonstrate that an organic NIR dye incapable of hole regeneration is able to produce photocurrent via intermolecular energy transfer with an average excitation transfer efficiency of over 25% when cosensitized with a metal complex sensitizing dye (SD). We also show that intermolecular hole transfer from the SD to NIR dye is a competitive process with dye regeneration, reducing the internal quantum efficiency and the electron lifetime of the DSC. This work demonstrates the general feasibility of using energy transfer to boost light harvesting from 700 to 800 nm and also highlights a key challenge for developing highly efficient cosensitized dye-sensitized solar cells.

  5. Dye-Sensitized Solar Cells (DSSCs) reengineering using TiO2 with natural dye (anthocyanin)

    NASA Astrophysics Data System (ADS)

    Subodro, Rohmat; Kristiawan, Budi; Ramelan, Ari Handono; Wahyuningsih, Sayekti; Munawaroh, Hanik; Hanif, Qonita Awliya; Saputri, Liya Nikmatul Maula Zulfa

    2017-01-01

    This research on Dye-Sensitized Solar Cells (DSSCs) reengineering was carried out using TiO2 with natural dye (anthocyanin). The fabrication of active carbon layer/TiO2 DSSC solar cell was based on natural dye containing anthocyanins such as mangosteen peel, red rose flower, black glutinous rice, and purple eggplant peel. DSSC was prepared with TiO2 thin layer doped with active carbon; Natural dye was analyzed using UV-Vis and TiO2 was analyzed using X-ray diffractometer (XRD), meanwhile scanning electron microscope (SEM) was used to obtain the size of the crystal. Keithley instrument test was carried out to find out I-V characteristics indicating that the highest efficiency occurred in DSSCs solar cell with 24-hour soaking with mangosteen peel 0.00047%.

  6. Efficiency Records in Mesoscopic Dye-Sensitized Solar Cells.

    PubMed

    Albero, Josep; Atienzar, Pedro; Corma, Avelino; Garcia, Hermenegildo

    2015-08-01

    The aim of the present review article is to show the progress achieved in the efficiency of dye-sensitized solar cells (DSSCs) by evolution in the structure and composition of the dye. After an initial brief description of DSSCs and the operating mechanism the major part of the present article is organized according to the type of dye, trying to show the logic in the variation of the dye structure in order to achieve strong binding on the surface of the layer of nanoparticulate TiO2 , efficient interfacial electron injection between the excited dye and the semiconductor, and minimization of the unwanted dark current processes. Besides metal complexes, including polypyridyls and nitrogenated macro rings, organic dyes and inorganic light harvesters such as quantum dots and perovskites have also been included in the review. The last section summarizes the current state of the art and provides an overview on future developments in the field.

  7. Incorporating hydrangea-like titanium dioxide light scatterer with high dye-loading on the photoanode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Chen; Tang, Bing-Hong; Lu, Yen-Wei; Yu, Wan-Chin; Lin, Lu-Yin; Wu, Ren-Jang

    2016-07-01

    The light scattering layer is significant for dye-sensitized solar cells (DSSCs) to harvest incident light more efficiently and excite larger amounts of electrons. Hydrangea-like TiO2 (Hsbnd TiO2) and coral-like TiO2 (Csbnd TiO2) nanostructures are synthesized via a hydrothermal method without using templates. Both of the nanostructures are applied as the light scattering layer for DSSCs with the commercial P90 TiO2 nanoparticles as the dye-adsorbed underlayer in the photoanodes. The DSSC with Hsbnd TiO2 as the light scattering layer achieves a higher light-to-electricity conversion efficiency (η) of 7.50% than those of 6.70% and 6.61% for the cells with Csbnd TiO2 and commercial TiO2 as the light scattering layer, and of 6.41% for the DSSC without a light scattering layer in its photoanode, mainly due to the enhanced photocurrent density through the abundant dye adsorption coupled with the inherent light scattering ability for the former case. The results indicate that not only the importance of the light scattering layer in the photoanode but the morphology of the nanostructure composed of the light scattering layer plays great roles on the light scattering and the dye-adsorbing capabilities. The incident photon-to-current efficiency the electrochemical impedance spectroscopy measurements are also applied to analyze the electrochemical performance of the resulting DSSCs.

  8. Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells

    DTIC Science & Technology

    2014-09-01

    High-Efficiency Solar - Cell Based on Dye-Sensitized Colloidal TiO2 Films,” a DSSC consists of four main components: a photoanode, a counter... solar cell modules. 2. Experiment and Calculations 2.1 Materials Commercial TiO2 paste was purchased from Dyesol, and additional nanophase TiO2 ...B.; Grätzel, M. A Low-Cost, High Efficiency Solar Cell Based on Dye_Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740. 2. Snaith, H. J

  9. Near-infrared sensitization in dye-sensitized solar cells.

    PubMed

    Park, Jinhyung; Viscardi, Guido; Barolo, Claudia; Barbero, Nadia

    2013-01-01

    Dye-sensitized solar cells (DSCs) are a low cost and colorful promising alternative to standard silicon photovoltaic cells. Though many of the highest efficiencies have been associated with sensitizers absorbing only in the visible portion of the solar radiation, there is a growing interest for NIR sensitization. This paper reviews the efforts made so far to find sensitizers able to absorb efficiently in the far-red NIR region of solar light. Panchromatic sensitizers as well as dyes absorbing mainly in the 650-920 nm region have been considered.

  10. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    SciTech Connect

    Sahmer, Ahmad Zahrin Mohamed, Norani Muti Zaine, Siti Nur Azella

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  11. Hydrothermal preparation of silver telluride nanostructures and photo-catalytic investigation in degradation of toxic dyes

    PubMed Central

    Gholamrezaei, Sousan; Salavati-Niasari, Masoud; Ghanbari, Davood; Bagheri, Samira

    2016-01-01

    Different morphologies of Ag2Te nanostructures were synthesized using TeCl4 as a new precursor and hydrazine hydrate as reducing agent by a hydrothermal method. Various parameters that affect on morphology and purity of nanostructures were optimized. According to our experiments the best time and temperature for preparation of this nanostructure are 12 h and 120 °C. The photo-catalytic behaviour of nanostructures in presence of UV- visible light for degradation of methyl orange was investigated. Results show that the presence of UV light is necessary for an efficient degradation of dye in aqueous solution. On the other hand, as observations propose the Ag2Te reveal a strong photoluminescence peak at room temperature that could be attributed to high level transition in the semiconductor. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) techniques and UV–visible scanning spectrometer (UV-Vis). PMID:26805744

  12. Hydrothermal preparation of silver telluride nanostructures and photo-catalytic investigation in degradation of toxic dyes

    NASA Astrophysics Data System (ADS)

    Gholamrezaei, Sousan; Salavati-Niasari, Masoud; Ghanbari, Davood; Bagheri, Samira

    2016-01-01

    Different morphologies of Ag2Te nanostructures were synthesized using TeCl4 as a new precursor and hydrazine hydrate as reducing agent by a hydrothermal method. Various parameters that affect on morphology and purity of nanostructures were optimized. According to our experiments the best time and temperature for preparation of this nanostructure are 12 h and 120 °C. The photo-catalytic behaviour of nanostructures in presence of UV- visible light for degradation of methyl orange was investigated. Results show that the presence of UV light is necessary for an efficient degradation of dye in aqueous solution. On the other hand, as observations propose the Ag2Te reveal a strong photoluminescence peak at room temperature that could be attributed to high level transition in the semiconductor. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) techniques and UV-visible scanning spectrometer (UV-Vis).

  13. Transforming benzophenoxazine laser dyes into chromophores for dye-sensitized solar cells: a molecular engineering approach

    SciTech Connect

    Schroder, Florian A. Y. N.; Cole, Jacqueline M.; Waddell, Paul G.; McKechnie, Scott

    2015-05-06

    The re-functionalization of a series of four well-known industrial laser dyes, based on benzophenoxazine, is explored with the prospect of molecularly engineering new chromophores for dye-sensitized solar cell (DSC) applications. Such engineering is important since a lack of suitable dyes is stifling the progress of DSC technology. The conceptual idea involves making laser dyes DSC-active by chemical modification, while maintaining their key property attributes that are attractive to DSC applications. This molecular engineering follows a step-wise approach. Firstly, molecular structures and optical absorption properties are determined for the parent laser dyes: Cresyl Violet (1); Oxazine 170 (2); Nile Blue A (3), Oxazine 750 (4). These reveal structure-property relationships which define the prerequisites for computational molecular design of DSC dyes; the nature of their molecular architecture (D-π-A) and intramolecular charge transfer. Secondly, new DSC dyes are computationally designed by the in silico addition of a carboxylic acid anchor at various chemical substitution points in the parent laser dyes. A comparison of the resulting frontier molecular orbital energy levels with the conduction band edge of a TiO2 DSC photoanode and the redox potential of two electrolyte options I-/I3- and Co(II/III)tris(bipyridyl) suggests promise for these computationally designed dyes as co-sensitizers for DSC applications.

  14. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-05-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4‧-(2,2-dicyanovinyl)-[1,1‧-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up.

  15. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    PubMed Central

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4′-(2,2-dicyanovinyl)-[1,1′-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  16. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    NASA Astrophysics Data System (ADS)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  17. Ultrafast interfacial charge transfer dynamics in dye-sensitized and quantum dot solar cell

    NASA Astrophysics Data System (ADS)

    Ghosh, Hirendra N.

    2013-02-01

    Dye sensitized solar cell (DSSC) appeared to be one of the good discovery for the solution of energy problem. We have been involved in studying ultrafast interfacial electron transfer dynamics in DSSC using femtosecond laser spectroscopy. However it has been realized that it is very difficult to design and develop higher efficient one, due to thermodynamic limitation. Again in DSSC most of the absorbed photon energy is lost as heat within the cell, which apart from decreasing the efficiency also destabilizes the device. It has been realized that quantum dot solar cell (QDSC) are the best bet where the sensitizer dye molecules can be replaced by suitable quantum dot (QD) materials in solar cell. The quantum-confinement effect in semiconductors modifies their electronic structure, which is a very important aspect of these materials. For photovoltaic applications, a long-lived charge separation remains one of the most essential criteria. One of the problems in using QDs for photovoltaic applications is their fast charge recombination caused by nonradiative Auger processes, which occur predominantly at lower particle sizes due to an increase in the Coulomb interaction between electrons and holes. Various approaches, such as the use of metal-semiconductor composites, semiconductor-polymer composite, and semiconductor core-shell heterostructures, have been attempted to minimize the fast recombination between electrons and holes. To make higher efficient solar devices it has been realised that it is very important to understand charge carrier and electron transfer dynamics in QD and QD sensitized semiconductor nanostructured materials. In the present talk, we are going to discuss on recent works on ultrafast electron transfer dynamics in dye-sensitized TiO2 nanoparticles/film [1-12] and charge (electron/hole) transfer dynamics in quantum dot core-shell nano-structured materials [13-17].

  18. Optimization of nanoparticle structure for improved conversion efficiency of dye solar cell

    SciTech Connect

    Mohamed, Norani Muti; Zaine, Siti Nur Azella

    2014-10-24

    Heavy dye loading and the ability to contain the light within the thin layer (typically ∼12 μm) are the requirement needed for the photoelectrode material in order to enhance the harvesting efficiency of dye solar cell. This can be realized by optimizing the particle size with desirable crystal structure. The paper reports the investigation on the dependency of the dye loading and light scattering on the properties of nanostructured photoelectrode materials by comparing 4 different samples of TiO{sub 2} in the form of nanoparticles and micron-sized TiO{sub 2} aggregates which composed of nanocrystallites. Their properties were evaluated by using scanning electron microscopy, X-ray diffraction and UVVis spectroscopy while the performance of the fabricated test cells were measured using universal photovoltaic test system (UPTS) under 1000 W/cm{sup 2} intensity of radiation. Nano sized particles provide large surface area which allow for greater dye adsorption but have no ability to retain the incident light in the TiO{sub 2} film. In contrast, micron-sized particles in the form of aggregates can generate light scattering allowing the travelling distance of the light to be extended and increasing the interaction between the photons and dye molecules adsorb on TiO{sub 2}nanocrystallites. This resulted in an improvement in the conversion efficiency of the aggregates that demonstrates the close relation between light scattering effect and the structure of the photolectrode film.

  19. TiO2-coated nanostructures for dye photo-degradation in water.

    PubMed

    Scuderi, Viviana; Impellizzeri, Giuliana; Romano, Lucia; Scuderi, Mario; Nicotra, Giuseppe; Bergum, Kristin; Irrera, Alessia; Svensson, Bengt G; Privitera, Vittorio

    2014-01-01

    The photocatalytic efficiency of a thin-film TiO2-coated nanostructured template is studied by dye degradation in water. The nanostructured template was synthesized by metal-assisted wet etching of Si and used as substrate for the deposition of a thin film of TiO2 (10 nm thick) by atomic layer deposition. A complete structural characterization was made by scanning and transmission electron microscopies. The significant photocatalytic performance was evaluated by the degradation of two dyes in water: methylene blue and methyl orange. The relevance of the reported results is discussed, opening the route toward the application of the synthesized nanostructured TiO2 for water purification.

  20. Monitoring structural dynamics of in situ spray-deposited zinc oxide films for application in dye-sensitized solar cells.

    PubMed

    Sarkar, Kuhu; Braden, Erik V; Pogorzalek, Stefan; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter

    2014-08-01

    The spray-deposition technique is an effective and scalable method to deposit zinc oxide nanostructures, which are used as active layers for dye-sensitized solar cells (DSSCs) in the present study. The dynamics of structural evolution are studied with grazing incidence small-angle X-ray scattering during in situ spraying. Nanostructured films obtained through multiple spray shots provide suitable structural length scales, morphologies, and film thicknesses; this leads to reasonable performance in a DSSC with the highest short-circuit current density reported so far.

  1. Patterned dye structures limit reabsorption in luminescent solar concentrators.

    PubMed

    Tsoi, Shufen; Broer, Dirk J; Bastiaansen, Cees W; Debije, Michael G

    2010-11-08

    This work describes a method for limiting internal losses of a luminescent solar concentrator (LSC) due to reabsorption through patterning the fluorescent dye doped coating of the LSC. By engineering the dye coating into regular line patterns with fill factors ranging from 20 - 80%, the surface coverage of the dye molecules were reduced, thereby decreasing the probability of the re-emitted light encountering another dye molecule and the probability of reabsorption. Two types of fluorescent dyes with different quantum yields were used to examine the effects of patterning on LSC performance. The effect of various dimension and geometry of the patterns on the efficiency and edge emission of LSC are presented and analyzed.

  2. Current trends in materials for dye sensitized solar cells.

    PubMed

    Faccio, Ricardo; Fernández-Werner, Luciana; Pardo, Helena; Mombré, Alvaro W

    2011-01-01

    Here, we intend to review those patents related with the technology of dye sensitized solar cells. In particular we discuss patents and papers that enable metal oxide layer to be more controllable and feasible for applications, and new and innovative dyes, sensitizers and electrolytes with promising features. Finally various methods were reviewed for fabricating semiconductor layers and complete DSSC devices focusing on the mass production of photovoltaic cells.

  3. Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Ramavenkateswari, K.; Venkatachalam, P.

    2016-09-01

    This work investigates the proficiency of acceptor-donor-acceptor (A-D-A) organic dye Diisopropyl azodicarboxylate (DIAC) as photosensitizer on the photovoltaic parameters of silver (Ag) doped TiO2 photoanode dye-sensitized solar cells (DSSCs) with quasi-solid state electrolyte/hole transport material (HTM) spiro-MeOTAD. TNSs (TiO2 nanosticks) photoanodes are prepared through sol-gel method and hydrothermal technique. X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and BET measurement were used to characterize the structure and morphology of TiO2 nanostructures. The Diisopropyl azodicarboxylate organic dye with TNPs-Ag@TNSs composite photoanode structure and spiro-MeOTAD HTM exhibited better power conversion efficiency (PCE).

  4. Dye-sensitized solar cells with improved performance using cone-calix[4]arene based dyes.

    PubMed

    Tan, Li-Lin; Liu, Jun-Min; Li, Shao-Yong; Xiao, Li-Min; Kuang, Dai-Bin; Su, Cheng-Yong

    2015-01-01

    Three cone-calix[4]arene-based sensitizers (Calix-1-Calix-3) with multiple donor-π-acceptor (D-π-A) moieties are designed, synthesized, and applied in dye-sensitized solar cells (DSSCs). Their photophysical and electrochemical properties are characterized by measuring UV/Vis absorption and emission spectra, cyclic voltammetry, and density functional theory (DFT) calculations. Calix-3 has excellent thermo- and photostability, as illustrated by thermogravimetric analysis (TGA) and dye-aging tests, respectively. Importantly, a DSSC using the Calix-3 dye displays a conversion efficiency of 5.48 % in under standard AM 1.5 Global solar illumination conditions, much better than corresponding DSSCs that use the rod-shaped dye M-3 with a single D-π-A chain (3.56 %). The dyes offer advantages in terms of higher molar extinction coefficients, longer electron lifetimes, better stability, and stronger binding ability to TiO2 film. This is the first example of calixarene-based sensitizers for efficient dye-sensitized solar cells.

  5. π-Spacer effect in dithiafulvenyl-π-phenothiazine dyes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Gou, Faliang; Zhao, Dongning; Shi, Jian; Gao, Hong; Zhu, Zhenping; Jing, Huanwang

    2016-08-01

    New dithiafulvenyl-π-phenothiazine dyes have been devised and prepared for dye-sensitized solar cells. Various π-spacers have been successfully introduced into the skeleton of dithiafulvenyl and phenothiazine unit to generate novel D-π-D-A dyes (DPP-1 ∼ 4). All dyes have been characterized with NMR, HRMS, UV-vis and fluorescence spectra, and taken into cyclic voltammetry measurements. The devices of new dyes have been determined by photoelectrochemical experiments (IV, IPCE and EIS), in which, solar cell of DPP-4 with biphenyl ring π-spacer enhances obviously its photoelectric conversion efficiency to 7.66% reaching 94% of N719-based standard cell and displays good long-term stability with quasi-solid-state electrolyte. Density functional theory (DFT) calculations of new dyes provide further insight into the molecular geometries and the impacts of the torsion angles on their photovoltaic performance. Large dihedral angles in DPP dyes induce good charge separation for efficient unidirectional flow of electron from donor to acceptor.

  6. Correlating titania morphology and chemical composition with dye-sensitized solar cell performance.

    PubMed

    Santulli, Alexander C; Koenigsmann, Christopher; Tiano, Amanda L; DeRosa, Donald; Wong, Stanislaus S

    2011-06-17

    We have investigated the use of various morphologies, including nanoparticles, nanowires, and sea-urchins of TiO(2) as the semiconducting material used as components of dye-sensitized solar cells (DSSCs). Analysis of the solar cells under AM 1.5 solar irradiation reveals the superior performance of hydrothermally derived nanoparticles, by comparison with two readily available commercial nanoparticle materials, within the DSSC architecture. The sub-structural morphology of films of these nanostructured materials has been directly characterized using SEM and indirectly probed using dye desorption. Furthermore, the surfaces of these nanomaterials were studied using TEM in order to visualize their structure, prior to their application within DSSCs. Surface areas of the materials have been quantitatively analyzed by collecting BET adsorption and dye desorption data. Additional investigation using open circuit voltage decay measurements reveals the efficiency of electron conduction through each TiO(2) material. Moreover, the utilization of various chemically distinctive titanate materials within the DSSCs has also been investigated, demonstrating the deficiencies of using these particular chemical compositions within traditional DSSCs.

  7. Correlating Titania Morphology and Chemical Composition with Dye-sensitized Solar Cell Performance

    SciTech Connect

    Santulli, A.C.; Wong, S.; Koenigsmann, C.; Tiano, A.L., DeRosa, D.

    2011-04-20

    We have investigated the use of various morphologies, including nanoparticles, nanowires, and sea-urchins of TiO{sub 2} as the semiconducting material used as components of dye-sensitized solar cells (DSSCs). Analysis of the solar cells under AM 1.5 solar irradiation reveals the superior performance of hydrothermally derived nanoparticles, by comparison with two readily available commercial nanoparticle materials, within the DSSC architecture. The sub-structural morphology of films of these nanostructured materials has been directly characterized using SEM and indirectly probed using dye desorption. Furthermore, the surfaces of these nanomaterials were studied using TEM in order to visualize their structure, prior to their application within DSSCs. Surface areas of the materials have been quantitatively analyzed by collecting BET adsorption and dye desorption data. Additional investigation using open circuit voltage decay measurements reveals the efficiency of electron conduction through each TiO{sub 2} material. Moreover, the utilization of various chemically distinctive titanate materials within the DSSCs has also been investigated, demonstrating the deficiencies of using these particular chemical compositions within traditional DSSCs.

  8. Metal oxide semiconductors for dye- and quantum-dot-sensitized solar cells.

    PubMed

    Concina, Isabella; Vomiero, Alberto

    2015-04-17

    This Review provides a brief summary of the most recent research developments in the synthesis and application of nanostructured metal oxide semiconductors for dye sensitized and quantum dot sensitized solar cells. In these devices, the wide bandgap semiconducting oxide acts as the photoanode, which provides the scaffold for light harvesters (either dye molecules or quantum dots) and electron collection. For this reason, proper tailoring of the optical and electronic properties of the photoanode can significantly boost the functionalities of the operating device. Optimization of the functional properties relies with modulation of the shape and structure of the photoanode, as well as on application of different materials (TiO2, ZnO, SnO2) and/or composite systems, which allow fine tuning of electronic band structure. This aspect is critical because it determines exciton and charge dynamics in the photoelectrochemical system and is strictly connected to the photoconversion efficiency of the solar cell. The different strategies for increasing light harvesting and charge collection, inhibiting charge losses due to recombination phenomena, are reviewed thoroughly, highlighting the benefits of proper photoanode preparation, and its crucial role in the development of high efficiency dye sensitized and quantum dot sensitized solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Green grasses as light harvesters in dye sensitized solar cells.

    PubMed

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-25

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  10. Green grasses as light harvesters in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  11. Highly efficient photocathodes for dye-sensitized tandem solar cells.

    PubMed

    Nattestad, A; Mozer, A J; Fischer, M K R; Cheng, Y-B; Mishra, A; Bäuerle, P; Bach, U

    2010-01-01

    Thin-film dye-sensitized solar cells (DSCs) based on mesoporous semiconductor electrodes are low-cost alternatives to conventional silicon devices. High-efficiency DSCs typically operate as photoanodes (n-DSCs), where photocurrents result from dye-sensitized electron injection into n-type semiconductors. Dye-sensitized photocathodes (p-DSCs) operate in an inverse mode, where dye-excitation is followed by rapid electron transfer from a p-type semiconductor to the dye (dye-sensitized hole injection). Such p-DSCs and n-DSCs can be combined to construct tandem solar cells (pn-DSCs) with a theoretical efficiency limitation well beyond that of single-junction DSCs (ref. 4). Nevertheless, the efficiencies of such tandem pn-DSCs have so far been hampered by the poor performance of the available p-DSCs (refs 3, 5-15). Here we show for the first time that p-DSCs can convert absorbed photons to electrons with yields of up to 96%, resulting in a sevenfold increase in energy conversion efficiency compared with previously reported photocathodes. The donor-acceptor dyes, studied as photocathodic sensitizers, comprise a variable-length oligothiophene bridge, which provides control over the spatial separation of the photogenerated charge carriers. As a result, charge recombination is decelerated by several orders of magnitude and tandem pn-DSCs can be constructed that exceed the efficiency of their individual components.

  12. A redox-controlled electrolyte for plasmonic enhanced dye-sensitized solar cells.

    PubMed

    Fu, Yuqiao; Ng, Siu-Pang; Qiu, Guangyu; Hung, Tak-Fu; Wu, Chi-Man Lawrence; Lee, Chun-Sing

    2017-08-03

    Plasmonic enhanced dye-sensitized solar cells (DSSCs) with metallic nanostructures suffer from corrosion problems, especially with the presence of the iodine/triiodide redox couple in the electrolyte. Herein, we introduce an alternative approach by compensating the corrosion with a modified liquid electrolyte. In contrast to the existing method of surface preservation for plasmonic nanostructures, the redox-controlled electrolyte (RCE) contains iodoaurate intermediates, i.e. gold(i) diiodide (AuI2(-)) and gold(iii) tetraiodide (AuI4(-)) with optimal concentrations, such that these intermediates are readily reduced to gold nanoparticles during the operation of DSSCs. As corrosion and redeposition of gold occur simultaneously, it effectively provides corrosion compensation to the plasmonic gold nanostructures embedded in the photoanode. Cycling tests of the specific amount of gold contents in the RCE of DSSCs support the fact that the dissolution and deposition of gold are reversible and repeatable. This gold deposition on the TiO2 photoanode results in forming a Schottky barrier (SB) at the metal-semiconductor interface and effectively inhibits the recombination of electron-hole pairs. Therefore, the RCE increases the short-circuit current, amplifies the open-circuit voltage, and reduces the impedance of the TiO2/dye interface. The power conversion efficiency of DSSCs was improved by 57% after incorporating the RCE.

  13. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides.

    PubMed

    Lee, Sung-Min; Dhar, Purnim; Chen, Huandong; Montenegro, Angelo; Liaw, Lauren; Kang, Dongseok; Gai, Boju; Benderskii, Alexander V; Yoon, Jongseung

    2017-04-12

    Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption and enhance their performance. The 8 μm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF4:Yb(3+),Er(3+) nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (∼40.1 mA/cm(2)) and energy conversion efficiency (∼12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ∼13.6 mA/cm(2) compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.

  14. Rapid double-dye-layer coating for dye-sensitized solar cells using a new method.

    PubMed

    Jung, Cho-long; Han, Chi-Hwan; Moon, Doo Kyung; Jun, Yongseok

    2014-10-01

    Intensive research with the specific aim of developing inexpensive renewable energy sources is currently being undertaken. In dye-sensitized solar cell (DSSC) production, the most time-consuming process is coating the dye on working electrodes: absorption of ruthenium-based dyes [e.g., N719=bis(trtrabutylammonium)-cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine) ruthenium(II)] on a photoanode takes a long time. We report a simple dye-coating method using a mixed solvent of ethylene glycol (EG) and glycerol (Gly). According to our experiments, dye-coating time can be reduced to 5 min from several hours. Maximum performance was obtained with an EG/Gly ratio of 1:1. This mixture of solvents gave a performance of 9.1%. Furthermore, the viscous solvent system could control coating depth; positioning dye coatings to a specific depth was rapid and facile. A cell containing two different dyes (N719+black dye) had an efficiency of 9.4%.

  15. High-efficiency nanostructured window GaAs solar cells.

    PubMed

    Liang, Dong; Kang, Yangsen; Huo, Yijie; Chen, Yusi; Cui, Yi; Harris, James S

    2013-10-09

    Nanostructures have been widely used in solar cells due to their extraordinary optical properties. In most nanostructured cells, high short circuit current has been obtained due to enhanced light absorption. However, most of them suffer from lowered open circuit voltage and fill factor. One of the main challenges is formation of good junction and electrical contact. In particular, nanostructures in GaAs only have shown unsatisfactory performances (below 5% in energy conversion efficiency) which cannot match their ideal material properties and the record photovoltaic performances in industry. Here we demonstrate a completely new design for nanostructured solar cells that combines nanostructured window layer, metal mesa bar contact with small area, high quality planar junction. In this way, we not only keep the advanced optical properties of nanostructures such as broadband and wide angle antireflection, but also minimize its negative impact on electrical properties. High light absorption, efficient carrier collection, leakage elimination, and good lateral conductance can be simultaneously obtained. A nanostructured window cell using GaAs junction and AlGaAs nanocone window demonstrates 17% energy conversion efficiency and 0.982 V high open circuit voltage.

  16. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    SciTech Connect

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dye loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.

  17. Optical properties of natural dyes on the dye-sensitized solar cells (DSSC) performance

    NASA Astrophysics Data System (ADS)

    Pratiwi, D. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-11-01

    This study reported several natural dyes for application in dye-sensitized solar cells (DSSC). This study aims was to determine the effect of optical absorption properties of natural dyes on efficiency of DSSC. The sandwich structure of DSSC consist of TiO2 as working electrode, carbon layer as counter electrode, natural dyes as photosensitizer, and electrolyte as electron transfer media. The natural dyes used in this experiment were extracted from dragon fruit anthocyanin, mangosteen peels anthocyanin, and red cabbage anthocyanin. The absorbance of dyes solutions and the adsorption of the dye on the surface of TiO2 were characterized using UV-Vis spectrophotometer, the quantum efficiency versus wavelength was characterized using incident photon-to-current efficiency (IPCE) measurement system, and the efficiency of DSSC was calculated using I-V meter. UV-Vis characteristic curves showed that wavelength absorption of anthocyanin dye of red cabbage was 450 - 580 nm, anthocyanin of mangosteen peels was 400 - 480 nm, and anthocyanin of dragon fruit was 400 - 650 nm. Absorption spectra of the dye adsorption on the surface of TiO2 which was resulted in the highest absorbance of red cabbage anthocyanin. IPCE characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted quantum efficiency of 0.058%; 0.047%; and 0.043%, respectively at wavelength maximum about 430 nm. I-V characteristic curves with anthocyanin dye of red cabbage, mangosteen peels anthocyanin, and dragon fruit anthocyanin resulted efficiency of 0.054%; 0.042%; and 0.024%, respectively.

  18. Mesoporous anatase TiO2 microspheres with interconnected nanoparticles delivering enhanced dye-loading and charge transport for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chu, Liang; Qin, Zhengfei; Zhang, Qiaoxia; Chen, Wei; Yang, Jian; Yang, Jianping; Li, Xing⿿ao

    2016-01-01

    Mesoporous anatase TiO2 microspheres with interconnected nanostructures meet both large surface area and connected-structure for electron transfer as ideal nano/micromaterials for application in solar cells, energy storage, catalysis, water splitting and gas sensing. In this work, mesoporous anatase TiO2 microspheres consisting of interconnected nanoparticles were synthesized by template-free, one-step fast solvothermal process, where urea was used as capping agent to control phase and promote oriented growth. The morphology was assembled by nucleation-growth-assembly-mechanism. The mesoporous anatase TiO2 microspheres with interconnected nanoparticles were further utilized as efficient photoelectrodes of dye-sensitized solar cells (DSSCs), which were beneficial to capacity of dye loading and charge transfer. The power conversion efficiency (PCE) based on the optimized thickness of TiO2 photoelectrodes was up to 7.13% under standard AM 1.5 G illumination (100 mW/cm2).

  19. Ionic liquid electrolytes for dye-sensitized solar cells.

    PubMed

    Gorlov, Mikhail; Kloo, Lars

    2008-05-28

    The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.

  20. Predicting solar-cell dyes for co-sensitization

    SciTech Connect

    Bayliss, Sam L.; Cole, Jacqueline M.; Waddell, Paul G.; McKechnie, Scott; Liu, Xiaogang

    2014-06-03

    A major limitation of using organic dyes for dye-sensitized solar cells (DSCs) has been their lack of broad optical absorption. Co-sensitization, in which two complementary dyes are incorporated into a DSC, offers a route to combat this problem. Here we construct and implement a design route for materials discovery of new dyes for co-sensitization, beginning with a chemically compatible series of existing laser dyes which are without an anchor group necessary for DSC use. We determine the crystal structures for this dye series, and use their geometries to establish the DSC molecular design prerequisites aided by density-functional theory and time-dependent density-functional theory calculations. Based on insights gained from these existing dyes, modified sensitizers are computationally designed to include a suitable anchor group. A DSC co-sensitization strategy for these modified sensitizers is predicted, using the central features of highest-occupied, and lowest-unoccupied molecular orbital positioning, optical absorption properties, intramolecular charge-transfer characteristics, and steric effects as selection criteria. Through this molecular engineering of a series of existing non-DSC dyes, we predict new materials for DSC co-sensitization.

  1. Morphology-controllable ZnO nanostructures: Ethanol-assisted synthesis, growth mechanism and solar cell applications

    NASA Astrophysics Data System (ADS)

    Zhu, Y. F.; Fan, D. H.; Dong, Y. W.; Zhou, G. H.

    2014-10-01

    A very cheap solvent, ethanol, was successfully applied to control ZnO crystal growth for fabricating a series of ZnO composite nanostructures. During the experimental process, a two-step chemical route was adopted. In step-one, ZnO nanowire arrays were grown on fluorine-doped tin oxide coated glass substrate. In step-two, the step-one prepared samples were used as substrates for composite nanostructure deposition. The morphologies of the obtained products were characterized by field emission scanning electron microscopy. The results indicate that the morphologies of the final products can be effectively controlled by changing the water/ethanol ratios in the chemical solution. The obtained ZnO composite nanostructures with various morphologies were successfully employed in dye-sensitized solar cells. The light-to-electricity conversion results show that the composite nanostructures consisting of nanowires and pseudospherical nanostructures enable 80% improvement in solar energy conversion efficiency as compared with the nanowire arrays. These results indicate that the synthesized ZnO composite nanostructures are more suitable for application as photoelectrodes in solar cells.

  2. Broadband solar absorption enhancement via periodic nanostructuring of electrodes

    PubMed Central

    Adachi, Michael M.; Labelle, André J.; Thon, Susanna M.; Lan, Xinzheng; Hoogland, Sjoerd; Sargent, Edward H.

    2013-01-01

    Solution processed colloidal quantum dot (CQD) solar cells have great potential for large area low-cost photovoltaics. However, light utilization remains low mainly due to the tradeoff between small carrier transport lengths and longer infrared photon absorption lengths. Here, we demonstrate a bottom-illuminated periodic nanostructured CQD solar cell that enhances broadband absorption without compromising charge extraction efficiency of the device. We use finite difference time domain (FDTD) simulations to study the nanostructure for implementation in a realistic device and then build proof-of-concept nanostructured solar cells, which exhibit a broadband absorption enhancement over the wavelength range of λ = 600 to 1100 nm, leading to a 31% improvement in overall short-circuit current density compared to a planar device containing an approximately equal volume of active material. Remarkably, the improved current density is achieved using a light-absorber volume less than half that typically used in the best planar devices. PMID:24121519

  3. Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices.

    PubMed

    Xiong, Yujie; Long, Ran; Liu, Dong; Zhong, Xiaolan; Wang, Chengming; Li, Zhi-Yuan; Xie, Yi

    2012-08-07

    The photothermal effect in localized surface plasmon resonance (LSPR) should be fully utilized when integrating plasmonics into solar technologies for improved light absorption. In this communication, we demonstrate that the photothermal effect of silver nanostructures can provide a heat source for thermoelectric devices for the first time. The plasmonic band of silver nanostructures can be facilely manoeuvred by tailoring their shapes, enabling them to interact with photons in different spectral ranges for the efficient utilization of solar light. It is anticipated that this concept can be extended to design a photovoltaic-thermoelectric tandem cell structure with plasmonics as mediation for light harvesting.

  4. Quantum-Dot-Sensitized Solar Cells: Effect of Nanostructured TiO2 Morphologies on Photovoltaic Properties.

    PubMed

    Toyoda, Taro; Shen, Qing

    2012-07-19

    There is a great deal of interest in dye-sensitized solar cells (DSCs) fabricated with nanostructured TiO2 electrodes. Many different dye molecules have been designed and synthesized to achieve high photovoltaic conversion efficiency. Recently, as an alternative to organic dyes, semiconductor quantum dots (QDs) have been studied for their light-harvesting capability compared with other sensitizers. Accordingly, an attractive configuration to exploit these fascinating properties of semiconductor QDs is the quantum-dot-sensitized solar cell (QDSC) due to their high photoactivity, process realization, and low cost of production. The morphology of TiO2 electrodes included with surface orientation is important for satisfactory assembly of QDSCs in order to improve the efficiency. Breakthroughs allowing an increase in efficiency will advance on two areas of electrode morphology control, namely, (A) TiO2 nanotube electrodes and (B) inverse opal TiO2 electrodes.

  5. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells.

    PubMed

    Hoke, Eric T; Hardin, Brian E; McGehee, Michael D

    2010-02-15

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies.

  6. Anchoring Groups for Dye-sensitized Solar Cells.

    SciTech Connect

    Zhang, Lei; Cole, Jacqueline M.

    2015-02-18

    The dyes in dye-sensitized solar cells (DSSCs) require one or more chemical substituents that can act as an anchor, enabling their adsorption onto a metal oxide substrate. This adsorption provides a means for electron injection, which is the process that initiates the electrical circuit in a DSSC. Understanding the structure of various DSSC anchors and the search for new anchors are critical factors for the development of improved DSSCs. Traditionally, carboxylic acid and cyanoacrylic acid groupsare employed as dye anchors in DSSCs. In recent years, novel anchor groups have emerged, which make a larger pool of materials available for DSSC dyes, and their associated physical and chemical characteristics offer interesting effects at the interface between dye and metal oxide. This review focuses especially on the structural aspects of these novel dye anchors for TiO2-based DSSCs, including pyridine, phosphonic acid, tetracyanate, perylene dicarboxylic acid anhydride, 2-hydroxylbenzonitrile, 8-hydroxylquinoline, pyridine-N-oxide, hydroxylpyridium, catechol, hydroxamate, sulfonic acid, acetylacetanate, boronic acid, nitro, tetrazole, rhodanine, and salicylic acid substituents. We anticipate that further exploration and understanding of these new types of anchoring groups for TiO2 substrates will not only contribute to the development of advanced DSSCs, but also of quantum dot-sensitized solar cells, water splitting systems, and other self-assembled monolayer-based technologies.

  7. Anchoring groups for dye-sensitized solar cells.

    PubMed

    Zhang, Lei; Cole, Jacqueline M

    2015-02-18

    The dyes in dye-sensitized solar cells (DSSCs) require one or more chemical substituents that can act as an anchor, enabling their adsorption onto a metal oxide substrate. This adsorption provides a means for electron injection, which is the process that initiates the electrical circuit in a DSSC. Understanding the structure of various DSSC anchors and the search for new anchors are critical factors for the development of improved DSSCs. Traditionally, carboxylic acid and cyanoacrylic acid groups are employed as dye anchors in DSSCs. In recent years, novel anchor groups have emerged, which make a larger pool of materials available for DSSC dyes, and their associated physical and chemical characteristics offer interesting effects at the interface between dye and metal oxide. This review focuses especially on the structural aspects of these novel dye anchors for TiO2-based DSSCs, including pyridine, phosphonic acid, tetracyanate, perylene dicarboxylic acid anhydride, 2-hydroxylbenzonitrile, 8-hydroxylquinoline, pyridine-N-oxide, hydroxylpyridium, catechol, hydroxamate, sulfonic acid, acetylacetanate, boronic acid, nitro, tetrazole, rhodanine, and salicylic acid substituents. We anticipate that further exploration and understanding of these new types of anchoring groups for TiO2 substrates will not only contribute to the development of advanced DSSCs, but also of quantum dot-sensitized solar cells, water splitting systems, and other self-assembled monolayer-based technologies.

  8. Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures.

    PubMed

    Kuriakose, Sini; Satpati, Biswarup; Mohapatra, Satyabrata

    2015-10-14

    Copper doped ZnO nanostructures have been synthesized by a facile wet chemical method. Structural properties of as-synthesized nanomaterials have been studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy, while UV-visible absorption spectroscopy and Raman spectroscopy have been used to study their optical properties. Sunlight driven photocatalytic degradation of methylene blue (MB) and methyl orange (MO) dyes in water was used to evaluate the photocatalytic activities of Cu doped ZnO nanostructures using UV-visible absorption spectroscopy. The results showed that there is an optimum Cu doping level which leads to the highly enhanced photocatalytic activity of Cu doped ZnO nanostructures, as compared to pure ZnO nanostructures. A mechanism for the enhanced photocatalytic activity of Cu-ZnO nanostructures is tentatively proposed. The enhanced photocatalytic activity of Cu-ZnO nanostructures is attributed to the combined effects of improved separation of photogenerated charge carriers due to optimal Cu doping in ZnO nanostructures and the formation of ZnO-CuO nanoheterojunctions.

  9. Cyanine dyes in solid state organic heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Heier, Jakob; Peng, Chuyao; Véron, Anna C.; Hany, Roland; Geiger, Thomas; Nüesch, Frank A.; Vismara, Marcus V. G.; Graeff, Carlos F. O.

    2014-10-01

    Today numerous cyanine dyes that are soluble in organic solvents are available, driven by more than a century of research and development of the photographic industry. Several properties specific to cyanine dyes suggest that this material class can be of interest for organic solar cell applications. The main absorption wavelength can be tuned from the ultra-violet to the near-infrared. The unparalleled high absorption coefficients allow using very thin films for harvesting the solar photons. Furthermore, cyanines are cationic polymethine dyes, offering the possibility to modify the materials by defining the counteranion. We here show specifically how counterions can be utilized to tune the bulk morphology when blended with fullerenes. We compare the performance of bilayer heterojunction and bulk heterojunction solar cells for two different dyes absorbing in the visible and the near-infrared. Light-induced Electron Spin Resonance (LESR) was used to study the charge transfers of light induced excitons between cyanine dyes and the archetype fullerene C60. LESR results show good correlation with the cell performance.

  10. The generalized Shockley-Queisser limit for nanostructured solar cells.

    PubMed

    Xu, Yunlu; Gong, Tao; Munday, Jeremy N

    2015-09-02

    The Shockley-Queisser limit describes the maximum solar energy conversion efficiency achievable for a particular material and is the standard by which new photovoltaic technologies are compared. This limit is based on the principle of detailed balance, which equates the photon flux into a device to the particle flux (photons or electrons) out of that device. Nanostructured solar cells represent a novel class of photovoltaic devices, and questions have been raised about whether or not they can exceed the Shockley-Queisser limit. Here we show that single-junction nanostructured solar cells have a theoretical maximum efficiency of ∼42% under AM 1.5 solar illumination. While this exceeds the efficiency of a non-concentrating planar device, it does not exceed the Shockley-Queisser limit for a planar device with optical concentration. We consider the effect of diffuse illumination and find that with optical concentration from the nanostructures of only × 1,000, an efficiency of 35.5% is achievable even with 25% diffuse illumination. We conclude that nanostructured solar cells offer an important route towards higher efficiency photovoltaic devices through a built-in optical concentration.

  11. The generalized Shockley-Queisser limit for nanostructured solar cells

    PubMed Central

    Xu, Yunlu; Gong, Tao; Munday, Jeremy N.

    2015-01-01

    The Shockley-Queisser limit describes the maximum solar energy conversion efficiency achievable for a particular material and is the standard by which new photovoltaic technologies are compared. This limit is based on the principle of detailed balance, which equates the photon flux into a device to the particle flux (photons or electrons) out of that device. Nanostructured solar cells represent a novel class of photovoltaic devices, and questions have been raised about whether or not they can exceed the Shockley-Queisser limit. Here we show that single-junction nanostructured solar cells have a theoretical maximum efficiency of ∼42% under AM 1.5 solar illumination. While this exceeds the efficiency of a non-concentrating planar device, it does not exceed the Shockley-Queisser limit for a planar device with optical concentration. We consider the effect of diffuse illumination and find that with optical concentration from the nanostructures of only × 1,000, an efficiency of 35.5% is achievable even with 25% diffuse illumination. We conclude that nanostructured solar cells offer an important route towards higher efficiency photovoltaic devices through a built-in optical concentration. PMID:26329479

  12. The generalized Shockley-Queisser limit for nanostructured solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Yunlu; Gong, Tao; Munday, Jeremy N.

    2015-09-01

    The Shockley-Queisser limit describes the maximum solar energy conversion efficiency achievable for a particular material and is the standard by which new photovoltaic technologies are compared. This limit is based on the principle of detailed balance, which equates the photon flux into a device to the particle flux (photons or electrons) out of that device. Nanostructured solar cells represent a novel class of photovoltaic devices, and questions have been raised about whether or not they can exceed the Shockley-Queisser limit. Here we show that single-junction nanostructured solar cells have a theoretical maximum efficiency of ˜42% under AM 1.5 solar illumination. While this exceeds the efficiency of a non-concentrating planar device, it does not exceed the Shockley-Queisser limit for a planar device with optical concentration. We consider the effect of diffuse illumination and find that with optical concentration from the nanostructures of only × 1,000, an efficiency of 35.5% is achievable even with 25% diffuse illumination. We conclude that nanostructured solar cells offer an important route towards higher efficiency photovoltaic devices through a built-in optical concentration.

  13. A model for recombination in Type II dye-sensitized solar cells: Catechol-thiophene dyes

    NASA Astrophysics Data System (ADS)

    Manzhos, Sergei; Segawa, Hiroshi; Yamashita, Koichi

    2011-03-01

    Recombination in dye-sensitized solar cells with direct injection is cast as internal conversion in the dye-Ti(OH) 2 complex. For catechol-thiophene dyes with 1, 2, or 3 thiophene units, the complex reproduces the previously observed dye-to-semiconductor bands. We compare the decomposition of the internal conversion rate by vibrational mode and predict a trend in recombination with the extension of conjugation, which offers an explanation for the trend in DSSC efficiency. We employ a simple model for the vibrational factors and show that they are only important in the presence of vibrational modes with ℏω⩽kT and strong electronic factors, as is the case here.

  14. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.

    PubMed

    Ananth, S; Vivek, P; Arumanayagam, T; Murugakoothan, P

    2014-07-15

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC.

  15. Molecular engineering of fluorescein dyes as complementary absorbers in dye co-sensitized solar cells

    DOE PAGES

    Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.; ...

    2016-09-22

    Fluorescein dye derivatives exhibit extended optical absorption up to 500 nm, rendering these compounds suitable as co-absorbers in dye-sensitized solar cells (DSCs). A molecular engineering approach is presented, which embraces this intrinsic optical attribute of fluoresceins, while modifying the dye chemistry to enhance their light harvesting efficiency, in order to effectively tailor them for DSC applications. This approach first realizes relationships between the molecular structure and the optoelectronic properties for a series of five a priori known (parent) fluorescein dyes: 5-carboxyfluorescein (1), a mixture of m-carboxyfluorescein where m = 5 or 6 (2), 5-carboxyfluorescein diacetate (3), 6-carboxyfluorescein diacetate (4), amore » mixture of n-carboxy-2',7'-dichlorofluorescein diacetate where n = 5 or 6 (5). The first step in this approach combines, where available, experimental and computational methods so that electronic structure calculations can also be validated for representative fluorescein dyes. Such calculations can then be used reliably to predict the structure and properties of fluorescein dyes for cases where experimental data are lacking. Structure-function relationships established from this initial step inform the selection of parent dye 1 that is taken forward to the second step in molecular engineering: in silico chemical derivation to re-functionalize 1 for DSC applications. For this purpose, computational calculations are used to extend the charge conjugation in 1 between its donor and acceptor moieties. These structural modifications result in a bathochromic shift of the lowest excitation by ~1.3-1.9 eV (100-170 nm), making the dye optically absorb in the visible region. Further calculations on dye molecules adsorbed onto the surface of a TiO2 cluster are used to investigate the dye sensitization behavior via dye adsorption energies and anchoring modes. The results of this theoretical investigation lead to two molecularly engineered

  16. Molecular engineering of fluorescein dyes as complementary absorbers in dye co-sensitized solar cells

    SciTech Connect

    Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.; Griffiths, Joseph R. D.

    2016-09-22

    Fluorescein dye derivatives exhibit extended optical absorption up to 500 nm, rendering these compounds suitable as co-absorbers in dye-sensitized solar cells (DSCs). A molecular engineering approach is presented, which embraces this intrinsic optical attribute of fluoresceins, while modifying the dye chemistry to enhance their light harvesting efficiency, in order to effectively tailor them for DSC applications. This approach first realizes relationships between the molecular structure and the optoelectronic properties for a series of five a priori known (parent) fluorescein dyes: 5-carboxyfluorescein (1), a mixture of m-carboxyfluorescein where m = 5 or 6 (2), 5-carboxyfluorescein diacetate (3), 6-carboxyfluorescein diacetate (4), a mixture of n-carboxy-2',7'-dichlorofluorescein diacetate where n = 5 or 6 (5). The first step in this approach combines, where available, experimental and computational methods so that electronic structure calculations can also be validated for representative fluorescein dyes. Such calculations can then be used reliably to predict the structure and properties of fluorescein dyes for cases where experimental data are lacking. Structure-function relationships established from this initial step inform the selection of parent dye 1 that is taken forward to the second step in molecular engineering: in silico chemical derivation to re-functionalize 1 for DSC applications. For this purpose, computational calculations are used to extend the charge conjugation in 1 between its donor and acceptor moieties. These structural modifications result in a bathochromic shift of the lowest excitation by ~1.3-1.9 eV (100-170 nm), making the dye optically absorb in the visible region. Further calculations on dye molecules adsorbed onto the surface of a TiO2 cluster are used to investigate the dye sensitization behavior via dye adsorption energies and anchoring modes. The results of this theoretical

  17. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.

    PubMed

    Marinado, Tannia; Hagberg, Daniel P; Hedlund, Maria; Edvinsson, Tomas; Johansson, Erik M J; Boschloo, Gerrit; Rensmo, Håkan; Brinck, Tore; Sun, Licheng; Hagfeldt, Anders

    2009-01-07

    Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum. Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiO2 solar cells was investigated using electrolytes containing the iodide/triiodide redox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiO2 with triiodide. Addition of 4-tert butylpyridine to the electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO2 conduction band potential.

  18. Charge and Energy Transfer in the Metal-free Indoline Dyes for Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Diao, Li-ying; Gu, Wen-xiang; Chen, Yue-hui; Ma, Feng-cai

    2006-06-01

    Metal-free indoline dyes for dye-sensitized solar cells were studied by employing quantum chemistry methods. Comparative study of the properties of both ground and excited states of metal-free indoline dyes for dye- sensitized solar cells revealed: (i) as the number of rhodanine rings increases, the energy difference between HOMO and LUMO decreases and there is a red shift in the absorption spectrum with the binding energy increased, and the transition dipole moment decreased; (ii) Based on an analysis of charge differential density, we observed that the charge and energy are transfered from the phenylethenyl to the indoline and rhodanine rings; (iii) The electron-hole coherences are mainly on the indoline and rhodanine rings, and the exciton sizes are 30 and 40 atoms for indoline dyes with one and two rhodanline rings, respectively. These results serve as a good example of computer-aided design in metal-free indoline dyes for dye-sensitized solar cells.

  19. Co-sensitization of organic dyes for efficient dye-sensitized solar cells.

    PubMed

    Cheng, Ming; Yang, Xichuan; Li, Jiajia; Zhang, Fuguo; Sun, Licheng

    2013-01-01

    Novel cyanine dyes, in which a tetrahydroquinoline derivative is used as an electron donor and 1-butyl-5-carboxy-3, 3-dimethyl-indol-1-ium moiety is used as an electron acceptor and anchoring group, were designed and synthesized for application in dye-sensitized solar cells. The photovoltaic performance of these solar cells depends markedly on the molecular structure of the dyes in terms of the n-hexyl chains and the methoxyl unit. Retardation of charge recombination caused by the introduction of n-hexyl chains resulted in an increase in electron lifetime. As a consequence, an improvement of open-circuit photovoltage (V(oc)) was achieved. Also, the electron injection efficiencies were improved by the introduction of methoxyl moiety, which led to a higher short-circuit photocurrent density (J(sc)). The highest average efficiency of the sensitized devices (η) was 5.6% (J(sc)=13.3 mA cm(-2), V(oc)=606 mV, and fill factor FF=69.1%) under 100 mW cm(-2) (AM 1.5G) solar irradiation. All of these dyes have very high absorption extinction coefficients and strong absorption in a relatively narrow spectrum range (500-650 nm), so one of our organic dyes was explored as a sensitizer in co-sensitized solar cells in combination with the other two other existing organic dyes. Interestingly, a considerably improved photovoltaic performance of 8.2% (J(sc)=20.1 mA cm(-2), V(oc)=597 mV, and FF=68.3%) was achieved and the device showed a panchromatic response with a high incident photon-to-current conversion efficiency exceeding 85% in the range of 400-700 nm.

  20. High Stokes shift perylene dyes for luminescent solar concentrators.

    PubMed

    Sanguineti, Alessandro; Sassi, Mauro; Turrisi, Riccardo; Ruffo, Riccardo; Vaccaro, Gianfranco; Meinardi, Francesco; Beverina, Luca

    2013-02-25

    Highly efficient plastic based single layer Luminescent Solar Concentrators (LSCs) require the design of luminophores having complete spectral separation between absorption and emission spectra (large Stokes shift). We describe the design, synthesis and characterization of a new perylene dye possessing Stokes shift as high as 300 meV, fluorescent quantum yield in the LSC slab of 70% and high chemical and photochemical stability.

  1. High efficiency nanostructured thin film solar cells for energy harvesting

    NASA Astrophysics Data System (ADS)

    Welser, Roger E.; Sood, Ashok K.; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal S.

    2016-05-01

    Thin-film III-V materials are an attractive candidate material for solar energy harvesting devices capable of supplying portable and mobile power in both terrestrial and space environments. Nanostructured quantum well and quantum dot solar cells are being widely investigated as a means of extending infrared absorption and enhancing photovoltaic device performance. In this paper, we will review recent progress on realizing high-voltage InGaAs/GaAs quantum well solar cells that operate at or near the radiative limit of performance. These high-voltage nanostructured device designs provide a pathway to enhance the performance of existing device technologies, and can also be leveraged for next-generation solar cells.

  2. Gold nanoparticle decorated multi-walled carbon nanotubes as counter electrode for dye sensitized solar cells.

    PubMed

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2012-11-01

    A novel counter electrode material for dye sensitized solar cells (DSSCs) composed of nanostructured Au particles decorated on functionalized multi-walled carbon nanotubes (f-MWNTs) is demonstrated for the first time. MWNTs synthesized by catalytic chemical vapor deposition technique are purified and functionalized by treating with concentrated acids. Au nanoparticles are decorated on f-MWNTs by a rapid and facile microwave assisted polyol reduction method. The materials are characterized by X-ray diffractometry, Fourier transform infra red spectroscopy and electron microscopy. The DSSC fabricated with Au/f-MWNTs based counter electrode shows enhanced power conversion efficiency (eta) of 4.9% under AM 1.5G simulated solar radiation. In comparison, the reference DSSCs fabricated with f-MWNTs and Pt counter electrodes show eta of 2.1% and 4.5%. This high performance of Au/f-MWNTs counter electrode is investigated using electrochemical impedance spectroscopy and cyclic voltammetry studies.

  3. Cosensitization with Vat-Based Organic Dyes for Enhanced Spectral Response of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, Mozhgan

    2017-04-01

    Cosensitization using two organic dyes with supplementary absorption spectra on a photoelectrode is an effective method for improving the photovoltaic properties of dye-sensitized solar cells. Two organic dyes based on indigo and thioindigo have been synthesized, purified, and used to sensitize solar cells with spectral response extending across the entire visible region. To improve their photoelectric properties, different molar ratios were investigated, yielding total efficiency of 6.17% at dye 1:dye 2 = 4:6. The effect of the concentration of Cheno antiaggregation agent on the performance of the dye-sensitized solar cells was also considered. The results demonstrate that higher conversion efficiency ( η = 6.82%) was achieved with 10 × 10-3 M Cheno. Finally, the performance of cosensitized solar cells was measured at different temperatures between 10°C and 50°C. The results indicated that J sc decreased with increasing temperature, directly affecting the conversion efficiency.

  4. Hydrothermally growth of novel hierarchical structures titanium dioxide for high efficiency dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Cheng, Pengfei; Liu, Yang; Sun, Peng; Du, Sisi; Cai, Yaxin; Liu, Fengmin; Zheng, Jie; Lu, Geyu

    2014-12-01

    We report an innovative development of novel double layered photoanodes made of hierarchical TiO2 micro-corollas as the overlayer and TiO2 nanoforest as the underlayer (HTCF), for dye-sensitized solar cells (DSSCs). They are obtained by a facile hydrothermal reaction of TiO2 nanorods array with top microspheres (MS)/FTO (Fluorine-doped tin oxide) glass substrate in an alkaline solution. In this process, the microspheres and nanorods are transformed into micro-corollas and nanotrees, respectively. The photoanodes with HTCF structure can greatly improve the light scattering ability due to their novel structures. Moreover, the enhanced surface area of HTCF can lead to larger dye loading, which achieves the higher light harvesting capacity. Base on the fast electron transport of the interior nanorods, higher light scattering and harvesting capacities, this novel HTCF photoanode realizes tri-functions. The overall power conversion efficiency (PCE) of the HTCF DSSCs are 51% increase in the conversion efficiency compare with those of constructed by bare TiO2 nanorod arrays. In our work, tri-functions of photoanodes are obtained by improving the 1D TiO2 nanostructures (nanorod, nanowire, nanotube et al.). To the best of our knowledge, it is a significant fabrication technology breakthrough for the photoanode of dye-sensitized solar cells.

  5. Ultrafast carrier dynamics in nanostructures for solar fuels.

    PubMed

    Baxter, Jason B; Richter, Christiaan; Schmuttenmaer, Charles A

    2014-01-01

    Sunlight can be used to drive chemical reactions to produce fuels that store energy in chemical bonds. These fuels, such as hydrogen from splitting water, have much larger energy density than do electrical storage devices. The efficient conversion of clean, sustainable solar energy using photoelectrochemical and photocatalytic systems requires precise control over the thermodynamics, kinetics, and structural aspects of materials and molecules. Generation, thermalization, trapping, interfacial transfer, and recombination of photoexcited charge carriers often occur on femtosecond to picosecond timescales. These short timescales limit the transport of photoexcited carriers to nanometer-scale distances, but nanostructures with high surface-to-volume ratios can enable both significant light absorption and high quantum efficiency. This review highlights the importance of understanding ultrafast carrier dynamics for the generation of solar fuels, including case studies on colloidal nanostructures, nanostructured photoelectrodes, and photoelectrodes sensitized with molecular chromophores and catalysts.

  6. Porous Pr(OH)3 nanostructures as high-efficiency adsorbents for dye removal.

    PubMed

    Zhai, Teng; Xie, Shilei; Lu, Xihong; Xiang, Lei; Yu, Minghao; Li, Wei; Liang, Chaolun; Mo, Cehui; Zeng, Feng; Luan, Tiangang; Tong, Yexiang

    2012-07-31

    Herein we report the electrochemical synthesis of porous Pr(OH)(3) nanobelt arrays (NBAs), nanowire arrays (NWAs), nanowire bundles (NWBs), and nanowires (NWs) and their applications as dye absorbents in water treatment. These Pr(OH)(3) nanostructures exhibit high efficient and selective adsorption of the dyes with amine (-NH(2)) functional groups such as Congo red, reactive yellow, and reactive blue. The high efficiency and selectivity is attributed to the large effective surface area of the porous structure, plentiful hydroxyl groups, and basic sites on the Pr(OH)(3) surface. Furthermore, the toxicity studies of these porous Pr(OH)(3) nanostructure show a negligible effect on seed germination, indicating that they hold great potential as environmentally friendly absorbents in water treatment.

  7. Array of titanium dioxide nanostructures for solar energy utilization

    DOEpatents

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  8. Solar energy conversion with tunable plasmonic nanostructures for thermoelectric devices

    NASA Astrophysics Data System (ADS)

    Xiong, Yujie; Long, Ran; Liu, Dong; Zhong, Xiaolan; Wang, Chengming; Li, Zhi-Yuan; Xie, Yi

    2012-07-01

    The photothermal effect in localized surface plasmon resonance (LSPR) should be fully utilized when integrating plasmonics into solar technologies for improved light absorption. In this communication, we demonstrate that the photothermal effect of silver nanostructures can provide a heat source for thermoelectric devices for the first time. The plasmonic band of silver nanostructures can be facilely manoeuvred by tailoring their shapes, enabling them to interact with photons in different spectral ranges for the efficient utilization of solar light. It is anticipated that this concept can be extended to design a photovoltaic-thermoelectric tandem cell structure with plasmonics as mediation for light harvesting.The photothermal effect in localized surface plasmon resonance (LSPR) should be fully utilized when integrating plasmonics into solar technologies for improved light absorption. In this communication, we demonstrate that the photothermal effect of silver nanostructures can provide a heat source for thermoelectric devices for the first time. The plasmonic band of silver nanostructures can be facilely manoeuvred by tailoring their shapes, enabling them to interact with photons in different spectral ranges for the efficient utilization of solar light. It is anticipated that this concept can be extended to design a photovoltaic-thermoelectric tandem cell structure with plasmonics as mediation for light harvesting. Electronic supplementary information (ESI) available: Detailed experimental procedures. See DOI: 10.1039/c2nr30208j

  9. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells.

    PubMed

    Wang, Hua; Bai, Yusong; Wu, Qiong; Zhou, Wei; Zhang, Hao; Li, Jinghong; Guo, Lin

    2011-04-21

    Hierarchical TiO(2) nanostructures would be desirable for preparing dye-sensitized solar cells because of their large amount of dye adsorption and superior light harvesting efficiency, as well as efficient charge separation and transport properties. In this study, rutile TiO(2) nano-branched arrays grown directly on transparent conductive glass (FTO) were prepared by a facile two-step wet chemical synthesis process, using a simple aqueous chemical growth method involving immersing the TiO(2) nanorod arrays in an aqueous TiCl(4) solution as seeds, which were prepared by a hydrothermal method. The dye-sensitized solar cells based on the TiO(2) nano-branched arrays which were only about 3 μm in length show a short-circuit current intensity of 10.05 mA cm(-2) and a light-to-electricity conversion efficiency of 3.75%, which is nearly three times as high as that of bare nanorod arrays, due to the preferable nanostructure, which not only retains the efficient charge separation and transport properties of the nanorod arrays, but also can improve the amount of dye adsorption due to the increased specific surface area from the nanobranches.

  10. Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Ghann, William; Kang, Hyeonggon; Sheikh, Tajbik; Yadav, Sunil; Chavez-Gil, Tulio; Nesbitt, Fred; Uddin, Jamal

    2017-01-01

    The dyes extracted from pomegranate and berry fruits were successfully used in the fabrication of natural dye sensitized solar cells (NDSSC). The morphology, porosity, surface roughness, thickness, absorption and emission characteristics of the pomegranate dye sensitized photo-anode were studied using various analytical techniques including FESEM, EDS, TEM, AFM, FTIR, Raman, Fluorescence and Absorption Spectroscopy. Pomegranate dye extract has been shown to contain anthocyanin which is an excellent light harvesting pigment needed for the generation of charge carriers for the production of electricity. The solar cell’s photovoltic performance in terms of efficiency, voltage, and current was tested with a standard illumination of air-mass 1.5 global (AM 1.5 G) having an irradiance of 100 mW/cm2. After optimization of the photo-anode and counter electrode, a photoelectric conversion efficiency (η) of 2%, an open-circuit voltage (Voc) of 0.39 mV, and a short-circuit current density (Isc) of 12.2 mA/cm2 were obtained. Impedance determination showed a relatively low charge-transfer resistance (17.44 Ω) and a long lifetime, signifying a reduction in recombination losses. The relatively enhanced efficiency is attributable in part to the use of a highly concentrated pomegranate dye, graphite counter electrode and TiCl4 treatment of the photo-anode.

  11. Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell.

    PubMed

    Ghann, William; Kang, Hyeonggon; Sheikh, Tajbik; Yadav, Sunil; Chavez-Gil, Tulio; Nesbitt, Fred; Uddin, Jamal

    2017-01-27

    The dyes extracted from pomegranate and berry fruits were successfully used in the fabrication of natural dye sensitized solar cells (NDSSC). The morphology, porosity, surface roughness, thickness, absorption and emission characteristics of the pomegranate dye sensitized photo-anode were studied using various analytical techniques including FESEM, EDS, TEM, AFM, FTIR, Raman, Fluorescence and Absorption Spectroscopy. Pomegranate dye extract has been shown to contain anthocyanin which is an excellent light harvesting pigment needed for the generation of charge carriers for the production of electricity. The solar cell's photovoltic performance in terms of efficiency, voltage, and current was tested with a standard illumination of air-mass 1.5 global (AM 1.5 G) having an irradiance of 100 mW/cm(2). After optimization of the photo-anode and counter electrode, a photoelectric conversion efficiency (η) of 2%, an open-circuit voltage (Voc) of 0.39 mV, and a short-circuit current density (Isc) of 12.2 mA/cm(2) were obtained. Impedance determination showed a relatively low charge-transfer resistance (17.44 Ω) and a long lifetime, signifying a reduction in recombination losses. The relatively enhanced efficiency is attributable in part to the use of a highly concentrated pomegranate dye, graphite counter electrode and TiCl4 treatment of the photo-anode.

  12. Fabrication, Optimization and Characterization of Natural Dye Sensitized Solar Cell

    PubMed Central

    Ghann, William; Kang, Hyeonggon; Sheikh, Tajbik; Yadav, Sunil; Chavez-Gil, Tulio; Nesbitt, Fred; Uddin, Jamal

    2017-01-01

    The dyes extracted from pomegranate and berry fruits were successfully used in the fabrication of natural dye sensitized solar cells (NDSSC). The morphology, porosity, surface roughness, thickness, absorption and emission characteristics of the pomegranate dye sensitized photo-anode were studied using various analytical techniques including FESEM, EDS, TEM, AFM, FTIR, Raman, Fluorescence and Absorption Spectroscopy. Pomegranate dye extract has been shown to contain anthocyanin which is an excellent light harvesting pigment needed for the generation of charge carriers for the production of electricity. The solar cell’s photovoltic performance in terms of efficiency, voltage, and current was tested with a standard illumination of air-mass 1.5 global (AM 1.5 G) having an irradiance of 100 mW/cm2. After optimization of the photo-anode and counter electrode, a photoelectric conversion efficiency (η) of 2%, an open-circuit voltage (Voc) of 0.39 mV, and a short-circuit current density (Isc) of 12.2 mA/cm2 were obtained. Impedance determination showed a relatively low charge-transfer resistance (17.44 Ω) and a long lifetime, signifying a reduction in recombination losses. The relatively enhanced efficiency is attributable in part to the use of a highly concentrated pomegranate dye, graphite counter electrode and TiCl4 treatment of the photo-anode. PMID:28128369

  13. Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P.

    2016-05-01

    The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet-visible (UV-vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO2 and their HOMOs are under the reduction potential energy of the electrolytes (I-/I3-) which can facilitate electron transfer from the excited dye to TiO2 and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the "dye 3" can be used as potential sensitizer for DSSC.

  14. Efficient organic dye-sensitized solar cells: molecular engineering of donor-acceptor-acceptor cationic dyes.

    PubMed

    Cheng, Ming; Yang, Xichuan; Zhao, Jianghua; Chen, Cheng; Tan, Qin; Zhang, Fuguo; Sun, Licheng

    2013-12-01

    Three metal-free donor-acceptor-acceptor sensitizers with ionized pyridine and a reference dye were synthesized, and a detailed investigation of the relationship between the dye structure and the photophysical and photoelectrochemical properties and the performance of dye-sensitized solar cells (DSSCs) is described. The ionization of pyridine results in a red shift of the absorption spectrum in comparison to that of the reference dye. This is mainly attributable to the ionization of pyridine increasing the electron-withdrawing ability of the total acceptor part. Incorporation of the strong electron-withdrawing units of pyridinium and cyano acrylic acid gives rise to optimized energy levels, resulting in a large response range of wavelengths. When attached to TiO2 film, the conduction band of TiO2 is negatively shifted to a different extent depending on the dye. This is attributed to the electron recombination rate between the TiO2 film and the electrolyte being efficiently suppressed by the introduction of long alkyl chains and thiophene units. DSSCs assembled using these dyes show efficiencies as high as 8.8 %.

  15. Triphenylamine based organic dyes for dye sensitized solar cells: A theoretical approach

    SciTech Connect

    Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P.

    2016-05-23

    The geometry, electronic structure and absorption spectra for newly designed triphenylamine based organic dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-parr(B3LYP) functional, where the 6-31G(d,p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecule. Ultraviolet–visible (UV–vis) spectrum was simulated by TD-DFT in gas phase. The calculation shows that all of the dyes can potentially be good sensitizers for DSSC. The LUMOs are just above the conduction band of TiO{sub 2} and their HOMOs are under the reduction potential energy of the electrolytes (I{sup −}/I{sub 3}{sup −}) which can facilitate electron transfer from the excited dye to TiO{sub 2} and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes match with solar spectrum. Frontier molecular orbital results show that among all the three dyes, the “dye 3” can be used as potential sensitizer for DSSC.

  16. Electropolymerization of Uniform Polyaniline Nanorod Arrays on Conducting Oxides as Counter Electrodes in Dye-Sensitized Solar Cells.

    PubMed

    He, Ziming; Liu, Jing; Khoo, Si Yun; Tan, Timothy Thatt Yang

    2016-01-01

    Conventional techniques for the synthesis of oriented polyaniline (PANI) nanostructures are often complex or time consuming. Through an innovative reduced graphene oxide (rGO) modified FTO and a low-potential electropolymerization strategy, the rapid and template-free growth of a highly ordered PANI nanorod array on the FTO substrate is realized. The highly ordered nanostructure of the PANI array leads to a high electrocatalytic activity and chemical stability. The importance of the polymerization potential and rGO surface modification to achieve this nanostructure is revealed. Compared to platinum, the PANI nanorod array exhibits an enhanced performance and stability as counter electrodes in dye-sensitized solar cells, with a 17.6 % enhancement in power conversion efficiency.

  17. Solid-state photogalvanic dye-sensitized solar cells.

    PubMed

    Berhe, Seare A; Gobeze, Habtom B; Pokharel, Sundari D; Park, Eunsol; Youngblood, W Justin

    2014-07-09

    Photogalvanic cells are photoelectrochemical systems wherein the semiconductor electrode is not a participant in primary photoinduced charge formation. The discovery of photoelectrochemical systems that successfully exploit secondary (thermal) electron injection at dye-semiconductor interfaces may enable studies of electron transfer at minimal driving force for electron injection into the semiconductor. In this study, we have examined thermal electron transfer from molecular sensitizers to nanostructured semiconductor electrodes composed of titanium dioxide nanorods by means of transient spectroscopy and the assembly and testing of photoelectrochemical cells. Electron-accepting molecular dyes have been studied alongside an arylamine electron donor. Thermal injection is estimated for a naphthacenequinone radical anion as a multiexponential decay process with initial decay lifetimes of 6 and 27 ps. The ambient electric field present during charge separation at a surface-adsorbed dye monolayer causes Stark shifts of the radical ion pair absorbance peaks that confounded kinetic estimation of thermal injection for a fullerene sensitizer. Electron-accepting dyes that operate by thermal injection into titanium dioxide function better in solid-state photoelectrochemical cells than in liquid-junction cells due to the kinetic advantage of solid-state cells with respect to photoinduced acceptor-quenching to form the necessary radical anion sensitizers.

  18. Natural dye extracted from karkadah and its application in dye-sensitized solar cells: experimental and density functional theory study.

    PubMed

    Reda, S M; Soliman, K A

    2016-02-01

    This work presents an experimental and theoretical study of cyanidin natural dye as a sensitizer for ZnO dye-sensitized solar cells. ZnO nanoparticles were prepared using ammonia and oxalic acid as a capping agent. The calculated average size of the synthesized ZnO with different capping agents was found to be 32.1 nm. Electronic properties of cyanidin and delphinidin dye were studied using density functional theory (DFT) and time-dependent DFT with a B3LYP/6-31G(d,p) level. By comparing the theoretical results with the experimental data, the cyanidin dye can be used as a sensitizer in dye-sensitized solar cells. An efficiency of 0.006% under an AM-1.5 illumination at 100  mW/cm(2) was attained. The influence of dye adsorption time on the solar cell performance is discussed.

  19. Control of morphology and defect density in zinc oxide for improved dye-sensitized solar cells.

    PubMed

    Kim, Seul Ah; Abbas, Muhammad Awais; Lee, Lanlee; Kang, Byungwuk; Kim, Hahkjoon; Bang, Jin Ho

    2016-11-09

    While zinc oxide (ZnO) with a mesoporous network has long been explored for adsorption of dyes and as an electron-transporting medium in dye-sensitized solar cells (DSSCs), the performance of ZnO-based DSSCs remains unsatisfactory. Despite the importance of understanding the surface characteristics of ZnO in DSSC applications, most of the studies relevant to ZnO-based DSSCs are focused on the synthesis of unique nanostructures of ZnO. In this study, we not only introduce a novel disk-shaped ZnO nanostructure, but also provide insight into the distinctive surface properties of ZnO and its influence on DSSC performance. When utilized in DSSCs, the mesoporous ZnO nanodisk yields 60% better power conversion efficiency (PCE) compared to commercial ZnO nanoparticles, which is attributed to less surface and bulk trap densities as concluded by an in-depth open-circuit voltage decay (OCVD) analysis and electrochemical impedance spectroscopy (EIS). Another aspect that contributes to the higher PCE is the better connectivity of primary particles that join together to form secondary disk-shaped particles. Furthermore, a 40% improvement in the PCE was observed by coating the mesoporous ZnO nanodisk with TiO2, which results from the passivation of the surface defects that aid in suppressing the interfacial charge recombination.

  20. Electron transport in the nanostructured titanium dioxide electrodes in the application of solar cells

    NASA Astrophysics Data System (ADS)

    Cao, Fei

    The high efficiency of dye sensitized nanostructured TiO 2 photoelectrochemical solar cells underlines the high charge transfer efficiency at the semiconductor/dye interface and the ability of the nanometer sized TiO2 particle network in intimate contact with the electrolyte to transport the injected electrons without significant losses. The operating mechanisms of these photoelectrochemical systems are reviewed. The focus of this dissertation is the photoelectrical properties of nanostructured TiO 2 films and the associated charge transport process. Transient techniques, both in the time domain and frequency domain were used to probe the electron transport in the TiO2 electrodes. The conductivity of nanostructured TiO2 thin films increases several orders of magnitude under illumination yet the conductivity is very low in the dark, illustrating the fact that the conductivity is strongly dependent on the trapped charges in these films. Due to the lack of a strong electrical field, charge transport only becomes efficient after the build up of a concentration gradient to drive the electron transport process, resulting in slow photocurrent and photovoltage transients in the photoelectrochemical cells. The open circuit photovoltages follow the conventional diode equation. This can be understood in terms of the Fermi level at the TiO2/tin oxide contact. The injection of electrons leads to the increase of the Fermi level at the contact. The time constants obtained follow a simple power law relationship with the light intensity reflecting the kinetics of electron transport in the nanostructured electrodes. The essential features of the nonsteady state response can be described by a diffusion model where the electron diffusion coefficient is dependent on light intensity. The lack of electron migration can be rationalized by the fact that any electrical field in the porous electrodes may be neutralized by the mobile ions in the electrolyte.

  1. Nanostructured Polymeric Micelles Carrying Xanthene Dyes for Photodynamic Evaluation.

    PubMed

    de Freitas, Camila Fabiano; Pellosi, Diogo Silva; Estevão, Bianca Martins; Calori, Italo Rodrigo; Tsubone, Tayana Mazin; Politi, Mário José; Caetano, Wilker; Hioka, Noboru

    2016-11-01

    It was evaluated the properties of the xanthene dyes Erythrosin B, Eosin Y and theirs Methyl, Butyl and Decyl ester derivatives as possible photosensitizers (PS) for photodynamic treatments. The more hydrophobic dyes self-aggregate in water/ethanol solutions above 70% water (vol/vol) in the mixture. In buffered water, these PS were encapsulated in Pluronic polymeric surfactants of P-123 and F-127 by two methodologies: direct addition and the thin-film solid dispersion methods. The thin-film solid method provided formulations with higher stabilities besides effective encapsulation of the PS as monomers. Size measurements demonstrated that Pluronic forms self-assembled micelles with uniform size, which present slightly negative surface potential and a spherical form detected by TEM microscopy. The ester length modulates xanthene localization in the micelle, which is deeper with the increase in the alkyl chain. Moreover, some PS are distributed into two populations: one on the corona micelle interface shell (PEO layer) and the other into the core (PPO region). Although all PS formulations show high singlet oxygen quantum yield, promising results were obtained for Erythrosin B esters with the hydrophobic P-123, which ensures their potential as drug for clinical photodynamic applications.

  2. Numerical Study of Complementary Nanostructures for Light Trapping in Colloidal Quantum Dot Solar Cells

    PubMed Central

    Wei, Jue; Xiong, Qiuyang; Mahpeykar, Seyed Milad; Wang, Xihua

    2016-01-01

    We have investigated two complementary nanostructures, nanocavity and nanopillar arrays, for light absorption enhancement in depleted heterojunction colloidal quantum dot (CQD) solar cells. A facile complementary fabrication process is demonstrated for patterning these nanostructures over the large area required for light trapping in photovoltaic devices. The simulation results show that both proposed periodic nanostructures can effectively increase the light absorption in CQD layer of the solar cell throughout the near-infrared region where CQD solar cells typically exhibit weak light absorption. The complementary fabrication process for implementation of these nanostructures can pave the way for large-area, inexpensive light trapping implementation in nanostructured solar cells. PMID:28335183

  3. Isomerization and Aggregation of the Solar Cell Dye D149

    PubMed Central

    2012-01-01

    D149, a metal-free indoline dye, is one of the most promising sensitizers for dye-sensitized solar cells (DSSCs) and has shown very high solar energy conversion efficiencies of 9%. Effective electron injection from the excited state is a prerequisite for high efficiencies and is lowered by competing deactivation pathways. Previous investigations have shown surprisingly short-lived excited states for this dye, with maximum lifetime components of 100–720 ps in different solvents and less than 120 ps for surface-adsorbed D149. Using steady-state and time-resolved fluorescence, we have investigated the photochemical properties of D149 in nonpolar and polar solvents, polymer matrices, and adsorbed on ZrO2, partially including a coadsorbent. In solution, excitation to the S2 state yields a product that is identified as a photoisomer. The reaction is reversible, and the involved double-bond is identified by NMR spectroscopy. Our results further show that lifetimes of 100–330 ps in the solvents used are increased to more than 2 ns for D149 in polymer matrices and on ZrO2. This is in part attributed to blocked internal motion due to steric constraint. Conversely, concentration-dependent aggregation leads to a dramatic reduction in lifetimes that can affect solar cell performance. Our results explain the unexpectedly short lifetimes observed previously. We also show that photochemical properties such as lifetimes determined in solution are different from the ones determined on semiconductor surfaces used in solar cells. The obtained mechanistic understanding should help develop design strategies for further improvement of solar cell dyes. PMID:23378868

  4. Novel silicon phases and nanostructures for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Wippermann, Stefan; He, Yuping; Vörös, Márton; Galli, Giulia

    2016-12-01

    Silicon exhibits a large variety of different bulk phases, allotropes, and composite structures, such as, e.g., clathrates or nanostructures, at both higher and lower densities compared with diamond-like Si-I. New Si structures continue to be discovered. These novel forms of Si offer exciting prospects to create Si based materials, which are non-toxic and earth-abundant, with properties tailored precisely towards specific applications. We illustrate how such novel Si based materials either in the bulk or as nanostructures may be used to significantly improve the efficiency of solar energy conversion devices.

  5. Novel silicon phases and nanostructures for solar energy conversion

    SciTech Connect

    Wippermann, Stefan; He, Yuping; Vörös, Márton; Galli, Giulia

    2016-12-01

    Silicon exhibits a large variety of different bulk phases, allotropes, and composite structures, such as, e.g., clathrates or nanostructures, at both higher and lower densities compared with diamond-like Si-I. New Si structures continue to be discovered. These novel forms of Si offer exciting prospects to create Si based materials, which are non-toxic and earth-abundant, with properties tailored precisely towards specific applications. We illustrate how such novel Si based materials either in the bulk or as nanostructures may be used to significantly improve the efficiency of solar energy conversion devices.

  6. Dyes extracted from Trigonella seeds as photosensitizers for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Batniji, Amal; Abdel-Latif, Monzir S.; El-Agez, Taher M.; Taya, Sofyan A.; Ghamri, Hatem

    2016-12-01

    In this paper, the extract of Trigonella seeds was used as sensitizer for dye-sensitized solar cells (DSSCs). The natural dye was extracted from the seeds using water and alcohol as solvents for the raw material. The UV-Vis absorption spectra of Trigonella extract solution and dye adsorbed on TiO2 film were measured. DSSCs sensitized by Trigonella extracted using water as a solvent exhibited better performance with efficiency of 0.215 %. The performance of the fabricated DSSCs was attempted to enhance by acid treatment of the FTO substrates with HNO3, H3PO4, and H2SO4. Electrochemical impedance spectroscopy of the fabricated cells was also carried out.

  7. Density functional theory study on dye-sensitized solar cells using oxadiazole-based dyes

    NASA Astrophysics Data System (ADS)

    Mehmood, Umer; Hussein, Ibnelwaleed A.; Harrabi, Khalil; Reddy, Belum V. S.

    2015-01-01

    Density functional theory (DFT) and time-dependent DFT(TD-DFT) modeling techniques are used to conduct a computational study of the geometry and electronic structure of oxadiazole-based organic sensitizers. A DFT study on the thermodynamic aspects of the charge transport processes associated with dye-sensitized solar cells (DSSCs) suggests that the system with 1,2,4-oxadiazole has a balance among the different crucial factors and may result in the highest incident photon to charge carrier efficiency. The dye/) anatase clusters were also simulated to illustrate the electron injection efficiency at the interface. This study provides basic understanding of the impact of molecular design on the performance of oxadiazole dyes in DSSCs.

  8. Novel energy relay dyes for high efficiency dye-sensitized solar cells.

    PubMed

    Rahman, Md Mahbubur; Ko, Min Jae; Lee, Jae-Joon

    2015-02-28

    4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I(-)/I3(-) based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively.

  9. Highly soluble energy relay dyes for dye-sensitized solar cells.

    PubMed

    Margulis, George Y; Lim, Bogyu; Hardin, Brian E; Unger, Eva L; Yum, Jun-Ho; Feckl, Johann M; Fattakhova-Rohlfing, Dina; Bein, Thomas; Grätzel, Michael; Sellinger, Alan; McGehee, Michael D

    2013-07-21

    High solubility is a requirement for energy relay dyes (ERDs) to absorb a large portion of incident light and significantly improve the efficiency of dye-sensitized solar cells (DSSCs). Two benzonitrile-soluble ERDs, BL302 and BL315, were synthesized, characterized, and resulted in a 65% increase in the efficiency of TT1-sensitized DSSCs. The high solubility (180 mM) of these ERDs allows for absorption of over 95% of incident light at their peak wavelength. The overall power conversion efficiency of DSSCs with BL302 and BL315 was found to be limited by their energy transfer efficiency of approximately 70%. Losses due to large pore size, dynamic collisional quenching of the ERD, energy transfer to desorbed sensitizing dyes and static quenching by complex formation were investigated and it was found that a majority of the losses are caused by the formation of statically quenched ERDs in solution.

  10. Plasmonic nanoparticles enhanced dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Liu, Fang; Meng, Weisi; Huang, Yidong

    2013-12-01

    Here we present investigations on utilizing two kinds of plasmonic nanoparticles (NPs) to enhance the efficiency of dye sensitized solar cells (DSCs). The Au@PVP NPs is proposed and present the specialty of adhesiveness to dye molecules, which could help to localize additional dye molecules near the plasmonic NPs, hence increasing the optical absorption consequently the power conversion efficiency (PCE) of the DSCs by 30% from 3.3% to 4.3%. Meanwhile, an irregular Au-Ag alloy popcorn-shaped NPs (popcorn NPs) with plenty of fine structures is also proposed and realized to enhance the light absorption of DSC. A pronounced absorption enhancement in a broadband wavelength range is observed due to the excitation of localized surface plasmon at different wavelengths. The PCE is enhanced by 32% from 5.94% to 7.85%.

  11. Synthesis of bismuth sulfide nanostructures for photodegradation of organic dye

    NASA Astrophysics Data System (ADS)

    Sharma, Surbhi; Khare, Neeraj

    2017-05-01

    Bismuth sulfide nanorods (Bi2S3-NR) and nanoflowers (Bi2S3-NF) have been synthesized by a simple hydrothermal method and their potentiality for the photodegradation of methylene blue (MB) under visible light exposure have been evaluated. X-ray diffraction (XRD) patterns confirmed the formation of Bi2S3 in the pure orthorhombic phase. Scanning electron microscopy (SEM) images and high resolution transmission electron microscopy (HRTEM) images confirm the synthesis of bismuth sulfide in the morphology of nanorods and hierarchical nanostructures (nanoflowers). A two fold enhancement in the photocatalytic activity of Bi2S3-NF in comparison to Bi2S3-NR has been demonstrated. This enhancement in the photocatalytic activity is attributed to the high rate of separation of photogenerated charge carriers in the Bi2S3-NF due to its hierarchical structure as compared to Bi2S3-NR.

  12. Molecular engineering of simple phenothiazine-based dyes to modulate dye aggregation, charge recombination, and dye regeneration in highly efficient dye-sensitized solar cells.

    PubMed

    Hua, Yong; Chang, Shuai; He, Jian; Zhang, Caishun; Zhao, Jianzhang; Chen, Tao; Wong, Wai-Yeung; Wong, Wai-Kwok; Zhu, Xunjin

    2014-05-19

    A series of simple phenothiazine-based dyes, namely, TP, EP, TTP, ETP, and EEP have been developed, in which the thiophene (T), ethylenedioxythiophene (E), their dimers, and mixtures are present to modulate dye aggregation, charge recombination, and dye regeneration for highly efficient dye-sensitized solar cell (DSSC) applications. Devices sensitized by the dyes TP and TTP display high power conversion efficiencies (PCEs) of 8.07 (Jsc = 15.2 mA cm(-2), Voc =0.783 V, fill factor (FF) = 0.679) and 7.87 % (Jsc = 16.1 mA cm(-2), Voc = 0.717 V, FF = 0.681), respectively; these were measured under simulated AM 1.5 sunlight in conjunction with the I(-)/I3(-) redox couple. By replacing the T group with the E unit, EP-based DSSCs had a slightly lower PCE of 7.98 % with a higher short-circuit photocurrent (Jsc) of 16.7 mA cm(-2). The dye ETP, with a mixture of E and T, had an even lower PCE of 5.62 %. Specifically, the cell based on the dye EEP, with a dimer of E, had inferior Jsc and Voc values and corresponded to the lowest PCE of 2.24 %. The results indicate that the photovoltaic performance can be finely modulated through structural engineering of the dyes. The selection of T analogues as donors can not only modulate light absorption and energy levels, but also have an impact on dye aggregation and interfacial charge recombination of electrons at the interface of titania, electrolytes, and/or oxidized dye molecules; this was demonstrated through DFT calculations, electrochemical impedance analysis, and transient photovoltage studies.

  13. Light collection optimization for composite photoanode in dye-sensitized solar cells: Towards higher efficiency

    SciTech Connect

    Guo, X. Z.; Shen, W. Z.

    2015-06-14

    Composite photoanode comprising nanoparticles and one-dimensional (1D) nanostructure is a promising alternative to conventional photoanode for dye-sensitized solar cells (DSCs). Besides fast electron transport channels, the 1D nanostructure also plays as light scattering centers. Here, we theoretically investigate the light scattering properties of capsule-shaped 1D nanostructure and their influence on the light collection of DSCs. It is found that the far-field light scattering of a single capsule depends on its volume, shape, and orientation: capsules with bigger equivalent spherical diameter, smaller aspect ratio, and horizontal orientation demonstrate stronger light scattering especially at large scattering angle. Using Monte Carlo approach, we simulated and optimized the light harvesting efficiency of the cell. Two multilayer composite photoanodes containing orderly or randomly oriented capsules are proposed. DSCs composed of these two photoanodes are promising for higher efficiencies because of their efficient light collection and superior electron collection. These results will provide practical guidance to the design and optimization of the photoanodes for DSCs.

  14. Efficiency improvement of silicon nanostructure-based solar cells.

    PubMed

    Huang, Bohr-Ran; Yang, Ying-Kan; Yang, Wen-Luh

    2014-01-24

    Solar cells based on a high-efficiency silicon nanostructure (SNS) were developed using a two-step metal-assisted electroless etching (MAEE) technique, phosphorus silicate glass (PSG) doping and screen printing. This process was used to produce solar cells with a silver nitrate (AgNO3) etching solution in different concentrations. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two-step MAEE technique showed an increase in silicon surface coverage of ~181.1% and a decrease in reflectivity of ~144.3%. The performance of the SNS-based solar cells was found to be optimized (~11.86%) in an SNS with a length of ~300 nm, an aspect ratio of ~5, surface coverage of ~84.9% and a reflectivity of ~6.1%. The ~16.8% increase in power conversion efficiency (PCE) for the SNS-based solar cell indicates good potential for mass production.

  15. Molecular modification of coumarin dyes for more efficient dye sensitized solar cells

    SciTech Connect

    Sanchez-de-Armas, Rocio; San-Miguel, Miguel A.; Oviedo, Jaime; Sanz, Javier Fdez.

    2012-05-21

    In this work, new coumarin based dyes for dye sensitized solar cells (DSSC) have been designed by introducing several substituent groups in different positions of the NKX-2311 structure. Two types of substitutions have been considered: the introduction of three electron-donating groups (-OH, -NH{sub 2}, and -OCH{sub 3}) and two different substituents with steric effect: -CH{sub 2}-CH{sub 2}-CH{sub 2}- and -CH{sub 2}-HC=CH-. The electronic absorption spectra (position and width of the first band and absorption threshold) and the position of the LUMO level related to the conduction band have been used as theoretical criteria to evaluate the efficiency of the new dyes. The introduction of a -NH{sub 2} group produces a redshift of the absorption maximum position and the absorption threshold, which could improve the cell efficiency. In contrast, the introduction of -CH{sub 2}-CH{sub 2}-CH{sub 2}- does not modify significantly the electronic structure of NKX-2311, but it might prevent aggregation. Finally, -CH{sub 2}-HC=CH- produces important changes both in the electronic spectrum and in the electronic structure of the dye, and it would be expected as an improvement of cell efficiency for these dyes.

  16. Dye-sensitized solar cells based on WO3.

    PubMed

    Zheng, Haidong; Tachibana, Yasuhiro; Kalantar-Zadeh, Kourosh

    2010-12-21

    In research on alternative photoanode materials for dye-sensitized solar cells (DSCs), there is rarely any report on WO(3), probably due to its acidic surface and more positive (vs NHE) conduction band edge position compared to TiO(2) and ZnO. For the first time, dye-sensitized solar cells based on porous WO(3) nanoparticle films were successfully fabricated with efficiency of up to 0.75%. The multicrystalline structure of WO(3) was examined by Raman spectroscopy and X-ray diffraction analysis. It was found that significant performance enhancement can be obtained from treating the WO(3) nanoparticle film with TiCl(4); the TiCl(4)-treated WO(3) DSCs were recorded with efficiency reaching 1.46%.

  17. Improved Electrodes and Electrolytes for Dye-Based Solar Cells

    SciTech Connect

    Harry R. Allcock; Thomas E. Mallouk; Mark W. Horn

    2011-10-26

    The most important factor in limiting the stability of dye-sensitized solar cells is the use of volatile liquid solvents in the electrolytes, which causes leakage during extended operation especially at elevated temperatures. This, together with the necessary complex sealing of the cells, seriously hampers the industrial-scale manufacturing and commercialization feasibilities of DSSCs. The objective of this program was to bring about a significant improvement in the performance and longevity of dye-based solar cells leading to commercialization. This had been studied in two ways first through development of low volatility solid, gel or liquid electrolytes, second through design and fabrication of TiO2 sculptured thin film electrodes.

  18. Nanostructure control in polymer solar cells by self-organization.

    PubMed

    Tajima, Keisuke; Hashimoto, Kazuhito

    2011-02-01

    Recently, polymer solar cells (PSCs) based on "bulk heterojunctions" using a simple mixture of electron donor and acceptor materials in thin films have been extensively studied. Although relatively high power conversion efficiencies have been achieved by using this approach, further improvement is necessary to precisely construct stable, reproducible nanostructures that are suitable for both efficient charge separation and transport inside such films. For this purpose, it is highly desirable to utilize a bottom-up approach, such as the self-organized formation of inorganic and organic nanostructures. In this review, an overview of our recent studies on the control of nanostructures in PSCs is presented. Copyright © 2011 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  19. Recent developments in dye-sensitized solar cells.

    PubMed

    Sharifi, Nafiseh; Tajabadi, Fariba; Taghavinia, Nima

    2014-12-15

    The knowledge of dye-sensitized solar cells (DSCs) has expanded considerably in recent years. They are multiparameter and complex systems that work only if various parameters are tuned simultaneously. This makes it difficult to target to a single parameter to improve the efficiency. There is a wealth of knowledge concerning different DSC structures and characteristics. In this review, the present knowledge and recent achievements are surveyed with emphasis on the more promising cell materials and designs.

  20. Synthesis, Characterization and Reactivity of Nanostructured Zero-Valent Iron Particles for Degradation of Azo Dyes

    NASA Astrophysics Data System (ADS)

    Mikhailov, Ivan; Levina, Vera; Leybo, Denis; Masov, Vsevolod; Tagirov, Marat; Kuznetsov, Denis

    Nanostructured zero-valent iron (NSZVI) particles were synthesized by the method of ferric ion reduction with sodium borohydride with subsequent drying and passivation at room temperature in technical grade nitrogen. The obtained sample was characterized by means of X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering studies. The prepared NSZVI particles represent 100-200nm aggregates, which consist of 20-30nm iron nanoparticles in zero-valent oxidation state covered by thin oxide shell. The reactivity of the NSZVI sample, as the removal efficiency of refractory azo dyes, was investigated in this study. Two azo dye compounds, namely, orange G and methyl orange, are commonly detected in waste water of textile production. Experimental variables such as NSZVI dosage, initial dye concentration and solution pH were investigated. The kinetic rates of degradation of both dyes by NSZVI increased with the decrease of solution pH from 10 to 3 and with the increase of NSZVI dosage, but decreased with the increase of initial dye concentration. The removal efficiencies achieved for both orange G and methyl orange were higher than 90% after 80min of treatment.

  1. Oral Nanostructured Lipid Carriers Loaded with Near-Infrared Dye for Image-Guided Photothermal Therapy.

    PubMed

    Chen, Gang; Wang, Kaikai; Zhou, Yiwen; Ding, Ling; Ullah, Aftab; Hu, Qi; Sun, Minjie; Oupický, David

    2016-09-28

    Photothermal therapy exerts its anticancer effect by converting laser radiation energy into hyperthermia using a suitable photosensitizer. This study reports development of nanostructured lipid carriers (NLCs) suitable for noninvasive oral delivery of a near-infrared photosensitizer dye IR780. The carrier encapsulating the dye (IR780@NLCs) was stable in simulated gastric and intestinal conditions and showed greatly enhanced oral absorption of IR780 when compared with the free dye. As a result of increased oral bioavailability, enhanced accumulation of the dye in subcutaneous mouse colon tumors (CT-26 cells) was observed following oral gavage of IR780@NLCs. Photothermal antitumor activity of orally administered IR780@NLCs was evaluated following local laser irradiation of the CT-26 tumors. We observed significant effect of the photothermal IR780@NLCs treatment on the rate of the tumor growth and no toxicity associated with the oral administration of IR780@NLCs. Overall, orally administered IR780@NLCs represents a safe and noninvasive method to achieve systemic tumor delivery of a photosensitizing dye for applications in photothermal anticancer therapies.

  2. A fluorene-modified porphyrin for efficient dye-sensitized solar cells.

    PubMed

    Wu, Cheng-Hua; Pan, Tsung-Yu; Hong, Shang-Hao; Wang, Chin-Li; Kuo, Hshin-Hui; Chu, Yang-Yun; Diau, Eric Wei-Guang; Lin, Ching-Yao

    2012-05-07

    Porphyrins bearing a polyaromatic or a heterocyclic group are prepared to study their fundamental and photovoltaic properties. Solar cells sensitized with a fluorene-modified porphyrin outperform other dyes in the series, reaching ~90% efficiency of N719 dye.

  3. Salicylic Acid-Based Organic Dyes Acting as the Photosensitizer for Solar Cells.

    PubMed

    Hong, Sungjun; Park, Jae-Hyeong; Han, Ah-Reum; Ko, Kwan-Woo; Eom, Jin Hee; Namgoong, Sung Keon; Lo, Alvie S V; Gordon, Keith C; Yoon, Sungho; Han, Chi-Hwan

    2016-05-01

    A D-π-A metal-free organic dye, featuring salicylic acid as a novel acceptor/anchoring unit, has been designed, synthesized and applied to dye-sensitized solar cell. The detailed photophysical, electrochemical, photovoltaic and sensitizing properties of the organic dye were investigated, in addition to the computational studies of the dye and dye-(TiO2)6 system. A solar cell device using this new organic dye as a sensitizer produced a solar to electric power conversion efficiency (PCE) of 3.49% (J(sc) = 6.69 mAcm-2, V(oc) = 0.74 V and ff = 0.70) under 100 mWcm(-2) simulated AM 1.5 G solar irradiation, demonstrating that the salicylic acid-based organic dye is a suitable alternative to currently used organometallic dyes.

  4. Dye-Sensitized Solar Cells for Space Power

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Hehemann, David G.; Duraj, Stan A.

    2003-01-01

    During the course of this grant, dye-sensitized solar cells were prepared and characterized. The solar cells were prepared using materials (dyes, electrolytes, transparent conductive oxide coated glass, nanocrystalline TiO2) entirely prepared in-house, as well as prepared using materials available commercially. Complete cells were characterized under simulated AM0 illumination. The best cell prepared at NASA had an AM0 efficiency of 1.22% for a 1.1 sq cm cell. Short circuit current (Isc), open circuit voltage (Voc) and fill factor (FF) for the cell were 6.95 mA, 618 mV and 42.8%, respectively. For comparison purposes, two commercially prepared dye-sensitized solar cells were obtained from Solaronix SA, Aubonne, Switzerland. The Solaronix cells were also characterized under simulated AM0 illumination. The best cell from Solaronix had an active area of 3.71 sq cm and measured an AM0 efficiency of 3.16%. with Isc, Voc and FF of 45.80 mA, 669.6 mV and 52.3%, respectively. Both cells from Solaronix were rapid thermal cycled between -80 C and 80 C. Thermal cycling led to a 4.6% loss of efficiency in one of the cells and led to nearly a complete failure in the second cell.

  5. Dye-sensitized solar cells using laser processing techniques

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Pique, Alberto; Kushto, Gary P.; Auyeung, Raymond C. Y.; Lee, S. H.; Arnold, Craig B.; Kafafi, Zakia H.

    2004-07-01

    Laser processing techniques, such as laser direct-write (LDW) and laser sintering, have been used to deposit mesoporous nanocrystalline TiO2 (nc-TiO2) films for use in dye-sensitized solar cells. LDW enables the fabrication of conformal structures containing metals, ceramics, polymers and composites on rigid and flexible substrates without the use of masks or additional patterning techniques. The transferred material maintains a porous, high surface area structure that is ideally suited for dye-sensitized solar cells. In this experiment, a pulsed UV laser (355nm) is used to forward transfer a paste of commercial TiO2 nanopowder (P25) onto transparent conducting electrodes on flexible polyethyleneterephthalate (PET) and rigid glass substrates. For the cells based on flexible PET substrates, the transferred TiO2 layers were sintered using an in-situ laser to improve electron paths without damaging PET substrates. In this paper, we demonstrate the use of laser processing techniques to produce nc-TiO2 films (~10 μm thickness) on glass for use in dye-sensitized solar cells (Voc = 690 mV, Jsc = 8.7 mA/cm2, ff = 0.67, η = 4.0 % at 100 mW/cm2). This work was supported by the Office of Naval Research.

  6. Linking optical and electrical small amplitude perturbation techniques for dynamic performance characterization of dye solar cells.

    PubMed

    Halme, Janne

    2011-07-21

    This paper unifies the analytical models used widely but thus far mostly separately for electrical and optical small amplitude perturbation measurements of nanostructured electrochemical dye solar cells (DSC): electrochemical impedance spectroscopy (EIS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS). The models are linked by expressing the kinetic boundary condition used for solving the time-dependent continuity equation of electrons in IMPS and IMVS analysis in terms of the series and parallel impedance components found in the complete equivalent circuit impedance model of DSC. As a result, analytical expressions are derived for potentiostatic IMPS and galvanostatic IMVS transfer functions of complete DSCs that are applicable at any operating point along the solar cell current-voltage (IV) curve. In agreement with the theory, impedance spectrum calculated as a ratio of IMVS and IMPS transfer functions measured near the maximum power point matches exactly with the impedance spectrum measured directly with EIS. Consequently, both IMPS-IMVS and EIS yield equal estimates for the electron diffusion length. The role of the chemical capacitance of the nanostructured semiconductor photoelectrode in the interpretation of the so-called RC attenuation of the IMPS response is clarified, as well as the capacitive frequency dispersion in IMPS and IMVS. This journal is © the Owner Societies 2011

  7. Polyaniline Nanofibers as the Hole Transport Medium in an Inverse Dye-Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Hesselsweet, Ian Brock

    In order to become a viable alternative to silicon photovoltaics, dye-sensitized solar cells must overcome several issues primarily resulting from their use of a liquid electrolyte. Much research has gone into correcting these shortcomings by replacing the liquid electrolyte with solid-state hole-transport media. Using these solid-state materials brings new difficulties, such as completely filling the pores in the TiO2 nanostructure, and achieving good adhesion with the dye-coated TiO2. A novel approach to addressing these difficulties is the inverse dye-sensitized solar cell design. In this method the devices are constructed in reverse order, with the solidstate hole-transport medium providing the nanostructure instead of the TiO2. This allows new materials and methods to be used which may better address these issues. In this project, inverse dye-sensitized solar cells using polyaniline nanofibers as the hole transport medium were prepared and characterized. The devices were prepared on fluorine-doped tin oxide (FTO) coated glass electrodes. The first component was a dense spin-coated polyaniline blocking layer, to help prevent short circuiting of the devices. The second layer was a thin film of drop cast polyaniline nanofibers which acted as the hole transport medium and provided high surface area for the dye attachment. The dye used was 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP), which was covalently attached to the nanofibers using a Friedel-Crafts acylation. Titania gel was then deposited into the pores of the nanofiber film by controlled hydrolysis of a titanium complex (Tyzor LA). A back electrode of TiO2 nanoparticles sintered on FTO was pressed on top to complete the devices. A typical device generated an open circuit voltage of 0.17 V and a closed circuit current of 5.7 nA/cm2 while the highest open circuit voltage recorded for any variation on a device was 0.31 V and the highest short circuit current was 52 nA/cm2 under AM 1.5 simulated solar

  8. Preparation of Nanoporous TiO2 for Dye-Sensitized Solar Cell (DSSC) Using Various Dyes

    NASA Astrophysics Data System (ADS)

    Yuliarto, Brian; Fanani, Fahiem; Fuadi, M. Kasyful; Nugraha

    2010-10-01

    This article reports the development of organic dyes as an attempt to reduce material costs of Dye-Sensitized Solar Cell (DSSC). Indonesia, a country with variety and considerable number of botanical resources, is suitable to perform the research. Indonesian black rice, curcuma, papaya leaf, and the combination were chosen as organic dyes source. Dyes were extracted using organic solvent and adsorbed on mesoporous Titanium Dioxide (TiO2) which has been optimized in our laboratory. The best dyes light absorbance and performance obtained from papaya leaf as chlorophyll dyes that gives two peaks at 432 nm and 664 nm from UV-Vis Spectrophotometry and performance under 100 mW/cm2 Xenon light solar simulator gives VOC = 0.566 Volt, JSC = 0.24 mA/cm2, Fill Factor = 0.33, and efficiency of energy conversion 0,045%.

  9. Photodynamic activity of nanostructured fabrics grafted with xanthene and thiazine dyes against opportunistic fungi.

    PubMed

    Kim, Joo Ran; Michielsen, Stephen

    2015-09-01

    Fungi are an important class of human pathogens for which considerable research has gone into defeating them. The photodynamic effects of rose bengal (RB), phloxine B (PB), azure A (AA), and toluidine blue O (TBO) dyes to inhibit Aspergillus fumigatus, Aspergillus niger, Trichoderma viride, Penicillium funiculosum, and Chaetomium globosum were investigated grafted to nano- and micro-structured fabrics. Three antifungal tests conducted: broth microdilution test of free dyes, zone of inhibition and quantitative antifungal assays on fabrics grafted with dyes. In the broth microdilution test, free RB displayed the lowest MIC at 32 μM to inhibit visible hyphal growth and germination but the antifungal ability of MIC for other photosensitizers below 63 μM was insignificant. RB and PB showed lower MIC than AA and TBO. In the inhibition zone tests, nanostructured fabrics grafted with RB and PB did not display fungal growth on the surface. Most microstructured fabrics grafted with AA and TBO showed little inhibition. In quantitative antifungal assay, nanostructured fabrics grafted with RB has the largest inhibition rate on T. viride and the lowest inhibition rate on P. funiculosum and the results showed the increasing inhibition rate in the order of AA < TBO < PB < RB. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Increased nanopore filling: Effect on monolithic all-solid-state dye-sensitized solar cells

    SciTech Connect

    Han Hongwei; Bach, Udo; Cheng Yibing; Caruso, Rachel A.

    2007-05-21

    A vacuum pore-filling method is described to fabricate solid-state dye-sensitized solar cells (DSSCs) based on nanocomposite polymer electrolytes. Scanning electron microscopy and energy dispersive x-ray spectrometry analyses suggest that incomplete pore filling of the nanostructured TiO{sub 2} electrodes is a major efficiency-limiting factor in the fabrication process of solid-state DSSC. Application of the vacuum method resulted in DSSC with much improved energy conversion efficiencies when compared to devices made via conventional drop-casting technique. The energy conversion efficiency gain increased steadily with increasing TiO{sub 2} film thicknesses. It is expected that the vacuum pore-filling technique will be applicable to a wide range of hole-transport materials.

  11. Highly Efficient Dye Sensitized Solar Cells based on Free-Standing Titania Nanotube

    NASA Astrophysics Data System (ADS)

    Kim, Chaehyun; Kim, Sungjin; Cartwright, Alexander; Zeng, Hao

    2011-03-01

    Dye sensitized solar cells (DSSC) attract great attention due to their respectable efficiency with very low fabrication cost, good performance under diffuse light conditions and ability to be fabricated on flexible substrates. Its main efficiency limiting factor is the random hopping of electrons within the titania nanoparticle network, which causes carrier trapping and recombination. The charge transport and collection can be enhanced by employing ordered nanostructures such as nanowire or nanotube arrays. However, nanowire/nanotube based DSSCs with efficiencies higher than those of conventional DSSCs have yet to be demonstrated. In this work, we report the fabrication of DSSCs using highly crystalline free-standing titania nanotube arrays. The high crystallinity leads to high electron mobility and diffusion length, allowing thick nanotube films to be used for improving the long wavelength light absorption. This greatly enhances the photocurrent and power conversion efficiency as compared to that of nanotube DSSCs in earlier studies. Work supported by NSF DMR-0547036.

  12. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells

    SciTech Connect

    Park, N. G.; van de Lagemaat, J.; Frank, A. J.

    2000-01-01

    The objective of this work is to develop and optimize the new dye-sensitized solar cell technology. In view of the infancy of rutile material development for solar cells, the PV response of the dye-sensitized rutile-based solar cell is remarkably close to that of the anatase-based cell.

  13. Dye-sensitized solar cells based on organic dual-channel anchorable dyes with well-defined core bridge structures.

    PubMed

    Seo, Kang Deuk; You, Ban Seok; Choi, In Taek; Ju, Myung Jong; You, Mi; Kang, Hong Seok; Kim, Hwan Kyu

    2013-11-01

    In stereo, where available: A new approach towards dye-sensitized solar cells is based on dianchoring structural motifs with two donors, two acceptors, and a core bridge donor as a spacer. Their high molar absorption coefficients result in favorable light-harvesting efficiencies for DSSCs based on these dyes. A high conversion efficiency of 4.90 % is achieved when using dye DC4, containing a core bridge carbazole unit, with a multifunctional coadsorbent.

  14. Performance comparison between silicon solar panel and dye-sensitized solar panel in Malaysia

    NASA Astrophysics Data System (ADS)

    Hamed, N. K. A.; Ahmad, M. K.; Urus, N. S. T.; Mohamad, F.; Nafarizal, N.; Ahmad, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.

    2017-09-01

    In carrying out experimental research in performance between silicon solar panel and dye-sensitive solar panel, we have been developing a device and a system. This system has been developed consisting of controllers, hardware and software. This system is capable to get most of the input sources. If only need to change the main circuit and coding for a different source input value. This device is able to get the ambient temperature, surface temperature, surrounding humidity, voltage with load, current with load, voltage without load and current without load and save the data into external memory. This device is able to withstand the heat and rain as it was fabricated in a waterproof box. This experiment was conducted to examine the performance of both the solar panels which are capable to maintain their stability and performance. A conclusion based on data populated, the distribution of data for dye-sensitized solar panel is much better than silicon solar panel as dye-sensitized solar panel is very sensitive to heat and not depend only on midday where is that is the maximum ambient temperature for both solar panel as silicon solar panel only can give maximum and high output only when midday.

  15. High Efficiency InP Solar Cells Through Nanostructuring

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel; Murray, Joseph; Munday, Jeremy

    We describe high efficiency InP solar cells which utilize a periodic array of optically designed TiO2 nanocylinders. Optical and electronic simulations were performed to determine the spectrally resolved reflectivity and I-V characteristics of potential devices under AM1.5G illumination. The reflectivity of InP solar cells with these nanocylinders is found to have an average value of 2% over the visible and near-IR spectral range, which outperforms traditional antireflection coatings. Coupling between Mie scattering resonances and thin film interference effects is found to accurately describe the optical enhancement provided by the nanocylinders. These nanostructured solar cells have power conversion efficiencies greater than 23%, which is comparable to the highest quoted efficiencies for InP solar cells.

  16. Nanoscience and nanostructures for photovoltaics and solar fuels.

    PubMed

    Nozik, Arthur J

    2010-08-11

    Quantum confinement of electronic particles (negative electrons and positive holes) in nanocrystals produces unique optical and electronic properties that have the potential to enhance the power conversion efficiency of solar cells for photovoltaic and solar fuels production at lower cost. These approaches and applications are labeled third generation solar photon conversion. Prominent among these unique properties is the efficient formation of more than one electron-hole pair (called excitons in nanocrystals) from a single absorbed photon. In isolated nanocrystals that have three-dimensional confinement of charge carriers (quantum dots) or two-dimensional confinement (quantum wires and rods) this process is termed multiple exciton generation. This Perspective presents a summary of our present understanding of the science of optoelectronic properties of nanocrystals and a prognosis for and review of the technological status of nanocrystals and nanostructures for third generation photovoltaic cells and solar fuels production.

  17. Nanostructured Materials Developed for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Fahey, Stephen D.; Gennett, Thomas; Tin, Padetha

    2004-01-01

    There has been considerable investigation recently regarding the potential for the use of nanomaterials and nanostructures to increase the efficiency of photovoltaic devices. Efforts at the NASA Glenn Research Center have involved the development and use of quantum dots and carbon nanotubes to enhance inorganic and organic cell efficiencies. Theoretical results have shown that a photovoltaic device with a single intermediate band of states resulting from the introduction of quantum dots offers a potential efficiency of 63.2 percent. A recent publication extended the intermediate band theory to two intermediate bands and calculated a limiting efficiency of 71.7 percent. The enhanced efficiency results from converting photons of energy less than the band gap of the cell by an intermediate band. The intermediate band provides a mechanism for low-energy photons to excite carriers across the energy gap by a two-step process.

  18. Novel ZnO microflowers on nanorod arrays: local dissolution-driven growth and enhanced light harvesting in dye-sensitized solar cells

    PubMed Central

    2014-01-01

    ZnO nanostructures were manipulated, via a low-temperature solution process, from pure nanorod arrays to complex nanostructures of microflowers on nanorod arrays with adjusted quantities of flowers. We proposed the mechanism of local dissolution-driven growth to rationally discuss the novel growth process. These nanostructures were used as photoanodes in dye-sensitized solar cells. Compared to pure nanorod arrays, the nanorod array-microflower hierarchical structures improved the power conversion efficiency from 0.41% to 0.92%, corresponding to a 124% efficiency increase. The enhancement of the efficiency was mainly ascribed to the synergistic effect of the enhanced surface area for higher dye loading and the improved light harvesting from efficient light scattering. Present results provide a promising route to improve the capability of light-harvesting for ZnO nanorod array-based DSSCs. PMID:24731603

  19. The Structure-property Relationships of D-π-A BODIPY Dyes for Dye-sensitized Solar Cells.

    PubMed

    Mao, Mao; Song, Qin-Hua

    2016-04-01

    BODIPY dyes have attracted considerable attention as potential photosensitizers in dye-sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D-π-A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure-property relationships of D-π-A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6-modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure-property relationships give valuable information and guidelines for designing new D-π-A BODIPY dyes for DSSCs.

  20. Circle chain embracing donor-acceptor organic dye: simultaneous improvement of photocurrent and photovoltage for dye-sensitized solar cells.

    PubMed

    Liu, Jian; Numata, Youhei; Qin, Chuanjiang; Islam, Ashraful; Yang, Xudong; Han, Liyuan

    2013-09-07

    We demonstrate for the first time that employing a circle chain embracing π-conjugated backbone is a promising strategy to construct superior organic sensitizers for dye-sensitized solar cells (DSCs), with simultaneous improvement of photocurrent and photovoltage. A DSC based on one circle chain embracing dye produced a high conversion efficiency of 8.34%.

  1. Synthesis, Characterization, and Application of Gold Nanoparticles in Green Nanochemistry Dye-Sensitized Solar Cells

    DTIC Science & Technology

    2012-06-01

    integrated with anthocyanin-based, dye-sensitized solar cells . The hybrid system was found to enhance the photovoltaic output of the system...Synthesis, Characterization, and Application of Gold Nanoparticles in Green Nanochemistry Dye-Sensitized Solar Cells by Hailey E. Cramer...Nanochemistry Dye-Sensitized Solar Cells Hailey E. Cramer University of Delaware Mark H. Griep National Research Council Shashi P. Karna

  2. Quasi Solid Polymer Electrolytes for Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Dissanayake, M. A. K. Lakshman

    2013-07-01

    Dye-sensitized solar cell (DSSC) has been considered as an alternative to the conventional silicon solar cell because of low cost, easy fabrication and relatively high conversion efficiency. A DSSC consists of a dye-sensitized nanoparticulated TiO2 electrode, an electrolyte containing redox couple and a Pt coated counter electrode. Such solar cells based on an I-/I3- redox couple in an organic solvent usually have conversion efficiencies reaching around 11%. However, a major drawback of these solution based solar cells, originally developed by Gratzel and coworkers is the lack of long-term stability due to liquid leakage, usage of volatile liquids such as acetonitrile, electrode corrosion, and photodecomposition of the dye in the solvent medium. Therefore considerable research efforts have been made in recent years to replace the liquid electrolytes with solid polymer or quasi-solid polymer (gel) electrolytes. Among these approaches, the use of gel polymer electrolytes appears to give rise to successful results in terms of conversion efficiency. Conventional poly (ethylene oxide)(PEO)-based solid polymer electrolytes exhibit poor ionic conductivities at room temperature, which is not sufficient for practical applications. Therefore, most of the recent studies have been directed to the preparation and characterization of gel polymer electrolytes which exhibit higher ionic conductivity at ambient temperature while maintain quai-solid structure. These gel polymer electrolytes prepared by incorporating a liquid electrolyte into a matrix polymer such as polyacrylonitrile(PAN), poly(vinylidene fluoride)(PVdF), poly (methyl methacrylate) (PMMA) and PEO have been employed in quasi-solid-state DSSCs to achieve power conversion efficiencies of more than 5%. Significant improvements have been achieved in recent years by modifications of the electrolytes by optimizing the ionic salt, introducing additives such as inorganic nanofillers, organic molecules and ionic liquids in

  3. Dye Oriza sativa glutinosa doped Fe as a active element of Dye Sensitized Solar Cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Prasada, A. B.; Fadli, U. M.; Cari; Supriyanto, A.

    2016-11-01

    The aims of the research are to determine the effect of doping Fe (III) Sulphate into dye Oriza sativa glutinosa on the characteristics parameters of solar cells, to determine the optical characteristic, functional group and electrical characteristic of dye Oriza sativa glutinosa doped Fe (III) sulphate. TiO2 nano size as much as 0.5 gr dissolved in 3 ml ethanol. 100 gr black sticky rice (Oriza sativa glutinosa) was immersed in 80 ml ethanol solution (95%) and kept at room temperature without exposing to light. Then it was filtered with a filter paper no.42, and the extracted result was process with chromatography. Furthermore, it was doped with Fe (III) sulphate respectively of 10-1 M, 10-2 M, 10-3 M. The characteristic of dye solution was measured using UV-Visible Spectrophotometer Lambda 25 for absorbance, Elkahfi 100/I-V meter for conductivity amd Keithey 2602A for characterization of current and voltage (I-V). The result showed that the area of dye Oriza sativa glutionosa doped Fe (III) sulphate with concentration 10-1 M the largest, because the value of Voc intercept at 6.40 × 10-1 mV and the value Isc intercept at 1.89 × 10-3 mA, with efficiency value is 0.148%.

  4. Electrochemistry in reverse biased dye solar cells and dye/electrolyte degradation mechanisms.

    PubMed

    Mastroianni, Simone; Lembo, Angelo; Brown, Thomas M; Reale, Andrea; Di Carlo, Aldo

    2012-08-27

    Mismatched or shadowed individual cells in a module can operate in the reverse bias (RB) regime. We investigate and identify key mechanisms for RB operation and degradation in dye solar cells (DSCs). Current-voltage characteristics in RB are sensitive to the type of dye utilised and to TiCl(4) substrate treatment. Subjecting the cell to a RB of 0.4 V over 740 h has little effect on conversion efficiency whereas a significant lowering is observed for the harsher stress tests at 0.6 V and by forcing a constant current equal to its I(SC). For more prolonged reverse biases at I(SC) (>740 h), we show that depletion of [I(3)(-)] inside the DSC can lead the reverse bias potentials across the cells to considerably increase in time. Electrochemical impedance measurements show that the overpotentials at the counter electrodes (CEs) can eventually reach values high enough to cause hydrogen evolution. Clear evidence of gas bubbles forming inside a complete dye solar cell under reverse bias stress, leading to severe device degradation, is presented. We also show that reactions of iodine with water present in the electrolyte can play an important role in [I(3)(-)] depletion and in the formation of hydrogen at the Pt CE. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Efficient catalytic effect of CuO nanostructures on the degradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Zaman, S.; Zainelabdin, A.; Amin, G.; Nur, O.; Willander, M.

    2012-11-01

    An efficient catalytic effect of petals and flowers like CuO nanostructures (NSs) on the degradation of two organic dyes, methylene blue (MB) and rhodamine B (RB) were investigated. The highest degradation of 95% in CuO petals and 72% in flowers for MB is observed in 24 h. For RB, the degradation was 85% and 80% in petals and flowers, respectively for 5 h. It was observed that CuO petals appeared to be more active than flowers for degradation of both dyes associated to high specific surface area. The petals and flower like CuO NSs were synthesized using the chemical bath method at 90 °C. The grown CuO NSs were characterized using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD).

  6. Transparent TiO2 nanowire networks via wet corrosion of Ti thin films for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Eunhye; Jin, Saera; Hong, Jongin

    2017-09-01

    Transparent TiO2 nanowire networks were prepared by corrosion of Ti thin films on F-doped SnO2 glass substrates in an alkaline (potassium hydroxide: KOH) solution. The formation of the porous TiO2 nanostructures from the Ti thin films was thoroughly investigated. Dye-sensitized solar cells with a photoanode of 1.2-μm-thick nanowire networks exhibit an average optical transmittance of 40% in the visible light region and a power conversion efficiency of 1.0% under one sun illumination.

  7. Preparation of the scattering layer based on TiO2 nanotube and their dye sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Salman, Odai N.; Agool, Ibrahim R.; Ismail, Mukhlis M.

    2017-06-01

    Titanium dioxide (TiO2) nanotubes with an outer diameter of approximately 245 nm have been successfully prepared using an electrochemical anodization method with anodizing electrolyte containing ethylene glycol solution. X-ray diffraction (XRD) analysis shows that the TiO2 nanostructure was a crystalline anatase phase. Fabricated of dye-sensitized solar cell (DSSC) with enhanced energy conversion efficiency using TiO2 nanotubes as scattering layer was performed. Energy conversion efficiency was increased from 2.54 to 6.9%.

  8. Asymmetric Zinc Phthalocyanines as Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Tunc, Gulenay; Yavuz, Yunus; Gurek, Aysegul; Canimkurbey, Betul; Kosemen, Arif; San, Sait Eren; Ahsen, Vefa

    Dye-sensitized solar cells (DSSCs) have received increasing attention due to their high incident to photon efficiency, easy fabrication and low production cost . Tremendous research efforts have been devoted to the development of new and efficient sensitizers suitable for practical use. In TiO2-based DSSCs, efficiencies of up to 11.4% under simulated sunlight have been obtained with rutheniumepolypyridyl complexes. However, the main drawback of ruthenium complexes is the lack of absorption in the red region of the visible light and the high cost. For this reason, dyes with large and stable p-conjugated systems such as porphyrins and phthalocyanines are important classes of potential sensitizers for highly efficient DSSCs. Phthalocyanines (Pcs) have been widely used as sensitizers because of their improved light-harvesting properties in the far red- and near-IR spectral regions and their extraordinary robustness [1]. In this work, a series of asymmetric Zn(II) Pcs bearing a carboxylic acid group and six hexylthia groups either at the peripheral or non-peripheral positions have been designed and synthesized to investigate the influence of the COOH group and the positions of hexylthia groups on the dye-sensitized solar cell (DSSC) performance.

  9. Performance of Caesalpinia sappan heartwood extract as photo sensitizer for dye sensitized solar cells.

    PubMed

    Ananth, S; Vivek, P; Saravana Kumar, G; Murugakoothan, P

    2015-02-25

    A natural dye extracted from Caesalpinia sappan heartwood was used as photo sensitizer for the first time to fabricate titanium dioxide (TiO2) nanoparticles based dye sensitized solar cells. Brazilin and brazilein are the major pigments present in the natural dye and their optimized molecular structure were calculated using Density functional theory (DFT) at 6-31G (d) level. The HOMO-LUMO were performed to reveal the energy gap using optimized structure. Pure TiO2 nanoparticles in anatase phase were synthesized by sol-gel technique. The pure and natural dye sensitized TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Low cost and environment friendly dye sensitized solar cells were fabricated using natural dye sensitized TiO2 based photo anode. The solar light to electron conversion efficiency of Caesalpinia sappan heartwood extract sensitized dye sensitized solar cell is 1.1%.

  10. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    NASA Technical Reports Server (NTRS)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  11. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kılıç, Bayram; Telli, Hakan; Tüzemen, Sebahattin; Başaran, Ali; Pirge, Gursev

    2015-04-01

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO2 structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO2 nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO2 owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO2 structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO2, and TiO2/ZnO hybrid structures are compared. The VA TiO2/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO2 is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO2/ZnO hybrid photoanode prepared with 15.8 wt. % TiO2 showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO2, pure TiO2, and pure ZnO photoanodes, respectively.

  12. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    SciTech Connect

    Kılıç, Bayram E-mail: kbayramkilic@gmail.com; Telli, Hakan; Başaran, Ali; Pirge, Gursev; Tüzemen, Sebahattin

    2015-04-07

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO{sub 2} structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO{sub 2} nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO{sub 2} owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO{sub 2} structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO{sub 2}, and TiO{sub 2}/ZnO hybrid structures are compared. The VA TiO{sub 2}/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO{sub 2} is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO{sub 2}/ZnO hybrid photoanode prepared with 15.8 wt. % TiO{sub 2} showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO{sub 2}, pure TiO{sub 2}, and pure ZnO photoanodes, respectively.

  13. Contribution of Nanostructures in High Performance Solar Cells

    NASA Astrophysics Data System (ADS)

    Aly, Abouelmaaty M.; Ebrahim, Essamudin A.; Sweelem, Emad

    2017-08-01

    Nanotechnology has great contributions in various fields, especially in solar energy conversion through solar cells (SCs). Nanostructured SCs can provide high performance with lower fabrication costs. The transition from fossil fuel energy to renewable sustainable energy represents a major technological challenge for the world. In the last years, the industry of SCs has grown rapidly due to strong attention in renewable energy in order to handle the problem of global climate change that is now believed to occur due to use of the fossil fuels. Cost is an influential factor in the eventual success of any solar technology, since inexpensive SCs are needed to produce electricity, especially for rural areas and for third world countries. Therefore, new developments in nanotechnology may open the door for the production of inexpensive and more efficient SCs by reducing the manufacturing costs of SCs. Utilizing nanotechnology in cheaper SCs will help maintain the environment. This article covers a review of the progress that has been made to-date to enhance efficiencies of various nanostructures used in SCs, including utilizations of all the wavelengths present in of the solar spectrum.

  14. Towards low temperature sintering methods for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Murali, Sukanya

    Access to economically viable renewable energy sources is essential for the development of a globally sustainable society. Solar energy has a large potential to satisfy the future need for renewable energy sources. Dye sensitized solar cells are a third generation of photovoltaic technologies with the potential for low cost environmentally safe energy production. Commercialization of this technology requires that dye sensitized solar cells with higher efficiencies can be fabricated on flexible substrates. The commonly used material for the anode in a Dye Sensitized Solar Cell consists of titanium dioxide nanoparticles covered with a layer of light sensitizing dye. For efficient electron transport throughout the nanoparticle network, good particle interconnections are necessary. For low temperature processing these interconnections can be achieved through a hydrothermal process. The focus of this research is to understand at a fundamental level this reaction-based sintering process. A titanium alkoxide precursor was mixed with commercial titania nanoparticles and coated on a transparent conductive oxide substrate. The product of the hydrolysis and condensation of the alkoxide served to connect the nanoparticles thus improving the electrical conduction of the titania electrode; this was confirmed by solar cell testing and electrochemical impedance spectroscopy. To further understand the formation of interconnections during reactive sintering, a model system based on inert silica particles was investigated. Titanium alkoxide precursor was mixed with commercial silica particles and reacted. Three different types of silica particles were used: each with a different morphology. The silica-titania multilayers/powders were characterized using SEM, XRD and BET. The efficiency of DSSCs is higher when larger non-porous silica particles are used and thin nanocrystalline titania is coated on this superstructure. This gave insight into the locations where the reactive liquid

  15. Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell

    PubMed Central

    Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.

    2013-01-01

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology. PMID:24067664

  16. Doped zinc oxide window layers for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Singh, Neetu; Kumar, Vijay; Purohit, L. P.; Kapoor, Avinashi; Ntwaeaborwa, Odireleng M.; Swart, Hendrik C.

    2013-10-01

    The present paper reports the fabrication of dye sensitized solar cell (DSSC), where boron doped ZnO (BZO) and aluminum-boron co-doped ZnO (AZB) thin films were used as front window electrodes. The highly crystalline zinc oxide (ZnO) nanoparticles (NPs) synthesized by the sol-gel route were used as host material for the dye. The efficiencies of the DSSCs formed using the BZO and AZB as window layers were obtained to be 1.56 and 1.84%, respectively. The enhanced efficiency in the case of an AZB window layer based DSSC is attributed to the increase in conductivity induced by co-doping of Al and B and an increase in the number of conducting pathways between the window layer and NPs provided by the nanorods. This facilitates a new approach in the window layer (doped ZnO) for DSSC application.

  17. Concrete embedded dye-synthesized photovoltaic solar cell.

    PubMed

    Hosseini, T; Flores-Vivian, I; Sobolev, K; Kouklin, N

    2013-09-25

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology.

  18. Natural dye -sensitized mesoporous ZnO solar cell

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2011-02-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  19. Natural dye -sensitized mesoporous ZnO solar cell

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2010-10-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  20. Branched ZnO nanostructures as building blocks of photoelectrodes for efficient solar energy conversion.

    PubMed

    Chen, Wei; Qiu, Yongcai; Yang, Shihe

    2012-08-21

    ZnO nanotetrapods are distinguished by their unique nanocrystalline geometric form with four tetrahedrally directed arms, which endows them the ability to handily assemble three-dimensional network structures. Such network structures, coupled with the intrinsically excellent electronic properties of the semiconducting ZnO, have proved advantageous for building photoelectrodes in energy conversion devices since they allow fast vectorial electron transport. In this review article, we summarize recent efforts, with partial emphasis on our own, in the development of ZnO nanotetrapod-based devices for solar energy conversion, including dye-sensitized solar cells and photoelectrochemical cells for water splitting. A pure ZnO nanotetrapod network was firstly demonstrated to have excellent charge collection properties even with just physical contacts. Composition design of ZnO nanotetrapods/SnO(2) nanoparticles yielded a high efficiency of 4.91% in flexible DSSCs. More significantly, by secondary branching and nitrogen doping, a record performance for water splitting has been achieved. A perspective on future research directions in ZnO nanotetrapod-based solar energy conversion devices is also discussed together with possible strategies of pursuit. It is hoped that the results obtained so far with the ZnO nanotetrapods could inspire and catalyze future developments of solar energy conversion systems based on branched nanostructural materials, contributing to solving global energy and environmental issues.

  1. Data mining with molecular design rules identifies new class of dyes for dye-sensitised solar cells.

    PubMed

    Cole, Jacqueline M; Low, Kian Sing; Ozoe, Hiroaki; Stathi, Panagiota; Kitamura, Chitoshi; Kurata, Hiroyuki; Rudolf, Petra; Kawase, Takeshi

    2014-12-28

    A major deficit in suitable dyes is stifling progress in the dye-sensitised solar cell (DSC) industry. Materials discovery strategies have afforded numerous new dyes; yet, corresponding solution-based DSC device performance has little improved upon 11% efficiency, achieved using the N719 dye over two decades ago. Research on these dyes has nevertheless revealed relationships between the molecular structure of dyes and their associated DSC efficiency. Here, such structure-property relationships have been codified in the form of molecular dye design rules, which have been judiciously sequenced in an algorithm to enable large-scale data mining of dye structures with optimal DSC performance. This affords, for the first time, a DSC-specific dye-discovery strategy that predicts new classes of dyes from surveying a representative set of chemical space. A lead material from these predictions is experimentally validated, showing DSC efficiency that is comparable to many well-known organic dyes. This demonstrates the power of this approach.

  2. Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Zhenqing; Liu, Chunmeng; Shao, Changjin; Zeng, Xiaofei; Cao, Dapeng

    2016-07-01

    Developing highly efficient organic dyes with panchromatic visible light harvesting for dye-sensitized solar cells (DSSCs) is still one of the most important scientific challenges. Here, we design a series of phenothiazine derivative organic dyes with donor-π-acceptor (D-π-A) structure using density functional theory (DFT) and time-dependent DFT (TDDFT) based on experimentally synthesized typical SH-6 organic dyes. Results indicate that the newly designed BUCT13 - BUCT30 dyes show smaller HOMO-LUMO energy gaps, higher molar extinction coefficients and obvious redshifts compared to the SH-6 dye, and the maximum absorption peaks of eight dyes are greater than 650 nm among the newly designed dyes. In particular, BUCT27 exhibits a 234 nm redshift and the maximum molar extinction coefficient with an increment of about 80% compared to the SH-6 dye. BUCT19 exhibits not only a 269 nm redshift and higher molar extinction coefficient with an increment of about 50% compared to the SH-6 dye, but the extremely broad absorption spectrum covering the entire visible range up to the near-IR region of 1200 nm. It is expected that this work can provide a new strategy and guidance for the investigation of these dye-sensitized devices.

  3. Nanostructured organic solar cells defined by nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Aryal, Mukti Nath

    Energy harvesting from sunlight via organic solar cells (OSCs) based on polymers as an electron donors and fullerenes as electron acceptors has been subject of intensive research due to the potential for low cost and large area devices with attractive market perspectives. One of the biggest challenges for OSCs is their low efficiency of power conversion, which is limited by quality of active layer morphology of donor-acceptor materials and interfaces between the components. Key reasons for this low efficiency include severe electron-hole recombination, which prevents charge pair propagation toward the electrodes and poor light absorptions due to thin polymer layer (˜100 nm). These problems can be dramatically alleviated if the charge-transfer polymers can be arranged as periodic nanostructures for active layer of ˜300 nm so that enough light absorption takes place and no phase overlap exists in the charge propagation path. This work reports the formation of ordered bi-continuous interdigitized active layer morphology, well defined interfaces for charge pair formation and propagation without recombination toward the electrodes. Such nanostructure arrays of poly(3-hexylthiophene) (P3HT) with well defined interfaces have been fabricated using nanoimprint lithography (NIL). The molds required for NIL are fabricated using innovative low cost and non-lithographic technique which is scalable to commercial use. Simultaneous control of nanostructured and 3-D chain alignment in P3HT nanostructures (nanowires and nanopillars) defined by NIL is revealed using out-of-plane and in-plane grazing incident X-ray diffraction measurements and enhancement in anisotropic charge carrier mobility favorable to solar cells and field effect transistors (FETs) is measured making FETs. Separate acceptor deposition is required for nanostructured solar cells which is challenging due to the limitation of solvent compatibility and self shadowing effect for thermal deposition. For this purpose

  4. Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules.

    PubMed

    Mishra, Amaresh; Fischer, Markus K R; Bäuerle, Peter

    2009-01-01

    Dye-sensitized solar cells (DSSC) have attracted considerable attention in recent years as they offer the possibility of low-cost conversion of photovoltaic energy. This Review focuses on recent advances in molecular design and technological aspects of metal-free organic dyes for applications in dye-sensitized solar cells. Special attention has been paid to the design principles of these dyes and on the effect of various electrolyte systems. Cosensitization, an emerging technique to extend the absorption range, is also discussed as a way to improve the performance of the device. In addition, we report on inverted dyes for photocathodes, which constitutes a relatively new approach for the production of tandem cells. Special consideration has been paid to the correlation between the molecular structure and physical properties to their performance in DSSCs.

  5. Integration of TiO2 nanotube arrays into solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Bandara, J.; Shankar, K.; Basham, J.; Wietasch, H.; Paulose, M.; Varghese, O. K.; Grimes, C. A.; Thelakkat, M.

    2011-02-01

    In this investigation, transparent TiO2 nanotube arrays prepared on a FTO substrate are employed as 1D nanostructures providing elongated direct pathways for electron transport and collection in solid-state dye-sensitized solar cell (SDSC). Donor-antenna (D-A) dyes provide an exciting route for improving the light harvesting efficiency in dye sensitized solar cells owing to their high molar extinction coefficients and the effective spatial separation of charges in the charge-separated state. Hence in this study we fabricated SDSC devices with different thicknesses of transparent TiO2 nanotube array electrodes sensitized with Ru-(II)-donor-antenna dye and spiro-OMeTAD as a hole conductor. At AM 1.5 G, 100 mW/cm2 illumination intensity, a power conversion efficiency of 1.94% was achieved when the TiO2 nanotubes are initially subjected to TiCl4 treatment. Furthermore, a linear increase in the cell current without loss in fill factor is observed for increasing length of TiO2 nanotubes. The structural and morphological characteristics of the transparent TiO2 nanotube arrays as well as the optimal conditions for the fabrication of SDSCs with transparent TiO2 nanotubes on FTO glass are reported.

  6. Parallel Tandems of Dye Sensitized Solar Cells with CNT Collector

    NASA Astrophysics Data System (ADS)

    Velten, Josef; Yuan, Chao-Chen; Zakhidov, Anvar

    2009-03-01

    In this presentation, we demonstrate the fabrication of monolithic parallel tandem dye sensitized solar cells using a semitransparent layer of carbon nanotubes. Each DSC sub-cell has titania photoelectrode with two different dyes: N 719 and N 749, which absorb light in different parts of solar spectrum. This layer of carbon nanotubes laminated on highly porous polymeric Millipore filter acts as both the collector of charge carrier and as the catalyst of the I/I3^- redox reaction that completes the function of the cell, overall allowing easier fabrication for tandem solar cell devices, with a potential for creating flexible devices in the future. The parallel tandem shows the total photocurrent which is nearly the sum of two Isc currents of constituent cells, and total Voc, which is average of two Voc, while conventional in-series DSC tandems show the lowest Voc and slightly increased Isc[1]. Thus the higher efficiency can be achieved in parallel DSC tandems, and we discuss the physical reasons for this effect. [1] Yanagida, et.al. J. of Photochemistry and Photobiology A: Chemistry Volume 164, Issues 1-3, 1 June 2004, Pages 33-39

  7. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells.

    PubMed

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-05-04

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm(2) and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells.

  8. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells

    PubMed Central

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-01-01

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm2 and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells. PMID:27166761

  9. Theoretical design of thiazolothiazole-based organic dyes with different electron donors for dye-sensitized solar cells.

    PubMed

    Fitri, Asmae; Benjelloun, Adil Touimi; Benzakour, Mohammed; Mcharfi, Mohammed; Hamidi, Mohammed; Bouachrine, Mohammed

    2014-11-11

    In this study, we have designed four novel organic donor-π-acceptor dyes (D1, D2, D3, D4), used for dye sensitized solar cells (DSSCs). The electron acceptor (anchoring) group was 2-cyanoacrylic for all dyes whereas the electron donor unit varied (coumarin, indoline, carbazole, triphenylamine) and the influence was investigated. These dyes, based on thiazolothiazole as π-spacer, were studied by density functional theory (DFT) and its extensible time dependant DFT (TDDFT) approaches to shed light on how the π-conjugation order influence the performance of the dyes in the DSSCs. The theoretical results have shown that the LUMO and HOMO energy levels of these dyes can be ensuring positive effect on the process of electron injection and dye regeneration. The trend of the calculated HOMO-LUMO gaps nicely compares with the spectral data. Key parameters in close connection with the short-circuit current density (Jsc), including light harvesting efficiency (LHE), injection driving force (ΔGinject.) and total reorganization energy (λtotal), were discussed. The calculated results of these dyes reveal that dye D2, with indoline as electron donor group, can be used as a potential sensitizer for TiO2 nanocrystalline solar cells due to its best electronic and optical properties and good photovoltaic parameters.

  10. Nano-structured electron transporting materials for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-01

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  11. Nano-structured electron transporting materials for perovskite solar cells.

    PubMed

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-28

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  12. Large-scale nanostructured low-temperature solar selective absorber.

    PubMed

    Chi, Kequn; Yang, Liu; Liu, Zhaolang; Gao, PingQi; Ye, Jichun; He, Sailing

    2017-05-15

    A large-scale nanostructured low-temperature solar selective absorber is demonstrated experimentally. It consists of a silicon dioxide thin film coating on a rough refractory tantalum substrate, fabricated based simply on self-assembled, closely packed polystyrene nanospheres. Because of the strong light harvesting of the surface nanopatterns and constructive interference within the top silicon dioxide coating, our absorber has a much higher solar absorption (0.84) than its planar counterpart (0.78). Though its absorption is lower than that of commercial black paint with ultra-broad absorption, the greatly suppressed absorption/emission in the long range still enables a superior heat accumulation. The working temperature is as high as 196.3°C under 7-sun solar illumination in ambient conditions-much higher than those achieved by the two comparables.

  13. A Hybrid Tandem Solar Cell Combining a Dye-Sensitized and a Polymer Solar Cell.

    PubMed

    Shao, Zhipeng; Chen, Shuanghong; Zhang, Xuhui; Zhu, Liangzheng; Ye, Jiajiu; Dai, Songyuan

    2016-06-01

    A hybrid tandem solar cell was assambled by connecting a dye sensitized solar cell and a polymer solar cell in series. A N719 sensitized TiO2 was used as photocathode in dye-sensitized subcell, and a MEH-PPV/PCBM composite was used as active layer in the polymer subcell. The polymer subcell fabricated on the counter electrode of the dye sensitized solar cell. A solution processed TiO(x) layer was used as electron collection layer of the polymer sub cell and the charge recombination layer. The effects of the TiO(x) interlayer and the spectral overlap between the two sub cells have been studied and optimized. The results shows that a proper thickness of the TiO(x) layer is needed for tandem solar cells. Thick TiO(x) will enhance the series resistance, but too thin TiO(x), layer will damage the hole blocking effect and its hydrophilic. The resulting optimized tandem solar cells exhibited a power conversion efficiency of 1.28% with a V(oc) of 0.95 V under simulated 100 mW cm(-2) AM 1.5 illumination.

  14. Multifunctional Interface Modification of Energy Relay Dye in Quasi-solid Dye-sensitized Solar Cells

    PubMed Central

    Gao, Rui; Cui, Yixiu; Liu, Xiaojiang; Wang, Liduo

    2014-01-01

    In this paper, 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) has been used in interface modification of dye-sensitized solar cells (DSCs) with combined effects of retarding charge recombination and Förster resonant energy transfer (FRET). DCJTB interface modification significantly improved photovoltaic performance of DSCs. I–V curves shows the conversion efficiency increases from 4.27% to 5.64% with DCJTB coating. The application of DCJTB with combined effects is beneficial to explore more novel multi-functional interface modification materials to improve the performance of DSCs. PMID:24993900

  15. Functional bisimide dyes bound via electrostatic interactions to oxide nanostructures generated by AFM lithography

    NASA Astrophysics Data System (ADS)

    Baumgärtel, T.; Rehm, S.; Würthner, F.; von Borczyskowski, C.; Graaf, H.

    2014-11-01

    Silicon oxide nanostructures have been functionalized by selective binding of a positively charged bisimide dye derivative. The structures were prepared by AFM nanolithography via local anodic oxidation (LAO) of dodecyl-terminated silicon and are negatively charged due to the production process. Therefore cationic spermine-functionalized perylene bisimide (sf-PBI) molecules can be bound to the structures by electrostatic interactions. The assembly of the sf-PBI units on the LAO nanostructures is verified by AFM height measurements and means of fluorescence microscopy. Emission spectra from the dye-functionalized oxide show that the molecules are able to form excimers. These excimers are characterized by a broad and featureless red-shifted emission band and an increased excited state life time. In contrast to the emission of sf-PBI films on uncharged silicon oxide, the excimer emission was found to decrease strongly low temperatures. This might be explained by a very tight binding due to the electrostatic attraction of the molecules to the LAO oxide.

  16. Direct Blue Dye Degradation Using Titanium Nanostructures Under Energy-Efficient UV-LED Irradiation

    NASA Astrophysics Data System (ADS)

    Jo, Wan-Kuen; Tayade, Rajesh J.

    2016-01-01

    The present study describes the effect of titanium dioxide (TiO2) morphology on the photocatalytic activity under irradiation of ultraviolet light-emitting diode (UV-LED). Different TiO2 nanostructures were synthesized using hydrothermal (nanotubes and nanospheres) and solvothermal (nanoflowers) methods. The morphology, phase composition, bandgap, and chemical properties of the synthesized different TiO2 nanostructures were characterized using x-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS), and Brunauer-Emmett-Teller (BET) analysis. The surface area of the nanotubes was larger than that of the nanospheres and nanoflowers by four- and three-fold, respectively. The photocatalytic activity of the photocatalysts was evaluated by degradation of direct blue-15 dye under UV-LED irradiation in a slurry-type reactor. The photocatalytic activity of the TiO2 nanoflowers was higher than that of TiO2 nanotubes or nanospheres, suggesting that nanoflowers can serve as efficient photocatalysts for dye degradation.

  17. Cycloruthenated Chromophores for the Dye-Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Bomben, Paolo Giovanni

    A series of bidentate cyclometalated Ru(II) complexes of general formula [Ru(N. N)(N. N)(C. N)]+, where N. N = polypyridyl ligand and C. N = cyclometalating ligand, have been synthesized, characterized and tested in dye-sensitized solar cells (DSSCs). Cyclometalated Ru(II) complexes, in general, exhibited broader absorption profiles and cathodically shifted electrochemical potentials compared to their polypyridyl analogues. The prototypical cycloruthenated compound, [Ru(bpy)2(ppy)]+ (bpy = 2,2'-bipyridine; Hppy = 2-phenylpyridine), displayed comparable UV-vis spectral coverage to the standard DSSC dye, N3. Molar extinction coefficients were enhanced and the absorption profile was red-shifted through substitution of the molecular periphery. Molecules from the [Ru(bpy)2(ppy)] + family displayed HOMO and excited-state energy levels properly aligned for use in the DSSC. Anchoring -CO2H groups were ideally located on the bidentate polypyridyl ligands (e.g., H2dcbpy; H2dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) because this arrangement localized excited-state electron density proximate to TiO 2. Increased molecular light absorption was accomplished by installing conjugated substituents (e.g., -NO2, -phenyl, -pyridyl, -2-thiophene-carbaldehyde) on the anionic ring of molecules with general formula [Ru(H2dcbpy)2(C. N)]+.Aromatic substituents were superior to -NO2 because of an ideally positioned lowest excited-state (i.e., localized to H2dcbpy instead of -NO2). Substitution of the anionic ring with 2-thiophene-5-carbaldehyde para to the Ru-C bond resulted in a superior absorption profile enabling a modest cell power conversion efficiency (PCE) of 3.3%. Replacement of one H2dcbpy ligand with bpy generated tris-heteroleptic cyclometalated Ru(II) dyes with general formula [Ru(H2dcbpy)(bpy)( C. N)]+. The use of electron-rich cyclometalating ligands,however, led to poor PCEs because of incompatible Ru electrochemical potentials for dye regeneration. Strong electron withdrawing

  18. Toward rational design of organic dye sensitized solar cells (DSSCs): an application to the TA-St-CA dye.

    PubMed

    Mohammadi, Narges; Mahon, Peter J; Wang, Feng

    2013-03-01

    A computer aided rational design has been performed on TA-St-CA dye sensitizer in order to improve the desirable properties for new organic dye sensitized solar cell (DSSC). A number of electron-donating (ED) and electron-withdrawing (EW) units based on Dewar's rules are substituted into the π-conjugated oligo-phenylenevinylene bridge of the reference TA-St-CA dye. The effects of these alternations on the molecular structures and the electron absorption spectra are calculated using time-dependant density functional theory (TDDFT). It is found that chemical modifications using electron donating (ED) substitutions exhibit advantages over the electron withdrawing (EW) substitutes to reduce the HOMO-LUMO energy gap as well as the electron distribution of the frontier orbitals of the new dyes. Dewar's rule is a useful guideline for rational design of new dye sensitizers with desired HOMO-LUMO gap. The impact on the optical spectra of new dyes are, however, less significant.

  19. Laser desorption/ionization mass spectrometry of dye-sensitized solar cells: identification of the dye-electrolyte interaction.

    PubMed

    Ellis, Hanna; Leandri, Valentina; Hagfeldt, Anders; Boschloo, Gerrit; Bergquist, Jonas; Shevchenko, Denys

    2015-05-01

    Dye-sensitized solar cells (DSCs) have great potential to provide sustainable electricity from sunlight. The photoanode in DSCs consists of a dye-sensitized metal oxide film deposited on a conductive substrate. This configuration makes the photoanode a perfect sample for laser desorption/ionization mass spectrometry (LDI-MS). We applied LDI-MS for the study of molecular interactions between a dye and electrolyte on the surface of a TiO2 photoanode. We found that a dye containing polyoxyethylene groups forms complexes with alkali metal cations from the electrolyte, while a dye substituted with alkoxy groups does not. Guanidinium ion forms adducts with neither of the two dyes. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Conditions for diffusion-limited and reaction-limited recombination in nanostructured solar cells

    NASA Astrophysics Data System (ADS)

    Ansari-Rad, Mehdi; Anta, Juan A.; Arzi, Ezatollah

    2014-04-01

    The performance of Dye-sensitized solar cells (DSC) and related devices made of nanostructured semiconductors relies on a good charge separation, which in turn is achieved by favoring charge transport against recombination. Although both processes occur at very different time scales, hence ensuring good charge separation, in certain cases the kinetics of transport and recombination can be connected, either in a direct or an indirect way. In this work, the connection between electron transport and recombination in nanostructured solar cells is studied both theoretically and by Monte Carlo simulation. Calculations using the Multiple-Trapping model and a realistic trap distribution for nanostructured TiO2 show that for attempt-to-jump frequencies higher than 1011-1013 Hz, the system adopts a reaction limited (RL) regime, with a lifetime which is effectively independent from the speed of the electrons in the transport level. For frequencies lower than those, and depending on the concentration of recombination centers in the material, the system enters a diffusion-limited regime (DL), where the lifetime increases if the speed of free electrons decreases. In general, the conditions for RL or DL recombination depend critically on the time scale difference between recombination kinetics and free-electron transport. Hence, if the former is too rapid with respect to the latter, the system is in the DL regime and total thermalization of carriers is not possible. In the opposite situation, a RL regime arises. Numerical data available in the literature, and the behavior of the lifetime with respect to (1) density of recombination centers and (2) probability of recombination at a given center, suggest that a typical DSC in operation stays in the RL regime with complete thermalization, although a transition to the DL regime may occur for electrolytes or hole conductors where recombination is especially rapid or where there is a larger dispersion of energies of electron acceptors.

  1. Conditions for diffusion-limited and reaction-limited recombination in nanostructured solar cells

    SciTech Connect

    Ansari-Rad, Mehdi; Anta, Juan A.; Arzi, Ezatollah

    2014-04-07

    The performance of Dye-sensitized solar cells (DSC) and related devices made of nanostructured semiconductors relies on a good charge separation, which in turn is achieved by favoring charge transport against recombination. Although both processes occur at very different time scales, hence ensuring good charge separation, in certain cases the kinetics of transport and recombination can be connected, either in a direct or an indirect way. In this work, the connection between electron transport and recombination in nanostructured solar cells is studied both theoretically and by Monte Carlo simulation. Calculations using the Multiple-Trapping model and a realistic trap distribution for nanostructured TiO{sub 2} show that for attempt-to-jump frequencies higher than 10{sup 11}–10{sup 13} Hz, the system adopts a reaction limited (RL) regime, with a lifetime which is effectively independent from the speed of the electrons in the transport level. For frequencies lower than those, and depending on the concentration of recombination centers in the material, the system enters a diffusion-limited regime (DL), where the lifetime increases if the speed of free electrons decreases. In general, the conditions for RL or DL recombination depend critically on the time scale difference between recombination kinetics and free-electron transport. Hence, if the former is too rapid with respect to the latter, the system is in the DL regime and total thermalization of carriers is not possible. In the opposite situation, a RL regime arises. Numerical data available in the literature, and the behavior of the lifetime with respect to (1) density of recombination centers and (2) probability of recombination at a given center, suggest that a typical DSC in operation stays in the RL regime with complete thermalization, although a transition to the DL regime may occur for electrolytes or hole conductors where recombination is especially rapid or where there is a larger dispersion of energies of

  2. Effect of Mixing Dyes and Solvent in Electrolyte Toward Characterization of Dye Sensitized Solar Cell Using Natural Dyes as The Sensitizer

    NASA Astrophysics Data System (ADS)

    Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).

  3. ZnO nanotube based dye-sensitized solar cells.

    PubMed

    Martinson, Alex B F; Elam, Jeffrey W; Hupp, Joseph T; Pellin, Michael J

    2007-08-01

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  4. ZnO nanotube based dye-sensitized solar cells.

    SciTech Connect

    Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J.

    2007-05-25

    We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addition to power efficiencies up to 1.6%. The novel fabrication technique provides a facile, metal-oxide general route to well-defined DSSC photoanodes.

  5. New architectures for dye-senstized solar cells.

    SciTech Connect

    Martinson, A. B. F.; Hamann, T. W.; Pellin, M. J.; Hupp, J. T.; Materials Science Division; Northwestern Univ.

    2008-01-01

    Modern dye-sensitized solar cell (DSSC) technology was built upon nanoparticle wide bandgap semiconductor photoanodes. While versatile and robust, the sintered nanoparticle architecture exhibits exceedingly slow electron transport that ultimately restricts the diversity of feasible redox mediators. The small collection of suitable mediators limits both our understanding of an intriguing heterogeneous system and the performance of these promising devices. Recently, a number of pseudo-1D photoanodes that exhibit accelerated charge transport and greater materials flexibility were fabricated. The potential of these alternative photoanode architectures for advancing, both directly and indirectly, the performance of DSSCs is explored.

  6. Weavable dye sensitized solar cells exploiting carbon nanotube yarns

    NASA Astrophysics Data System (ADS)

    Velten, Josef; Kuanyshbekova, Zharkynay; Göktepe, Özer; Göktepe, Fatma; Zakhidov, Anvar

    2013-05-01

    Weavable Dye Sensitized Solar Cells (DSSC) made with flexible yarns of conductive multiwalled carbon nanotubes (MWNTs) were produced having a power conversion efficiency above 3%. This was achieved with a specific design and careful consideration of the yarn function in the DSSC. Fermat yarns of MWNTs individually coated with mesoporous TiO2 layer were twisted together and coated with more mesoporous TiO2 to create a 3 dimensional photo electrode to overcome electron diffusion length issues. Archimedian yarns of MWNTs coated with a thin layer of platinum worked as a counter electrode to complete the architecture used in this DSSC.

  7. Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study.

    PubMed

    El-Shishtawy, Reda M; Asiri, Abdullah M; Aziz, Saadullah G; Elroby, Shaaban A K

    2014-06-01

    Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6-31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV-visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV-visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6-31+G (d) and 6-311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.

  8. Structure-performance correlations of organic dyes with an electron-deficient diphenylquinoxaline moiety for dye-sensitized solar cells.

    PubMed

    Li, Sie-Rong; Lee, Chuan-Pei; Yang, Po-Fan; Liao, Chia-Wei; Lee, Mandy M; Su, Wei-Lin; Li, Chun-Ting; Lin, Hao-Wu; Ho, Kuo-Chuan; Sun, Shih-Sheng

    2014-08-04

    The high performances of dye-sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon-to-electron conversion efficiencies extends to the onset at the near-infrared region due to strong internal charge-transfer transition as well as the effect of electron-deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their Ru(II) counterparts. Detailed spectroscopic studies have revealed the dye structure-cell performance correlations, to allow future design of efficient light-harvesting organic dyes.

  9. Nanocomposite semi-solid redox ionic liquid electrolytes with enhanced charge-transport capabilities for dye-sensitized solar cells.

    PubMed

    Rutkowska, Iwona A; Marszalek, Magdalena; Orlowska, Justyna; Ozimek, Weronika; Zakeeruddin, Shaik M; Kulesza, Pawel J; Grätzel, Michael

    2015-08-10

    The ability of Pt nanostructures to induce the splitting of the II bond in iodine (triiodide) molecules is explored here to enhance electron transfer in the iodine/iodide redox couple. Following the dispersal of Pt nanoparticles at 2 % (weight) level, charge transport was accelerated in triiodide/iodide-containing 1,3-dialkylimidazolium room-temperature ionic liquid. If both Pt nanoparticles and multi-walled carbon nanotubes were introduced into the ionic-liquid-based system, a solid-type (nonfluid) electrolyte was obtained. By using solid-state voltammetric (both sandwich-type and microelectrode-based) methodology, the apparent diffusion coefficients for charge transport increased to approximately 1×10(-6)  cm(2)  s(-1) upon the incorporation of the carbon-nanotube-supported iodine-modified Pt nanostructures. A dye-sensitized solar cell comprising TiO2 covered with a heteroleptic Ru(II) -type sensitizer (dye) and the semisolid triiodide/iodide ionic liquid electrolyte admixed with carbon-nanotube-supported Pt nanostructures yielded somewhat higher power conversion efficiencies (up to 7.9 % under standard reporting conditions) than those of the analogous Pt-free system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Theoretical studies on the quinoidal thiophene based dyes for dye sensitized solar cell and NLO applications.

    PubMed

    Nithya, R; Senthilkumar, K

    2014-10-21

    A series of quinoidal thiophene based dye molecules were designed and their optoelectronic properties were studied for dye sensitized solar cell (DSSC) applications. The efficiency of the designed dye molecules was analyzed using various parameters such as the HOMO-LUMO energy gap, absorption spectra, light harvesting efficiency (LHE), exciton biding energy (Eb) and free energy change for electron injection (ΔG(inject)). The simulated absorption spectra of the quinoidal thiophene molecules show that the electron withdrawing group substituted molecules exhibit dual band characteristics. We found that the cyano-[5'-(4″-amino benzylidene)-5H-thiophen-2'-ylidene] acetic acid based molecules, QT2B, QT4B, QT5 and QT6, are good candidates for DSSC applications. Furthermore, the study on the polarizability and hyperpolarizability of the designed molecules showed that the electron withdrawing group substituted QT2B-X molecules (X = Cl, Br, CF3, CN and NO2) are good candidates for NLO applications.

  11. Analysis and design optimization of organic dye sensitized solar cell based on simulation

    NASA Astrophysics Data System (ADS)

    Pala, Jay; Mordiya, Meet; Virpariya, Dhruv; Dangodara, Ankita; Gandha, Pinal; Savaliya, Chirag R.; Joseph, Joyce; Shiyani, Tulshi; Dhruv, Davit; Markna, J. H.

    2017-05-01

    In the present communication, simulation of multilayers organic dye-sensitized based solar cells (DSSC) was performed because of its tremendous application in different solar energy harvesting devices and their relatively high efficiency as well as cost effectiveness.J-V and I-V curves ofmultilayer organic dye sensitized solar cell with combination of different dyes were simulated to study the performance in the vicinity of efficiency. On the basis of above parameters, optimum design and operating parameters were derived from the simulation based analysis. It had been jointly shown that a systematic variation of different dye material and its thicknessare highly useful in achieving optimum efficiency of energy harvesting devices.

  12. Dna-Enhanced Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Pollum, Marvin; Crespo-Hernandez, Carlos E.

    2013-06-01

    Dye-sensitized solar cells (DSSCs) are a promising alternative to the current silicon solar cell technologies. DSSCs have a lower manufacturing cost, can be made to be flexible, semi-transparent, and in any variety of colors for aesthetic applications. Despite these advantageous properties, the stability and power conversion efficiency of DSSCs are still lacking. Recently, we have shown that the adsorption of DNA onto the semiconductor surface of a typical DSSC improves its overall performance. Structure-function analysis, in conjunction with steady-state and time-resolved spectroscopic studies, are currently being done to understand this phenomenon and to uncover the mechanism by which DNA boosts the overall performance of DSSCs. This new knowledge is expected to facilitate the rational design of DSSCs that exhibit higher power conversion efficiency than those currently available.

  13. Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells.

    PubMed

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Meng, Weisi; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2014-03-10

    We present an investigation on utilizing plasmonic aluminium (Al) nanoparticles (NPs) to enhance the optical absorption of dye-sensitized solar cells (DSCs). The Al NPs exhibit not only the light absorption enhancement in solar cells with localized surface plasmon (LSP) effect but also the chemical stability to iodide/triiodide electrolyte. Besides, the lower work function (~4.06 eV), compared with that of TiO₂ (~4.6 eV), may suppress the quenching processes, such as charge transfer to metal NPs, to reduce the loss. Thus, high concentration of Al NPs could be incorporated into the TiO₂ anodes, and the power conversion efficiency (PCE) of DSCs is improved by nearly 13%. Moreover, electrochemical impedance spectroscopy (EIS) characterization also indicates that the plasmonic DSCs with Al NPs present better electrochemical performance than regular ones, which contributes to the improvement of PCE of the device.

  14. Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells.

    PubMed

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Meng, Weisi; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2014-03-10

    We present an investigation on utilizing plasmonic aluminium (Al) nanoparticles (NPs) to enhance the optical absorption of dye-sensitized solar cells (DSCs). The Al NPs exhibit not only the light absorption enhancement in solar cells with localized surface plasmon (LSP) effect but also the chemical stability to iodide/triiodide electrolyte. Besides, the lower work function (~4.06 eV), compared with that of TiO(2) (~4.6 eV), may suppress the quenching processes, such as charge transfer to metal NPs, to reduce the loss. Thus, high concentration of Al NPs could be incorporated into the TiO(2) anodes, and the power conversion efficiency (PCE) of DSCs is improved by nearly 13%. Moreover, electrochemical impedance spectroscopy (EIS) characterization also indicates that the plasmonic DSCs with Al NPs present better electrochemical performance than regular ones, which contributes to the improvement of PCE of the device.

  15. Review on Metallic and Plastic Flexible Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Yugis, A. R.; Mansa, R. F.; Sipaut, C. S.

    2015-04-01

    Dye sensitized solar cells (DSSCs) are a promising alternative for the development of a new generation of photovoltaic devices. DSSCs have promoted intense research due to their low cost and eco-friendly advantage over conventional silicon-based crystalline solar cells. In recent years, lightweight flexible types of DSSCs have attracted much intention because of drastic reduction in production cost and more extensive application. The substrate that used as electrode of the DSSCs has a dominant impact on the methods and materials that can be applied to the cell and consequently on the resulting performance of DSSCs. Furthermore, the substrates influence significantly the stability of the device. Although the power conversion efficiency still low compared to traditional glass based DSSCs, flexible DSSCs still have potential to be the most efficient and easily implemented technology.

  16. Heterogenous solar photocatalysis of two commercial reactive azo dyes.

    PubMed

    Dhodapkar, Rita S; Chaturvedi, Vibha; Neti, Nageswara R; Kaul, Santosh N

    2003-01-01

    Two commercial reactive azo dyes--Reactive Black 5 (RB5) and Reactive Orange 16 (RO 16) have been treated by titanium dioxide and Zinc oxide photocatalysts separately under presence of sunlight. It is observed that solar photocatalytic treatment is effective in terms of colour and COD. The photodegradation efficiency of zinc oxide is comparable with TiO2 at pH 5-6 for RO16. The extent of decolourization and degradation of RB5 is greater in presence of zinc oxide photocatalyst than TiO2 at pH 5- 6. Zinc oxide undergoes <1% photodissolution after 6 hours of solar irradiation at working pH.

  17. Dye-sensitized solar cells consisting of dye-bilayer structure stained with two dyes for harvesting light of wide range of wavelength

    NASA Astrophysics Data System (ADS)

    Inakazu, Fumi; Noma, Yusuke; Ogomi, Yuhei; Hayase, Shuzi

    2008-09-01

    Dye-sensitized solar cells (DSCs) containing dye-bilayer structure of black dye and NK3705 (3-carboxymethyl-5-[3-(4-sulfobutyl)-2(3H)-bezothiazolylidene]-2-thioxo-4-thiazolidinone, sodium salt) in one TiO2 layer (2-TiO-BD-NK) are reported. The 2-TiO-BD-NK structure was fabricated by staining one TiO2 layer with these two dyes, step by step, under a pressurized CO2 condition. The dye-bilayer structure was observed by using a confocal laser scanning microscope. The short circuit current (Jsc) and the incident photon to current efficiency of the cell (DSC-2-TiO-BD-NK) was almost the sum of those of DSC stained with black dye only (DSC-1-TiO-BD) and DSC stained with NK3705 only (DSC-1-TiO-NK).

  18. Enhanced Electron Lifetimes in Dye-Sensitized Solar Cells Using a Dichromophoric Porphyrin: The Utility of Intermolecular Forces.

    PubMed

    Zhao, Long; Wagner, Pawel; van der Salm, Holly; Gordon, Keith C; Mori, Shogo; Mozer, Attila J

    2015-10-07

    Electron lifetimes in dye-sensitized solar cells employing a porphyrin dye, an organic dye, a 1:1 mixture of the two dyes, and a dichromophoric dye design consisting of the two dyes using a nonconjugated linker were measured, suggesting that the dispersion force of the organic dyes has a significant detrimental effect on the electron lifetime and that the dichromophoric design can be utilized to control the effect of the dispersion force.

  19. Zinc-oxide-based nanostructured materials for heterostructure solar cells

    SciTech Connect

    Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A. Somov, P. A.; Terukov, E. I.

    2015-10-15

    Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.

  20. Porphyrin-Based Dye-Sensitized Solar Cells (DSSCs): a Review.

    PubMed

    Birel, Özgül; Nadeem, Said; Duman, Hakan

    2017-02-16

    The current review aims to collect short information about photovoltaic performance and structure of porphyrin-based sensitizers used in dye-sensitized solar cells (DSSC). Sensitizer is the key component of the DSSC device. Structure of sensitizer is important to achieve high photovoltaic performance. Porphyrin derivatives are suitable for DSSC applications due to their thermal, electronic and photovoltaic properties. It describes some electrochemical and spectral properties as well as thestructure of porphyrin dyes used in dye based-solar cells.

  1. Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights.

    PubMed

    Higashino, Tomohiro; Imahori, Hiroshi

    2015-01-14

    Dye-sensitized solar cells (DSSCs) have attracted much attention as an alternative to silicon-based solar cells because of their low-cost production and high power conversion efficiency. Among various sensitizers, numerous research activities have been focused on porphyrins due to their strong absorption bands in the visible region, versatile modifications of their core, and facile tuning of the electronic structures. In 2005-2007, Officer and Grätzel et al. had achieved a rapid increase in the power conversion efficiency of porphyrin DSSCs from a few percent to as much as 7%. Encouraged by these pioneering works, further high-performance porphyrin dyes have been developed in the last decade. These studies have provided us profound hints for the rational design of sensitizers toward highly efficient DSSCs. Push-pull structures and/or π-extensions have made porphyrins panchromatic in visible and even near-infrared regions. Consequently, porphyrin sensitizers have exhibited power conversion efficiencies that are comparable to or even higher than those of well-established highly efficient DSSCs based on ruthenium complexes. So far the power conversion efficiency has increased up to ca. 13% by using a push-pull porphyrin with a cobalt-based redox shuttle. In this perspective, we review the recent developments in the synthetic design of porphyrins for highly efficient DSSCs.

  2. Triphenylamine-based organic dyes with julolidine as the secondary electron donor for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Guohua; Kong, Fantai; Li, Jingzhe; Fang, Xiaqin; Li, Yi; Dai, Songyuan; Chen, Qianqian; Zhang, Xianxi

    2013-12-01

    Two novel donor-donor-π-conjugated-acceptor (D-D-π-A) metal-free organic dyes (JTPA1 and JTPA2) with a julolidine moiety as the secondary electron donor for dye-sensitized solar cells (DSSCs) are synthesized. Their absorption spectra, electrochemical and photovoltaic properties are extensively investigated and compared with TPA2 dye. Transient absorption measurements show that both sensitizers are quickly regenerated and the dye cations are efficiently intercepted by the redox mediator. Both dyes show good performance as DSSC photosensitizers. In particular, a DSSC using JTPA2 with rhodanine-3-acetic acid shows better photovoltaic performance with a short-circuit photocurrent density (Jsc) of 9.30 mA cm-2, an open-circuit photovoltage (Voc) of 509 mV and a fill factor (FF) of 0.68, corresponding to an overall conversion efficiency (η) of 3.2% under AM 1.5 irradiation (100 mW cm-2). Under similar test conditions, ruthenium-based N719 dye gives an efficiency of 6.7%. Compared to TPA2, the dye regeneration rate, the short-circuit photocurrent density and the conversion efficiency of JTPA2 are doubled by introducing a julolidine unit. Our findings show that the julolidine unit may be an excellent electron donor system for organic dyes harvesting solar irradiation.

  3. Molecular engineering of cyanine dyes to design a panchromatic response in Co-sensitized dye-sensitized solar cells

    SciTech Connect

    Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.; McKechnie, Scott

    2016-04-05

    Cyanines are optically tunable dyes with high molar extinction coefficients, suitable for applications in co-sensitized dye-sensitized solar cells (DSCs); yet, barely thus applied. This might be due to the lack of a rational molecular design strategy that efficiently exploits cyanine properties. This study computationally re-designs these dyes, to broaden their optical absorption spectrum and create dye···TiO2 binding and co-sensitization functionality. This is achieved via a stepwise molecular engineering approach. Firstly, the structural and optical properties of four parent dyes are experimentally and computationally investigated: 3,3’-diethyloxacarbocyanine iodide, 3,3’-diethylthiacarbocyanine iodide, 3,3’-diethylthiadicarbocyanine iodide and 3,3’-diethylthiatricarbocyanine iodide. Secondly, the molecules are theoretically modified and their energetics are analyzed and compared to the parent dyes. A dye···TiO2 anchoring group (carboxylic or cyanoacrylic acid), absent from the parent dyes, is chemically substituted at different molecular positions to investigate changes in optical absorption. We find that cyanoacrylic acid substitution at the para-quinoidal position affects the absorption wavelength of all parent dyes, with an optimal bathochromic shift of ca. 40 nm. The theoretical lengthening of the polymethine chain is also shown to effect dye absorption. Two molecularly engineered dyes are proposed as promising co-sensitizers. Finally, corresponding dye···TiO2 adsorption energy calculations corroborate their applicability, demonstrating the potential of cyanine dyes in DSC research.

  4. Molecular engineering of cyanine dyes to design a panchromatic response in Co-sensitized dye-sensitized solar cells

    DOE PAGES

    Pepe, Giulio; Cole, Jacqueline M.; Waddell, Paul G.; ...

    2016-04-05

    Cyanines are optically tunable dyes with high molar extinction coefficients, suitable for applications in co-sensitized dye-sensitized solar cells (DSCs); yet, barely thus applied. This might be due to the lack of a rational molecular design strategy that efficiently exploits cyanine properties. This study computationally re-designs these dyes, to broaden their optical absorption spectrum and create dye···TiO2 binding and co-sensitization functionality. This is achieved via a stepwise molecular engineering approach. Firstly, the structural and optical properties of four parent dyes are experimentally and computationally investigated: 3,3’-diethyloxacarbocyanine iodide, 3,3’-diethylthiacarbocyanine iodide, 3,3’-diethylthiadicarbocyanine iodide and 3,3’-diethylthiatricarbocyanine iodide. Secondly, the molecules are theoretically modified andmore » their energetics are analyzed and compared to the parent dyes. A dye···TiO2 anchoring group (carboxylic or cyanoacrylic acid), absent from the parent dyes, is chemically substituted at different molecular positions to investigate changes in optical absorption. We find that cyanoacrylic acid substitution at the para-quinoidal position affects the absorption wavelength of all parent dyes, with an optimal bathochromic shift of ca. 40 nm. The theoretical lengthening of the polymethine chain is also shown to effect dye absorption. Two molecularly engineered dyes are proposed as promising co-sensitizers. Finally, corresponding dye···TiO2 adsorption energy calculations corroborate their applicability, demonstrating the potential of cyanine dyes in DSC research.« less

  5. Radiation damage in biomimetic dye molecules for solar cells.

    PubMed

    Cook, Peter L; Johnson, Phillip S; Liu, Xiaosong; Chin, An-Li; Himpsel, F J

    2009-12-07

    A significant obstacle to organic photovoltaics is radiation damage, either directly by photochemical reactions or indirectly via hot electrons. Such effects are investigated for biomimetic dye molecules for solar cells (phthalocyanines) and for a biological analog (the charge transfer protein cytochrome c). Both feature a central transition metal atom (or H(2)) surrounded by nitrogen atoms. Soft x-ray absorption spectroscopy and photoelectron spectroscopy are used to identify three types of radiation-induced changes in the electronic structure of these molecules. (1) The peptide bonds along the backbone of the protein are readily broken, while the nitrogen cage remains rather stable in phthalocyanines. This finding suggests minimizing peptide attachments to biologically inspired molecules for photovoltaic applications. (2) The metal atom in the protein changes its 3d electron configuration under irradiation. (3) The Fermi level E(F) shifts relative to the band gap in phthalocyanine films due to radiation-induced gap states. This effect has little influence on the optical absorption, but it changes the lineup between the energy levels of the absorbing dye and the acceptor/donor electrodes that collect the charge carriers in a solar cell.

  6. Charge transport in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Yanagida, Masatoshi

    2015-03-01

    The effect of charge transport on the photovoltaic properties of dye-sensitized solar cells (DSCs) was investigated by the experimental results and the ion transport. The short current photocurrent density (Jsc) is determined by the electron transport in porous TiO2 when the diffusion limited current (Jdif) due to the {{I}3}- transport is larger than the photo-generated electron flux (Jg) estimated from the light harvesting efficiency of dye-sensitized porous TiO2 and the solar spectrum. However, the Jsc value is determined by the ion transport in the electrolyte solution at Jdif < Jg. The J value becomes constant against light intensity, and is expressed as the saturated current (Jscs). The {{J}s} value depends on the thickness (d) of the TiO2 layer, the initial concentration (COX0), and the diffusion coefficient (DOXb) of {{I}3}-. These suitable parameters were determined by using the ion transport. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  7. Supersensitization of CdS quantum dots with a near-infrared organic dye: toward the design of panchromatic hybrid-sensitized solar cells.

    PubMed

    Choi, Hyunbong; Nicolaescu, Roxana; Paek, Sanghyun; Ko, Jaejung; Kamat, Prashant V

    2011-11-22

    The photoresponse of quantum dot solar cells (QDSCs) has been successfully extended to the near-IR (NIR) region by sensitizing nanostructured TiO(2)-CdS films with a squaraine dye (JK-216). CdS nanoparticles anchored on mesoscopic TiO(2) films obtained by successive ionic layer adsorption and reaction (SILAR) exhibit limited absorption below 500 nm with a net power conversion efficiency of ~1% when employed as a photoanode in QDSC. By depositing a thin barrier layer of Al(2)O(3), the TiO(2)-CdS films were further modified with a NIR absorbing squaraine dye. Quantum dot sensitized solar cells supersensitized with a squariand dye (JK-216) showed good stability during illumination with standard global AM 1.5 solar conditions, delivering a maximum overall power conversion efficiency (η) of 3.14%. Transient absorption and pulse radiolysis measurements provide further insight into the excited state interactions of squaraine dye with SiO(2), TiO(2), and TiO(2)/CdS/Al(2)O(3) films and interfacial electron transfer processes. The synergy of combining semiconductor quantum dots and NIR absorbing dye provides new opportunities to harvest photons from different regions of the solar spectrum. © 2011 American Chemical Society

  8. Efficiency improvement of silicon nanostructure-based solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Bohr-Ran; Yang, Ying-Kan; Yang, Wen-Luh

    2014-01-01

    Solar cells based on a high-efficiency silicon nanostructure (SNS) were developed using a two-step metal-assisted electroless etching (MAEE) technique, phosphorus silicate glass (PSG) doping and screen printing. This process was used to produce solar cells with a silver nitrate (AgNO3) etching solution in different concentrations. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two-step MAEE technique showed an increase in silicon surface coverage of ∼181.1% and a decrease in reflectivity of ∼144.3%. The performance of the SNS-based solar cells was found to be optimized (∼11.86%) in an SNS with a length of ∼300 nm, an aspect ratio of ∼5, surface coverage of ∼84.9% and a reflectivity of ∼6.1%. The ∼16.8% increase in power conversion efficiency (PCE) for the SNS-based solar cell indicates good potential for mass production.

  9. Singlet exciton fission in nanostructured organic solar cells.

    PubMed

    Jadhav, Priya J; Mohanty, Aseema; Sussman, Jason; Lee, Jiye; Baldo, Marc A

    2011-04-13

    Singlet exciton fission is an efficient multiexciton generation process in organic molecules. But two concerns must be satisfied before it can be exploited in low-cost solution-processed organic solar cells. Fission must be combined with longer wavelength absorption in a structure that can potentially surpass the single junction limit, and its efficiency must be demonstrated in nanoscale domains within blended devices. Here, we report organic solar cells comprised of tetracene, copper phthalocyanine, and the buckyball C(60). Short wavelength light generates singlet excitons in tetracene. These are subsequently split into two triplet excitons and transported through the phthalocyanine. In addition, the phthalocyanine absorbs photons below the singlet exciton energy of tetracene. To test tetracene in nanostructured blends, we fabricate coevaporated bulk heterojunctions and multilayer heterojunctions of tetracene and C(60). We measure a singlet fission efficiency of (71 ± 18)%, demonstrating that exciton fission can efficiently compete with exciton dissociation on the nanoscale.

  10. Highly absorbing solar cells--a survey of plasmonic nanostructures.

    PubMed

    Dunbar, Ricky B; Pfadler, Thomas; Schmidt-Mende, Lukas

    2012-03-12

    Plasmonic light trapping in thin film solar cells is investigated using full-wave electromagnetic simulations. Light absorption in the semiconductor layer with three standard plasmonic solar cell geometries is compared to absorption in a flat layer. We identify near-field absorption enhancement due to the excitation of localized surface plasmons but find that it is not necessary for strong light trapping in these configurations: significant enhancements are also found if the real metal is replaced by a perfect conductor, where scattering is the only available enhancement mechanism. The absorption in a 60 nm thick organic semiconductor film is found to be enhanced by up to 19% using dispersed silver nanoparticles, and up to 13% using a nanostructured electrode. External in-scattering nanoparticles strongly limit semiconductor absorption via back-reflection.

  11. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    PubMed Central

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-01-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple. PMID:27489138

  12. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells.

    PubMed

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-08-04

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3](2+) /[Co(bpy)3](3+)), accompanied by a well-matched counter electrode ( PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple.

  13. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-08-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple.

  14. Functionalized nanostructures for enhanced photocatalytic performance under solar light.

    PubMed

    Guo, Liejin; Jing, Dengwei; Liu, Maochang; Chen, Yubin; Shen, Shaohua; Shi, Jinwen; Zhang, Kai

    2014-01-01

    Photocatalytic hydrogen production from water has been considered to be one of the most promising solar-to-hydrogen conversion technologies. In the last decade, various functionalized nanostructures were designed to address the primary requirements for an efficient photocatalytic generation of hydrogen by using solar energy: visible-light activity, chemical stability, appropriate band-edge characteristics, and potential for low-cost fabrication. Our aim is to present a short review of our recent attempts that center on the above requirements. We begin with a brief introduction of photocatalysts coupling two or more semiconductors, followed by a further discussion of the heterostructures with improved matching of both band structures and crystal lattices. We then elaborate on the heterostructure design of the targeted materials from macroscopic regulation of compositions and phases, to the more precise control at the nanoscale, i.e., materials with the same compositions but different phases with certain band alignment. We conclude this review with perspectives on nanostructure design that might direct future research of this technology.

  15. Functionalized nanostructures for enhanced photocatalytic performance under solar light

    PubMed Central

    Liu, Maochang; Chen, Yubin; Shen, Shaohua; Shi, Jinwen; Zhang, Kai

    2014-01-01

    Summary Photocatalytic hydrogen production from water has been considered to be one of the most promising solar-to-hydrogen conversion technologies. In the last decade, various functionalized nanostructures were designed to address the primary requirements for an efficient photocatalytic generation of hydrogen by using solar energy: visible-light activity, chemical stability, appropriate band-edge characteristics, and potential for low-cost fabrication. Our aim is to present a short review of our recent attempts that center on the above requirements. We begin with a brief introduction of photocatalysts coupling two or more semiconductors, followed by a further discussion of the heterostructures with improved matching of both band structures and crystal lattices. We then elaborate on the heterostructure design of the targeted materials from macroscopic regulation of compositions and phases, to the more precise control at the nanoscale, i.e., materials with the same compositions but different phases with certain band alignment. We conclude this review with perspectives on nanostructure design that might direct future research of this technology. PMID:25161835

  16. Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling.

    PubMed

    Mulder, C L; Reusswig, P D; Velázquez, A M; Kim, H; Rotschild, C; Baldo, M A

    2010-04-26

    Luminescent solar concentrators (LSCs) use dye molecules embedded in a flat-plate waveguide to absorb solar radiation. Ideally, the dyes re-emit the absorbed light into waveguide modes that are coupled to solar cells. But some photons are always lost, re-emitted through the face of the LSC and coupled out of the waveguide. In this work, we improve the fundamental efficiency limit of an LSC by controlling the orientation of dye molecules using a liquid crystalline host. First, we present a theoretical model for the waveguide trapping efficiency as a function of dipole orientation. Next, we demonstrate an increase in the trapping efficiency from 66% for LSCs with no dye alignment to 81% for a LSC with vertical dye alignment. Finally, we show that the enhanced trapping efficiency is preserved for geometric gains up to 30, and demonstrate that an external diffuser can alleviate weak absorption in LSCs with vertically-aligned dyes.

  17. Broadband energy transfer to sensitizing dyes by mobile quantum dot mediators in solar cells.

    PubMed

    Adhyaksa, Gede Widia Pratama; Lee, Ga In; Baek, Se-Woong; Lee, Jung-Yong; Kang, Jeung Ku

    2013-01-01

    The efficiency of solar cells depends on absorption intensity of the photon collectors. Herein, mobile quantum dots (QDs) functionalized with thiol ligands in electrolyte are utilized into dye-sensitized solar cells. The QDs serve as mediators to receive and re-transmit energy to sensitized dyes, thus amplifying photon collection of sensitizing dyes in the visible range and enabling up-conversion of low-energy photons to higher-energy photons for dye absorption. The cell efficiency is boosted by dispersing QDs in electrolyte, thereby obviating the need for light scattering or plasmonic structures. Furthermore, optical spectroscopy and external quantum efficiency data reveal that resonance energy transfer due to the overlap between QD emission and dye absorption spectra becomes dominant when the QD bandgap is higher than the first excitonic peak of the dye, while co-sensitization resulting in a fast reduction of oxidized dyes is pronounced in the case of lower QD band gaps.

  18. A metal-free N-annulated thienocyclopentaperylene dye: power conversion efficiency of 12% for dye-sensitized solar cells.

    PubMed

    Yao, Zhaoyang; Zhang, Min; Li, Renzhi; Yang, Lin; Qiao, Yongna; Wang, Peng

    2015-05-11

    Reported are two highly efficient metal-free perylene dyes featuring N-annulated thienobenzoperylene (NTBP) and N-annulated thienocyclopentaperylene (NTCP), which are coplanar polycyclic aromatic hydrocarbons. Without the use of any coadsorbate, the metal-free organic dye derived from the NTCP segment was used for a dye-sensitized solar cell which attained a power conversion efficiency of 12% under an irradiance of 100 mW cm(-2), simulated air mass global (AM1.5G) sunlight. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste

    PubMed Central

    Maiaugree, Wasan; Lowpa, Seksan; Towannang, Madsakorn; Rutphonsan, Phikun; Tangtrakarn, Apishok; Pimanpang, Samuk; Maiaugree, Prapen; Ratchapolthavisin, Nattawat; Sang-aroon, Wichien; Jarernboon, Wirat; Amornkitbamrung, Vittaya

    2015-01-01

    Mangosteen peel is an inedible portion of a fruit. We are interested in using these residues as components of a dye sensitized solar cell (DSSC). Carbonized mangosteen peel was used with mangosteen peel dye as a natural counter electrode and a natural photosensitizer, respectively. A distinctive mesoporous honeycomb-like carbon structure with a rough nanoscale surface was found in carbonized mangosteen peels. The efficiency of a dye sensitized solar cell using carbonized mangosteen peel was compared to that of DSSCs with Pt and PEDOT-PSS counter electrodes. The highest solar conversion efficiency (2.63%) was obtained when using carbonized mangosteen peel and an organic disulfide/thiolate (T2/T−) electrolyte. PMID:26458745

  20. Natural dyes as sensitizers to increase the efficiency in sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Cerda, Bayron; Sivakumar, R.; Paulraj, M.

    2016-05-01

    A dye-sensitized solar cell (DSSC) is a sandwich type solar cell consisting of a photoelectrode, a counter electrode and a liquid electrolyte. The photo electrode comprises of a titanium dioxide semiconducting thin film grown over a glass substrate which in-turn has a transparent thin conducting layer of tin oxide film doped with fluorine (FTO) coated over it. The aim of this work is to develop photoelectrodes with different dyes to increase the efficiency of this type of solar cells. Dyes obtained from fresh sources of maqui, black myrtle, spinach and a dye mixture of spinach and spinach-maqui-myrtle were used. The technique used for the extraction of the dyes was maceration for one day, in methanol. Colourants and photoelectrodes were studied using, UV-vis spectrophotometer for their spectral properties. Their photovoltaic properties such as efficiency, fill factor, open circuit voltage and short circuit current were studied using a solar simulator and source meter unit.

  1. First principles study of organic sensitizers for dye sensitized solar cells: effects of anchoring groups on optoelectronic properties and dye aggregation.

    PubMed

    Nachimuthu, Santhanamoorthi; Chen, Wei-Chieh; Leggesse, Ermias Girma; Jiang, Jyh-Chiang

    2016-01-14

    We have designed a new set of D-π-A type organic dye sensitizers with different acceptor and anchoring groups, and systematically investigated their optoelectronic properties for efficient dye sensitized solar cell applications. Particularly, we have focused on the effects of anchoring groups on the dye aggregation phenomenon. TDDFT results indicate that the dyes with CSSH anchoring groups exhibit improved optoelectronic properties compared to other dyes. Further, molecular dynamics simulations have been performed to describe the formation of dye aggregation due to intermolecular hydrogen bonding. The observed results indicate that dyes with CSSH anchoring groups are less prone to aggregate because of their very weak intermolecular interactions.

  2. Temperature effects in dye-sensitized solar cells.

    PubMed

    Raga, Sonia R; Fabregat-Santiago, Francisco

    2013-02-21

    In the standard solar cell technologies such as crystalline silicon and cadmium telluride, increments of temperature in the cell produce large variations in the energy conversion efficiency, which decreases at a constant rate. In dye solar cells the efficiency remains roughly constant with a maximum at around 30-40 °C and further decays above this temperature. In this work, the origin of this characteristic behavior is explained. Data show that under illumination recombination kinetics in the active layer of the cell is the same between -7 and 40 °C. Consequently, the efficiency of the cell remained virtually constant, with only small differences in the fill factor associated with changes in the series resistance. A further increase in temperature up to 70 °C produces an increase in recombination kinetics yielding lower photopotential and device performance. Finally, it is emphasized that at the normal operating temperatures of solar cells, the gap among the conversion efficiency of different technologies is much smaller than generally acknowledged.

  3. Controllable growth of dendritic ZnO nanowire arrays on a stainless steel mesh towards the fabrication of large area, flexible dye-sensitized solar cells.

    PubMed

    Dai, Hui; Zhou, Yong; Liu, Qi; Li, Zhengdao; Bao, Chunxiong; Yu, Tao; Zhou, Zhigang

    2012-09-07

    Well-defined ZnO nanowire (NW) arrays with controlled dendritic structures were successfully built on a stainless steel mesh and utilized as photoanodes for the fabrication of large-area, flexible dye-sensitized solar cells (DSSCs). The dendritic nanostructure proves favorable for the improvement of the overall light conversion efficiency of the DSSC. An optimized etching time for the affixion of ZnO seeds on the ZnO backbone of the dendritic "tree" and the controlled growth conditions of the branch NW are critical to achieve high conversion efficiency solar cells.

  4. Controllable growth of dendritic ZnO nanowire arrays on a stainless steel mesh towards the fabrication of large area, flexible dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Dai, Hui; Zhou, Yong; Liu, Qi; Li, Zhengdao; Bao, Chunxiong; Yu, Tao; Zhou, Zhigang

    2012-08-01

    Well-defined ZnO nanowire (NW) arrays with controlled dendritic structures were successfully built on a stainless steel mesh and utilized as photoanodes for the fabrication of large-area, flexible dye-sensitized solar cells (DSSCs). The dendritic nanostructure proves favorable for the improvement of the overall light conversion efficiency of the DSSC. An optimized etching time for the affixion of ZnO seeds on the ZnO backbone of the dendritic ``tree'' and the controlled growth conditions of the branch NW are critical to achieve high conversion efficiency solar cells.

  5. Improved solar efficiency by introducing graphene oxide in purple cabbage dye sensitized TiO2 based solar cell

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Ahmed A.; Gupta, R. K.; Kahol, P. K.; Wageh, S.; Al-Turki, Y. A.; El Shirbeeny, W.; Yakuphanoglu, F.

    2014-04-01

    Natural dye extracted from purple cabbage was used for fabrication of TiO2 dye-sensitized solar cells (DSSCs). The effect of light intensity on the solar efficiency of the device was investigated. It was observed that the efficiency of the DSSC increases with increasing the light intensity e.g. the efficiency of the solar cell increases from 0.013±0.002% to 0.150±0.020% by increase in light intensity from 30 to 100 mW/cm2, respectively. The solar efficiency of the natural dye used in this research was compared with commercial dye (N 719) under similar experimental conditions and observed that the natural (purple cabbage) dye has higher efficiency (0.150±0.020%) than N 719 (0.078±0.002%). It was further evaluated that the efficiency of the fabricated solar cell could improve by incorporating graphene oxide. The efficiency of the TiO2 dye-sensitized solar cell was found to increase from 0.150±0.020% to 0.361±0.009% by incorporating graphene oxide into purple cabbage dye.

  6. Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye.

    PubMed

    Stambolova, Irina; Shipochka, Capital Em Cyrillicaria; Blaskov, Vladimir; Loukanov, Alexandrе; Vassilev, Sasho

    2012-12-05

    Spray pyrolysis procedure for preparation of nanostructured TiO(2) films with higher photocatalytic effectiveness and longer exploitation life is presented in this study. Thin films of active nanocrystalline TiO(2) were obtained from titanium isopropoxide, stabilized with acetyl acetone and characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The activity of sprayed nanostructured TiO(2) is tested for photocatalytic degradation of Reactive Black 5 dye with concentrations up to 80 ppm. Interesting result of the work is the reduction of toxicity after photocatalytic treatment of RB5 with TiO(2), which was confirmed by the lower percentage of mortality of Artemia salina. It was proved that the film thickness, conditions of post deposition treatment and the type of the substrate affected significantly the photocatalytic reaction. Taking into account that the parameters are interdependent, it is necessary to optimize the preparation conditions in order to synthesize photocatalytic active films.

  7. Metal-Free Sensitizers for Dye-Sensitized Solar Cells.

    PubMed

    Chaurasia, Sumit; Lin, Jiann T

    2016-06-01

    This review focuses on our work on metal-free sensitizers for dye-sensitized solar cells (DSSCs). Sensitizers based on D-A'-π-A architecture (D is a donor, A is an acceptor, A' is an electron-deficient entity) exhibit better light harvesting than D-π-A-type sensitizers. However, appropriate molecular design is needed to avoid excessive aggregation of negative charge at the electron-deficient entity upon photoexcitation. Rigidified aromatics, including aromatic segments comprising fused electron-excessive and -deficient units in the spacer, allow effective electronic communication, and good photoinduced charge transfer leads to excellent cell performance. Sensitizers with two anchors/acceptors, D(-π-A)2 , can more efficiently harvest light, inject electrons, and suppress dark current compared with congeners with a single anchor. Appropriate incorporation of heteroaromatic units in the spacer is beneficial to DSSC performance. High-performance, aqueous-based DSSCs can be achieved with a dual redox couple comprising imidazolium iodide and 2,2,6,6-tetramethylpiperidin-N-oxyl, and/or using dyes of improved wettability through the incorporation of a triethylene oxide methyl ether chain.

  8. Space Environmental Testing of Dye-Sensitized Solar Cells

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Anglin, Emily J.; Hepp, Aloysius F.; Bailey, Sheila G.; Scheiman, David A.; Castro, Stephenie L.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent advances in nanocrystalline dye-sensitized solar cells has lead NASA to investigate the potential of these devices for space power generation, Reported here is the first space environment characterization of these type of photovoltaic devices. Cells containing liquid electrolytes were exposed to simulated low-earth orbit conditions and their performance evaluated. All cells were characterized under simulated air mass zero (AMO) illumination. Complete cells were exposed to pressures less than 1 x 10(exp -7) torr for over a month, with no sign of sealant failure or electrolyte leakage. Cells from Solaronix SA were rapid thermal cycled under simulated low-earth orbit conditions. The cells were cycled 100 times from -80 C to 80 C, which is equivalent to 6 days in orbit. The best cell had a 4.6% loss in efficiency as a result of the thermal cycling,

  9. Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.

    PubMed

    Jung, Hyun Suk; Lee, Jung-Kun

    2013-05-16

    TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs.

  10. Carbon Nanotubes for Dye-Sensitized Solar Cells.

    PubMed

    Batmunkh, Munkhbayar; Biggs, Mark J; Shapter, Joseph G

    2015-07-01

    As one type of emerging photovoltaic cell, dye-sensitized solar cells (DSSCs) are an attractive potential source of renewable energy due to their eco-friendliness, ease of fabrication, and cost effectiveness. However, in DSSCs, the rarity and high cost of some electrode materials (transparent conducting oxide and platinum) and the inefficient performance caused by slow electron transport, poor light-harvesting efficiency, and significant charge recombination are critical issues. Recent research has shown that carbon nanotubes (CNTs) are promising candidates to overcome these issues due to their unique electrical, optical, chemical, physical, as well as catalytic properties. This article provides a comprehensive review of the research that has focused on the application of CNTs and their hybrids in transparent conducting electrodes (TCEs), in semiconducting layers, and in counter electrodes of DSSCs. At the end of this review, some important research directions for the future use of CNTs in DSSCs are also provided.

  11. Morphological influence of TiO2 nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Khan, Sadaf Bashir; Hou, Mengjing; Shuang, Shuang; Zhang, Zhengjun

    2017-04-01

    Hierarchical nanostructures have drawn significant attention and incredible performance in photodriven chemical conversion area due to its unique physicochemical properties. Herein, we study the morphological influence of TiO2 nanostructures on photocatalytic degradation of different organic dyes methyl blue, methyl violet and methyl orange present in industrial wastewater. Nanorod, nanohelics and nanozigzag TiO2 nanofilms were fabricated by using galancing angle deposition technique (GLAD). TiO2 nanofilms were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and raman analysis. BET surface area analysis were carried out by using nitrogen adsorption desorption curves. The results show that TiO2 morphology had great influence on photocatalytic degradation of organic dyes due to difference in specific surface area and pore volume of nanostructures. The photocatalytic degradation experiments were carried out for three hours under UV-vis light irradiation. Catalysis recycling and organic dyes concentration influence were also studied. In case of high concentration of organic dyes, negligible degradation rate is observed. TiO2 nanozigzag films show better degradation performance than nanohelics and nanorod due to presence of large surface area for reaction, higher porosity with dispersion of active sites at different length scales of pores and presence of oxygen vacancies.

  12. Theoretical investigation of new thiazolothiazole-based D-π-A organic dyes for efficient dye-sensitized solar cell.

    PubMed

    Fitri, Asmae; Benjelloun, Adil Touimi; Benzakour, Mohammed; Mcharfi, Mohammed; Hamidi, Mohammed; Bouachrine, Mohammed

    2014-04-24

    Novel ten organic donor-π-acceptor dyes (D-π-A), used for dye-sensitized solar cells (DSSCs), based on thiazolothiazole were studied by density functional theory (DFT) and time dependant DFT (TDDFT) approaches to shed light on how the π-conjugation order influence the performance of the dyes. The electron acceptor (anchoring) group was 2-cyanoacrylic for all dyes whereas the electron-donor unit varied and the influence was investigated. The theoretical results have shown that TDDFT calculations using the Coulomb attenuating method CAM-B3LYP with the polarized split-valence 6-31G (d,p) basis sets and the polarizable continuum model (PCM) were reasonably capable of predicting the excitation energies, the absorption and the emission spectra of the molecules. The LUMO and HOMO energy levels of these dyes can ensure a positive effect on the process of electron injection and dye regeneration. The trend of the calculated HOMO-LUMO gaps nicely compares with the spectral data. Key parameters in close connection with the short-circuit current density (Jsc), including light-harvesting efficiency (LHE), injection driving force (ΔG(inject)) and total reorganization energy (λtotal), were discussed. In addition, the estimated values of open-circuit photovoltage (Voc) for these dyes were presented. The calculated results of these dyes reveal that the D6 dye can be used as a potential sensitizer for TiO2 nanocrystalline solar cells due to its best electronic and optical properties and good photovoltaic parameters.

  13. One-dimensional (1D) ZnO nanowires dye sensitized solar cell.

    PubMed

    Kiliç, Bayram; Wang, Lianzhou; Ozdemir, Orhan; Lu, Max; Tüzemen, Sebahattin

    2013-01-01

    High ordered one-dimensional (1D) Zinc oxide (ZnO) nanowires were grown on FTO substrate by using the hydrothermal method. Nanowires structures were used as the wide band-gap semiconducting photo-electrode in dye sensitized solar cell (DSSCs). Solar cell made from ZnO nanowire at 50 nm radius and several tens micron lengths showed high solar conversion efficiency (eta) of 2.1% and incident photon current efficiency (IPCE) 35% using nanowire/N719 dye/I-/I3- electrolyte. We also compared Ru N719 dye and N3 dye on ZnO nanowire against each other in respect to solar conversion efficiency and IPCE measurements. In the case of the N3 dye on ZnO nanowire conversion efficiency (eta) of 1.32% and IPCE 23% were obtained under an illumination of 100 mW/cm2. It was found that the performance of the Ru N719 dyes was better than about 50% that of the N3 dye in ZnO nanowire dye-sensitized solar cells.

  14. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.

    SciTech Connect

    BOWERMAN,B.; FTHENAKIS,V.

    2001-10-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

  15. To probe the equivalence and opulence of nanocrystal and nanotube based dye-sensitized solar cells

    SciTech Connect

    Jyoti, Divya; Mohan, Devendra

    2016-05-06

    Dye-Sensitized solar cells based on TiO{sub 2} nanocrystal and TiO{sub 2} nanotubes have been fabricated by a simple sol-gel hydrothermal process and their performances have been compared. Current density and voltage (JV) characteristics and incident photon to current conversion efficiency (IPCE) plots have been set as criterion to check which one is better as a photoanode candidate in dye-sensitized solar cell. It has been observed that although open circuit voltage values for both type of cells do not differ much still, nanotube based dye-sensitized solar cells are more successful having an efficiency value of 7.28%.

  16. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.

    SciTech Connect

    BOWERMAN,B.; FTHENAKIS,V.

    2001-10-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

  17. Dyes and Redox Couples with Matched Energy Levels: Elimination of the Dye-Regeneration Energy Loss in Dye-Sensitized Solar Cells.

    PubMed

    Jiang, Dianlu; Darabedian, Narek; Ghazarian, Sevak; Hao, Yuanqiang; Zhgamadze, Maxim; Majaryan, Natalie; Shen, Rujuan; Zhou, Feimeng

    2015-11-16

    In dye-sensitized solar cells (DSSCs), a significant dye-regeneration force (ΔG(reg)(0)≥0.5 eV) is usually required for effective dye regeneration, which results in a major energy loss and limits the energy-conversion efficiency of state-of-art DSSCs. We demonstrate that when dye molecules and redox couples that possess similar conjugated ligands are used, efficient dye regeneration occurs with zero or close-to-zero driving force. By using Ru(dcbpy)(bpy)2(2+) as the dye and Ru(bpy)2(MeIm)2(3+//2+) as the redox couple, a short-circuit current (J(sc)) of 4 mA cm(-2) and an open-circuit voltage (V(oc)) of 0.9 V were obtained with a ΔG(reg)(0) of 0.07 eV. The same was observed for the N3 dye and Ru(bpy)2(SCN)2(1+/0) (ΔG(reg)(0)=0.0 eV), which produced an J(sc) of 2.5 mA cm(-2) and V(oc) of 0.6 V. Charge recombination occurs at pinholes, limiting the performance of the cells. This proof-of-concept study demonstrates that high V(oc) values can be attained by significantly curtailing the dye-regeneration force.

  18. Dielectric nanostructures for broadband light trapping in organic solar cells.

    PubMed

    Raman, Aaswath; Yu, Zongfu; Fan, Shanhui

    2011-09-26

    Organic bulk heterojunction solar cells are a promising candidate for low-cost next-generation photovoltaic systems. However, carrier extraction limitations necessitate thin active layers that sacrifice absorption for internal quantum efficiency or vice versa. Motivated by recent theoretical developments, we show that dielectric wavelength-scale grating structures can produce significant absorption resonances in a realistic organic cell architecture. We numerically demonstrate that 1D, 2D and multi-level ITO-air gratings lying on top of the organic solar cell stack produce a 8-15% increase in photocurrent for a model organic solar cell where PCDTBT:PC(71)BM is the organic semiconductor. Specific to this approach, the active layer itself remains untouched yet receives the benefit of light trapping by nanostructuring the top surface below which it lies. The techniques developed here are broadly applicable to organic semiconductors in general, and enable partial decoupling between active layer thickness and photocurrent generation. © 2011 Optical Society of America

  19. Efficient dye regeneration at low driving force achieved in triphenylamine dye LEG4 and TEMPO redox mediator based dye-sensitized solar cells.

    PubMed

    Yang, Wenxing; Vlachopoulos, Nick; Hao, Yan; Hagfeldt, Anders; Boschloo, Gerrit

    2015-06-28

    Minimizing the driving force required for the regeneration of oxidized dyes using redox mediators in an electrolyte is essential to further improve the open-circuit voltage and efficiency of dye-sensitized solar cells (DSSCs). Appropriate combinations of redox mediators and dye molecules should be explored to achieve this goal. Herein, we present a triphenylamine dye, LEG4, in combination with a TEMPO-based electrolyte in acetonitrile (E(0) = 0.89 V vs. NHE), reaching an efficiency of up to 5.4% under one sun illumination and 40% performance improvement compared to the previously and widely used indoline dye D149. The origin of this improvement was found to be the increased dye regeneration efficiency of LEG4 using the TEMPO redox mediator, which regenerated more than 80% of the oxidized dye with a driving force of only ∼0.2 eV. Detailed mechanistic studies further revealed that in addition to electron recombination to oxidized dyes, recombination of electrons from the conducting substrate and the mesoporous TiO2 film to the TEMPO(+) redox species in the electrolyte accounts for the reduced short circuit current, compared to the state-of-the-art cobalt tris(bipyridine) electrolyte system. The diffusion length of the TEMPO-electrolyte based DSSCs was determined to be ∼0.5 μm, which is smaller than the ∼2.8 μm found for cobalt-electrolyte based DSSCs. These results show the advantages of using LEG4 as a sensitizer, compared to previously record indoline dyes, in combination with a TEMPO-based electrolyte. The low driving force for efficient dye regeneration presented by these results shows the potential to further improve the power conversion efficiency (PCE) of DSSCs by utilizing redox couples and dyes with a minimal need of driving force for high regeneration yields.

  20. Mesoporous multi-shelled ZnO microspheres for the scattering layer of dye sensitized solar cell with a high efficiency

    NASA Astrophysics Data System (ADS)

    Xia, Weiwei; Mei, Chao; Zeng, Xianghua; Chang, Shuai; Wu, Guoqing; Shen, Xiaoshuang

    2016-03-01

    Both light scattering and dye adsorbing are important for the power conversion efficiency PCE performance of dye sensitized solar cell (DSSC). Nanostructured scattering layers with a large specific surface area are regarded as an efficient way to improve the PCE by increasing dye adsorbing, but excess adsorbed dye will hinder light scattering and light penetration. Thus, how to balance the dye adsorbing and light penetration is a key problem to improve the PCE performance. Here, multiple-shelled ZnO microspheres with a mesoporous surface are fabricated by a hydrothermal method and are used as scattering layers on the TiO2 photoanode of the DSSC in the presence of N719 dye and iodine-based electrolyte, and the results reveal that the DSSCs based on triple shelled ZnO microsphere with a mesoporous surface exhibit an enhanced PCE of 7.66%, which is 13.0% higher than those without the scattering layers (6.78%), indicating that multiple-shelled microspheres with a mesoporous surface can ensure enough light scattering between the shells, and a favorable concentration of the adsorbed dye can improve the light penetration. These results may provide a promising pathway to obtain the high efficient DSSCs.

  1. Mesoporous multi-shelled ZnO microspheres for the scattering layer of dye sensitized solar cell with a high efficiency

    SciTech Connect

    Xia, Weiwei; Mei, Chao; Zeng, Xianghua Wu, Guoqing; Shen, Xiaoshuang; Chang, Shuai

    2016-03-14

    Both light scattering and dye adsorbing are important for the power conversion efficiency PCE performance of dye sensitized solar cell (DSSC). Nanostructured scattering layers with a large specific surface area are regarded as an efficient way to improve the PCE by increasing dye adsorbing, but excess adsorbed dye will hinder light scattering and light penetration. Thus, how to balance the dye adsorbing and light penetration is a key problem to improve the PCE performance. Here, multiple-shelled ZnO microspheres with a mesoporous surface are fabricated by a hydrothermal method and are used as scattering layers on the TiO{sub 2} photoanode of the DSSC in the presence of N719 dye and iodine–based electrolyte, and the results reveal that the DSSCs based on triple shelled ZnO microsphere with a mesoporous surface exhibit an enhanced PCE of 7.66%, which is 13.0% higher than those without the scattering layers (6.78%), indicating that multiple-shelled microspheres with a mesoporous surface can ensure enough light scattering between the shells, and a favorable concentration of the adsorbed dye can improve the light penetration. These results may provide a promising pathway to obtain the high efficient DSSCs.

  2. Infiltration of polymer hole-conductor into mesoporous titania structures for solid-state dye-sensitized solar cells.

    PubMed

    Rawolle, Monika; Sarkar, Kuhu; Niedermeier, Martin A; Schindler, Markus; Lellig, Philipp; Gutmann, Jochen S; Moulin, Jean-François; Haese-Seiller, Martin; Wochnik, Angela S; Scheu, Christina; Müller-Buschbaum, Peter

    2013-02-01

    The degree of filling of titania nanostructures with a solid hole-conducting material is important for the performance of solid-state dye-sensitized solar cells (ssDSSCs). Different ways to infiltrate the hole-conducting polymer poly(3-hexylthiophene) (P3HT) into titania structures, both granular structures as they are already applied commercially and tailored sponge nanostructures, are investigated. The solar cell performance is compared to the morphology determined with scanning electron microscopy (SEM) and time-of-flight grazing incidence small-angle neutron scattering (TOF-GISANS). The granular titania structure, commonly used for ssDSSCs, shows a large distribution of particle and pore sizes, with porosities in the range from 41 to 67%, including even dense parts without pores. In contrast, the tailored sponge nanostructure has well-defined pore sizes of 25 nm with an all-over porosity of 54%. Filling of the titania structures with P3HT by solution casting results in a mesoscopic P3HT overlayer and consequently a bad solar cell performance, even though a filling ratio of 67% is observed. For the infiltration by repeated spin coating, only 57% pore filling is achieved, whereas filling by soaking in the solvent with subsequent spin coating yields filling as high as 84% in the case of the tailored titania sponge structures. The granular titania structure is filled less completely than the well-defined porous structures. The solar cell performance is increased with an increasing filling ratio for these two ways of infiltration. Therefore, filling by soaking in the solvent with subsequent spin coating is proposed.

  3. Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye- and quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Soo Kang, Jin; Park, Min-Ah; Kim, Jae-Yup; Ha Park, Sun; Young Chung, Dong; Yu, Seung-Ho; Kim, Jin; Park, Jongwoo; Choi, Jung-Woo; Jae Lee, Kyung; Jeong, Juwon; Jae Ko, Min; Ahn, Kwang-Soon; Sung, Yung-Eun

    2015-05-01

    Nickel nitride electrodes were prepared by reactive sputtering of nickel under a N2 atmosphere at room temperature for application in mesoscopic dye- or quantum dot- sensitized solar cells. This facile and reliable method led to the formation of a Ni2N film with a cauliflower-like nanostructure and tetrahedral crystal lattice. The prepared nickel nitride electrodes exhibited an excellent chemical stability toward both iodide and polysulfide redox electrolytes. Compared to conventional Pt electrodes, the nickel nitride electrodes showed an inferior electrocatalytic activity for the iodide redox electrolyte; however, it displayed a considerably superior electrocatalytic activity for the polysulfide redox electrolyte. As a result, compared to dye-sensitized solar cells (DSCs), with a conversion efficiency (η) = 7.62%, and CdSe-based quantum dot-sensitized solar cells (QDSCs, η = 2.01%) employing Pt counter electrodes (CEs), the nickel nitride CEs exhibited a lower conversion efficiency (η = 3.75%) when applied to DSCs, but an enhanced conversion efficiency (η = 2.80%) when applied to CdSe-based QDSCs.

  4. Electrochemical preparation of hematite nanostructured films for solar hydrogen production

    NASA Astrophysics Data System (ADS)

    Kazemi, N.; Maghsoudipour, A.; Ebadzadeh, T.

    2012-10-01

    Photoelectrochemical water splitting is a clean and promising technique for using a renewable source of energy, i.e., solar energy, to produce hydrogen. In this work electrochemical formation of iron oxyhydroxide and its conversion to hematite (α- Fe2O3) through thermal treatment have been studied. Oxyhydroxide iron compounds have been prepared onto SnO2/F covered glass substrate by potential cycling with two different potential sweep rate values; then calcined at 520 °C in air to obtain α-Fe2O3 nanostrutured films for their implementation as photoanode in a photoelectrochemical cell. X-ray diffraction analysis allowed finding that iron oxides films have nanocrystalline character. Scanning electron microscopy revealed that films have nanostructured morphology. The obtained results are discussed considering the influence of potential sweep rate employed during the preparation of iron oxyhydroxide film on optical, structural and morphological properties of hematite nanostructured films. Results show that films have acceptable characteristics as photoanode in a photoelectrochemical cell for hydrogen generation from water.

  5. Identifying champion nanostructures for solar water-splitting.

    PubMed

    Warren, Scott C; Voïtchovsky, Kislon; Dotan, Hen; Leroy, Celine M; Cornuz, Maurin; Stellacci, Francesco; Hébert, Cécile; Rothschild, Avner; Grätzel, Michael

    2013-09-01

    Charge transport in nanoparticle-based materials underlies many emerging energy-conversion technologies, yet assessing the impact of nanometre-scale structure on charge transport across micrometre-scale distances remains a challenge. Here we develop an approach for correlating the spatial distribution of crystalline and current-carrying domains in entire nanoparticle aggregates. We apply this approach to nanoparticle-based α-Fe₂O₃ electrodes that are of interest in solar-to-hydrogen energy conversion. In correlating structure and charge transport with nanometre resolution across micrometre-scale distances, we have identified the existence of champion nanoparticle aggregates that are most responsible for the high photoelectrochemical activity of the present electrodes. Indeed, when electrodes are fabricated with a high proportion of these champion nanostructures, the electrodes achieve the highest photocurrent of any metal oxide photoanode for photoelectrochemical water-splitting under 100 mW cm(-2) air mass 1.5 global sunlight.

  6. Broadband energy transfer to sensitizing dyes by mobile quantum dot mediators in solar cells

    PubMed Central

    Adhyaksa, Gede Widia Pratama; Lee, Ga In; Baek, Se-Woong; Lee, Jung-Yong; Kang, Jeung Ku

    2013-01-01

    The efficiency of solar cells depends on absorption intensity of the photon collectors. Herein, mobile quantum dots (QDs) functionalized with thiol ligands in electrolyte are utilized into dye–sensitized solar cells. The QDs serve as mediators to receive and re–transmit energy to sensitized dyes, thus amplifying photon collection of sensitizing dyes in the visible range and enabling up–conversion of low-energy photons to higher-energy photons for dye absorption. The cell efficiency is boosted by dispersing QDs in electrolyte, thereby obviating the need for light scattering1 or plasmonic2 structures. Furthermore, optical spectroscopy and external quantum efficiency data reveal that resonance energy transfer due to the overlap between QD emission and dye absorption spectra becomes dominant when the QD bandgap is higher than the first excitonic peak of the dye, while co–sensitization resulting in a fast reduction of oxidized dyes is pronounced in the case of lower QD band gaps. PMID:24048384

  7. High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers

    NASA Astrophysics Data System (ADS)

    Sönmezoğlu, Savaş; Akyürek, Cafer; Akin, Seçkin

    2012-10-01

    A new and promising dye-sensitized solar cell (DSSC) bilayer design was developed using an Fe2+/Fe3+ (ferrocene) liquid electrolyte and natural dyes extracted from Hypericum perforatum, Rubia tinctorum L. and Reseda luteola. The photovoltaic parameters controlling the device performance were then investigated. A DSSC based on quercetin dye displayed the most efficient solar to electricity conversion efficiency compared with other dyes with a maximum η value of 2.17%. Maximum overall conversion efficiencies under simulated sunlight that was comparable to natural photosynthesis were increased by 15%. The identification of appropriate additives for improving VOC without causing dye degradation may result in further enhancement of cell performance, making the practical application of such systems more suitable for achieving economically viable solar energy devices.

  8. Anatase TiO2 Nanoparticles with Exposed {001} Facets for Efficient Dye-Sensitized Solar Cells

    PubMed Central

    Chu, Liang; Qin, Zhengfei; Yang, Jianping; Li, Xing’ao

    2015-01-01

    Anatase TiO2 nanoparticles with exposed {001} facets were synthesized from Ti powder via a sequential hydrothermal reaction process. At the first-step hydrothermal reaction, H-titanate nanowires were obtained in NaOH solution with Ti powder, and at second-step hydrothermal reaction, anatase TiO2 nanoparticles with exposed {001} facets were formed in NH4F solution. If the second-step hydrothermal reaction was carried out in pure water, the H-titanate nanowires were decomposed into random shape anatase-TiO2 nanostructures, as well as few impurity of H2Ti8O17 phase and rutile TiO2 phase. Then, the as-prepared TiO2 nanostructures synthesized in NH4F solution and pure water were applied to the photoanodes of dye-sensitized solar cells (DSSCs), which exhibited power conversion efficiency (PCE) of 7.06% (VOC of 0.756 V, JSC of 14.80 mA/cm2, FF of 0.631) and 3.47% (VOC of 0.764 V, JSC of 6.86 mA/cm2, FF of 0.662), respectively. The outstanding performance of DSSCs based on anatase TiO2 nanoparticles with exposed {001} facets was attributed to the high activity and large special surface area for excellent capacity of dye adsorption. PMID:26190140

  9. Electrodeposited ZnO nanowires as photoelectrodes in solid-state organic dye-sensitized solar cells.

    PubMed

    Muguerra, Hervé; Berthoux, Gaëlle; Yahya, Wan Zaireen Nisa; Kervella, Yann; Ivanova, Valentina; Bouclé, Johann; Demadrille, Renaud

    2014-04-28

    A new approach for developing solid-state dye-sensitised solar cells (DSSCs) on glass/ITO and plastic substrates (PEN/ITO) is presented in this manuscript. A two step electrodeposition technique has been employed to realize the ZnO photoelectrodes. First a ZnO thin film is deposited on the ITO substrate and subsequently on this buffer layer 650 nm long ZnO nanowires are grown. The different nanostructured electrodes are crystallized and show a transparency close to 80% in the visible spectral range. The electrodes are then sensitized with a new purely organic dye, whose synthesis is presented here, which reveals a wide absorption spectrum and a high molar extinction coefficient. Finally, the sensitized electrodes were employed for the fabrication of liquid and solid-state DSSCs, using, respectively, a liquid iodine/iodide electrolyte and the spiro-OMeTAD hole transporter. These devices represent the first solid-state DSSCs fabricated using electrodeposited zinc oxide nanowires. Their power conversion efficiency is still limited, respectively, 0.18% and 0.03% under standard AM 1.5G sunlight (100 mW cm(-2)), nevertheless, these results prove the interest in this low-temperature deposition method for the realization of nanostructured electrodes on rigid and flexible substrates, and open up new perspectives for the development of solid state DSSCs on plastic substrates.

  10. Anatase TiO2 Nanoparticles with Exposed {001} Facets for Efficient Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Chu, Liang; Qin, Zhengfei; Yang, Jianping; Li, Xing'Ao

    2015-07-01

    Anatase TiO2 nanoparticles with exposed {001} facets were synthesized from Ti powder via a sequential hydrothermal reaction process. At the first-step hydrothermal reaction, H-titanate nanowires were obtained in NaOH solution with Ti powder, and at second-step hydrothermal reaction, anatase TiO2 nanoparticles with exposed {001} facets were formed in NH4F solution. If the second-step hydrothermal reaction was carried out in pure water, the H-titanate nanowires were decomposed into random shape anatase-TiO2 nanostructures, as well as few impurity of H2Ti8O17 phase and rutile TiO2 phase. Then, the as-prepared TiO2 nanostructures synthesized in NH4F solution and pure water were applied to the photoanodes of dye-sensitized solar cells (DSSCs), which exhibited power conversion efficiency (PCE) of 7.06% (VOC of 0.756 V, JSC of 14.80 mA/cm2, FF of 0.631) and 3.47% (VOC of 0.764 V, JSC of 6.86 mA/cm2, FF of 0.662), respectively. The outstanding performance of DSSCs based on anatase TiO2 nanoparticles with exposed {001} facets was attributed to the high activity and large special surface area for excellent capacity of dye adsorption.

  11. Visible to near infra red absorption in natural dye (Mondo Grass Berry) for Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Pitigala, Duleepa; Desilva, L. A. A.; Perera, A. G. U.

    2012-03-01

    The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Research on development of artificial dyes for broadening the response is important in finding a solution. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2were observed under a simulated lamp equivalent to 1 sun illumination. The broad spectral response from 400 nm to 750 nm was also observed for the Mondo Grass dye compared to other natural dyes consists of anthocyanins or tannins.

  12. Modulation of π-spacer of carbazole-carbazole based organic dyes toward high efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chitpakdee, Chirawat; Jungsuttiwong, Siriporn; Sudyoadsuk, Taweesak; Promarak, Vinich; Kungwan, Nawee; Namuangruk, Supawadee

    2017-03-01

    The effects of type and position of π-linker in carbazole-carbazole based dyes on their performance in dye-sensitized solar cells (DSSCs) were investigated by DFT and TDDFT methods. The calculated electronic energy level, electron density composition, charge injection and charge recombination properties were compared with those of the high performance CCT3A dye synthesized recently. It is found that that mixing a benzothiadizole (B) unit with two thiophene (T) units in the π-spacer can greatly shift absorption wavelength to near infrared region and enhance the light harvesting efficiency (LHE) resulting in increasing of short-circuit current density (Jsc), whereas a thienothiophene unit does not affect those properties. However, a B should be not directly connected to the anchoring group of the dye because it brings electrolyte to the TiO2 surface which may increase charge recombination rate and consequently decrease open circuit voltage (Voc). This work shows how type and position of the π-linker affect the performance of DSSCs, and how to modulate those properties. We predicted that the designed dye derived from insertion of the B unit in between the two T units would have higher performance than CCT3A dye. The insight understanding from this study is useful for further design of higher performance dyes by molecular engineering.

  13. A Study on the Efficiency Improvement of Dye-Sensitized Solar Cell (DSSC) by Repeated Dye Coating.

    PubMed

    Seo, Young Ho; Choi, Eun Chang; Hong, Byungyou

    2015-10-01

    Dye-sensitized solar cell (DSSC) is being extensively investigated as the next generation energy source. Despite of the attractive features like simple fabrication process and its economic efficiency, there are some problems such as low efficiency, long fabrication time and low long-term stability. Conventionally, the dye adsorption on TiO2 photo-electrode film needs long time in the solvent with low concentration of dye to get the high efficiency. In this work, the dye coating process was considerably shortened, albeit plenty of dye was used comparing with the conventional way. Our needs were met for the best result in our working environment and the relevant conditions to our work were obtained, which were the coating temperature of 70 °C, the dye concentration of 10 mM and the coating time of 3 min. And this coating process was successively repeated several times to maximize the dye adsorption and to improve the cell efficiency. Therefore, the efficiency increased by 13% in the proper condition.

  14. On the performance of ruthenium dyes in dye sensitized solar cells: a free cluster approach based on theoretical indexes.

    PubMed

    Barrera, M; Crivelli, I; Loeb, B

    2016-05-01

    The performance of ruthenium dye sensitized solar cells (DSSC) with different types of ligand was studied by means of a theoretical model where the ruthenium complex is bound to two [Ti(OH)3](+) units, instead of the more usual cluster TiO2 model. Electron injection is proposed to proceed from a thermalized (3)MLCT state rather than from higher vibrational excited states. The efficiency of the dye linked to the two [Ti(OH)3](+) units was determined in terms of a global index (ξ), calculated as the product of three theoretical indexes (FI) built from the results of time-dependent density functional theory (TDDFT) calculations. The index considers the harvested and delivered energy (F1), the charge transferred to the semiconductor (F2), and dye regeneration (F3). The results show that this set of parameters is unique for each dye, and allows the comparative evaluation of the performance of a series of dyes, with a different ancillary ligand at each stage of the cell operation. The method provides insights that can help explain the improved performance of N3 and black dyes compared to other dyes.

  15. Modulation of π-spacer of carbazole-carbazole based organic dyes toward high efficient dye-sensitized solar cells.

    PubMed

    Chitpakdee, Chirawat; Jungsuttiwong, Siriporn; Sudyoadsuk, Taweesak; Promarak, Vinich; Kungwan, Nawee; Namuangruk, Supawadee

    2017-03-05

    The effects of type and position of π-linker in carbazole-carbazole based dyes on their performance in dye-sensitized solar cells (DSSCs) were investigated by DFT and TDDFT methods. The calculated electronic energy level, electron density composition, charge injection and charge recombination properties were compared with those of the high performance CCT3A dye synthesized recently. It is found that that mixing a benzothiadizole (B) unit with two thiophene (T) units in the π-spacer can greatly shift absorption wavelength to near infrared region and enhance the light harvesting efficiency (LHE) resulting in increasing of short-circuit current density (Jsc), whereas a thienothiophene unit does not affect those properties. However, a B should be not directly connected to the anchoring group of the dye because it brings electrolyte to the TiO2 surface which may increase charge recombination rate and consequently decrease open circuit voltage (Voc). This work shows how type and position of the π-linker affect the performance of DSSCs, and how to modulate those properties. We predicted that the designed dye derived from insertion of the B unit in between the two T units would have higher performance than CCT3A dye. The insight understanding from this study is useful for further design of higher performance dyes by molecular engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Computational design of small phenothiazine dyes for dye-sensitized solar cells by functionalizations affecting the thiophene unit.

    PubMed

    Tu, Wei Han; Tan, Yi Yin; Rege, Omkar; Manzhos, Sergei

    2015-04-01

    We present a computational density functional theory study of the potential to improve the solar absorbance of small organic dyes featuring a phenothiazine donor and an acceptor moiety that combines a thiophene unit and a cyanoacrylic group. We consider different conjugation orders and functional groups on and around the thiophene unit, including electron-donating and electron-withdrawing moieties (H, F, CH3, CF3, and CN). We predict that by combining change of conjugation order and functionalization with electron withdrawing CN groups, it must be possible to decrease the excitation energy by up to 60 % vs. the parent dye (which would correspond to a redshift of the absorption peak maximum from 450 nm to 726 nm), effectively enabling red light absorption with small dyes. The contraction of the band gap is mostly due to the stabilization of the LUMO (by up to 1.8 eV), so that-in spite of the kinetic redundancy of the parent dye with respect to the conduction-band minimum of TiO2-care must be taken to ensure efficient injection when using the dyes in dye-sensitized solar cells. By studying 50 dyes, of which 44 are new dyes that are studied for the first time in this work, we identify parameters (such as charges, dihedral angles between donor and acceptor groups, bond length alternation) which can serve as predictors of the band gap. We find that bond length alternation or dihedral angles are not good predictors, while the charge on the thiophene unit is.

  17. Microscopic observation of dye molecules for solar cells on a titania surface

    NASA Astrophysics Data System (ADS)

    Koshiya, Shogo; Yamashita, Shunsuke; Kimoto, Koji

    2016-04-01

    The lateral distribution and coverage of Ru-based dye molecules, which are used for dye-sensitized solar cells (DSCs), were directly examined on a titania surface using high-resolution scanning transmission electron microscopy (STEM). The clean surface of a free-standing titania nanosheet was first confirmed with atomic resolution, and then, the nanosheet was used as a substrate. A single dye molecule on the titania nanosheet was visualized for the first time. The quantitative STEM images revealed an inhomogeneous dye-molecule distribution at the early stage of its absorption, i.e., the aggregation of the dye molecules. The majority of the titania surface was not covered by dye molecules, suggesting that optimization of the dye molecule distribution could yield further improvement of the DSC conversion efficiencies.

  18. Anthocyanin modified triphenylamine based organic sensitizer for dye sensitized solar cells (DSSC) - A theoretical approach

    NASA Astrophysics Data System (ADS)

    Pounraj, P.; Mohankumar, V.; Pandian, Muthu Senthil; Ramasamy, P.

    2017-05-01

    Three triphenylamine based dyes (Dye 1, 2 & 3) and three anthocyanin modified triphenylamine based dyes (Dye 4, 5 &6) are designed and the geometry, electronic structure and absorption spectra of newly designed dyes were investigated by density functional theory (DFT) and time dependent density functional theory (TD-DFT) with the Becke 3-Parameter-Lee-Yang-Parr (B3LYP) functional, where the 6-311++G (d, p) basis set was employed. All calculations were performed using the Gaussian 09 software package. The lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy level of these dyes could ensure the positive effect on the process of electron injection and dye regeneration. The LUMOs are just above the conduction band of TiO2 and their HOMOs are under the reduction potential energy of the electrolytes (I-/I3-) which can facilitate electron transfer from the excited dye to TiO2 and charge regeneration process after photo oxidation respectively. The simulated absorption spectrum of dyes matches with solar spectrum. The simulated absorption spectrum of dyes shows better absorption. The calculated quantum mechanical results shows that among all six dyes, the "dye 6" can be used as potential sensitizer for DSSC.

  19. Dye-sensitized solar cells based on multichromophoric supramolecular light-harvesting materials.

    PubMed

    Panda, Dillip K; Goodson, Flynt S; Ray, Shuvasree; Saha, Sourav

    2014-05-25

    Multichromophoric dye-sensitized solar cells (DSSCs) comprised of a supramolecular zinc-phthalocyanineperyleneimide (ZnPc···PMI) dyad convert light to electrical energy with much higher power conversion efficiency (PCE = 2.3%) and incident-photon-to-current-efficiency (IPCE = ca. 40%) than the devices made of individual dyes.

  20. Iodine/iodide-free dye-sensitized solar cells.

    PubMed

    Yanagida, Shozo; Yu, Youhai; Manseki, Kazuhiro

    2009-11-17

    Dye-sensitized solar cells (DSSCs) are built from nanocrystalline anatase TiO(2) with a 101 crystal face (nc-TiO(2)) onto which a dye is absorbed, ruthenium complex sensitizers, fluid I(-)/I(3)(-) redox couples with electrolytes, and a Pt-coated counter electrode. DSSCs have now reached efficiencies as high as 11%, and G24 Innovation (Cardiff, U.K.) is currently manufacturing them for commercial use. These devices offer several distinct advantages. On the basis of the electron lifetime and diffusion coefficient in the nc-TiO(2) layer, DSSCs maintain a diffusion length on the order of several micrometers when the dyed-nc-TiO(2) porous layer is covered by redox electrolytes of lithium and/or imidazolium iodide and their polyiodide salts. The fluid iodide/iodine (I(-)/I(3)(-)) redox electrolytes can infiltrate deep inside the intertwined nc-TiO(2) layers, promoting the mobility of the nc-TiO(2) layers and serving as a hole-transport material of DSSCs. As a result, these materials eventually give a respectable photovoltaic performance. On the other hand, fluid I(-)/I(3)(-) redox shuttles have certain disadvantages: reduced performance control and long-term stability and incompatibility with some metallic component materials. The I(-)/I(3)(-) redox shuttle shows a significant loss in short circuit current density and a slight loss in open circuit voltage, particularly in highly viscous electrolyte-based DSSC systems. Iodine can also act as an oxidizing agent, corroding metals, such as the grid metal Ag and the Pt mediator on the cathode, especially in the presence of water and oxygen. In addition, the electrolytes (I(-)/I(3)(-)) can absorb visible light (lambda = approximately 430 nm), leading to photocurrent loss in the DSSC. Therefore, the introduction of iodide/iodine-free electrolytes or hole-transport materials (HTMs) could lead to cost-effective alternatives to TiO(2) DSSCs. In this Account, we discuss the iodide/iodine-free redox couple as a substitute for the

  1. Energy storage capability of the dye sensitized solar cells via utilization of highly porous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Rahimi, Fatemeh; Takshi, Arash

    2016-09-01

    Dye sensitized solar cells (DSSCs) have shown promising results in the field of renewable energy owing to their low cost and portable features. In practical applications, their harvested energy could be stored in a supercapacitor once it exceeds the regular consumption. Various methods of manipulation of the active electrode have been examined to facilitate the energy storage of the system, whereas the counter electrode has always been known for its catalytic functionality and its contribution to the capacitive response of the device left a well-oriented study to be desired. In this work, the substitution of the platinum electrode with a specific porous electrode resulted in a supercapacitive behavior of the device. The photoactive electrode was fabricated using zinc oxide nanowires (ZnO) grown on a conductive transparent substrate with hydrothermal deposition method. The electrode was used to make a standard DSSC using a ruthenium dye, iodide/triiodide standard redox electrolyte, and a platinum counter electrode. The cyclic voltammetry (CV) study of the device showed a low capacitance with 350 mV open circuit voltage. Replacing the platinum counter electrode with a particularly designed porous paper-based carbon nanotube electrode resulted in a considerable difference in the CV response. A capacitive behavior was observed due to the large surface area of the counter electrode and the ZnO nanostructures on the photoactive electrode. Due to the large capacitance and relatively small photocurrent, the change in the open circuit voltage was limited. However, enhancement of the photocurrent could improve both the energy harvesting and charge storage in the device.

  2. ZnO nanosheets decorated with CdSe and TiO2 for the architecture of dye-sensitized solar cells.

    PubMed

    Kim, Young Tae; Park, Mi Yeong; Choi, Kang Ho; Tai, Wei Sheng; Shim, Won Hyun; Park, Sun-Young; Kang, Jae-Wook; Lee, Kyu Hwan; Jeong, Yongsoo; Kim, Young Dok; Lim, Dong Chan

    2011-03-01

    Pure and TiO2- and CdSe-deposited ZnO nanosheets aligned vertically to the surface of ITO (Indium tin oxide) are prepared using electrodeposition, which is used for building blocks of dye sensitized solar cell. A significant improvement in the photovoltaic efficiency can be obtained by depositing TiO2 or CdSe on ZnO. Photoluminescence spectra show that the TiO2 and CdSe nanostructures suppress the recombination of the electron-hole pair of ZnO. We suggest that the interface charge transfer at TiO2-ZnO and CdSe-ZnO should be responsible for the suppression of the electron-hole pair recombination and enhanced solar cell efficiency by TiO2 and CdSe nanostructures.

  3. Pigments for natural dye-sensitized solar cells from in vitro grown shoot cultures

    NASA Astrophysics Data System (ADS)

    Di Bari, Chiara; Forni, Cinzia; Di Carlo, Aldo; Barrajón-Catalán, Enrique; Micol, Vicente; Teoli, Federico; Nota, Paolo; Matteocci, Fabio; Frattarelli, Andrea; Caboni, Emilia; Lucioli, Simona

    2017-04-01

    In vitro grown shoots cultures (Prunus salicina × Prunus persica), elicited by methyl jasmonate (MJ), are reported here for the first time to prepare a natural dye for dye-sensitized solar cells (DSSC). Redox properties of the dye, its photostability, and light absorption properties suggested it as a candidate as natural photosensitizers for TiO2 photoelectrodes. Redox properties of the dye influence the DSSC production of photocurrent, thus three antioxidant assays were performed in order to characterize the antioxidant potential of this dye. The dye exhibited a high antioxidant activity in all the assays performed. Photostability assay revealed that the dye was quite stable to light. The power conversion efficiency that we obtained (0.53%) was comparable to the data by other authors with anthocyanins-based dyes from in vivo grown plants. Finally, we compared the dye with the partially purified one as photosensitizer in DSSC. The results indicated that the raw pigment from in vitro shoot cultures of P. salicina × P. persica elicited with MJ can be proposed without the needing of any other chemicals, thermal or purification process, or pH adjustments, as a dye for natural sensitized solar cells.

  4. Modified triphenylamine-dicyanovinyl-based donor-acceptor dyes with enhanced power conversion efficiency of p-type dye-sensitized solar cells.

    PubMed

    Zhu, Linna; Yang, Hongbin; Zhong, Cheng; Li, Chang Ming

    2012-12-01

    To dye for: Two new dyes are synthesized by structural modifications of one of the best dyes for NiO p-type dye-sensitized solar cells, which is based on a triphenylamine-dicyanovinyl donor-acceptor system. An additional thiophene unit near the anchoring group can greatly retard charge recombination while enhancing the absorption coefficient to significantly improve the photoconversion efficiency by 50%.

  5. Effect of unmodulated laser light on the nanostructure of a thin solid AD-1 azo dye film

    SciTech Connect

    Dubrovkin, A M; Ezhov, A A; Kozenkov, V M; Magnitskiy, Sergey A; Nagorskiy, Nikolay M; Panov, Vladimir I

    2010-06-23

    Exposure to light uniform in intensity and polarisation causes marked changes in the surface topography of a thin (320 nm) nanostructured AD-1 low molecular weight azo dye film. Linearly polarised incoherent light with a wavelength of 470 nm and intensity of 1 mW cm{sup -2} produces numerous teardrop-shaped hillocks of the order of 200 nm in radius over most of the film surface. (letters)

  6. Intensity and absorbed-power distribution in a cylindrical solar-pumped dye laser

    NASA Technical Reports Server (NTRS)

    Williams, M. D.

    1984-01-01

    The internal intensity and absorbed-power distribution of a simplified hypothetical dye laser of cylindrical geometry is calculated. Total absorbed power is also calculated and compared with laboratory measurements of lasing-threshold energy deposition in a dye cell to determine the suitability of solar radiation as a pump source or, alternatively, what modifications, if any, are necessary to the hypothetical system for solar pumping.

  7. Highly Efficient Plastic Crystal Ionic Conductors for Solid-state Dye-sensitized Solar Cells

    PubMed Central

    Hwang, Daesub; Kim, Dong Young; Jo, Seong Mu; Armel, Vanessa; MacFarlane, Douglas R.; Kim, Dongho; Jang, Sung-Yeon

    2013-01-01

    We have developed highly efficient, ambient temperature, solid-state ionic conductors (SSICs) for dye-sensitized solar cells (DSSCs) by doping a molecular plastic crystal, succinonitrile (SN), with trialkyl-substituted imidazolium iodide salts. High performance SSICs with enhanced ionic conductivity (2–4 mScm−1) were obtained. High performance solid-state DSSCs with power conversion efficiency of 7.8% were fabricated using our SSICs combined with unique hierarchically nanostructured TiO2 sphere (TiO2-SP) photoelectrodes; these electrodes have significant macroporosity, which assists penetration of the solid electrolyte into the electrode. The performance of our solid-state DSSCs is, to the best of our knowledge, the highest reported thus far for cells using plastic crystal-based SSICs, and is comparable to that of the state-of-the-art DSSCs which use ionic liquid type electrolytes. This report provides a logical strategy for the development of efficient plastic crystal-based SSICs for DSSCs and other electrochemical devices. PMID:24343425

  8. Enhanced charge collection in dye-sensitized solar cells utilizing collector-shell electrodes

    NASA Astrophysics Data System (ADS)

    Xiao, Manda; Huang, Fuzhi; Xiang, Wanchun; Cheng, Yi-Bing; Spiccia, Leone

    2015-03-01

    Nanostructured porous tin-doped indium oxide (ITO) films were prepared by screen printing of an ITO nanoparticle paste onto conducting fluorine-doped tin oxide (FTO) substrates. The ITO films were subsequently coated with thin layers of TiO2 by the hydrolysis of TiCl4 to form the collector-shell photoelectrodes. The morphology of films was analysed by scanning electron microscope (SEM). It was found that a uniform coating of TiO2 was achieved when three or more deposition cycles were applied. Dye-sensitized solar cells were constructed with the collector-shell photoelectrodes using an electrolyte containing the [Co(bpy)3]2+/3+ (bpy = 2,2‧-bipyridine) redox couple and MK-2, an organic sensitizer and efficiencies of 3.3% achieved. Charge transport in cells utilizing the collector-shell electrodes was found to be 2-6 times faster than those utilizing P25-based TiO2 electrodes.

  9. Bio-Inspired electro-photonic structure for organic and dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lopez, Rene

    2011-03-01

    A major challenge in solar cell technology dwells in achieving an efficient absorption of photons with an effective carrier extraction. In all cases, light absorption considerations call for thicker modules while carrier transport would benefit from thinner ones. This dichotomy is a fundamental problem limiting the efficiencies of most photovoltaics. One pathway to overcome this problem is to decouple light absorption from carrier collection. We present solutions to this problem applying bio-inspired nanostructures to two different types of systems: organic photovoltaic (OPV) and dye sensitized solar cells (DSSC). For OPV devices based on poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM), we describe a 2-D photonic crystal geometry that enhances the absorption of polymer-fullerene photonic cells ~ 20 % relative to conventional planar cells. Remarkably, the photonic crystal cell offers the possibility to increase photocurrents by improvements in optical absorption and carrier extraction simultaneously, and particularly through the excitation of photonic resonant modes near the band edge of organic PV materials. We also present an optical method to extract charge transport lengths from device photoactive layers. For DSSCs we introduce a new structural motif for the photoanode in which the traditional random nanoparticle oxide network is replaced by vertically aligned bundles of oxide nanocrystals. We have used a pulsed laser deposition system to ablate titanium oxide targets to obtain the porous and vertically aligned structures for enhanced photoelectrochemical performance. Absorption studies show that in optimized structures for titanium oxide, there is a 1.4 times enhancement of surface area compared to the best sol-gel films, Incident-Photon-Conversion-Efficiency values are better than 3 times thicker sol-gel films, and ~ 92 % Absorbed-Photon-Conversion-Efficiency values have been observed when sensitizing with the N3 dye (Ru(dcbpyH)2

  10. D-π-A dye system containing cyano-benzoic acid as anchoring group for dye-sensitized solar cells.

    PubMed

    Katono, Masataka; Bessho, Takeru; Meng, Sheng; Humphry-Baker, Robin; Rothenberger, Guido; Zakeeruddin, Shaik M; Kaxiras, Efthimios; Grätzel, Michael

    2011-12-06

    A D-π-A dye (KM-1) incorporating cyano-benzoic acid as a new acceptor/anchoring group has been synthesized for dye-sensitized solar cells (DSCs) with a high molar extinction coefficient of 66,700 M(-1) cm(-1) at 437 nm. Theoretical calculations show that the hydrogen bond between -CN and surface hydroxyl leads to the most stable configuration on the surface of TiO(2). In addition, the adsorption of the dye on TiO(2) follows a Brunauer-Emmett-Teller (BET) isotherm. Multilayer adsorption of KM-1 on TiO(2) seems to take place particularly at higher dye concentrations. DSC device using KM-1 reached a maximum incident photon-to-current conversion efficiency (IPCE) of 84%, with a solar to electric power conversion efficiency (PCE) of 3.3% at AM1.5 G illumination (100 mW cm(-2)). This new type of anchoring group paves a way to design new dyes that combine good visible light harvesting with strong binding to the metal oxide surface.

  11. Enhancing the efficiency of flexible dye-sensitized solar cells utilizing natural dye extracted from Azadirachta indica

    NASA Astrophysics Data System (ADS)

    Sahare, Sanjay; Veldurthi, Naresh; Singh, Ranbir; Swarnkar, A. K.; Salunkhe, Manauti; Bhave, Tejashree

    2015-10-01

    The natural dye extracted from Azadirechta indica (neem) was used as a sensitizer in flexible dye-sensitized solar cells (DSSCs). The fabricated DSSC exhibited open circuit voltage of 0.538 V with 2.81% power conversion efficiency (η) in back-illuminated mode which is higher than that reported in the literature. In order to understand the characteristics of DSSC, systematic study of solar cell component materials was carried out. Anatase TiO2 (30-40 nm) nanoparticles were synthesized by DC arc plasma method and deposited electrophoretically on a flexible titanium (Ti) substrate. A platinum-coated polyethylene terephthalate (PET) substrate was used as a counter electrode to construct flexible DSSC. The structural and optical behavior of neem-dye sensitized TiO2 thin film has been studied using x-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy and UV-visible spectroscopy. We have observed that the neem dye gives a very good sensitization effect. In addition, the dye has good prospects as a low-cost and environmental friendly alternative to ruthenium-based sensitizers which are normally used in DSSCs.

  12. Hydrothermal synthesis of a crystalline rutile TiO2 nanorod based network for efficient dye-sensitized solar cells.

    PubMed

    Yu, Hua; Pan, Jian; Bai, Yang; Zong, Xu; Li, Xinyong; Wang, Lianzhou

    2013-09-27

    One-dimensional (1D) TiO2 nanostructures are desirable as photoanodes in dye-sensitized solar cells (DSSCs) due to their superior electron-transport capability. However, making use of the DSSC performance of 1D rutile TiO2 photoanodes remains challenging, mainly due to the small surface area and consequently low dye loading. Herein, a new type of photoanode with a three-dimensional (3D) rutile-nanorod-based network structure directly grown on fluorine-doped tin oxide (FTO) substrates was developed by using a facile two-step hydrothermal process. The resultant photoanode possesses oriented rutile nanorod arrays for fast electron transport as the bottom layer and radially packed rutile head-caps with an improved large surface area for efficient dye adsorption. The diffuse reflectance spectra showed that with the radially packed top layer, the light-harvesting efficiency was increased due to an enhanced light-scattering effect. A combination of electrochemical impedance spectroscopy (EIS), dark current, and open-circuit voltage decay (OCVD) analyses confirmed that the electron-recombiantion rate was reduced on formation of the nanorod-based 3D network for fast electron transport. As a resut, a light-to-electricity conversion efficiency of 6.31% was achieved with this photoanode in DSSCs, which is comparable to the best DSSC efficiencies that have been reported to date for 1D rutile TiO2 .

  13. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.

    PubMed

    Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung

    2014-10-28

    Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.

  14. Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells

    SciTech Connect

    Hupp, Joseph T.; Son, Ho-Jin

    2016-01-12

    Dye-sensitized semiconducting metal oxide films for photoanodes, photoanodes incorporating the films and DSCs incorporating the photoanodes are provided. Also provided are methods for making the dye sensitized semiconducting metal oxide films. The methods of making the films are based on the deposition of an encapsulating layer of a semiconducting metal oxide around the molecular anchoring groups of photosensitizing dye molecules adsorbed to a porous film of the semiconducting metal oxide. The encapsulating layer of semiconducting metal oxide is formed in such a way that it is not coated over the chromophores of the adsorbed dye molecules and, therefore, allows the dye molecules to remain electrochemically addressable.

  15. Benzo[a]carbazole-Based Donor-π-Acceptor Type Organic Dyes for Highly Efficient Dye-Sensitized Solar Cells.

    PubMed

    Qian, Xing; Zhu, Yi-Zhou; Chang, Wen-Ying; Song, Jian; Pan, Bin; Lu, Lin; Gao, Huan-Huan; Zheng, Jian-Yu

    2015-05-06

    A novel class of metal-free organic dyes based on benzo[a]carbazole have been designed, synthesized, and used in dye-sensitized solar cells for the first time. These types of dyes consisted of a cyanoacrylic acid moiety as the electron acceptor/anchoring group and different electron-rich spacers such as thiophene (JY21), furan (JY22), and oligothiophene (JY23) as the π-linkers. The photophysical, electrochemical, and photovoltaic properties, as well as theoretical calculations of these dyes were investigated. The photovoltaic performances of these dyes were found to be highly relevant to the π-conjugated linkers. In particular, dye JY23 exhibited a broad IPCE response with a photocurrent signal up to about 740 nm covering the most region of the UV-visible light. A DSSC based on JY23 showed the best photovoltaic performance with a Jsc of 14.8 mA cm(-2), a Voc of 744 mV, and a FF of 0.68, achieving a power conversion efficiency of 7.54% under standard AM 1.5 G irradiation.

  16. Characterizations of natural dye from garcinia mangostana with graphene oxide (GO) as sensitizer in dye-sensitizer solar cells

    NASA Astrophysics Data System (ADS)

    Ismail, Mashasriyah; Ludin, Norasikin Ahmad; Hamid, Norul Hisham; Ibrahim, Mohd Adib; Zulfakar, Mohd Syafiq; Mohamed, Norani Muti; Sopian, Kamaruzzaman

    2017-05-01

    Usage of natural product in improvement of dye-sensitized solar cell (DSSC) have been look upon in research field. There is numerous different type of nature product was used as natural dye but the performance of DSSC with natural dye are low efficiency compare to DSSC with Ruthenium (II) dye due to low anchoring strength between dye molecule with TiO2 surface. This paper is about an experiment DSSC device with sensitizer of Mangosteen with Graphene Oxide as catalyst. The highest device efficiency with graphene oxide (GO) concentration of 0.50 mg/ml obtained in this experiment is 0.40% with short-circuit current density (Jsc) = 1.00 mA/cm2, open circuit voltage (Voc) = 0.61 V and fill factor(FF) = 65.72%. It shows that GO helped to increase device performance by increase the ability of sensitizer absorbed onto TiO2 and adding more passageway for carriers movement between TiO2 surface and dye sensitizer.

  17. Neutral and anionic tetrazole-based ligands in designing novel ruthenium dyes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Guohua; Kaneko, Ryuji; Zhang, Yaohong; Shinozaki, Yoshinao; Sugawa, Kosuke; Islam, Ashraful; Han, Liyuan; Bedja, Idriss; Gupta, Ravindra Kumar; Shen, Qing; Otsuki, Joe

    2016-03-01

    Two novel thiocyanate-free Ru(II) complexes have been synthesized, characterized and evaluated as dyes for dye-sensitized solar cells. Both complexes have two tridentate ligands: one is the tricarboxyterpyridine as an anchoring ligand and the other is one of the two bis(tetrazolyl)pyridine derivatives. One of the bis(tetrazolyl)pyridine ligand coordinates to the Ru(II) ion as a doubly deprotonated tetrazolate anion with a formal charge of -2 to form a neutral complex, which is coded as BTP dye, while the other bis(methyltetrazolyl)pyridine ligand coordinates to the Ru(II) ion as a neutral ligand forming a divalent cationic complex, coded as BMTP dye. Unexpectedly, the oxidation potentials for these two compounds are similar, implying similar electron-donating effects of the anionic tetrazolate ligand and the neutral methyltetrazole ligand to the Ru(II) ion. Despite similar HOMO/LUMO levels, BTP dye performs much better, recording 6.10% efficiency, than BMTP dye for DSSCs. Electrochemical impedance spectroscopy as well as nanosecond transient absorption spectroscopy indicates that the differences in the electron injection and electron recombination processes, which may be the consequences of the difference in the localization of LUMO as suggested by DFT calculations, are the main causes for the differences in performance.

  18. Promising fluorescent dye for solar energy conversion based on a perylene perinone.

    PubMed

    Debije, Michael G; Verbunt, Paul P C; Nadkarni, Pradeep J; Velate, Suresh; Bhaumik, Kankan; Nedumbamana, Sankaran; Rowan, Brenda C; Richards, Bryce S; Hoeks, Theo L

    2011-01-10

    We describe the synthesis of a dye based on a perylene perinone and evaluate its potential as the functional material for use in the luminescent solar concentrator (LSC). The dye extends the absorption wavelength of LSCs using the perylene-based dye Lumogen Red 305 by more than ~50 nm, translating into the collection of potentially 25% more photons at a reasonable fluorescent quantum yield and photostability. When the new perinone is used in a two-waveguide LSC in conjunction with Red 305, the integrated edge emission of the total LSC system may be increased more than 24% when compared to the Red 305 dye alone.

  19. Ultrafast Fabrication of Flexible Dye-Sensitized Solar Cells by Ultrasonic Spray-Coating Technology.

    PubMed

    Han, Hyun-Gyu; Weerasinghe, Hashitha C; Min Kim, Kwang; Soo Kim, Jeong; Cheng, Yi-Bing; Jones, David J; Holmes, Andrew B; Kwon, Tae-Hyuk

    2015-09-30

    This study investigates novel deposition techniques for the preparation of TiO2 electrodes for use in flexible dye-sensitized solar cells. These proposed new methods, namely pre-dye-coating and codeposition ultrasonic spraying, eliminate the conventional need for time-consuming processes such as dye soaking and high-temperature sintering. Power conversion efficiencies of over 4.0% were achieved with electrodes prepared on flexible polymer substrates using this new deposition technology and N719 dye as a sensitizer.

  20. Ultrafast Fabrication of Flexible Dye-Sensitized Solar Cells by Ultrasonic Spray-Coating Technology

    PubMed Central

    Han, Hyun-Gyu; Weerasinghe, Hashitha C.; Min Kim, Kwang; Soo Kim, Jeong; Cheng, Yi-Bing; Jones, David J.; Holmes, Andrew B.; Kwon, Tae-Hyuk

    2015-01-01

    This study investigates novel deposition techniques for the preparation of TiO2 electrodes for use in flexible dye-sensitized solar cells. These proposed new methods, namely pre-dye-coating and codeposition ultrasonic spraying, eliminate the conventional need for time-consuming processes such as dye soaking and high-temperature sintering. Power conversion efficiencies of over 4.0% were achieved with electrodes prepared on flexible polymer substrates using this new deposition technology and N719 dye as a sensitizer. PMID:26420466

  1. Synthesis and characterization of Allium cepa L. as photosensitizer of dye-sensitized solar cell

    SciTech Connect

    Sutikno; Afrian, Noverdi; Supriadi,; Putra, Ngurah Made Dharma

    2016-04-19

    The synthesis and characterization of Allium cepa L. used as natural pigment for natural dye sensitizer of solar cell has successfully done and anthocyanin is extracted. Anthocynin is color pigment of plant which has characteristic absorption spectrum of photon and excites electrons up to pigment molecules. As the anthocyanin absorbed light increases the excited electrons increase as well. The generated current also increases and it leads to the efficiency increase. The energy conversion efficiency of the cells sensitized with dye of Allium cepa L. was 3,045 x 10{sup −4}%. A simple technique was taken to fabricate dye sensitizer solar cell is spincoating.

  2. Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells.

    PubMed

    Hagberg, Daniel P; Marinado, Tannia; Karlsson, Karl Martin; Nonomura, Kazuteru; Qin, Peng; Boschloo, Gerrit; Brinck, Tore; Hagfeldt, Anders; Sun, Licheng

    2007-12-07

    A series of organic chromophores have been synthesized in order to approach optimal energy level composition in the TiO2-dye-iodide/triiodide system in the dye-sensitized solar cells. HOMO and LUMO energy level tuning is achieved by varying the conjugation between the triphenylamine donor and the cyanoacetic acid acceptor. This is supported by spectral and electrochemical experiments and TDDFT calculations. These results show that energetic tuning of the chromophores was successful and fulfilled the thermodynamic criteria for dye-sensitized solar cells, electrical losses depending on the size and orientation of the chromophores were observed.

  3. Synthesis and characterization of Allium cepa L. as photosensitizer of dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Sutikno, Afrian, Noverdi; Supriadi, Putra, Ngurah Made Dharma

    2016-04-01

    The synthesis and characterization of Allium cepa L. used as natural pigment for natural dye sensitizer of solar cell has successfully done and anthocyanin is extracted. Anthocynin is color pigment of plant which has characteristic absorption spectrum of photon and excites electrons up to pigment molecules. As the anthocyanin absorbed light increases the excited electrons increase as well. The generated current also increases and it leads to the efficiency increase. The energy conversion efficiency of the cells sensitized with dye of Allium cepa L. was 3,045 x 10-4%. A simple technique was taken to fabricate dye sensitizer solar cell is spincoating.

  4. Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons

    NASA Astrophysics Data System (ADS)

    Hägglund, Carl; Zäch, Michael; Kasemo, Bengt

    2008-01-01

    An interesting possibility to improve the conversion and cost efficiencies of photovoltaic solar cells is to exploit the large optical cross sections of localized (nanoparticle) surface plasmon resonances (LSPRs). We have investigated this prospect for dye sensitized solar cells. Photoconductivity measurements were performed on flat TiO2 films, sensitized by a combination of dye molecules and arrays of nanofabricated elliptical gold disks. An enhanced dye charge carrier generation rate was found and shown to derive from the LSPR contribution by means of the polarization dependent resonance frequency in the anisotropic, aligned gold disks.

  5. Simulation of solid-state dye solar cells based on organic and Perovskite sensitizers

    NASA Astrophysics Data System (ADS)

    Di Carlo, Aldo; Gentilini, Desireé; Gagliardi, Alessio

    2015-03-01

    In this work we present a multiscale numerical simulation of solid-state Dye and Perovskite Solar Cells where the real morphology of the mesoporous active layer is taken into account. Band alignment and current densities are computed using the drift-diffusion model. In the case of Dye cells, a portion of the real interface is merged between two regions described using the effective medium approximation, casting light on the role of trapped states at the interface between TiO2 / Dye / hole transporting materials. A second case of study is the simulation of Perovskite Solar Cell where the performances of cells based on Alumina and Titania mesoporous layer are compared.

  6. Dye-sensitized solar cells: Atomic scale investigation of interface structure and dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Zhang, Fan; Meng, Sheng

    2014-08-01

    Recent progress in dye-sensitized solar cells (DSC) research is reviewed, focusing on atomic-scale investigations of the interface electronic structures and dynamical processes, including the structure of dye adsorption onto TiO2, ultrafast electron injection, hot-electron injection, multiple-exciton generation, and electron—hole recombination. Advanced experimental techniques and theoretical approaches are briefly summarized, and then progressive achievements in photovoltaic device optimization based on insights from atomic scale investigations are introduced. Finally, some challenges and opportunities for further improvement of dye solar cells are presented.

  7. Organic dyes with intense light absorption especially suitable for application in thin-layer dye-sensitized solar cells.

    PubMed

    Dessì, Alessio; Calamante, Massimo; Mordini, Alessandro; Peruzzini, Maurizio; Sinicropi, Adalgisa; Basosi, Riccardo; Fabrizi de Biani, Fabrizia; Taddei, Maurizio; Colonna, Daniele; Di Carlo, Aldo; Reginato, Gianna; Zani, Lorenzo

    2014-11-21

    Three new thiazolo[5,4-d]thiazole-based organic dyes have been designed and synthesized for employment as DSSC sensitizers. Alternation of the electron poor thiazolothiazole unit with two propylenedioxythiophene (ProDOT) groups ensured very intense light absorption in the visible region (ε up to 9.41 × 10(4) M(-1) cm(-1) in THF solution). The dyes were particularly suitable for application in transparent and opaque thin-layer DSSCs (TiO2 thickness: 5.5-6.5 μm, efficiencies up to 7.71%), thus being good candidates for production of solar cells under simple fabrication conditions.

  8. Phenothiazine-sensitized organic solar cells: effect of dye anchor group positioning on the cell performance.

    PubMed

    Hart, Aaron S; K C, Chandra Bikram; Subbaiyan, Navaneetha K; Karr, Paul A; D'Souza, Francis

    2012-11-01

    Effect of positioning of the cyanoacrylic acid anchoring group on ring periphery of phenothiazine dye on the performance of dye-sensitized solar cells (DSSCs) is reported. Two types of dyes, one having substitution on the C-3 aromatic ring (Type 1) and another through the N-terminal (Type 2), have been synthesized for this purpose. Absorption and fluorescence studies have been performed to visualize the effect of substitution pattern on the spectral coverage and electrochemical studies to monitor the tuning of redox levels. B3LYP/6-31G* studies are performed to visualize the frontier orbital location and their significance in charge injection when surface modified on semiconducting TiO₂. New DSSCs have been built on nanocrystalline TiO₂ according to traditional two-electrode Grätzel solar cell setup with a reference cell based on N719 dye for comparison. The lifetime of the adsorbed phenothiazine dye is found to be quenched significantly upon immobilizing on TiO₂ suggesting charge injection from excited dye to semiconducting TiO₂. The performances of the cells are found to be prominent for solar cells made out of Type 1 dyes compared to Type 2 dyes. This trend has been rationalized on the basis of spectral, electrochemical, computational, and electrochemical impedance spectroscopy results.

  9. Evaluation on over photocurrents measured from unmasked dye-sensitized solar cells

    SciTech Connect

    Lee, Gi-Won; Kim, Donghwan; Ko, Min Jae; Kim, Kyungkon; Park, Nam-Gyu

    2010-03-15

    We have investigated the change in photocurrent density (J{sub SC}) of dye-sensitized solar cell (DSSC) before and after covering an aperture mask on the cell, especially its dependence on solar absorption range in dye. Four different dyes having absorption threshold at 460 nm (P5), 520 nm (TA-St-CA), 680 nm (N719) and 820 nm (N749) are tested. J{sub SC} of the DSSC without mask decreases after mask, where the decreasing rate (triangle J{sub SC} = J{sub SC} (no mask) -J{sub SC} (with mask)/J{sub SC} (no mask)) becomes larger when dye absorption threshold decreases. triangle J{sub SC} at the given TiO{sub 2} film thickness of 10 {mu}m is determined to be about 20%, 15% and 13% for P5, TA-St-CA and N719-N749, respectively, which is reduced to 14% (TA-St-CA), 11.3% (N719) and 10.5% (N749) after increasing the thickness to 20 {mu}m, except for P5 dye remaining unchanged. According to the analysis based on IPCE and photon flux data, the over photocurrents observed for the unmasked dye-sensitized solar cells and their dependence on dye absorption range are found to be attributed to diffuse light leaving the dye-adsorbed TiO{sub 2} active area. (author)

  10. Silicon nanostructures-induced photoelectrochemical solar water splitting for energy applications

    SciTech Connect

    Dadwal, U.; Singh, R.; Ranjan, Neha

    2016-05-23

    We study the photoelectrochemical (PEC) solar water splitting assisted with synthesized nanostructures. Si nanowires decorated with silver dendrite nanostructures have been synthesized using metal assisted wet chemical etching of (100) Si wafer. Etching has been carried out in an aqueous solution consisting of 5M HF and 0.02M AgNO{sub 3}. Investigations showed that such type of semiconductor nanostructures act as efficient working electrodes for the splitting of normal water in PEC method. An enhancement in the photon-to-current conversion efficiency and solar-to-hydrogen evolution was observed for obtaining a practical source of clean and renewable fuel.

  11. Role of 2-D periodic symmetrical nanostructures in improving efficiency of thin film solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jiang, Liyong; Li, Xiangyin

    2016-01-01

    We systematically investigated several different nanostructures in crystalline silicon (c-Si) thin film solar cells and then proposed a brand-new structure with two dimensional (2-D) periodic dielectric cylinders on the top and annular metal columns on bottom surface to enhance the optical harvesting. The periodic symmetrical nanostructures affect the solar cell efficiency due to the grating diffraction effect of dielectric columns and surface plasmon polaritons (SPPs) effect induced by metal nanostructures at the dielectric-metal interface. About 52.1% more optical absorption and 33.3% more power conversion efficiency are obtained, and the maximum short current reaches to 33.24 mA/cm2.

  12. Silicon nanostructures-induced photoelectrochemical solar water splitting for energy applications

    NASA Astrophysics Data System (ADS)

    Dadwal, U.; Ranjan, Neha; Singh, R.

    2016-05-01

    We study the photoelectrochemical (PEC) solar water splitting assisted with synthesized nanostructures. Si nanowires decorated with silver dendrite nanostructures have been synthesized using metal assisted wet chemical etching of (100) Si wafer. Etching has been carried out in an aqueous solution consisting of 5M HF and 0.02M AgNO3. Investigations showed that such type of semiconductor nanostructures act as efficient working electrodes for the splitting of normal water in PEC method. An enhancement in the photon-to-current conversion efficiency and solar-to-hydrogen evolution was observed for obtaining a practical source of clean and renewable fuel.

  13. Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells.

    PubMed

    Choi, Hyunbong; Chen, Wei Ta; Kamat, Prashant V

    2012-05-22

    Neighboring metal nanoparticles influence photovoltaic and photocatalytic behavior of semiconductor nanostructures either through Fermi level equilibration by accepting electrons or inducing localized surface plasmon effects. By employing SiO(2)- and TiO(2)-capped Au nanoparticles we have identified the mechanism with which the performance of dye-sensitized solar cells (DSSC) is influenced by the neighboring metal nanoparticles. The efficiency of an N719 dye-sensitized solar cell (9.3%) increased to 10.2% upon incorporation of 0.7% Au@SiO(2) and to 9.8% upon loading of 0.7% Au@TiO(2) nanoparticles. The plasmonic effect as monitored by introducing Au@SiO(2) in DSSC produces higher photocurrent. However, Au nanoparticles undergo charge equilibration with TiO(2) nanoparticles and shift the apparent Fermi level of the composite to more negative potentials. As a result, Au@TiO(2) nanoparticle-embedded DSSC exhibit higher photovoltage. A better understanding of these two effects is crucial in exploiting the beneficial aspects of metal nanoparticles in photovoltaics.

  14. Fine tuning of fluorene-based dye structures for high-efficiency p-type dye-sensitized solar cells.

    PubMed

    Liu, Zonghao; Li, Wenhui; Topa, Sanjida; Xu, Xiaobao; Zeng, Xianwei; Zhao, Zhixin; Wang, Mingkui; Chen, Wei; Wang, Feng; Cheng, Yi-Bing; He, Hongshan

    2014-07-09

    We report on an experimental study of three organic push-pull dyes (coded as zzx-op1, zzx-op1-2, and zzx-op1-3) featuring one, two, and three fluorene units as spacers between donors and acceptors for p-type dye-sensitized solar cells (p-DSSC). The results show increasing the number of spacer units leads to obvious increases of the absorption intensity between 300 nm and 420 nm, a subtle increase in hole driving force, and almost the same hole injection rate from dyes to NiO nanoparticles. Under optimized conditions, the zzx-op1-2 dye with two fluorene spacer units outperforms other two dyes in p-DSSC. It exhibits an unprecedented photocurrent density of 7.57 mA cm(-2) under full sun illumination (simulated AM 1.5G light illumination, 100 mW cm(-2)) when the I(-)/I3(-) redox couple and commercial NiO nanoparticles were used as an electrolyte and a semiconductor, respectively. The cells exhibited excellent long-term stability. Theoretical calculations, impedance spectroscopy, and transient photovoltage decay measurements reveal that the zzx-op1-2 exhibits lower photocurrent losses, longer hole lifetime, and higher photogenerated hole density than zzx-op1 and zzx-op1-3. A dye packing model was proposed to reveal the impact of dye aggregation on the overall photovoltaic performance. Our results suggest that the structural engineering of organic dyes is important to enhance the photovoltaic performance of p-DSSC.

  15. A versatile chemical conversion synthesis of Cu2S nanotubes and the photovoltaic activities for dye-sensitized solar cell

    PubMed Central

    2014-01-01

    A versatile, low-temperature, and low-cost chemical conversion synthesis has been developed to prepare copper sulfide (Cu2S) nanotubes. The successful chemical conversion from ZnS nanotubes to Cu2S ones profits by the large difference in solubility between ZnS and Cu2S. The morphology, structure, and composition of the yielded products have been examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction measurements. We have further successfully employed the obtained Cu2S nanotubes as counter electrodes in dye-sensitized solar cells. The light-to-electricity conversion results show that the Cu2S nanostructures exhibit high photovoltaic conversion efficiency due to the increased surface area and the good electrocatalytical activity of Cu2S. The present chemical route provides a simple way to synthesize Cu2S nanotubes with a high surface area for nanodevice applications. PMID:25246878

  16. Organic-inorganic hybrid nanostructures for solar cell applications

    NASA Astrophysics Data System (ADS)

    AbdulAlmohsin, Samir M.

    The enticing electro-optical properties of nanostructured materials such as carbon nanotubes, graphene, CdS nanocrystals and ZnO nanowrie bring new vigor into the innovation of photovoltaics. The main purpose of this dissertation is to develop novel nano-structured materials for low cost solar cell applications. Fabrication, characterization, and solar cell application of organic-inorganic hybrid structures are the main focus of this research. Polyaniline (PANI)/multi-walled carbon nanotube (MWNT) composite films were synthesized by an electrochemical polymerization of aniline with airbrushed MWNTs on ITO substrates. It was found that the incorporation of MWNTs in PANI effectively increase the film conductivity with a percolation threshold of 5% of nanotubes in the composite. The solar cell performance strongly depends on the conductivity of the composite films, which can be tuned by adjusting nanotube concentration. A higher conductivity resulted in a better cell performance, resulting from an efficient charge collection. This study indicates that PANI/MWNT composite films with optimized conductivity are potentially useful for low-cost hybrid solar cell applications. CdS nanocrystal-sensitized solar cells (NCSSCs) were investigated by using polyaniline (PANI) as a replacement for conventional platinum counter electrode. The growth time of the nanocrystals significantly affects the solar cell performance. At an optimum growth, the NCSSCs exhibit 0.83% of the conversion efficiency in comparison to 0.13% for the identical cells without CdS nanocrystals. Electrochemical impedance spectroscopy showed that the charge transfer in the solar cells with CdS nanocrystals was improved. The enhanced overall energy conversion efficiency by nanocrystals is attributed to improved light absorption and suppressed recombination rate of interfacial charges at the injection, resulting in significantly improved charge transfer and electron lifetime. In addition, the PANI electrodes

  17. New photosensitizers containing the dipyridoquinoxaline moiety and their use in dye-sensitized solar cells.

    PubMed

    Shahroosvand, Hashem; Rezaei, Shiva; Abbaspour, Saeid

    2015-11-01

    New Ru(II) polypyridyl complexes containing two N, N bidentate ligands, [Ru(phendione)2dpq(COOH)2](BF4)2 (L101), {Ru(phendione)[dpq(COOH)2]2}(BF4)2 (L102) and [Ru(phendione)dpq(COOH)2 (SCN)2](L103), (phendione=5,6 dione-1,10-phenanthroline and dpq(COOH)2=6,7-dicarboxylicdipyrido[2,2-d:2',3'f]quinoxaline) have been synthesized and characterized, and attached to a TiO2 substrate to be tested as solar cell sensitizers. We found that the solar to electricity conversion efficiency of cell is strongly affected by the type of ancillary ligand, the efficiency of L102 (with one phendione moiety) adsorbed on TiO2 nanocrystalline films being 2.5 times as large as that of L101 (with two phendione moieties) adsorbed on the same films. The effect of ancillary ligand on the photovoltaic performance of the complexes was compared to results of computational methods by ab initio DFT molecular dynamics simulations and quantum dynamics calculations of electronic relaxation to investigate the interfacial electron transfer in L101-103/TiO2-anatase nanostructures. It is found that the primary process in the interfacial electron-transfer dynamics involves an ultrafast (τ1=6 fs) electron-injection. The concepts of attribute ancillary ligand substitution and HOMO-LUMO alignment of dye with conduction band of semiconductor and electrolyte redox state are shown very helpful for tuning the photovoltaic properties and the rational architecture of polypyridyl photosensitizer with anticipated good properties.

  18. Nanostructured photovoltaic devices for next generation solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jin

    2008-10-01

    As the search for alternative sources of energy other than petroleum continues to expand, solar energy conversion has already been identified as one of the most promising technologies. In the past few years there has been extensive research focused on the next generation solar cells that can exceed the Shockley-Queisser limit (a model that predicts the maximum achievable efficiency for a given material with a given bandgap). Moreover, nanoengineering approaches to enhance solar power conversion efficiency have started to receive considerable interest. Even in the most efficient commercially available solar devices utilizing crystalline silicon, a major portion of the absorbed ultraviolet photon energy is wasted as heat. Furthermore, this heat is detrimental to device reliability. Colloidal nanocrystal quantum dots (NQDs) offer the exciting prospect of simultaneously manipulating device and material structures and processes to enable more efficient solar energy conversion. Most importantly, these colloidal nanocrystal quantum dots are amenable to inexpensive fabrication techniques such as dip coating or spray coating of the constituent nanoscale materials onto various substrates. This dissertation focuses on the development of nanostructured photovoltaic devices, that exhibit multiple exciton generation, and that exploit the wide absorption spectra enabled by the quantum dots for next generation highly efficient, low cost, solar cells. Firstly, multiple exciton generation and subsequent electrical extraction from a thin film photoconductive device constructed from PbSe NQDs is demonstrated. As an extension of this work, this PbSe NQD photoconductor was used in a tandem structure with a polymer solar cell to demonstrate multiple carrier extraction the application of an external electric field. This structure exhibited improved device durability from UV irradiation due to the self-passivating effect provided by the PbSe layer. In order to achieve better exciton

  19. Triphenylamine-based indoline derivatives for dye-sensitized solar cells: a density functional theory investigation.

    PubMed

    Ren, Xue-Feng; Kang, Guo-Jun; He, Qiong-Qiong

    2016-01-01

    A new series of triphenylamine-based indoline dye sensitizers were molecularly designed and investigated for their potential use in dye-sensitized solar cells (DSSCs). Theoretical calculations revealed that modifying donor part of D149 by triphenylamine significantly altered the electronic structures, MO energies, and intramolecular charge transfer (ICT) absorption band. Key parameters associated with the light-harvesting efficiency at a given wavelength LHE(λ), the driving force ΔG inject, and the open-circuit photovoltage V oc were characterized. More importantly, these designed (dimeric) dye sensitizers were found to have similar broad absorption spectra to their corresponding monomers, indicating that modifying the donor part with triphenylamine may stop unfavorable dye aggregation. Further analyses of the dye-(TiO2)9 cluster interaction confirmed that there was strong electronic coupling at the interface. These results are expected to provide useful guidance in the molecular design of new highly efficient metal-free organic dyes.

  20. Enhanced electron transport in dye-sensitized solar cells using short ZnO nanotips on a rough metal anode.

    SciTech Connect

    Yang, Z.; Xu, T.; Ito, Y.; Welp, U.; Kwok, W. K.; Materials Science Division; Northern Illinois Univ.

    2009-10-22

    Many efforts have been directed toward the enhancement of electron transport in dye-sensitized solar cells (DSSC) using one-dimensional nanoarchitectured semiconductors. However, the improvement resulting from these ordered 1-D nanostructured electrodes is often offset or diminished by the deterioration in other device parameters intrinsically associated with the use of these 1-D nanostructures, such as the two-sided effect of the length of the nanowires impacting the series resistance and roughness factor. In this work, we mitigate this problem by allocating part of the roughness factor to the collecting anode instead of imparting all the roughness factors onto the semiconductor layer attached to the anode. A microscopically rough Zn microtip array is used as an electron-collecting anode on which ZnO nanotips are grown to serve as the semiconductor component of the DSSC. For the same surface roughness factor, our Zn-microtip|ZnO-nanotip DSSC exhibits an enhanced fill factor compared with DSSCs that have ZnO nanowires supported by a planar anode. In addition, the open-circuit voltage of the Zn-microtip|ZnO-nanotip DSSC is also improved due to a favorable band shift at the Zn-ZnO interface, which raises the Fermi level of the semiconductor and consequently enlarges the energy gap between the quasi-Fermi level of ZnO and the redox species. With these improvements, the overall efficiency becomes 1.4% with an open-circuit voltage of 770 mV, while the surface roughness factor of ZnO is approximately 60. Electrochemical impedance spectroscopic study reveals that the electron collection time is much shorter than the electron lifetime, suggesting that fast electron collection occurs in our device due to the significantly reduced electron collection distance along the short ZnO nanotips. The overall improvement demonstrates a new approach to enhance the efficiency of dye-sensitized solar cells.

  1. Electrodeposited ZnO thin film as an efficient alternative blocking layer for TiCl4 pre-treatment in TiO2-based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kouhestanian, E.; Mozaffari, S. A.; Ranjbar, M.; SalarAmoli, H.; Armanmehr, M. H.

    2016-08-01

    Recently, ZnO nanostructures have received considerable attention in fabrication of dye sensitized solar cell (DSSC) photoanodes due to their unique transport properties. In the present study, a chronoamperometric method was performed to fabricate the ZnO nanostructures as an appropriate alternative of TiCl4 pre-treatment to reduce the recombination reactions, while retaining the TiO2-based DSSC performance. The effect of polyvinyl alcohol (PVA) on ZnO electrodeposition to control the growth and crystallization of ZnO nanostructures was investigated. ZnO/TiO2 based-DSSCs were fabricated using N719 ruthenium dye and all photovoltaic parameters were characterized. Incident photon to current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and VOC decay techniques were employed for studying the cell properties which is resulted in a significant enhancement in cell performance.

  2. CuO-PANI nanostructure with tunable spectral selectivity for solar selective coating application

    NASA Astrophysics Data System (ADS)

    Cindrella, L.; Prabhu., S.

    2016-08-01

    CuO-PANI nanostructure has been demonstrated as the solar selective absorber coating for the first time. The effortless chemical methods and easily scalable techniques such as precipitation, in-situ polymerization and spray coating were adopted for the fabrication of CuO nanorods and CuO-PANI nanostructures for solar application. The synthesis was carried out without using any template. The morphology and phase structure of fabricated CuO nanorods and CuO-PANI nanostructure coatings were studied by atomic force microscopy, scanning electron microscopy and X-ray diffraction analysis. The energy dispersive X-ray spectra and elemental mapping confirm the presence of the chosen elements in the nanostructure. The solar absorptance (αs), thermal emittance (εt) and selectivity (ξ) of the nanostructure coatings on glass substrate were optimized to 0.94, 0.01 and 94 respectively by changing the polyaniline content on the surface of the CuO nanorods. The efficiency of the solar selective coatings were evaluated. The optimized solar absorber coating of CuO-PANI nanostructure is highly promising for its selective optical properties.

  3. Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Jih-Jen; Chen, Guan-Ren; Yang, Hung-Hsien; Ku, Chen-Hao; Lai-Yuan, Jr.

    2007-05-01

    Mercurochrome and N3 dyes are employed to be the sensitizers in the ZnO-nanowire (NW) dye-sensitized solar cells (DSSCs). A lower fill factor is obtained in the N3-sensitized cell which results in comparable efficiencies in both ZnO-NW DSSCs although the N3 molecules possess a wider absorptive range for light harvesting. Electrochemical impedance spectroscopy and open-circuit photovoltage decay measurements are employed to investigate the electron transport properties in both ZnO-NW DSSCs. The results indicate that more abundant electron interfacial recombination occurs in the N3-sensitized ZnO-NW DSSC due to the higher surface trap density in the ZnO-NW photoanode after N3 dye adsorption.

  4. The function of a TiO2 compact layer in dye-sensitized solar cells incorporating "planar" organic dyes.

    PubMed

    Burke, Anthony; Ito, Seigo; Snaith, Henry; Bach, Udo; Kwiatkowski, Joe; Grätzel, Michael

    2008-04-01

    We present a device based study into the operation of liquid electrolyte dye-sensitized solar cells (DSSC's) using organic dyes. We find that, for these systems, it is entirely necessary to employ a compact TiO2 layer between the transparent fluorine doped SnO2 (FTO) anode and the electrolyte in order to reduce charge recombination losses. By incorporation of a compact layer, the device efficiency can be increased by over 160% under simulated full sun illumination and more than doubled at lower light intensities. This is strong evidence that the more widely employed ruthenium based sensitizers act as to "insulate" the anode against recombination losses and that many planar organic dyes employed in DSSC's could greatly benefit from the use of a compact TiO2 blocking layer. This is in strong contrast to DSSC's sensitized with ruthenium based systems, where the introduction of compact TiO2 has only marginal effects on conversion efficiencies.

  5. Light trapping and plasmonic enhancement in silicon, dye-sensitized and titania solar cells

    NASA Astrophysics Data System (ADS)

    Nhung Tran, Hong; Hieu Nguyen, Van; Nguyen, Bich Ha; Vu, Dinh Lam

    2016-03-01

    The efficiency of a solar cell depends on both the quality of its semiconductor active layer, as well as on the presence of other dielectric and metallic structural components which improve light trapping and exploit plasmonic enhancement. The purpose of this work is to review the results of recent research on light trapping and plasmonic enhancement in three types of solar cells: thin-film silicon solar cells, dye-sensitized solar cells and solid-state titania solar cells. The results of a study on modeling and the design of light trapping components in solar cells are also presented.

  6. Modification of circuit module of dye-sensitized solar cells (DSSC) for solar windows applications

    NASA Astrophysics Data System (ADS)

    Hastuti, S. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-11-01

    This research has been conducted to obtain a modification of circuit producing the best efficiency of solar window modules as an alternative energy for daily usage. Solar window module was constructed by DSSC cells. In the previous research, solar window was created by a single cell of DSSC. Because it had small size, it could not be applied in the manufacture of solar window. Fabrication of solar window required a larger size of DSSC cell. Therefore, in the next research, a module of solar window was fabricated by connecting few cells of DSSC. It was done by using external electrical circuit method which was modified in the formation of series circuit and parallel circuit. Its fabrication used six cells of DSSC with the size of each cell was 1 cm × 9 cm. DSSC cells were sandwich structures constructed by an active layer of TiO2 as the working electrode, electrolyte solution, dye, and carbon layer. Characterization of module was started one by one, from one cell, two cells, three cells, until six cells of a module. It was conducted to recognize the increasing efficiency value as the larger surface area given. The efficiency of solar window module with series circuit was 0.06%, while using parallel circuit was 0.006%. Module with series circuit generated the higher voltage as the larger surface area. Meanwhile, module through parallel circuit tended to produce the constant voltage as the larger surface area. It was caused by the influence of resistance within the cable in each module. Module with circuit parallel used a longer cable than module with series circuit, so that its resistance increased. Therefore, module with parallel circuit generated voltage that tended to be constant and resulted small efficiency compared to the module with series circuit. It could be concluded that series external circuit was the best modification which could produce the higher efficiency.

  7. Soft Lithographic Patterned Architectures in Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Ok, Myoung-Ryul

    Arrays of periodic surface features were patterned on mesoporous Nb 2O5 and TiO2 films by soft-lithographic techniques to construct photonic crystal (PC) structures on the back side of the oxide. The patterned oxide films were integrated into dye-sensitized solar cells (DSSCs) and their performance was evaluated relative to flat (unpatterned) counterparts. The PC structure on niobium oxide surfaces caused large changes in optical characteristics, particularly in the blue wavelength regime. The incident photon-to-current conversion efficiency (IPCE) of patterned niobium oxide anodes exhibited a relative enhancement over the entire wavelength range corresponding to the higher absorption in optical measurements. However, the effect of surface PC structures on the optical response of the TiO2 is different from that of the Nb2O5 photoanode. The enhancement of light harvesting efficiency (LHE) is not obviously due to the higher thickness and larger dye loading than Nb2O5 films. However, patterned TiO2 samples exhibited higher global efficiency than the flat reference, although there was no notable change in LHE. It was hypothesized that surface PC structures changed the de-trapping rate from trap states based on the simulated reflection behavior near the surface of the PC structure, and that in turn, enhances charge collection efficiency. A cubic array of rectangular ITO posts (5x5x6.5microm, 10microm period) were fabricated on FTO coated glass in order to reduce the distance between charge generation points in the mesoporous TiO2 film and the transparent conductive oxide (TCO) layer in an effort to enhance charge collection in the DSSCs. In spite of the decrease in optical transmission due to the tall ITO structures, DSSCs with patterned ITO exhibited increased photocurrent by 12~18% to the reference DSSCs with identical volume of sensitized TiO2. However, DSSCs with patterned ITO substructures showed deterioration in the open circuit voltage (V oc), fill factor, and

  8. Electrochemical Self-Assembly of Nanostructured CuSCN/Rhodamine B Hybrid Thin Film and Its Dye-Sensitized Photocathodic Properties

    PubMed Central

    2014-01-01

    Nanostructured hybrid thin films of CuSCN and rhodamine B (RB) are electrochemically self-assembled (ESA) by cathodic electrolysis in an ethanol/water mixture containing Cu2+, SCN–, and RB. By selecting the solvent, Cu2+/SCN– ratio, and the concentration of RB, we demonstrate several control parameters in the film formation. High loading of RB into the film has been achieved to reach a CuSCN:RB volume ratio of approximately 2:1. The RB solid could almost completely be extracted from the hybrid film by soaking the film in dimethylacetamide (DMA), leading to a large increase of the surface area. The crystallographic orientation of the nanostructure with respect to the substrate can be controlled. Efficient quenching of fluorescence of RB has been observed for the CuSCN/RB hybrid film, implying hole injection from RB excited state to CuSCN. Photoelectrochemical study on the porous crystalline CuSCN obtained after the DMA treatment and sensitized with RB revealed sensitized photocathodic action under visible light illumination, indicating the potential usefulness of the porous CuSCN electrodes for construction of tandem dye-sensitized solar cells. PMID:25101148

  9. Electrochemical Self-Assembly of Nanostructured CuSCN/Rhodamine B Hybrid Thin Film and Its Dye-Sensitized Photocathodic Properties.

    PubMed

    Iwamoto, Takuya; Ogawa, Yuta; Sun, Lina; White, Matthew Schuette; Glowacki, Eric Daniel; Scharber, Markus Clark; Sariciftci, Niyazi Serdar; Manseki, Kazuhiro; Sugiura, Takashi; Yoshida, Tsukasa

    2014-07-31

    Nanostructured hybrid thin films of CuSCN and rhodamine B (RB) are electrochemically self-assembled (ESA) by cathodic electrolysis in an ethanol/water mixture containing Cu(2+), SCN(-), and RB. By selecting the solvent, Cu(2+)/SCN(-) ratio, and the concentration of RB, we demonstrate several control parameters in the film formation. High loading of RB into the film has been achieved to reach a CuSCN:RB volume ratio of approximately 2:1. The RB solid could almost completely be extracted from the hybrid film by soaking the film in dimethylacetamide (DMA), leading to a large increase of the surface area. The crystallographic orientation of the nanostructure with respect to the substrate can be controlled. Efficient quenching of fluorescence of RB has been observed for the CuSCN/RB hybrid film, implying hole injection from RB excited state to CuSCN. Photoelectrochemical study on the porous crystalline CuSCN obtained after the DMA treatment and sensitized with RB revealed sensitized photocathodic action under visible light illumination, indicating the potential usefulness of the porous CuSCN electrodes for construction of tandem dye-sensitized solar cells.

  10. Attempt to improve the performance of pyrrole-containing dyes in dye sensitized solar cells by adjusting isolation groups.

    PubMed

    Li, Huiyang; Hou, Yingqin; Yang, Yizhou; Tang, Runli; Chen, Junnian; Wang, Heng; Han, Hongwei; Peng, Tianyou; Li, Qianqian; Li, Zhen

    2013-12-11

    Four new pyrrole-based organic sensitizers with different isolation groups were conveniently synthesized and applied to dye sensitized solar cells (DSCs). The introduction of isolation group in the side chain could both suppress the formation of dye aggregates and electron recombination. Especially, when two pieces of D-π-A chromophore moieties shared one isolation group to construct the "H" type dye, the performance was further improved. Consequently, in the corresponding solar cell of LI-57, a short-circuit photocurrent density (Jsc) was tested to be 13.85 mA cm(-2), while 0.72 V for the open-circuit photovoltage (Voc), 0.64 for the fill factor (FF), and 6.43% for the overall conversion efficiency (η), exceeding its analogue LI-55 (5.94%) with the same isolation group. The results demonstrated that both the size (bulk and shape) and the linkage mode between the D-π-A chromophores and the isolation groups, could affect the performance of sensitizers in DSCs in a large degree, providing a new approach to optimize the chemical structure of dyes to achieve high conversion efficiencies.

  11. A soft-template-conversion route to fabricate nanopatterned hybrid pt/carbon for potential use in counter electrodes of dye-sensitized solar cells.

    PubMed

    Jang, Yu Jin; Jang, Yoon Hee; Quan, Li Na; Kim, Ho-Cheol; Pyo, Seungmoon; Kim, Dong Ha

    2013-09-01

    Hybrid Pt(platinum)/carbon nanopatterns with an extremely low loading level of Pt catalysts derived from block copolymer templates as an alternative type of counter electrodes (CEs) in dye-sensitized solar cells (DSSCs) are proposed. DSSCs employing hybrid Pt/carbon with tailored configuration as CEs exhibit higher short-circuit current and conversion efficiencies as well as stability with a lapse of time compared with conventional cells on the basis of sputtered Pt thin films, evidencing that the new class of hybrid nanostructures possess high potential for cost-effective electrodes in energy conversion devices.

  12. Transient photocurrent and photovoltage studies on charge transport in dye sensitized solar cells made from the composites of TiO2 nanofibers and nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxu; Karanjit, Sudeep; Zhang, Lifeng; Fong, Hao; Qiao, Qiquan; Zhu, Zhengtao

    2011-02-01

    Herein, we report the transient photocurrent and photovoltage studies on the charge transport in dye sensitized solar cells (DSSCs) made from the composites of electrospun titanium oxide (TiO2) nanofibers, and conventional TiO2 nanoparticles. The results on charge transport parameters (including the charge recombination lifetime, the electron transport lifetime, and the diffusion length) indicated that the addition of TiO2 nanofibers into composite photoanodes led to substantial improvement on the efficiency of charge collection, suggesting that the composites of nanoparticles and one-dimensional nanostructures are promising materials for the development of DSSCs with high efficiency.

  13. Altering the self-organization of dyes on titania with dyeing solvents to tune the charge-transfer dynamics of sensitized solar cells.

    PubMed

    Wang, Yinglin; Yang, Lin; Zhang, Jing; Li, Renzhi; Zhang, Min; Wang, Peng

    2014-04-14

    Herein we selected the model organic donor-acceptor dye C218 and modulated the self-organization of dye molecules on the surface of titania by changing the dyeing solvent from chlorobenzene to a mixture of acetonitrile and tert-butanol. We further unveiled the relationship between the microstructure of a dye layer and the multichannel charge-transfer dynamics that underlie the photovoltaic performance of dye-sensitized solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Near-infrared squaraine co-sensitizer for high-efficiency dye-sensitized solar cells.

    PubMed

    Rao, G Hanumantha; Venkateswararao, A; Giribabu, L; Han, Liyuan; Bedja, Idriss; Gupta, Ravindra Kumar; Islam, Ashraful; Singh, Surya Prakash

    2016-06-07

    A combination of squaraine-based dyes (SPSQ1 and SPSQ2) and a ruthenium-based dye (N3) were chosen as co-sensitizers to construct efficient dye-sensitized solar cells. The co-sensitization of squaraine dyes with N3 enhanced their light-harvesting properties as a result of the broad spectral coverage in the region 350-800 nm. The co-sensitized solar cells based on SPSQ2 + N3 showed the highest short circuit current density of 17.10 mA cm(-2), an open circuit voltage of 0.66 V and a fill factor of 0.73, resulting in the highest power conversion efficiency of 8.2%, which is higher than that of the dye-sensitized solar cells based on the individual SPSQ1 and SPSQ2 dyes. The high power conversion efficiency of SPSQ2 + N3 was ascribed to its good light-harvesting properties, which resulted from its broader incident photon current conversion spectrum than that of the individual dyes. The high electron life time and electron recombination, which were the main causes of the higher efficiency of the device, were successfully analysed and correlated using transient absorption spectrometry and intensity-modulated photovoltage spectrometry.

  15. Organic Dyes with Well-Defined Structures for Highly Efficient Dye-Sensitised Solar Cells Based on a Cobalt Electrolyte.

    PubMed

    Seo, Kang Deuk; Choi, In Tack; Kim, Hwan Kyu

    2015-10-12

    Seven SGT organics dyes, containing bis-dimethylfluoreneyl amino groups with a dialkoxyphenyl unit as an electron donor and a cyanoacrylic acid group as an anchoring group, connected with oligothiophenes, fused thiophenes and benzothiadiazoles as π-bridges, were designed and synthesised for applications in dye-sensitised solar cells (DSSCs). The photovoltaic performance of DSSCs based on organic dyes with oligothiophenes depends on the molecular structure of the dyes, in terms of the length change of the π-bridging units. The best performance was found with a π-bridge length of about 6 Å. To further enhance the photovoltaic performance associated with this concept, cyclopenta[1,2-b:5,4-b']dithiophene (CPDT) and benzothiadiazole were introduced into the π-bridge unit. As a result, the DSSC based on the organic dye containing the CPDT moiety showed the best photovoltaic performance with a short-circuit photocurrent density (Jsc ) of 14.1 mA cm(-2) , an open-circuit voltage (Voc ) of 0.84 V and a fill factor (FF) of 0.72, corresponding to an overall conversion efficiency (η) of 8.61 % under standard AM 1.5 irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Yen, Chih-Ping; Yu, Pin-Feng; Wang, Jyhpyng; Lin, Jiunn-Yuan; Chen, Yen-Mu; Chen, Szu-yuan

    2016-08-01

    The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP), and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE) for application to dye-sensitized solar cell (DSSC) is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  17. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    SciTech Connect

    Yen, Chih-Ping; Yu, Pin-Feng; Wang, Jyhpyng; Lin, Jiunn-Yuan; Chen, Yen-Mu; Chen, Szu-yuan

    2016-08-15

    The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP), and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE) for application to dye-sensitized solar cell (DSSC) is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  18. Ultrafast fluorescence studies of dye sensitized solar cells.

    PubMed

    Bräm, Olivier; Cannizzo, Andrea; Chergui, Majed

    2012-06-14

    Time-resolved fluorescence spectra from the RuN719 dye exhibit very short lifetimes (<30 fs) in solutions, on non-injecting substrates and on injecting ones. This reveals <10 fs intramolecular energy redistribution competing with the injection. We conclude that injection proceeds on a sub-10 fs time scale from non-thermalized levels of the dye.

  19. Organic photosensitizers with a heteroleptic dual donor for dye-sensitized solar cells.

    PubMed

    Kim, Joo Young; Kim, Young Sik

    2012-04-01

    Using DFT and TDDFT calculations, we investigated the substitution effect in the electronic and optical properties of dye sensitizers with a dual donor composed of triphenylamine and/or indoline moieties. Due to replacement with the dual donor moieties, the HOMO levels were split into HOMO and HOMO - 1 levels, and the bandgaps between the HOMO and LUMO levels decreased, leading to the creation of bathochromically extended absorption spectra. Nearly degenerated splitting of the HOMO levels resulted from the similarity of the electronic structure between the HOMO and the HOMO - 1 levels, delocalized over both dual-donor moieties, when replacing the dual donors. It was shown that the additional electron-donating group creates an additional absorption band and causes a cascading two-electron process aiding the charge separation process. Owing to a more panchromatic attribute, easier energy transfer and feasible retardation of the recombination between the injected electrons and the electrolyte, it is expected that dyeTI will show better performance than the other dyes (dyeT dyeTT and dyeIT) as denoted here in terms of the conversion efficiency of dye-sensitized solar cells (DSSCs). This work presents the probable benefits of dye sensitizers with dual-donor moieties and provides insight into the development of more efficient dye sensitizers for DSSCs through modification of the Frontier molecular orbitals.

  20. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y.

    2016-01-01

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells—including the preparation of fibre-type solar cells woven into textiles—face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes’ surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research. PMID:27708359

  1. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Yun, Min Ju; Cha, Seung I.; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y.

    2016-10-01

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells—including the preparation of fibre-type solar cells woven into textiles—face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes’ surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.

  2. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells.

    PubMed

    Yun, Min Ju; Cha, Seung I; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y

    2016-10-06

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells-including the preparation of fibre-type solar cells woven into textiles-face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes' surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.

  3. Co-adsorbents: a key component in efficient and robust dye-sensitized solar cells.

    PubMed

    Manthou, Victoria S; Pefkianakis, Eleftherios K; Falaras, Polycarpos; Vougioukalakis, Georgios C

    2015-02-01

    Since the establishment of dye-sensitized solar cells in the early '90s, both the efficiency and stability of these third generation photovoltaics have been greatly enhanced. Nevertheless, there still exist many unwanted processes that impede operation of dye-sensitized solar cells, encumbering the achievement of the maximum theoretical power conversion efficiency and decreasing the devices' long-term operation. These processes include charge recombination, dye aggregation, dye desorption, and high protonation degrees of the semiconductor's surface. This Minireview focuses on a powerful strategy developed to address these problems, namely the use of co-adsorbents. All types of co-adsorbents utilized thus far are categorized in terms of the chemical identity of their anchoring group; in addition their operational mechanisms are presented and the properties that a functional molecule should possess to be applied as an efficient co-adsorbent are discussed.

  4. Modulated surface nanostructures for enhanced light trapping and reduced surface reflection of crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tayagaki, Takeshi; Hoshi, Yusuke; Hirai, Yuji; Matsuo, Yasutaka; Usami, Noritaka

    2016-05-01

    We demonstrated the fabrication of modulated surface nanostructures as a new surface texture design for thin wafer solar cells. Using a combination of conventional alkali etching and colloidal lithography, we fabricated surface textures with micrometer and nanometre scales on a Si substrate. These modulated surface nanostructures exhibit reduced surface reflection in a broad spectral range, compared with conventional micrometer textures. We investigated optical absorption using a rigorous coupled wave analysis simulation, which revealed a significant reduction in surface reflection over a broad spectral range and efficient light trapping (comparable to that of conventional micrometer-scale textures) for the modulated nanostructures. We found that the modulated surface nanostructures have a high potential of improving the performance of thin wafer crystalline Si solar cells.

  5. Efficiency enhancement in Cu2ZnSnS4 solar cells with subwavelength grating nanostructures.

    PubMed

    Kuo, Shou-Yi; Hsieh, Ming-Yang

    2014-07-07

    In the article, a study of sub-wavelength grating (SWG) nanostructures for broadband and omni-directional anti-reflection coatings (ARCs) on Cu2ZnSnS4 (CZTS) solar cells using the rigorous coupled-wave analysis (RCWA) method is presented. Various SWG nanostructures of different shapes and periodic geometry on CZTS solar cells are discussed in detail. The optimized reflectance decreased to 1.67%, and efficiency increased to 13.74%, accordingly. The omni-directional and broadband antireflections of the SWG nanostructures are also investigated. Under a simulated 1-sun condition and with the light incident angle increased to 80°, cells with SWG nanostructures enhanced the short-circuit current density by 16.5%. This considerable enhancement in light harvesting is attributed to the linearly graded effective refractive index profile from the air to the device surface.

  6. Hierarchical structured TiO2 photoanodes for dye-sensitized solar cells.

    PubMed

    Shih, Yen-Chen; Chu, Ann-Kuo; Huang, Wen-Yao

    2012-04-01

    A novel approach has been developed to fabricate hills-like hierarchical structured TiO2 photoanodes for dye-sensitized solar cells (DSSCs). The appropriately aggregated TiO2 clusters in the photoanode layer could cause stronger light scattering and higher dye loading that increases the efficiency of photovoltaic device. For detailed light-harvesting study, different molecular weights of polyvinyl alcohol (PVA) were used as binders for TiO2 nanoparticles (P-25 Degussa) aggregation. A series of TiO2 films with dissimilar morphology, the reflection of TiO2 films, absorbance of attached dye, amount of dye loading, and performance of fabricated DSSC devices, were measured and investigated. An optimized device had energy conversion efficiency of 4.47% having a higher dye loading and good light harvesting, achieving a 23% increase of short-circuit current J(sc) in DSSCs.

  7. Effect of polymer electrolyte on the performance of natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Adel, R.; Abdallah, T.; Moustafa, Y. M.; Al-sabagh, A. M.; Talaat, H.

    2015-10-01

    Polymer electrolyte based on polyacrylonitrile (PAN), Ethylene Carbonate (EC) and Acetonitrile (ACN) mixed with Potassium Iodide and Iodine in liquid and thin film forms were employed in natural dye sensitized solar cells (NDSSCs). Three natural dyes; black berry, hibiscus and rose are used as the sensitizing dye. The NDSSCs used, follow the configuration: FTO/TiO2/Natural Dye/Electrolyte/ Carbon/FTO. The liquid form polymer electrolyte with black berry natural dye gives an increase of 111% in short circuit photocurrent density (Jsc), 17.5% to open circuit voltage (Voc), fill factor of 0.57 ± 0.05 and three times increase in the conversion efficiency of 0.242 ± 0.012% compared to the iodine electrolyte.

  8. Interface engineering for ternary blend polymer solar cells with a heterostructured near-IR dye.

    PubMed

    Xu, Huajun; Ohkita, Hideo; Tamai, Yasunari; Benten, Hiroaki; Ito, Shinzaburo

    2015-10-21

    Ternary-blend polymer solar cells can be effectively improved by incorporating a heterostructured near-IR dye, which has a hexyl group compatible with the polymer and a benzyl group compatible with the fullerene. Because of the compatibility with both materials, the heterostructured dye can be loaded up to 15 wt% and hence can boost the photocurrent generation by 30%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Osmium polypyridyl complexes and their applications to dye-sensitized solar cells.

    PubMed

    Swetha, T; Reddy, K Raveendranath; Singh, Surya Prakash

    2015-04-01

    Dye-sensitized solar cells (DSSCs) have received much attention in recent years owing to their efficient conversion of sunlight to electricity. DSSCs became successful alternatives to silicon photovoltaic devices by virtue of their low fabrication costs and easy preparation methods. In DSSCs the dye plays the key role. This review summarizes the applications of osmium sensitizers in DSSCs. We also briefly discussed their synthesis and the effect of various electrolyte systems on device efficiencies.

  10. Silicon-naphthalo/phthalocyanine-hybrid sensitizer for efficient red response in dye-sensitized solar cells.

    PubMed

    Lim, Bogyu; Margulis, George Y; Yum, Jun-Ho; Unger, Eva L; Hardin, Brian E; Grätzel, Michael; McGehee, Michael D; Sellinger, Alan

    2013-02-15

    Introduction of a naphthalocyanine moiety to phthalocyanine allows for a gradual red shift of the absorption spectrum in the resulting chromophore. Using silicon as a core atom allows for the introduction of additional siloxane side chains which mitigate dye aggregation. A dye-sensitized solar cell with this hybrid sensitizer exhibits a broad and flat IPCE of 80% between 600 and 750 nm and high photocurrent densities of 19.0 mA/cm(2).

  11. Counter electrodes from polymorphic platinum-nickel hollow alloys for high-efficiency dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Tang, Qunwei; He, Benlin; Yang, Peizhi

    2016-10-01

    Precious platinum counter electrode (CE) has been an economic burden for future commercialization of dye-sensitized solar cells (DSSCs). Low-platinum alloy CE catalysts are promising in bringing down the solar cell cost without reducing photovoltaic performances. We present here a facile strategy of fabricating ZnO nanorods assisted platinum-nickel (PtNi) alloy microtube CEs for liquid-junction DSSCs. By adjusting the concentration of zinc precursors, the ZnO nanostructures and therefore PtNi alloys are optimized to maximize the electrocatalytic behaviors toward triiodide reduction reaction. The maximal power conversion efficiency is determined as high as 8.43% for liquid-junction DSSC device with alloyed PtNi microtube CE synthesized at 75 mM Zn(NO3)2 aqueous solution, yielding a 32.8% enhancement in cell efficiency in comparison with the solar cell from pristine platinum electrode. Moreover, the dissolution resistance and charge-transfer ability toward redox couples have also been markedly enhanced due to competitive dissolution reactions and alloyed effects.

  12. Applications of Metal Oxide Materials in Dye Sensitized Photoelectrosynthesis Cells for Making Solar Fuels: Let the Molecules do the Work

    SciTech Connect

    Alibabaei, Leila; Luo, Hanlin; House, Ralph L.; Hoertz, Paul G.; Lopez, Rene; Meyer, Thomas J.

    2013-01-01

    Solar fuels hold great promise as a permanent, environmentally friendly, long-term renewable energy source, that would be readily available across the globe. In this account, an approach to solar fuels is described based on Dye Sensitized Photoelectrosynthesis Cells (DSPEC) that mimic the configuration used in Dye Sensitized Solar Cells (DSSC), but with the goal of producing oxygen and a high energy solar fuel in the separate compartments of a photoelectrochemical cell rather than a photopotential and photocurrent.

  13. Synthesis and characterization of natural dye and counter electrode thin films with different carbon materials for dye-sensitized solar cells.

    PubMed

    Chang, Ho; Chen, Tien-Li; Kao, Mu-Jung; Chen, Chih-Hao; Chien, Shu-Hua; Jiang, Lii-Jenq

    2011-08-01

    This study aims to deal with the film of the counter electrode of dye-sensitized solar cells (DSSCs) and the preparation, structure and characteristics of the extract of natural dye. This study adopts different commercial carbon materials such as black lead, carbon black and self-made TiO2-MWCNT compound nanoparticle as the film of the counter electrodes. Moreover, for the preparation of natural dyes, anthocyanins and chlorophyll dyes are extracted from mulberry and pomegranate respectively. Furthermore, the extracted anthocyanins and chlorophyll are blended into cocktail dye to complete the preparation of natural dye. Results show that the photoelectric conversion efficiency of the single-layer TiO2-MWCNT counter electrode film and the cocktail dye of the DSSCs is 0.462%.

  14. Modulating triphenylamine-based organic dyes for their potential application in dye-sensitized solar cells: a first principle theoretical study.

    PubMed

    Nath Ghosh, Narendra; Chakraborty, Arnab; Pal, Sougata; Pramanik, Anup; Sarkar, Pranab

    2014-12-14

    By using computational methodologies based on time dependent density functional theory (TDDFT) we study the opto-electronic properties of three types of triphenylamine (TPA)-based dyes, namely TPA-TBT-1, TPA-DBT-1, and TPA-BT-1, and these are proposed as potential candidates for photovoltaic applications. Energy band modulation has been performed by functionalizing these dyes with different electron donating and electron withdrawing groups. Photoelectron spectra and photovoltaic properties of the dyes have been investigated by a combination of DFT and TDDFT approaches. Based on the optimized molecular geometry, relative position of the frontier energy levels, and the absorption maximum of the dyes we propose some dyes offering good photovoltaic performance. At the same time, these results provide a direction for optimizing the composition of dye-metal surface nanodevices for fabricating dye-sensitized solar cells (DSSCs).

  15. Correction: Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells.

    PubMed

    Hwang, Kyung-Jun; Shim, Wang-Geun; Kim, Dajung; An, Jongdeok; Im, Chan; Kim, Youngjin; Kim, Gunwoo; Choi, Chulmin; Kang, Sang Ook; Cho, Dae Won

    2016-02-21

    Correction for 'Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells' by Kyung-Jun Hwang et al., Phys. Chem. Chem. Phys., 2015, 17, 21974-21981.

  16. The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells.

    PubMed

    Xie, Z B; Adams, S; Blackwood, D J; Wang, J

    2008-10-08

    Ordered, closely packed, and vertically oriented titania nanotube arrays with lengths exceeding 10 µm were fabricated by anodization of titanium foils. The effects of anodization voltage and time on the microstructural morphology and the photovoltaic performance of dye sensitized solar cells based on the titania nanotube arrays were investigated. On increasing the anodization voltage or time, the increase in active surface area leads to enhanced photovoltaic currents and thereby an overall higher performance of the dye sensitized solar cells. The efficiency enhancement with rising anodization voltage exceeds the increase in the outer surface area of the nanotubes, indicating that the active surface area is further enlarged by a more accessible inner surface of the nanotube arrays grown with a higher anodization voltage. A promising efficiency of 3.67% for dye sensitized solar cells based on anodized titania nanotube arrays was achieved under AM1.5, 100 mW cm(-2) illumination.

  17. Novel hydrophobic ionic liquids electrolyte based on cyclic sulfonium used in dye-sensitized solar cells

    SciTech Connect

    Guo, Lei; Pan, Xu; Wang, Meng; Zhang, Changneng; Fang, Xiaqin; Chen, Shuanghong; Dai, Songyuan

    2011-01-15

    A novel series of hydrophobic room temperature ionic liquids based on six cyclic sulfonium cations were first time synthesized and applied in dye-sensitized solar cells as pure solvents for electrolyte system. The chronoamperograms result showed that the length of substituent on sulfonium cations could inhibit the I{sub 3}{sup -} diffusion and the five-ring structure of sulfonium was benefit for fast triiodide ion diffusion. The electrochemical impendence spectra measurement of dye-sensitized solar cells with these ionic liquid electrolytes was carried out and the result indicated that the cations' structure had indeed influence on the cells' performance especially for the fill factor, which was further proved by the measurement result of I-V curves of these dye-sensitized solar cells. The conclusion was obtained that the electron exchange reaction on Pt counter electrode/electrolyte interface dominated the cells' performance for these ionic liquid electrolyte-based DSCs. (author)

  18. Low-Temperature Thermally Reduced Molybdenum Disulfide as a Pt-Free Counter Electrode for Dye-Sensitized Solar Cells.

    PubMed

    Lin, Che-Hsien; Tsai, Chuen-Horng; Tseng, Fan-Gang; Yu, Yang-Yen; Wu, Hsuan-Chung; Hsieh, Chien-Kuo

    2015-12-01

    A two-dimensional nanostructure of molybdenum disulfide (MoS2) thin film exposed layered nanosheet was prepared by a low-temperature thermally reduced (TR) method on a fluorine-doped tin oxide (FTO) glass substrate as a platinum (Pt)-free and highly electrocatalytic counter electrode (CE) for dye-sensitized solar cells (DSSCs). Thermogravimetric analysis (TGA) results show that the MoS2 sulfidization temperature was approximately 300 °C. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) indicate that the stoichiometry and crystallization of MoS2 were more complete at higher temperatures; however, these temperatures reduce the number of edge-plane active sites in the short-range-order nanostructure. Accordingly, the DSSCs with 300 °C annealed TR-MoS2 CE exhibited an excellent photovoltaic conversion efficiency (PCE) of 6.351 %, up to 91.7 % of which is obtained using the conventional TD-Pt CE (PCE = 6.929 %). The temperature of thermal reaction and the molar ratio of reaction precursors were found to significantly influence the resulting stoichiometry and crystallization of MoS2 nanosheets, thus affecting DSSCs' performance.

  19. Low-Temperature Thermally Reduced Molybdenum Disulfide as a Pt-Free Counter Electrode for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Lin, Che-Hsien; Tsai, Chuen-Horng; Tseng, Fan-Gang; Yu, Yang-Yen; Wu, Hsuan-Chung; Hsieh, Chien-Kuo

    2015-11-01

    A two-dimensional nanostructure of molybdenum disulfide (MoS2) thin film exposed layered nanosheet was prepared by a low-temperature thermally reduced (TR) method on a fluorine-doped tin oxide (FTO) glass substrate as a platinum (Pt)-free and highly electrocatalytic counter electrode (CE) for dye-sensitized solar cells (DSSCs). Thermogravimetric analysis (TGA) results show that the MoS2 sulfidization temperature was approximately 300 °C. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) indicate that the stoichiometry and crystallization of MoS2 were more complete at higher temperatures; however, these temperatures reduce the number of edge-plane active sites in the short-range-order nanostructure. Accordingly, the DSSCs with 300 °C annealed TR-MoS2 CE exhibited an excellent photovoltaic conversion efficiency (PCE) of 6.351 %, up to 91.7 % of which is obtained using the conventional TD-Pt CE (PCE = 6.929 %). The temperature of thermal reaction and the molar ratio of reaction precursors were found to significantly influence the resulting stoichiometry and crystallization of MoS2 nanosheets, thus affecting DSSCs' performance.

  20. A novel TiO2 tape for fabricating dye-sensitized solar cells on universal conductive substrates.

    PubMed

    Shen, Jie; Cheng, Rui; Chen, Yiwei; Chen, Xiaohong; Sun, Zhuo; Huang, Sumei

    2013-12-26

    The present paper describes a new method for manufacturing large scale, stable, transportable, and designable nanostructured porous TiO2 tapes on various substrates for use in photoelectrochemical cells. The method involves predeposition of TiO2 strips on the fluorine doped tin oxide (FTO) glass by screen-printing method, peeling off TiO2 strips from the substrate by a novel laser-assisted lift-off technique, sintering the formed TiO2 tapes at 500 °C for 15 min, and compressing the sintered TiO2 tapes on different conductive substrates with a low pressure rolling press to form mechanically stable, electrically conducting, porous nanostructured TiO2 electrodes at room temperature. Photoelectrochemical characteristics of the resulted electrodes are presented. Dye-sensitized solar cells (DSSCs) with the as-fabricated TiO2 photoanodes on PET-ITO and FTO glass achieved a conversion efficiency of 4.2% and 6.2%, respectively. The potential use of this new manufacturing method in future DSSC applications is discussed.

  1. Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic performance of dye-sensitized solar cells.

    PubMed

    Zhou, Zheng-ji; Fan, Jun-qi; Wang, Xia; Zhou, Wen-hui; Du, Zu-liang; Wu, Si-xin

    2011-11-01

    One-dimensional semiconductor nanostructures grown directly onto transparent conducting oxide substrates with a high internal surface area are most desirable for high-efficiency dye-sensitized solar cells (DSSCs). Herein, we present a multicycle hydrothermal synthesis process to produce vertically aligned, single crystal rutile TiO(2) nanowires with different lengths between 1 and 8 μm for application as the working electrode in DSSCs. Optimum performance was obtained with a TiO(2) nanowire length of 2.0 μm, which may be ascribed to a smaller nanowire diameter with a high internal surface area and better optical transmittance with an increase in the incident light intensity on the N719 dye; as well as a firm connection at the FTO/TiO(2) nanowire interface.

  2. High resolution TEM and 3D imaging of polymer-based and dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suh, Youngjoon

    Since 1950s, solar energy has been the most attractive energy source as an alternative to fossil fuels including oil and natural gas. However, these types of solar cells have high raw material and manufacturing costs. So, alternative solar cells using low cost materials and manufacturing processes have been actively studied for more than 10 years. The power conversion efficiency of some of the alternative solar cells has been recently improved so much as to be used for real life applications in the near future. However, their relatively short lifetime still remains as a bottleneck in their commercialized use. In this dissertation, we studied cross sections of three types of solar cells using TEM micrographs and TEM related analysis methods; selected area diffraction, energy dispersive spectroscopy, electron tomography, and nanobeam diffraction. A thin Ag layer used for a top metal electrode in an inverted polymer solar cell was broken down into particles. Absorption of water by the PEDOT:PSS layer followed by corrosion of the Ag layer was thought to be the main cause of this phenomenon. The structure and materials of the photoactive layer in hybrid polymer solar cells have an important influence on the performance of the solar cell devices. Three kinds of efforts were made to improve the electrical characteristics of the devices; removal of a dark TiO2 layer at the polymer/TiO2 interface, using bulk heterojunction structures, and coating a fullerene interlayer on the inorganic nanostructure. An optimum concentration of carbon nanotubes (CNTs) combined with Ru could increase the interface area of CNTs, and improve the performances of dye sensitized solar cells. In order to develop plastic solar cell, two different methods of mixing TiO2 particles with either nanoglues or PMMA were tried. Cross-sectional TEM microstructures were examined to come up with optimum processing parameters such as the sintering temperature and the amount of PMMA added into the structure

  3. Periodic nanostructures on unpolished substrates and their integration in solar cells.

    PubMed

    Cornago, I; Dominguez, S; Ezquer, M; Rodríguez, M J; Lagunas, A R; Pérez-Conde, J; Rodriguez, R; Bravo, J

    2015-03-06

    We present a novel fabrication process based on laser interference lithography, lift-off and reactive ion etching, which allows us to fabricate periodic nanostructures on photovoltaic substrates with an average root mean square (RMS) roughness of 750 nm. We fabricate nanostructures on unpolished crystalline silicon substrates, which reduces their reflectance 30% as fabricated. When an additional passivation layer is deposited, the light trapping grows, achieving a reflectance reduction of 60%. In addition, we have successfully integrated the nanostructured substrates in silicon wafer-based solar cells following standard processes, achieving a final efficiency of 15.56%.

  4. Design of nanostructured solar cells using coupled optical and electrical modeling.

    PubMed

    Deceglie, Michael G; Ferry, Vivian E; Alivisatos, A Paul; Atwater, Harry A

    2012-06-13

    Nanostructured light trapping has emerged as a promising route toward improved efficiency in solar cells. We use coupled optical and electrical modeling to guide optimization of such nanostructures. We study thin-film n-i-p a-Si:H devices and demonstrate that nanostructures can be tailored to minimize absorption in the doped a-Si:H, improving carrier collection efficiency. This suggests a method for device optimization in which optical design not only maximizes absorption, but also ensures resulting carriers are efficiently collected.

  5. Enhanced Photovoltaic Performances of Dye-Sensitized Solar Cells by Co-Sensitization of Benzothiadiazole and Squaraine-Based Dyes.

    PubMed

    Islam, Ashraful; Akhtaruzzaman, Md; Chowdhury, Towhid H; Qin, Chuanjiang; Han, Liyuan; Bedja, Idriss M; Stalder, Romain; Schanze, Kirk S; Reynolds, John R

    2016-02-01

    Dye-sensitized solar cells (DSSCs) based on a donor-acceptor-donor oligothienylene dye containing benzothiadiazole (T4BTD-A) were cosensitized with dyes containing cis-configured squaraine rings (HSQ3 and HSQ4). The cosensitized dyes showed incident monochromatic photon-to-current conversion efficiency (IPCE) greater than 70% in the 300-850 nm wavelength region. The individual overall conversion efficiencies of the sensitizers T4BTD-A, HSQ3, and HSQ4 were 6.4%, 4.8%, and 5.8%, respectively. Improved power conversion efficiencies of 7.0% and 7.7% were observed when T4BTD-A was cosensitized with HSQ3 and HSQ4, respectively, thanks to a significant increase in current density (JSC) for the cosensitized DSSCs. Intensity-modulated photovoltage spectroscopy results showed a longer lifetime for cosensitized T4BTD-A+HSQ3 and T4BTD-A+HSQ4 compared to that of HSQ3 and HSQ4, respectively.

  6. Characteristics of triphenylamine-based dyes with multiple acceptors in application of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Chien-Hsin; Chen, Han-Lung; Chuang, Yao-Yuan; Wu, Chun-Guey; Chen, Chiao-Pei; Liao, Shao-Hong; Wang, Tzong-Liu

    We report the synthesis and photophysical/electrochemical properties of triphenylamine (TPA)-based multiple electron acceptor dyes (TPAR1, TPAR2, and TPAR3) as well as their applications in dye-sensitized solar cells (DSSCs). In these dyes, the TPA group and the rhodanine-3-acetic acid play the role of the basic electron donor unit and the electron acceptor, respectively. It was found that introduction of two rhodanine-3-acetic acid groups into the TPA unit (TPAR2) exhibited better photovoltaic performance due to the increase with a red shift and broadening of the absorption spectrum. The monolayer of these TPA-based dyes was adsorbed on the surface of nanocrystalline TiO 2 mesoporous electrode with the thickness of ∼6 μm, polyethylene oxide (PEO) used as the matrix of gel electrolyte, and 4-nm thick Pt used as a counter-electrode. Photovoltaic device can be realized in a single quasi-solid-state DSSC. TPAR2-based gel DSSC had an open circuit voltage and short circuit current density of about 541 and 10.7 mA cm -2, respectively, at 1-sun.

  7. [1]Benzothieno[3,2-b]benzothiophene-Based Organic Dyes for Dye-Sensitized Solar Cells.

    PubMed

    Capodilupo, Agostina L; Fabiano, Eduardo; De Marco, Luisa; Ciccarella, Giuseppe; Gigli, Giuseppe; Martinelli, Carmela; Cardone, Antonio

    2016-04-15

    Three new metal-free organic dyes with the [1]benzothieno[3,2-b]benzothiophene (BTBT) π-bridge, having the structure donor-π-acceptor (D-π-A) and labeled as 19, 20 and 21, have been designed and synthesized for application in dye-sensitized solar cells (DSSC). Once the design of the π-acceptor block was fixed, containing the BTBT as the π-bridge and the cyanoacrylic group as the electron acceptor and anchoring unit, we selected three donor units with different electron-donor capacity, in order to assemble new chromophores with high molar extinction coefficients (ε), whose absorption features well reflect the good performance of the final DSSC devices. Starting with the 19 dye, which shows a molar extinction coefficient ε of over 14,000 M(-1) cm(-1) and takes into account the absorption maximun at the longer wavelength, the substitution of the BFT donor unit with the BFA yields a great enhancement of absorptivity (molar extinction coefficient ε > 42,000 M(-1) cm(-1)), until reaching the higher value (ε > 69,000 M(-1) cm(-1)) with the BFPhz donor unit. The good general photovoltaic performances obtained with the three dyes highlight the suitable properties of electron-transport of the BTBT as the π-bridge in organic chromophore for DSSC, making this very cheap and easy to synthesize molecule particularly attractive for efficient and low-cost photovoltaic devices.

  8. In situ monitoring and optimization of room temperature ultra-fast sensitization for dye-sensitized solar cells.

    PubMed

    Davies, Matthew L; Watson, Trystan M; Holliman, Peter J; Connell, Arthur; Worsley, David A

    2014-10-25

    We describe the fastest dyeing of TiO2 photo-electrodes for dye-sensitized solar cells reported to date (<2 min) at room temperature giving η = 7.5% for an N719-SQ1-CDCA mixture which is significantly higher than devices dyed for >12 h using the same dye mixture (η = 5.5%). Time-lapse photography has been used to monitor the ultra-fast co-sensitization. The data show significantly different dye uptake between passive and pump dyeing reflecting competitive sorption between a Ru complex (N719) and an organic dye (SQ1).

  9. Shape engineering for electronic and optoelectronic properties of Si nanostructure solar cells

    NASA Astrophysics Data System (ADS)

    He, Yan; Zhao, Yipeng; Quan, Jun; Ouyang, Gang

    2016-10-01

    An analytical model is developed to explore the shape-dependent electronic and optoelectronic properties of silicon nanostructure solar cells, including nanocones (NCs), nanowires (NWs), and truncated-nanocones (TNCs), on the basis of atomic-bond-relaxation consideration and detailed balance principle. It is found that the inhomogeneous NCs can not only make the band gap shrink gradually from the top to the bottom, but also suppress the surface recombination and enhance light absorption. Moreover, the optimal performance of silicon nanostructures can be achieved through modulating the geometrical parameters. Strikingly, the SiNCs show the highest solar conversion efficiency compared with that of NWs and TNCs under identical conditions, which suggest that this kind of nanostructures could be expected to be applicable for the new-typed and friendly alternative solar cell unit.

  10. Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application.

    PubMed

    Abd-Ellah, Marwa; Moghimi, Nafiseh; Zhang, Lei; Thomas, Joseph P; McGillivray, Donald; Srivastava, Saurabh; Leung, Kam Tong

    2016-01-21

    Surface modification of nanostructured metal oxides with metal nanoparticles has been extensively used to enhance their nanoscale properties. The unique properties of metal nanoparticles associated with their controllable dimensions allow these metal nanoparticles to be precisely engineered for many applications, particularly for renewable energy. Here, a simple electrodeposition method to synthesize gold nanoparticles (GNPs) on electrochemically grown ZnO nanotubes (NTs) is reported. The size distribution and areal density of the GNPs can be easily controlled by manipulating the concentration of AuCl3 electrolyte solution, and the deposition time, respectively. An excellent enhancement in the optical properties of ZnO NTs surface-decorated with GNPs (GNP/ZnO-NT), especially in the visible region, is attributed to their surface plasmon resonance. The plasmonic effects of GNPs, together with the large specific surface area of ZnO NTs, can be used to significantly enhance the dye-sensitized solar cell (DSSC) properties. Furthermore, the Schottky barrier at the Au/ZnO interface could prevent electron back transfer from the conduction band of ZnO to the redox electrolyte and thus could substantially increase electron injection in the ZnO conduction band, which would further improve the overall performance of the constructed DSSCs. The GNP/ZnO-NT photoanode has been found to increase the efficiency of the DSSC significantly to 6.0% from 4.7% of the pristine ZnO-NT photoanode, together with corresponding enhancements in short-circuit current density from 10.4 to 13.1 mA cm(-2) and in fill factor from 0.60 to 0.75, while the open-circuit voltage remain effectively unchanged (from 0.60 to 0.61 V). Surface decoration with GNPs therefore provides an effective approach to creating not only a high specific surface area for superior loading of dye molecules, but also higher absorbance capability due to their plasmonic effect, all of which lead to excellent performance

  11. Enhancing the power conversion efficiency of dye-sensitized solar cells via molecular plasmon-like excitations.

    PubMed

    Li, Jian-Hao; Gryn'ova, Ganna; Prlj, Antonio; Corminboeuf, Clémence

    2017-02-21

    We introduce a tactic for employing molecular plasmon-like excitations to enhance solar-to-electric power conversion efficiency of dye-sensitized solar cells. We offer general design principles of dimeric dyes, in which a strong plasmonic interaction between two π-conjugated moieties is promoted. The π-stacked conformations of these dimeric dyes result in a desirable broadened absorption and a longer absorption onset wavelength.

  12. The electronic structure engineering of organic dye sensitizers for solar cells: The case of JK derivatives.

    PubMed

    Zhang, Cai-Rong; Ma, Jin-Gang; Zhe, Jian-Wu; Jin, Neng-Zhi; Shen, Yu-Lin; Wu, You-Zhi; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-11-05

    The design and development of novel dye sensitizers are effective method to improve the performance of dye-sensitized solar cells (DSSCs) because dye sensitizers have significant influence on photo-to-current conversion efficiency. In the procedure of dye sensitizer design, it is very important to understand how to tune their electronic structures and related properties through the substitution of electronic donors, acceptors, and conjugated bridges in dye sensitizers. Here, the electronic structures and excited-state properties of organic JK dye sensitizers are calculated by using density functional theory (DFT) and time dependent DFT methods. Based upon the calculated results, we investigated the role of different electronic donors, acceptors, and π-conjugated bridges in the modification of electronic structures, absorption properties, as well as the free energy variations for electron injection and dye regeneration. In terms of the analysis of transition configurations and molecular orbitals, the effective chromophores which are favorable for electron injection in DSSCs are addressed. Meanwhile, considering the absorption spectra and free energy variation, the promising electronic donors, π-conjugated bridges, and acceptors are presented to design dye sensitizers.

  13. Impact of natural photosensitizer extraction solvent upon light absorbance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Ahmad Hambali, Nor Azura Malini; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Mohamad Shahimin, Mukhzeer

    2017-02-01

    Natural pigmentations of Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella were used to study the general trend in performance of dyes as a photosensitizer in the application of dye-sensitized solar cells (DSSCs) based on optical light absorbance and photoelectrochemical characteristics. From the Ultraviolet-Visible Spectrophotometer with the recorded absorption measurements in the range between 400 nm to 800 nm, the dyes extracted from Rosella and Oxalis Triangularis in water solvent exhibited the conversion efficiency up to 0.68% and 0.67%, respectively. The light absorbance peak for dye extracted from Ardisia, Bawang Sabrang, Oxalis Triangularis and Rosella in water and ethanol solvent resulted in the range between 500 nm to 650 nm, while the Harum Manis mango resulted in the broader spectra in both water and ethanol solvent. The light absorbance spectra of each the dyes shows shifted wavelength spectrum when the extracted dye is adsorbed onto TiO2 film surface that might influenced the absorption of light by TiO2 particle in the visible region. The capabilities of the dyes to absorb light when bonded onto the TiO2 photoanode was found to be significant with the current-voltage conversion of the cell. The results demonstrates just the tip of the vastness of natural dyes' (native to tropical region) feasibility and applicability as a photosensitizer.

  14. Electronic structure measurements of metal-organic solar cell dyes using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.

    The focus of this thesis is twofold: to report the results of X-ray absorption studies of metal-organic dye molecules for dye-sensitized solar cells and to provide a basic training manual on X-ray absorption spectroscopy techniques and data analysis. The purpose of our research on solar cell dyes is to work toward an understanding of the factors influencing the electronic structure of the dye: the choice of the metal, its oxidation state, ligands, and cage structure. First we study the effect of replacing Ru in several common dye structures by Fe. First-principles calculations and X-ray absorption spectroscopy at the C 1s and N 1s edges are combined to investigate transition metal dyes in octahedral and square planar N cages. Octahedral molecules are found to have a downward shift in the N 1s-to-pi* transition energy and an upward shift in C 1s-to-pi* transition energy when Ru is replaced by Fe, explained by an extra transfer of negative charge from Fe to the N ligands compared to Ru. For the square planar molecules, the behavior is more complex because of the influence of axial ligands and oxidation state. Next the crystal field parameters for a series of phthalocyanine and porphyrins dyes are systematically determined using density functional calculations and atomic multiplet calculations with polarization-dependent X-ray absorption spectra. The polarization dependence of the spectra provides information on orbital symmetries which ensures the determination of the crystal field parameters is unique. A uniform downward scaling of the calculated crystal field parameters by 5-30% is found to be necessary to best fit the spectra. This work is a part of the ongoing effort to design and test new solar cell dyes. Replacing the rare metal Ru with abundant metals like Fe would be a significant advance for dye-sensitized solar cells. Understanding the effects of changing the metal centers in these dyes in terms of optical absorption, charge transfer, and electronic

  15. Nanostructuring for enhanced absorption and carrier collection in CZTS-based solar cells: Coupled optical and electrical modeling

    NASA Astrophysics Data System (ADS)

    Abdelraouf, Omar A. M.; Allam, Nageh K.

    2016-04-01

    Earth-abundant Cu2ZnSnS4 (CZTS) is being considered as a potential photon-absorbing layer for low cost thin film solar cells. Nanostructured light trapping is recently investigated as a technique for enhancing the efficiency of CZTS solar cells. Herein, we used coupled electrical and optical modeling for different combinations of nanostructured CZTS solar cells to guide optimization of such nanostructures. The model is validated by a comparison of simulated I-V curves with previously reported experimental data. A very good agreement is achieved. Simulations are used to demonstrate that nanostructures can be tailored to maximize the absorption, carrier generation, carrier collection, and efficiency in CZTS solar cells. All proposed nanostructured solar cells showed enhancement in the overall conversion efficiency.

  16. Rationalization of dye uptake on titania slides for dye-sensitized solar cells by a combined chemometric and structural approach.

    PubMed

    Gianotti, Valentina; Favaro, Giada; Bonandini, Luca; Palin, Luca; Croce, Gianluca; Boccaleri, Enrico; Artuso, Emma; van Beek, Wouter; Barolo, Claudia; Milanesio, Marco

    2014-11-01

    A model photosensitizer (D5) for application in dye-sensitized solar cells has been studied by a combination of XRD, theoretical calculations, and spectroscopic/chemometric methods. The conformational stability and flexibility of D5 and molecular interactions between adjacent molecules were characterized to obtain the driving forces that govern D5 uptake and grafting and to infer the most likely arrangement of the molecules on the surface of TiO2. A spectroscopic/chemometric approach was then used to yield information about the correlations between three variables that govern the uptake itself: D5 concentration, dispersant (chenodeoxycholic acid; CDCA) concentration, and contact time. The obtained regression model shows that large uptakes can be obtained at high D5 concentrations in the presence of CDCA with a long contact time, or in absence of CDCA if the contact time is short, which suggests how dye uptake and photovoltaic device preparation can be optimized.

  17. Nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    III-V quantum well superlattice and quantum dot solar cells, Si quantum dot tandem cells, nanostructure-enhanced dye-sensitized solar cells and nanopatterned organic solar cells. We thank all the authors and reviewers for their contribution to this special issue. Special thanks are due to the journal's Publisher, Dr Olivia Roche and the editorial and publishing staff for their help and support.

  18. FeS2 quantum dots sensitized nanostructured TiO2 solar cell: photoelectrochemical and photoinduced absorption spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Bedja, I.

    2011-09-01

    Thin films of nanostructured TiO2 have been modified with FeS2 (pyrite) nano-particles by a low temperature chemical reaction of iron pentacarbonyl with sulfur in xylene. Quantum size effects are manifested by the observation of a blue shift in both absorption and photocurrent action spectra. PIA (Photoinduced absorption spectroscopy), where the excitation is provided by a square-wave modulated (on/off) monochromatic light emitting diode, is a multipurpose tool in the study of dye-sensitized solar cells. Here, PIA is used to study quantum-dot modified TiO2 nanostructured electrodes. The PIA spectra obtained give evidence for long-lived photoinduced charge separation: electrons are injected into the metal oxide and holes are left behind in the FeS2 quantum dot. Time-resolved PIA shows that recombination between electrons and holes occurs on a millisecond timescale. The Incident-Photon-to-Current Efficiency of about 23 % was obtained at 400 nm excitation. The performances of TiO2 electrodes modified with FeS2 are relatively low, which is explained by the presence of FeS2 phases other than the photoactive pyrite phase, as follows from the XRD spectrum.

  19. The application of electrospun titania nanofibers in dye-sensitized solar cells.

    PubMed

    Krysova, Hana; Zukal, Arnost; Trckova-Barakova, Jana; Chandiran, Aravind Kumar; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Kavan, Ladislav

    2013-01-01

    Titania nanofibers were fabricated using the industrial Nanospider(TM) technology. The preparative protocol was optimized by screening various precursor materials to get pure anatase nanofibers. Composite films were prepared by mixing a commercial paste of nanocrystalline anatase particles with the electrospun nanofibers, which were shortened by milling. The composite films were sensitized by Ru-bipyridine dye (coded C106) and the solar conversion efficiency was tested in a dye-sensitized solar cell filled with iodide-based electrolyte solution (coded Z960). The solar conversion efficiency of a solar cell with the optimized composite electrode (η = 7.53% at AM 1.5 irradiation) outperforms that of a solar cell with pure nanoparticle film (η = 5.44%). Still larger improvement was found for lower light intensities. At 10% sun illumination, the best composite electrode showed η = 7.04%, referenced to that of pure nanoparticle film (η = 4.69%). There are non-monotonic relations between the film's surface area, dye sorption capacity and solar performance of nanofiber-containing composite films, but the beneficial effect of the nanofiber morphology for enhancement of the solar efficiency has been demonstrated.

  20. Investigation of the influence of coadsorbent dye upon the interfacial structure of dye-sensitized solar cells

    SciTech Connect

    Honda, M. Miyano, K.; Yanagida, M.; Han, L.

    2014-11-07

    The interface between Ru(tcterpy)(NCS){sub 3}TBA{sub 2} [black dye (BD); tcterpy = 4,4{sup ′},4{sup ″}-tricarboxy-2,2{sup ′}:6{sup ′},2{sup ″}-terpyridine, NCS = thiocyanato, TBA = tetrabutylammonium cation] and nanocrystalline TiO{sub 2}, as found in dye-sensitized solar cells, is investigated by soft-X-ray synchrotron radiation and compared with the adsorption structure of cis-Ru(Hdcbpy){sub 2}(NCS){sub 2}TBA{sub 2} (N719; dcbpy = 4,4{sup ′}-dicarboxy-2,2{sup ′}-bipyridine) on TiO{sub 2} to elucidate the relationship between the adsorption mode of BD and the photocurrent with and without coadsorbed indoline dye D131. The depth profile is characterized with X-ray photoelectron spectroscopy and S K-edge X-ray absorption fine structure using synchrotron radiation. Both datasets indicate that one of the isothiocyanate groups of BD interacts with TiO{sub 2} via its S atom when the dye is adsorbed from a single-component solution. In contrast, the interaction is slightly suppressed when D131 is coadsorbed, indicated by the fact that the presence of D131 changes the adsorption mode of BD. Based upon these results, the number of BD dye molecules interacting with the substrate is shown to decrease by 10% when D131 is coadsorbed, and the dissociation is shown to be related to the short-circuit photocurrent in the 600–800 nm region. The design of a procedure to promote the preferential adsorption of D131 therefore leads to an improvement of the short-circuit current and conversion efficiency.