Sample records for nanostructured iron-doped zirconia

  1. Dy3+ doped cubic zirconia nanostructures prepared via ultrasound route for display applications

    NASA Astrophysics Data System (ADS)

    Yadav, H. J. Amith; Eraiah, B.; Nagabhushana, H.; Basavaraj, R. B.; Deepthi, N. H.

    2017-05-01

    White light emitting dysprosium (Dy) doped Zirconia (ZrO2) nanostructures were prepared first time via ultrasound assisted sonochemical synthesis route using cetyltrimethylammonium bromide (CTAB) surfactant. The obtained product was well characterized. The powder X-ray diffraction (PXRD) profiles confirmed that the product was highly crystalline in nature with cubic phase. Various reaction parameters such as, effect of sonication time, concentration of the surfactant was studied in detail. Diffuse reflectance spectroscopy (DRS) was studied to evaluate the band gap energy of the products and the values were found in the range of 4.13 - 4.53 eV. The particle size was estimated by transmission electron microscope (TEM) and it was found in the range of 10-20 nm. Photoluminescence (PL) properties were studied in detail by recording emission spectra of all the Dy doped Zirconia nanostructures at an excitation wavelength of 350 nm. The emission peaks were observed at 480, 574 and 666 nm which corresponds to Dy3+ ion transitions. The 3 mol% Dy3+ doped ZrO2 nanostructures showed maximum intensity. Further photometric measurements were done by evaluating, Commission International De I-Eclairage (CIE) and correlated color temperature (CCT). From CIE it was observed that the color coordinates lies in white region. The color purity and quantum efficiency were also estimated and the results indicate that the nanophosphor obtained in this route can be used in preparing solid state lighting application.

  2. PAC characterization of Gd and Y doped nanostructured zirconia solid solutions

    NASA Astrophysics Data System (ADS)

    Caracoche, María C.; Martínez, Jorge A.; Pasquevich, Alberto F.; Rivas, Patricia C.; Djurado, Elizabeth; Boulc'h, Florence

    2007-02-01

    A perturbed angular correlation (PAC) study as a function of temperature has been carried out on spray pyrolysis-derived powders and compacts of 2.5 mol% Y 2O 3-ZrO 2 and 2 mol% Gd 2O 3-ZrO 2 nanostructured tetragonal zirconias. The powders undergo the ordinary thermal transformation between the two known defective t‧- and regular t-tetragonal forms and also a partial and irreversible change to an ordered cubic configuration. The dynamical nature of the t‧-form leads to an activation energy of about 0.15 eV for the oxygen vacancies movement. The as-obtained compacts do not exhibit any known cubic nanostructure but some additional contributions. In both of them a hyperfine component assigned to the orthorhombic phase is determined. In the smaller cation Y doped ceramic a small amount of monoclinic phase reflects an incomplete stabilization.

  3. Role of oxygen vacancies on the structure and density of states of iron-doped zirconia

    NASA Astrophysics Data System (ADS)

    Sangalli, Davide; Lamperti, Alessio; Cianci, Elena; Ciprian, Roberta; Perego, Michele; Debernardi, Alberto

    2013-02-01

    In this paper, we study the effect of iron doping in zirconia using both theoretical and experimental approaches. Combining density functional theory (DFT) simulations with the experimental characterization of thin films, we show that iron is in the Fe3+ oxidation state and, accordingly, the films are rich in oxygen vacancies (VO••). VO•• favor the formation of the tetragonal phase in doped zirconia (ZrO2:Fe) and affect the density of states at the Fermi level as well as the local magnetization of Fe atoms. We also show that the Fe(2p) and Fe(3p) energy levels can be used as a marker for the presence of vacancies in the doped system. In particular, the computed position of the Fe(3p) peak is strongly sensitive to the VO•• to Fe atoms ratio. A comparison of the theoretical and experimental Fe(3p) peak positions suggests that in our films this ratio is close to 0.5. Besides the interest in the material by itself, ZrO2:Fe constitutes a test case for the application of DFT on transition metals embedded in oxides. In ZrO2:Fe, the inclusion of the Hubbard U correction significantly changes the electronic properties of the system. However, the inclusion of this correction, at least for the value U=3.3 eV chosen in the present work, worsen the agreement with the measured photoemission valence band spectra.

  4. Electronic and magnetic properties of iron doped zirconia: Theory and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debernardi, A., E-mail: alberto.debernardi@mdm.imm.cnr.it; Sangalli, D.; Lamperti, A.

    We systematically investigated, both theoretically and experimentally, Zr{sub 1−x}Fe{sub x}O{sub 2−y} ranging from diluted (x ≈ 0.05) up to large (x ≈ 0.25) Fe concentration. By atomic layer deposition, we grew thin films of high-κ zirconia in cubic phase with Fe uniformly distributed in the film, as proven by time of flight secondary ion mass spectrometry and transmission electron microscopy measurements. Iron is in Fe{sup 3+} oxidation state suggesting the formation of oxygen vacancies with y concentration close to x/2. By ab-initio simulations, we studied the phase diagram relating the stability of monoclinic vs. tetragonal phase as a function of Fe doping and filmmore » thickness: the critical thickness at which the pure zirconia is stabilized in the tetragonal phase is estimated ranging from 2 to 6 nm according to film morphology. Preliminary results by X-ray magnetic circular dichroism and alternating gradient force magnetometry are discussed in comparison to ab initio data enlightening the role of oxygen vacancies in the magnetic properties of the system.« less

  5. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    NASA Astrophysics Data System (ADS)

    Gómez, A.; Villanueva, R.; Vie, D.; Murcia-Mascaros, S.; Martínez, E.; Beltrán, A.; Sapiña, F.; Vicent, M.; Sánchez, E.

    2013-01-01

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures.

  6. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, A.; Villanueva, R.; Vie, D.

    2013-01-15

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and themore » nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: Black-Right-Pointing-Pointer Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders. Black-Right-Pointing-Pointer The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. Black-Right-Pointing-Pointer The temperature of the thermal treatment controls particle sizes. Black-Right-Pointing-Pointer The preparation procedure has been scaled up to the 100 g scale. Black-Right-Pointing-Pointer This method is appropriate for the large-scale industrial preparation of multimetallic systems.« less

  7. Zirconia coating stabilized super-iron alkaline cathodes

    NASA Astrophysics Data System (ADS)

    Yu, Xingwen; Licht, Stuart

    A low-level zirconia coating significantly stabilizes high energy alkaline super-iron cathodes, and improves the energy storage capacity of super-iron batteries. Zirconia coating is derived from ZrCl 4 in an organic medium through the conversion of ZrCl 4 to ZrO 2. In alkaline battery system, ZrO 2 provides an intact shield for the cathode materials and the hydroxide shuttle through the coating sustains alkaline cathode redox chemistry. Most super-iron cathodes are solid-state stable, such as K 2FeO 4 and Cs 2FeO 4, but tend to be passivated in alkaline electrolyte due to the formation of Fe(III) over layer. Zirconia coating effectively enhances the stability of these super-iron cathodes. However, for solid-state unstable super-iron cathode (e.g. BaFeO 4), only a little stabilization effect of zirconia coating is observed.

  8. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping

    2017-03-01

    Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co0.54Fe0.46OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co0.54Fe0.46OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.

  9. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application.

    PubMed

    Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping

    2017-03-08

    Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co 0.54 Fe 0.46 OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co 0.54 Fe 0.46 OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.

  10. Analysis of the Microstructure and Thermal Shock Resistance of Laser Glazed Nanostructured Zirconia TBCs

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Hao, Yunfei; Wang, Hongying; Tang, Weijie

    2010-03-01

    Nanostructured zirconia thermal barrier coatings (TBCs) have been prepared by atmospheric plasma spraying using the reconstituted nanosized yttria partially stabilized zirconia powder. Field emission scanning electron microscope was applied to examine the microstructure of the resulting TBCs. The results showed that the TBCs exhibited a unique, complex structure including nonmelted or partially melted nanosized particles and columnar grains. A CO2 continuous wave laser beam has been applied to laser glaze the nanostructured zirconia TBCs. The effect of laser energy density on the microstructure and thermal shock resistance of the as-glazed coatings has been systematically investigated. SEM observation indicated that the microstructure of the as-glazed coatings was very different from the microstructure of the as-sprayed nanostructured TBCs. It changed from single columnar grain to a combination of columnar grains in the fracture surface and equiaxed grains on the surface with increasing laser energy density. Thermal shock resistance tests have showed that laser glazing can double the lifetime of TBCs. The failure of the as-glazed coatings was mainly due to the thermal stress caused by the thermal expansion coefficient mismatch between the ceramic coat and metallic substrate.

  11. Microstructural characteristics of plasma sprayed nanostructured partially stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio Soares

    Thermal barrier coatings have been extensively applied in the aerospace industry in turbines and rocket engines as an insulation system. Partially stabilized zirconia, due to its high thermal stability and low thermal conductivity at high temperatures has been traditionally employed as the ceramic element of the thermal barrier coating system. Different approaches have been taken in order to improve the performance of these coatings. Nanostructured materials are promising an interesting future in the beginning of the 21st century. Due to its enhanced strain to failure and superplasticity new applications may be accomplished or the limits of materials utilization may be placed at higher levels. Single nanostructured particles can not be thermal sprayed by conventional thermal spray equipment. Due to its low mass, they would be deviated to the periphery of the thermal spray jet. To overcome this characteristic, single nanostructured particles were successively agglomerated into large microscopic particles, with particle size distribution similar to the conventional feedstocks for thermal spray equipment. Agglomerated nanostructured particles of partially stabilized zirconia were plasma sprayed in air with different spray parameters. According to traditional thermal spray procedure, the feedstock has to be melted in the thermal spray jet in order to achieve the necessary conditions for adhesion and cohesion on the substrate. Due to the nature of the nanostructured particles, a new step has to be taken in the thermal spray processing; particle melting has to be avoided in order to preserve the feedstock nanostructure in the coating overall microstructure. In this work, the adhesion/cohesion system of nanostructured coatings is investigated and clarified. A percentage of molten particles will retain and hold the non-molten agglomerated nanostructured particles in the coating overall microstructure. Controlling the spray parameters it was possible to produce coatings

  12. Cytotoxicity and physicochemical characterization of iron–manganese-doped sulfated zirconia nanoparticles

    PubMed Central

    Al-Fahdawi, Mohamed Qasim; Rasedee, Abdullah; Al-Qubaisi, Mothanna Sadiq; Alhassan, Fatah H; Rosli, Rozita; El Zowalaty, Mohamed Ezzat; Naadja, Seïf-Eddine; Webster, Thomas J; Taufiq-Yap, Yun Hin

    2015-01-01

    Iron–manganese-doped sulfated zirconia nanoparticles with both Lewis and Brønsted acidic sites were prepared by a hydrothermal impregnation method followed by calcination at 650°C for 5 hours, and their cytotoxicity properties against cancer cell lines were determined. The characterization was carried out using X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Brauner–Emmett–Teller (BET) surface area measurements, X-ray fluorescence, X-ray photoelectron spectroscopy, zeta size potential, and transmission electron microscopy (TEM). The cytotoxicity of iron–manganese-doped sulfated zirconia nanoparticles was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays against three human cancer cell lines (breast cancer MDA-MB231 cells, colon carcinoma HT29 cells, and hepatocellular carcinoma HepG2 cells) and two normal human cell lines (normal hepatocyte Chang cells and normal human umbilical vein endothelial cells [HUVECs]). The results suggest for the first time that iron–manganese-doped sulfated zirconia nanoparticles are cytotoxic to MDA-MB231 and HepG2 cancer cells but have less toxicity to HT29 and normal cells at concentrations from 7.8 μg/mL to 500 μg/mL. The morphology of the treated cells was also studied, and the results supported those from the cytotoxicity study in that the nanoparticle-treated HepG2 and MDA-MB231 cells had more dramatic changes in cell morphology than the HT29 cells. In this manner, this study provides the first evidence that iron–manganese-doped sulfated zirconia nanoparticles should be further studied for a wide range of cancer applications without detrimental effects on healthy cell functions. PMID:26425082

  13. Microstructure, crystallization and shape memory behavior of titania and yttria co-doped zirconia

    DOE PAGES

    Zeng, Xiao Mei; Du, Zehui; Schuh, Christopher A.; ...

    2015-12-17

    Small volume zirconia ceramics with few or no grain boundaries have been demonstrated recently to exhibit the shape memory effect. To explore the shape memory properties of yttria doped zirconia (YDZ), it is desirable to develop large, microscale grains, instead of submicron grains that result from typical processing of YDZ. In this paper, we have successfully produced single crystal micro-pillars from microscale grains encouraged by the addition of titania during processing. Titania has been doped into YDZ ceramics and its effect on the grain growth, crystallization and microscale elemental distribution of the ceramics have been systematically studied. With 5 mol%more » titania doping, the grain size can be increased up to ~4 μm, while retaining a large quantity of the desired tetragonal phase of zirconia. Finally, micro-pillars machined from tetragonal grains exhibit the expected shape memory effects where pillars made from titania-free YDZ would not.« less

  14. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon.

    PubMed

    Genovese, Chiara; Schuster, Manfred E; Gibson, Emma K; Gianolio, Diego; Posligua, Victor; Grau-Crespo, Ricardo; Cibin, Giannantonio; Wells, Peter P; Garai, Debi; Solokha, Vladyslav; Krick Calderon, Sandra; Velasco-Velez, Juan J; Ampelli, Claudio; Perathoner, Siglinda; Held, Georg; Centi, Gabriele; Arrigo, Rosa

    2018-03-05

    The carbon-carbon coupling via electrochemical reduction of carbon dioxide represents the biggest challenge for using this route as platform for chemicals synthesis. Here we show that nanostructured iron (III) oxyhydroxide on nitrogen-doped carbon enables high Faraday efficiency (97.4%) and selectivity to acetic acid (61%) at very-low potential (-0.5 V vs silver/silver chloride). Using a combination of electron microscopy, operando X-ray spectroscopy techniques and density functional theory simulations, we correlate the activity to acetic acid at this potential to the formation of nitrogen-coordinated iron (II) sites as single atoms or polyatomic species at the interface between iron oxyhydroxide and the nitrogen-doped carbon. The evolution of hydrogen is correlated to the formation of metallic iron and observed as dominant reaction path over iron oxyhydroxide on oxygen-doped carbon in the overall range of negative potential investigated, whereas over iron oxyhydroxide on nitrogen-doped carbon it becomes important only at more negative potentials.

  15. Zirconia coated carbonyl iron particle-based magnetorheological fluid for polishing

    NASA Astrophysics Data System (ADS)

    Shafrir, Shai N.; Romanofsky, Henry J.; Skarlinski, Michael; Wang, Mimi; Miao, Chunlin; Salzman, Sivan; Chartier, Taylor; Mici, Joni; Lambropoulos, John C.; Shen, Rui; Yang, Hong; Jacobs, Stephen D.

    2009-08-01

    Aqueous magnetorheological (MR) polishing fluids used in magnetorheological finishing (MRF) have a high solids concentration consisting of magnetic carbonyl iron particles and nonmagnetic polishing abrasives. The properties of MR polishing fluids are affected over time by corrosion of CI particles. Here we report on MRF spotting experiments performed on optical glasses using a zirconia coated carbonyl iron (CI) particle-based MR fluid. The zirconia coated magnetic CI particles were prepared via sol-gel synthesis in kg quantities. The coating layer was ~50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long term stability against aqueous corrosion. "Free" nano-crystalline zirconia polishing abrasives were co-generated in the coating process, resulting in an abrasivecharged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses over a period of 3 weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.

  16. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries

    DOE PAGES

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; ...

    2016-05-27

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here, in this study, we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observedmore » to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.« less

  17. F-T process using an iron on mixed zirconia-titania supported catalyst

    DOEpatents

    Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald

    1987-01-01

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  18. Atomistic modeling of La 3+ doping segregation effect on nanocrystalline yttria-stabilized zirconia

    DOE PAGES

    Zhang, Shenli; Sha, Haoyan; Castro, Ricardo H. R.; ...

    2018-01-01

    The effect of La 3+ doping on the structure and ionic conductivity change in nanocrystalline yttria-stabilized zirconia (YSZ) was studied using a combination of Monte Carlo and molecular dynamics simulations.

  19. Enhanced blue responses in nanostructured Si solar cells by shallow doping

    NASA Astrophysics Data System (ADS)

    Cheon, Sieun; Jeong, Doo Seok; Park, Jong-Keuk; Kim, Won Mok; Lee, Taek Sung; Lee, Heon; Kim, Inho

    2018-03-01

    Optimally designed Si nanostructures are very effective for light trapping in crystalline silicon (c-Si) solar cells. However, when the lateral feature size of Si nanostructures is comparable to the junction depth of the emitter, dopant diffusion in the lateral direction leads to excessive doping in the nanostructured emitter whereby poor blue responses arise in the external quantum efficiency (EQE). The primary goal of this study is to find the correlation of emitter junction depth and carrier collection efficiency in nanostructured c-Si solar cells in order to enhance the blue responses. We prepared Si nanostructures of nanocone shape by colloidal lithography, with silica beads of 520 nm in diameter, followed by a reactive ion etching process. c-Si solar cells with a standard cell architecture of an Al back surface field were fabricated varying the emitter junction depth. We varied the emitter junction depth by adjusting the doping level from heavy doping to moderate doping to light doping and achieved greatly enhanced blue responses in EQE from 47%-92% at a wavelength of 400 nm. The junction depth analysis by secondary ion mass-spectroscopy profiling and the scanning electron microscopy measurements provided us with the design guide of the doping level depending on the nanostructure feature size for high efficiency nanostructured c-Si solar cells. Optical simulations showed us that Si nanostructures can serve as an optical resonator to amplify the incident light field, which needs to be considered in the design of nanostructured c-Si solar cells.

  20. Positron annihilation studies of zirconia doped with metal cations of different valence

    NASA Astrophysics Data System (ADS)

    Prochazka, I.; Cizek, J.; Melikhova, O.; Konstantinova, T. E.; Danilenko, I. A.; Yashchishyn, I. A.; Anwand, W.; Brauer, G.

    2013-06-01

    New results obtained by applying positron annihilation spectroscopy to the investigation of zirconia-based nanomaterials doped with metal cations of different valence are reported. The slow-positron implantation spectroscopy combined with Doppler broadening measurements was employed to study the sintering of pressure-compacted nanopowders of tetragonal yttria-stabilised zirconia (t-YSZ) and t-YSZ with chromia additive. Positronium (Ps) formation in t-YSZ was proven by detecting 3γ-annihilations of ortho-Ps and was found to gradually decrease with increasing sintering temperature. A subsurface layer with enhanced 3γ-annihilations, compared to the deeper regions, could be identified. Addition of chromia was found to inhibit Ps formation. In addition, first results of positron lifetime measurements on nanopowders of zirconia phase-stabilised with MgO and CeO2 are presented.

  1. Photoluminescent spectroscopy measurements in nanocrystalline praseodymium doped zirconia powders

    NASA Astrophysics Data System (ADS)

    Ramos-Brito, F.; Murrieta S, H.; Hernández A, J.; Camarillo, E.; García-Hipólito, M.; Martínez-Martínez, R.; Álvarez-Fragoso, O.; Falcony, C.

    2006-05-01

    Praseodymium doped zirconia powder (ZrO2: (0.53 at%) Pr3+) was prepared by a co-precipitation technique and annealed in air at a temperature Ta = 950 °C. The x-ray diffraction pattern shows a nanocrystalline structure composed of 29.6% monoclinic and 70.4% cubic-tetragonal phases. Medium infrared and Raman analysis confirms the monoclinic/cubic-tetragonal crystalline structure and proves the absence of praseodymium aggregates in the material. Photoluminescent spectroscopy over excitations of 457.9 and 514.9 nm (at 20 K), shows two emission spectra composed of many narrow peaks in the visible-near infrared region (VIS-NIR) of the electromagnetic spectrum, associated with 4f inter-level electronic transitions in praseodymium ions incorporated in the zirconia. Excitation and emission spectra show the different mechanisms of the direct and non-direct excitation of the dopant ion (Pr3+), and the preferential relaxation of the material by charge transfer from the host (zirconia) to the 4f5d band and the 4f inter-level of the dopant ion (Pr3+). No evidence of energy transfer from the host to the dopant was observed.

  2. Iron on mixed zirconia-titania substrate Fischer-Tropsch catalyst and method of making same

    DOEpatents

    Dyer, Paul N.; Nordquist, Andrew F.; Pierantozzi, Ronald

    1986-01-01

    A Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized.

  3. Highly sensitive H2 gas sensor of Co doped ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Bhati, Vijendra Singh; Ranwa, Sapana; Kumar, Mahesh

    2018-04-01

    In this report, the hydrogen gas sensing properties based on Co doped ZnO nanostructures are explored. The undoped and Co doped nanostructures were grown by RF magnetron sputtering system, and its structural, morphological, and hydrogen sensing behavior are investigated. The maximum relative response was occurred by the 2.5% Co doped ZnO nanostructures among undoped and other doped sensors. The enhancement of relative response might be due to large chemisorbed sites formation on the ZnO surface for the reaction to hydrogen gas.

  4. Mixed conductivity, structural and microstructural characterization of titania-doped yttria tetragonal zirconia polycrystalline/titania-doped yttria stabilized zirconia composite anode matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colomer, M.T., E-mail: tcolomer@icv.csic.e; Maczka, M.

    2011-02-15

    Taking advantage of the fact that TiO{sub 2} additions to 8YSZ cause not only the formation of a titania-doped YSZ solid solution but also a titania-doped YTZP solid solution, composite materials based on both solutions were prepared by solid state reaction. In particular, additions of 15 mol% of TiO{sub 2} give rise to composite materials constituted by 0.51 mol fraction titania-doped yttria tetragonal zirconia polycrystalline and 0.49 mol fraction titania-doped yttria stabilized zirconia (0.51TiYTZP/0.49TiYSZ). Furthermore, Y{sub 2}(Ti{sub 1-y}Zr{sub y}){sub 2}O{sub 7} pyrochlore is present as an impurity phase with y close to 1, according to FT-Raman results. Lower and highermore » additions of titania than that of 15 mol%, i.e., x=0, 5, 10, 20, 25 and 30 mol% were considered to study the evolution of 8YSZ phase as a function of the TiO{sub 2} content. Furthermore, zirconium titanate phase (ZrTiO{sub 4}) is detected when the titania content is equal or higher than 20 mol% and this phase admits Y{sub 2}O{sub 3} in solid solution according to FE-SEM-EDX. The 0.51TiYTZP/0.49TiYSZ duplex material was selected in this study to establish the mechanism of its electronic conduction under low oxygen partial pressures. In the pO{sub 2} range from 0.21 to 10{sup -7.5} atm. the conductivity is predominantly ionic and constant over the range and its value is 0.01 S/cm. The ionic plus electronic conductivity is 0.02 S/cm at 1000 {sup o}C and 10{sup -12.3} atm. Furthermore, the onset of electronic conductivity under reducing conditions exhibits a -1/4 pO{sub 2} dependence. Therefore, it is concluded that the n-type electronic conduction in the duplex material can be due to a small polaron-hopping between Ti{sup 3+} and Ti{sup 4+}. -- Graphical abstract: FE-SEM micrograph of a polished and thermal etched surface of a Ti-doped YTZP/Ti-doped YSZ composite material. Display Omitted Research highlights: {yields} Ti-doped YTZP/Ti-doped YSZ composite materials are mixed conductors

  5. Novel erbia-yttria co-doped zirconia fluorescent thermal history sensor

    NASA Astrophysics Data System (ADS)

    Copin, E. B.; Massol, X.; Amiel, S.; Sentenac, T.; Le Maoult, Y.; Lours, P.

    2017-01-01

    Thermochromic pigments are commonly used for off-line temperature mapping on components from systems operating at a temperature higher than 1073 K. However, their temperature resolution is often limited by the discrete number of color transitions they offer. This paper investigates the potential of erbia-yttria co-doped zirconia as a florescent thermal history sensor alternative to thermochromic pigments. Samples of yttria-stabilized zirconia powder (YSZ, 8.3 mol% YO1.5) doped with 1.5 mol% ErO1.5 and synthesized by a sol-gel route are calcined for 15 minutes under isothermal conditions between 1173 and 1423 K. The effects of temperature on their crystal structure and room temperature fluorescence properties are then studied. Results show a steady increase of the crystallinity of the powders with temperature, causing a significant and permanent increase of the emission intensity and fluorescence lifetime which could be used to determine temperature with a calculated theoretical resolution lower than 1 K for intensity. The intensity ratio obtained using a temperature insensitive YSZ:Eu3+ reference phosphor is proposed as a more robust parameter regarding experimental conditions for determining thermal history. Finally, the possibilities for integrating this fluorescent marker into sol-gel deposited coatings for future practical thermal history sensing applications is also discussed.

  6. Fluorine-doped NiO nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Singh, Kulwinder; Kumar, Manjeet; Singh, Dilpreet; Singh, Manjinder; Singh, Paviter; Singh, Bikramjeet; Kaur, Gurpreet; Bala, Rajni; Thakur, Anup; Kumar, Akshay

    2018-05-01

    Nanostructured NiO has been prepared by co-precipitation method. In this study, the effect of fluorine doping (1, 3 and 5 wt. %) on the structural, morphological as well as optical properties of NiO nanostructures has been studied. X-ray diffraction (XRD) has employed for studying the structural properties. Cubic crystal structure of NiO was confirmed by the XRD analysis. Crystallite size increased with increase in doping concentration. Nelson-Riley factor (NRF) analysis indicated the presence of defect states in the synthesized samples. Field emission scanning electron microscopy showed the spherical morphology of the synthesized samples and also revealed that the particle size varied with dopant content. The optical properties were studied using UV-Visible Spectroscopy. The results indicated that the band gap energy of the synthesized nanostructures decreased with increase in doping concentration upto 3% but increased as the doping concentration was further raised to 5%. This can be ascribed to the defect states variations in the synthesized samples. The results suggested that the synthesized nanostructures are promising candidate for optoelectronic as well as gas sensing applications.

  7. Surface Charge Transfer Doping via Transition Metal Oxides for Efficient p-Type Doping of II-VI Nanostructures.

    PubMed

    Xia, Feifei; Shao, Zhibin; He, Yuanyuan; Wang, Rongbin; Wu, Xiaofeng; Jiang, Tianhao; Duhm, Steffen; Zhao, Jianwei; Lee, Shuit-Tong; Jie, Jiansheng

    2016-11-22

    Wide band gap II-VI nanostructures are important building blocks for new-generation electronic and optoelectronic devices. However, the difficulty of realizing p-type conductivity in these materials via conventional doping methods has severely handicapped the fabrication of p-n homojunctions and complementary circuits, which are the fundamental components for high-performance devices. Herein, by using first-principles density functional theory calculations, we demonstrated a simple yet efficient way to achieve controlled p-type doping on II-VI nanostructures via surface charge transfer doping (SCTD) using high work function transition metal oxides such as MoO 3 , WO 3 , CrO 3 , and V 2 O 5 as dopants. Our calculations revealed that these oxides were capable of drawing electrons from II-VI nanostructures, leading to accumulation of positive charges (holes injection) in the II-VI nanostructures. As a result, Fermi levels of the II-VI nanostructures were shifted toward the valence band regions after surface modifications, along with the large enhancement of work functions. In situ ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy characterizations verified the significant interfacial charge transfer between II-VI nanostructures and surface dopants. Both theoretical calculations and electrical transfer measurements on the II-VI nanostructure-based field-effect transistors clearly showed the p-type conductivity of the nanostructures after surface modifications. Strikingly, II-VI nanowires could undergo semiconductor-to-metal transition by further increasing the SCTD level. SCTD offers the possibility to create a variety of electronic and optoelectronic devices from the II-VI nanostructures via realization of complementary doping.

  8. Doped carbon nanostructure field emitter arrays for infrared imaging

    DOEpatents

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  9. Investigation of the optoelectronic behavior of Pb-doped CdO nanostructures

    NASA Astrophysics Data System (ADS)

    Eskandari, Abdollah; Jamali-Sheini, Farid; Cheraghizade, Mohsen; Yousefi, Ramin

    2018-03-01

    Un- and lead (Pb)-doped cadmium oxide (CdO) semiconductor nanostructures were synthesized by a sonochemical method to study their physical properties. The obtained X-ray diffraction (XRD) patterns indicated cubic CdO crystalline structures for all samples and showed that the crystallite size of CdO increases with Pb addition. Scanning electron microscopy (SEM) images of the nanostructures illustrated agglomerated oak-like particles for the Pb-doped CdO nanostructures. Furthermore, optical studies suggested that the emission band gap energy of the CdO nanostructures lies in the range of 2.27-2.38 eV and crystalline defects increase by incorporation of Pb atoms in the CdO crystalline lattice. In addition, electrical experiments declared that the n-type electrical nature of the un- and Pb-doped CdO nanostructures and the minimum of Pb atoms lead to a high carrier concentration.

  10. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2003-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  11. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    1990-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  12. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications

    NASA Astrophysics Data System (ADS)

    Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan

    2014-01-01

    In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.

  13. Growth and properties of electrodeposited transparent Al-doped ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Baka, O.; Mentar, L.; Khelladi, M. R.; Azizi, A.

    2015-12-01

    Al-doped zinc oxide (AZO) nanostructures were fabricated on fluorine-doped tin-oxide (FTO)- coated glass substrates by using electrodeposition. The effects of the doping concentration of Al on the morphological, microstructural, electrical and optical properties of the nanostructures were investigated. From the field emission scanning electron microscopy (FE-SEM) observation, when the amount of Al was increased in the solution, the grains size was observed to decreases. The observed changes in the morphology indicate that Al acts as nucleation centers in the vacancy sites of ZnO and destroys the crystalline structure at high doping level. Effectively, the X-ray diffraction (XRD) analysis indicated that the undoped and the doped ZnO nanostructures has a polycrystalline nature and a hexagonal wurtzite structure with a (002) preferential orientation. The photoluminescence (PL) room-temperature measurements showed that the incorporation of Al in the Zn lattice can improve the intensity of ultraviolet (UV) emission, thus suggesting its greater prospects for use in UV optoelectronic devices.

  14. Current Advances in Lanthanide‐Doped Upconversion Nanostructures for Detection and Bioapplication

    PubMed Central

    Chen, Cailing

    2016-01-01

    Along with the development of science and technology, lanthanide‐doped upconversion nanostructures as a new type of materials have taken their place in the field of nanomaterials. Upconversion luminescence is a nonlinear optical phenomenon, which absorbs two or more photons and emits one photon. Compared with traditional luminescence materials, upconversion nanostructures have many advantages, such as weak background interference, long lifetime, low excitation energy, and strong tissue penetration. These interesting nanostructures can be applied in anticounterfeit, solar cell, detection, bioimaging, therapy, and so on. This review is focused on the current advances in lanthanide‐doped upconversion nanostructures, covering not only basic luminescence mechanism, synthesis, and modification methods but also the design and fabrication of upconversion nanostructures, like core–shell nanoparticles or nanocomposites. At last, this review emphasizes the application of upconversion nanostructure in detection and bioimaging and therapy. Learning more about the advances of upconversion nanostructures can help us better exploit their excellent performance and use them in practice. PMID:27840794

  15. Hot Corrosion Resistance and Mechanical Behavior of Atmospheric Plasma Sprayed Conventional and Nanostructured Zirconia Coatings

    NASA Astrophysics Data System (ADS)

    Saremi, Mohsen; Keyvani, Ahmad; Heydarzadeh Sohi, Mahmoud

    Conventional and nanostructured zirconia coatings were deposited on In-738 Ni super alloy by atmospheric plasma spray technique. The hot corrosion resistance of the coatings was measured at 1050°C using an atmospheric electrical furnace and a fused mixture of vanadium pent oxide and sodium sulfate respectively. According to the experimental results nanostructured coatings showed a better hot corrosion resistance than conventional ones. The improved hot corrosion resistance could be explained by the change of structure to a dense and more packed structure in the nanocoating. The evaluation of mechanical properties by nano indentation method showed the hardness (H) and elastic modulus (E) of the YSZ coating increased substantially after hot corrosion.

  16. Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics.

    PubMed

    Shafrir, Shai N; Romanofsky, Henry J; Skarlinski, Michael; Wang, Mimi; Miao, Chunlin; Salzman, Sivan; Chartier, Taylor; Mici, Joni; Lambropoulos, John C; Shen, Rui; Yang, Hong; Jacobs, Stephen D

    2009-12-10

    We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was approximately 50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. "Free" nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a period of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.

  17. Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafrir, Shai N.; Romanofsky, Henry J.; Skarlinski, Michael

    2009-12-10

    We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was {approx}50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. ''Free'' nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a periodmore » of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.« less

  18. Microstructural and optical properties of Mn doped NiO nanostructures synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Shah, Shamim H.; Khan, Wasi; Naseem, Swaleha; Husain, Shahid; Nadeem, M.

    2018-04-01

    Undoped and Mn(0, 5%, 10% and 15%) doped NiO nanostructures were synthesized by sol-gel method. Structure, morphology and optical properties were investigated through XRD, FTIR, SEM/EDS and UV-visible absorption spectroscopy techniques. XRD data analysis reveals the single phase nature with cubic crystal symmetry of the samples and the average crystallite size decreases with the doping of Mn ions upto 10%. FTIR spectra further confirmed the purity and composition of the synthesized samples. The non-spherical shape of the nanostructures was observed from SEM micrographs and gain size of the nanostructures reduces with Mn doping in NiO, whereas agglomeration increases in doped sample. Optical band gap was estimated using Tauc'srelation and found to increase on incorporation of Mn upto 10% in host lattice and then decreases for further doping.

  19. Rapid growth and photoluminescence properties of doped ZnS one-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Zhuo, R. F.; Feng, H. T.; Yan, D.; Chen, J. T.; Feng, J. J.; Liu, J. Z.; Yan, P. X.

    2008-06-01

    In this paper we report the synthesis of doped ZnS one-dimensional (1D) nanostructures by well-established technique of chemical vapor deposition using Zn and S powder as precursors. The ZnS 1D nanostructures were grown on the surface of Au particle-filled anodic aluminum oxide templates, catalyst-free graphite sheets and silicon substrates. ZnS 1D nanostructures with Mn, Cu and Fe as dopants were prepared via a rapid process of 15-20 min. The morphologies of ZnS nanostructures synthesized on different substrates and at different growth temperatures have distinct dissimilarities. The size of ZnS nanowires originated from the Au catalysts could be varied by altering the size of membrane nanopores as well as the embedded Au particles. Room-temperature photoluminescence measurements reveal strong blue, green and yellow-orange light emissions from the doped ZnS 1D nanostructures.

  20. Effect of Eu3+ doping on the structural, morphological and luminescence properties ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Vinoditha, U.; Balakrishna, K. M.; Sarojini, B. K.; Narayana, B.; Kumara, K.

    2018-05-01

    Pure and Eu3+ ions (1, 3, 5 atomic wt%) doped ZnO nanostructures are synthesized by a surfactant assisted hydrothermal method. The effect of doping concentrations on structural, morphological and optical properties of ZnO nanostructures is studied. The XRD analysis shows good crystallinity and the phase purity of the ZnO nanostructures. A shift in the standard Zn-O stretching mode after Eu3+ doping is observed in the FTIR spectra. The images of FESEM demonstrate the morphological variations from hexagonal nanorods to nanoflowers on varying the dopant concentrations. Substitution of Eu3+ ions into Zn2+ sites is confirmed by EDX analysis. The dominance of particle shape over the UV-Visible absorption properties of the prepared samples is noticed. The photoluminescence (PL) emission of undoped and doped ZnO nanostructures show dominant near band edge emission (NBE) in the UV region and minor defect induced deep level emissions in the visible region.

  1. Nanostructured SnSe: Synthesis, doping, and thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Liu, Shuhao; Sun, Naikun; Liu, Mei; Sucharitakul, Sukrit; Gao, Xuan P. A.

    2018-03-01

    IV-VI monochalcogenide SnSe or SnS has recently been proposed as a promising two-dimensional (2D) material for valleytronics and thermoelectrics. We report the synthesis of SnSe nanoflakes and nanostructured thin films with chemical vapor deposition method and their thermoelectric properties. As grown SnSe nanostructures are found to be intrinsically p-type and the single SnSe nanoflake field effect transistor was fabricated. By Ag doping, the power factor of SnSe nanostructured thin films can be improved by up to one order of magnitude compared to the "intrinsic" as grown materials. Our work provides an initial step in the pursuit of IV-VI monochalcogenides as novel 2D semiconductors for electronics and thermoelectrics.

  2. Nitrate-assisted photocatalytic efficiency of defective Eu-doped Pr(OH)3 nanostructures.

    PubMed

    Aškrabić, S; Araújo, V D; Passacantando, M; Bernardi, M I B; Tomić, N; Dojčinović, B; Manojlović, D; Čalija, B; Miletić, M; Dohčević-Mitrović, Z D

    2017-12-06

    Pr(OH) 3 one-dimensional nanostructures are a less studied member of lanthanide hydroxide nanostructures, which recently demonstrated an excellent adsorption capacity for organic pollutant removal from wastewater. In this study, Pr 1-x Eu x (OH) 3 (x = 0, 0.01, 0.03, and 0.05) defective nanostructures were synthesized by a facile and scalable microwave-assisted hydrothermal method using KOH as an alkaline metal precursor. The phase and surface composition, morphology, vibrational, electronic and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectrometry (ICP-OES), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman, infrared (IR), photoluminescence (PL), and diffuse reflectance spectroscopy (DRS). It was deduced that the incorporation of Eu 3+ ions promoted the formation of oxygen vacancies in the already defective Pr(OH) 3 , subsequently changing the Pr(OH) 3 nanorod morphology. The presence of KNO 3 phase was registered in the Eu-doped samples. The oxygen-deficient Eu-doped Pr(OH) 3 nanostructures displayed an improved photocatalytic activity in the removal of reactive orange (RO16) dye under UV-vis light irradiation. An enhanced photocatalytic activity of the Eu-doped Pr(OH) 3 nanostructures was caused by the synergetic effect of oxygen vacancies and Eu 3+ (NO 3 - ) ions present on the Pr(OH) 3 surface, the charge separation efficiency and the formation of the reactive radicals. In addition, the 3% Eu-doped sample exhibited very good adsorptive properties due to different morphology and higher electrostatic attraction with the anionic dye. Pr 1-x Eu x (OH) 3 nanostructures with the possibility of tuning their adsorption/photocatalytic properties present a great potential for wastewater treatment.

  3. Adsorption as a method of doping 3-mol%-yttria-stabilized zirconia powder with copper oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidensticker, J.R.; Mayo, M.J.; Osseo-Asare, K.

    The adsorption behavior of Cu[sup 2+] on 3-mol%-yttria-stabilized tetragonal zirconia polycrystalline (3Y-TZP) powder was studied. There is a window of pH values (10 < pH < 11) where adsorption may be used as a method of doping 3Y-TZP with Cu[sup 2+]. The maximum mole percent of the CuO additions is determined by the specific surface area of the 3Y-TZP powder; a powder with a specific surface area of 16.1 m[sup 2]/g is limited to about 1 mol% CuO. Compacts made from powders doped with CuO using this method exhibited an enhancement in superplasticity comparable to that observed in other studiesmore » using samples doped with CuO by attrition milling.« less

  4. Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films

    NASA Astrophysics Data System (ADS)

    Prasannakumara, R.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.

  5. Electrochemical synthesis of nanostructured Se-doped SnS: Effect of Se-dopant on surface characterizations

    NASA Astrophysics Data System (ADS)

    Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre

    2017-07-01

    SnS1-xSex nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, -1 V, and 30 min, respectively. SnS1-xSex nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns revealed that the SnS1-xSex nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS1-xSex nanostructures due to Se-doping. PL and UV-vis spectroscopy were used to evaluate the optical properties of SnS1-xSex thin films. The PL spectra of SnS1-xSex nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV-vis spectra showed that the optical band gap energy (Eg) of SnS1-xSex nanostructures varied between 1.22-1.65 eV, due to Se-doping.

  6. Orange peel + nanostructured zero-valent-iron composite for the removal of hexavalent chromium in water

    NASA Astrophysics Data System (ADS)

    Olea-Mejía, O.; Cabral-Prieto, A.; Salcedo-Castillo, U.; López-Tellez, G.; Olea-Cardoso, O.; López-Castañares, R.

    2017-11-01

    In this work we used the Pulsed Plasma in Liquid technique to synthesize zero-valent iron nanostructures. We used a DC Power Source to produce such plasma on water and methanol. The obtained particles were characterized by TEM to determine their shape and size and Mossbauer Spectroscopy to investigate the chemical state of the iron present. We found that 80% of the particles produced in water are composed of metallic iron and when methanol is used 97% of the particles are metallic iron. Once the Fe colloid was formed, orange skin was impregnated with these nanostructures for the removal of in water solution. The Cr(VI) removal experiments were done in a batch system in the presence of the composites at an inicial concentration of 50 ppm of Cr(VI). When using the iron nanostructures supported on the orange peel, the percentage of removal is 100% in the case of nanostructures formed in water and 96% when obtained in methanol.

  7. Synthesis and superconductivity of In-doped SnTe nanostructures

    DOE PAGES

    Kumaravadivel, Piranavan; Pan, Grace A.; Zhou, Yu; ...

    2017-07-01

    In xSn 1-xTe is a time-reversal invariant candidate 3D topological superconductor derived from doping the topological crystalline insulator SnTe with indium. The ability to synthesize low-dimensional nanostructures of indium-doped SnTe is key for realizing the promise they hold in future spintronic and quantum information processing applications. But hitherto only bulk synthesized crystals and nanoplates have been used to study the superconducting properties. Here for the first time we synthesize In xSn 1-xTe nanostructures including nanowires and nanoribbons, which show superconducting transitions. In some of the lower dimensional morphologies, we observe signs of more than one superconducting transition and the absencemore » of complete superconductivity. We propose that material inhomogeneity, such as indium inhomogeneity and possible impurities from the metal catalyst, is amplified in the transport characteristics of the smaller nanostructures and is responsible for this mixed behavior. Our work represents the first demonstration of In xSn 1-xTe nanowires with the onset of superconductivity, and points to the need for improving the material quality for future applications« less

  8. Synthesis and superconductivity of In-doped SnTe nanostructures

    NASA Astrophysics Data System (ADS)

    Kumaravadivel, Piranavan; Pan, Grace A.; Zhou, Yu; Xie, Yujun; Liu, Pengzi; Cha, Judy J.

    2017-07-01

    InxSn1-xTe is a time-reversal invariant candidate 3D topological superconductor derived from doping the topological crystalline insulator SnTe with indium. The ability to synthesize low-dimensional nanostructures of indium-doped SnTe is key for realizing the promise they hold in future spintronic and quantum information processing applications. But hitherto only bulk synthesized crystals and nanoplates have been used to study the superconducting properties. Here for the first time we synthesize InxSn1-xTe nanostructures including nanowires and nanoribbons, which show superconducting transitions. In some of the lower dimensional morphologies, we observe signs of more than one superconducting transition and the absence of complete superconductivity. We propose that material inhomogeneity, such as indium inhomogeneity and possible impurities from the metal catalyst, is amplified in the transport characteristics of the smaller nanostructures and is responsible for this mixed behavior. Our work represents the first demonstration of InxSn1-xTe nanowires with the onset of superconductivity, and points to the need for improving the material quality for future applications.

  9. Enhanced initial protein adsorption on engineered nanostructured cubic zirconia.

    PubMed

    Sabirianov, R F; Rubinstein, A; Namavar, F

    2011-04-14

    Motivated by experimentally-observed biocompatibility enhancement of nanoengineered cubic zirconia (ZrO(2)) coatings to mesenchymal stromal cells, we have carried out computational analysis of the initial immobilization of one known structural fragment of the adhesive protein (fibronectin) on the corresponding surface. We constructed an atomistic model of the ZrO(2) nano-hillock of 3-fold symmetry based on Atom Force Microscopy and Transmission Electron Microscopy images. First principle quantum mechanical calculations show a substantial variation of electrostatic potential at the hillock due to the presence of surface features such as edges and vertexes. Using an implemented Monte Carlo simulated annealing method, we found the orientation of the immobilized protein on the ZrO(2) surface and the contribution of the amino acid residues from the protein sequence to the adsorption energy. Accounting for the variation of the dielectric permittivity at the protein-implant interface, we used a model distance-dependent dielectric function to describe the inter-atom electrostatic interactions in the adsorption potential. We found that the initial immobilization of the rigid protein fragment on the nanostructured pyramidal ZrO(2) surface is achieved with a magnitude of adsorption energy larger than that of the protein on the smooth (atomically flat) surface. The strong attractive electrostatic interactions are a major contributing factor in the enhanced adsorption at the nanostructured surface. In the case of adsorption on the flat, uncharged surface this factor is negligible. We show that the best electrostatic and steric fit of the protein to the inorganic surface corresponds to a minimum of the adsorption energy determined by the non-covalent interactions.

  10. Doping-Based Stabilization of the M2 Phase in Free-Standing VO2 Nanostructures at Room Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strelcov, Evgheni; Tselev, Alexander; Ivanov, Ilia N

    2012-01-01

    A new high-yield method of doping VO2 nanostructures with aluminum is proposed, which renders possible stabilization of the monoclinic M2 phase in free-standing nanoplatelets in ambient conditions and opens an opportunity for realization of a purely electronic Mott Transition Field-Effect Transistor without an accompanying structural transition. The synthesized free-standing M2-phase nanostructures are shown to have very high crystallinity and an extremely sharp temperature-driven metal-insulator transition. A combination of x-ray microdiffraction, micro-Raman spectroscopy, Energy-Dispersive X-ray spectroscopy, and four-probe electrical measurements allowed thorough characterization of the doped nanostructures. Light is shed onto some aspects of the nanostructure growth, and the temperature-doping levelmore » phase diagram is established.« less

  11. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    NASA Astrophysics Data System (ADS)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  12. Atomistic modeling of La3+ doping segregation effect on nanocrystalline yttria-stabilized zirconia.

    PubMed

    Zhang, Shenli; Sha, Haoyan; Castro, Ricardo H R; Faller, Roland

    2018-05-16

    The effect of La3+ doping on the structure and ionic conductivity change in nanocrystalline yttria-stabilized zirconia (YSZ) was studied using a combination of Monte Carlo and molecular dynamics simulations. The simulation revealed the segregation of La3+ at eight tilt grain boundary (GB) structures and predicted an average grain boundary (GB) energy decrease of 0.25 J m-2, which is close to the experimental values reported in the literature. Cation stabilization was found to be the main reason for the GB energy decrease, and energy fluctuations near the grain boundary are smoothed out with La3+ segregation. Both dynamic and energetic analysis on the Σ13(510)/[001] GB structure revealed La3+ doping hinders O2- diffusion in the GB region, where the diffusion coefficient monotonically decreases with increasing La3+ doping concentration. The effect was attributed to the increase in the site-dependent migration barriers for O2- hopping caused by segregated La3+, which also leads to anisotropic diffusion at the GB.

  13. Highly sensitive ethanol chemical sensor based on Ni-doped SnO₂ nanostructure materials.

    PubMed

    Rahman, Mohammed M; Jamal, Aslam; Khan, Sher Bahadar; Faisal, M

    2011-10-15

    Due to potential applications of semiconductor transition doped nanostructure materials and the important advantages of synthesis in cost-effective and environmental concerns, a significant effort has been consummated for improvement of Ni-doped SnO(2) nanomaterials using hydrothermal technique at room conditions. The structural and optical properties of the low-dimensional (average diameter, 52.4 nm) Ni-doped SnO(2) nanostructures were demonstrated using various conventional techniques such as UV/visible spectroscopy, FT-IR spectroscopy, X-ray powder diffraction (XRD), and Field-emission scanning electron microscopy (FE-SEM). The calcined doped material is an attractive semiconductor nanoparticle for accomplishment in chemical sensing by simple I-V technique, where toxic chemical (ethanol) is used as a target chemical. Thin-film of Ni-doped SnO(2) nanostructure materials with conducting coating agents on silver electrodes (AgE, surface area, 0.0216 cm(2)) revealed higher sensitivity and repeatability. The calibration plot is linear (R, 0.8440) over the large dynamic range (1.0 nM-1.0 mM), where the sensitivity is approximately 2.3148 μA cm(-2) mM(-1) with a detection limit of 0.6 nM, based on signal/noise ratio in short response time. Consequently on the basis of the sensitive communication among structures, morphologies, and properties, it is exemplified that the morphologies and the optical characteristics can be extended to a large scale in doping nanomaterials and proficient chemical sensors applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Plasmons in N-doped graphene nanostructures tuned by Au/Ag films: a time-dependent density functional theory study.

    PubMed

    Shu, Xiaoqin; Cheng, Xinlu; Zhang, Hong

    2018-04-18

    The energy resonance point of the prominent peak of the absorption spectrum of nitrogen-doped graphene is in the ultraviolet region. This limits its application as a co-catalyst in renewable hydrogen evolution through photocatalytic water splitting in the visible light region. It is well known that noble metal films show active absorption in the visible region due to the existence of the unique feature known as surface plasmon resonance. Here we report tunable plasmons in nitrogen-doped graphene nanostructures using noble metal (Au/Ag) films. The energy resonance point of the prominent peak of the composite nanostructure is altered by changing the separation space of two-layered nanostructures. We found the strength of the absorption spectrum of the composite nanostructure is much stronger than the isolated N-doped graphene monolayer. When the separation space is decreased, the prominent peak of the absorption spectrum is red-shifted to the visible light region. Moreover, currents of several microamperes exist above the surface of the N-doped graphene and Au film composite nanostructure. In addition, the field enhancement exceeds 1000 when an impulse excitation polarized in the armchair-edge direction (X-axis) when the separation space is decreased to 3 Å and is close to 100 when an impulse excitation polarized in the zigzag-edge direction (Y-axis). The N-doped graphene and noble metal film composite nanostructure is a good candidate material as a co-catalyst in renewable hydrogen production by photocatalytic water splitting in the visible light region.

  15. Heteroepitaxial growth of tin-doped indium oxide films on single crystalline yttria stabilized zirconia substrates

    NASA Astrophysics Data System (ADS)

    Kamei, Masayuki; Yagami, Teruyuki; Takaki, Satoru; Shigesato, Yuzo

    1994-05-01

    Heteroepitaxial growth of tin-doped indium oxide (ITO) film was achieved for the first time by using single crystalline yttria stabilized zirconia (YSZ) as substrates. The epitaxial relationship between ITO film and YSZ substrate was ITO[100]∥YSZ[100]. By comparing the electrical properties of this epitaxial ITO film with that of a randomly oriented polycrystalline ITO film grown on a glass substrate, neither the large angle grain boundaries nor the crystalline orientation were revealed to be dominant in determining the carrier mobility in ITO films.

  16. 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption.

    PubMed

    Cho, Sumin; Ahn, Changui; Park, Junyong; Jeon, Seokwoo

    2018-05-24

    Considering the environmental issues, it is essential to develop highly efficient and recyclable photocatalysts in purification systems. Conventional TiO2 nanoparticles have strong intrinsic oxidizing power and high surface area, but are difficult to collect after use and rarely absorb visible light, resulting in low photocatalytic efficiency under sunlight. Here we develop a new type of highly efficient and recyclable photocatalyst made of a three-dimensional (3D) nanostructured N-doped TiO2 monolith with enhanced visible light absorption. To prepare the sample, an ultrathin TiN layer (∼10 nm) was conformally coated using atomic layer deposition (ALD) on 3D nanostructured TiO2. Subsequent thermal annealing at low temperature (550 °C) converted TiN to anatase phase N-doped TiO2. The resulting 3D N-doped TiO2 showed ∼33% enhanced photocatalytic performance compared to pure 3D TiO2 of equivalent thickness under sunlight due to the reduced bandgap, from 3.2 eV to 2.75 eV through N-doping. The 3D N-doped TiO2 monolith could be easily collected and reused at least 5 times without any degradation in photocatalytic performance.

  17. Biocompatibility of nanostructured boron doped diamond for the attachment and proliferation of human neural stem cells.

    PubMed

    Taylor, Alice C; Vagaska, Barbora; Edgington, Robert; Hébert, Clément; Ferretti, Patrizia; Bergonzo, Philippe; Jackman, Richard B

    2015-12-01

    We quantitatively investigate the biocompatibility of chemical vapour deposited (CVD) nanocrystalline diamond (NCD) after the inclusion of boron, with and without nanostructuring. The nanostructuring method involves a novel approach of growing NCD over carbon nanotubes (CNTs) that act as a 3D scaffold. This nanostructuring of BNCD leads to a material with increased capacitance, and this along with wide electrochemical window makes BNCD an ideal material for neural interface applications, and thus it is essential that their biocompatibility is investigated. Biocompatibility was assessed by observing the interaction of human neural stem cells (hNSCs) with a variety of NCD substrates including un-doped ones, and NCD doped with boron, which are both planar, and nanostructured. hNSCs were chosen due to their sensitivity, and various methods including cell population and confluency were used to quantify biocompatibility. Boron inclusion into NCD film was shown to have no observable effect on hNSC attachment, proliferation and viability. Furthermore, the biocompatibility of nanostructured boron-doped NCD is increased upon nanostructuring, potentially due to the increased surface area. Diamond is an attractive material for supporting the attachment and development of cells as it can show exceptional biocompatibility. When boron is used as a dopant within diamond it becomes a p-type semiconductor, and at high concentrations the diamond becomes quasi-metallic, offering the prospect of a direct electrical device-cell interfacing system.

  18. Aerosol Synthesis of N and N-S Doped and Crumpled Graphene Nanostructures.

    PubMed

    Carraro, Francesco; Cattelan, Mattia; Favaro, Marco; Calvillo, Laura

    2018-06-06

    Chemically modified graphene⁻based materials (CMG) are currently attracting a vast interest in their application in different fields. In particular, heteroatom-doped graphenes have revealed great potentialities in the field of electrocatalysis as substitutes of fuel cell noble metal⁻based catalysts. In this work, we investigate an innovative process for doping graphene nanostructures. We optimize a novel synthetic route based on aerosol preparation, which allows the simultaneous doping, crumpling, and reduction of graphene oxide (GO). Starting from aqueous solutions containing GO and the dopant precursors, we synthesize N- and N,S-dual-doped 3D graphene nanostructures (N-cGO and N,S-cGO). In the aerosol process, every aerosol droplet can be considered as a microreactor where dopant precursors undergo thermal decomposition and react with the GO flakes. Simultaneously, thanks to the relatively high temperature, GO undergoes crumpling and partial reduction. Using a combination of spectroscopic and microscopic characterization techniques, we investigate the morphology of the obtained materials and the chemical nature of the dopants within the crumpled graphene sheets. This study highlights the versatility of the aerosol process for the design of new CMG materials with tailored electrocatalytic properties.

  19. Synthesis and characterization of mesoporous zirconia and aluminated mesoporous zirconia

    NASA Astrophysics Data System (ADS)

    Zhao, Elizabeth Sun

    Synthesis of mesoporous zirconia has been performed by slowly hydrolyzing zirconium propoxide in the presence of anionic surfactants: namely, dodecyl phosphate or sulfate (P12 and Sf12) and hexadecyl sulfonate (So16) The zirconia. outgassed at 140--150°C has T-plot surface areas higher than 400 M2/g. This outgassing does not remove the surfactant. After calcination in air at 500°C and combustion of the surfactant, the mesoporous volume is reduced by a factor of about 2, whereas the pore wall material crystallizes in the tetragonal phase. The high-resolution electron microscopic study reveals the presence of a disorganized network of polygonal pores structure. It is suggested that the chemistry of the hydrolysis solution is instrumental in determining the pore structure. A schematic model in which the surfactant is a scaffold component is suggested in order to explain these results and the fixation of PO4, or SO4 in the walls may help to preserve the porous structure. It is very different from the templating mechanism. From the density obtained from phase transition temperature, and from the mesoporous volume (N2 adsorption), the thickness of the wall can be calculated as well as the pseudo-length of the pores. From the thickness, the T-plot area can be recalculated and agrees well with the measured T-plot surface area for the sample calcined at 500°C. Around 900°C, the walls become thicker and crystallizes into monoclinic zirconia without pore structure. In order to try to modify, the acidity of the mesoporous sulfated and oxo-phosphated zirconia, they were doped with aluminum. The sulfated zirconia only has a coating layer of amorphous alumina, while the phosphated zirconia has aluminum in the lattice and the alumina coat. A maximum ratio of Al/Zr ˜ 0.04 can be reached in the lattice. The introduction of aluminum into the lattice prevents the crystallization of the oxo-phosphate at 900°C, and helps to preserve the surface area and porosity of the sulfated

  20. Synthesis and Phase Stability of Scandia, Gadolinia, and Ytterbia Co-doped Zirconia for Thermal Barrier Coating Application

    NASA Astrophysics Data System (ADS)

    Li, Qi-Lian; Cui, Xiang-Zhong; Li, Shu-Qing; Yang, Wei-Hua; Wang, Chun; Cao, Qian

    2015-01-01

    Scandia, gadolinia, and ytterbia co-doped zirconia (SGYZ) ceramic powder was synthesized by chemical co-precipitation and calcination processes for application in thermal barrier coatings to promote the durability of gas turbines. The ceramic powder was agglomerated and sintered at 1150 °C for 2 h, and the powder exhibited good flowability and apparent density to be suitable for plasma spraying process. The microstructure, morphology and phase stability of the powder and plasma-sprayed SGYZ coatings were analyzed by means of scanning electron microscope and x-ray diffraction. Thermal conductivity of plasma-sprayed SGYZ coatings was measured. The results indicated that the SGYZ ceramic powder and the coating exhibit excellent stability to retain single non-transformable tetragonal zirconia even after high temperature (1400 °C) exposure for 500 h and do not undergo a tetragonal-to-monoclinic phase transition upon cooling. Furthermore, the plasma-sprayed SGYZ coating also exhibits lower thermal conductivity than yttria stabilized zirconia coating currently used in gas turbine engine industry. SGYZ can be explored as a candidate material of ultra-high temperature thermal barrier coating for advanced gas turbine engines.

  1. Polarization induced conductive AFM on cobalt doped ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Sahoo, Pradosh Kumar; Mangamma, G.; Rajesh, A.; Kamruddin, M.; Dash, S.

    2017-05-01

    In the present work cobalt doped ZnO (CZO) nanostructures (NS) have been synthesized by of sol-gel and spin coating process. After the crystal phase confirmation by GIXRD and Raman spectroscopy, Conductive Atomic Force Microscopy (C-AFM) measurement was performed on CZO NS which shows the random distribution of electrically conducting zones on the surface of the material exhibiting current in the range 4-170 pA. We provide the possible mechanisms for variation in current distribution essential for quantitative understanding of transport properties of ZnO NS in doped and undoped forms.

  2. Graphene--nanotube--iron hierarchical nanostructure as lithium ion battery anode.

    PubMed

    Lee, Si-Hwa; Sridhar, Vadahanambi; Jung, Jung-Hwan; Karthikeyan, Kaliyappan; Lee, Yun-Sung; Mukherjee, Rahul; Koratkar, Nikhil; Oh, Il-Kwon

    2013-05-28

    In this study, we report a novel route via microwave irradiation to synthesize a bio-inspired hierarchical graphene--nanotube--iron three-dimensional nanostructure as an anode material in lithium-ion batteries. The nanostructure comprises vertically aligned carbon nanotubes grown directly on graphene sheets along with shorter branches of carbon nanotubes stemming out from both the graphene sheets and the vertically aligned carbon nanotubes. This bio-inspired hierarchical structure provides a three-dimensional conductive network for efficient charge-transfer and prevents the agglomeration and restacking of the graphene sheets enabling Li-ions to have greater access to the electrode material. In addition, functional iron-oxide nanoparticles decorated within the three-dimensional hierarchical structure provides outstanding lithium storage characteristics, resulting in very high specific capacities. The anode material delivers a reversible capacity of ~1024 mA · h · g(-1) even after prolonged cycling along with a Coulombic efficiency in excess of 99%, which reflects the ability of the hierarchical network to prevent agglomeration of the iron-oxide nanoparticles.

  3. Biofunctionalized Nanostructured Zirconia for Biomedical Application: A Smart Approach for Oral Cancer Detection

    PubMed Central

    Kumar, Suveen; Kumar, Saurabh; Tiwari, Sachchidanand; Srivastava, Saurabh; Srivastava, Manish; Yadav, Birendra Kumar; Kumar, Saroj; Tran, Thien Toan; Dewan, Ajay Kumar; Mulchandani, Ashok; Sharma, Jai Gopal; Maji, Sagar

    2015-01-01

    Results of the studies are reported relating to application of the silanized nanostructured zirconia, electrophoretically deposited onto indium tin oxide (ITO) coated glass for covalent immobilization of the monoclonal antibodies (anti‐CYFRA‐21‐1). This biosensing platform has been utilized for a simple, efficient, noninvasive, and label‐free detection of oral cancer via cyclic voltammetry technique. The results of electrochemical response studies conducted on bovine serum albumin (BSA)/anti‐CYFRA‐21‐1/3‐aminopropyl triethoxy silane (APTES)/ZrO2/ITO immunoelectrode reveal that this immunoelectrode can be used to measure CYFRA‐21‐1 (oral cancer biomarker) concentration in saliva samples, with a high sensitivity of 2.2 mA mL ng−1, a linear detection range of 2–16 ng mL−1, and stability of six weeks. The results of these studies have been validated via enzyme‐linked immunosorbent assay. PMID:27980963

  4. Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres.

    PubMed

    Leib, Elisabeth W; Vainio, Ulla; Pasquarelli, Robert M; Kus, Jonas; Czaschke, Christian; Walter, Nils; Janssen, Rolf; Müller, Martin; Schreyer, Andreas; Weller, Horst; Vossmeyer, Tobias

    2015-06-15

    Zirconia microparticles produced by sol-gel synthesis have great potential for photonic applications. To this end, identifying synthetic methods that yield reproducible control over size uniformity is important. Phase transformations during thermal cycling can disintegrate the particles. Therefore, understanding the parameters driving these transformations is essential for enabling high-temperature applications. Particle morphology is expected to influence particle processability and stability. Yttria-doping should improve the thermal stability of the particles, as it does in bulk zirconia. Zirconia and YSZ particles were synthesized by improved sol-gel approaches using fatty acid stabilizers. The particles were heated to 1500 °C, and structural and morphological changes were monitored by SEM, ex situ XRD and high-energy in situ XRD. Zirconia particles (0.4-4.3 μm in diameter, 5-10% standard deviation) synthesized according to the modified sol-gel approaches yielded significantly improved monodispersities. As-synthesized amorphous particles transformed to the tetragonal phase at ∼450 °C with a volume decrease of up to ∼75% and then to monoclinic after heating from ∼650 to 850 °C. Submicron particles disintegrated at ∼850 °C and microparticles at ∼1200 °C due to grain growth. In situ XRD revealed that the transition from the amorphous to tetragonal phase was accompanied by relief in microstrain and the transition from tetragonal to monoclinic was correlated with the tetragonal grain size. Early crystallization and smaller initial grain sizes, which depend on the precursors used for particle synthesis, coincided with higher stability. Yttria-doping reduced grain growth, stabilized the tetragonal phase, and significantly improved the thermal stability of the particles. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Photoluminescent emission of Pr 3+ ions in different zirconia crystalline forms

    NASA Astrophysics Data System (ADS)

    Ramos-Brito, F.; Alejo-Armenta, C.; García-Hipólito, M.; Camarillo, E.; Hernández A, J.; Murrieta S, H.; Falcony, C.

    2008-08-01

    Polycrystalline praseodymium doped-zirconia powders were synthesized by crystallization of a saturated solution and annealed in air at T a = 950 °C. Monoclinic, tetragonal and cubic crystalline phases of zirconia were obtained. EDS studies showed homogeneous chemical composition over all the powders particles and chemical elemental contents in good agreement with the incorporation of Pr 3+ ion in Zr 4+ sites. XRD patterns showed stabilization of tetragonal and cubic phases at 1.28 and 2.87 at.% of Pr 3+ doping concentrations, respectively. Both unit cells expand when Pr 3+ content increases. All samples showed a crystallite size lower than 27 nm. Diffuse reflectance studies exhibited the presence of the 4f5d absorption band of Pr 3+, and absorption peaks in 440-610 nm region associated with 4f inter-level electronic transitions in Pr 3+ ion. Low temperature (20 K) photo-luminescent spectroscopic measurements over excitation of 488 nm for praseodymium doped zirconia, showed multiple emission peaks in the 520-900 nm range of the electromagnetic spectrum, associated with typical 4f inter-level electronic transition in Pr 3+. Incorporation of Pr 3+ in more than one zirconia crystalline phase and the incorporation in cubic C 2 sites, were observed. Zirconia powders presented significant differences in its emission spectra as a function of the type of crystalline phase compounds.

  6. Fabrication and characterization of nanostructured Mg-doped CdS/AAO nanoporous membrane for sensing applications

    NASA Astrophysics Data System (ADS)

    Shaban, Mohamed; Mustafa, Mona; Hamdy, Hany

    2016-04-01

    In this study, Mg-doped CdS nanostructure was deposited onto anodic aluminum oxide (AAO) membrane substrate using sol-gel spin coating method. The AAO membrane was prepared by a two-step anodization process combined with pore widening process. The morphology, chemical composition, and structure of the spin- coated CdS nanostructure have been studied. The morphology of the fabricated AAO membrane and the deposited Mg-doped CdS nanostructure was investigated using scanning electron microscopy (SEM). The SEM of AAO illustrates a typical hexagonal and smooth nanoporous alumina membrane with interpore distance of ~ 100 nm, the pore diameter of ~ 60 nm. SEM of Mgdoped CdS shows porous nanostructured film of CdS nanoparticles. This film well adherents and covers the AAO substrate. The energy dispersive X-ray (EDX) pattern exhibits the signals of Al, O from AAO membrane and Mg, Cd, and S from the deposited CdS. This indicates the high purity of the fabricated membrane and the deposited Mg-doped CdS nanostructure. Using X-ray diffraction (XRD) pattern, Scherrer equation was used to calculate the average crystallite size. Additionally, the texture coefficients and density of dislocations were calculated. The fabricated CdS/AAO was applied to detect glucose of different concentrations. The proposed method has some advantages such as simple technology, low cost of processing, and high throughput. All of these factors facilitate the use of the prepared films in sensing applications.

  7. Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.

    PubMed

    Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima

    2014-03-01

    In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.

  8. Electrical Transport Ability of Nanostructured Potassium-Doped Titanium Oxide Film

    NASA Astrophysics Data System (ADS)

    Lee, So-Yoon; Matsuno, Ryosuke; Ishihara, Kazuhiko; Takai, Madoka

    2011-02-01

    Potassium-doped nanostructured titanium oxide films were fabricated using a wet corrosion process with various KOH solutions. The doped condition of potassium in TiO2 was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Nanotubular were synthesized at a dopant concentration of <0.27% when the dopant concentration increased to >0.27%, these structures disappeared. To investigate the electrical properties of K-doped TiO2, pseudo metal-oxide-semiconductor field-effect transistor (MOSFET) samples were fabricated. The samples exhibited a distinct electrical behavior and p-type characteristics. The electrical behavior was governed by the volume of the dopant when the dopant concentration was <0.10% and the volume of the TiO2 phase when the dopant concentration was >0.18%.

  9. Hydrogenated nanostructure boron doped amorphous carbon films by DC bias

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Dayana, K.; Saurdi, I.; Malek, M. F.; Rusop, M.

    2018-03-01

    Hydrogenated nanostructure-boron doped amorphous carbon thin film carbon was deposited at different negative bias using custom-made deposition bias assisted-CVD. Solid of boron and palm oil were used as dopant and carbon source, respectively. The hydrogenated nanostructure amorphous films were characterized by Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, while the photo-response studies of thin film is done by I-V measurement under light measurement. The results showed the carbon film were in nanostructure with hydrogen and boron might be incorporated in the film. The Raman spectra observed the increase of upward shift of D and G peaks as negative bias increased which related to the structural change as boron incorporated in carbon network. These structural changes were further correlated with photo-response study and the results obtained are discussed and compared.

  10. Development of Nanostructured Austempered Ductile Cast Iron

    NASA Astrophysics Data System (ADS)

    Panneerselvam, Saranya

    Austempered Ductile Cast Iron is emerging as an important engineering materials in recent years because of its excellent combination of mechanical properties such as high strength with good ductility, good fatigue strength and fracture toughness together with excellent wear resistance. These combinations of properties are achieved by the microstructure consisting of acicular ferrite and high carbon austenite. Refining of the ausferritic microstructure will further enhance the mechanical properties of ADI and the presence of proeutectoid ferrite in the microstructure will considerably improve the ductility of the material. Thus, the focus of this investigation was to develop nanostructured austempered ductile cast iron (ADI) consisting of proeutectoid ferrite, bainitic ferrite and high carbon austenite and to determine its microstructure-property relationships. Compact tension and cylindrical tensile test samples were prepared as per ASTM standards, subjected to various heat treatments and the mechanical tests including the tensile tests, plane strain fracture toughness tests, hardness tests were performed as per ASTM standards. Microstructures were characterized by optical metallography, X-ray diffraction, SEM and TEM. Nanostructured ADI was achieved by a unique heat treatment consisting of austenitization at a high temperature and subsequent plastic deformation at the same austenitizing temperature followed by austempering. The investigation also examined the effect of cryogenic treatment, effect of intercritical austenitizing followed by single and two step austempering, effect of high temperature plastic deformation on the microstructure and mechanical properties of the low alloyed ductile cast iron. The mechanical and thermal stability of the austenite was also investigated. An analytical model has been developed to understand the crack growth process associated with the stress induced transformation of retained austenite to martensite.

  11. The effect of nano-structured alumina coating on resin-bond strength to zirconia ceramics.

    PubMed

    Jevnikar, Peter; Krnel, Kristoffer; Kocjan, Andraz; Funduk, Nenad; Kosmac, Tomaz

    2010-07-01

    The aim of this study was to functionalize the surface of yttria partially stabilized tetragonal zirconia ceramics (Y-TZP) with a nano-structured alumina coating to improve resin bonding. A total of 120 densely sintered disc-shaped specimens (15.5+/-0.03 mm in diameter and 2.6+/-0.03 mm thick) were produced from biomedical-grade TZ-3YB-E zirconia powder (Tosoh, Tokyo, Japan), randomly divided into three groups of 40 and subjected to the following surface treatments: AS - as-sintered; APA - airborne-particle abraded; POL - polished. Half of the discs in each group received an alumina coating that was fabricated by exploiting the hydrolysis of aluminium nitride (AlN) powder (groups AS-C, APA-C, POL-C). The coating was characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The shear-bond strength of the self-etching composite resin (RelyX Unicem, 3M ESPE, USA) was then studied for the coated and uncoated surfaces of the as-sintered, polished and airborne-particle abraded specimens before and after thermocycling (TC). The SEM/TEM analyses revealed that the application of an alumina coating to Y-TZP ceramics created a highly retentive surface for resin penetration. The coating showed good surface coverage and a uniform thickness of 240 nm. The resin-bond strength to the groups AS-C, APA-C, POL-C was significantly higher than to the groups AS, APA and POL, both before and after TC (p< or =0.05). During TC all the specimens in the POL and AS groups debonded spontaneously. In contrast, the TC did not affect the bond strength of the AS-C, POL-C and APA-C groups. A non-invasive method has been developed that significantly improves resin-bond strength to Y-TZP ceramics. After surface functionalization the bond survives thermocycling without reduction in strength. The method is relatively simple and has the potential to become an effective conditioning method for zirconia ceramics. Copyright 2010

  12. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    DOE R&D Accomplishments Database

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  13. Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors

    NASA Astrophysics Data System (ADS)

    You, Zheng; Shen, Kui; Wu, Zhicheng; Wang, Xiaofeng; Kong, Xianghua

    2012-08-01

    Zn-doped α-nickel hydroxide materials with flower-like nanostructures are synthesized by electrochemical deposition method. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and electrochemical measurements. XRD spectra indicate nickel hydroxide doped with Zn is α-Ni(OH)2 with excellent crystallization. The SEM observation shows that the formation of Zn-doped Ni(OH)2 includes two steps: a honeycomb-like film forms on the substrate first, then flower-like particles forms on the films. The nickel hydroxide doped with 5% Zn can maintain a maximum specific capacitance of 860 F g-1, suggesting its potential application in electrochemical capacitors.

  14. Ultraviolet/visible photodiode of nanostructure Sn-doped ZnO/Si heterojunction

    NASA Astrophysics Data System (ADS)

    Kheirandish, N.; Mortezaali, A.

    2013-05-01

    Sn doped ZnO nanostructures deposited on Si substrate with (100) orientation by spray pyrolysis method at temperature 450 °C. Sn/Zn atomic ratio varies from 0% to 5%. The scanning electron microscope measurements showed that size of particles reduce with increasing the doping concentration. The X-ray diffraction analysis revealed formation of the wurtzite phase of ZnO. I-V curves of Sn doped ZnO/Si were investigated in dark and shows diode-like rectifying behavior. Among doped ZnO/Si, sample with atomic ratio of Sn/Zn = 5% is a good candidate to study photodiode properties in UV/visible range. Photoelectric effects have been observed under illumination monochromatic laser light with a wavelength of 325 nm and halogen lamp. Measurements demonstrate that the photodiode has high sensitivity and reproducibility to halogen light respect to laser light.

  15. Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nilima S.; Warule, Sambhaji S.; Dhanmane, Sushil A.; Kulkarni, Milind V.; Valant, Matjaz; Kale, Bharat B.

    2013-09-01

    Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO2 from abundant H2S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides.Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and

  16. Read-write holographic memory with iron-doped lithium niobate

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Phillips, W.

    1975-01-01

    The response of iron doped lithium niobate under conditions corresponding to hologram storage and retrieval is described, and the material's characteristics are discussed. The optical sensitivity can be improved by heavy chemical reduction of lightly doped crystals such that most of the iron is in the divalent state, the remaining part being trivalent. The best reduction process found to be reproducible so far is the anneal of the doped crystal in the presence of a salt such as lithium carbonate. It is shown by analysis and simulation that a page-oriented read-write holographic memory with 1,000 bits per page would have a cycle time of about 60 ms and a signal-to-noise ratio of 27 db. This cycle time, although still too long for a practical system, represents an improvement of two orders of magnitude over that of previous laboratory prototypes using different storage media.

  17. Structural evolution of plasma-sprayed nanoscale 3 mol% and 5 mol% yttria-stabilized zirconia coatings during sintering

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Gao, Yang

    2017-12-01

    The microstructure of plasma-sprayed nanostructured yttria-stabilized zirconia (YSZ) coatings may change during high-temperature exposure, which would influence the coating performance and service lifetime. In this study, the phase structure and the microstructural evolution of 3YSZ (zirconia-3 mol% yttria) and 5YSZ (zirconia-5 mol% yttria) nanostructured coatings were investigated by means of sintering at 1400 °C for 50-100 h. The microhardness, elastic moduli, and thermal shock cycles of the 3YSZ and 5YSZ nanostructured coatings were also investigated. The results showed that the redistribution of yttrium ions at 1400 °C caused the continuous increase of monoclinic-phase zirconia, but no obvious inter-splat cracking formed at the cross-sections, even after 100 h. Large voids appeared around the nanoporous zone because of the sintering of nanoscale granules upon high-temperature exposure. The microhardness and elastic moduli of the nanostructured coatings first increased and then decreased with increasing sintering times. The growth rate of the nanograins in the 3YSZ coating was lower than that in 5YSZ, which slowed the changes in 3YSZ coating porosity during sintering. Although the 3YSZ coating was prone to monoclinic phase transition, the experimental results showed that the thermal shock resistance of the 3YSZ coating was better than that of the 5YSZ coating.

  18. ROS mediated malignancy cure performance of morphological, optical, and electrically tuned Sn doped CeO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Abbas, Fazal; Iqbal, Javed; Maqbool, Qaisar; Jan, Tariq; Ullah, Muhammad Obaid; Nawaz, Bushra; Nazar, Mudassar; Naqvi, M. S. Hussain; Ahmad, Ishaq

    2017-09-01

    To grapple with cancer, implementation of differentially cytotoxic nanomedicines have gained prime attention of the researchers across the globe. Now, ceria (CeO2) at nanoscale has emerged as a cut out therapeutic agent for malignancy treatment. Keeping this in view, we have fabricated SnxCe1-xO2 nanostructures by facile, eco-friendly, and biocompatible hydrothermal method. Structural examinations via XRD and FT-IR spectroscopy have revealed single phase cubic-fluorite morphology while SEM analysis has depicted particle size ranging 30-50nm for pristine and doped nanostructures. UV-Vis spectroscopy investigation explored that Sn doping significantly tuned the band gap (eV) energies of SnxCe1-xO2 nanostructures which set up the base for tremendous cellular reactive oxygen species (ROS) generations involved in cancer cells' death. To observe cytotoxicity, synthesized nanostructures were found selectively more toxic to neuroblastoma cell lines as compared to HEK-293 healthy cells. This study anticipates that SnxCe1-xO2 nanostructures, in future, might be used as nanomedicine for safer cancer therapy.

  19. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nancy; Bediako, D. Kwabena; Hadt, Ryan G.

    2017-01-30

    Iron doping of nickel oxide films results in enhanced activity for promoting the oxygen evolution reaction (OER). Whereas this enhanced activity has been ascribed to a unique iron site within the nickel oxide matrix, we show here that Fe doping influences the Ni valency. The percent of Fe3+ doping promotes the formation of formal Ni4+, which in turn directly correlates with an enhanced activity of the catalyst in promoting OER. The role of Fe3+ is consistent with its behavior as a superior Lewis acid.

  20. Detectors based on Pd-doped and PdO-functionalized ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Postica, V.; Lupan, O.; Ababii, N.; Hoppe, M.; Adelung, R.; Chow, L.; Sontea, V.; Aschehoug, P.; Viana, V.; Pauporté, Th.

    2018-02-01

    In this work, zinc oxide (ZnO) nanostructured films were grown using a simple synthesis from chemical solutions (SCS) approach from aqueous baths at relatively low temperatures (< 95 °C). The samples were doped with Pd (0.17 at% Pd) and functionalized with PdO nanoparticles (NPs) using the PdCl2 aqueous solution and subsequent thermal annealing at 650 °C for 30 min. The morphological, micro-Raman and optical properties of Pd modified samples were investigated in detail and were demonstrated to have high crystallinity. Gas sensing studies unveiled that compared to pure ZnO films, the Pd-doped ZnO (ZnO:Pd) nanostructured films showed a decrease in ethanol vapor response and slight increase in H2 response with low selectivity. However, the PdO-functionalized samples showed excellent H2 gas sensing properties with possibility to detect H2 gas even at room temperature (gas response of 2). Up to 200 °C operating temperature the samples are highly selective to H2 gas, with highest response of 12 at 150 °C. This study demonstrates that surface functionalization of n-ZnO nanostructured films with p-type oxides is very important for improvement of gas sensing properties.

  1. Efficiency enhancement of dye-sensitized solar cells by use of ZrO2-doped TiO2 nanofibers photoanode.

    PubMed

    Mohamed, Ibrahim M A; Dao, Van-Duong; Barakat, Nasser A M; Yasin, Ahmed S; Yousef, Ahmed; Choi, Ho-Suk

    2016-08-15

    Due to the good stability and convenient optical properties, TiO2 nanostructures still the prominent photoanode materials in the Dye Sensitized Solar Cells (DSCs). However, the well-known low bandgap energy and weak adsorption affinity for the dye distinctly constrain the wide application. This work discusses the impact of Zr-doping and nanofibrous morphology on the performance and physicochemical properties of TiO2. Zr-doped TiO2 nanofibers (NFs), with various zirconia content (0, 0.5, 1, 1.5 and 2wt%) were prepared by calcination of electrospun mats composed of polyvinyl acetate, titanium isopropoxyl and zirconium n-propoxyl. For all formulations, the results have shown that the prepared materials are continuous, randomly oriented, and good morphology nanofibers. The average diameter decreased from 353.85nm to 210.78nm after calcination without a considerable influence on the nanofibrous structure regardless the zirconia content. XRD result shows that there is no Rutile nor Brookite phases in the obtained material and the average crystallite size of the sample is affected by the presence of Zr-doping and changed from 23.01nm to 37.63nm for TiO2 and Zr-doped TiO2, respectively. Optical studies have shown Zr-doped TiO2 NFs have more absorbance in the visible region than that of pristine TiO2 NFs; the maximum absorbance is corresponding to the NFs having 1wt% zirconia. The improved spectra of Zr-doped TiO2 in the visible region is attributed to the heterostructure composition resulting from Zr-doping. The absorption bandgaps were calculated using Tauc model as 3.202 and 3.217 for pristine and Zr (1wt%)-doped TiO2 NFs, respectively. Furthermore, in Dye-sensitized Solar Cells, utilizing Zr (1wt%)-doped TiO2 nanofibers achieved higher efficiency of 4.51% compared to the 1.61% obtained from the pristine TiO2 NFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Process of Nanostructuring of Metal (Iron) Matrix in Composite Materials for Directional Control of the Mechanical Properties

    PubMed Central

    Zemtsova, Elena

    2014-01-01

    We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology. PMID:24695459

  3. The process of nanostructuring of metal (iron) matrix in composite materials for directional control of the mechanical properties.

    PubMed

    Zemtsova, Elena; Yurchuk, Denis; Smirnov, Vladimir

    2014-01-01

    We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1-50 nm. This material can be represented as the material type "frame in the frame" that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology.

  4. Mg Doping Induced Effects on Structural, Optical, and Electrical Properties as Well as Cytotoxicity of CeO2 Nanostructures

    NASA Astrophysics Data System (ADS)

    Iqbal, Javed; Jan, Tariq; Awan, M. S.; Naqvi, Sajjad Haider; Badshah, Noor; ullah, Asmat; Abbas, Fazzal

    2016-04-01

    Here, Mg x Ce1- x O2 (where x = 0, 0.01, 0.02, 0.03, 0.04, and 0.05) nanostructures have been successfully synthesized by using a simple, easy, and cost-effective soft chemical method. X-ray diffraction (XRD) patterns substantiate the single-phase formation of a CeO2 cubic fluorite structure for all samples. Infrared spectroscopy results depict the presence of peaks only related to Ce-O bonding, which confirms the XRD results. It has been observed via ultraviolet (UV)-visible spectroscopy that Mg doping has tuned the optical band gap of CeO2 significantly. The electrical conductivity of CeO2 nanostructures has been found to increase with Mg doping, which is attributed to enhancement in carrier concentration due to the different valance states of dopant and host ions. Selective cytotoxic behavior of Mg x Ce1- x O2 nanostructures has been determined for neuroblastoma (SH-SY5Y) cancerous and HEK-293 healthy cells. Both doped and undoped CeO2 nanostructures have been found to be toxic for cancer cells and safe toward healthy cells. This selective toxic behavior of the synthesized nanostructures has been assigned to the different levels of reactive oxygen species (ROS) generation in different types of cells. This makes the synthesized nanostructures a potential option for cancer therapy in the near future.

  5. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications.

    PubMed

    Hilty, F M; Teleki, A; Krumeich, F; Büchel, R; Hurrell, R F; Pratsinis, S E; Zimmermann, M B

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe2O4) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  6. Adsorption of dispersants on zirconia powder in tape-casting slip compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, V.L. II

    This paper reports the determination of adsorption isotherms for menhaden fish oil and glycerol trioleate on doped zirconia powder in solvents composed of 70% methyl ethyl ketone (MEK) and 30% ethanol. In order to approach tape-casting zirconia on a sound technical basis, the correspondence of slip viscosities and tape sintered densities to the adsorption isotherms was studied.

  7. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films

    PubMed Central

    Li, Nancy; Bediako, D. Kwabena; Hadt, Ryan G.; Hayes, Dugan; Kempa, Thomas J.; von Cube, Felix; Bell, David C.; Chen, Lin X.; Nocera, Daniel G.

    2017-01-01

    Iron doping of nickel oxide films results in enhanced activity for promoting the oxygen evolution reaction (OER). Whereas this enhanced activity has been ascribed to a unique iron site within the nickel oxide matrix, we show here that Fe doping influences the Ni valency. The percent of Fe3+ doping promotes the formation of formal Ni4+, which in turn directly correlates with an enhanced activity of the catalyst in promoting OER. The role of Fe3+ is consistent with its behavior as a superior Lewis acid. PMID:28137835

  8. Color tuning in neodymium doped dicalcium silicate nanostructures prepared via ultrasound method

    NASA Astrophysics Data System (ADS)

    Venkataravanappa, M.; Nagabhushana, H.; Basavaraj, R. B.; Venkatachalaiah, K. N.; Prasad, B. Daruka

    2017-05-01

    Blue light emitting neodymium (Nd) doped dicalcium (Ca2SiO4) silicate nanostructures were prepared for the first time via ultrasound assisted sonochemical synthesis route using cetyltrimethylammonium bromide (CTAB) surfactant. The obtained final product was well characterized. The powder X-ray diffraction (PXRD) profiles confirmed that product was highly crystalline in nature with monoclinic phase. Influence of various reaction parameters such as, the effect of sonication time, concentration of the surfactant and pH of the precursor solution on the morphology was studied in detail. Diffuse reflectance spectroscopy (DRS) was studied to evaluate the band gap energy of the products and the values were found in the range of 5.78 - 6.17 eV. The particle size was estimated by transmission electron microscope (TEM) and it was found in the range of 20-30 nm. Photoluminescence (PL) properties were studied in detail by recording emission spectra of all the Nd doped dicalcium silicate nanostructures at an excitation wavelength of 380 nm. The emission peaks were observed at 469, 520, 545 and 627 nm which corresponds to Nd3+ ion transitions. The 7 mol% Nd3+ doped Ca2SiO4 nanostructures showed maximum intensity. Further photometric measurements were done by evaluating, Commission International De I-Eclairage (CIE) and correlated color temperature (CCT). From CIE it was observed that the color coordinates lies in blue-green region, which slightly shifts to green as the Nd3+ concentration increases. The color purity and quantum efficiency were also estimated and the results indicate that the nanophosphor obtained in this route can be used in preparing light emitting diodes with a blue-green emission as prominent color.

  9. Facile hydrothermal synthesis and characterization of cesium-doped PbI2 nanostructures for optoelectronic, radiation detection and photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Shkir, Mohd; AlFaify, S.; Yahia, I. S.; Hamdy, Mohamed S.; Ganesh, V.; Algarni, H.

    2017-10-01

    Low-temperature hydrothermal-assisted synthesis of pure and cesium (Cs) (1, 3, 5, 7 and 10 wt%) doped lead iodide (PbI2) nanorods and nanosheets have been achieved successfully for the first time. The structural and vibrational studies confirm the formation of a 2H-polytypic PbI2 predominantly. Scanning electron microscope analysis confirms the formation of well-aligned nanorods of average size 100 nm at low concentration and nanosheets of average thicknesses in the range of 20-40 nm at higher concentrations of Cs doping. The presence of Cs doping was confirmed by energy dispersive X-ray study. Ultra-violet-visible absorbance spectra were recorded, and energy gap was calculated in the range of 3.33 to 3.45 eV for pure and Cs-doped PbI2 nanostructures which is higher than the bulk value (i.e., 2.27 eV) due to quantum confinement effect. Dielectric constant, loss, and AC conductivity studies have been done. Enhancement in Gamma linear absorption coefficient due to Cs doping confirms the suitability of prepared nanostructures for radiation detection applications. Furthermore, the photocatalytic performance of the synthesized nanostructures was evaluated in the decolorization of methyl green (MG) and methyl orange (MO) under the illumination of visible light (λ > 420 nm). The observed photocatalytic activity for 5 and 7 wt% Cs-doped PbI2 was observed to be more than pure PbI2 and also > 10 times higher than the commercially available photocatalysts. The results suggest that the prepared nanostructures are highly applicable in optoelectronic, radiation detection and many other applications. [Figure not available: see fulltext.

  10. Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simimol, A.; Department of Physics, National Institute of Technology Calicut, Calicut 673601; Anappara, Aji A.

    We report the growth of un-doped and cobalt doped ZnO nanostructures fabricated on FTO coated glass substrates using electrodeposition method. A detailed study on the effects of dopant concentration on morphology, structural, optical, and magnetic properties of the ZnO nanostructures has been carried out systematically by varying the Co concentration (c.{sub Co}) from 0.01 to 1 mM. For c.{sub Co }≤ 0.2 mM, h-wurtzite phase with no secondary phases of Co were present in the ZnO nanostructures. For c.{sub Co} ≤ 0.2 mM, the photoluminescence spectra exhibited a decrease in the intensity of ultraviolet emission as well as band-gap narrowing with an increase in dopantmore » concentration. All the doped samples displayed a broad emission in the visible range and its intensity increased with an increase in Co concentration. It was found that the defect centers such as oxygen vacancies and zinc interstitials were the source of the visible emission. The X-ray photoelectron spectroscopy studies revealed, Co was primarily in the divalent state, replacing the Zn ion inside the tetrahedral crystal site of ZnO without forming any cluster or secondary phases of Co. The un-doped ZnO nanorods exhibited diamagnetic behavior and it remained up to a c.{sub Co} of 0.05 mM, while for c.{sub Co }> 0.05 mM, the ZnO nanostructures exhibited ferromagnetic behavior at room temperature. The coercivity increased to 695 G for 0.2 mM Co-doped sample and then it decreased for c.{sub Co }> 0.2 mM. Our results illustrate that up to a threshold concentration of 0.2 mM, the strong ferromagnetism is due to the oxygen vacancy defects centers, which exist in the Co-doped ZnO nanostructures. The origin of strong ferromagnetism at room temperature in Co-doped ZnO nanostructures is attributed to the s-d exchange interaction between the localized spin moments resulting from the oxygen vacancies and d electrons of Co{sup 2+} ions. Our findings provide a new insight for

  11. Ferromagnetic properties of manganese doped iron silicide

    NASA Astrophysics Data System (ADS)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  12. Thermal analysis of 3-mol%-yttria-stabilized tetragonal zirconia powder doped with copper oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidensticker, J.R.; Mayo, M.J.

    Thermal analysis was performed upon 3-mol%-yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) which had been doped with CuO using an aqueous adsorption technique. Cyclic differential thermal analysis (DTA) scans indicated that the CuO present on the powder surfaces first transforms to Cu{sub 2}O and then melts. The molten Cu{sub 2}O then reacts with yttria at the powder surfaces to form a new phase containing Y, Cu, and O. Because Y takes time to diffuse to the particle surfaces, the apparent melting point of this new phase appears at higher temperatures in initial DTA scans than in subsequent scans. Vaporization of the moltenmore » copper-oxide-rich phase at the temperatures studied causes a gradual shift in composition from Y{sub 2}Cu{sub 4}O{sub 5} to the less copper-rich Y{sub 2}Cu{sub 2}O{sub 5} phase. The presence of the Y{sub 2}Cu{sub 2}O{sub 5} phase in CuO-doped 3Y-TZP allows for previous sintering and superplasticity results to be explained.« less

  13. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  14. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    PubMed Central

    2013-01-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail. PMID:24369051

  15. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors.

    PubMed

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-26

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  16. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light.

    PubMed

    Shown, Indrajit; Samireddi, Satyanarayana; Chang, Yu-Chung; Putikam, Raghunath; Chang, Po-Han; Sabbah, Amr; Fu, Fang-Yu; Chen, Wei-Fu; Wu, Chih-I; Yu, Tsyr-Yan; Chung, Po-Wen; Lin, M C; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-12

    Photocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an L-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS 2 (SnS 2 -C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO 2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS 2 lattice, resulting in different photophysical properties as compared with undoped SnS 2 . This SnS 2 -C photocatalyst significantly enhances the CO 2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS 2 -C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO 2 reduction under visible light, where the in situ carbon-doped SnS 2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.

  17. Sonochemically synthesized iron-doped zinc oxide nanoparticles: Influence of precursor composition on characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anirban; Maitra, Saikat; Ghosh, Sobhan

    Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with themore » proposed models.« less

  18. Synthesis of nanostructured iron oxides and new magnetic ceramics using sol-gel and SPS techniques

    NASA Astrophysics Data System (ADS)

    Papynov, E. K.; Shichalin, O. O.; Belov, A. A.; Portnyagin, A. S.; Mayorov, V. Yu.; Gridasova, E. A.; Golub, A. V.; Nepomnyashii, A. S.; Tananaev, I. G.; Avramenko, V. A.

    2017-02-01

    The original way of synthesis of nanostructured iron oxides and based on them magnetic ceramics via sequential combination of sol-gel and SPS technologies has been suggested. High quality of nanostructured iron oxides is defined by porous structure (Sspec up to 47,3 n2/g) and by phase composition of mixed and individual crystal phases (γ-Fe2O3/Fe3O4 i α-Fe2O3), depending on synthesis conditions. High-temperature SPS consolidation of nanostructured hematite powder, resulting in magnetic ceramics of high mechanical strength (fracture strength 249 MPa) has been investigated. Peculiarities of change of phase composition and composite's microstructure in the range of SPS temperatures from 700 to 900 °C have been revealed. Magnetic properties have been studied and regularities of change of magnetization (Ms) and coercive force (Hc) values of the ceramics with respect to SPS sintering temperature have been described.

  19. Furnace Cyclic Behavior of Plasma-Sprayed Zirconia-Yttria and Multi-Component Rare Earth Oxide Doped Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nesbitt, James A.; McCue, Terry R.; Barrett, Charles A.; Miller, Robert A.

    2002-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in advanced gas turbine engines because of their ability to enable further increases in engine temperatures. However, the coating performance and durability become a major concern under the increasingly harsh thermal cycling conditions. Advanced zirconia- and hafnia-based cluster oxide thermal barrier coatings with lower thermal conductivity and improved thermal stability are being developed using a high-heat-flux laser-rig based test approach. Although the new composition coatings were not yet optimized for cyclic durability, an initial durability screening of numerous candidate coating materials was carried out using conventional furnace cyclic tests. In this paper, furnace thermal cyclic behavior of the advanced plasma-sprayed zirconia-yttria-based thermal barrier coatings that were co-doped with multi-component rare earth oxides was investigated at 1163 C using 45 min hot cycles. The ceramic coating failure mechanisms were studied by using scanning electron microscopy combined with X-ray diffraction phase analysis after the furnace tests. The coating cyclic lifetime will be discussed in relation to coating phase structures, total dopant concentrations, and other properties.

  20. Fabrication of hollow boron-doped diamond nanostructure via electrochemical corrosion of a tungsten oxide template.

    PubMed

    Lim, Young-Kyun; Lee, Eung-Seok; Lee, Choong-Hyun; Lim, Dae-Soon

    2018-08-10

    In the study, a hollow boron-doped diamond (BDD) nanostructure electrode is fabricated to increase the reactive surface area for electrochemical applications. Tungsten oxide nanorods are deposited on the silicon substrate as a template by the hot filament chemical vapor deposition (HFCVD) method. The template is coated with a 100 nm BDD layer deposited by HFCVD to form a core-shell nanostructure. The WO x core is finally electrochemically dissolved to form hollow BDD nanostructure. The fabricated hollow BDD nanostructure electrode is investigated via scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The specific surface areas of the electrodes were analyzed and compared by using Brunauer-Emmett-Teller method. Furthermore, cyclic voltammetry and chronocoulometry are used to investigate the electrochemical characteristics and the reactive surface area of the as-prepared hollow BDD nanostructure electrode. A hollow BDD nanostructure electrode exhibits a reactive area that is 15 times that of a planar BDD thin electrode.

  1. The secret behind the success of doping nickel oxyhydroxide with iron.

    PubMed

    Fidelsky, Vicky; Toroker, Maytal Caspary

    2017-03-15

    Discovering better catalysts for water splitting is the holy grail of the renewable energy field. One of the most successful water oxidation catalysts is nickel oxyhydroxide (NiOOH), which is chemically active only as a result of doping with Fe. In order to shed light on how Fe improves efficiency, we perform Density Functional Theory +U (DFT+U) calculations of water oxidation reaction intermediates of Fe substitutional doped NiOOH. The results are analyzed while considering the presence of vacancies that we use as probes to test the effect of adding charge to the surface. We find that the smaller electronegativity of the Fe dopant relative to Ni allows the dopant to have several possible oxidation states with less energy penalty. As a result, the presence of vacancies which alters local oxidation states does not affect the low overpotential of Fe-doped NiOOH. We conclude that the secret to the success of doping NiOOH with iron is the ability of iron to easily change oxidation states, which is critical during the chemical reaction of water oxidation.

  2. Nanostructure iron-silicon thin film deposition using plasma focus device

    NASA Astrophysics Data System (ADS)

    Kotb, M.; Saudy, A. H.; Hassaballa, S.; Eloker, M. M.

    2013-03-01

    The presented study in this paper reports the deposition of nano-structure iron-silicon thin film on a glass substrate using 3.3 KJ Mather-type plasma focus device. The iron-silicon powder was put on the top of hollow copper anode electrode. The deposition was done under different experimental conditions such as numbers of electric discharge shots and angular position of substrate. The film samples were exposed to energetic argon ions generated by plasma focus device at different distances from the top of the central electrode. The exposed samples were then analyzed for their structure and optical properties using X-ray diffraction (XRD) and UV-visible spectroscopy. The structure of iron-silicon thin films deposited using plasma focus device depends on the distance from the anode, the number of focus deposition shots and the angular position of the sample

  3. Synthesis and nonlinear optical properties of zirconia-protected gold nanoparticles embedded in sol-gel derived silica glass

    NASA Astrophysics Data System (ADS)

    Le Rouge, A.; El Hamzaoui, H.; Capoen, B.; Bernard, R.; Cristini-Robbe, O.; Martinelli, G.; Cassagne, C.; Boudebs, G.; Bouazaoui, M.; Bigot, L.

    2015-05-01

    A new approach to dope a silica glass with gold nanoparticles (GNPs) is presented. It consisted in embedding zirconia-coated GNPs in a silica sol to form a doped silica gel. Then, the sol-doped nanoporous silica xerogel is densified leading to the formation of a glass monolith. The spectral position and shape of the surface plasmon resonance (SPR) reported around 520 nm remain compatible with small spherical GNPs in a silica matrix. The saturable absorption behavior of this gold/zirconia-doped silica glass has been evidenced by Z-scan technique. A second-order nonlinear absorption coefficient β of about -13.7 cm GW-1 has been obtained at a wavelength near the SPR of the GNPs.

  4. Effect of starting powders on the sintering of nanostructured ZrO2 ceramics by colloidal processing

    NASA Astrophysics Data System (ADS)

    Suárez, Gustavo; Sakka, Yoshio; Suzuki, Tohru S.; Uchikoshi, Tetsuo; Zhu, Xinwen; Aglietti, Esteban F.

    2009-04-01

    The effect of starting powders on the sintering of nanostructured tetragonal zirconia was evaluated. Suspensions were prepared with a concentration of 10 vol.% by mixing a bicomponent mixture of commercial powders (97 mol.% monoclinic zirconia with 3 mol.% yttria) and by dispersing commercially available tetragonal zirconia (3YTZ, Tosoh). The preparation of the slurry by bead-milling was optimized. Colloidal processing using 50 μm zirconia beads at 4000 rpm generated a fully deagglomerated suspension leading to the formation of high-density consolidated compacts (62% of the theoretical density (TD) for the bicomponent suspension). Optimum colloidal processing of the bicomponent suspension followed by the sintering of yttria and zirconia allowed us to obtain nanostructured tetragonal zirconia. Three different sintering techniques were investigated: normal sintering, two-step sintering and spark plasma sintering. The inhibition of grain growth in the bicomponent mixed powders in comparison with 3YTZ was demonstrated. The inhibition of the grain growth may have been caused by inter-diffusion of cations during the sintering.

  5. Continuous-flow extraction system for elemental association study: a case of synthetic metal-doped iron hydroxide.

    PubMed

    Hinsin, Duangduean; Pdungsap, Laddawan; Shiowatana, Juwadee

    2002-12-06

    A continuous-flow extraction system originally developed for sequential extraction was applied to study elemental association of a synthetic metal-doped amorphous iron hydroxide phase. The homogeneity and metal association of the precipitates were evaluated by gradual leaching using the system. Leachate was collected in fractions for determination of elemental concentrations. The result obtained as extractograms indicated that the doped metals were adsorbed more on the outermost surface rather than homogeneously distributed in the precipitates. The continuous-flow extraction method was also used for effective removal of surface adsorbed metals to obtain a homogeneous metal-doped synthetic iron hydroxide by a sequential extraction using acetic acid and small volume of hydroxylamine hydrochloride solution. The system not only ensures complete washing, but the extent of metal immobilization in the synthetic iron hydroxide could be determined with high accuracy from the extractograms. The initial metal/iron mole ratio (M/Fe) in solution affected the M/Fe mole ratio in homogeneous doped iron hydroxide phase. The M/Fe mole ratio of metal incorporation was approximately 0.01-0.02 and 0.03-0.06, for initial solution M/Fe mole ratio of 0.025 and 0.100, respectively.

  6. Self-assembled Targeting of Cancer Cells by Iron(III)-doped, Silica Nanoparticles.

    PubMed

    Mitchell, K K Pohaku; Sandoval, S; Cortes-Mateos, M J; Alfaro, J G; Kummel, A C; Trogler, W C

    2014-12-07

    Iron(III)-doped silica nanoshells are shown to possess an in vitro cell-receptor mediated targeting functionality for endocytosis. Compared to plain silica nanoparticles, iron enriched ones are shown to be target-specific, a property that makes them potentially better vehicles for applications, such as drug delivery and tumor imaging, by making them more selective and thereby reducing the nanoparticle dose. Iron(III) in the nanoshells can interact with endogenous transferrin, a serum protein found in mammalian cell culture media, which subsequently promotes transport of the nanoshells into cells by the transferrin receptor-mediated endocytosis pathway. The enhanced uptake of the iron(III)-doped nanoshells relative to undoped silica nanoshells by a transferrin receptor-mediated pathway was established using fluorescence and confocal microscopy in an epithelial breast cancer cell line. This process was also confirmed using fluorescence activated cell sorting (FACS) measurements that show competitive blocking of nanoparticle uptake by added holo-transferrin.

  7. 3D interconnected hierarchical porous N-doped carbon constructed by flake-like nanostructure with Fe/Fe3C for efficient oxygen reduction reaction and supercapacitor.

    PubMed

    Li, Guoning; Zhang, Jiajun; Li, Weisong; Fan, Kai; Xu, Chunjian

    2018-05-17

    Hierarchical porous N-doped carbon with Fe/Fe3C nanoparticles, high content of N dopants (10.51 wt%), and a 3D interconnected porous architecture constructed by flake-like nanostructure was facilely prepared by carbonization of a zeolitic imidazolate framework-8 (ZIF-8) as a self-sacrificing template and potassium ferricyanide (PF) as a multifunctional iron precursor. The unique porous structure can offer a continuous pathway for electron transfer and shorten the mass transfer pathway, which contribute to both an oxygen reduction reaction (ORR) and a supercapacitor. The influence of the carbonization temperature and iron content on the performance of ORR and supercapacitor was investigated. The as-prepared composites carbonized at 800 °C (Fe-CZIF-800-10) displayed comparable ORR activity with Pt/C in alkaline media as well as excellent long-term stability, superb methanol tolerance, and appreciable onset potential in acid media. Moreover, Fe-CZIF-800-10 exhibited excellent capacity of 246 F g-1 at a current density of 0.5 A g-1 and stability in 6 M KOH. This report provides a facile approach to prepare hierarchical porous Fe/N-doped carbon as a promising electrode material for both fuel cell and supercapacitor applications.

  8. In-vitro bioactivity of zirconia doped borosilicate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samudrala, Rajkumar; Azeem, P. Abdul, E-mail: rk.satyaswaroop@gmail.com, E-mail: drazeem2002@yahoo.com

    2015-06-24

    Glass composition 31B{sub 2}O{sub 3}-20SiO{sub 2}-24.5Na{sub 2}O-(24.5-x) CaO-xZrO{sub 2} x=1,2,3,4,5 were prepared by melt-quenching Technique. The formation of hydroxyapatite layer on the surface of glasses after immersion in simulated body fluid (SBF) was explored through XRD, Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM-EDX) analyses. In this report, we observed that hydroxyapatite formation for 5days of immersion time. Also observed that with increasing the immersion time up to 15days, higher amount of hydroxyapatite layer formation on the surface of glasses. The varying composition of zirconia in glass samples influences shown by XRD, FTIR studies. The present results indicate that,more » in-vitro bioactivity of glasses decreased with increasing zirconia incorporation.« less

  9. Osteogenic Responses to Zirconia with Hydroxyapatite Coating by Aerosol Deposition

    PubMed Central

    Cho, Y.; Hong, J.; Ryoo, H.; Kim, D.; Park, J.

    2015-01-01

    Previously, we found that osteogenic responses to zirconia co-doped with niobium oxide (Nb2O5) or tantalum oxide (Ta2O5) are comparable with responses to titanium, which is widely used as a dental implant material. The present study aimed to evaluate the in vitro osteogenic potential of hydroxyapatite (HA)-coated zirconia by an aerosol deposition method for improved osseointegration. Surface analysis by scanning electron microscopy and x-ray diffraction proved that a thin as-deposited HA film on zirconia showed a shallow, regular, crater-like surface. Deposition of dense and uniform HA films was measured by SEM, and the contact angle test demonstrated improved wettability of the HA-coated surface. Confocal laser scanning microscopy indicated that MC3T3-E1 pre-osteoblast attachment did not differ notably between the titanium and zirconia surfaces; however, cells on the HA-coated zirconia exhibited a lower proliferation than those on the uncoated zirconia late in the culture. Nevertheless, ALP, alizarin red S staining, and bone marker gene expression analysis indicated good osteogenic responses on HA-coated zirconia. Our results suggest that HA-coating by aerosol deposition improves the quality of surface modification and is favorable to osteogenesis. PMID:25586588

  10. Using a double-doping strategy to improve physical properties of nanostructured CdO films

    NASA Astrophysics Data System (ADS)

    Aydin, R.; Sahin, B.

    2018-06-01

    In this present study nanostructured dually doped samples of Cd1‑x‑yMgxMyO (M: Sn, Pb, Bi) are synthesized by SILAR method. The effects of the mono and dual doping on the structural, morphological and optoelectronic characteristics of CdO nanoparticles are examined. The SEM images verify that deposited CdO films are nano-sized. Also the SEM computations demonstrated that the morphological surface structures of the films were influenced from the Mg mono doping and (Mg, Sn), (Mg, Pb) and (Mg, Bi) dual doping. The XRD designs specified that all the CdO samples have polycrystalline structure exhibiting cubic crystal form with dominant peaks of (111) and (220). The results display that Mg and (Mg, Sn), (Mg, Pb) and (Mg, Bi) ions were successfully doped into CdO film matrix. The UV spectroscopy results show that the optical energy band gap of the CdO films, ranging from 2.21 to 2.66 eV, altered with the dopant materials.

  11. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part frommore » coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.« less

  12. Synthesis of zirconia (ZrO2) nanowires via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Baek, M. K.; Park, S. J.; Choi, D. J.

    2017-02-01

    Monoclinic zirconia nanowires were synthesized by chemical vapor deposition using ZrCl4 powder as a starting material at 1200 °C and 760 Torr. Graphite was employed as a substrate, and an Au thin film was pre-deposited on the graphite as a catalyst. The zirconia nanostructure morphology was observed through scanning electron microscopy and transmission electron microscopy. Based on X-ray diffraction, selected area electron diffraction, and Raman spectroscopy data, the resulting crystal structure was found to be single crystalline monoclinic zirconia. The homogeneous distributions of Zr, O and Au were studied by scanning transmission electron microscopy with energy dispersive X-ray spectroscopy mapping, and there was no metal droplet at the nanowire tips despite the use of an Au metal catalyst. This result is apart from that of conventional metal catalyzed nanowires.

  13. Mineral trioxide aggregate enriched with iron disulfide nanostructures: an evaluation of their physical and biological properties.

    PubMed

    Argueta-Figueroa, Liliana; Delgado-García, José J; García-Contreras, René; Martínez-Alvarez, Omar; Santos-Cruz, José; Oliva-Martínez, Carlos; Acosta-Torres, Laura S; de la Fuente-Hernández, Javier; Arenas-Arrocena, Ma C

    2018-06-01

    The purpose of this study was to characterize mineral trioxide aggregates (MTA) enriched with iron disulfide (FeS 2 ) nanostructures at different concentrations, and to investigate their storage modulus, radiopacity, setting time, pH, cytotoxicity, and antimicrobial activity. Iron disulfide nanostructures [with particle size of 0.357 ± 0.156 μm (mean ± SD)] at weight ratios of 0.2, 0.4, 0.6, 0.8, and 1.0 wt% were added to white MTA (wMTA). The radiopacity, rheological properties, setting time, and pH, as well as the cytotoxicity (assessed using the MTT assay) and antibacterial activity (assessed using the broth microdilution test) were determined for MTA/FeS 2 nanostructures. The nanostructures did not modify the radiopacity values of wMTA (~6 mm of aluminium); however, they reduced the setting time from 18.2 ± 3.20 min to 13.7 ± 1.8 min, and the storage modulus was indicative of a good stiffness. Whereas the wMTA/FeS 2 nanostructures did not induce cytotoxicity when in contact with human pulp cells (HPCs) and human gingival fibroblasts (HGFs), they showed bacteriostatic activity against Staphylococcus aureus, Escherichia coli, and Enterococcus faecalis. Adding FeS 2 nanostructures to MTA might be an option for improving the root canal sealing and antibacterial effects of wMTA in endodontic treatments. © 2018 Eur J Oral Sci.

  14. Effect of metal chloride solutions on coloration and biaxial flexural strength of yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Oh, Gye-Jeong; Lee, Kwangmin; Lee, Doh-Jae; Lim, Hyun-Pil; Yun, Kwi-Dug; Ban, Jae-Sam; Lee, Kyung-Ku; Fisher, John G.; Park, Sang-Won

    2012-10-01

    The effect of three kinds of transition metal dopants on the color and biaxial flexural strength of zirconia ceramics for dental applications was evaluated. Presintered zirconia discs were colored through immersion in aqueous chromium, molybdenum and vanadium chloride solutions and then sintered at 1450 °C. The color of the doped specimens was measured using a digital spectrophotometer. For biaxial flexural strength measurements, specimens infiltrated with 0.3 wt% of each aqueous chloride solution were used. Uncolored discs were used as a control. Zirconia specimens infiltrated with chromium, molybdenum and vanadium chloride solutions were dark brown, light yellow and dark yellow, respectively. CIE L*, a*, and b* values of all the chromium-doped specimens and the specimens infiltrated with 0.1 wt% molybdenum chloride solution were in the range of values for natural teeth. The biaxial flexural strengths of the three kinds of metal chloride groups were similar to the uncolored group. These results suggest that chromium and molybdenum dopants can be used as colorants to fabricate tooth colored zirconia ceramic restorations.

  15. Optical Analysis of Iron-Doped Lead Sulfide Thin Films for Opto-Electronic Applications

    NASA Astrophysics Data System (ADS)

    Chidambara Kumar, K. N.; Khadeer Pasha, S. K.; Deshmukh, Kalim; Chidambaram, K.; Shakil Muhammad, G.

    Iron-doped lead sulfide thin films were deposited on glass substrates using successive ionic layer adsorption and reaction method (SILAR) at room temperature. The X-ray diffraction pattern of the film shows a well formed crystalline thin film with face-centered cubic structure along the preferential orientation (1 1 1). The lattice constant is determined using Nelson Riley plots. Using X-ray broadening, the crystallite size is determined by Scherrer formula. Morphology of the thin film was studied using a scanning electron microscope. The optical properties of the film were investigated using a UV-vis spectrophotometer. We observed an increase in the optical band gap from 2.45 to 3.03eV after doping iron in the lead sulfide thin film. The cutoff wavelength lies in the visible region, and hence the grown thin films can be used for optoelectronic and sensor applications. The results from the photoluminescence study show the emission at 500-720nm. The vibrating sample magnetometer measurements confirmed that the lead sulfide thin film becomes weakly ferromagnetic material after doping with iron.

  16. Enhanced superconductivity in surface-electron-doped iron pnictide Ba(Fe 1.94Co 0.06) 2As 2

    DOE PAGES

    Kyung, W. S.; Huh, S. S.; Koh, Y. Y.; ...

    2016-08-15

    The transition critical temperature (TC ) in a FeSe monolayer on SrTiO 3 is enhanced up to 100 K. High TC is also found in bulk iron chalcogenides with similar electronic structure to that of monolayer FeSe, which suggests that higher TC may be achieved through electron doping, pushing the Fermi surface (FS) topology towards leaving only electron pockets. Such observation, however, has been limited to chalcogenides and is in contrast with the iron pnictides for which the maximum TC is achieved with both hole and electron pockets forming considerable FS nesting instability. Here, we report angle-resolved photoemission (ARPES) characterizationmore » revealing a monotonic increase of TC from 24 to 41.5 K upon surface doping on optimally doped Ba(Fe 1-xCo x) 2As 2 . The doping changes the overall FS topology towards that of chalcogenides through a rigid downward band shift. Our findings suggest that higher electron doping and concomitant changes in FS topology are favorable conditions for the superconductivity, not only for iron chalcogenides but also for iron pnictides.« less

  17. Structural and dielectric studies of Ce doped BaSnO3 perovskite nanostructures

    NASA Astrophysics Data System (ADS)

    Angel, S. Lilly; Deepa, K.; Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.

    2018-04-01

    Undoped and Cerium (Ce) doped BaSnO3(BSO) nanostructures were synthesized by co-precipitation method. The cubic structure and perovskite phase were confirmed by X-ray diffraction (XRD). The crystallite size of BSO is 41nm and when Ce ion concentration is increased, the crystallite sizesdecreased. The nanocube, nanocuboids and nanorods are observed from SEM analysis. The purity of the undoped and doped samples are confirmed by EDS spectrum. For larger defects, wide band gap was obtained from UV-Vis and PL spectrum. The dielectric constants are increased at low frequencies when Ce impurities are introduced in the BSO matrix at Sn site.

  18. Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst.

    PubMed

    Li, Feng; Bu, Yunfei; Lv, Zijian; Mahmood, Javeed; Han, Gao-Feng; Ahmad, Ishfaq; Kim, Guntae; Zhong, Qin; Baek, Jong-Beom

    2017-10-01

    Iron (Fe)-doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one-step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe-doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. CHARACTERIZATION OF FLAME-SYNTHESIZED FE, CO, OR MN-DOPED TITANIA NANOSTRUCTURED PARTICLES

    EPA Science Inventory

    The flame-synthesized catalysts have higher surface areas than commercial-grade titania and are composed of nanometer-sized primary particles with low internal porosity. Preliminary studies suggest that flame-synthesized iron-doped titania may be photoactivated in the visible lig...

  20. Transition-metal dispersion on carbon-doped boron nitride nanostructures: Applications for high-capacity hydrogen storage

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Zhao, Yu-Jun; Liao, Ji-Hai; Yang, Xiao-Bao

    2012-07-01

    Using density-functional theory calculations, we investigated the adsorption of transition-metal (TM) atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) on carbon doped hexagonal boron nitride (BN) sheet and the corresponding cage (B12N12). With carbon substitution of nitrogen, Sc, V, Cr, and Mn atoms were energetically favorable to be dispersed on the BN nanostructures without clustering or the formation of TM dimers, due to the strong binding between TM atoms and substrate, which contains the half-filled levels above the valence bands maximum. The carbon doped BN nanostructures with dispersed Sc could store up to five and six H2, respectively, with the average binding energy of 0.3 ˜ 0.4 eV, indicating the possibility of fabricating hydrogen storage media with high capacity. We also demonstrated that the geometrical effect is important for the hydrogen storage, leading to a modulation of the charge distributions of d levels, which dominates the binding between H2 and TM atoms.

  1. Electrical properties of Mg doped ZnO nanostructure annealed at different temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, R., E-mail: ruziana12@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Rusop, M., E-mail: nanouitm@gmail.com

    In this work, ZincOxide (ZnO) nanostructures doped with Mg were successfully grown on the glass substrate. Magnesium (Mg) metal element was added in the ZnO host which acts as a doping agent. Different temperature in range of 250°C to 500°C was used in order to investigate the effect of annealing temperature of ZnO thin films. Field Emission Scanning Electron Microscopy (FESEM) was used to investigate the physical characteristic of ZnO thin films. FESEM results have revealed that ZnO nanorods were grown vertically aligned. The structural properties were determined by using X-Ray Diffraction (XRD) analysis. XRD results showed Mg doped ZnOmore » thin have highest crystalinnity at 500°C annealing temperature. The electrical properties were investigating by using Current-Voltage (I-V) measurement. I-V measurement showed the electrical properties were varied at different annealing temperature. The annealing temperature at 500°C has the highest electrical conductance properties.« less

  2. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shulei; Zheng, Shili; Wang, Zheming

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  3. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shulei; Zheng, Shili; Wang, Zheming

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li2TiO3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x0.15, Fe-doping led to grain shrinkage as compared to Li2TiO3 and at the samemore » time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g-1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH 2 solutions (1.8 g L-1 Li, pH 12) reached 53.3 mg g-1 within 24 h, which was higher than that of pristine Li2TiO3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  4. Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves

    DOE PAGES

    Wang, Shulei; Zheng, Shili; Wang, Zheming; ...

    2018-09-09

    The recent research on adsorption-based lithium recovery from lithium-containing solutions has been centred on adsorption capacity and separation of lithium ion-sieves powder from solutions. Herein, an effective iron-doped lithium titanium oxide (Fe-doped Li 2TiO 3) was synthesized by Fe-doping via solid state reactions followed by acid treatment to form iron-doped lithium ion-sieves (Fe/Ti-x(H)). The resulting solid powder displays both superior adsorption capacity of lithium and high separation efficiency of the adsorbent from the solutions. SEM imaging and BET surface area measurement results showed that at Fe doping levels x ≤ 0.15, Fe-doping led to grain shrinkage as compared to Limore » 2TiO 3 and at the same time the BET surface area increased. The Fe/Ti-0.15(H) exhibited saturated magnetization values of 13.76 emu g -1, allowing effective separation of the material from solid suspensions through the use of a magnet. Consecutive magnetic separation results suggested that the Fe/Ti-0.15(H) powders could be applied at large-scale and continuously removed from LiOH solutions with separation efficiency of 96% or better. Lithium adsorption studies indicated that the equilibrium adsorption capacity of Fe/Ti-0.15(H) in LiOH solutions (1.8 g L -1 Li, pH 12) reached 53.3 mg g -1 within 24 h, which was higher than that of pristine Li 2TiO 3 (50.5 mg g-1) without Fe doping. Competitive adsorption and regeneration results indicated that the Fe/Ti-0.15(H) possessed a high selectivity for Li with facile regeneration. Therefore, it could be expected that the iron-doped lithium ion-sieves have practical applicability potential for large scale lithium extraction and recovery from lithium-bearing solutions.« less

  5. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos

    PubMed Central

    Xia, Tian; Zhao, Yan; Sager, Tina; George, Saji; Pokhrel, Suman; Li, Ning; Schoenfeld, David; Meng, Huan; Lin, Sijie; Wang, Xiang; Wang, Meiying; Ji, Zhaoxia; Zink, Jeffrey I.; Mädler, Lutz; Castranova, Vincent; Lin, Shuo; Nel, Andre E.

    2014-01-01

    We have recently shown that the dissolution of ZnO nanoparticles and Zn2+ shedding leads to a series of sub-lethal and lethal toxicological responses at cellular level that can be alleviated by iron-doping. Iron-doping changes the particle matrix and slows the rate of particle dissolution. To determine whether iron doping of ZnO also leads to lesser toxic effects in vivo, toxicity studies were performed in rodent and zebrafish models. First, we synthesized a fresh batch of ZnO nanoparticles doped with 1–10 wt % of Fe. These particles were extensively characterized to confirm their doping status, reduced rate of dissolution in an exposure medium and reduced toxicity in a cellular screen. Subsequent studies compared the effects of undoped to doped particles in the rat lung, mouse lung and the zebrafish embryo. The zebrafish studies looked at embryo hatching and mortality rates as well as the generation of morphological defects, while the endpoints in the rodent lung included an assessment of inflammatory cell infiltrates, LDH release and cytokine levels in the bronchoalveolar lavage fluid. Iron doping, similar to the effect of the metal chelator, DTPA, interfered in the inhibitory effects of Zn2+ on zebrafish hatching. In the oropharyngeal aspiration model in the mouse, iron doping was associated with decreased polymorphonuclear cell counts and IL-6 mRNA production. Doped particles also elicited decreased heme oxygenase 1 expression in the murine lung. In the intratracheal instillation studies in the rat, Fe-doping was associated with decreased polymorphonuclear cell counts, LDH and albumin levels. All considered, the above data show that Fe-doping is a possible safe design strategy for preventing ZnO toxicity in animals and the environment. PMID:21250651

  6. Impedance spectroscopy of reduced monoclinic zirconia.

    PubMed

    Eder, Dominik; Kramer, Reinhard

    2006-10-14

    Zirconia doped with low-valent cations (e.g. Y3+ or Ca2+) exhibits an exceptionally high ionic conductivity, making them ideal candidates for various electrochemical applications including solid oxide fuel cells (SOFC) and oxygen sensors. It is nevertheless important to study the undoped, monoclinic ZrO2 as a model system to construct a comprehensive picture of the electrical behaviour. In pure zirconia a residual number of anion vacancies remains because of contaminants in the material as well as the thermodynamic disorder equilibrium, but electronic conduction may also contribute to the observed conductivity. Reduction of zirconia in hydrogen leads to the adsorption of hydrogen and to the formation of oxygen vacancies, with their concentration affected by various parameters (e.g. reduction temperature and time, surface area, and water vapour pressure). However, there is still little known about the reactivities of defect species and their effect on the ionic and electronic conduction. Thus, we applied electrochemical impedance spectroscopy to investigate the electric performance of pure monoclinic zirconia with different surface areas in both oxidizing and reducing atmospheres. A novel equivalent circuit model including parallel ionic and electronic conduction has previously been developed for titania and is used herein to decouple the conduction processes. The concentration of defects and their formation energies were measured using volumetric oxygen titration and temperature programmed oxidation/desorption.

  7. Enabling Earth-Abundant Pyrite (FeS2) Semiconductor Nanostructures for High Performance Photovoltaic Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Song

    2014-11-18

    This project seeks to develop nanostructures of iron pyrite, an earth-abundant semiconductor, to enable their applications in high-performance photovoltaic (PV) devices. Growth of high purity iron pyrite nanostructures (nanowires, nanorods, and nanoplates), as well as iron pyrite thin films and single crystals, has been developed and their structures characterized. These structures have been fundamentally investigated to understand the origin of the low solar energy conversion efficiency of iron pyrite and various passivation strategies and doping approaches have been explored in order to improve it. By taking advantage of the high surface-to-bulk ratio in nanostructures and effective electrolyte gating, we fullymore » characterized both the surface inversion and bulk electrical transport properties for the first time through electrolyte-gated Hall measurements of pyrite nanoplate devices and show that pyrite is n-type in the bulk and p-type near the surface due to strong inversion, which has important consequences to using nanocrystalline pyrite for efficient solar energy conversion. Furthermore, through a comprehensive investigation on n-type iron pyrite single crystals, we found the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a non-constant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explains the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings suggest new ideas on how to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films to enable them for high performance solar applications.« less

  8. Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.

    PubMed

    Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F

    2016-08-11

    We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer.

  9. Improved electron transfer and plasmonic effect in dye-sensitized solar cells with bi-functional Nb-doped TiO2/Ag ternary nanostructures.

    PubMed

    Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak

    2014-03-07

    TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.

  10. Structural response of Nd-stabilized zirconia and its composite under extreme conditions of swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Nandi, Chiranjit; Grover, V.; Kulriya, P. K.; Poswal, A. K.; Prakash, Amrit; Khan, K. B.; Avasthi, D. K.; Tyagi, A. K.

    2018-02-01

    Inert matrix fuel concept for minor actinide transmutation proposes stabilized zirconia as the major component for inert matrix. The present study explores Nd-stabilized zirconia (Zr0.8Nd0.2O1.9; Nd as surrogate for Am) and its composites for radiation tolerance against fission fragments. The introduction of MgO in the composite with stabilised zirconia is performed from the point of view to enhance the thermal conductivity. The radiation damage is also compared with Nd-stabilized zirconia co-doped with Y3+ (Zr0.8Nd0.1Y0.1O1.9) in order to mimic doping of minor actinides in Y3+ containing stabilized zirconia (Nd as surrogate for Am). The compositions were synthesized by gel combustion followed by high temperature sintering and characterised by XRD, SEM and EDS. Irradiation was carried out by 120 MeV Au ions at various fluences and irradiation induced structural changes were probed by in-situ X-ray diffraction (XRD). XRD demonstrated the retention of crystallinity for all the three samples but the extent of the damage was found to be highly dependent on the nominal composition. It was observed that introduction of Y3+ along with Nd3+ to stabilize cubic zirconia imparted poorer radiation stability. On the other hand, formation of a CERCER composite of MgO with Nd-stabilised zirconia enhanced its behaviour against swift heavy ion irradiation. Investigating these compositions by XANES spectroscopy post irradiation did not show any change in local electronic structure of constituent ions.

  11. Development of zirconia based phosphors for application in lighting and as luminescent bioprobes =

    NASA Astrophysics Data System (ADS)

    Soares, Maria Rosa Nunes

    The strong progress evidenced in photonic and optoelectronic areas, accompanied by an exponential development in the nanoscience and nanotechnology, gave rise to an increasing demand for efficient luminescent materials with more and more exigent characteristics. In this field, wide band gap hosts doped with lanthanide ions represent a class of luminescent materials with a strong technological importance. Within wide band gap material, zirconia owns a combination of physical and chemical properties that potentiate it as an excellent host for the aforementioned ions, envisaging its use in different areas, including in lighting and optical sensors applications, such as pressure sensors and biosensors. Following the demand for outstanding luminescent materials, there is also a request for fast, economic and an easy scale-up process for their production. Regarding these demands, laser floating zone, solution combustion synthesis and pulsed laser ablation in liquid techniques are explored in this thesis for the production of single crystals, nanopowders and nanoparticles of lanthanides doped zirconia based hosts. Simultaneously, a detailed study of the morphological, structural and optical properties of the produced materials is made. The luminescent characteristics of zirconia and yttria stabilized zirconia (YSZ) doped with different lanthanide ions (Ce3+ (4f1), Pr3+ (4f2), Sm3+ (4f5), Eu3+ (4f6), Tb3+ (4f8), Dy3+ (4f9), Er3+ (4f11), Tm3+ (4f12), Yb3+ (4f13)) and co-doped with Er3+,Yb3+ and Tm3+,Yb3+ are analysed. Besides the Stokes luminescence, the anti- Stokes emission upon infrared excitation (upconversion and black body radiation) is also analysed and discussed. The comparison of the luminescence characteristics in materials with different dimensions allowed to analyse the effect of size in the luminescent properties of the dopant lanthanide ions. The potentialities of application of the produced luminescent materials in solid state light, biosensors and pressure

  12. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    PubMed

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances. Copyright © 2014. Published by Elsevier B.V.

  13. Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals

    PubMed Central

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.

    2017-01-01

    Zirconia doped Hydroxyapatite (HAP) nanocrystals [Ca10(PO4)6−x(ZrO2)x(OH)2]; (0 ≤ x ≤ 1 step 0.2) were synthesized using simple low cost facile method. The crystalline phases were examined by X-ray diffraction (XRD). The crystallinity percentage decreased with increasing zirconia content for the as-synthesized samples. The existence of zirconia as secondary phase on the grain boundaries; as observed from scanning electron micrographs (FESEM); resulted in negative values of microstrain. The crystallite size was computed and the results showed that it increased with increasing annealing temperature. Thermo-gravimetric analysis (TGA) assured the thermal stability of the nano crystals over the temperature from room up to 1200 °C depending on the zirconia content. The corrosion rate was found to decrease around 25 times with increasing zirconia content from x = 0.0 to 1.0. Microhardness displayed both compositional and temperature dependence. For the sample (x = 0.6), annealed at 1200 °C, the former increased up to 1.2 times its original value (x = 0.0). PMID:28256557

  14. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz

    2015-12-22

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  15. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  16. Plasmachemical synthesis of nanopowders of yttria and zirconia from dispersed water-salt-organic mixtures

    NASA Astrophysics Data System (ADS)

    Novoselov, Ivan; Karengin, Alexander; Shamanin, Igor; Alyukov, Evgeny; Gusev, Alexander

    2018-03-01

    Article represents results on theoretical and experimental research of yttria and zirconia plasmachemical synthesis in air plasma from water-salt-organic mixtures "yttrium nitrate-water-acetone" and "zirconyl nitrate-water-acetone". On the basis of thermotechnical calculations the influence of organic component on lower heat value and adiabatic combustion temperature of water-salt-organic mixtures as well as compositions of mixtures providing their energy-efficient plasma treatment were determined. The calculations found the influence of mass fraction and temperature of air plasma supporting gas on the composition of plasma treatment products. It was determined the conditions providing yttria and zirconia plasmachemical synthesis in air plasma. During experiments it was b eing carried out the plasmachemical synthesis of yttria and zirconia powders in air plasma flow from water -salt-organic mixtures. Analysis of the results for obtained powders (scanning electron microscopy, X-ray diffraction analysis, BET analysis) confirm nanostructure of yttria and zirconia.

  17. Grain-Boundary Engineering for Aging and Slow-Crack-Growth Resistant Zirconia.

    PubMed

    Zhang, F; Chevalier, J; Olagnon, C; Batuk, M; Hadermann, J; Van Meerbeek, B; Vleugels, J

    2017-07-01

    Ceramic materials are prone to slow crack growth, resulting in strength degradation over time. Although yttria-stabilized zirconia (Y-TZP) ceramics have higher crack resistance than other dental ceramics, their aging susceptibility threatens their long-term performance in aqueous environments such as the oral cavity. Unfortunately, increasing the aging resistance of Y-TZP ceramics normally reduces their crack resistance. Our recently conducted systematic study of doping 3Y-TZP with various trivalent cations revealed that lanthanum oxide (La 2 O 3 ) and aluminum oxide (Al 2 O 3 ) have the most potent effect to retard the aging kinetics of 3Y-TZP. In this study, the crack-propagation behavior of La 2 O 3 and Al 2 O 3 co-doped 3Y-TZP ceramics was investigated by double-torsion methods. The grain boundaries were examined using scanning transmission electron microscopy and energy-dispersive spectroscopy (STEM-EDS). Correlating these analytic data with hydrothermal aging studies using different doping systems, a strategy to strongly bind the segregated dopant cations with the oxygen vacancies at the zirconia-grain boundary was found to improve effectively the aging resistance of Y-TZP ceramics without affecting the resistance to crack propagation.

  18. Energetics of zirconia stabilized by cation and nitrogen substitution

    NASA Astrophysics Data System (ADS)

    Molodetsky, Irina

    Tetragonal and cubic zirconia are used in advanced structural ceramics, fuel cells, oxygen sensors, nuclear waste ceramics and many other applications. These zirconia phases are stabilized at room temperature (relative to monoclinic phase for pure zirconia) by cation and nitrogen substitution. This work is aimed at a better understanding of the mechanisms of stabilization of the high-temperature zirconia. phases. Experimental data are produced on the energetics of zirconia stabilized by yttria and calcia, energetics of nitrogen-oxygen substitution in zirconia and cation doped zirconia, and energetics of x-ray amorphous zirconia. obtained by low-temperature synthesis. High-temperature oxide melt solution enables direct measurement of enthalpies of formation of these refractory oxides. The enthalpy of the monoclinic to cubic phase transition of zirconia is DeltaHm-c = 12.2 +/- 1.2 kJ/mol. For cubic phases of YSZ at low yttria contents, a straight line DeltaH f,YSZ = -(52.4 +/- 3.6)x + (12.2 +/- 1.2) approximates the enthalpy of formation as a function of the yttria content, x (0. 1 < x < 0.3). Use of the quadratic fit DeltaHf,YSZ = 126.36 x 2 - 81.29 x + 12.37 (0.1 ≲ x ≲ 0.53) indicates that yttria stabilizes the cubic phase in enthalpy at low dopant content and destabilizes the cubic phase as yttria content increases. Positive entropy of mixing in YSZ and small enthalpy of long range ordering in 0.47ZrO2-0.53YO1.5, DeltaHord = -2.4 +/- 3.0 kJ/mol, indicate presence of short range ordering in YSZ. The enthalpy of formation of calcia stabilized zirconia as a function of calcia content x, is approximated as DeltaHf,c = (-91.4 +/- 3.8) x + (13.5 +/- 1.7) kJ/mol. The enthalpy of oxygen-nitrogen substitution, DeltaHO-N, in zirconium oxynitrides is a linear function of nitrogen content. DeltaH O-N ˜ -500 kJ/mol N is for Ca (Y)-Zr-N-O and Zr-N-O oxynitrides and DeltaHO-N ˜ -950 kJ/mol N is for Mg-Zr-N-O oxynitrides. X-ray amorphous zirconia is 58.6 +/- 3.3 kJ/mol less

  19. Effects of iron deficiency on anisotropy and ferromagnetic resonance linewidth in Bi-doped LiZn ferrite

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaona; Wang, Wei; Yu, Zhong; Sun, Ke; Lan, Zhongwen; Zhang, Xinran; Harris, Vincent G.

    2017-05-01

    Bi-doped LiZn ferrites with different iron deficiencies were fabricated by a conventional ceramic method. Anisotropy constant (K1) was calculated and ferromagnetic resonance (FMR) linewidth (ΔH) was investigated. Crystalline anisotropy broadening linewidth (ΔHa) and porosity broadening linewidth (ΔHp) were derived by an approximate calculation based on dipolar narrowing theory, which play a significant role in contributions to FMR linewidth and occupy more than 90 % of ΔH. Physical and static magnetic properties of LiZn ferrite with iron deficiency are presented, which supports a decline in linewidths with increasing iron deficiency. Iron deficiency makes K1, ΔHa and ΔHp reduce. The results also show that ΔHp is the majority of contributions to ΔH in Bi-doped LiZn ferrite and densification is an effective method to decrease ΔH.

  20. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation

    NASA Astrophysics Data System (ADS)

    Hilty, Florentine M.; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T. N.; Ehrensperger, Felix; Hurrell, Richard F.; Pratsinis, Sotiris E.; Langhans, Wolfgang; Zimmermann, Michael B.

    2010-05-01

    Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO4), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area ~190 m2 g-1) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO4 and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO4 and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

  1. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation.

    PubMed

    Hilty, Florentine M; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T N; Ehrensperger, Felix; Hurrell, Richard F; Pratsinis, Sotiris E; Langhans, Wolfgang; Zimmermann, Michael B

    2010-05-01

    Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

  2. Doping dependence of the anisotropic quasiparticle interference in NaFe(1-x)Co(x)As iron-based superconductors.

    PubMed

    Cai, Peng; Ruan, Wei; Zhou, Xiaodong; Ye, Cun; Wang, Aifeng; Chen, Xianhui; Lee, Dung-Hai; Wang, Yayu

    2014-03-28

    We use scanning tunneling microscopy to investigate the doping dependence of quasiparticle interference (QPI) in NaFe1-xCoxAs iron-based superconductors. The goal is to study the relation between nematic fluctuations and Cooper pairing. In the parent and underdoped compounds, where fourfold rotational symmetry is broken macroscopically, the QPI patterns reveal strong rotational anisotropy. At optimal doping, however, the QPI patterns are always fourfold symmetric. We argue this implies small nematic susceptibility and, hence, insignificant nematic fluctuation in optimally doped iron pnictides. Since TC is the highest this suggests nematic fluctuation is not a prerequistite for strong Cooper pairing.

  3. Characterization and analysis of thermoelectric transport using SPB model in nanostructured aluminum doped zinc tellurium

    NASA Astrophysics Data System (ADS)

    Bhaskar, Ankam; Pai, Yi-Hsuan; Liu, Chia-Jyi

    2017-11-01

    Low-temperature electronic and thermal transport measurements are carried out on nanostructured Zn1-x Al x Te (0  ⩽  x  ⩽  0.15) fabricated using hydrothermal synthesis followed by evacuated-and-encapsulated sintering. A single parabolic band with acoustic phonon scattering is used to analyze thermoelectric transport data. It is found that reduced Fermi energy gets closer to the valence band edge and density of states effective mass, effective density of states, and Hall factor decrease with increasing x in doped samples. The chemical carrier concentration, carrier density independent mobility, β, and theoretical zT values increase with increasing x in doped samples. The nanostructured Zn1-x Al x Te exhibits significant reduction of thermal conductivity at 300 K (1.82-3.71 W m-1 K-1) as compared to bulk ZnTe (18 W m-1 K-1). The point-defect scattering and phonon-grain scattering play an important role in reducing the lattice thermal conductivity. In addition, partial substitution of Al3+ for Zn2+ significantly improves both the power factor and zT values.

  4. New nanostructured ceramics from baddeleyite with improved mechanical properties for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tyurin, Alexander I.; Zhigachev, Andrey O.; Umrikhin, Alexey V.; Rodaev, Vyacheslav V.; Korenkov, Viktor V.; Pirozhkova, Tatyana S.

    2017-12-01

    A method for the preparation of novel nanostructured zirconia ceramics from natural zirconia mineral—baddeleyite—using CaO as the stabilizer is described in the present work. Optimal synthesis conditions, including calcia content, planetary mill treatment regime, sintering time and temperature, corresponding to the highest values of hardness H, Young modulus E, and fracture toughness KC are found. The values of the mechanical properties H = 10.8 GPa, E = 200 GPa, and KC = 13.3 MPa m1/2 are comparable with or exceed the corresponding properties of commercial yttria-stabilized ceramics prepared from chemically precipitated zirconia.

  5. Voltammetric Sensor Based on Fe-doped ZnO and TiO2 Nanostructures-modified Carbon-paste Electrode for Determination of Levodopa

    NASA Astrophysics Data System (ADS)

    Anaraki Firooz, Azam; Hosseini Nia, Bahram; Beheshtian, Javad; Ghalkhani, Masoumeh

    2017-10-01

    In this study, undoped and 1 wt.% Fe-doped with ZnO, and TiO2 nanostructures were synthesized by a simple hydrothermal method without using templates. The influence of the Fe dopant on structural, optical and electrochemical response was studied by x-ray diffraction, scanning electron microscopy, UV-Vis spectra, photoluminescence spectra and electrochemical characterization system. The electrochemical response of the carbon paste electrode modified with synthesized nanostructures (undoped ZnO and TiO2 as well as doped with Fe ions) toward levodopa (L-Dopa) was studied. Cyclic voltammetry using provided modified electrodes showed electro-catalytic properties for electro-oxidation of L-Dopa and a significant reduction was observed in the anodic overvoltage compared to the bare electrode. The results indicated the presence of the sufficient dopants. The best response was obtained in terms of the current enhancement, overvoltage reduction, and reversibility improvement of the L-Dopa oxidation reaction under experimental conditions by the modified electrode with TiO2 nanoparticles doped with Fe ions.

  6. Electrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET-ITO flexible substrates by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ai, Taotao; Yu, Qi

    2017-02-01

    Boron-doped zinc oxide sheet-spheres were synthesized on PET-ITO flexible substrates using a hydrothermal method at 90 °C for 5 h. The results of X-ray diffraction and X-ray photoelectron spectroscopy indicated that the B atoms were successfully doped into the ZnO lattice, the incorporation of B led to an increase in the lattice constant of ZnO and a change in its internal stress. The growth mechanism of pure ZnO nanorods and B-doped ZnO sheet-spheres was specifically investigated. The as-prepared BZO/PET-ITO heterojunction possessed obvious rectification properties and its positive turn-on voltage was 0.4 V. The carrier transport mechanisms involved three models such as hot carrier tunneling theory, tunneling recombination, and series-resistance effect were explored. The BZO/PET-ITO nanostructures were more effective than pure ZnO to degrade the RY 15, and the degradation rate reached 41.45%. The decomposition process with BZO nanostructure followed first-order reaction kinetics. The photocurrent and electrochemical impedance spectroscopy revealed that the B-doping could promote the separation of photo-generated electron-hole pairs, which was beneficial to enhance the photocatalytic activity. The photocurrent density of B-doped and pure ZnO/PET-ITO were 0.055 mA/cm2 and 0.016 mA/cm2, respectively. The photocatalytic mechanism of the sample was analyzed by the energy band theory.

  7. Upconversion luminescence in Er3+ doped and Er3+/Yb3+ codoped zirconia and hafnia nanocrystals excited at 980 nm

    NASA Astrophysics Data System (ADS)

    Gómez, Luis A.; Menezes, Leonardo de S.; de Araújo, Cid B.; Gonçalves, Rogeria R.; Ribeiro, Sidney J. L.; Messaddeq, Younes

    2010-06-01

    Frequency upconversion (UC) luminescence in nanocrystalline zirconia (ZrO2) and hafnia (HfO2) doped with Er3+ and Yb3+ was studied under continuous-wave excitation at 980 nm. Samples of ZrO2:Er3+, ZrO2:Er3+/Yb3+, and HfO2:Er3+/Yb3+ were prepared by the sol-gel technique and characterized using x-ray diffraction and electron microscopy. A study of the infrared-to-green and infrared-to-red UC processes was performed including the analysis of the spectral and the temporal behavior. The mechanisms contributing to the UC luminescence were identified as excited state absorption and energy transfer among rare-earth ions.

  8. Electrically conductive nanostructured silver doped zinc oxide (Ag:ZnO) prepared by solution-immersion technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afaah, A. N., E-mail: afaahabdullah@yahoo.com; Asib, N. A. M., E-mail: amierahasib@yahoo.com; Aadila, A., E-mail: aadilaazizali@gmail.com

    2016-07-06

    p-type ZnO films have been fabricated on ZnO-seeded glass substrate, using AgNO{sub 3} as a source of silver dopant by facile solution-immersion. Cleaned glass substrate were seeded with ZnO by mist-atomisation, and next the seeded substrates were immersed in Ag:ZnO solution. The effects of Ag doping concentration on the Ag-doped ZnO have been investigated. The substrates were immersed in different concentrations of Ag dopant with variation of 0, 1, 3, 5 and 7 at. %. The surface morphology of the films was characterized by field emission scanning electron microscope (FESEM). In order to investigate the electrical properties, the films weremore » characterized by Current-Voltage (I-V) measurement. FESEM micrographs showed uniform distribution of nanostructured ZnO and Ag:ZnO. Besides, the electrical properties of Ag-doped ZnO were also dependent on the doping concentration. The I-V measurement result indicated the electrical properties of 1 at. % Ag:ZnO thin film owned highest electrical conductivity.« less

  9. Ag- and Cu-doped multifunctional bioactive nanostructured TiCaPCON films

    NASA Astrophysics Data System (ADS)

    Shtansky, D. V.; Batenina, I. V.; Kiryukhantsev-Korneev, Ph. V.; Sheveyko, A. N.; Kuptsov, K. A.; Zhitnyak, I. Y.; Anisimova, N. Yu.; Gloushankova, N. A.

    2013-11-01

    A key property of multicomponent bioactive nanostructured Ti(C,N)-based films doped with Ca, P, and O (TiCaPCON) that can be improved further is their antibacterial effect that should be achieved without compromising the implant bioactivity and biocompatibility. The present work is focused on the study of structure, chemical, mechanical, tribological, and biological properties of Ag- and Cu-doped TiCaPCON films. The films with Ag (0.4-4 at.%) and Cu (13 at.%) contents were obtained by simultaneous sputtering of a TiC0.5-Ca3(PO4)2 target and either an Ag or a Cu target. The film structure was studied using X-ray diffraction, transmission and scanning electron microscopy, energy dispersive X-ray spectroscopy, glow discharge optical emission spectroscopy, and Raman-shift and IR spectroscopy. The films were characterized in terms of their hardness, elastic modulus, dynamic impact resistance, friction coefficient and wear rate (both in air and normal saline), surface wettability, electrochemical behavior and Ag or Cu ion release in normal saline. Particular attention was paid to the influence of inorganic bactericides (Ag and Cu ions) on the bactericidal activity against unicellular yeast fungus Saccharomyces cerevisiae and gram-positive bacteria Lactobacillus acidophilus, as well as on the attachment, spreading, actin cytoskeleton organization, focal adhesions, and early stages of osteoblastic cell differentiation. The obtained results show that the Ag-doped films are more suitable for the protection of metallic surfaces against bacterial infection compared with their Cu-doped counterpart. In particular, an excellent combination of mechanical, tribological, and biological properties makes Ag-doped TiCaPCON film with 1.2 at.% of Ag very attractive material for bioengineering and modification of load-bearing metal implant surfaces.

  10. Synthesis of boron nitride nanostructures from catalyst of iron compounds via thermal chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    da Silva, Wellington M.; Ribeiro, Hélio; Ferreira, Tiago H.; Ladeira, Luiz O.; Sousa, Edésia M. B.

    2017-05-01

    For the first time, patterned growth of boron nitride nanostructures (BNNs) is achieved by thermal chemical vapor deposition (TCVD) technique at 1150 °C using a mixture of FeS/Fe2O3 catalyst supported in alumina nanostructured, boron amorphous and ammonia (NH3) as reagent gas. This innovative catalyst was synthesized in our laboratory and systematically characterized. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The X-ray diffraction profile of the synthesized catalyst indicates the coexistence of three different crystal structures showing the presence of a cubic structure of iron oxide and iron sulfide besides the gamma alumina (γ) phase. The results show that boron nitride bamboo-like nanotubes (BNNTs) and hexagonal boron nitride (h-BN) nanosheets were successfully synthesized. Furthermore, the important contribution of this work is the manufacture of BNNs from FeS/Fe2O3 mixture.

  11. 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing.

    PubMed

    Piret, Gaëlle; Hébert, Clément; Mazellier, Jean-Paul; Rousseau, Lionel; Scorsone, Emmanuel; Cottance, Myline; Lissorgues, Gaelle; Heuschkel, Marc O; Picaud, Serge; Bergonzo, Philippe; Yvert, Blaise

    2015-06-01

    The electrode material is a key element in the design of long-term neural implants and neuroprostheses. To date, the ideal electrode material offering high longevity, biocompatibility, low-noise recording and high stimulation capabilities remains to be found. We show that 3D-nanostructured boron doped diamond (BDD), an innovative material consisting in a chemically stable material with a high aspect ratio structure obtained by encapsulation of a carbon nanotube template within two BDD nanolayers, allows neural cell attachment, survival and neurite extension. Further, we developed arrays of 20-μm-diameter 3D-nanostructured BDD microelectrodes for neural interfacing. These microelectrodes exhibited low impedances and low intrinsic recording noise levels. In particular, they allowed the detection of low amplitude (10-20 μV) local-field potentials, single units and multiunit bursts neural activity in both acute whole embryonic hindbrain-spinal cord preparations and long-term hippocampal cell cultures. Also, cyclic voltammetry measurements showed a wide potential window of about 3 V and a charge storage capacity of 10 mC.cm(-2), showing high potentiality of this material for neural stimulation. These results demonstrate the attractiveness of 3D-nanostructured BDD as a novel material for neural interfacing, with potential applications for the design of biocompatible neural implants for the exploration and rehabilitation of the nervous system. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Magnetic amphiphilic hybrid carbon nanotubes containing N-doped and undoped sections: powerful tensioactive nanostructures

    NASA Astrophysics Data System (ADS)

    Purceno, Aluir D.; Machado, Bruno F.; Teixeira, Ana Paula C.; Medeiros, Tayline V.; Benyounes, Anas; Beausoleil, Julien; Menezes, Helvecio C.; Cardeal, Zenilda L.; Lago, Rochel M.; Serp, Philippe

    2014-11-01

    In this work, unique amphiphilic magnetic hybrid carbon nanotubes (CNTs) are synthesized and used as tensioactive nanostructures in different applications. These CNTs interact very well with aqueous media due to the hydrophilic N-doped section, whereas the undoped hydrophobic one has strong affinity for organic molecules. The amphiphilic character combined with the magnetic properties of these CNTs opens the door to completely new and exciting applications in adsorption science and catalysis. These amphiphilic N-doped CNTs can also be used as powerful tensioactive emulsification structures. They can emulsify water/organic mixtures and by a simple magnetic separation the emulsion can be easily broken. We demonstrate the application of these CNTs in the efficient adsorption of various molecules, in addition to promoting biphasic processes in three different reactions, i.e. transesterification of soybean oil, quinoline extractive oxidation with H2O2 and a metal-catalyzed aqueous oxidation of heptanol with molecular oxygen.In this work, unique amphiphilic magnetic hybrid carbon nanotubes (CNTs) are synthesized and used as tensioactive nanostructures in different applications. These CNTs interact very well with aqueous media due to the hydrophilic N-doped section, whereas the undoped hydrophobic one has strong affinity for organic molecules. The amphiphilic character combined with the magnetic properties of these CNTs opens the door to completely new and exciting applications in adsorption science and catalysis. These amphiphilic N-doped CNTs can also be used as powerful tensioactive emulsification structures. They can emulsify water/organic mixtures and by a simple magnetic separation the emulsion can be easily broken. We demonstrate the application of these CNTs in the efficient adsorption of various molecules, in addition to promoting biphasic processes in three different reactions, i.e. transesterification of soybean oil, quinoline extractive oxidation with H2O2 and

  13. Evaluation of translucency of monolithic zirconia and framework zirconia materials

    PubMed Central

    Tuncel, İlkin; Üşümez, Aslıhan

    2016-01-01

    PURPOSE The opacity of zirconia is an esthetic disadvantage that hinders achieving natural and shade-matched restorations. The aim of this study was to evaluate the translucency of non-colored and colored framework zirconia and monolithic zirconia. MATERIALS AND METHODS The three groups tested were: non-colored framework zirconia, colored framework zirconia with the A3 shade according to Vita Classic Scale, and monolithic zirconia (n=5). The specimens were fabricated in the dimensions of 15×12×0.5 mm. A spectrophotometer was used to measure the contrast ratio, which is indicative of translucency. Three measurements were made to obtain the contrast ratios of the materials over a white background (L*w) and a black background (L*b). The data were analyzed using the one-way analysis of variance and Tukey HSD tests. One specimen from each group was chosen for scanning electron microscope analysis. The determined areas of the SEM images were divided by the number of grains in order to calculate the mean grain size. RESULTS Statistically significant differences were observed among all groups (P<.05). Non-colored zirconia had the highest translucency with a contrast ratio of 0.75, while monolithic zirconia had the lowest translucency with a contrast ratio of 0.8. The mean grain sizes of the non-colored, colored, and monolithic zirconia were 233, 256, and 361 nm, respectively. CONCLUSION The translucency of the zirconia was affected by the coloring procedure and the grain size. Although monolithic zirconia may not be the best esthetic material for the anterior region, it may serve as an alternative in the posterior region for the bilayered zirconia restorations. PMID:27350851

  14. In vitro assessment of cutting efficiency and durability of zirconia removal diamond rotary instruments.

    PubMed

    Kim, Joon-Soo; Bae, Ji-Hyeon; Yun, Mi-Jung; Huh, Jung-Bo

    2017-06-01

    Recently, zirconia removal diamond rotary instruments have become commercially available for efficient cutting of zirconia. However, research of cutting efficiency and the cutting characteristics of zirconia removal diamond rotary instruments is limited. The purpose of this in vitro study was to assess and compare the cutting efficiency, durability, and diamond rotary instrument wear pattern of zirconia diamond removal rotary instruments with those of conventional diamond rotary instruments. In addition, the surface characteristics of the cut zirconia were assessed. Block specimens of 3 mol% yttrium cation-doped tetragonal zirconia polycrystal were machined 10 times for 1 minute each using a high-speed handpiece with 6 types of diamond rotary instrument from 2 manufacturers at a constant force of 2 N (n=5). An electronic scale was used to measure the lost weight after each cut in order to evaluate the cutting efficiency. Field emission scanning electron microscopy was used to evaluate diamond rotary instrument wear patterns and machined zirconia block surface characteristics. Data were statistically analyzed using the Kruskal-Wallis test, followed by the Mann-Whitney U test (α=.05). Zirconia removal fine grit diamond rotary instruments showed cutting efficiency that was reduced compared with conventional fine grit diamond rotary instruments. Diamond grit fracture was the most dominant diamond rotary instrument wear pattern in all groups. All machined zirconia surfaces were primarily subjected to plastic deformation, which is evidence of ductile cutting. Zirconia blocks machined with zirconia removal fine grit diamond rotary instruments showed the least incidence of surface flaws. Although zirconia removal diamond rotary instruments did not show improved cutting efficiency compared with conventional diamond rotary instruments, the machined zirconia surface showed smoother furrows of plastic deformation and fewer surface flaws. Copyright © 2016 Editorial Council

  15. Crystallization stabilization mechanism of yttria-doped zirconia by hydrothermal treatment of mechanical mixtures of zirconia xerogel and crystalline yttria

    NASA Astrophysics Data System (ADS)

    Dell'Agli, G.; Mascolo, G.; Mascolo, M. C.; Pagliuca, C.

    2005-06-01

    Mechanical mixtures of zirconia xerogel and crystalline Y 2O 3 were hydrothermally treated by microwave and traditional route, respectively. Some mixtures were used either as powders form or as cylindrical compacts isostatically pressed at 150 MPa. The microwave-hydrothermal treatments were performed at 110, 150 and 200 °C for reaction times up to 2 h, whereas the traditional hydrothermal treatments were performed at 110 °C at increasing reaction times up to 7 days. All the treatments were performed in the presence of diluted (0.2 M) or concentrated (2.0 M) solution of (K 2CO 3+KOH) mineralizer. The crystallization-stabilization mechanism of synthesized Y-based zirconia powders and the reaction times for the full crystallization at the low temperature of hydrothermal treatments are discussed.

  16. Effect of co-doping process on topography, optical and electrical properties of ZnO nanostructured

    NASA Astrophysics Data System (ADS)

    Mohamed, R.; Mamat, M. H.; Malek, M. F.; Ismail, A. S.; Yusoff, M. M.; Syamsir, S. A.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    We investigated of Undoped ZnO and Magnesium (Mg)-Aluminium (Al) co-doped Zinc Oxide (MAZO) nanostructured films were prepared by sol gel spin coating technique. The surface topography was analyzed using Atomic Force Microscopy (AFM). Based on the AFM results, Root Mean Square (RMS) of MAZO films have rougher surface compared to pure ZnO films. The optical and electrical properties of thin film samples were characterized using Uv-Vis spectroscopy and two point probes, current-voltage (I-V) measurements. The transmittance spectra for both thin samples was above 80% in the visible wavelength. The MAZO film shows the highest conductivity compared to pure ZnO films. This result indicates that the improvement of carrier mobility throughout doping process and possibly contribute by extra ion charge.

  17. Influence of thermal treatment on the formation of zirconia nanostructured powder by thermal decomposition of different precursors

    NASA Astrophysics Data System (ADS)

    Stoia, Marcela; Barvinschi, Paul; Barbu-Tudoran, Lucian; Negrea, Adina; Barvinschi, Floricica

    2013-10-01

    The paper presents some results concerning the preparation of zirconia powders starting from ZrOCl2·8H2O by using two synthesis methods: (a) precipitation with NH3, at 90 °C, and (b) thermal decomposition of carboxylate precursors, obtained in the reaction of zirconium nitrate and two different alcohols, 1,3-propanediol (PD) and poly(vinyl alcohol) (PVA), at 150 °C. The precursors obtained at different temperatures have been characterized by thermal analysis (TG, DTA) and FT-IR spectroscopy. DTA analysis evidenced very clearly the transition temperatures between zirconia crystalline phases. The precursors have been annealed at different temperatures in order to obtain zirconia powders and the as obtained powders have been characterized by means of X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). In case of precipitation method the presence of the tetragonal phase was observed at 400 °C, while the monoclinic phase appears at temperatures higher than 400 °C, becoming major crystalline phase starting with 700 °C. In case of the powders prepared by thermal decomposition of carboxylate precursors, the tetragonal phase was formed at temperatures below 700 °C, when the monoclinic phase begin to crystallize as secondary phase, in a higher proportion for the samples synthesized with 1,3-propanediol. All powders annealed at 1200 °C are pure monoclinic zirconia. SEM images have evidenced for the zirconia powders annealed at 1000 °C particles with diameters up to 150 nm, agglomerated in micrometer-sized aggregates, more individualized and homogenous than that obtained in the case of zirconia powder synthesized with poly(vinyl alcohol).

  18. Influence of niobium doping in hierarchically organized titania nanostructure on performance of dye-sensitized solar cells.

    PubMed

    Park, Jong Hoon; Noh, Jun Hong; Han, Byung Suh; Shin, Seong Sik; Park, Ik Jae; Kim, Dong Hoe; Hong, Kug Sun

    2012-06-01

    Niobium doped hierarchically organized TiO2 nanostructures composed of 20 nm size anatase nanocrystals were synthesized using pulsed laser deposition (PLD). The Nb doping concentration could be facilely controlled by adjusting the concentration of Nb in target materials. We could investigate the influence of Nb doping in the TiO2 photoelectrode on the cell performance of dye-sensitized solar cells (DSSCs) by the exclusion of morphological effects using the prepared Nb-doped TiO2 anostructures. We found no significant change in short circuit current density (Jsc) as a function of Nb doping concentration. However, open circuit voltage (Voc) and fill factor (FF) monotonously decrease with increasing Nb concentration. Dark current characteristics of the DSSCs reveal that the decrease in Voc and FF is attributed to the decrease in shunt resistance due to the increase in conductivity TiO2 by Nb doping. However, electrochemical impedance spectra (EIS) analysis at open circuit condition under illumination showed that the resistance at the TiO2/dye/electrolyte interface increases with Nb concentration, revealing that Nb doping suppress the charge recombination at the interface. In addition, electron life time obtained using characteristic frequency in Bode plot increases from 14 msec to 56 msec with increasing Nb concentration from 0 to 1.2 at%. This implies that the improved light harvesting can be achieved by increasing diffusion length through Nb-doping in the conventional TiO2 photoelectrode.

  19. Transparent nanostructured Fe-doped TiO2 thin films prepared by ultrasonic assisted spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Rasoulnezhad, Hossein; Hosseinzadeh, Ghader; Ghasemian, Naser; Hosseinzadeh, Reza; Homayoun Keihan, Amir

    2018-05-01

    Nanostructured TiO2 and Fe-doped TiO2 thin films with high transparency were deposited on glass substrate through ultrasonic-assisted spray pyrolysis technique and were used in the visible light photocatalytic degradation of MB dye. The resulting thin films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence spectroscopy, x-ray diffraction (XRD), and UV-visible absorption spectroscopy techniques. Based on Raman spectroscopy results, both of the TiO2 and Fe-doped TiO2 films have anatase crystal structure, however, because of the insertion of Fe in the structure of TiO2 some point defects and oxygen vacancies are formed in the Fe-doped TiO2 thin film. Presence of Fe in the structure of TiO2 decreases the band gap energy of TiO2 and also reduces the electron–hole recombination rate. Decreasing of the electron–hole recombination rate and band gap energy result in the enhancement of the visible light photocatalytic activity of the Fe-doped TiO2 thin film.

  20. Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings.

    PubMed

    Schienle, Stefanie; Al-Ahmad, Ali; Kohal, Ralf Joachim; Bernsmann, Falk; Adolfsson, Erik; Montanaro, Laura; Palmero, Paola; Fürderer, Tobias; Chevalier, Jérôme; Hellwig, Elmar; Karygianni, Lamprini

    2016-09-01

    Biomaterial surfaces are at high risk for initial microbial colonization, persistence, and concomitant infection. The rationale of this study was to assess the initial adhesion on novel implant surfaces of Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans upon incubation. The tested samples were 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) samples with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coating (A) and 3Y-TZP samples coated with ceria-stabilized zirconia-based (Ce-TZP) composite and a-C:H:N (B). Uncoated 3Y-TZP samples (C) and bovine enamel slabs (BES) served as controls. Once the surface was characterized, the adherent microorganisms were quantified by estimating the colony-forming units (CFUs). Microbial vitality was assessed by live/dead staining, and microbial-biomaterial surface topography was visualized by scanning electron microscopy (SEM). Overall, A and B presented the lowest CFU values for all microorganisms, while C sheltered significantly less E. faecalis, P. aeruginosa, and C. albicans than BES. Compared to the controls, B demonstrated the lowest vitality values for E. coli (54.12 %) and C. albicans (67.99 %). Interestingly, A (29.24 %) exhibited higher eradication rates for S. aureus than B (13.95 %). Within the limitations of this study, a-C:H:N-coated 3Y-TZP surfaces tended to harbor less initially adherent microorganisms and selectively interfered with their vitality. This could enable further investigation of the new multi-functional zirconia surfaces to confirm their favorable antimicrobial properties in vivo.

  1. Shape-Controlled Synthesis of Magnetic Iron Oxide@SiO₂-Au@C Particles with Core-Shell Nanostructures.

    PubMed

    Li, Mo; Li, Xiangcun; Qi, Xinhong; Luo, Fan; He, Gaohong

    2015-05-12

    The preparation of nonspherical magnetic core-shell nanostructures with uniform sizes still remains a challenge. In this study, magnetic iron oxide@SiO2-Au@C particles with different shapes, such as pseduocube, ellipsoid, and peanut, were synthesized using hematite as templates and precursors of magnetic iron oxide. The as-obtained magnetic particles demonstrated uniform sizes, shapes, and well-designed core-shell nanostructures. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analysis showed that the Au nanoparticles (AuNPs) of ∼6 nm were uniformly distributed between the silica and carbon layers. The embedding of the metal nanocrystals into the two different layers prevented the aggregation and reduced the loss of the metal nanocrystals during recycling. Catalytic performance of the peanut-like particles kept almost unchanged without a noticeable decrease in the reduction of 4-nitrophenol (4-NP) in 8 min even after 7 cycles, indicating excellent reusability of the particles. Moreover, the catalyst could be readily recycled magnetically after each reduction by an external magnetic field.

  2. Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1- x Ru x O2 by the microemulsion method

    NASA Astrophysics Data System (ADS)

    Saraswathy, Ramanathan

    2017-12-01

    Synthesis of nanostructured Ru-doped SnO2 was successfully carried out using the reverse microemulsion method. The phase purity and the crystallite size were analyzed by XRD. The surface morphology and the microstructure of synthesized nanoparticles were analyzed by SEM and TEM. The vibration mode of nanoparticles was investigated using FTIR and Raman studies. The electrochemical behavior of the Ru-doped SnO2 electrode was evaluated in a 0.1 mol/L Na2SO4 solution using cyclic voltammetry. The 5% Ru-doped SnO2 electrode exhibited a high specific capacitance of 535.6 F/g at a scan rate 20 mV/s, possessing good conductivity as well as the electrocycling stability. The Ru-doped SnO2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  3. Carbon and nitrogen co-doped bowl-like Au/TiO2 nanostructures with tunable size for enhanced visible-light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Li, Yayuan; Cao, Shubo; Zhang, Ang; Zhang, Chen; Qu, Ting; Zhao, Yongbin; Chen, Aihua

    2018-07-01

    It is of great importance to extend the UV response of anatase TiO2 into the visible light range for the practical applications. Here, a facile rout to carbon and nitrogen co-doped, Au loaded bowl-like TiO2 nanostructures with tunable size are proposed by using self-assembled polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) spherical micelles as templates. Amphiphilic PS-b-P4VP self-assembles to form PS@P4VP core-shell spherical micelles with P4VP as the out layer in an evaporable mixed solvents of ethanol/tetrahydrofuran (THF). The size of uniform PS@P4VP spherical micelles can be precisely tuned in the range of a few nm to several hundred nm by controlling the molecular composition of the BCPs. Bowl-like TiO2 nanostructures with a replicate size loaded with highly dispersed Au nanoparticles (NPs) of ∼5 nm in diameter are fabricated from these spherical micelles because of strong complex ability of pyridine groups. PS-b-P4VP provides carbon and nitrogen sources to dope the resulting samples simultaneously. The special carbon and nitrogen co-doped bowl-like Au/TiO2 nanostructures exhibit much higher photocatalytic activity in the photodegradation of rhodamine B (RhB) compared to Au/P25 under visible light irradiation. Furthermore, the photocatalytic activity is significantly influenced by the BCP molecular composition due to different surface area and loading capacity of the resulting samples. This study provides a facile way to synthesize multi-element doped hollow or bowl-like nanoparticles with tunable size in the nanometer range which have potential application at photocatalysis, oxygen reduction reaction, etc.

  4. Removal of micrometer size morphological defects and enhancement of ultraviolet emission by thermal treatment of Ga-doped ZnO nanostructures.

    PubMed

    Manzoor, Umair; Kim, Do K; Islam, Mohammad; Bhatti, Arshad S

    2014-01-01

    Mixed morphologies of Ga-doped Zinc Oxide (ZnO) nanostructures are synthesized by vapor transport method. Systematic scanning electron microscope (SEM) studies of different morphologies, after periodic heat treatments, gives direct evidence of sublimation. SEM micrographs give direct evidence that morphological defects of nanostructures can be removed by annealing. Ultra Violet (UV) and visible emission depends strongly on the annealing temperatures and luminescent efficiency of UV emission is enhanced significantly with each subsequent heat treatment. X-Ray diffraction (XRD) results suggest that crystal quality improved by annealing and phase separation may occur at high temperatures.

  5. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures

    PubMed Central

    Banerjee, Arghya Narayan

    2011-01-01

    Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and

  6. Photocatalytic characteristics of single phase Fe-doped anatase TiO{sub 2} nanoparticles sensitized with vitamin B{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharagozlou, Mehrnaz, E-mail: gharagozlou@icrc.ac.ir; Bayati, R.

    Highlights: • Anatase TiO{sub 2}/B{sub 12} hybrid nanostructured catalyst was successfully synthesized by sol–gel technique. • The nanoparticle catalyst was doped with iron at several concentrations. • Nanoparticles were characterized in detail by XRD, Raman, TEM, EDS, and spectroscopy techniques. • The formation mechanism and role of point defects on photocatalytic properties were discussed. • A structure-property-processing correlation was established. - Abstract: We report a processing-structure-property correlation in B{sub 12}-anatase titania hybrid catalysts doped with several concentrations of iron. Our results clearly show that low-level iron doping alters structure, defect content, and photocatalytic characteristics of TiO{sub 2}. XRD and Ramanmore » studies revealed formation of a single-phase anatase TiO{sub 2} where no iron based segregation in particular iron oxide, was detected. FT-IR spectra clearly confirmed sensitization of TiO{sub 2} nanoparticles with vitamin B{sub 12}. TEM micrographs and diffraction patterns confirmed crystallization of anatase nanoparticles with a radius of 15–20 nm. Both XRD and Raman signals showed a peak shift and a peak broadening which are surmised to originate from creation of point defects, namely oxygen vacancy and titanium interstitial. The doped samples revealed a narrower band gap as compared to undoped samples. Photocatalytic activity of the samples was assessed through measuring the decomposition rate of rhodamine B. It was found that sensitization with vitamin B{sub 12} and Fe-doping significantly enhances the photocatalytic efficiency of the anatase nanoparticles. We also showed that there is an optimum Fe-doping level where the maximum photocatalytic activity is achieved. The boost of photocatalytic activity was qualitatively understood to originate from a more effective use of the light photons, formation of point defects, which enhance the charge separation, higher carrier mobility.« less

  7. Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications.

    PubMed

    Lee, Heon; Lee, Won-June; Park, Young-Kwon; Ki, Seo Jin; Kim, Byung-Joo; Jung, Sang-Chul

    2018-03-25

    Iron oxide nanoparticles supported on nitrogen-doped activated carbon powder were synthesized using an innovative plasma-in-liquid method, called the liquid phase plasma (LPP) method. Nitrogen-doped carbon (NC) was prepared by a primary LPP reaction using an ammonium chloride reactant solution, and an iron oxide/NC composite (IONCC) was prepared by a secondary LPP reaction using an iron chloride reactant solution. The nitrogen component at 3.77 at. % formed uniformly over the activated carbon (AC) surface after a 1 h LPP reaction. Iron oxide nanoparticles, 40~100 nm in size, were impregnated homogeneously over the NC surface after the LPP reaction, and were identified as Fe₃O₄ by X-ray photoelectron spectroscopy and X-ray diffraction. NC and IONCCs exhibited pseudo-capacitive characteristics, and their specific capacitance and cycling stability were superior to those of bare AC. The nitrogen content on the NC surface increased the compatibility and charge transfer rate, and the composites containing iron oxide exhibited a lower equivalent series resistance.

  8. Photoluminescence and cathodoluminescence of Tb-doped Al 2O 3-ZrO 2 nanostructures obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Zawadzki, M.; Hreniak, D.; Wrzyszcz, J.; Miśta, W.; Grabowska, H.; Malta, O. L.; Stręk, W.

    2003-07-01

    Terbium-doped Al 2O 3-ZrO 2 mixed oxides of 10 wt% zirconia content were prepared by the alkoxide sol-gel method. The obtained samples were characterized by XRD, SEM, thermal analysis, textural and TPR studies. The effect of thermal treatment of Tb-doped Al 2O 3-ZrO 2 samples on photo- and cathodoluminescence spectra was investigated. It was found that the photoluminescence spectrum induced by UV excitation was characterized by a green luminescence pattern arising from the 5D 4 → 7F J ( J=6-0) transitions of the Tb 3+ ion. This photoluminescence became almost completely damped for the samples sintered at 1200 °C. However, these samples have demonstrated an intense cathodoluminescence under high electron accelerating potential (60 kV). Moreover, it was observed that apart of the green luminescence, the blue emission lines arising from 5D 3 → 7F J transitions of Tb 3+ were observed. The nature of such behavior is discussed.

  9. Influences of Co doping on the structural and optical properties of ZnO nanostructured

    NASA Astrophysics Data System (ADS)

    Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.

    2010-07-01

    Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.

  10. Influence of nano alumina coating on the flexural bond strength between zirconia and resin cement

    PubMed Central

    Mumcu, Emre; Şen, Murat

    2018-01-01

    PURPOSE The purpose of this in vitro study is to examine the effects of a nano-structured alumina coating on the adhesion between resin cements and zirconia ceramics using a four-point bending test. MATERIALS AND METHODS 100 pairs of zirconium bar specimens were prepared with dimensions of 25 mm × 2 mm × 5 mm and cementation surfaces of 5 mm × 2 mm. The samples were divided into 5 groups of 20 pairs each. The groups are as follows: Group I (C) – Control with no surface modification, Group II (APA) – airborne-particle-abrasion with 110 µm high-purity aluminum oxide (Al2O3) particles, Group III (ROC) – airborne-particle-abrasion with 110 µm silica modified aluminum oxide (Al2O3 + SiO2) particles, Group IV (TCS) – tribochemical silica coated with Al2O3 particles, and Group V (AlC) – nano alumina coating. The surface modifications were assessed on two samples selected from each group by atomic force microscopy and scanning electron microscopy. The samples were cemented with two different self-adhesive resin cements. The bending bond strength was evaluated by mechanical testing. RESULTS According to the ANOVA results, surface treatments, different cement types, and their interactions were statistically significant (P<.05). The highest flexural bond strengths were obtained in nanostructured alumina coated zirconia surfaces (50.4 MPa) and the lowest values were obtained in the control group (12.00 MPa), both of which were cemented using a self-adhesive resin cement. CONCLUSION The surface modifications tested in the current study affected the surface roughness and flexural bond strength of zirconia. The nano alumina coating method significantly increased the flexural bond strength of zirconia ceramics. PMID:29503713

  11. Synthesis and Characterization of Mimosa Pudica Leaves Shaped α-Iron Oxide Nanostructures for Ethanol Chemical Sensor Applications.

    PubMed

    Kim, S H; Ibrahim, Ahmed A; Kumar, R; Umar, Ahmad; Abaker, M; Hwang, S W; Baskoutas, S

    2016-03-01

    Herein, the synthesis of mimosa pudica leaves shaped a-iron oxide (α-Fe2O3) nanostructures is reported through simple and facile hydrothermal process. The prepared α-Fe2O3 nanostructures were characterized in terms of their morphological, structural, compositional and optical properties through a variety of characterization techniques such as FESEM, EDS, XRD, FTIR and Raman spectroscopy. The detailed characterizations revealed the well-crystallinity and dense growth of mimosa pudica leaf shaped α-Fe2O3 nanostructures. Further, the prepared nanomaterials were used as efficient electron mediator to fabricate sensitive ethanol chemical sensor. The fabricated sensor exhibited a high sensitivity of -30.37 μAmM(-1) cm(-2) and low detection limit of -0.62 μM. The observed linear dynamic range (LDR) was in the range from 10 μM-0.625 μM.

  12. Optical and structural properties of colloidal zirconia nanoparticles prepared by arc discharge in liquid

    NASA Astrophysics Data System (ADS)

    Peymani forooshani, Reza; Poursalehi, Reza; Yourdkhani, Amin

    2018-01-01

    Zirconia is one of the important ceramic materials with unique properties such as high melting point, high ionic conductivity, high mechanical properties and low thermal conductivity. Therefore, zirconia is one of the useful materials in refractories, thermal barriers, cutting tools, oxygen sensors electrolytes, catalysis, catalyst supports and solid oxide fuel cells. Recently, direct current (DC) arc discharge is extensively employed to synthesis of metal oxide nanostructures in liquid environments. The aim of this work is the synthesis of colloidal zirconia nanoparticles by DC arc discharge method in water as a medium. Arc discharge was ignited between two pure zirconium electrodes in water. Optical and structural properties of prepared colloidal nanoparticles were investigated. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and UV-visible spectroscopy, were employed for characterization of particle size, morphology, crystal structure and optical properties, respectively. SEM images demonstrate that the nanoparticles are spherical in shape with an average size lower than 38 nm. The XRD patterns of the nanoparticles were consistent with tetragonal and monoclinic zirconia crystal structures. The optical transmission spectra of the colloidal solution show optical characteristic of zirconia nanoparticles as a wide band gap semiconductor with no absorption peak in visible wavelength with the considerable amount of oxygen deficiency. Oxidation of colloidal nanoparticles in water could be explained via reaction with either dissociated oxygen from water in hot plasma region or with dissolved oxygen in water. The results provide a simple and flexible method for preparation of zirconia nanoparticles with a capability of mass production without environmental footprints.

  13. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  14. Method of Fabrication of High Power Density Solid Oxide Fuel Cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2008-09-09

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  15. Phase Stabilization of Zirconia.

    DTIC Science & Technology

    1997-01-30

    preparing stabilized zirconia pursuant to this disclosure, an insoluble alumina powder is mixed with zirconia powder using a liquid dispersant, such...in a drying oven or a furnace. When mixing the alumina and zirconia powders , it is not necessary to have zirconia in any particular phase to achieve...phase stabilization, as disclosed herein. When mixed with alumina powder, zirconia powder can be in cubic, tetragonal or 20 monoclinic phases

  16. Removal of Micrometer Size Morphological Defects and Enhancement of Ultraviolet Emission by Thermal Treatment of Ga-Doped ZnO Nanostructures

    PubMed Central

    Manzoor, Umair; Kim, Do K.; Islam, Mohammad; Bhatti, Arshad S.

    2014-01-01

    Mixed morphologies of Ga-doped Zinc Oxide (ZnO) nanostructures are synthesized by vapor transport method. Systematic scanning electron microscope (SEM) studies of different morphologies, after periodic heat treatments, gives direct evidence of sublimation. SEM micrographs give direct evidence that morphological defects of nanostructures can be removed by annealing. Ultra Violet (UV) and visible emission depends strongly on the annealing temperatures and luminescent efficiency of UV emission is enhanced significantly with each subsequent heat treatment. X-Ray diffraction (XRD) results suggest that crystal quality improved by annealing and phase separation may occur at high temperatures. PMID:24489725

  17. Mesoporous Phosphorus-Doped g-C3N4 Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance.

    PubMed

    Zhu, Yun-Pei; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2015-08-05

    Graphitic carbon nitride (g-C3N4) has been deemed a promising heterogeneous metal-free catalyst for a wide range of applications, such as solar energy utilization toward water splitting, and its photocatalytic performance is reasonably adjustable through tailoring its texture and its electronic and optical properties. Here phosphorus-doped graphitic carbon nitride nanostructured flowers of in-plane mesopores are synthesized by a co-condensation method in the absence of any templates. The interesting structures, together with the phosphorus doping, can promote light trapping, mass transfer, and charge separation, enabling it to perform as a more impressive catalyst than its pristine carbon nitride counterpart for catalytic hydrogen evolution under visible light irradiation. The catalyst has low cost, is environmentally friendly, and represents a potential candidate in photoelectrochemistry.

  18. Nanostructured microtubes based on TiO2 doped by Zr and Hf oxides with the anatase structure

    NASA Astrophysics Data System (ADS)

    Zheleznov, VV; Voit, EI; Sushkov, YV; Sarin, SA; Kuryavyi, VG; Opra, DP; Gnedenkov, SV; Sinebryukhov, SL; Sokolov, AA

    2016-01-01

    The nanostructured microtubes based on TiO2 have been prepared on the carbon fiber template using the sol-gel method. The microtubes consist of nanoparticles of metal oxides: TiO2/ZrO2 and TiO2/HfO2. The dependence of microtubes morphology and nanoparticles structure on the synthesis conditions has been studied using the methods of SEM, SAXS, and Raman spectroscopy. It has been demonstrated that at the stoichiometric ratio of up to 0.04 for Zr/Ti and up to 0.06 for Hf/Ti microtubes consist of uniform nanoparticles with the anatase structure. Along with further increase of the dopants content in the microtubes composition, nanoparticles acquire the core-shell structure. It has been suggested that nanoparticles have a core composed of the solid solutions Ti1-xZrxO2 or Ti1-xHfxO2 and a shell consisting of zirconium or hafnium titanate. The fabricated Zr- and Hf-doped TiO2 materials were investigated in view of their possible use as anode materials for Li-ion batteries. Charge- discharge measurements showed that the doped samples manifested significantly higher reversibility in comparison with the undoped TiO2. The method opens new prospects in synthesis of nanostructured materials for Li-ion batteries application.

  19. Correlation-Induced Self-Doping in the Iron-Pnictide Superconductor Ba2Ti2Fe2As4O

    NASA Astrophysics Data System (ADS)

    Ma, J.-Z.; van Roekeghem, A.; Richard, P.; Liu, Z.-H.; Miao, H.; Zeng, L.-K.; Xu, N.; Shi, M.; Cao, C.; He, J.-B.; Chen, G.-F.; Sun, Y.-L.; Cao, G.-H.; Wang, S.-C.; Biermann, S.; Qian, T.; Ding, H.

    2014-12-01

    The electronic structure of the iron-based superconductor Ba2Ti2Fe2As4O (Tconset=23.5 K ) has been investigated by using angle-resolved photoemission spectroscopy and combined local density approximation and dynamical mean field theory calculations. The electronic states near the Fermi level are dominated by both the Fe 3 d and Ti 3 d orbitals, indicating that the spacer layers separating different FeAs layers are also metallic. By counting the enclosed volumes of the Fermi surface sheets, we observe a large self-doping effect; i.e., 0.25 electrons per unit cell are transferred from the FeAs layer to the Ti2As2O layer, leaving the FeAs layer in a hole-doped state. This exotic behavior is successfully reproduced by our dynamical mean field calculations, in which the self-doping effect is attributed to the electronic correlations in the 3 d shells. Our work provides an alternative route of effective doping without element substitution for iron-based superconductors.

  20. Co-precipitation synthesis of nanostructured Cu3SbSe4 and its Sn-doped sample with high thermoelectric performance.

    PubMed

    Li, Di; Li, Rui; Qin, Xiao-Ying; Song, Chun-Jun; Xin, Hong-Xing; Wang, Ling; Zhang, Jian; Guo, Guang-lei; Zou, Tian-Hua; Liu, Yong-Fei; Zhu, Xiao-Guang

    2014-01-28

    Large-scale fabrication of nanostructured Cu3SbSe4 and its Sn-doped sample Cu3Sb0.98Sn0.02Se4 through a low-temperature co-precipitation route is reported. The effects of hot-pressing temperatures, time and Sn doping on the thermoelectric properties of Cu3SbSe4 are explored. The maximum figure of merit ZTmax obtained here reaches 0.62 for the un-doped Cu3SbSe4, which is three times as large as that of Cu3SbSe4 synthesized by the fusion method. Due to the ameliorated power factor by optimized carrier concentration and the reduced lattice thermal conductivity by enhanced phonon scattering at grain interfaces, Sn doping leads to an improvement of thermoelectric performance as compared to Cu3SbSe4. The maximum ZT for Cu3Sb0.98Sn0.02Se4 is 1.05 in this work, which is 50% larger than the largest value reported.

  1. Seebeck and figure of merit enhancement in nanostructured antimony telluride by antisite defect suppression through sulfur doping.

    PubMed

    Mehta, Rutvik J; Zhang, Yanliang; Zhu, Hong; Parker, David S; Belley, Matthew; Singh, David J; Ramprasad, Ramamurthy; Borca-Tasciuc, Theodorian; Ramanath, Ganpati

    2012-09-12

    Antimony telluride has a low thermoelectric figure of merit (ZT < ∼0.3) because of a low Seebeck coefficient α arising from high degenerate hole concentrations generated by antimony antisite defects. Here, we mitigate this key problem by suppressing antisite defect formation using subatomic percent sulfur doping. The resultant 10-25% higher α in bulk nanocrystalline antimony telluride leads to ZT ∼ 0.95 at 423 K, which is superior to the best non-nanostructured antimony telluride alloys. Density functional theory calculations indicate that sulfur increases the antisite formation activation energy and presage further improvements leading to ZT ∼ 2 through optimized doping. Our findings are promising for designing novel thermoelectric materials for refrigeration, waste heat recovery, and solar thermal applications.

  2. Fabrication of mesoporous iron (Fe) doped copper sulfide (CuS) nanocomposite in the presence of a cationic surfactant via mild hydrothermal method for supercapacitors

    NASA Astrophysics Data System (ADS)

    Brown, J. William; Ramesh, P. S.; Geetha, D.

    2018-02-01

    We report fabrication of mesoporous Fe doped CuS nanocomposites with uniform mesoporous spherical structures via a mild hydrothermal method employing copper nitrate trihydrate (Cu (NO3).3H2O), Thiourea (Tu,Sc(NH2)2 and Iron tri nitrate (Fe(No3)3) as initial materials with cationic surfactant cetyltrimethylamoniame bromide (CTAB) as stabilizer/size controller and Ethylene glycol as solvent at 130 °C temperature. The products were characterized by XRD, SEM/EDX, TEM, FTIR and UV analysis. X-ray diffraction (XRD) spectra confirmed the Fe doped CuS nanocomposites which are crystalline in nature. EDX and XRD pattern confirmed that the product is hexagonal CuS phase. Fe doped spherical structure of CuS with grain size of 21 nm was confirmed by XRD pattern. Fe doping was identified by energy dispersive spectrometry (EDS). The Fourier-transform infrared (FTIR) spectroscopy results revealed the occurrence of active functional groups required for the reduction of copper ions. Studies showed that after a definite time relining on the chosen copper source, the obtained Fe-CuS nanocomposite shows a tendency towards self-assembly and creating mesoporous like nano and submicro structures by TEM/SAED. The achievable mechanism of producing this nanocomposite was primarily discussed. The electrochemical study confirms the pseudocapacitive nature of the CuS and Fe-CuS electrodes. The CuS and Fe-CuS electrode shows a specific capacitance of about 328.26 and 516.39 Fg-1 at a scan rate of 5 mVs-1. As the electrode in a supercapacitor, the mesoporous nanostructured Fe-CuS shows excellent capacitance characteristics.

  3. Two-body wear comparison of zirconia crown, gold crown, and enamel against zirconia.

    PubMed

    Kwon, Min-Seok; Oh, Sang-Yeob; Cho, Sung-Am

    2015-07-01

    Full zirconia crowns have recently been used for dental restorations because of their mechanical properties. However, there is little information about their wear characteristics against enamel, gold, and full zirconia crowns. The purpose of this study was to compare the wear rate of enamel, gold crowns, and zirconia crowns against zirconia blocks using an in vitro wear test. Upper specimens were divided into three groups: 10 enamels (group 1), 10 gold crowns (group 2, Type III gold), and 10 zirconia crowns (group 3, Prettau(®)Zirkon 9H, Zirkonzahn, Italy). Each of these specimens was wear tested against a zirconia block (40×30×3mm(3)) as a lower specimen (30 total zirconia blocks). Each specimen of the groups was abraded against the zirconia block for 600 cycles at 1Hz with 15mm front-to-back movement on an abrading machine. Moreover, the load applied during the abrading test was 50N, and the test was performed in a normal saline emulsion for 10min. Three-dimensional images were taken before and after the test, and the statistical analysis was performed using the Krushal-Wallis test and Mann-Whitney test (p=0.05). The mean volume loss of group 1 was 0.47mm(3), while that of group 2 and group 3 was 0.01mm(3). The wear volume loss of enamels against zirconia was higher than that of gold and zirconia crowns. Moreover, according to this result, zirconia crowns are not recommended for heavy bruxers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    NASA Astrophysics Data System (ADS)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  5. Fabrication and Characterization of Dense Zirconia and Zirconia-Silica Ceramic Nanofibers

    PubMed Central

    Guo, Guangqing; Fan, Yuwei

    2011-01-01

    The objective of this study was to prepare dense zirconia-yttria (ZY), zirconia-silica (ZS) and zirconia-yttria-silica (ZYS) nanofibers as reinforcing elements for dental composites. Zirconium (IV) propoxide, yttrium nitrate hexahydrate, and tetraethyl orthosilicate (TEOS) were used as precursors for the preparation of zirconia, yttria, and silica sols. A small amount (1–1.5 wt%) of polyethylene oxide (PEO) was used as a carry polymer. The sols were preheated at 70 °C before electrospinning and their viscosity was measured with a viscometer at different heating time. The gel point was determined by viscosity–time (η–t) curve. The ZY, ZS and ZYS gel nanofibers were prepared using a special reactive electrospinning device under the conditions near the gel point. The as-prepared gel nanofibers had diameters between 200 and 400 nm. Dense (nonporous) ceramic nanofibers of zirconia-yttria (96/4), zirconia-silica (80/20) and zirconia-yttria-silica (76.8/3.2/20) with diameter of 100–300 nm were obtained by subsequent calcinations at different temperatures. The gel and ceramic nanofibers obtained were characterized by scanning electron microscope (SEM), high-resolution field-emission scanning electron microscope (FE-SEM), thermogravimetric analyzer (TGA), differential scanning calorimeter (DSC), Fourier transform infrared spectrometer (FT-IR), and X-ray diffraction (XRD). SEM micrograph revealed that ceramic ZY nanofibers had grained structure, while ceramic ZS and ZYS nanofibers had smooth surfaces, both showing no visible porosity under FE-SEM. Complete removal of the polymer PEO was confirmed by TGA/DSC and FT-IR. The formation of tetragonal phase of zirconia and amorphous silica was proved by XRD. In conclusion, dense zirconia-based ceramic nanofibers can be fabricated using the new reactive sol–gel electrospinning technology with minimum organic polymer additives. PMID:21133090

  6. Affibody Modified and Radiolabeled Gold-Iron Oxide Hetero-nanostructures for Tumor PET, Optical and MR Imaging

    PubMed Central

    Yang, Meng; Cheng, Kai; Qi, Shibo; Liu, Hongguang; Jiang, Yuxin; Jiang, Han; Li, Jinbo; Chen, Kai; Zhang, Huimao; Cheng, Zhen

    2013-01-01

    A highly monodispersed hetero-nanostructure with two different functional nanomaterials (gold (Au) and iron oxide (Fe3O4, IO)) within one structure was successfully developed as Affibody based trimodality nanoprobe (positron emission tomography, PET; optical imaging; and magnetic resonance imaging, MRI) for imaging of epidermal growth factor receptor (EGFR) positive tumors. Unlike other regular nanostructures with a single component, the Au-IO hetero-nanostructures (Au-IONPs) with unique chemical and physical properties have capability to combine several imaging modalities together to provide complementary information. The IO component within hetero-nanostructures serve as a T2 reporter for MRI; and gold component serve as both optical and PET reporters. Moreover, such hetero-nanoprobes could provide a robust nano-platform for surface-specific modification with both targeting molecules (anti-EGFR Affibody protein) and PET imaging reporters (radiometal 64Cu chelators) in highly efficient and reliable manner. In vitro and in vivo study showed that the resultant nanoprobe provided high specificity, sensitivity, and excellent tumor contrast for both PET and MRI imaging in the human EGFR-expressing cells and tumors. Our study data also highlighted the EGFR targeting efficiency of hetero-nanoparticles and the feasibility for their further theranostic applications. PMID:23343632

  7. Humidity sensing properties of Al-doped zinc oxide coating films

    NASA Astrophysics Data System (ADS)

    Saidi, S. A.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Yusoff, M. M.; Sin, N. D. Md.; Zoolfakar, A. S.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Humidity sensor was fabricated using Al-doped zinc oxide (ZnO) coating films through spin-coating at room temperature. The sensing mechanism was discussed based on their nanostructures, such as surface area and porous nanostructures. Surface area and water adsorption are an important component in the low humidity, while at high humidity, porous nanostructures and capillary condensation become important. The results showed that the sensitivity of the Al-doped ZnO coating improved compared to that of the Al-doped ZnO nanorod arrays, with values of 7.38 at 40% to 90%RH (Relative humidity). All these results indicated that Al-doped ZnO coating had high potential for humidity-sensor applications.

  8. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder.

    PubMed

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-11-11

    Iron oxide (Fe₂O₃) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe₂O₃ gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability.

  9. Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review

    PubMed Central

    Mammeri, Fayna; Ammar, Souad

    2018-01-01

    Iron oxide and gold-based magneto-plasmonic nanostructures exhibit remarkable optical and superparamagnetic properties originating from their two different components. As a consequence, they have improved and broadened the application potential of nanomaterials in medicine. They can be used as multifunctional nanoprobes for magneto-plasmonic heating as well as for magnetic and optical imaging. They can also be used for magnetically assisted optical biosensing, to detect extreme traces of targeted bioanalytes. This review introduces the previous work on magneto-plasmonic hetero-nanostructures including: (i) their synthesis from simple “one-step” to complex “multi-step” routes, including seed-mediated and non-seed-mediated methods; and (ii) the characterization of their multifunctional features, with a special emphasis on the relationships between their synthesis conditions, their structures and their properties. It also focuses on the most important progress made with regard to their use in nanomedicine, keeping in mind the same aim, the correlation between their morphology—namely spherical and non-spherical, core-satellite and core-shell, and the desired applications. PMID:29518969

  10. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    PubMed Central

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  11. Development of iron-doped silicon nanoparticles as bimodal imaging agents.

    PubMed

    Singh, Mani P; Atkins, Tonya M; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y; Kauzlarich, Susan M

    2012-06-26

    We demonstrate the synthesis of water-soluble allylamine-terminated Fe-doped Si (Si(xFe)) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single-source iron-containing precursor, Na(4)Si(4) with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH(4)Br to produce hydrogen-terminated Si(xFe) nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy indicates that the average particle diameter is ∼3.0 ± 1.0 nm. The Si(5Fe) nanoparticles show strong photoluminescence quantum yield in water (∼10%) with significant T(2) contrast (r(2)/r(1) value of 4.31). Electron paramagnetic resonance and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity.

  12. Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chen W.; Smith, Hillary L.; Lan, Tian

    2015-04-13

    Inelastic neutron scattering measurements on monoclinic zirconia (ZrO 2) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 ωK. We reported temperature-dependent phonon densities of states (DOS) and Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhatmore » more anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.« less

  13. A novel method for the synthesis of zirconia powder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohe, A.E.; Pasquevich, D.M.

    A novel method for the synthesis of zirconia powder is presented in this paper. The formation of fine particles of zirconia takes place when metallic zirconium and hematite are heated in the presence of gaseous chlorine. The overall process, which can be described by the following reaction: 3 Zr(s) + 2 Fe{sub 2}O{sub 3}(s) {r_arrow} 3 ZrO{sub 2}(s) + 4 Fe(s), occurs by a mass-transport mechanism through the vapor phase between 723 and 1223 K. The vapor-mass transport among the solid species takes place by means of zirconium and iron chlorides. The fundamentals of synthesis are discussed on the basismore » of a detailed thermodynamic analysis of reactions involved in the process, as well as by a characterization of the solid phases formed at various temperatures at XRD and SEM examinations.« less

  14. On the interfacial fracture resistance of resin-bonded zirconia and glass-infiltrated graded zirconia

    PubMed Central

    Chai, Herzl; Kaizer, Marina; Chughtai, Asima; Tong, Hui; Tanaka, Carina; Zhang, Yu

    2015-01-01

    Objective A major limiting factor for the widespread use of zirconia in prosthetic dentistry is its poor resin-cement bonding capabilities. We show that this deficiency can be overcome by infiltrating the zirconia cementation surface with glass. Current methods for assessing the fracture resistance of resin-ceramic bonds are marred by uneven stress distribution at the interface, which may result in erroneous interfacial fracture resistance values. We have applied a wedge-loaded double-cantilever-beam testing approach to accurately measure the interfacial fracture resistance of adhesively bonded zirconia-based restorative materials. Methods The interfacial fracture energy GC was determined for adhesively bonded zirconia, graded zirconia and feldspathic ceramic bars. The bonding surfaces were subjected to sandblasting or acid etching treatments. Baseline GC was measured for bonded specimens subjected to 7 days hydration at 37 °C. Long-term GC was determined for specimens exposed to 20,000 thermal cycles between 5 and 55 °C followed by 2-month aging at 37 °C in water. The test data were interpreted with the aid of a 2D finite element fracture analysis. Results The baseline and long-term GC for graded zirconia was 2–3 and 8 times that for zirconia, respectively. More significantly, both the baseline and long-term GC of graded zirconia were similar to those for feldspathic ceramic. Significance The interfacial fracture energy of feldspathic ceramic and graded zirconia was controlled by the fracture energy of the resin cement while that of zirconia by the interface. GC for the graded zirconia was as large as for feldspathic ceramic, making it an attractive material for use in dentistry. PMID:26365987

  15. [Influence on microstructure of dental zirconia ceramics prepared by two-step sintering].

    PubMed

    Jian, Chao; Li, Ning; Wu, Zhikai; Teng, Jing; Yan, Jiazhen

    2013-10-01

    To investigate the microstructure of dental zirconia ceramics prepared by two-step sintering. Nanostructured zirconia powder was dry compacted, cold isostatic pressed, and pre-sintered. The pre-sintered discs were cut processed into samples. Conventional sintering, single-step sintering, and two-step sintering were carried out, and density and grain size of the samples were measured. Afterward, T1 and/or T2 of two-step sintering ranges were measured. Effects on microstructure of different routes, which consisted of two-step sintering and conventional sintering were discussed. The influence of T1 and/or T2 on density and grain size were analyzed as well. The range of T1 was between 1450 degrees C and 1550 degrees C, and the range of T2 was between 1250 degrees C and 1350 degrees C. Compared with conventional sintering, finer microstructure of higher density and smaller grain could be obtained by two-step sintering. Grain growth was dependent on T1, whereas density was not much related with T1. However, density was dependent on T2, and grain size was minimally influenced. Two-step sintering could ensure a sintering body with high density and small grain, which is good for optimizing the microstructure of dental zirconia ceramics.

  16. First-Principles Study of Antimony Doping Effects on the Iron-Based Superconductor CaFe(SbxAs1-x)2

    NASA Astrophysics Data System (ADS)

    Nagai, Yuki; Nakamura, Hiroki; Machida, Masahiko; Kuroki, Kazuhiko

    2015-09-01

    We study antimony doping effects on the iron-based superconductor CaFe(SbxAs1-x)2 by using the first-principles calculation. The calculations reveal that the substitution of a doped antimony atom into As of the chainlike As layers is more stable than that into FeAs layers. This prediction can be checked by experiments. Our results suggest that doping homologous elements into the chainlike As layers, which only exist in the novel 112 system, is responsible for rising up the critical temperature. We discuss antimony doping effects on the electronic structure. It is found that the calculated band structures with and without the antimony doping are similar to each other within our framework.

  17. Fabrication of smart chemical sensors based on transition-doped-semiconductor nanostructure materials with µ-chips.

    PubMed

    Rahman, Mohammed M; Khan, Sher Bahadar; Asiri, Abdullah M

    2014-01-01

    Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm(2)) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r(2) = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm(-2)mM(-1) and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I-V sensors on μ-chips.

  18. Fabrication of Smart Chemical Sensors Based on Transition-Doped-Semiconductor Nanostructure Materials with µ-Chips

    PubMed Central

    Rahman, Mohammed M.; Khan, Sher Bahadar; Asiri, Abdullah M.

    2014-01-01

    Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm2) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r2 = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm−2mM−1 and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I–V sensors on μ-chips. PMID:24454785

  19. Zirconia in biomedical applications.

    PubMed

    Chen, Yen-Wei; Moussi, Joelle; Drury, Jeanie L; Wataha, John C

    2016-10-01

    The use of zirconia in medicine and dentistry has rapidly expanded over the past decade, driven by its advantageous physical, biological, esthetic, and corrosion properties. Zirconia orthopedic hip replacements have shown superior wear-resistance over other systems; however, risk of catastrophic fracture remains a concern. In dentistry, zirconia has been widely adopted for endosseous implants, implant abutments, and all-ceramic crowns. Because of an increasing demand for esthetically pleasing dental restorations, zirconia-based ceramic restorations have become one of the dominant restorative choices. Areas covered: This review provides an updated overview of the applications of zirconia in medicine and dentistry with a focus on dental applications. The MEDLINE electronic database (via PubMed) was searched, and relevant original and review articles from 2010 to 2016 were included. Expert commentary: Recent data suggest that zirconia performs favorably in both orthopedic and dental applications, but quality long-term clinical data remain scarce. Concerns about the effects of wear, crystalline degradation, crack propagation, and catastrophic fracture are still debated. The future of zirconia in biomedical applications will depend on the generation of these data to resolve concerns.

  20. Acetone Sensing Properties of a Gas Sensor Composed of Carbon Nanotubes Doped With Iron Oxide Nanopowder

    PubMed Central

    Tan, Qiulin; Fang, Jiahua; Liu, Wenyi; Xiong, Jijun; Zhang, Wendong

    2015-01-01

    Iron oxide (Fe2O3) nanopowder was prepared by a precipitation method and then mixed with different proportions of carbon nanotubes. The composite materials were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. A fabricated heater-type gas sensor was compared with a pure Fe2O3 gas sensor under the influence of acetone. The effects of the amount of doping, the sintering temperature, and the operating temperature on the response of the sensor and the response recovery time were analyzed. Experiments show that doping of carbon nanotubes with iron oxide effectively improves the response of the resulting gas sensors to acetone gas. It also reduces the operating temperature and shortens the response recovery time of the sensor. The response of the sensor in an acetone gas concentration of 80 ppm was enhanced, with good repeatability. PMID:26569253

  1. Silica-coated titania and zirconia colloids for subsurface transport field experiments

    USGS Publications Warehouse

    Ryan, Joseph N.; Elimelech, Menachem; Baeseman, Jenny L.; Magelky, Robin D.

    2000-01-01

    Silica-coated titania (TiO2) and zirconia (ZrO2) colloids were synthesized in two sizes to provide easily traced mineral colloids for subsurface transport experiments. Electrophoretic mobility measurements showed that coating with silica imparted surface properties similar to pure silica to the titania and zirconia colloids. Measurements of steady electrophoretic mobility and size (by dynamic light scattering) over a 90-day period showed that the silica-coated colloids were stable to aggregation and loss of coating. A natural gradient field experiment conducted in an iron oxide-coated sand and gravel aquifer also showed that the surface properties of the silica-coated colloids were similar. Colloid transport was traced at μg L-1 concentrations by inductively coupled plasma-atomic emission spectroscopy measurement of Ti and Zr in acidified samples.

  2. Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode

    NASA Astrophysics Data System (ADS)

    Hwang, Changsing; Tsai, Chun-Huang; Lo, Chih-Hung; Sun, Cha-Hong

    Intermediate temperature solid oxide fuel cells (ITSOFCs) supported by a porous Ni-substrate and based on Sr and Mg doped lanthanum gallate (LSGM) electrolyte, lanthanum strontium cobalt ferrite (LSCF) cathode and nanostructured yttria stabilized zirconia-nickel (YSZ/Ni) cermet anode have been fabricated successfully by atmospheric plasma spraying (APS). From ac impedance analysis, the sprayed YSZ/Ni cermet anode with a novel nanostructure and advantageous triple phase boundaries after hydrogen reduction has a low resistance. It shows a good electrocatalytic activity for hydrogen oxidation reactions. The sprayed LSGM electrolyte with ∼60 μm in thickness and ∼0.054 S cm -1 conductivity at 800 °C shows a good gas tightness and gives an open circuit voltage (OCV) larger than 1 V. The sprayed LSCF cathode with ∼30 μm in thickness and ∼30% porosity has a minimum resistance after being heated at 1000 °C for 2 h. This cathode keeps right phase structure and good porous network microstructure for conducting electrons and negative oxygen ions. The APS sprayed cell after being heated at 1000 °C for 2 h has a minimum inherent resistance and achieves output power densities of ∼440 mW cm -2 at 800 °C, ∼275 mW cm -2 at 750 °C and ∼170 mW cm -2 at 700 °C. Results from SEM, XRD, ac impedance analysis and I- V- P measurements are presented here.

  3. Synthesis Oxide Dispersion Strengthening Stainless Steel doped with Nano Zirconia by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Pawawoi; Widiansyah, Irfan; Hadi Prajitno, Djoko

    2017-01-01

    The oxide dispersion strengthening stainless steel of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 alloy by mechanical alloying method were synthesized by planetary ball milling. The methods employed for study were designing of Fe-11.5wt%Cr and Fe-11.5wt%Cr-1%ZrO2 proportion of composition alloy which is plotted to Schaffler diagram to get ferritic/martensitic stainless steel. After MA the ODS powders were compaction with pressure 80kg/mm2 and followed by sintering at the temperature of 900,1000 and 1100º C under high purity argon atmosphere for 1 hour. Characterization by XRD is used to examination phase present. Optical microscopy and SEM is used to get image microstructures. XRD analysis resulting the ferritic and martensitic is a major and minor phase respectively. There are not significant differences in the microstructure between Fe-11.5wt%Cr and Fe-11.5wt%Cr-1wt%ZrO2. An increase in the sintering temperature shift the microstructure from dendritic to equaxed. EDS examination showed that zirconia exit in the alloy Fe-11.5wt%Cr-1wt%ZrO2.The addition of 1 % nano-zirconia (ZrO2) into Fe-Cr alloy while milling process was resulted a higher Hardness Vickers Values rather than without zirconia addition. Average value of Hardness Vickers values was resulted 135.5 HV for Fe-11.5wt%Cr whereas 138.4 HV for Fe-11.5wt%Cr-1wt%ZrO2.

  4. Nanostructured N-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light.

    PubMed

    Kulkarni, Aniruddha K; Praveen, C S; Sethi, Yogesh A; Panmand, Rajendra P; Arbuj, Sudhir S; Naik, Sonali D; Ghule, Anil V; Kale, Bharat B

    2017-11-07

    The synthesis of orthorhombic nitrogen-doped niobium oxide (Nb 2 O 5-x N x ) nanostructures was performed and a photocatalytic study carried out in their use in the conversion of toxic H 2 S and water into hydrogen under UV-Visible light. Nanostructured orthorhombic Nb 2 O 5-x N x was synthesized by a simple solid-state combustion reaction (SSCR). The nanostructural features of Nb 2 O 5-x N x were examined by FESEM and HRTEM, which showed they had a porous chain-like structure, with chains interlocked with each other and with nanoparticles sized less than 10 nm. Diffuse reflectance spectra depicted their extended absorbance in the visible region with a band gap of 2.4 eV. The substitution of nitrogen in place of oxygen atoms as well as Nb-N bond formation were confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. A computational study (DFT) of Nb 2 O 5-x N x was also performed for investigation and conformation of the crystal and electronic structure. N-Substitution clearly showed a narrowing of the band gap due to N 2p bands cascading above the O 2p band. Considering the band gap in the visible region, Nb 2 O 5-x N x exhibited enhanced photocatalytic activity toward hydrogen evolution (3010 μmol h -1 g -1 ) for water splitting and (9358 μmol h -1 g -1 ) for H 2 S splitting under visible light. The enhanced photocatalytic activity of Nb 2 O 5-x N x was attributed to its extended absorbance in the visible region due to its electronic structure being modified upon doping, which in turn generates more electron-hole pairs, which are responsible for higher H 2 generation. More significantly, the mesoporous nanostructure accelerated the supression of electron and hole recombination, which also contributed to the enhancement of its activity.

  5. Structurally controllable spin spatial splitter in a hybrid ferromagnet and semiconductor nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Mao-Wang, E-mail: maowanglu@126.com; Cao, Xue-Li; Huang, Xin-Hong

    2014-05-07

    We theoretically investigate modulation of a tunable δ-potential to the lateral displacement of electrons across a magnetically modulated semiconductor nanostructure. Experimentally, this nanostructure can be produced by depositing a nanosized ferromagnetic stripe with in-plane magnetization on top of a semiconductor heterostructure, while the δ-potential can be realized by means of the atomic layer doping technique. Theoretical analysis reveals that this δ-doping can break the intrinsic symmetry in nanostructure and a considerable spin polarization in the lateral displacement will appear. Numerical calculations demonstrate that both magnitude and sign of spin polarization can be manipulated by changing the height and/or position ofmore » the δ-doping, giving rise to a structurally tunable spin spatial splitter.« less

  6. Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in a SiO2-CaO-MgO-Al2O3 molten slag at 1723 K.

    PubMed

    Gao, Yunming; Yang, Chuanghuang; Zhang, Canlei; Qin, Qingwei; Chen, George Z

    2017-06-21

    Production of metallic iron through molten oxide electrolysis using inert electrodes is an alternative route for fast ironmaking without CO 2 emissions. The fact that many inorganic oxides melt at ultrahigh temperatures (>1500 K) challenges conventional electro-analytical techniques used in aqueous, organic and molten salt electrolytes. However, in order to design a feasible and effective electrolytic process, it is necessary to best understand the electrochemical properties of iron ions in molten oxide electrolytes. In this work, a magnesia-stabilised zirconia (MSZ) tube with a closed end was used to construct an integrated three-electrode cell with a "MSZ|Pt|O 2 (air)" assembly functioning as the solid electrolyte, the reference electrode and also the counter electrode. Electrochemical reduction of iron ions was systematically investigated on an iridium (Ir) wire working electrode in a SiO 2 -CaO-MgO-Al 2 O 3 molten slag at 1723 K by cyclic voltammetry (CV), square wave voltammetry (SWV), chronopotentiometry (CP) and potentiostatic electrolysis (PE). The results show that the electroreduction of the Fe 2+ ion to Fe on the Ir electrode in the molten slag follows a single two-electron transfer step, and the rate of the process is diffusion controlled. The peak current on the obtained CVs is proportional to the concentration of the Fe 2+ ion in the molten slag and the square root of scan rate. The diffusion coefficient of Fe 2+ ions in the molten slag containing 5 wt% FeO at 1723 K was derived to be (3.43 ± 0.06) × 10 -6 cm 2 s -1 from CP analysis. However, a couple of subsequent processes, i.e. alloy formation on the Ir electrode surface and interdiffusion, were found to affect the kinetics of iron deposition. An ECC mechanism is proposed to account for the CV observations. The findings from this work confirm that zirconia-based solid electrolytes can play an important role in electrochemical fundamental research in high temperature molten slag electrolytes.

  7. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  8. To study the effect of doping concentration of silver on structural and optical properties of cadmium oxide (CdO) nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Dept. of Physics, Vaish College of Engineering, Rohtak-124001, Haryana; Sharma, Ashwani

    The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results aremore » quite in accordance with XRD results.« less

  9. Bulk and Interface Thermodynamics of Calcia-, and Yttria-doped Zirconia Ceramics: Nanograined Phase Stability

    NASA Astrophysics Data System (ADS)

    Drazin, John Walter

    Calcia-, and yttria- doped zirconia powders and samples are essential systems in academia and industry due to their observed bulk polymorphism. Pure zirconia manifests as Baddeleyite, a monoclinic structured mineral with 7-fold coordination. This bulk form of zirconia has little application due to its asymmetry. Therefore dopants are added to the grain in-order to induce phase transitions to either a tetragonal or cubic polymorph with the incorporation of oxygen vacancies due to the dopant charge mis-match with the zirconia matrix. The cubic polymorph has cubic symmetry such that these samples see applications in solid oxide fuel cells (SOFCs) due to the high oxygen vacancy concentrations and high ionic mobility at elevated temperatures. The tetragonal polymorph has slight asymmetry in the c-axis compared to the a-axis such that the tetragonal samples have increased fracture toughness due to an impact induced phase transformation to a cubic structure. These ceramic systems have been extensively studied in academia and used in various industries, but with the advent of nanotechnology one can wonder whether smaller grain samples will see improved characteristics similar to their bulk grain counterparts. However, there is a lack of data and knowledge of these systems in the nano grained region which provides us with an opportunity to advance the theory in these systems. The polymorphism seen in the bulk grains samples is also seen in the nano-grained samples, but at slightly distinct dopant concentrations. The current theory hypothesizes that a surface excess, gamma (J/m 2), can be added to the Gibbs Free energy equation to account for the additional free energy of the nano-grain atoms. However, these surface energies have been difficult to measure and therefore thermodynamic data on these nano-grained samples have been sparse. Therefore, in this work, I will use a well established water adsorption microcalorimetry apparatus to measure the water coverage isotherms

  10. Electrochemical CO 2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene

    DOE PAGES

    Zhang, Chenhao; Yang, Shize; Wu, Jingjie; ...

    2018-03-25

    Electrochemical reduction of CO 2 provides an opportunity to reach a carbon-neutral energy recycling regime, in which CO 2 emissions from fuel use are collected and converted back to fuels. The reduction of CO 2 to CO is the first step toward the synthesis of more complex carbon-based fuels and chemicals. Therefore, understanding this step is crucial for the development of high-performance electrocatalyst for CO 2 conversion to higher order products such as hydrocarbons. In this paper, atomic iron dispersed on nitrogen-doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO 2 reduction to CO. Fe/NG has a lowmore » reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen-confined atomic Fe moieties on the nitrogen-doped graphene layer is confirmed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. Finally, the CO 2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N 4) embedded in nitrogen-doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.« less

  11. Electrochemical CO 2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chenhao; Yang, Shize; Wu, Jingjie

    Electrochemical reduction of CO 2 provides an opportunity to reach a carbon-neutral energy recycling regime, in which CO 2 emissions from fuel use are collected and converted back to fuels. The reduction of CO 2 to CO is the first step toward the synthesis of more complex carbon-based fuels and chemicals. Therefore, understanding this step is crucial for the development of high-performance electrocatalyst for CO 2 conversion to higher order products such as hydrocarbons. In this paper, atomic iron dispersed on nitrogen-doped graphene (Fe/NG) is synthesized as an efficient electrocatalyst for CO 2 reduction to CO. Fe/NG has a lowmore » reduction overpotential with high Faradic efficiency up to 80%. The existence of nitrogen-confined atomic Fe moieties on the nitrogen-doped graphene layer is confirmed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure analysis. The Fe/NG catalysts provide an ideal platform for comparative studies of the effect of the catalytic center on the electrocatalytic performance. Finally, the CO 2 reduction reaction mechanism on atomic Fe surrounded by four N atoms (Fe–N 4) embedded in nitrogen-doped graphene is further investigated through density functional theory calculations, revealing a possible promotional effect of nitrogen doping on graphene.« less

  12. Enhanced photoluminescence and Raman properties of Al-Doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass.

    PubMed

    Thandavan, Tamil Many K; Gani, Siti Meriam Abdul; San Wong, Chiow; Md Nor, Roslan

    2015-01-01

    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.

  13. Effects of rare earth doping on multi-core iron oxide nanoparticles properties

    NASA Astrophysics Data System (ADS)

    Petran, Anca; Radu, Teodora; Borodi, Gheorghe; Nan, Alexandrina; Suciu, Maria; Turcu, Rodica

    2018-01-01

    New multi-core iron oxide magnetic nanoparticles doped with rare earth metals (Gd, Eu) were obtained by a one step synthesis procedure using a solvothermal method for potential biomedical applications. The obtained clusters were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS) and magnetization measurements. They possess high colloidal stability, a saturation magnetization of up to 52 emu/g, and nearly spherical shape. The presence of rare earth ions in the obtained samples was confirmed by EDX and XPS. XRD analysis proved the homogeneous distribution of the trivalent rare earth ions in the inverse-spinel structure of magnetite and the increase of crystal strain upon doping the samples. XPS study reveals the valence state and the cation distribution on the octahedral and tetrahedral sites of the analysed samples. The observed shift of the XPS valence band spectra maximum in the direction of higher binding energies after rare earth doping, as well as theoretical valence band calculations prove the presence of Gd and Eu ions in octahedral sites. The blood protein adsorption ability of the obtained samples surface, the most important factor of the interaction between biomaterials and body fluids, was assessed by interaction with bovine serum albumin (BSA). The rare earth doped clusters surface show higher afinity for binding BSA. In vitro cytotoxicity test results for the studied samples showed no cytotoxicity in low and medium doses, establishing a potential perspective for rare earth doped MNC to facilitate multiple therapies in a single formulation for cancer theranostics.

  14. Optical, structural and morphological properties of zirconia nanoparticles prepared by laser ablation in liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodina, T I; Val'yano, G E; Gololobova, O A

    2014-09-30

    Absorption, fluorescence and Raman spectra, the structural composition and morphology of zirconia nanoparticles synthesised via the laser ablation of a metal in water and aqueous solutions of the sodium dodecyl sulphate (SDS) surfactant have been studied using absorption spectroscopy, Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The results demonstrate that, exposing zirconium to intense nanosecond laser pulses at a high repetition rate in these liquids, one can obtain stable cubic, tetragonal and monoclinic crystalline phases of nanozirconia with a particle size in the range 40 – 100 nm and a Zr – SDS organic – inorganic composite. The absorptionmore » and fluorescence of the synthesised zirconia strongly depend on the SDS concentration in the starting solution. The gas – vapour bubbles forming during ablation are shown to serve as templates for the formation of hollow nanoand microstructures. (nanostructures)« less

  15. Ultrasound assisted synthesis of iron doped TiO2 catalyst.

    PubMed

    Ambati, Rohini; Gogate, Parag R

    2018-01-01

    The present work deals with synthesis of Fe (III) doped TiO 2 catalyst using the ultrasound assisted approach and conventional sol-gel approach with an objective of establishing the process intensification benefits. Effect of operating parameters such as Fe doping, type of solvent, solvent to precursor ratio and initial temperature has been investigated to get the best catalyst with minimum particle size. Comparison of the catalysts obtained using the conventional and ultrasound assisted approach under the optimized conditions has been performed using the characterization techniques like DLS, XRD, BET, SEM, EDS, TEM, FTIR and UV-Vis band gap analysis. It was established that catalyst synthesized by ultrasound assisted approach under optimized conditions of 0.4mol% doping, irradiation time of 60min, propan-2-ol as the solvent with the solvent to precursor ratio as 10 and initial temperature of 30°C was the best one with minimum particle size as 99nm and surface area as 49.41m 2 /g. SEM analysis, XRD analysis as well as the TEM analysis also confirmed the superiority of the catalyst obtained using ultrasound assisted approach as compared to the conventional approach. EDS analysis also confirmed the presence of 4.05mol% of Fe element in the sample of 0.4mol% iron doped TiO 2 . UV-Vis band gap results showed the reduction in band gap from 3.2eV to 2.9eV. Photocatalytic experiments performed to check the activity also confirmed that ultrasonically synthesized Fe doped TiO 2 catalyst resulted in a higher degradation of Acid Blue 80 as 38% while the conventionally synthesized catalyst resulted in a degradation of 31.1%. Overall, the work has clearly established importance of ultrasound in giving better catalyst characteristics as well as activity for degradation of the Acid Blue 80 dye. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Indirect electrocatalytic determination of choline by monitoring hydrogen peroxide at the choline oxidase-prussian blue modified iron phosphate nanostructures.

    PubMed

    Zhang, Hui; Yin, Yajing; Wu, Ping; Cai, Chenxin

    2012-01-15

    Choline, as a marker of cholinergic activity in brain tissue, is very important in biological and clinical analysis, especially in the clinical detection of the neurodegenerative disorders disease. This work presents an electrochemical approach for the detection of choline based on prussian blue modified iron phosphate nanostructures (PB-FePO(4)). The obtained nanostructures showed a good catalysis toward the electroreduction of H(2)O(2), and an amperometric choline biosensor was developed by immobilizing choline oxidase on the PB-FePO(4) nanostructures. The biosensor exhibited a rapid response (ca. 2s), low detection limit (0.4±0.05 μM), wide linear range (2 μM to 3.2 mM), high sensitivity (~75.2 μAm M(-1) cm(-2)), as well as good stability and repeatability. In addition, the common interfering species, such as ascorbic acid, uric acid and 4-acetamidophenol did not cause obvious interference due to the low detection potential (-0.05 V versus saturated calomel electrode). This nanostructure could be used as a promise platform for the construction of other oxidase-based biosensors. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Fabrication of high-performance metal ion doped iron oxide electrode for supercapacitor applications through a novel platform

    NASA Astrophysics Data System (ADS)

    Aghazadeh, Mustafa; Karimzadeh, Isa

    2017-10-01

    We provide a novel electrodeposition platform of undoped and Eu3+ doped iron oxide nanoparticles (Eu-IONPs) from an additive-free electrolyte containing Fe(NO3)3, FeCl2 and EuCl3. The prepared IONPs were analyzed using x-ray diffraction, field emission electron microscopy and energy-dispersive x-ray techniques, and the obtained data showed successful electrosynthesis of magnetite nanoparticles (size  ≈  10 nm) doped with about 10 wt% Eu3+ ions. The Eu-IONPs were used as supercapacitor electrode materials, and characterized by cyclic voltammetry and galvanostatic charge-discharge measurements. The as-synthesized Eu-IONPs exhibit remarkable pseudocapacitive activities including high specific capacitances of 212.5 and 153.2 F g-1 at 0.5 and 2 A g-1, respectively, and excellent cycling stabilities of 93.9% and 86.5% after 2000 discharging cycles. Furthermore, vibrational sample magnetometer data confirmed better superparamagnetic performance of Eu-IONPs (Ms  =  72.8 emu g-1, Mr  =  0.24 emu g-1 and H Ci  =  3.48 G) as compared with pure IONPs (Ms  =  51.92 emu g-1, Mr  =  0.95 emu g-1 and H Ci  =  14.62 G) due to exhibiting lower Mr and H Ci values. This novel synthetic platform of metal ion doped iron oxide is potentially a convenient way to fabricate high-performance iron oxide electrodes for energy storage systems.

  18. Fe and C doped TiO2 with different aggregate architecture: Synthesis, optical, spectral and photocatalytic properties, first-principle calculation

    NASA Astrophysics Data System (ADS)

    Baklanova, I. V.; Zhukov, V. P.; Krasil'nikov, V. N.; Gyrdasova, O. I.; Buldakova, L. Yu.; Shalaeva, E. V.; Polyakov, E. V.; Kuznetsov, M. V.; Shein, I. R.; Vovkotrub, E. G.

    2017-12-01

    Iron and carbon doped nanostructured titanium dioxide with different morphology of aggregates was synthesized using the developed precursor technique. Glycolate of the general composition Ti1-xFex(OCH2CH2O)2-x/2 (0 ≤ x ≤ 0.1) was used as a precursor. The synthesized samples of the compositions Ti1-xFexO2, Ti1-xFexO(2-x/2)-yCy and Ti1-xFexO(2-x/2)-yCy:nC were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet and visible absorption spectroscopy, as well as by vibration and X-ray photoelectron spectroscopy methods. In addition, they were tested as photocatalysts in the hydroquinone oxidation reaction under ultraviolet and visible irradiation. It is established that the insertion of iron into the structure of carbon-doped anatase (TiO2-yCy) suppresses its photocatalytic activity in the visible range of the spectrum, but leads to no change under ultraviolet irradiation. Globular samples of Ti1-xFexO(2-x/2)-yCy containing no more than 2.5 at% Fe show the maximum photocatalytic activity. To clarify the reasons for the observed complex dependence of photocatalytic activity on the concentration of the dopant first-principles, calculations of the electronic band structure and optical absorption of anatase doped with iron and carbon are performed and discussed.

  19. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    PubMed Central

    Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2015-01-01

    To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell) along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface. PMID:28793420

  20. The role of Nb in intensity increase of Er ion upconversion luminescence in zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smits, K., E-mail: smits@cfi.lu.lv; Sarakovskis, A.; Grigorjeva, L.

    2014-06-07

    It is found that Nb co-doping increases the luminescence and upconversion luminescence intensity in rare earth doped zirconia. Er and Yb-doped nanocrystalline samples with or without Nb co-doping were prepared by sol-gel method and thermally annealed to check for the impact of phase transition on luminescence properties. Phase composition and grain sizes were examined by X-ray diffraction; the morphology was checked by scanning- and high-resolution transmission electron microscopes. Both steady-state and time-resolved luminescence were studied. Comparison of samples with different oxygen vacancy concentrations and different Nb concentrations confirmed the known assumption that oxygen vacancies are the main agents for tetragonalmore » or cubic phase stabilization. The oxygen vacancies quench the upconversion luminescence; however, they also prevent agglomeration of rare-earth ions and/or displacement of rare-earth ions to grain surfaces. It is found that co-doping with Nb ions significantly (>20 times) increases upconversion luminescence intensity. Hence, ZrO{sub 2}:Er:Yb:Nb nanocrystals may show promise for upconversion applications.« less

  1. Iron encapsulated in 3D N-doped carbon nanotube/porous carbon hybrid from waste biomass for enhanced oxidative activity.

    PubMed

    Yao, Yunjin; Zhang, Jie; Wu, Guodong; Wang, Shaobin; Hu, Yi; Su, Cong; Xu, Tongwen

    2017-03-01

    Novel iron encapsulated in nitrogen-doped carbon nanotubes (CNTs) supported on porous carbon (Fe@N-C) 3D structured materials for degrading organic pollutants were fabricated from a renewable, low-cost biomass, melamine, and iron salt as the precursors. SEM and TEM micrographs show that iron encapsulated bamboo shaped CNTs are vertically standing on carbon sheets, and thus, a 3D hybrid was formed. The catalytic activities of the prepared samples were thoroughly evaluated by activation of peroxymonosulfate for catalytic oxidation of Orange II solutions. The influences of some reaction conditions (pH, temperature, and concentrations of reactants, peroxymonosulfate, and dye) were extensively evaluated. It was revealed that the adsorption could enrich the pollutant which was then rapidly degraded by the catalytically generated radicals, accelerating the continuous adsorption of residual pollutant. Remarkable carbon structure, introduction of CNTs, and N/Fe doping result in promoted adsorption capability and catalytic performances. Due to the simple synthetic process and cheap carbon precursor, Fe@N-C 3D hybrid can be easily scaled up and promote the development of Fenton-like catalysts.

  2. Using glass-graded zirconia to increase delamination growth resistance in porcelain/zirconia dental structures.

    PubMed

    Chai, Herzl; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu

    2018-01-01

    Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their tendency to delaminate along the P/Z interface remains a practical problem so that assessing and improving the interfacial strength are important design aspects. This work examines the effect of modifying the zirconia veneering surface with an in-house felspathic glass on the interfacial fracture resistance of fused P/Z. Three material systems are studied: porcelain fused to zirconia (control) and porcelain fused to glass-graded zirconia with and without the presence of a glass interlayer. The specimens were loaded in a four-point-bend fixture with the porcelain veneer in tension. The evolution of damage is followed with the aid of a video camera. The interfacial fracture energy G C was determined with the aid of a FEA, taking into account the stress shielding effects due to the presence of adjacent channel cracks. Similarly to a previous study on PFZ specimens, the fracture sequence consisted of unstable growth of channel cracks in the veneer followed by stable cracking along the P/Z interface. However, the value of GC for the graded zirconia was approximately 3 times that of the control zirconia, which is due to the good adhesion between porcelain and the glass network structure on the zirconia surface. Combined with its improved bonding to resin-based cements, increased resistance to surface damage and good esthetic quality, graded zirconia emerges as a viable material concept for dental restorations. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Influence of Doping and Nanostructuration on n-Type Bi2(Te0.8Se0.2)3 Alloys Synthesized by Arc Melting

    NASA Astrophysics Data System (ADS)

    Gharsallah, Mouna; Serrano-Sanchez, Federico; Nemes, Norbert M.; Martinez, Jose Luis; Alonso, Jose Antonio

    2017-01-01

    In competitive thermoelectric devices for energy conversion and generation, high-efficiency materials of both n-type and p-type are required. For this, Bi2Te3-based alloys have the best thermoelectric properties in room temperature applications. Partial replacement of tellurium by selenium is expected to introduce new donor states in the band gap, which would alter electrical conductivity and thermopower. We report on the preparation of n-type Bi2(Te1-xSex)3 solid solutions by a straightforward arc-melting technique, yielding nanostructured polycrystalline pellets. X-ray and neutron powder diffraction was used to assess Se inclusion, also indicating that the interactions between quintuple layers constituting this material are weakened upon Se doping, while the covalency of intralayer bonds is augmented. Moreover, scanning electron microscopy shows large surfaces perpendicular to the c crystallographic axis assembled as stacked sheets. Grain boundaries related to this 2D nanostructuration affect the thermal conductivity reducing it below 0.8 Wm-1K-1 at room temperature. Furthermore, Se doping increases the absolute Seebeck coefficient up to -140 μV K-1 at 400 K, which is also beneficial for improved thermoelectric efficiency.

  4. Slurry spin coating of thin film yttria stabilized zirconia/gadolinia doped ceria bi-layer electrolytes for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Joong; Kim, Manjin; Neoh, Ke Chean; Han, Gwon Deok; Bae, Kiho; Shin, Jong Mok; Kim, Gyu-Tae; Shim, Joon Hyung

    2016-09-01

    Thin ceramic bi-layered membrane comprising yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) is fabricated by the cost-effective slurry spin coating technique, and it is evaluated as an electrolyte of solid oxide fuel cells (SOFCs). It is demonstrated that the slurry spin coating method is capable of fabricating porous ceramic films by adjusting the content of ethyl-cellulose binders in the source slurry. The porous GDC layer deposited by spin coating under an optimal condition functions satisfactorily as a cathode-electrolyte interlayer in the test SOFC stack. A 2-μm-thick electrolyte membrane of the spin-coated YSZ/GDC bi-layer is successfully deposited as a dense and stable film directly on a porous NiO-YSZ anode support without any interlayers, and the SOFC produces power output over 200 mW cm-2 at 600 °C, with an open circuit voltage close to 1 V. Electrochemical impedance spectra analysis is conducted to evaluate the performance of the fuel cell components in relation with the microstructure of the spin-coated layers.

  5. APTES-Terminated ultrasmall and iron-doped silicon nanoparticles as X-Ray dose enhancer for radiation therapy.

    PubMed

    Klein, Stefanie; Wegmann, Marc; Distel, Luitpold V R; Neuhuber, Winfried; Kryschi, Carola

    2018-04-15

    Silicon nanoparticles with sizes between were synthesized through wet-chemistry procedures using diverse phase transfer reagents. On the other hand, the preparation of iron-doped silicon nanoparticles was carried out using the precursor Na 4 Si 4 containing 5% Fe. Biocompatibility of all silicon nanoparticle samples was achieved by surface-stabilizing with (3-aminopropyl)triethoxysilane. These surface structures provided positive surface charges which facilitated electrostatic binding to the negatively charged biological membranes. The mode of interaction with membranes, being either incorporation or just attachment, was found to depend on the nanoparticle size. The smallest silicon nanoparticles (ca. 1.5 nm) were embedded in the mitochondrial membrane in MCF-7 cells. When interacting with X-rays these silicon nanoparticles were observed to enhance the superoxide formation upon depolarizing the mitochondrial membrane. X-ray irradiation of MCF-7 cells loaded with the larger silicon nanoparticles was shown to increase the intracellular singlet oxygen generation. The doping of the silicon nanoparticles with iron led to additional production of hydroxyl radicals via the Fenton reaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Preparation of K-doped TiO2 nanostructures by wet corrosion and their sunlight-driven photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Shin, Eunhye; Jin, Saera; Kim, Jiyoon; Chang, Sung-Jin; Jun, Byung-Hyuk; Park, Kwang-Won; Hong, Jongin

    2016-08-01

    K-doped TiO2 nanowire networks were prepared by the corrosion reaction of Ti nanoparticles in an alkaline (potassium hydroxide: KOH) solution. The prepared nanostructures were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD) and photoluminescence (PL) spectra. Their sunlight-driven photocatalytic activity was also investigated with differently charged dye molecules, such as methylene blue, rhodamine B and methyl orange. The adsorption of the dye molecules on the photocatalyst surface would play a critical role in their selective photodegradation under sunlight illumination.

  7. Post-Annealing Effects on Surface Morphological, Electrical and Optical Properties of Nanostructured Cr-Doped CdO Thin Films

    NASA Astrophysics Data System (ADS)

    Hymavathi, B.; Rajesh Kumar, B.; Subba Rao, T.

    2018-01-01

    Nanostructured Cr-doped CdO thin films were deposited on glass substrates by reactive direct current magnetron sputtering and post-annealed in vacuum from 200°C to 500°C. X-ray diffraction studies confirmed that the films exhibit cubic nature with preferential orientation along the (111) plane. The crystallite size, lattice parameters, unit cell volume and strain in the films were determined from x-ray diffraction analysis. The surface morphology of the films has been characterized by field emission scanning electron microscopy and atomic force microscopy. The electrical properties of the Cr-doped CdO thin films were measured by using a four-probe method and Hall effect system. The lowest electrical resistivity of 2.20 × 10-4 Ω cm and a maximum optical transmittance of 88% have been obtained for the thin films annealed at 500°C. The optical band gap of the films decreased from 2.77 eV to 2.65 eV with the increase of annealing temperature. The optical constants, packing density and porosity of Cr-doped CdO thin films were also evaluated from the transmittance spectra.

  8. Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods.

    PubMed

    Hilty, Florentine M; Knijnenburg, Jesper T N; Teleki, Alexandra; Krumeich, Frank; Hurrell, Richard F; Pratsinis, Sotiris E; Zimmermann, Michael B

    2011-01-01

    Iron deficiency is one of the most common micronutrient deficiencies worldwide. Food fortification can be an effective and sustainable strategy to reduce Fe deficiency but selection of iron fortificants remains a challenge. Water-soluble compounds, for example, FeSO(4), usually demonstrate high bioavailability but they often cause unacceptable sensory changes in foods. On the other hand, poorly acid-soluble Fe compounds, for example FePO(4), may cause fewer adverse sensory changes in foods but are usually not well bioavailable since they need to be dissolved in the stomach prior to absorption. The solubility and the bioavailability of poorly acid-soluble Fe compounds can be improved by decreasing their primary particle size and thereby increasing their specific surface area. Here, Fe oxide-based nanostructured compounds with added Mg or Ca were produced by scalable flame aerosol technology. The compounds were characterized by nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and Fe solubility in dilute acid. Sensory properties of the Fe-based compounds were tested in 2 highly reactive, polyphenol-rich food matrices: chocolate milk and fruit yoghurt. The Fe solubility of nanostructured Fe(2)O(3) doped with Mg or Ca was higher than that of pure Fe(2)O(3). Since good solubility in dilute acid was obtained despite the inhomogeneity of the powders, inexpensive precursors, for example Fe- and Ca-nitrates, can be used for their manufacture. Adding Mg or Ca lightened powder color, while sensory changes when added to foods were less pronounced than for FeSO(4). The combination of high Fe solubility and low reactivity in foods makes these flame-made nanostructured compounds promising for food fortification. Practical Application: The nanostructured iron-containing compounds presented here may prove useful for iron fortification of certain foods; they are highly soluble in dilute acid and likely to be well absorbed in the gut but cause less severe

  9. Degradation and recovery of iron doped barium titanate single crystals via modulus spectroscopy and thermally stimulated depolarization current

    NASA Astrophysics Data System (ADS)

    Carter, J. J.; Bayer, T. J. M.; Randall, C. A.

    2017-04-01

    Understanding resistance degradation during the application of DC bias and recovery after removing the DC bias provides insight into failure mechanisms and defects in dielectric materials. In this experiment, modulus spectroscopy and thermally stimulated depolarization current (TSDC) techniques were used to characterize the degradation and recovery of iron-doped barium titanate single crystals. Modulus spectroscopy is a very powerful analytical tool applied during degradation and recovery to observe changes in the local conductivity distribution. During degradation, oxygen vacancies migrate to the cathode region, and a counter flow of oxygen anions migrates towards the anode. With increasing time during degradation, the distribution of conductivity broadens only slightly exhibiting crucial differences to iron doped strontium titanate. After removing the DC bias, the recovery shows that a second previously unobserved and distinct conductivity maximum arises in the modulus data. This characteristic with two maxima related to different conductivities in the anode and cathode region is what can be expected from the published defect chemistry. It will be concluded that only the absence of an external electric field during recovery measurements permits the observation of local conductivity measurements without the presence of non-equilibrium conditions such as charge injection. Equilibrium conductivity as a function of oxygen vacancy concentration is described schematically. Oxygen vacancy migration during degradation and recovery is verified by TSDC analysis. We establish a self-consistent rationale of the transient changes in the modulus and TSDC for the iron doped barium titanate single crystal system including electron, hole and oxygen vacancy conductivity. During degradation, the sample fractured.

  10. Cubic phase stability, optical and magnetic properties of Cu-stabilized zirconia nanocrystals

    NASA Astrophysics Data System (ADS)

    Pramanik, Prativa; Singh, Sobhit; Joshi, Deep Chandra; Mallick, Ayan; Pisane, Kelly; Romero, Aldo H.; Thota, Subhash; Seehra, M. S.

    2018-06-01

    By means of experimental and ab initio investigations, we report on the cubic phase stability of Cu doped zirconia (ZrO2) at room temperature, and further characterize its structural, optical and magnetic properties. Various compositions of Zr1‑x Cu x O2 (0.01  ⩽  x  ⩽  0.25) nanocrystallites of average size  ∼16 nm were synthesized using co-precipitation technique. Thermal analysis and kinetics of crystallization revealed that the cubic phase at ambient temperature can be stabilized by using a critical calcination temperature of 500 °C for 8 h in air and a critical composition of . For x  <  x c , some undigested monoclinic phase of ZrO2 exists together with the cubic structure. However, for x  >  x c , the monoclinic CuO emerges as a secondary phase with shrinkage of unit-cell volume with increasing the Cu content. At x  =  0.05 and 500 °C calcination temperature, we observe a high degree of cubic crystallinity which breaks down into monoclinic phase with increasing calcination temperature beyond 550 °C. Electron magnetic resonance studies provide evidence for the substitution of Cu2+ (2D5/9,3d9) ions at Zr4+ sites with g, g and average g a   =  (  +  2)/3  ∼  2.1. The temperature dependence of magnetic susceptibility measurements from 2 K to 300 K exhibits Curie–Weiss behaviour whose analysis using g a   =  2.1 and spin S  =  1/2 yields x  =  0.028 and x  =  0.068 for the nominal x  =  0.05 and x  =  0.20 samples, respectively. This magnetic analysis confirms the findings from x-ray diffraction that only a part of Cu is successfully doped into cubic phase of Cu-doped ZrO2. The optical bandgap decreases with increasing x, which is due to the emergence of Cu-d states at Fermi-level near the valence bands, thus making Cu-doped zirconia a hole doped (p-type) semiconductor.

  11. Highly efficient sulfated Zr-doped titanoniobate nanoplates for the alcoholysis of styrene epoxide at room temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Lihong; Hu, Chenhui; Mei, Weigang; Zhang, Junfeng; Cheng, Liyuan; Xue, Nianhua; Ding, Weiping; Chen, Jing; Hou, Wenhua

    2015-12-01

    Sulfated Zr-doped titanoniobate nanoplates were prepared and evaluated as a solid acid catalyst in the alcoholysis of styrene epoxide at room temperature. Compared with undoped and Zr-doped nanosheets, the resulting sulfated catalyst exhibited an excellent catalytic performance to afford corresponding β-alkoxyalcohols (99% yield with methanol as nucleophile in only 10 min) due to the high dispersion of zirconia species on nanosheets, appropriate Lewis acid strength and amount from the strong interaction between zirconia and sulfate species, and greatly increased surface area arisen from the exfoliation and house-of-cards restacking of nanosheets. The corresponding catalytic mechanism was proposed and discussed. The obtained material may act as a promising catalyst in many acid catalyzed reactions.

  12. Research on surface modification of nano-zirconia

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Zhang, Cun-Lin; Yang, Xiao-Yi

    2005-02-01

    The mechanisms about the aggregation and dispersibility of nano-zirconia were analyzed in detail. And nano-zirconia powders which were surface-modified with silane coupling reagent WD70 were prepared in order to disperse homogeneously in ethanol in this investigation. The grain size and grain phase of nano-zirconia were obtained by XRD. Research and characterization on the structure and surface characteristic of surface-modified nano-zirconia were achieved by XPS, TG-DSC, TEM and FT-IR. The results given by FT-IR and XPS showed WD70 was jointed on the surface of nano-zirconia through both physical adsorption and chemical binding after the de-methanol reaction between the methoxyl groups of WD70 and the hydroxy groups on the surface of nano-zirconia. And the corresponding model of surface-modified nano-zirconia was given. The images provided by TEM presented intuitionistic effect of surface modification on the dispersibility of nano-zirconia in ethanol. And TG-DSC analysis ascertained the amount of WD70 that was jointed on the surface of nano-zirconia and the amount was about 6.21 percent.

  13. Fabrication of iron (III) oxide doped polystyrene shells

    NASA Astrophysics Data System (ADS)

    Cai, Pei-Jun; Tang, Yong-Jian; Zhang, Lin; Du, Kai; Feng, Chang-Gen

    2004-03-01

    A type of iron (III) oxide doped plastic shell used for inertial confinement fusion experiments has been fabricated by emulsion techniques. Three different phases of solution (W1, O, and W2) are used for the fabrication process. The W1 phase is a 1 wt % of sodium lauryl sulfate in water. This W1 phase solution is mixed with a 3 wt % Fe2O3-polystyrene (PS) solution in benzene-dichloroethane (O phase) while stirring. The resulting emulsion (W1/O) is poured into a 3 wt % aqueous polyvinyl alcohol solution (W2 phase) while stirring. The resulting emulsion (W1/O/W2) is then heated to evaporate benzene and dichloroethane, and thus a solid Fe2O3-PS shell is formed. The diameter and wall thickness of the shells range from 150 to 500 μm and 5 to 15 μm, respectively. The average surface roughness of the shells is 40 nm, similar to that of the usual PS shells. .

  14. Luminescence dynamics of bound exciton of hydrogen doped ZnO nanowires

    DOE PAGES

    Yoo, Jinkyoung; Yi, Gyu -Chul; Chon, Bonghwan; ...

    2016-04-11

    In this study, all-optical camera, converting X-rays into visible photons, is a promising strategy for high-performance X-ray imaging detector requiring high detection efficiency and ultrafast detector response time. Zinc oxide is a suitable material for all-optical camera due to its fast radiative recombination lifetime in sub-nanosecond regime and its radiation hardness. ZnO nanostructures have been considered as proper building blocks for ultrafast detectors with spatial resolution in sub-micrometer scale. To achieve remarkable enhancement of luminescence efficiency n-type doping in ZnO has been employed. However, luminescence dynamics of doped ZnO nanostructures have not been thoroughly investigated whereas undoped ZnO nanostructures havemore » been employed to study their luminescence dynamics. Here we report a study of luminescence dynamics of hydrogen doped ZnO nanowires obtained by hydrogen plasma treatment. Hydrogen doping in ZnO nanowires gives rise to significant increase in the near-band-edge emission of ZnO and decrease in averaged photoluminescence lifetime from 300 to 140 ps at 10 K. The effects of hydrogen doping on the luminescent characteristics of ZnO nanowires were changed by hydrogen doping process variables.« less

  15. Nano-Structured Magnesium Oxide Coated Iron Ore: Its Application to the Remediation of Wastewater Containing Lead.

    PubMed

    Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A

    2015-12-01

    Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation.

  16. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    PubMed

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  17. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method.

    PubMed

    Poongodi, G; Anandan, P; Kumar, R Mohan; Jayavel, R

    2015-09-05

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effects of disorder on the intrinsically hole-doped iron-based superconductor KC a2F e4A s4F2 by cobalt substitution

    NASA Astrophysics Data System (ADS)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2017-11-01

    In this paper, the effects of cobalt substitution on the transport and electronic properties of the recently discovered iron-based superconductor KC a2F e4A s4F2 , with Tc=33 K , are reported. This material is an unusual superconductor showing intrinsic hole conduction (0.25 holes /F e2 + ). Upon doping of Co, the Tc of KC a2(Fe1-xC ox) 4A s4F2 gradually decreased, and bulk superconductivity disappeared when x ≥0.25 . Conversion of the primary carrier from p type to n type upon Co-doping was clearly confirmed by Hall measurements, and our results are consistent with the change in the calculated Fermi surface. Nevertheless, neither spin density wave (SDW) nor an orthorhombic phase, which are commonly observed for nondoped iron-based superconductors, was observed in the nondoped or electron-doped samples. The electron count in the 3 d orbitals and structural parameters were compared with those of other iron-based superconductors to show that the physical properties can be primarily ascribed to the effects of disorder.

  19. Method for producing iron-based catalysts

    DOEpatents

    Farcasiu, Malvina; Kaufman, Phillip B.; Diehl, J. Rodney; Kathrein, Hendrik

    1999-01-01

    A method for preparing an acid catalyst having a long shelf-life is provided comprising doping crystalline iron oxides with lattice-compatible metals and heating the now-doped oxide with halogen compounds at elevated temperatures. The invention also provides for a catalyst comprising an iron oxide particle having a predetermined lattice structure, one or more metal dopants for said iron oxide, said dopants having an ionic radius compatible with said lattice structure; and a halogen bound with the iron and the metal dopants on the surface of the particle.

  20. Aluminum-doped ceria-zirconia solid solutions with enhanced thermal stability and high oxygen storage capacity.

    PubMed

    Dong, Qiang; Yin, Shu; Guo, Chongshen; Sato, Tsugio

    2012-10-01

    A facile solvothermal method to synthesize aluminum-doped ceria-zirconia (Ce0.5Zr0.5-xAlxO2-x/2, x = 0.1 to 0.4) solid solutions was carried out using Ce(NH4)2(NO3)6, Zr(NO3)3·2H2O Al(NO3)3·9H2O, and NH4OH as the starting materials at 200°C for 24 h. The obtained solid solutions from the solvothermal reaction were calcined at 1,000°C for 20 h in air atmosphere to evaluate the thermal stability. The synthesized Ce0.5Zr0.3Al0.2O1.9 particle was characterized for the oxygen storage capacity (OSC) in automotive catalysis. For the characterization, X-ray diffraction, transmission electron microscopy, and the Brunauer-Emmet-Teller (BET) technique were employed. The OSC values of all samples were measured at 600°C using thermogravimetric-differential thermal analysis. Ce0.5Zr0.3Al0.2O1.9 solid solutions calcined at 1,000°C for 20 h with a BET surface area of 18 m2 g-1 exhibited a considerably high OSC of 427 μmol-O g-1 and good OSC performance stability. The same synthesis route was employed for the preparation of the CeO2 and Ce0.5Zr0.5O2. The incorporation of aluminum ion in the lattice of ceria-based catalyst greatly enhanced the thermal stability and OSC.

  1. Influence of CAD/CAM systems and cement selection on marginal discrepancy of zirconia-based ceramic crowns.

    PubMed

    Martínez-Rus, Francisco; Suárez, María J; Rivera, Begoña; Pradíes, Guillermo

    2012-04-01

    To analyze the effect of ceramic manufacturing technique and luting cement selection on the marginal adaptation of zirconium oxide-based all-ceramic crowns. An extracted mandibular first premolar was prepared for a complete coverage restoration and subsequently duplicated 40 times in a liquid crystal polymer (LCP). All-ceramic crowns (n = 10) were fabricated on LCP models using the following systems: glass-infiltrated zirconia-toughened alumina (In-Ceram Zirconia) and yttrium cation-doped tetragonal zirconia polycrystals (In-Ceram YZ, Cercon, and Procera Zirconia). The restorations (n = 5) were cemented on their respective dies with glass-ionomer cement (Ketac Cem Aplicap) and resin cement (Panavia 21). The absolute marginal discrepancy of the crowns was measured before and after cementation by scanning electronic microscopy at 160 points along the circumferential margin. The data were analyzed using one-way ANOVA for repeated measures and for independent samples, Scheffé's multiple range post hoc test, and Student's t-test (alpha = 0.05). There were statistical differences in the mean marginal openings among the four all-ceramic systems before and after luting (P < 0.0001). The Procera restorations had the lowest pre- and post-cementation values (P < 0.0001). A significant increase in the marginal gap size caused by luting media occurred in all tested groups (P < 0.0001). Resin cement resulted in larger marginal discrepancies than glass-ionomer cement (P < 0.0001).

  2. Enhanced photoluminescence intensity by modifying the surface nanostructure of Nd3+-doped (Pb, La)(Zr, Ti)O3 ceramics.

    PubMed

    Xu, Long; Zhang, Jingwen; Zhao, Hua; Sun, Haibin; Xu, Caixia

    2017-09-01

    Quasi-period cylindrical nanostructures with both diameters and intervals of about 100 nm are manufactured on the surfaces of Nd 3+ -doped lanthanum lead zirconate titanate ceramics by femtosecond laser irradiation under SF 6 atmosphere. A light-emission enhancement of more than 20 times is investigated, accompanied by an extremely long trailing-off time of light emission and lower threshold. A specific polarization state of the light emission is achieved and tuned by changing the incident regions of the pumping source. The increased absorption coefficient of the specimen is discussed based on multiple scattering and weak localization of light. In addition, both the scatterers provided by the laser-machined nanostructure and the recurrent photoinduced trapping and re-excitation process participated in the enhancement of the light emission. This Letter offers new insight to improve the luminescence property of laser materials, as well as to broaden the range of exploring the weak localization of light and random lasers.

  3. Role of Cu in engineering the optical properties of SnO2 nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup

    2018-06-01

    We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.

  4. Assessment and comparison of retention of zirconia copings luted with different cements onto zirconia and titanium abutments: An in vitro study

    PubMed Central

    Menon, Neelima Sreekumar; Kumar, G. P. Surendra; Jnanadev, K. R.; Satish Babu, C. L.; Shetty, Shilpa

    2016-01-01

    Aim: The purpose of this in vitro study was to assess and compare the retention of zirconia copings luted with different luting agents onto zirconia and titanium abutments. Materials and Methods: Titanium and zirconia abutments were torqued at 35 N/cm onto implant analogs. The samples were divided into two groups: Group A consisted of four titanium abutments and 32 zirconia copings and Group B consisted of four zirconia abutments and 32 zirconia copings and four luting agents were used. The cemented copings were subjected to tensile dislodgement forces and subjected to ANOVA test. Results: Zirconia abutments recorded a higher mean force compared to titanium. Among the luting agents, resin cement recorded the highest mean force followed by zinc phosphate, glass ionomer, and noneugenol zinc oxide cement, respectively. Conclusion: Highest mean retention was recorded for zirconia implant abutments compared to titanium abutments when luted with zirconia copings. PMID:27141162

  5. High power density cell using nanostructured Sr-doped SmCoO3 and Sm-doped CeO2 composite powder synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Suzuki, Toshio; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    High power density solid oxide electrochemical cells were developed using nanostructure-controlled composite powder consisting of Sr-doped SmCoO3 (SSC) and Sm-doped CeO2 (SDC) for electrode material. The SSC-SDC nano-composite powder, which was synthesized by spray pyrolysis, had a narrow particle size distribution (D10, D50, and D90 of 0.59, 0.71, and 0.94 μm, respectively), and individual particles were spherical, composing of nano-size SSC and SDC fragments (approximately 10-15 nm). The application of the powder to a cathode for an anode-supported solid oxide fuel cell (SOFC) realized extremely fine cathode microstructure and excellent cell performance. The anode-supported SOFC with the SSC-SDC cathode achieved maximum power density of 3.65, 2.44, 1.43, and 0.76 W cm-2 at 800, 750, 700, and 650 °C, respectively, using humidified H2 as fuel and air as oxidant. This result could be explained by the extended electrochemically active region in the cathode induced by controlling the structure of the starting powder at the nano-order level.

  6. Electronic properties and surface reactivity of SrO-terminated SrTiO3 and SrO-terminated iron-doped SrTiO3

    PubMed Central

    Staykov, Aleksandar; Tellez, Helena; Druce, John; Wu, Ji; Ishihara, Tatsumi; Kilner, John

    2018-01-01

    Abstract Surface reactivity and near-surface electronic properties of SrO-terminated SrTiO3 and iron doped SrTiO3 were studied with first principle methods. We have investigated the density of states (DOS) of bulk SrTiO3 and compared it to DOS of iron-doped SrTiO3 with different oxidation states of iron corresponding to varying oxygen vacancy content within the bulk material. The obtained bulk DOS was compared to near-surface DOS, i.e. surface states, for both SrO-terminated surface of SrTiO3 and iron-doped SrTiO3. Electron density plots and electron density distribution through the entire slab models were investigated in order to understand the origin of surface electrons that can participate in oxygen reduction reaction. Furthermore, we have compared oxygen reduction reactions at elevated temperatures for SrO surfaces with and without oxygen vacancies. Our calculations demonstrate that the conduction band, which is formed mainly by the d-states of Ti, and Fe-induced states within the band gap of SrTiO3, are accessible only on TiO2 terminated SrTiO3 surface while the SrO-terminated surface introduces a tunneling barrier for the electrons populating the conductance band. First principle molecular dynamics demonstrated that at elevated temperatures the surface oxygen vacancies are essential for the oxygen reduction reaction. PMID:29535797

  7. Densification of Zirconia with Borates.

    DTIC Science & Technology

    1980-01-24

    solid electrolytes for fuel cell and oxygen sensor applications.1 ’ 2 The sintering temperatures for commercial quality stabilized zirconia powders are...in the temperature range 1450-1500C). A few studies were also made using a much coarser particle size (- 1-2 pm ave.) cubic stabilized zirconia ... powder , "Zircoa B" [Zirconia Corp. of America]. The additives used as sintering aids were reagent grade horic anhydride, calcium metaborate and calcium

  8. Multicomponent, Rare-Earth-Doped Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming

    2005-01-01

    Multicomponent, rare-earth-doped, perovskite-type thermal-barrier coating materials have been developed in an effort to obtain lower thermal conductivity, greater phase stability, and greater high-temperature capability, relative to those of the prior thermal-barrier coating material of choice, which is yttria-partially stabilized zirconia. As used here, "thermal-barrier coatings" (TBCs) denotes thin ceramic layers used to insulate air-cooled metallic components of heat engines (e.g., gas turbines) from hot gases. These layers are generally fabricated by plasma spraying or physical vapor deposition of the TBC materials onto the metal components. A TBC as deposited has some porosity, which is desirable in that it reduces the thermal conductivity below the intrinsic thermal conductivity of the fully dense form of the material. Undesirably, the thermal conductivity gradually increases because the porosity gradually decreases as a consequence of sintering during high-temperature service. Because of these and other considerations such as phase transformations, the maximum allowable service temperature for yttria-partially stabilized zirconia TBCs lies in the range of about 1,200 to 1,300 C. In contrast, the present multicomponent, rare-earth-doped, perovskite-type TBCs can withstand higher temperatures.

  9. Effect of tetravalent dopants on hematite nanostructure for enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Subramanian, Arunprabaharan; Gracia-Espino, Eduardo; Annamalai, Alagappan; Lee, Hyun Hwi; Lee, Su Yong; Choi, Sun Hee; Jang, Jum Suk

    2018-01-01

    In this paper, the influence of tetravalent dopants such as Si4+, Sn4+, Ti4+, and Zr4+ on the hematite (α-Fe2O3) nanostructure for enhanced photoelectrochemical (PEC) water splitting are reported. The tetravalent doping was performed on hydrothermally grown akaganeite (β-FeOOH) nanorods on FTO (fluorine-doped tin-oxide) substrates via a simple dipping method for which the respective metal-precursor solution was used, followed by a high-temperature (800° C) sintering in a box furnace. The photocurrent density for the pristine (hematite) photoanode is ∼0.81 mA/cm2 at 1.23 VRHE, with an onset potential of 0.72 VRHE; however, the tetravalent dopants on the hematite nanostructures alter the properties of the pristine photoanode. The Si4+-doped hematite photoanode showed a slight photocurrent increment without a changing of the onset potential of the pristine photoanode. The Sn4+- and Ti4+-doped hematite photoanodes, however, showed an anodic shift of the onset potential with the photocurrent increment at a higher applied potential. Interestingly, the Zr4+-doped hematite photoanode exhibited an onset potential that is similar to those of the pristine and Si4+-doped hematite, but a larger photocurrent density that is similar to those of the Sn4+- and Ti4+-doped photoanodes was recorded. The photoactivity of the doped photoanodes at 1.23 VRHE follows the order Zr > Sn > Ti > Si. The onset-potential shifts of the doped photoanodes were investigated using the Ab initio calculations that are well correlated with the experimental data. X-ray diffraction (XRD) and scanning-electron microscopy (FESEM) revealed that both the crystalline phase of the hematite and the nanorod morphology were preserved after the doping procedure. X-ray photoelectron spectroscopy (XPS) confirmed the presence of the tetravalent dopants on the hematite nanostructure. The charge-transfer resistance at the various interfaces of the doped photoanodes was studied using impedance spectroscopy. The

  10. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    NASA Astrophysics Data System (ADS)

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-10-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.

  11. Zirconia in fixed prosthesis. A literature review

    PubMed Central

    Román-Rodríguez, Juan L.; Ferreiroa, Alberto; Solá-Ruíz, María F.; Fons-Font, Antonio

    2014-01-01

    Statement of problem: Evidence is limited on the efficacy of zirconia-based fixed dental prostheses. Objective: To carry out a literature review of the behavior of zirconium oxide dental restorations. Material and Methods: This literature review searched the Pubmed, Scopus, Medline and Cochrane Library databases using key search words “zirconium oxide,” “zirconia,” “non-metal restorations,” “ceramic oxides,” “veneering ceramic,” “zirconia-based fixed dental prostheses”. Both in vivo and in vitro studies into zirconia-based prosthodontic restoration behavior were included. Results: Clinical studies have revealed a high rate of fracture for porcelain-veneered zirconia-based restorations that varies between 6% and 15% over a 3- to 5-year period, while for ceramo-metallic restorations the fracture rate ranges between 4 and 10% over ten years. These results provoke uncertainty as to the long-term prognosis for this material in the oral medium. The cause of veneering porcelain fractures is unknown but hypothetically they could be associated with bond failure between the veneer material and the zirconia sub-structure. Key words:Veneering ceramic, zirconia-based ceramic restoration, crown, zirconia, tooth-supported fixed prosthesis. PMID:24596638

  12. Intra- and interparticle magnetism of cobalt-doped iron-oxide nanoparticles encapsulated in a synthetic ferritin cage

    NASA Astrophysics Data System (ADS)

    Skoropata, E.; Desautels, R. D.; Falvo, E.; Ceci, P.; Kasyutich, O.; Freeland, J. W.; van Lierop, J.

    2014-11-01

    We present an in-depth examination of the composition and magnetism of cobalt (Co2 +)-doped iron-oxide nanoparticles encapsulated in Pyrococcus furiosus ferritin shells. We show that the Co2 + dopant ions were incorporated into the γ -Fe2O3/Fe3O4 core, with small paramagnetic-like clusters likely residing on the surface of the nanoparticle that were observed for all cobalt-doped samples. In addition, element-specific characterization using Mössbauer spectroscopy and polarized x-ray absorption indicated that Co2 + was incorporated exclusively into the octahedral B sites of the spinel-oxide nanoparticle. Comparable superparamagnetic blocking temperatures, coercivities, and effective anisotropies were obtained for 7%, 10%, and 12% cobalt-doped nanoparticles, and were only slightly reduced for 3% cobalt, indicating a strong effect of cobalt incorporation, with a lesser effect of cobalt content. Due to the regular particle size and separation that result from the use of the ferritin cage, a comparison of the effects of interparticle interactions on the disordered assembly of nanoparticles was also obtained that indicated significantly different behaviors between undoped and cobalt-doped nanoparticles.

  13. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  14. Design of Janus nanoparticles with atomic precision: tungsten-doped gold nanostructures.

    PubMed

    Sun, Qiang; Wang, Qian; Jena, Puru; Kawazoe, Yoshiyuki

    2008-02-01

    Janus nanoparticles, characterized by their anisotropic structure and interactions, have added a new dimension to nanoscience because of their potential applications in biomedicine, sensors, catalysis, and assembled materials. The technological applications of these nanoparticles, however, have been limited as the current chemical, physical, and biosynthetic methods lack sufficient size and shape selectivity. We report a technique where gold clusters doped with tungsten can serve as a seed that facilitates the natural growth of anisotropic nanostructures whose size and shape can be controlled with atomic precision. Using ab initio simulated annealing and molecular dynamics calculations on AunW (n > 12) clusters, we discovered that the W@Au12 cage cluster forms a very stable core with the remaining Au atoms forming patchy structures on its surface. The anisotropic geometry gives rise to anisotropies in vibrational spectra, charge distributions, electronic structures, and reactivity, thus making it useful to have dual functionalities. In particular, the core-patch structure is shown to possess a hydrophilic head and a hydrophobic tail. The W@Au12 clusters can also be used as building blocks of a nanoring with novel properties.

  15. Magnetic properties of manganites doped with gallium, iron, and chromium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troyanchuk, I. O., E-mail: troyan@physics.by; Bushinsky, M. V.; Tereshko, N. V.

    The magnetization and the crystal structure of the La{sub 0.7}Sr{sub 0.3}Mn{sub 1−x}M{sub x}O{sub 3} (M = Ga, Fe, Cr; x ≤ 0.3) systems are studied. The substitution of gallium and chromium is shown to cause phase separation into antiferromagnetic and ferromagnetic phases, whereas the substitution of iron for manganese stabilizes a spinglass state. The ferromagnetic phase in the chromium-substituted compositions is much more stable than that in the case of substitution by iron ions or diamagnetic gallium ions. The magnetic properties are explained in terms of the model of superexchange interactions and the localization of most e{sub g} electrons ofmore » manganese. The stabilization of ferromagnetism in the chromium-substituted compositions can be caused by the fact that the positive and negative contributions to the superexchange interaction between Mn{sup 3+} and Cr{sup 3+} ions are close to each other but the antiferromagnetic part of the exchange is predominant. Moreover, some chromium ions are in the tetravalent state, which maintains the optimum doping conditions.« less

  16. Formation of nanostructures in Eu3+ doped glass-ceramics: an XAS study.

    PubMed

    Pellicer-Porres, J; Segura, A; Martínez-Criado, G; Rodríguez-Mendoza, U R; Lavín, V

    2013-01-16

    We describe the results of x-ray absorption experiments carried out to deduce structural and chemical information in Eu(3+) doped, transparent, oxyfluoride glass and nanostructured glass-ceramic samples. The spectra were measured at the Pb and Eu-L(III) edges. The Eu environment in the glass samples is observed to be similar to that of EuF(3). Complementary x-ray diffraction experiments show that thermal annealing creates β-PbF(2) type nanocrystals. X-ray absorption indicates that Eu ions act as seeds in the nanocrystal formation. There is evidence of interstitial fluorine atoms around Eu ions as well as Eu dimers. X-ray absorption at the Pb-L(III) edge shows that after the thermal treatment most lead atoms form a PbO amorphous phase and that only 10% of the lead atoms remain available to form β-PbF(2) type nanocrystals. Both x-ray diffraction and absorption point to a high Eu content in the nanocrystals. Our study suggests new approaches to the oxyfluoride glass-ceramic synthesis in order to further improve their properties.

  17. Chemically Modified Metal Oxide Nanostructure for Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Wang, Gongming

    Hydrogen gas is chemical fuel with high energy density, and represents a clean, renewable and carbon-free burning fuel, which has the potential to solve the more and more urgent energy crisis in today's society. Inspired by natural photosynthesis, artificial photosynthesis to generate hydrogen energy has attracted a lot of attentions in the field of chemistry, physics and material. Photoelectrochemical water splitting based on semiconductors represents a green and low cost method to generate hydrogen fuel. However, the current overall efficiency of solar to hydrogen is quite low, due to some intrinsic limitations such as bandgap, diffusion distance, carrier lifetime and photostability of semiconductors. Although nanostructured semiconductors can improve their photoelectrochemical water splitting performance to some extent, by increasing electrolyte accessible area and shortening minority carrier diffusion distance, nanostructure engineering cannot change their intrinsic electronic properties. Recent development in chemically modified nanostructures such as surface catalyst decoration, element doping, plasmonic modification and interfacial hetero-junction design have led to significant advancement in the photoelectrochemical water splitting, by improving surface reaction kinetics and charge separation, transportation and collection efficiency. In this thesis, I will give a detailed discussion on the chemically modified metal oxide nanostructures for photoelectrocemical hydrogen generation, with a focus on the element doping, hydrogen treatment and catalyst modification. I have demonstrated nitrogen doping on ZnO and Ti doping on hematite can improve their photoelectrochemical performance. In addition, we found hydrogen treatment is a general and effective method to improve the photocatalytic performance, by increasing their carrier desities. Hydrogen treatment has been demonstrated on TiO2, WO3 and BiVO4. In the end, we also used electrochemical catalyt to modify

  18. Enhancement of ethanol oxidation at Pt and PtRu nanoparticles dispersed over hybrid zirconia-rhodium supports

    NASA Astrophysics Data System (ADS)

    Rutkowska, Iwona A.; Koster, Margaretta D.; Blanchard, Gary J.; Kulesza, Pawel J.

    2014-12-01

    A catalytic material for electrooxidation of ethanol that utilizes PtRu nanoparticles dispersed over thin films of rhodium-free and rhodium-containing zirconia (ZrO2) supports is described here. The enhancement of electrocatalytic activity (particularly in the potential range as low as 0.25-0.5 V vs. RHE), that has been achieved by dispersing PtRu nanoparticles (loading, 100 μg cm-2) over the hybrid Rh-ZrO2 support composed of nanostructured zirconia and metallic rhodium particles, is clearly evident from comparison of the respective voltammetric and chronoamperometric current densities recorded at room temperature (22 °C) in 0.5 mol dm-3 H2SO4 containing 0.5 mol dm-3 ethanol. Porous ZrO2 nanostructures, that provide a large population of hydroxyl groups in acidic medium in the vicinity of PtRu sites, are expected to facilitate the ruthenium-induced removal of passivating CO adsorbates from platinum, as is apparent from the diagnostic experiments with a small organic molecule such as methanol. Although Rh itself does not show directly any activity toward ethanol oxidation, the metal is expected to facilitate C-C bond splitting in C2H5OH. It has also been found during parallel voltammetric and chronoamperometric measurements that the hybrid Rh-ZrO2 support increases activity of the platinum component itself toward ethanol oxidation in the low potential range.

  19. Effects of surface nanostructuring and impurity doping on ultrafast carrier dynamics of silicon photovoltaic cells: a pump-probe study

    NASA Astrophysics Data System (ADS)

    Chen, Tianyu; Nam, Yoon-Ho; Wang, Xinke; Han, Peng; Sun, Wenfeng; Feng, Shengfei; Ye, Jiasheng; Song, Jae-Won; Lee, Jung-Ho; Zhang, Chao; Zhang, Yan

    2018-01-01

    We present femtosecond optical pump-terahertz probe studies on the ultrafast dynamical processes of photo-generated charge carriers in silicon photovoltaic cells with various nanostructured surfaces and doping densities. The pump-probe measurements provide direct insight on the lifetime of photo-generated carriers, frequency-dependent complex dielectric response along with photoconductivity of silicon photovoltaic cells excited by optical pump pulses. A lifetime of photo-generated carriers of tens of nanosecond is identified from the time-dependent pump-induced attenuation of the terahertz transmission. In addition, we find a large value of the imaginary part of the dielectric function and of the real part of the photoconductivity in silicon photovoltaic cells with micron length nanowires. We attribute these findings to the result of defect-enhanced electron-photon interactions. Moreover, doping densities of phosphorous impurities in silicon photovoltaic cells are also quantified using the Drude-Smith model with our measured frequency-dependent complex photoconductivities.

  20. Anomalous luminescence phenomena of indium-doped ZnO nanostructures grown on Si substrates by the hydrothermal method

    PubMed Central

    2012-01-01

    In recent years, zinc oxide (ZnO) has become one of the most popular research materials due to its unique properties and various applications. ZnO is an intrinsic semiconductor, with a wide bandgap (3.37 eV) and large exciton binding energy (60 meV) making it suitable for many optical applications. In this experiment, the simple hydrothermal method is used to grow indium-doped ZnO nanostructures on a silicon wafer, which are then annealed at different temperatures (400°C to 1,000°C) in an abundant oxygen atmosphere. This study discusses the surface structure and optical characteristic of ZnO nanomaterials. The structure of the ZnO nanostructures is analyzed by X-ray diffraction, the superficial state by scanning electron microscopy, and the optical measurements which are carried out using the temperature-dependent photoluminescence (PL) spectra. In this study, we discuss the broad peak energy of the yellow-orange emission which shows tendency towards a blueshift with the temperature increase in the PL spectra. This differs from other common semiconductors which have an increase in their peak energy of deep-level emission along with measurement temperature. PMID:22647253

  1. Structural, magnetic and luminescent characteristics of Pr3+-doped ZrO2 powders synthesized by a sol-gel method

    NASA Astrophysics Data System (ADS)

    Isasi-Marín, J.; Pérez-Estébanez, M.; Díaz-Guerra, C.; Castillo, J. F.; Correcher, V.; Cuervo-Rodríguez, M. R.

    2009-04-01

    The structural, magnetic and luminescence properties of praseodymium-doped zirconia powders of compositions Pr0.03Zr0.97O2 and Pr0.05Zr0.95O2 synthesized by a sol-gel process have been investigated. X-ray diffraction patterns indicate that these materials crystallize in a tetragonal fluorite-type structure. Scanning electron microscopy shows that the powders exhibit an agglomerated microcrystalline structure and the grain size may be in the order of 5-20 µm. The study of the magnetic properties of these doped metal oxides indicates a Curie-Weiss behaviour in the temperature range (100-300) K that allow us to estimate an effective magnetic moment of 3.51 μB, which indicates the presence of Pr3+ in the grown samples. Cathodoluminescence spectra recorded at temperatures between 85 and 295 K show emission peaks that can be attributed to transitions between different states within the 4f2 configuration of Pr3+ ions incorporated in the zirconia crystal lattice. Thermoluminescence measured at temperatures ranging from 373 to 773 K and at 550 nm wavelength show an intense and broad peak around 653 K for the Pr-doped zirconia which is not observed in the undoped material.

  2. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    PubMed

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  3. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (rv25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of r-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. The giantmore » magnetoresistance (GMR) effect,1,2 where an antiferromagnetic (AFM) exchange coupling exists between two ferromagnetic (FM) layers separated by a certain type of magnetic or non-magnetic spacer,3 has significant potential for application in the magnetic recording industry. Soon after the discovery of the GMR, the magnetic properties of multilayer systems (FeCr) became a subject of intensive study. The application of bulk iron-chromium (Fe-Cr) alloys has been of great interest, as these alloys exhibit favorable prop- erties including corrosion resistance, high strength, hardness, low oxidation rate, and strength retention at elevated temper- ature. However, the structural and magnetic properties of Cr-doped Fe nanoclusters (NCs) have not been investigated in-depth. Of all NCs, Fe-based clusters have unique magnetic properties as well as favorable catalytic characteristics in reactivity, selectivity, and durability.4 The incorporation of dopant of varied type and concentration in Fe can modify its chemical ordering, thereby optimizing its electrical, optical, and magnetic properties and opening up many new applications. The substitution of an Fe atom (1.24 A°) by a Cr atom (1.25 A° ) can easily modify the magnetic properties, since (i) the curie temperature (Tc ) of Fe is 1043 K, while Cr is an itinerant AFM with a bulk Neel temperature TN =311 K, and

  4. Influence of nano-structured alumina coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements.

    PubMed

    Lee, Jung-Jin; Choi, Jung-Yun; Seo, Jae-Min

    2017-04-01

    The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength ( P <.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. Groups treated with the nanostructured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.

  5. Synthesis of zirconia monoliths for chromatographic separations.

    PubMed

    Randon, Jérôme; Huguet, Samuel; Piram, Anne; Puy, Guillaume; Demesmay, Claire; Rocca, Jean-Louis

    2006-03-17

    The aim of this work is to join the advantages of two different kinds of stationary phases: monolithic columns and zirconia-based supports. On the one hand, silica monolithic columns allow a higher efficiency with a lower back-pressure than traditional packed columns. On the other hand, chromatographic stationary phases based on zirconia have a higher thermal and chemical stability and specific surface properties. Combining these advantages, a zirconia monolith with a macroporous framework could be a real improvement in separation sciences. Two main strategies can be used in order to obtain a zirconia surface on a monolithic skeleton: coating or direct synthesis. The coverage by a zirconia layer of the surface of a silica-based monolith can be performed using the chemical properties of the silanol surface groups. We realized this coverage using zirconium alkoxide and we further grafted n-dodecyl groups using phosphate derivatives. Any loss of efficiency was observed and fast separations have been achieved. The main advance reported in this paper is related to the preparation of zirconia monoliths by a sol-gel process starting from zirconium alkoxide. The synthesis parameters (hydrolysis ratio, porogen type, precursor concentration, drying step, etc.) were defined in order to produce a macroporous zirconia monoliths usable in separation techniques. We produced various homogeneous structures: zirconia rod 2 cm long with a diameter of 2.3 mm, and zirconia monolith inside fused silica capillaries with a 75 microm I.D. These monoliths have a skeleton size of 2 microm and have an average through pore size of 6 microm. Several separations have been reported.

  6. CAD/CAM ZIRCONIA VS. SLIP-CAST GLASS-INFILTRATED ALUMINA/ZIRCONIA ALL-CERAMIC CROWNS: 2-YEAR RESULTS OF A RANDOMIZED CONTROLLED CLINICAL TRIAL

    PubMed Central

    Çehreli, Murat Cavit; Kökat, Ali Murat; Akça, Kivanç

    2009-01-01

    The aim of this randomized controlled clinical trial was to compare the early clinical outcome of slip-cast glass-infiltrated Alumina/Zirconia and CAD/CAM Zirconia all-ceramic crowns. A total of 30 InCeram® Zirconia and Cercon® Zirconia crowns were fabricated and cemented with a glass ionomer cement in 20 patients. At baseline, 6-month, 1-year, and 2-year recall appointments, Californian Dental Association (CDA) quality evaluation system was used to evaluate the prosthetic replacements, and plaque and gingival index scores were used to explore the periodontal outcome of the treatments. No clinical sign of marginal discoloration, persistent pain and secondary caries was detected in any of the restorations. All InCeram® Zirconia crowns survived during the 2-year period, although one nonvital tooth experienced root fracture coupled with the fracture of the veneering porcelain of the restoration. One Cercon® Zirconia restoration fractured and was replaced. According to the CDA criteria, marginal integrity was rated excellent for InCeram® Zirconia (73%) and Cercon® Zirconia (80%) restorations, respectively. Slight color mismatch rate was higher for InCeram® Zirconia restorations (66%) than Cercon® Zirconia (26%) restorations. Plaque and gingival index scores were mostly zero and almost constant over time. Time-dependent changes in plaque and gingival index scores within and between groups were statistically similar (p>0.05). This clinical study demonstrates that single-tooth InCeram® Zirconia and Cercon® Zirconia crowns have comparable early clinical outcome, both seem as acceptable treatment modalities, and most importantly, all-ceramic alumina crowns strengthened by 25% zirconia can sufficiently withstand functional load in the posterior zone. PMID:19148406

  7. Enhanced degradation performances of plate-like micro/nanostructured zero valent iron to DDT.

    PubMed

    Kang, Shenghong; Liu, Shengwen; Wang, Huimin; Cai, Weiping

    2016-04-15

    Micro/nanostructured zero valent iron (MNZVI) is successfully mass-synthesized by ball-milling the industrially-reduced iron powders. The as-prepared MNZVI is plate-like in morphology with about 2-5μm in planar size and 35-55nm in thickness, and ∼16m(2)/g in specific surface area. Such plate-like MNZVI has demonstrated much higher degradation performances to DDT [or 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in the aqueous solution than the commercial ZVI powders under acidic conditions. The MNZVI-induced DDT degradation is also much faster than the previously reported results. The time-dependent DDT removal amount can be described by the pseudo first-order kinetic model. Further experiments have shown that more than 50% of DDT can be mineralized in 20min and the rest is dechlorinated to DDX (the products with less chlorine). It has been revealed that the DDT degradation could be attributed to the acid assisted ZVI-induced mineralization and dechlorination. The mineralization process is dominant during the initial stage within 20min, and the dechlorination is the main reaction in the anaphase of the degradation. This work not only deepens understanding of DDT degradation but also could provide a highly efficient material for the practical treatment of the DDT in a real environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Synthesis, Characterization and Reactivity of Nanostructured Zero-Valent Iron Particles for Degradation of Azo Dyes

    NASA Astrophysics Data System (ADS)

    Mikhailov, Ivan; Levina, Vera; Leybo, Denis; Masov, Vsevolod; Tagirov, Marat; Kuznetsov, Denis

    Nanostructured zero-valent iron (NSZVI) particles were synthesized by the method of ferric ion reduction with sodium borohydride with subsequent drying and passivation at room temperature in technical grade nitrogen. The obtained sample was characterized by means of X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering studies. The prepared NSZVI particles represent 100-200nm aggregates, which consist of 20-30nm iron nanoparticles in zero-valent oxidation state covered by thin oxide shell. The reactivity of the NSZVI sample, as the removal efficiency of refractory azo dyes, was investigated in this study. Two azo dye compounds, namely, orange G and methyl orange, are commonly detected in waste water of textile production. Experimental variables such as NSZVI dosage, initial dye concentration and solution pH were investigated. The kinetic rates of degradation of both dyes by NSZVI increased with the decrease of solution pH from 10 to 3 and with the increase of NSZVI dosage, but decreased with the increase of initial dye concentration. The removal efficiencies achieved for both orange G and methyl orange were higher than 90% after 80min of treatment.

  9. Synthesis and characterization of Copper/Cobalt/Copper/Iron nanostructurated films with magnetoresistive properties

    NASA Astrophysics Data System (ADS)

    Ciupinǎ, Victor; Prioteasa, Iulian; Ilie, Daniela; Manu, Radu; Petrǎşescu, Lucian; Tutun, Ştefan Gabriel; Dincǎ, Paul; MustaÅ£ǎ, Ion; Lungu, Cristian Petricǎ; Jepu, IonuÅ£; Vasile, Eugeniu; Nicolescu, Virginia; Vladoiu, Rodica

    2017-02-01

    Copper/Cobalt/Copper/Iron thin films were synthesized in order to obtain nanostructured materials with special magnetoresistive properties. The multilayer films were deposited on silicon substrates. In this respect we used Thermionic Vacuum Arc Discharge Method (TVA). The benefit of this deposition technique is the ability to have a controlled range of thicknesses starting from few nanometers to hundreds of nanometers. The purity of the thin films was insured by a high vacuum pressure and a lack of any kind of buffer gas inside the coating chamber. The morphology and structure of the thin films were analyzed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Techniques and Energy Dispersive X-ray Spectroscopy (EDXS). Magnetoresistive measurement results depict that thin films possess Giant Magneto-Resistance Effect (GMR). Magneto-Optic-Kerr Effect (MOKE) studies were performed to characterize the magnetic properties of these thin films.

  10. A review of engineered zirconia surfaces in biomedical applications

    PubMed Central

    Yin, Ling; Nakanishi, Yoshitaka; Alao, Abdur-Rasheed; Song, Xiao-Fei; Abduo, Jaafar; Zhang, Yu

    2017-01-01

    Zirconia is widely used for load-bearing functional structures in medicine and dentistry. The quality of engineered zirconia surfaces determines not only the fracture and fatigue behaviour but also the low temperature degradation (ageing sensitivity), bacterial colonization and bonding strength of zirconia devices. This paper reviews the current manufacturing techniques for fabrication of zirconia surfaces in biomedical applications, particularly, in tooth and joint replacements, and influences of the zirconia surface quality on their functional behaviours. It discusses emerging manufacturing techniques and challenges for fabrication of zirconia surfaces in biomedical applications. PMID:29130030

  11. Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

    NASA Astrophysics Data System (ADS)

    Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.

    2018-03-01

    Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.

  12. Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

    NASA Astrophysics Data System (ADS)

    Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.

    2018-06-01

    Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.

  13. Adsorption of Arsenic on Multiwall Carbon Nanotube–Zirconia Nanohybrid for Potential Drinking Water Purification

    PubMed Central

    AddoNtim, Susana; Mitra, Somenath

    2012-01-01

    The adsorptive removal of arsenic from water using a multiwall carbon nanotube-zirconia nanohybrid (MWCNT-ZrO2) is presented. The MWCNT-ZrO2 with 4.85% zirconia was effective in meeting the drinking water standard levels of 10 μg L−1. The absorption capacity of the composite were 2000 μg g−1 and 5000 μg g−1 for As (III) and As (V) respectively, which were significantly higher than those reported previously for iron oxide coated MWCNTs. The adsorption of As (V) on MWCNT-ZrO2 was faster than that of As (III), and a pseudo-second order rate equation effectively described the uptake kinetics. The adsorption isotherms for As (III) and As (V) fitted both the Langmuir and Freundlich models. A major advantage of the MWCNT-ZrO2 was that the adsorption capacity was not a function of pH. PMID:22424815

  14. Innovations in bonding to zirconia-based materials: Part I.

    PubMed

    Aboushelib, Moustafa N; Matinlinna, Jukka P; Salameh, Ziad; Ounsi, Hani

    2008-09-01

    Establishing a reliable bond to zirconia-based materials has proven to be difficult which is the major limitation against fabricating adhesive zirconia restorations. This bond could be improved using novel selective infiltration etching conditioning in combination with engineered zirconia primers. Aim of the work was to evaluate resin-to-zirconia bond strength using selective infiltration etching and novel silane-based zirconia primers. Zirconia discs (Procera Zirconia) received selective infiltration etching surface treatment followed by coating with either of five especially engineered experimental zirconia primers. Pre-aged resin-composite discs (Tetric Ivo Ceram) were bonded to the treated surface using an MDP-containing resin-composite (Panavia F 2.0). The bilayered specimens were cut into microbars and the microtensile bond strength (MTBS) was evaluated. 'As-sintered' zirconia discs served as a control (alpha=0.05). The broken microbars were examined using a scanning electron microscope (SEM). The combination of selective infiltration etching with experimental zirconia primers significantly improved (F=3805, P<0.0001) the MTBS values (41+/-5.8 MPa) compared to the 'as-sintered' surface using the same primers which demonstrated spontaneous failure and very low bond strength values (2.6+/-3.1 MPa). SEM analysis revealed that selective infiltration etching surface treatment resulted in a nano-retentive surface where the zirconia primers were able to penetrate and interlock which explained the higher MTBS values observed for the treated specimens.

  15. Oxidation Induced Doping of Nanoparticles Revealed by in Situ X-ray Absorption Studies.

    PubMed

    Kwon, Soon Gu; Chattopadhyay, Soma; Koo, Bonil; Dos Santos Claro, Paula Cecilia; Shibata, Tomohiro; Requejo, Félix G; Giovanetti, Lisandro J; Liu, Yuzi; Johnson, Christopher; Prakapenka, Vitali; Lee, Byeongdu; Shevchenko, Elena V

    2016-06-08

    Doping is a well-known approach to modulate the electronic and optical properties of nanoparticles (NPs). However, doping at nanoscale is still very challenging, and the reasons for that are not well understood. We studied the formation and doping process of iron and iron oxide NPs in real time by in situ synchrotron X-ray absorption spectroscopy. Our study revealed that the mass flow of the iron triggered by oxidation is responsible for the internalization of the dopant (molybdenum) adsorbed at the surface of the host iron NPs. The oxidation induced doping allows controlling the doping levels by varying the amount of dopant precursor. Our in situ studies also revealed that the dopant precursor substantially changes the reaction kinetics of formation of iron and iron oxide NPs. Thus, in the presence of dopant precursor we observed significantly faster decomposition rate of iron precursors and substantially higher stability of iron NPs against oxidation. The same doping mechanism and higher stability of host metal NPs against oxidation was observed for cobalt-based systems. Since the internalization of the adsorbed dopant at the surface of the host NPs is driven by the mass transport of the host, this mechanism can be potentially applied to introduce dopants into different oxidized forms of metal and metal alloy NPs providing the extra degree of compositional control in material design.

  16. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Soumendu, E-mail: soumendu@bose.res.in; Baral, Sayan; Mookerjee, Abhijit

    2015-08-28

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO){sub 24} nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO){sub 24} nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The presentmore » study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.« less

  17. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations

    NASA Astrophysics Data System (ADS)

    Datta, Soumendu; Kaphle, Gopi Chandra; Baral, Sayan; Mookerjee, Abhijit

    2015-08-01

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO)24 nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO)24 nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.

  18. Manipulating transmission and reflection properties of a photonic crystal doped with quantum dot nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solookinejad, G.; Panahi, M.; Sangachin, E. A.

    The transmission and reflection properties of incident light in a defect dielectric structure is studied theoretically. The defect structure consists of donor and acceptor quantum dot nanostructures embedded in a photonic crystal. It is shown that the transmission and reflection properties of incident light can be controlled by adjusting the corresponding parameters of the system. The role of dipole–dipole interaction is considered as a new parameter in our calculations. It is noted that the features of transmission and reflection curves can be adjusted in the presence of dipole–dipole interaction. It is found that the absorption of weak probe light canmore » be converted to the probe amplification in the presence of dipole–dipole interaction. Moreover, the group velocity of transmitted and reflected probe light is discussed in detail in the absence and presence of dipole–dipole interaction. Our proposed model can be used as a new all-optical devices based on photonic materials doped with nanoparticles.« less

  19. Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition

    DOE PAGES

    Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng; ...

    2015-04-02

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less

  20. Plasmonic Three-Dimensional Transparent Conductor Based on Al-Doped Zinc Oxide-Coated Nanostructured Glass Using Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng

    Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less

  1. Sonochemical Synthesis of Zinc Oxide Nanostructures for Sensing and Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Vabbina, Phani Kiran

    Semiconductor nanostructures have attracted considerable research interest due to their unique physical and chemical properties at nanoscale which open new frontiers for applications in electronics and sensing. Zinc oxide nanostructures with a wide range of applications, especially in optoelectronic devices and bio sensing, have been the focus of research over the past few decades. However ZnO nanostructures have failed to penetrate the market as they were expected to, a few years ago. The two main reasons widely recognized as bottleneck for ZnO nanostructures are (1) Synthesis technique which is fast, economical, and environmentally benign which would allow the growth on arbitrary substrates and (2) Difficulty in producing stable p-type doping. The main objective of this research work is to address these two bottlenecks and find a solution that is inexpensive, environmentally benign and CMOS compatible. To achieve this, we developed a Sonochemical method to synthesize 1D ZnO Nanorods, core-shell nanorods, 2D nanowalls and nanoflakes on arbitrary substrates which is a rapid, inexpensive, CMOS compatible and environmentally benign method and allows us to grow ZnO nanostructures on any arbitrary substrate at ambient conditions while most other popular methods used are either very slow or involve extreme conditions such as high temperatures and low pressure. A stable, reproducible p-type doping in ZnO is one of the most sought out application in the field of optoelectronics. Here in this project, we doped ZnO nanostructures using sonochemical method to achieve a stable and reproducible doping in ZnO. We have fabricated a homogeneous ZnO radial p-n junction by growing a p-type shell around an n-type core in a controlled way using the sonochemical synthesis method to realize ZnO homogeneous core-shell radial p-n junction for UV detection. ZnO has a wide range of applications from sensing to energy harvesting. In this work, we demonstrate the successful fabrication of an

  2. Effects of Laser Treatment on the Bond Strength of Differently Sintered Zirconia Ceramics.

    PubMed

    Dede, Doğu Ömür; Yenisey, Murat; Rona, Nergiz; Öngöz Dede, Figen

    2016-07-01

    The purpose of this study was to investigate the effects of carbon dioxide (CO2) and Erbium-doped yttrium aluminum garnet (Er:YAG) laser irradiations on the shear bond strength (SBS) of differently sintered zirconia ceramics to resin cement. Eighty zirconia specimens were prepared, sintered in two different periods (short = Ss, long = Ls), and divided into four treatment groups (n = 10 each). These groups were (a) untreated (control), (b) Er:YAG laser irradiated with 6 W power for 5 sec, (c) CO2 laser with 2 W power for 10 sec, (d) CO2 laser with 4 W power for 10 sec. Scanning electron microscope (SEM) images were recorded for each of the eight groups. Eighty composite resin discs (3 × 3 mm) were fabricated and cemented with an adhesive resin cement to ceramic specimens. The SBS test was performed after specimens were stored in water for 24 h by an universal testing machine at a crosshead speed of 1 mm/min. Data were statistically analyzed with two way analysis of variance (ANOVA) and Tukey honest significant difference (HSD) test (α = 0.05). According to the ANOVA, the sintering time, surface treatments and their interaction were statistically significant (p < 0.05). Although each of the laser-irradiated groups were significantly higher than the control groups, there was no statistically significant difference among them (p > 0.05). Variation in sintering time from 2.5 to 5.0 h may have influenced the SBS of Yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics. Although CO2 and Er:YAG laser irradiation techniques may increase the SBS values of both tested zirconia ceramics, they are recommended for clinicians as an alternative pretreatment method.

  3. 3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogen-doped carbon nanotubes for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    He, Shuijian; Hou, Haoqing; Chen, Wei

    2015-04-01

    3D porous and self-supported carbon hybrids are promising electrode materials for supercapacitor application attributed to their prominent properties such as binder-free electrode fabrication process, excellent electric conductivity and high power density etc. We present here a facile chemical vapor deposition method to fabricate a novel 3D flexible carbon hybrid nanostructure by growing a monolayer of nitrogen-doped carbon nanotubes on the skeleton of carbon foam (N-CNTs/CF) with Fe nanoparticle as catalyst. With such 3D porous, flexible and ultralight carbon nanostructure as binder-free electrode material, large surface area is available and fast ionic transport is facilitated. Moreover, the carbon-based network can provide excellent electronic conductivity. The electrochemical studies demonstrate that the supercapacitor constructed from the N-CNTs/CF hybrid exhibit high power density of 69.3 kW kg-1 and good stability with capacitance retention ration above 95% after cycled at 50 A g-1 for 5000 cycles. Therefore, the prepared porous N-CNTs/CF nanostructure is expected to be a type of excellent electrode material for electrical double layer capacitors.

  4. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  5. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  6. Iron doped fibrous-structured silica nanospheres as efficient catalyst for catalytic ozonation of sulfamethazine.

    PubMed

    Bai, Zhiyong; Wang, Jianlong; Yang, Qi

    2018-04-01

    Sulfonamide antibiotics are ubiquitous pollutants in aquatic environments due to their large production and extensive application. In this paper, the iron doped fibrous-structured silica (KCC-1) nanospheres (Fe-KCC-1) was prepared, characterized, and applied as a catalyst for catalytic ozonation of sulfamethazine (SMT). The effects of ozone dosage, catalyst dosage, and initial concentration of SMT were examined. The experimental results showed that Fe-KCC-1 had large surface area (464.56 m2 g -1 ) and iron particles were well dispersed on the catalyst. The catalyst had high catalytic performance especially for the mineralization of SMT, with mineralization ratio of about 40% in a wide pH range. With addition of Fe-KCC-1, the ozone utilization increased nearly two times than single ozonation. The enhancement of SMT degradation was mainly due to the surface reaction, and the increased mineralization of SMT was due to radical mechanism. Fe-KCC-1 was an efficient catalyst for SMT degradation in catalytic ozonation system.

  7. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhang, Zhi-Ping; Luo, Ming; Yu, Xiang; Han, Yu; Wei, Hong-Ping; Cui, Zong-Qiang; Zhang, Xian-En

    2011-12-01

    Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging.Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr11132

  8. Nanostructured hematite for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Ling, Yichuan

    Solar water splitting is an environmentally friendly reaction of producing hydrogen gas. Since Honda and Fujishima first demonstrated solar water splitting in 1972 by using semiconductor titanium dioxide (TiO2) as photoanode in a photoelectrochemical (PEC) cell, extensive efforts have been invested into improving the solar-to-hydrogen (STH) conversion efficiency and lower the production cost of photoelectrochemical devices. In the last few years, hematite (alpha-Fe2O3) nanostructures have been extensively studied as photoanodes for PEC water splitting. Although nanostructured hematite can improve its photoelectrochemical water splitting performance to some extent, by increasing active sites for water oxidation and shortening photogenerated hole path length to semiconductor/electrolyte interface, the photoactivity of pristine hematite nanostructures is still limited by a number of factors, such as poor electrical conductivities and slow oxygen evolution reaction kinetics. Previous studies have shown that tin (Sn) as an n-type dopant can substantially enhance the photoactivity of hematite photoanodes by modifying their optical and electrical properties. In this thesis, I will first demonstrate an unintentional Sn-doping method via high temperature annealing of hematite nanowires grown on fluorine-doped tin oxide (FTO) substrate to enhance the donor density. In addition to introducing extrinsic dopants into semiconductors, the carrier densities of hematite can also be enhanced by creating intrinsic defects. Oxygen vacancies function as shallow donors for a number of hematite. In this regard, I have investigated the influence of oxygen content on thermal decomposition of FeOOH to induce oxygen vacancies in hematite. In the end, I have studied low temperature activation of hematite nanostructures.

  9. Zirconia in dental implantology: A review

    PubMed Central

    Apratim, Abhishek; Eachempati, Prashanti; Krishnappa Salian, Kiran Kumar; Singh, Vijendra; Chhabra, Saurabh; Shah, Sanket

    2015-01-01

    Background: Titanium has been the most popular material of choice for dental implantology over the past few decades. Its properties have been found to be most suitable for the success of implant treatment. But recently, zirconia is slowly emerging as one of the materials which might replace the gold standard of dental implant, i.e., titanium. Materials and Methods: Literature was searched to retrieve information about zirconia dental implant and studies were critically analyzed. PubMed database was searched for information about zirconia dental implant regarding mechanical properties, osseointegration, surface roughness, biocompatibility, and soft tissue health around it. The literature search was limited to English language articles published from 1975 to 2015. Results: A total of 45 papers met the inclusion criteria for this review, among the relevant search in the database. Conclusion: Literature search showed that some of the properties of zirconia seem to be suitable for making it an ideal dental implant, such as biocompatibility, osseointegration, favourable soft tissue response and aesthetics due to light transmission and its color. At the same time, some studies also point out its drawbacks. It was also found that most of the studies on zirconia dental implants are short-term studies and there is a need for more long-term clinical trials to prove that zirconia is worth enough to replace titanium as a biomaterial in dental implantology. PMID:26236672

  10. Confined Doping for Control of Transport Properties in Nanowires and Nanofilms

    NASA Astrophysics Data System (ADS)

    Zhong, Jianxin; Stocks, G. Malcolm

    2006-03-01

    Doping, an essential element for manipulation of electronic transport in traditional semiconductor industry, is widely expected to play important role as well in control of transport properties in nanostructures. However, traditional theory of electronic disorder predicts that doping in one-dimensional and two-dimensional systems leads to carrier localization, limiting practical applications due to poor carrier mobility. Here, a novel concept is proposed that offers the possibility to significantly increase carrier mobility by confining the distribution of dopants within a particular region [1]. Thus, the doped nanostructure becomes a coupled system comprising a doped subsystem and a perfect crystalline subsystem. We showed that carrier mobility in such a dopped nanowire or a nanofilm exhibits counterintuitive behavior in the regime of heavy doping. In particular, the larger the dopant concentration the higher the carrier mobility; we trace this transition to the existence of quasi-mobility-edges in the nanowires and mobility edges in nanofilms. *J.X. Zhong and G.M. Stocks, Nano Lett., in press, (2005)

  11. Light transmittance of zirconia as a function of thickness and microhardness of resin cements under different thicknesses of zirconia

    PubMed Central

    Egilmez, Ferhan; Ergun, Gulfem; Kaya, Bekir M.

    2013-01-01

    Objective: The objective of this study was to compare microhardness of resin cements under different thicknesses of zirconia and the light transmittance of zirconia as a function of thickness. Study design: A total of 126 disc-shaped specimens (2 mm in height and 5 mm in diameter) were prepared from dual-cured resin cements (RelyX Unicem, Panavia F and Clearfil SA cement). Photoactivation was performed by using quartz tungsten halogen and light emitting diode light curing units under different thicknesses of zirconia. Then the specimens (n=7/per group) were stored in dry conditions in total dark at 37°C for 24 h. The Vicker’s hardness test was performed on the resin cement layer with a microhardness tester. Statistical significance was determined using multifactorial analysis of variance (ANOVA) (alpha=.05). Light transmittance of different thicknesses of zirconia (0.3, 0.5 and 0.8 mm) was measured using a hand-held radiometer (Demetron, Kerr). Data were analyzed using one-way ANOVA test (alpha=.05). Results: ANOVA revealed that resin cement and light curing unit had significant effects on microhardness (p < 0.001). Additionally, greater zirconia thickness resulted in lower transmittance. There was no correlation between the amount of light transmitted and microhardness of dual-cured resin cements (r = 0.073, p = 0.295). Conclusion: Although different zirconia thicknesses might result in insufficient light transmission, dual-cured resin cements under zirconia restorations could have adequate microhardness. Key words:Zirconia, microhardness, light transmittance, resin cement. PMID:23385497

  12. Iron-Doped (La,Sr)MnO3 Manganites as Promising Mediators of Self-Controlled Magnetic Nanohyperthermia.

    PubMed

    Shlapa, Yulia; Kulyk, Mykola; Kalita, Viktor; Polek, Taras; Tovstolytkin, Alexandr; Greneche, Jean-Marc; Solopan, Sergii; Belous, Anatolii

    2016-12-01

    Fe-doped La0.77Sr0.23Mn1 - y Fe y O3 nanoparticles have been synthesized by sol-gel method, and ceramic samples based on them were sintered at 1613 K. Crystallographic and magnetic properties of obtained nanoparticles and ceramic samples have been studied. It has been established that cell volume for nanoparticles increases with growing of iron content, while this dependence displays an opposite trend in the case of ceramic samples. Mössbauer investigations have shown that in all samples, the oxidation state of iron is +3. According to magnetic studies, at room temperature, both nanoparticles and ceramic samples with y ≤ 0.06 display superparamagnetic properties and samples with y ≥ 0.08 are paramagnetic. Magnetic fluids based on La0.77Sr0.23Mn1 - y Fe y O3 nanoparticles and aqua solution of agarose have been prepared. It has been established that heating efficiency of nanoparticles under an alternating magnetic field decreases with growing of iron content.

  13. Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification.

    PubMed

    Ntim, Susana Addo; Mitra, Somenath

    2012-06-01

    The adsorptive removal of arsenic from water using a multiwall carbon nanotube-zirconia nanohybrid (MWCNT-ZrO(2)) is presented. The MWCNT-ZrO(2) with 4.85% zirconia was effective in meeting the drinking water standard levels of 10 μg L(-1). The absorption capacity of the composite were 2000 μg g(-1) and 5000 μg g(-1) for As(III) and As(V) respectively, which were significantly higher than those reported previously for iron oxide coated MWCNTs. The adsorption of As(V) on MWCNT-ZrO(2) was faster than that of As(III), and a pseudo-second order rate equation effectively described the uptake kinetics. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models. A major advantage of the MWCNT-ZrO(2) was that the adsorption capacity was not a function of pH. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Growth of hybrid carbon nanostructures on iron-decorated ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Mbuyisa, Puleng N.; Rigoni, Federica; Sangaletti, Luigi; Ponzoni, Stefano; Pagliara, Stefania; Goldoni, Andrea; Ndwandwe, Muzi; Cepek, Cinzia

    2016-04-01

    A novel carbon-based nanostructured material, which includes carbon nanotubes (CNTs), porous carbon, nanostructured ZnO and Fe nanoparticles, has been synthetized using catalytic chemical vapour deposition (CVD) of acetylene on vertically aligned ZnO nanorods (NRs). The deposition of Fe before the CVD process induces the presence of dense CNTs in addition to the variety of nanostructures already observed on the process done on the bare NRs, which range from amorphous graphitic carbon up to nanostructured dendritic carbon films, where the NRs are partially or completely etched. The combination of scanning electron microscopy and in situ photoemission spectroscopy indicate that Fe enhances the ZnO etching, and that the CNT synthesis is favoured by the reduced Fe mobility due to the strong interaction between Fe and the NRs, and to the presence of many defects, formed during the CVD process. Our results demonstrate that the resulting new hybrid shows a higher sensitivity to ammonia gas at ambient conditions (∼60 ppb) than the carbon nanostructures obtained without the aid of Fe, the bare ZnO NRs, or other one-dimensional carbon nanostructures, making this system of potential interest for environmental ammonia monitoring. Finally, in view of the possible application in nanoscale optoelectronics, the photoexcited carrier behaviour in these hybrid systems has been characterized by time-resolved reflectivity measurements.

  15. A highly efficient electrocatalyst for oxygen reduction reaction: phosphorus and nitrogen co-doped hierarchically ordered porous carbon derived from an iron-functionalized polymer

    NASA Astrophysics Data System (ADS)

    Deng, Chengwei; Zhong, Hexiang; Li, Xianfeng; Yao, Lan; Zhang, Huamin

    2016-01-01

    Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic electrolytes, thus making the catalyst promising for fuel cells. The correlations between the unique pore structure and the nitrogen and phosphorus configuration of the catalysts with high catalytic activity are thoroughly investigated.Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic

  16. Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia.

    PubMed

    Santos, R L P; Silva, F S; Nascimento, R M; Souza, J C M; Motta, F V; Carvalho, O; Henriques, B

    2016-07-01

    The purpose of this study was to evaluate the shear bond strength of veneering feldspathic porcelain to zirconia substrates modified by CNC-milling process or by coating zirconia with a composite interlayer. Four types of zirconia-porcelain interface configurations were tested: RZ - porcelain bonded to rough zirconia substrate (n=16); PZ - porcelain bonded to zirconia substrate with surface holes (n=16); RZI - application of a composite interlayer between the veneering porcelain and the rough zirconia substrate (n=16); PZI - application of a composite interlayer between the porcelain and the zirconia substrate treated by CNC-milling (n=16). The composite interlayer was composed of zirconia particles reinforced porcelain (30%, vol%). The mechanical properties of the ceramic composite have been determined. The shear bond strength test was performed at 0.5mm/min using a universal testing machine. The interfaces of fractured and untested specimens were examined by FEG-SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The one-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results (α=0.05). The shear bond strength of PZ (100±15MPa) and RZI (96±11MPa) specimens were higher than that recorded for RZ (control group) specimens (89±15MPa), although not significantly (p>0.05). The highest shear bond strength values were recorded for PZI specimens (138±19MPa), yielding a significant improvement of 55% relative to RZ specimens (p<0.05). This study shows that it is possible to highly enhance the zirconia-porcelain bond strength - even by ~55% - by combining surface holes in zirconia frameworks and the application of a proper ceramic composite interlayer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Route to the Smallest Doped Semiconductor: Mn(2+)-Doped (CdSe)13 Clusters.

    PubMed

    Yang, Jiwoong; Fainblat, Rachel; Kwon, Soon Gu; Muckel, Franziska; Yu, Jung Ho; Terlinden, Hendrik; Kim, Byung Hyo; Iavarone, Dino; Choi, Moon Kee; Kim, In Young; Park, Inchul; Hong, Hyo-Ki; Lee, Jihwa; Son, Jae Sung; Lee, Zonghoon; Kang, Kisuk; Hwang, Seong-Ju; Bacher, Gerd; Hyeon, Taeghwan

    2015-10-14

    Doping semiconductor nanocrystals with magnetic transition-metal ions has attracted fundamental interest to obtain a nanoscale dilute magnetic semiconductor, which has unique spin exchange interaction between magnetic spin and exciton. So far, the study on the doped semiconductor NCs has usually been conducted with NCs with larger than 2 nm because of synthetic challenges. Herein, we report the synthesis and characterization of Mn(2+)-doped (CdSe)13 clusters, the smallest doped semiconductors. In this study, single-sized doped clusters are produced in large scale. Despite their small size, these clusters have semiconductor band structure instead of that of molecules. Surprisingly, the clusters show multiple excitonic transitions with different magneto-optical activities, which can be attributed to the fine structure splitting. Magneto-optically active states exhibit giant Zeeman splittings up to elevated temperatures (128 K) with large g-factors of 81(±8) at 4 K. Our results present a new synthetic method for doped clusters and facilitate the understanding of doped semiconductor at the boundary of molecules and quantum nanostructure.

  18. Radiation damage in cubic ZrO 2 and yttria-stabilized zirconia from molecular dynamics simulations

    DOE PAGES

    Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.

    2014-11-20

    Here, we perform molecular dynamics simulation on cubic ZrO 2 and yttria-stabilized zirconia (YSZ) to elucidate defect cluster formation resulting from radiation damage, and evaluate the impact of Y-dopants. Interstitial clusters composed of split-interstitial building blocks, i.e., Zr-Zr or Y-Zr are formed. Moreover, oxygen vacancies control cation defect migration; in their presence, Zr interstitials aggregate to form split-interstitials whereas in their absence Zr interstitials remain immobile, as isolated single-interstitials. Y-doping prevents interstitial cluster formation due to sequestration of oxygen vacancies.

  19. In situ Ni-doping during cathodic electrodeposition of hematite for excellent photoelectrochemical performance of nanostructured nickel oxide-hematite p-n junction photoanode

    NASA Astrophysics Data System (ADS)

    Phuan, Yi Wen; Ibrahim, Elyas; Chong, Meng Nan; Zhu, Tao; Lee, Byeong-Kyu; Ocon, Joey D.; Chan, Eng Seng

    2017-01-01

    Nanostructured nickel oxide-hematite (NiO/α-Fe2O3) p-n junction photoanodes synthesized from in situ doping of nickel (Ni) during cathodic electrodeposition of hematite were successfully demonstrated. A postulation model was proposed to explain the fundamental mechanism of Ni2+ ions involved, and the eventual formation of NiO on the subsurface region of hematite that enhanced the potential photoelectrochemical water oxidation process. Through this study, it was found that the measured photocurrent densities of the Ni-doped hematite photoanodes were highly dependent on the concentrations of Ni dopant used. The optimum Ni dopant at 25 M% demonstrated an excellent photoelectrochemical performance of 7-folds enhancement as compared to bare hematite photoanode. This was attributed to the increased electron donor density through the p-n junction and thus lowering the energetic barrier for water oxidation activity at the optimum Ni dopant concentration. Concurrently, the in situ Ni-doping of hematite has also lowered the photogenerated charge carrier transfer resistance as measured using the electrochemical impedance spectroscopy. It is expected that the fundamental understanding gained through this study is helpful for the rational design and construction of highly efficient photoanodes for application in photoelectrochemical process.

  20. Novel fabrication method for zirconia restorations: bonding strength of machinable ceramic to zirconia with resin cements.

    PubMed

    Kuriyama, Soichi; Terui, Yuichi; Higuchi, Daisuke; Goto, Daisuke; Hotta, Yasuhiro; Manabe, Atsufumi; Miyazaki, Takashi

    2011-01-01

    A novel method was developed to fabricate all-ceramic restorations which comprised CAD/CAM-fabricated machinable ceramic bonded to CAD/CAM-fabricated zirconia framework using resin cement. The feasibility of this fabrication method was assessed in this study by investigating the bonding strength of a machinable ceramic to zirconia. A machinable ceramic was bonded to a zirconia plate using three kinds of resin cements: ResiCem (RE), Panavia (PA), and Multilink (ML). Conventional porcelain-fused-to-zirconia specimens were also prepared to serve as control. Shear bond strength test (SBT) and Schwickerath crack initiation test (SCT) were carried out. SBT revealed that PA (40.42 MPa) yielded a significantly higher bonding strength than RE (28.01 MPa) and ML (18.89 MPa). SCT revealed that the bonding strengths of test groups using resin cement were significantly higher than those of Control. Notably, the bonding strengths of RE and ML were above 25 MPa even after 10,000 times of thermal cycling -adequately meeting the ISO 9693 standard for metal-ceramic restorations. These results affirmed the feasibility of the novel fabrication method, in that a CAD/CAM-fabricated machinable ceramic is bonded to a CAD/CAM-fabricated zirconia framework using a resin cement.

  1. Soluble Supercapacitors: Large and Reversible Charge Storage in Colloidal Iron-Doped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Zhou, Dongming; Liu, Hongbin; Li, Xiaosong; Kittilstved, Kevin R; Gamelin, Daniel R

    2018-05-09

    Colloidal ZnO semiconductor nanocrystals have previously been shown to accumulate multiple delocalized conduction-band electrons under chemical, electrochemical, or photochemical reducing conditions, leading to emergent semimetallic characteristics such as quantum plasmon resonances and raising prospects for application in multielectron redox transformations. Here, we demonstrate a dramatic enhancement in the capacitance of colloidal ZnO nanocrystals through aliovalent Fe 3+ -doping. Very high areal and volumetric capacitances (33 μF cm -2 , 233 F cm -3 ) are achieved in Zn 0.99 Fe 0.01 O nanocrystals that rival those of the best supercapacitors used in commercial energy-storage devices. The redox properties of these nanocrystals are probed by potentiometric titration and optical spectroscopy. These data indicate an equilibrium between electron localization by Fe 3+ dopants and electron delocalization within the ZnO conduction band, allowing facile reversible charge storage and removal. As "soluble supercapacitors", colloidal iron-doped ZnO nanocrystals constitute a promising class of solution-processable electronic materials with large charge-storage capacity attractive for future energy-storage applications.

  2. Nanocompounds of iron and zinc: their potential in nutrition

    NASA Astrophysics Data System (ADS)

    Zimmermann, Michael B.; Hilty, Florentine M.

    2011-06-01

    Recent studies suggest nanostructured oxides and phosphates of Fe and atomically mixed Fe/Zn may be useful for nutritional applications. These compounds may have several advantages over existing fortificants, such as ferrous sulfate (FeSO4), NaFeEDTA and electrolytic iron. Because of their very low solubility and formation of soft agglomerates of micron size at neutral pH as well as their light native color, they tend to be less reactive in difficult-to-fortify foods and thus have superior sensory performance. At gastric pH the soft agglomerates break up and the Fe compounds rapidly and completely dissolve due to their very high surface area. This results in in vitro solubility and in vivo bioavailability comparable to FeSO4. Doping with Mg and/or Ca may increase solubility and improve sensory characteristics by lightening color. Feeding the nanostructured compounds at 150-400 µg Fe day-1 for 15 days to weanling rats in two studies did not induce measurable histological or biochemical adverse effects. No significant Fe was detected in the submucosa of the gastrointestinal tract or lymphatic tissues, suggesting that the nanosized Fe is absorbed through usual non-heme Fe absorption pathways. Thus, these novel compounds show promise as food fortificants or supplements.

  3. SrZnO nanostructures grown on templated <0001> Al2O3 substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Labis, Joselito P.; Alanazi, Anwar Q.; Albrithen, Hamad A.; El-Toni, Ahmed Mohamed; Hezam, Mahmoud; Elafifi, Hussein Elsayed; Abaza, Osama M.

    2017-09-01

    The parameters of pulsed laser deposition (PLD) have been optimized to design different nanostructures of Strontium-alloyed zinc oxide (SrZnO). In this work, SrZnO nanostructures are grown on <0001>Al2O3 substrates via two-step templating/seeding approach. In the temperature range between 300 - 750 oC and O2 background pressures between 0.01 and 10 Torr, the growth conditions have been tailored to grow unique pointed leaf-like- and pitted olive-like nanostructures. Prior to the growth of the nanostructures, a thin SrZnO layer that serves as seed layer/template is first deposited on the Al2O3 substrates at ˜300oC and background oxygen pressure of 10 mTorr. The optical properties of the nanostructures were examined by UV/Vis spectroscopy and photoluminescence (PL), while the structures/morphologies were examined by SEM, TEM, and XRD. The alloyed SrZnO nanostructures, grown by ablating ZnO targets with 5, 10, 25% SrO contents, have in common a single-crystal hexagonal nanostructure with (0002) preferential orientation and have shown remarkable changes in the morphological and optical properties of the materials. To date, this is the only reported work on optimization of laser ablation parameters to design novel SrZnO nanostructures in the 5-25% alloying range, as most related Sr-doped ZnO studies were done below 7% doping. Although the physical properties of ZnO are modified via Sr doping, the mechanism remains unclear. The PLD-grown SrZnO nanostructures were directly grown onto the Al2O3 substrates; thus making these nanomaterials very promising for potential applications in biosensors, love-wave filters, solar cells, and ultrasonic oscillators.

  4. B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yu, Peng; Zhao, Lu; Tian, Chungui; Zhao, Dongdong; Zhou, Wei; Yin, Jie; Wang, Ruihong; Fu, Honggang

    2014-06-01

    B,N-codoped carbon nanostructures (BNCS) can serve as alternative low-cost metal-free electrocatalysts for oxygen reduction reactions (ORR). However, the compensation effect between the p- (B atoms) and n-type (N atoms) dopants would make the covalent boron-nitride (BN) easily formed during the synthesis of BNCS, leading to a unsatisfactory ORR activity. Therefore, it has been challenging to develop facile and rapid synthetic strategies for highly active BNCS without forming the direct covalent BN. Here, a facile method is developed to prepare B and N isolate-doped graphitic nanosheets (BNGS) by using iron species for saving N element and simultaneous doping the B element from nitrogen-containing ion-exchanged resins (NR). The resulting BNGS exhibits much more onset potential (Eonset) compared with the B-doped graphitic carbon nanosheets (BGS), N-doped graphitic carbon nanosheets (NGS), as well as B,N-codoped disorder carbon (BNC). Moreover, the BNGS shows well methanol tolerance propery and excellent stability (a minimal loss of activity after 5,000 potential cycles) compared to that of commercial Pt/C catalyst. The goog performance for BNGS towards ORR is attributed to the synergistic effect between B and N, and the well electrons transport property of graphitic carbon in BNGS.

  5. Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.

    PubMed

    Wang, Zhen-Gang; Zhan, Pengfei; Ding, Baoquan

    2013-02-26

    Templated synthesis has been considered as an efficient approach to produce polyaniline (PANI) nanostructures. The features of DNA molecules enable a DNA template to be an intriguing template for fabrication of emeraldine PANI. In this work, we assembled HRP-mimicking DNAzyme with different artificial DNA nanostructures, aiming to manipulate the molecular structures and morphologies of PANI nanostructures through the controlled DNA self-assembly. UV-vis absorption spectra were used to investigate the molecular structures of PANI and monitor kinetic growth of PANI. It was found that PANI was well-doped at neutral pH and the redox behaviors of the resultant PANI were dependent on the charge density of the template, which was controlled by the template configurations. CD spectra indicated that the PANI threaded tightly around the helical DNA backbone, resulting in the right handedness of PANI. These reveal the formation of the emeraldine form of PANI that was doped by the DNA. The morphologies of the resultant PANI were studied by AFM and SEM. It was concluded from the imaging and spectroscopic kinetic results that PANI grew preferably from the DNAzyme sites and then expanded over the template to form 1D PANI nanostructures. The strategy of the DNAzyme-DNA template assembly brings several advantages in the synthesis of para-coupling PANI, including the region-selective growth of PANI, facilitating the formation of a para-coupling structure and facile regulation. We believe this study contributes significantly to the fabrication of doped PANI nanopatterns with controlled complexity, and the development of DNA nanotechnology.

  6. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  7. Metal oxide nanostructures and their gas sensing properties: a review.

    PubMed

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given.

  8. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review

    PubMed Central

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called “small size effect”, yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given. PMID:22736968

  9. Elimination of a Photovoltaic Induced Fast Instability in Photorefractive Iron-doped Lithium Niobate Crystals

    NASA Astrophysics Data System (ADS)

    Evans, D. R.; Saleh, M. A.; Allen, A. S.; Pottenger, T. P.; Bunning, T. J.; Guha, S.; Basun, S. A.; Cook, G.

    2002-03-01

    An instability on the order of 10 ns is observed while writing volume gratings in bulk crystals of iron-doped lithium niobate using contra-directional two-beam coupling along the c-axis. This instability is attributed to the quasi-breakdown of the uniform component of the photovoltaic field [1], which affects the uniform electric field formed inside the crystal causing a change in the refractive index through the electro-optic effect. A method to eliminate this instability by coating the z-surfaces of the crystal with a transparent conductive coating will be presented. [1] A. Krumins, Z. Chen, and T. Shiosaki, Opt. Comm. 117 (1995) 147-150.

  10. Contribution of tin in electrochemical properties of zinc antimonate nanostructures: An electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, M.; Balakumar, S.

    2018-04-01

    Tin (Sn) doped ZnSb2O6 nanostructures was synthesized by chemical precipitation method and was used as an electrode material for supercapacitors to explore its electrochemical stability and potentiality as energy storage materials. Their characteristic structural, morphological and compositional features were investigated through XRD, FESEM and XPS analysis. Results showed that the nanostructures have well ordered crystalline features with spherical particle morphology. As the size and morphology are the vital parameters in exhibiting better electrochemical properties, the prepared nanostructures exhibited a significant specific capacitance of 222 F/g at a current density of 0.5 A/g respectively. While charging and discharging for 1000 cycles, the capacitance retention was enhanced to 105.0% which depicts the stability and activeness of electrochemical sites present in the Sn doped ZnSb2O6 nanostructures even after cycling. Hence, the inclusion of Sn into ZnSb2O6 has contributed in improving the electrochemical properties thereby it represents itself as a potential electrode material for supercapacitors.

  11. Tuning the nanostructures and optical properties of undoped and N-doped ZnO by supercritical fluid treatment

    NASA Astrophysics Data System (ADS)

    Li, Yaping; Wang, Hui-Qiong; Chu, Tian-Jian; Li, Yu-Chiuan; Li, Xiaojun; Liao, Xiaxia; Wang, Xiaodan; Zhou, Hua; Kang, Junyong; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Zheng, Jin-Cheng

    2018-05-01

    Treatment of ZnO films in a supercritical fluid (SCF) has been reported to improve the performance of devices in which the treated ZnO films are incorporated; however, the mechanism of this improvement remains unclear. In this paper, we study the transformation of the surface morphologies and emission properties of ZnO films before and after SCF treatment, establishing the relationship between the treated and untreated structures and thereby enabling tuning of the catalytic or opto-electronic performance of ZnO films or ZnO-film-based devices. Both undoped and N-doped ZnO nanostructures generated by SCF treatment of films are investigated using techniques to characterize their surface morphology (scanning electron microscopy (SEM) and atomic force microscopy (AFM)) as well as room-temperature photoluminescence (RT-PL) spectroscopy. The water-mixed supercritical CO2 (W-SCCO2) technology was found to form nanostructures in ZnO films through a self-catalyzed process enabled by the Zn-rich conditions in the ZnO films. The W-SCCO2 was also found to promote the inhibition of defect luminescence by introducing -OH groups onto the films. Two models are proposed to explain the effects of the treatment with W-SCCO2. This work demonstrates that the W-SCCO2 technology can be used as an effective tool for the nanodesign and property enhancement of functional metal oxides.

  12. Application of gallium nitride nanostructures and nitrogen doped carbon spheres as supports for the hydrogenation of cinnamaldehyde.

    PubMed

    Kente, Thobeka; Dube, Sibongile M A; Coville, Neil J; Mhlanga, Sabelo D

    2013-07-01

    This paper reports on the synthesis and use of nanostructures of gallium nitride (GaN NSs) and nitrogen doped carbon spheres (NCSs) as support materials for the hydrogenation of cinnamaldehyde. This study provides the first investigation of GaN as a catalyst support in hydrogenation reactions. The GaN NSs were synthesized via chemical vapour deposition (CVD) in a double stage furnace (750 degrees C) while NCSs were made by CVD in a single stage furnace (950 degrees C) respectively. TEM analysis revealed that the GaN NSs were rod-like with average diameters of 200 nm, while the NCSs were solid with smoother surfaces, and with diameters of 450 nm. Pd nanoparticles (1 and 3% loadings) were uniformly dispersed on acid functionalized GaN NSs and NCS. The Pd nanoparticles had average diameters that were influenced by the type of support material used. The GaN NSs and NCSs were tested for the selective hydrogenation of cinnamaldehyde in isopropanol at 40 and 60 degrees C under atmospheric pressure. A comparative study of the activity of the nanostructured materials revealed that the order of catalyst activity was 3% Pd/GaN > 3% Pd/NCSs > 1% Pd/NCSs > 1% Pd/GaN. However, 100% selectivity to hydrocinnamaldehyde (HCALD) was obtained with 1% Pd/GaN at reasonable conversion rates.

  13. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasir, M. F., E-mail: babaibaik2002@yahoo.com; Zainol, M. N., E-mail: nizarzainol@yahoo.com; Hannas, M., E-mail: mhannas@gmail.com

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thinmore » films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 10{sup 3} Ωcm{sup −1}. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800 nm) and near infrared (NIR) (>800 nm) range but exhibit high absorption in the UV range.« less

  14. Dye-doped nanostructure polypyrrole film for electrochemically switching solid-phase microextraction of Ni(II) and ICP-OES analysis of waste water.

    PubMed

    Shamaeli, Ehsan; Alizadeh, Naader

    2012-01-01

    A nanostructure fiber based on conducting polypyrrole synthesized by an electrochemical method has been developed, and used for electrochemically switching solid-phase microextraction (ES-SPME). The ES-SPME was prepared by the doping of eriochrome blue in polypyrrole (PPy-ECB) and used for selectively extracting the Ni(II) cation in the presence of some transition and heavy metal ions. The cation-exchange behavior of electrochemically prepared polypyrrole on stainless-steel with and without eriochrome blue (ECB) dye was characterized using ICP-OES analysis. The effects of the scan rate for electrochemical synthesis, uptake and the release potential on the extraction behavior of the PPy-ECB conductive fiber were studied. Uptake and release time profiles show that the process of electrically switched cation exchange could be completed within 250 s. The results of the present study point concerning the possibility of developing a selective extraction process for Ni(II) from waste water was explored using such a nanostructured PPy-ECB film through an electrically switched cation exchange. 2012 © The Japan Society for Analytical Chemistry

  15. Arsenic transformation and adsorption by iron hydroxide/manganese dioxide doped straw activated carbon

    NASA Astrophysics Data System (ADS)

    Xiong, Ying; Tong, Qiang; Shan, Weijun; Xing, Zhiqiang; Wang, Yuejiao; Wen, Siqi; Lou, Zhenning

    2017-09-01

    Iron hydroxide/manganese dioxide doped straw activated carbon was synthesized for As(III) adsorption. The Fe-Mn-SAc adsorbent has two advantages, on the one hand, the straw active carbon has a large surface area (1360.99 m2 g-1) for FeOOH and MnO2 deposition, on the other hand, the manganese dioxide has oxidative property as a redox potential of (MnO2 + H+)/Mn2+, which could convert As(III) into As(V). Combined with the arsenic species after reacting with Fe-Mn-SAc, the As(III) transformation and adsorption mechanism was discussed. H2AsO4-oxidized from As(III) reacts with the Fe-Mn-SAc by electrostatic interaction, and unoxidized As(III) as H3AsO3 reacts with SAc and/or iron oxide surface by chelation effect. The adsorption was well-described by Langmuir isotherms model, and the adsorption capacity of As(III) was 75.82 mg g-1 at pH 3. Therefore, considering the straw as waste biomass material, the biosorbent (Fe-Mn-SAc) is promising to be exploited for applications in the treatment of industrial wastewaters containing a certain ratio of arsenic and germanium.

  16. [Influence on mechanical properties and microstructure of nano-zirconia toughened alumina ceramics with nano-zirconia content].

    PubMed

    Wang, Guang-Kui; Kang, Hong; Bao, Guang-Jie; Lv, Jin-Jun; Gao, Fei

    2006-10-01

    To investigate the mechanical properties and microstructure of nano -zirconia toughened alumina ceramics with variety of nano-zirconia content in centrifugal infiltrate casting processing of dental all-ceramic. Composite powder with different ethanol-water ratio, obtained serosity from ball milling and centrifugal infiltrate cast processing of green, then sintered at 1 450 degrees C for 8 h. The physical and mechanical properties of the sintered sample after milling and polishing were tested. Microstructures of the surface and fracture of the sintered sample were investigated by SEM. The experimental results showed that there had statistical significience (P < 0.01) on static three-point flexure strength and Vickers Hardness in three kinds of different nano-zirconia content sintered sample. Fracture toughness of 20% group was different from other two groups, while 10% group had not difference from 30% group (P < 0.05). The mechanical properties of this ceramic with 20% nano-zirconia was the best of the three, the static three-point flexure strength was (433 +/- 19) MPa and fracture toughness was (7.50 +/- 0.56) MPa x min 1/2. The intra/inter structure, fracture of intragranular and intergranular on the surface and fracture of sintered sample in microstrucre was also found. Intra/inter structure has strengthen toughness in ceramics. It has better toughness with 20% nano-zirconia, is suitable dental all-ceramic restoratives.

  17. Electrically induced fluorescence Fe3+ sensing behavior of nanostructured Tiron doped polypyrrole.

    PubMed

    Tavoli, Farnaz; Alizadeh, Naader

    2016-11-23

    Nanostructured polypyrrole (PPy) film doped with Tiron was electrodeposited from aqueous solution on the surface of transparent electrode and used for sensitive, selective and rapid electrically controlled fluorescence detection of Fe 3+ in aqueous media. The fluorescence intensity of PPy-Tiron film decreases linearly in the presence of Fe 3+ by applying negative potential over a concentration range from 5.0 × 10 -8 to 1.0 × 10 -6  mol L -1 , with a relatively fast response time of less than 30 s at pH 7.4. The detection is not affected by the coexistence of other competitive metal ions such as Al 3+ , Ce 3+ , Tl 3+ , La 3+ , Bi 3+ , Cr 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Cd 2+ , Hg 2+ , Pb 2+ , Na + , K + , Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ . The proposed electro-fluorescence sensor has a potential application to the determination of Fe 3+ in environmental and biological systems. The fluorescent thin film sensor was also used as a novel probe for Fe 3+ /Fe 2+ speciation in aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. High performance novel gadolinium doped ceria/yttria stabilized zirconia/nickel layered and hybrid thin film anodes for application in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Garcia-Garcia, F. J.; Beltrán, A. M.; Yubero, F.; González-Elipe, A. R.; Lambert, R. M.

    2017-09-01

    Magnetron sputtering under oblique angle deposition was used to produce Ni-containing ultra thin film anodes comprising alternating layers of gadolinium doped ceria (GDC) and yttria stabilized zirconia (YSZ) of either 200 nm or 1000 nm thickness. The evolution of film structure from initial deposition, through calcination and final reduction was examined by XRD, SEM, TEM and TOF-SIMS. After subsequent fuel cell usage, the porous columnar architecture of the two-component layered thin film anodes was maintained and their resistance to delamination from the underlying YSZ electrolyte was superior to that of corresponding single component Ni-YSZ and Ni-GDC thin films. Moreover, the fuel cell performance of the 200 nm layered anodes compared favorably with conventional commercially available thick anodes. The observed dependence of fuel cell performance on individual layer thicknesses prompted study of equivalent but more easily fabricated hybrid anodes consisting of simultaneously deposited Ni-GDC and Ni-YSZ, which procedure resulted in exceptionally intimate mixing and interaction of the components. The hybrids exhibited very unusual and favorable Isbnd V characteristics, along with exceptionally high power densities at high currents. Their discovery is the principal contribution of the present work.

  19. Doping in controlling the type of conductivity in bulk and nanostructured thermoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuks, D.; Komisarchik, G.; Kaller, M.

    2016-08-15

    Doping of materials for thermoelectric applications is widely used nowadays to control the type of conductivity. We report the results of ab-initio calculations aimed at developing the consistent scheme for determining the role of impurities that may change the type of conductivity in two attractive thermoelectric classes of materials. It is demonstrated that alloying of TiNiSn with Cu makes the material of n-type, and alloying with Fe leads to p-type conductivity. Similar calculations for PbTe with small amount of Na substituting for Pb leads to p-type conductivity, while Cl substituting for Te makes PbTe an n-type material. It is shownmore » also that for nano-grained materials the n-type conductivity should be observed. The effect of impurities segregating to the grain boundaries in nano-structured PbTe is also discussed. - Highlights: • Bulk and nano-grained TE materials were analyzed by DFT. • The electronic effects on both PbTe and TiNiSn were demonstrated. • The role of impurities on the conductivity type was analyzed. • Interfacial states in nano-grained PbTe affect the conductivity type.« less

  20. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, John J.

    1995-01-01

    Compositions consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  1. Cavitational synthesis of nanostructured inorganic materials for enhanced heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Krausz, Ivo Michael

    The synthesis of nanostructured inorganic materials by hydrodynamic cavitation processing was investigated. The goal of this work was to develop a general synthesis technique for nanostructured materials with a control over crystallite size in the 1--20 nm range. Materials with crystallite sizes in this range have shown enhanced catalytic activity compared to materials with larger crystallite sizes. Several supported and unsupported inorganic materials were studied to understand the effects of cavitation on crystallite size. Cavitation processing of calcium fluoride resulted in more spherical particles, attached to one another by melted necks. This work produced the first evidence of shock wave heating of nanostructured materials by hydrodynamic cavitation processing. Hydrodynamic cavitation synthesis of various catalytic support materials indicated that their phase composition and purity could be controlled by adjustment of the processing parameters. Zirconia/alumina supports synthesized using hydro-dynamic cavitation and calcined to 1368 K retained a high purity cubic zirconia phase, whereas classically prepared samples showed a phase transformation to monoclinic zirconia. Similarly, the synthesis of alumina resulted in materials with varying Bohmite and Bayerite contents as a function of the process parameters. High temperature calcination resulted in stable alumina supports with varying amounts of delta-, and theta-alumina. Synthesis studies of palladium and silver showed modest variations in crystallite size as a function of cavitation process parameters. Calcination resulted in larger grain materials, indicating a disappearance of intergrain boundaries. Based on these results, a new synthesis method was studied involving controlled agglomeration of small silver crystallites by hydrodynamic cavitation processing, followed by deposition on alumina. The optimal pH, concentration, and processing time for controlling the silver crystallite size in the cavitation

  2. Effects of cementation surface modifications on fracture resistance of zirconia.

    PubMed

    Srikanth, Ramanathan; Kosmac, Tomaz; Della Bona, Alvaro; Yin, Ling; Zhang, Yu

    2015-04-01

    To examine the effects of glass infiltration (GI) and alumina coating (AC) on the indentation flexural load and four-point bending strength of monolithic zirconia. Plate-shaped (12 mm × 12 mm × 1.0 mm or 1.5 or 2.0 mm) and bar-shaped (4 mm × 3 mm × 25 mm) monolithic zirconia specimens were fabricated. In addition to monolithic zirconia (group Z), zirconia monoliths were glass-infiltrated or alumina-coated on their tensile surfaces to form groups ZGI and ZAC, respectively. They were also glass-infiltrated on their upper surfaces, and glass-infiltrated or alumina-coated on their lower (tensile) surfaces to make groups ZGI2 and ZAC2, respectively. For comparison, porcelain-veneered zirconia (group PVZ) and monolithic lithium disilicate glass-ceramic (group LiDi) specimens were also fabricated. The plate-shaped specimens were cemented onto a restorative composite base for Hertzian indentation using a tungsten carbide spherical indenter with a radius of 3.2mm. Critical loads for indentation flexural fracture at the zirconia cementation surface were measured. Strengths of bar-shaped specimens were evaluated in four-point bending. Glass infiltration on zirconia tensile surfaces increased indentation flexural loads by 32% in Hertzian contact and flexural strength by 24% in four-point bending. Alumina coating showed no significant effect on resistance to flexural damage of zirconia. Monolithic zirconia outperformed porcelain-veneered zirconia and monolithic lithium disilicate glass-ceramics in terms of both indentation flexural load and flexural strength. While both alumina coating and glass infiltration can be used to effectively modify the cementation surface of zirconia, glass infiltration can further increase the flexural fracture resistance of zirconia. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Effects of cementation surface modifications on fracture resistance of zirconia

    PubMed Central

    Srikanth, Ramanathan; Kosmac, Tomaz; Bona, Alvaro Della; Yin, Ling; Zhang, Yu

    2015-01-01

    Objectives To examine the effects of glass infiltration (GI) and alumina coating (AC) on the indentation flexural load and four-point bending strength of monolithic zirconia. Methods Plate-shaped (12 mm × 12 mm × 1.0 mm or 1.5 mm or 2.0 mm) and bar-shaped (4 mm × 3 mm × 25 mm) monolithic zirconia specimens were fabricated. In addition to monolithic zirconia (group Z), zirconia monoliths were glass-infiltrated or alumina-coated on their tensile surfaces to form groups ZGI and ZAC, respectively. They were also glass-infiltrated on their upper surfaces, and glass-infiltrated or alumina-coated on their lower (tensile) surfaces to make groups ZGI2 and ZAC2, respectively. For comparison, porcelain-veneered zirconia (group PVZ) and monolithic lithium disilicate glass-ceramic (group LiDi) specimens were also fabricated. The plate-shaped specimens were cemented onto a restorative composite base for Hertzian indentation using a tungsten carbide spherical indenter with a radius of 3.2 mm. Critical loads for indentation flexural fracture at the zirconia cementation surface were measured. Strengths of bar-shaped specimens were evaluated in four-point bending. Results Glass infiltration on zirconia tensile surfaces increased indentation flexural loads by 32% in Hertzian contact and flexural strength by 24% in four-point bending. Alumina coating showed no significant effect on resistance to flexural damage of zirconia. Monolithic zirconia outperformed porcelain-veneered zirconia and monolithic lithium disilicate glass-ceramics in terms of both indentation flexural load and flexural strength. Significance While both alumina coating and glass infiltration can be used to effectively modify the cementation surface of zirconia, glass infiltration can further increase the flexural fracture resistance of zirconia. PMID:25687628

  4. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells.

    PubMed

    Li, Ke; Zhang, Zhi-Ping; Luo, Ming; Yu, Xiang; Han, Yu; Wei, Hong-Ping; Cui, Zong-Qiang; Zhang, Xian-En

    2012-01-07

    Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging α(v)β(3) integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging.

  5. [Effects of colorants on yttria stabilized tetragonal zirconia polycrystals powder].

    PubMed

    Wang, Bo; Chen, Jianfeng; Zhang, Yanchun; Wang, Ru

    2015-10-01

    To evaluate the effect of Fe2O3 and CeO2 as colorants on yttria stabilized tetragonal zirconia poly-crystals (Y-TZP) powder. The spray granulation slurry of colored zirconia was prepared with different concentrations of Fe2O3 (0.15%) and CeO2 (4%), which were added in Y-TZP. Zirconia powder was made by spray granulation. The powder specimens were divided into three groups: uncolored zirconia, Fe2O3 (0.15%) zirconia, and CeO2 (4%) zirconia. The particle morphologies of the powder specimens were measured with a laser particle size analyzer and an optical microscope. The differences in D50 among the three groups were statistically significant (P<0.05). Group Fe2O3 showed a significant difference from groups CeO2 and uncolored zirconia (P<0.05). Group uncolored zirconia showed no significant difference from group CeO2 (P>0.05). Mostly spherical powder was observed in the three groups. Fe2O3 as a colorant can affect particles, whereas CeO2 has no effect.

  6. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  7. Nanosilica coating for bonding improvements to zirconia.

    PubMed

    Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin

    2013-01-01

    Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution-gelatin (sol-gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water-mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol-gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol-gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol-gel technique represents a promising method for producing silica coatings on zirconia.

  8. Nanosilica coating for bonding improvements to zirconia

    PubMed Central

    Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin

    2013-01-01

    Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution–gelatin (sol–gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water–mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol–gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol–gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol–gel technique represents a promising method for producing silica coatings on zirconia. PMID:24179333

  9. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, J.J.

    1995-01-17

    Compositions are disclosed consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  10. Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance

    NASA Astrophysics Data System (ADS)

    Wang, Ziya; Wang, Fengping; Li, Yan; Hu, Jianlin; Lu, Yanzhen; Xu, Mei

    2016-03-01

    Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g-1 even under a high mass loading (~5 mg cm-2). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm-3) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g-1. The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices.Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g-1 even under a high mass loading (~5 mg cm-2). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm-3) and

  11. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ) Powder

    PubMed Central

    Barad, Chen; Shekel, Gal; Shandalov, Michael; Hayun, Hagay; Kimmel, Giora; Shamir, Dror; Gelbstein, Yaniv

    2017-01-01

    Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives. PMID:29258227

  12. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ) Powder.

    PubMed

    Barad, Chen; Shekel, Gal; Shandalov, Michael; Hayun, Hagay; Kimmel, Giora; Shamir, Dror; Gelbstein, Yaniv

    2017-12-18

    Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  13. Doping evolution of the anisotropic upper critical fields in the iron-based superconductor Ba 1-xK xFe 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanatar, Makariy A.; Liu, Yong; Jaroszynski, J.

    In-plane resistivity measurements as a function of temperature and magnetic field up to 35 T with precise orientation within the crystallographic ac plane were used to study the upper critical field H c2 of the hole-doped iron-based superconductor Ba 1–xK xFe 2As 2. Compositions of the samples studied spanned from under- doped x=0.17 (T c=12 K) and x=0.22 (T c=20 K), both in the coexistence range of stripe magnetism and superconductivity, through optimal doping x=0.39 (T c=38.4 K) and x=0.47 (T c=37.2 K), to overdoped x=0.65 (T c=22 K) and x=0.83 (T c=10 K). Here, we find notable doping asymmetrymore » of the shapes of the anisotropic H c2(T), suggesting the important role of paramagnetic limiting effects in the H∥a configuration in overdoped compositions and multiband effects in underdoped compositions.« less

  14. Doping evolution of the anisotropic upper critical fields in the iron-based superconductor Ba 1-xK xFe 2As 2

    DOE PAGES

    Tanatar, Makariy A.; Liu, Yong; Jaroszynski, J.; ...

    2017-11-14

    In-plane resistivity measurements as a function of temperature and magnetic field up to 35 T with precise orientation within the crystallographic ac plane were used to study the upper critical field H c2 of the hole-doped iron-based superconductor Ba 1–xK xFe 2As 2. Compositions of the samples studied spanned from under- doped x=0.17 (T c=12 K) and x=0.22 (T c=20 K), both in the coexistence range of stripe magnetism and superconductivity, through optimal doping x=0.39 (T c=38.4 K) and x=0.47 (T c=37.2 K), to overdoped x=0.65 (T c=22 K) and x=0.83 (T c=10 K). Here, we find notable doping asymmetrymore » of the shapes of the anisotropic H c2(T), suggesting the important role of paramagnetic limiting effects in the H∥a configuration in overdoped compositions and multiband effects in underdoped compositions.« less

  15. The performance of hematite nanostructures in different humidity levels

    NASA Astrophysics Data System (ADS)

    Ahmad, W. R. W.; Mamat, M. H.; Zoolfakar, A. S.; Khusaimi, Z.; Yusof, M. M.; Ismail, A. S.; Saidi, S. A.; Rusop, M.

    2018-05-01

    In this study, hematite (α-Fe2O3) nanostructure were prepared in Schott vials on fluorine-doped tin oxide (FTO) coated glass substrate using the sonicated immersion method in aqueous solution with ferric chloride FeCl3ṡ6H2O as a precursor and urea NH2-CONH2 as a stabilizer. The samples were characterized for different level of humidity conditions within range 40% to 90% RH. Based on the results obtained, the hematite nanostructure exhibited good optical properties and virtuous sensor response with high sensitivity. The fabricated hematite nanostructure has revealed a good potential for humidity sensor application based on the results obtained under different levels of humidity.

  16. Active catalysts of sonoelectrochemically prepared iron metal nanoparticles for the electroreduction of chloroacetates

    NASA Astrophysics Data System (ADS)

    Sáez, V.; González-García, J.; Marken, F.

    2010-01-01

    A new methodology for the sonoelectro-deposition and stripping of highly reactive iron at boron-doped diamond electrodes has been studied. In aqueous 1 M NH4F iron metal readily and reversibly electro-deposits onto boron-doped diamond electrodes. The effects of deposition potential, FeF63- concentration, deposition time, and mass transport are investigated and also the influence of power ultrasound (24 kHz, 8 Wcm-2). Scanning electron microscopy images of iron nanoparticles grown to typically 20-30 nm diameters are obtained. It is shown that a strongly and permanently adhering film of iron at boron-doped diamond can be formed and transferred into other solution environments. The catalytic reactivity of iron deposits at boron-doped diamond is investigated for the reductive dehalogenation of chloroacetate. The kinetically limited multi-electron reduction of trichloroacetate is dependent on the FeF63- deposition conditions and the solution composition. It is demonstrated that a stepwise iron-catalysed dechlorination via dichloroacetate and monochloroacetate to acetate is feasible. This sonoelectrochemical methodology offers a novel, clean and very versatile electro-dehalogenation methodology. The role of fluoride in the surface electrochemistry of iron deserves further attention.

  17. Overview of zirconia with respect to gas turbine applications

    NASA Technical Reports Server (NTRS)

    Cawley, J. D.

    1984-01-01

    Phase relationships and the mechanical properties of zirconia are examined as well as the thermal conductivity, deformation, diffusion, and chemical reactivity of this refractory material. Observations from the literature particular to plasma-sprayed material and implications for gas turbine engine applications are discussed. The literature review indicates that Mg-PSZ (partially stabilized zirconia) and Ca-PSZ are unsuitable for advanced gas turbine applications; a thorough characterization of the microstructure of plasma-sprayed zirconia is needed. Transformation-toughened zirconia may be suitable for use in monolithic components.

  18. Electrical conductivity enhancement in heterogeneously doped scandia-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Varanasi, Chakrapani; Juneja, Chetan; Chen, Christina; Kumar, Binod

    Composites of 6 mol% scandia-stabilized zirconia materials (6ScSZ) and nanosize Al 2O 3 powder (0-30 wt.%) were prepared and characterized for electrical conductivity by the ac impedance method at various temperatures ranging from 300 to 950 °C. All the composites characterized showed improved conductivity at higher temperatures compared to the undoped ScSZ. An average conductivity of 0.12 S cm -1 was measured at 850 °C for 6ScSZ + 30 wt.% Al 2O 3 composite samples, an increase in conductivity up to 20% compared to the undoped 6ScSZ specimen at this temperature. Microstructural evaluation using scanning electron microscopy revealed that the ScSZ grain size was relatively unchanged up to 10 wt.% of Al 2O 3 additions. However, the grain size was reduced in samples with higher (20 and 30 wt.%) additions of Al 2O 3. Small grain size, reduced quantity of the 6ScSZ material (only 70%), and improved conductivity makes these ScSZ + 30 wt.% Al 2O 3 composites very attractive as electrolyte materials in view of their collective mechanical and electrical properties and cost requirements. The observed increase in conductivity values with the additions of an insulating Al 2O 3 phase is explained in light of the space charge regions at the 6ScSZ-Al 2O 3 grain boundaries.

  19. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration.

    PubMed

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch

    2015-03-01

    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Nanowires, nanostructures and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2005-04-19

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  1. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  2. Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo

    2018-03-01

    The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.

  3. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaokai; Jood, Priyanka; Ohta, Michihiro

    2016-01-01

    In this work, we demonstrate the use of high performance nanostructured PbTe-based materials in high conversion efficiency thermoelectric modules. We fabricated the samples of PbTe-2% MgTe doped with 4% Na and PbTe doped with 0.2% PbI2 with high thermoelectric figure of merit (ZT) and sintered them with Co-Fe diffusion barriers for use as p- and n-type thermoelectric legs, respectively. Transmission electron microscopy of the PbTe legs reveals two shapes of nanostructures, disk-like and spherical. The reduction in lattice thermal conductivity through nanostructuring gives a ZT of similar to 1.8 at 810 K for p-type PbTe and similar to 1.4 atmore » 750 K for n-type PbTe. Nanostructured PbTe-based module and segmented-leg module using Bi2Te3 and nanostructured PbTe were fabricated and tested with hot-side temperatures up to 873 K in a vacuum. The maximum conversion efficiency of similar to 8.8% for a temperature difference (Delta T) of 570 K and B11% for a Delta T of 590 K have been demonstrated in the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module, respectively. Three-dimensional finite-element simulations predict that the maximum conversion efficiency of the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module reaches 12.2% for a Delta T of 570 K and 15.6% for a Delta T of 590 K respectively, which could be achieved if the electrical and thermal contact between the nanostructured PbTe legs and Cu interconnecting electrodes is further improved.« less

  4. Nanostructures based on alumina hydroxides inhibit tumor growth

    NASA Astrophysics Data System (ADS)

    Fomenko, A. N.; Korovin, M. S.

    2017-09-01

    Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less research attention has been payed to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with AlOOH nanoparticles.

  5. Nanostructured nonprecious metal catalysts for oxygen reduction reaction.

    PubMed

    Wu, Gang; Zelenay, Piotr

    2013-08-20

    Platinum-based catalysts represent a state of the art in the electrocatalysis of oxygen reduction reaction (ORR) from the point of view of their activity and durability in harnessing the chemical energy via direct electrochemical conversion. However, because platinum is both expensive and scarce, its widespread implementation in such clean energy applications is limited. Recent breakthroughs in the synthesis of high-performance nonprecious metal catalysts (NPMCs) make replacement of Pt in ORR electrocatalysts with earth-abundant elements, such as Fe, Co, N, and C, a realistic possibility. In this Account, we discuss how we can obtain highly promising M-N-C (M: Fe and/or Co) catalysts by simultaneously heat-treating precursors of nitrogen, carbon, and transition metals at 800-1000 °C. The activity and durability of resulting catalysts depend greatly on the selection of precursors and synthesis chemistry. In addition, they correlate quite well with the catalyst nanostructure. While chemists have presented no conclusive description of the active catalytic site for this class of NPMCs, they have developed a designed approach to making active and durable materials, focusing on the catalyst nanostructure. The approach consists of nitrogen doping, in situ carbon graphitization, and the usage of graphitic structures (possibly graphene and graphene oxides) as carbon precursors. Various forms of nitrogen, particularly pyridinic and quaternary, can act as n-type carbon dopants in the M-N-C catalysts, assisting in the formation of disordered carbon nanostructures and donating electrons to the carbon. The CNx structures are likely a crucial part of the ORR active site(s). Noteworthy, the ORR activity is not necessarily governed by the amount of nitrogen, but by how the nitrogen is incorporated into the nanostructures. Apart from the possibility of a direct participation in the active site, the transition metal often plays an important role in the in situ formation of various

  6. Power scaling of ultrafast laser inscribed waveguide lasers in chromium and iron doped zinc selenide.

    PubMed

    McDaniel, Sean A; Lancaster, Adam; Evans, Jonathan W; Kar, Ajoy K; Cook, Gary

    2016-02-22

    We report demonstration of Watt level waveguide lasers fabricated using Ultrafast Laser Inscription (ULI). The waveguides were fabricated in bulk chromium and iron doped zinc selenide crystals with a chirped pulse Yb fiber laser. The depressed cladding structure in Fe:ZnSe produced output powers of 1 W with a threshold of 50 mW and a slope efficiency of 58%, while a similar structure produced 5.1 W of output in Cr:ZnSe with a laser threshold of 350 mW and a slope efficiency of 41%. These results represent the current state-of-the-art for ULI waveguides in zinc based chalcogenides.

  7. N-doping of organic semiconductors by bis-metallosandwich compounds

    DOEpatents

    Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song

    2016-01-05

    The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.

  8. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.

    PubMed

    Saji, Viswanathan S; Song, Hyun-Kon

    2015-01-01

    Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.

  9. Sequestration of Ag(I) from aqueous solution as Ag(0) nanostructures by nanoscale zero valent iron (nZVI)

    NASA Astrophysics Data System (ADS)

    Zhang, Yalei; Yan, Jing; Dai, Chaomeng; Li, Yuting; Zhu, Yan; Zhou, Xuefei

    2015-11-01

    This study investigates the application of nanoparticle zero valent iron (nZVI) to sequester Ag(I) as Ag(0) nanostructures from aqueous solution. Batch experiments were performed with nZVI exposed to aqueous Ag(I) to investigate the effects of environmental parameters, including nZVI dose, temperature and pH. High temperature facilitates Ag(I) sequestration, and the rate constants are determined to be 0.02, 0.12, and 0.31 mg L/m2 at 30, 50, and 60 °C, respectively. Ag(I) sequestration was adversely affected by adding nitric acid to the solution due to significant acid washing, decreasing the available nZVI active sites. Characterization techniques including TEM, XRD, and HR-XPS revealed that nZVI is oxidized to lepidocrocite and magnetite/maghemite and confirmed the formation of nanocrystalline silver. HR-XPS analysis indicated that Ag2O forms rapidly as an intermediate due to Ag(I) adsorption onto the FeOOH layer. The Ag(0) nanostructures that are formed are fractal, spherical, and dendritic or rod-like, respectively, in morphology by FE-TEM images at different Ag/Fe mass ratios. A general reaction model for the interaction Ag(I) with nZVI is proposed. Our results suggest that nZVI is effective for Ag(I) removal.

  10. A facile one-step electrochemical strategy of doping iron, nitrogen, and fluorine into titania nanotube arrays with enhanced visible light photoactivity.

    PubMed

    Hua, Zulin; Dai, Zhangyan; Bai, Xue; Ye, Zhengfang; Gu, Haixin; Huang, Xin

    2015-08-15

    Highly ordered iron, nitrogen, and fluorine tri-doped TiO2 (Fe, (N, F)-TiO2) nanotube arrays were successfully synthesized by a facile one-step electrochemical method in an NH4F electrolyte containing Fe ions. The morphology, structure, composition, and photoelectrochemical property of the as-prepared nanotube arrays were characterized by various methods. The photoactivities of the samples were evaluated by the degradation of phenol in an aqueous solution under visible light. Tri-doped TiO2 showed higher photoactivities than undoped TiO2 under visible light. The optimum Fe(3+) doping amount at 0.005M exhibited the highest photoactivity and exceeded that of undoped TiO2 by a factor of 20 times under visible light. The formation of N 2p level near the valence band (VB) contributed to visible light absorption. Doping fluorine and appropriate Fe(3+) ions reduced the photogenerated electrons-holes recombination rate and enhanced visible light photoactivity. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results indicated the presence of synergistic effects in Fe, N, and F tri-doped TiO2, which enhanced visible light photoactivity. The Fe, (N, F)-TiO2 photocatalyst exhibited high stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive.

    PubMed

    Lee, Ji-Yeon; Ahn, Jaechan; An, Sang In; Park, Jeong-Won

    2018-02-01

    The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al 2 O 3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test ( p = 0.05). Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 ( p < 0.05). Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

  12. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive

    PubMed Central

    2018-01-01

    Objectives The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Materials and Methods Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al2O3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test (p = 0.05). Results Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 (p < 0.05). Conclusions Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used. PMID:29487838

  13. Nitrogen-Doped Three Dimensional Graphene for Electrochemical Sensing.

    PubMed

    Yan, Jing; Chen, Ruwen; Liang, Qionglin; Li, Jinghong

    2015-07-01

    The rational assembly and doping of graphene play an crucial role in the improvement of electrochemical performance for analytical applications. Covalent assembly of graphene into ordered hierarchical structure provides an interconnected three dimensional conductive network and large specific area beneficial to electrolyte transfer on the electrode surface. Chemical doping with heteroatom is a powerful tool to intrinsically modify the electronic properties of graphene due to the increased free charge-carrier densities. By incorporating covalent assembly and nitrogen doping strategy, a novel nitrogen doped three dimensional reduced graphene oxide nanostructure (3D-N-RGO) was developed with synergetic enhancement in electrochemical behaviors. The as prepared 3D-N-RGO was further applied for catechol detection by differential pulse voltammetry. It exhibits much higher electrocatalytic activity towards catechol with increased peak current and decreased potential difference between the oxidation and reduction peaks. Owing to the improved electro-chemical properties, the response of the electrochemical sensor varies linearly with the catechol concentrations ranging from 5 µM to 100 µM with a detection limit of 2 µM (S/N = 3). This work is promising to open new possibilities in the study of novel graphene nanostructure and promote its potential electrochemical applications.

  14. Synthesis of Sub-2 nm Iron-Doped NiSe2 Nanowires and Their Surface-Confined Oxidation for Oxygen Evolution Catalysis.

    PubMed

    Gu, Chao; Hu, Shaojin; Zheng, Xusheng; Gao, Min-Rui; Zheng, Ya-Rong; Shi, Lei; Gao, Qiang; Zheng, Xiao; Chu, Wangsheng; Yao, Hong-Bin; Zhu, Junfa; Yu, Shu-Hong

    2018-04-03

    Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition-metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub-2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft-template mediated colloidal synthesis of Fe-doped NiSe 2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1-dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm -2 in 0.1 m KOH, as well as remarkable long-term stability, representing one of the most efficient noble-metal-free catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.

    PubMed

    Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G

    2018-08-01

    In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.

  16. Oxygen separation from air using zirconia solid electrolyte membranes

    NASA Technical Reports Server (NTRS)

    Suitor, J. W.; Marner, W. J.; Schroeder, J. E.; Losey, R. W.; Ferrall, J. F.

    1988-01-01

    Air separation using a zirconia solid electrolyte membrane is a possible alternative source of oxygen. The process of zirconia oxygen separation is reviewed, and an oxygen plant concept using such separation is described. Potential cell designs, stack designs, and testing procedures are examined. Fabrication of the materials used in a zirconia module as well as distribution plate design and fabrication are examined.

  17. Nanostructured zinc oxide films synthesized by successive chemical solution deposition for gas sensor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupan, O.; Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816-2385; Chow, L.

    2009-01-08

    Nanostructured ZnO thin films have been deposited using a successive chemical solution deposition method. The structural, morphological, electrical and sensing properties of the films were studied for different concentrations of Al-dopant and were analyzed as a function of rapid photothermal processing temperatures. The films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron and micro-Raman spectroscopy. Electrical and gas sensitivity measurements were conducted as well. The average grain size is 240 and 224 A for undoped ZnO and Al-doped ZnO films, respectively. We demonstrate that rapid photothermal processing is an efficient method for improving themore » quality of nanostructured ZnO films. Nanostructured ZnO films doped with Al showed a higher sensitivity to carbon dioxide than undoped ZnO films. The correlations between material compositions, microstructures of the films and the properties of the gas sensors are discussed.« less

  18. On the magnetic anisotropy and nuclear relaxivity effects of Co and Ni doping in iron oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlando, T., E-mail: tomas.orlando@mpibpc.mpg.de; Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen 37077; Albino, M.

    2016-04-07

    We report a systematic experimental study of the evolution of the magnetic and relaxometric properties as a function of metal (Co, Ni) doping in iron oxide nanoparticles. A set of five samples, having the same size and ranging from stoichiometric cobalt ferrite (CoFe{sub 2}O{sub 4}) to stoichiometric nickel ferrite (NiFe{sub 2}O{sub 4}) with intermediate doping steps, was ad hoc synthesized. Using both DC and AC susceptibility measurements, the evolution of the magnetic anisotropy depending on the doping is qualitatively discussed. In particular, we observed that the height of the magnetic anisotropy barrier is directly proportional to the amount of Co,more » while the Ni has an opposite effect. By Nuclear Magnetic Resonance Dispersion (NMR-D) experiments, the experimental longitudinal r{sub 1} and transverse r{sub 2} relaxivity profiles were obtained, and the heuristic theory of Roch et al. was used to analyze the data of both r{sub 1} and, for the first time, r{sub 2}. While the experimental and fitting results obtained from r{sub 1} profiles were satisfying and confirmed the anisotropy trend, the model applied to r{sub 2} hardly explains the experimental findings.« less

  19. On the interfacial fracture of porcelain/zirconia and graded zirconia dental structures.

    PubMed

    Chai, Herzl; Lee, James J-W; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu

    2014-08-01

    Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their susceptibility to fracture remains a practical problem. The failure of PFZ prostheses often involves crack initiation and growth in the porcelain, which may be followed by fracture along the porcelain/zirconia (P/Z) interface. In this work, we characterized the process of fracture in two PFZ systems, as well as a newly developed graded glass-zirconia structure with emphases placed on resistance to interfacial cracking. Thin porcelain layers were fused onto Y-TZP plates with or without the presence of a glass binder. The specimens were loaded in a four-point-bending fixture with the thin porcelain veneer in tension, simulating the lower portion of the connectors and marginal areas of a fixed dental prosthesis (FDP) during occlusal loading. The evolution of damage was observed by a video camera. The fracture was characterized by unstable growth of cracks perpendicular to the P/Z interface (channel cracks) in the porcelain layer, which was followed by stable cracking along the P/Z interface. The interfacial fracture energy GC was determined by a finite-element analysis taking into account stress-shielding effects due to the presence of adjacent channel cracks. The resulting GC was considerably less than commonly reported values for similar systems. Fracture in the graded Y-TZP samples occurred via a single channel crack at a much greater stress than for PFZ. No delamination between the residual glass layer and graded zirconia occurred in any of the tests. Combined with its enhanced resistance to edge chipping and good esthetic quality, graded Y-TZP emerges as a viable material concept for dental restorations. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  20. Boron-based nanostructures: Synthesis, functionalization, and characterization

    NASA Astrophysics Data System (ADS)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any

  1. Photoconductivity in nanostructured sulfur-doped V2O5 thin films

    NASA Astrophysics Data System (ADS)

    Mousavi, M.; Yazdi, Sh. Tabatabai

    2016-03-01

    In this paper, S-doped vanadium oxide thin films with doping levels up to 40 at.% are prepared via spray pyrolysis method on glass substrates, and the effect of S-doping on the structural and photoconductivity related properties of β-V2O5 thin films is studied. The results show that most of the films have been grown in the tetragonal β-V2O5 phase structure with the preferred orientation along [200]. With increasing the doping level, the samples tend to be amorphous. The structure of the samples reveals to be nanobelt-shaped whose width decreases from nearly 100 nm to 40 nm with S concentration. The photoconductivity measurements show that by increasing the S-doping level, the photosensitivity increases, which is due to the prolonged electron’s lifetime as a result of enhanced defect states acting as trap levels.

  2. Hydrogen sensor based on Sm-doped SnO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gurpreet; Hastir, Anita; Singh, Ravi Chand, E-mail: ravichand.singh@gmail.com

    2016-05-23

    In this paper the effect of samarium doping on the structural and hydrogen gas sensing properties of SnO{sub 2} nanoparticles has been reported. X-ray Diffraction (XRD) results revealed tetragonal rutile structure of both undoped and Sm-doped SnO{sub 2} nanoparticles. It has been observed that doping with samarium led to reduction in crystallite size of SnO{sub 2} nanoparticles which was confirmed from XRD analysis. Shifting and broadening of Raman peaks in case of doped nanoparticles has been explained by well-known phonon confinement model. The optimum operable temperature of both the sensors was found to 400 °C and the sensor response towardsmore » hydrogen gas has been improved after doping with samarium which was attributed to increase in sensing sites for the gas adsorption.« less

  3. Dual Heteroatom-Doped Carbon Nanofoam-Wrapped Iron Monosulfide Nanoparticles: An Efficient Cathode Catalyst for Li-O2 Batteries.

    PubMed

    Ramakrishnan, Prakash; Shanmugam, Sangaraju; Kim, Jae Hyun

    2017-04-10

    Cost-effective dual heteroatom-doped 3D carbon nanofoam-wrapped FeS nanoparticles (NPs), FeS-C, act as efficient bifunctional catalysts for Li-O 2 batteries. This cathode exhibits a maximum deep discharge capacity of 14 777.5 mA h g -1 with a 98.1 % columbic efficiency at 0.1 mA cm -2 . The controlled capacity (500 mA h g -1 ) test of this cathode delivers a minimum polarization gap of 0.73 V at 0.1 mA cm -2 and is sustained for 100 cycles with an energy efficiency of approximately 64 % (1st cycle) and 52 % (100th cycle) at 0.3 mA cm -2 , under the potential window of 2.0-4.5 V. X-ray photoelectron spectroscopy reveals the substantial reversible formation and complete decomposition of Li 2 O 2 . The excellent recharging ability, high rate performance, and cycle stability of this catalyst is attributed to the synergistic effect of FeS catalytic behavior and textural properties of heteroatom-doped carbon nanostructures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optical properties of pre-colored dental monolithic zirconia ceramics.

    PubMed

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (P<0.001). The color differences between pre-colored monolithic zirconia and veneered zirconia or lithium disilicate glass ceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. SEM evaluation of human gingival fibroblasts growth onto CAD/CAM zirconia and veneering ceramic for zirconia

    PubMed Central

    Zizzari, Vincenzo; Borelli, Bruna; De Colli, Marianna; Tumedei, Margherita; Di Iorio, Donato; Zara, Susi; Sorrentino, Roberto; Cataldi, Amelia; Gherlone, Enrico Felice; Zarone, Fernando; Tetè, Stefano

    2013-01-01

    Summary Aim To evaluate the growth of Human Gingival Fibroblasts (HGFs) cultured onto sample discs of CAD/CAM zirconia and veneering ceramic for zirconia by means of Scanning Electron Microscope (SEM) analysis at different experimental times. Methods A total of 26 experimental discs, divided into 2 groups, were used: Group A) CAD/CAM zirconia (3Y-TZP) discs (n=13); Group B) veneering ceramic for zirconia discs (n=13). HGFs were obtained from human gingival biopsies, isolated and placed in culture plates. Subsequently, cells were seeded on experimental discs at 7,5×103/cm2 concentration and cultured for a total of 7 days. Discs were processed for SEM observation at 3h, 24h, 72h and 7 days. Results In Group A, after 3h, HGFs were adherent to the surface and showed a flattened profile. The disc surface covered by HGFs resulted to be wider in Group A than in Group B samples. At SEM observation, after 24h and 72h, differences in cell attachment were slightly noticeable between the groups, with an evident flattening of HGFs on both surfaces. All differences between Group A and group B became less significant after 7 days of culture in vitro. Conclusions SEM analysis of HGFs showed differences in terms of cell adhesion and proliferation, especially in the early hours of culture. Results showed a better adhesion and cell growth in Group A than in Group B, especially up to 72h in vitro. Differences decreased after 7 days, probably because of the rougher surface of CAD/CAM zirconia, promoting better cell adhesion, compared to the smoother surface of veneering ceramic. PMID:24611089

  6. Internal coating of zirconia restoration with silica-based ceramic improves bonding of resin cement to dental zirconia ceramic.

    PubMed

    Kitayama, Shuzo; Nikaido, Toru; Ikeda, Masaomi; Alireza, Sadr; Miura, Hiroyuki; Tagami, Junji

    2010-01-01

    Resin bonding to zirconia ceramic cannot be established by standard methods that are utilized for conventional silica-based dental ceramics. This study was aimed to examine the tensile bond strength of resin cement to zirconia ceramic using a new laboratory technique. Sixty-four zirconia ceramic specimens were air-abraded using Al2O3 particles and divided into two groups; the control group with no pretreatment (Control), and the group pretreated using the internal coating technique (INT), in which the surface of the zirconia specimens were thinly coated by fusing silica-based ceramic and air-abraded in the same manner. The specimens in each group were further divided into two subgroups according to the silane coupling agents applied; a mixture of dentin primer/silane coupling agent (Clearfil SE Bond Primer/Porcelain Bond Activator) or a newly developed single-component silane coupling agent (Clearfil Ceramic Primer). After bonding with dual-cured resin cement (Panavia F 2.0), they were stored in water for 24 h and half of them were additionally subjected to thermal cycling. The tensile bond strengths were tested using a universal testing machine. ANOVAs revealed significant influence of ceramic surface pretreatment (p<0.001), silane coupling agent (p<0.001) and thermal cycling (p<0.001); the INT coating technique significantly increased the bond strengths of resin cement to zirconia ceramic, whereas thermal cycling significantly decreased the bond strengths. The use of a single-component silane coupling agent demonstrated significantly higher bond strengths than that of a mixture of dentin primer/silane coupling agent. The internal coating of zirconia dental restorations with silica-based ceramic followed by silanization may be indicated in order to achieve better bonding for the clinical success.

  7. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Chen, Jinwei; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin

    2016-12-01

    This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe3C and Co3C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe3C, and Co3C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  8. Two and four photon absorption and nonlinear refraction in undoped, chromium doped and copper doped ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Sharma, Dimple; Malik, B. P.; Gaur, Arun

    2015-12-01

    The ZnS quantum dots (QDs) with Cr and Cu doping were synthesized by chemical co-precipitation method. The nanostructures of the prepared undoped and doped ZnS QDs were characterized by UV-vis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sizes of QDs were found to be within 3-5 nm range. The nonlinear parameters viz. Two photon absorption coefficient (β2), nonlinear refractive index (n2), third order nonlinear susceptibility (χ3) at wavelength 532 nm and Four photon absorption coefficient (β4) at wavelength 1064 nm have been calculated by Z-scan technique using nanosecond Nd:YAG laser in undoped, Cr doped and Cu doped ZnS QDs. Higher values of nonlinear parameters for doped ZnS infer that they are potential material for the development of photonics devices and sensor protection applications.

  9. Additive assisted hydrothermal synthesis, characterization and optical properties of one dimensional DyPO4:Ce3+ nanostructures

    NASA Astrophysics Data System (ADS)

    Khajuria, H.; Kumar, M.; Singh, R.; Ladol, J.; Nawaz Sheikh, H.

    2018-05-01

    One dimensional nanostructures of cerium doped dysprosium phosphate (DyPO4:Ce3+) were synthesized via hydrothermal route in the presence of different surfactants [sodium dodecyl sulfate (SDS), dodecyl sulfosuccinate (DSS), polyvinyl pyrollidone (PVP)] and solvent [ethylene glycol and water]. The prepared nanostructures were characterized by Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-VIS-NIR absorption spectrophotometer and photoluminescence (PL) studies. The PXRD and FTIR results indicate purity, good crystallinity and effective doping of Ce3+ in nanostructures. SEM and TEM micrographs display nanorods, nanowires and nanobundles like morphology of DyPO4:Ce3+. Energy-dispersive X-ray spectra (EDS) of DyPO4:Ce3+nanostructures confirm the presence of dopant. UV-VIS-NIR absorption spectra of prepared compounds are used to calculate band gap and explore their optical properties. Luminescent properties of DyPO4:Ce3+ was studied by using PL emission spectra. The effect of additives and solvents on the uniformity, morphology and optical properties of the nanostructures were studied in detail.

  10. An overview of zirconia ceramics: basic properties and clinical applications.

    PubMed

    Manicone, Paolo Francesco; Rossi Iommetti, Pierfrancesco; Raffaelli, Luca

    2007-11-01

    Zirconia (ZrO2) is a ceramic material with adequate mechanical properties for manufacturing of medical devices. Zirconia stabilized with Y2O3 has the best properties for these applications. When a stress occurs on a ZrO2 surface, a crystalline modification opposes the propagation of cracks. Compression resistance of ZrO2 is about 2000 MPa. Orthopedic research led to this material being proposed for the manufacture of hip head prostheses. Prior to this, zirconia biocompatibility had been studied in vivo; no adverse responses were reported following the insertion of ZrO2 samples into bone or muscle. In vitro experimentation showed absence of mutations and good viability of cells cultured on this material. Zirconia cores for fixed partial dentures (FPD) on anterior and posterior teeth and on implants are now available. Clinical evaluation of abutments and periodontal tissue must be performed prior to their use. Zirconia opacity is very useful in adverse clinical situations, for example, for masking of dischromic abutment teeth. Radiopacity can aid evaluation during radiographic controls. Zirconia frameworks are realized by using computer-aided design/manufacturing (CAD/CAM) technology. Cementation of Zr-ceramic restorations can be performed with adhesive luting. Mechanical properties of zirconium oxide FPDs have proved superior to those of other metal-free restorations. Clinical evaluations, which have been ongoing for 3 years, indicate a good success rate for zirconia FPDs. Zirconia implant abutments can also be used to improve the aesthetic outcome of implant-supported rehabilitations. Newly proposed zirconia implants seem to have good biological and mechanical properties; further studies are needed to validate their application.

  11. Structural, Optical, and Electronic Characterization of Fe-Doped Alumina Nanoparticles

    NASA Astrophysics Data System (ADS)

    Heiba, Zein K.; Mohamed, Mohamed Bakr; Wahba, Adel Maher; Imam, N. G.

    2018-01-01

    The effects of iron doping on the structural, optical, and electronic properties of doped alumina have been studied. Single-phase iron-doped alumina Al2- x Fe x O3 ( x = 0.00 to 0.30) nanoparticles were synthesized via citrate-precursor method. Formation of single-phase hexagonal corundum structure with no other separate phases was demonstrated by x-ray diffraction (XRD) analysis and Fourier-transform infrared spectroscopy. The effects of iron doping on the α-Al2O3 structural parameters, viz. atomic coordinates, lattice parameters, crystallite size, and microstrain, were estimated from XRD data by applying the Rietveld profile fitting method. Transmission electron microscopy further confirmed the nanosize nature of the prepared samples with size ranging from 12 nm to 83 nm. The electronic band structure was investigated using density functional theory calculations to explain the decrease in the energy gap of Al2- x Fe x O3 as the amount of Fe was increased. The colored emission peaks in the visible region (blue, red, violet) of the electromagnetic spectrum obtained for the Fe-doped α-Al2O3 nanoparticles suggest their potential application as ceramic nanopigments.

  12. Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)

    NASA Astrophysics Data System (ADS)

    Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.

    2018-01-01

    Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.

  13. Doping of wide-bandgap titanium-dioxide nanotubes: optical, electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Cerkovnik, Logan Jerome; Nagpal, Prashant

    2014-08-01

    Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications.Doping semiconductors is an important step for their technological application. While doping bulk semiconductors can be easily achieved, incorporating dopants in semiconductor nanostructures has proven difficult. Here, we report a facile synthesis method for doping titanium-dioxide (TiO2) nanotubes that was enabled by a new electrochemical cell design. A variety of optical, electronic and magnetic dopants were incorporated into the hollow nanotubes, and from detailed studies it is shown that the doping level can be easily tuned from low to heavily-doped semiconductors. Using desired dopants - electronic (p- or n-doped), optical (ultraviolet bandgap to infrared absorption in co-doped nanotubes), and magnetic (from paramagnetic to ferromagnetic) properties can be tailored, and these technologically important nanotubes can be useful for a variety of applications in photovoltaics, display technologies, photocatalysis, and spintronic applications. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr02417f

  14. On the adsorption/reaction of acetone on pure and sulfate-modified zirconias.

    PubMed

    Crocellà, Valentina; Cerrato, Giuseppina; Morterra, Claudio

    2013-08-28

    In situ FTIR spectroscopy was employed to investigate some aspects of the ambient temperature (actually, IR-beam temperature) adsorption of acetone on various pure and sulfate-doped zirconia specimens. Acetone uptake yields, on all examined systems and to a variable extent, different types of specific molecular adsorption, depending on the kind/population of available surface sites: relatively weak H-bonding interaction(s) with surface hydroxyls, medium-strong coordinative interaction with Lewis acidic sites, and strong H-bonding interaction with Brønsted acidic centres. Moreover acetone, readily and abundantly adsorbed in molecular form, is able to undergo the aldol condensation reaction (yielding, as the main reaction product, adsorbed mesityl oxide) only if the adsorbing material possesses some specific surface features. The occurrence/non-occurrence of the acetone self-condensation reaction is discussed, and leads to conclusions concerning the sites that catalyze the condensation reaction that do not agree with either of two conflicting interpretations present in the literature of acetone uptake/reaction on, mainly, zeolitic systems. In particular, what turns out to be actually necessary for the acetone aldol condensation reaction to occur on the examined zirconia systems is the presence of coordinatively unsaturated O(2-) surface sites of basicity sufficient to lead to the extraction of a proton from one of the CH3 groups of adsorbed acetone.

  15. The role of cobalt doping on magnetic and optical properties of indium oxide nanostructured thin film prepared by sol–gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baqiah, H.; Ibrahim, N.B., E-mail: baayah@ukm.my; Halim, S.A.

    2015-03-15

    Highlights: • Cobalt doped indium oxide thin films have been prepared by a sol–gel method. • The films have a thickness less than 100 nm and grain size less than 10 nm. • The lattice parameters and grain size of films decrease as Co content increase. • The optical band gap of films increases as the grain size decrease. • The films' magnetic behaviour is sensitive to ratio of oxygen defects per Co ions. - Abstract: The effect of Co doping concentration, (x = 0.025–0.2), in In{sub 2−x}Co{sub x}O{sub 3} thin film was investigated by X-rays diffraction (XRD), transmission electronmore » microscopy, X-ray photoelectron spectroscopy (XPS), Ultraviolet visible spectrophotometer (UV–vis) and vibrating sample magnetometer (VSM). All films were prepared by sol–gel technique followed by spin coating process. The XRD and XPS measurements indicate that Co{sup +2} has been successfully substituted in In{sup +3} site. The TEM measurement shows nanostructure morphology of the films. The doping of Co in indium oxide resulted in a decrease in the lattice parameters and grain size while the band gap increased with increasing Co concentration. Further, by comparing VSM and XPS results, the magnetic behaviour of the films were found to be sensitive to Co concentrations, oxygen vacancies and ratio of oxygen defects to Co concentrations. The magnetic behaviour of the prepared films was explained using bound magnetic polaron (BMP) model.« less

  16. Shear bond strength between resin cement and colored zirconia made with metal chlorides.

    PubMed

    Kim, Ga-Hyun; Park, Sang-Won; Lee, Kwangmin; Oh, Gye-Jeong; Lim, Hyun-Pil

    2015-06-01

    Although the application of zirconia in esthetic prostheses has increased, the shear bond strength (SBS) between colored zirconia and resin cement has not been investigated. The purpose of this study was to compare the SBS between resin cement and colored zirconia made with metal chlorides. Sixty-four zirconia specimens were divided into 2 groups: one in which the specimens were bonded with resin cement, including 4-META (4-methacryloxyethyl trimellitic anhydride), and one in which the specimens were bonded with resin cement (SEcure, Sun Medical) after being processed with zirconia primer (Zirconia Liner), including 4-META. Each group was then divided into 4 subgroups depending on the coloring liquid. The subgroups were noncolored (control), commercial coloring liquid VITA In-Ceram 2000 YZ LL1, aqueous chromium chloride solution 0.1 wt%, and aqueous molybdenum chloride solution 0.1 wt%. Composite resin cylinders (Filtek Z250, 3M ESPE) were fabricated and bonded to the surface of the zirconia specimen with resin cement (SEcure). All specimens were stored in 37°C distilled water for 24 hours, and the SBS was measured with a universal testing machine. All data were analyzed statistically with 2-way ANOVA and tested post hoc with the Tukey test (α=.05). Significant differences were observed among the SBS values of the colored zirconia depending on the coloring liquid (P<.001) and whether they were processed with zirconia primer (P<.001). The SBS between colored zirconia and resin cement was significantly higher than that of noncolored zirconia and resin cement in groups processed with zirconia primer (P<.05). Colored zirconia immersed in aqueous molybdenum chloride solution showed a significantly higher SBS. Coloring liquid enhanced the SBS between resin cement and zirconia processed with zirconia primer. In particular, colored zirconia immersed in aqueous molybdenum chloride solution showed the highest SBS. Copyright © 2015 Editorial Council for the Journal of

  17. Chemical interaction mechanism of 10-MDP with zirconia

    PubMed Central

    Nagaoka, Noriyuki; Yoshihara, Kumiko; Feitosa, Victor Pinheiro; Tamada, Yoshiyuki; Irie, Masao; Yoshida, Yasuhiro; Van Meerbeek, Bart; Hayakawa, Satoshi

    2017-01-01

    Currently, the functional monomer 10-methacryloyloxy-decyl-dihydrogen-phosphate (10-MDP) was documented to chemically bond to zirconia ceramics. However, little research has been conducted to unravel the underlying mechanisms. This study aimed to assess the chemical interaction and to demonstrate the mechanisms of coordination between 10-MDP and zirconium oxide using 1H and 31P magic angle spinning (MAS) nuclear magnetic resonance (NMR) and two dimensional (2D) 1H → 31P heteronuclear correlation (HETCOR) NMR. In addition, shear bond-strength (SBS) tests were conducted to determine the effect of 10-MDP concentration on the bonding effectiveness to zirconia. These SBS tests revealed a 10-MDP concentration-dependent SBS with a minimum of 1-ppb 10-MDP needed. 31P-NMR revealed that one P-OH non-deprotonated of the PO3H2 group from 10-MDP chemically bonded strongly to zirconia. 1H-31P HETCOR NMR indicated that the 10-MDP monomer can be adsorbed onto the zirconia particles by hydrogen bonding between the P=O and Zr-OH groups or via ionic interactions between partially positive Zr and deprotonated 10-MDP (P-O−). The combination of 1H NMR and 2D 1H-31P HETCOR NMR enabled to describe the different chemical states of the 10-MDP bonds with zirconia; they not only revealed ionic but also hydrogen bonding between 10-MDP and zirconia. PMID:28358121

  18. Outstanding supercapacitive properties of Mn-doped TiO2 micro/nanostructure porous film prepared by anodization method

    PubMed Central

    Ning, Xuewen; Wang, Xixin; Yu, Xiaofei; Zhao, Jianling; Wang, Mingli; Li, Haoran; Yang, Yang

    2016-01-01

    Mn-doped TiO2 micro/nanostructure porous film was prepared by anodizing a Ti-Mn alloy. The film annealed at 300 °C yields the highest areal capacitance of 1451.3 mF/cm2 at a current density of 3 mA/cm2 when used as a high-performance supercapacitor electrode. Areal capacitance retention is 63.7% when the current density increases from 3 to 20 mA/cm2, and the capacitance retention is 88.1% after 5,000 cycles. The superior areal capacitance of the porous film is derived from the brush-like metal substrate, which could greatly increase the contact area, improve the charge transport ability at the oxide layer/metal substrate interface, and thereby significantly enhance the electrochemical activities toward high performance energy storage. Additionally, the effects of manganese content and specific surface area of the porous film on the supercapacitive performance were also investigated in this work. PMID:26940546

  19. Defect Clustering and Nano-phase Structure Characterization of Multicomponent Rare Earth-Oxide-Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2004-01-01

    Advanced thermal barrier coatings (TBCs) have been developed by incorporating multicomponent rare earth oxide dopants into zirconia-based thermal barrier coatings to promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nanophases within the coating systems. In this paper, the defect clusters, induced by Nd, Gd, and Yb rare earth dopants in the zirconia-yttria thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The TEM lattice imaging, selected area diffraction (SAD), and electron energy-loss spectroscopy (EELS) analyses demonstrated that the extensive nanoscale rare earth dopant segregation exists in the plasma-sprayed and electron-physical-vapor-deposited (EB PVD) thermal barrier coatings. The nanoscale concentration heterogeneity and the resulting large lattice distortion promoted the formation of parallel and rotational defective lattice clusters in the coating systems. The presence of the 5-to 100-nm-sized defect clusters and nanophases is believed to be responsible for the significant reduction of thermal conductivity, improved sintering resistance, and long-term high temperature stability of the advanced thermal barrier coating systems.

  20. Bonding effectiveness to different chemically pre-treated dental zirconia.

    PubMed

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  1. A new strategy on utilizing nitrogen doped TiO{sub 2} in nanostructured solar cells: Embedded multifunctional N-TiO{sub 2} scattering particles in mesoporous photoanode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shogh, Shiva; Mohammadpour, Raheleh; Iraji zad, Azam, E-mail: Iraji@sharif.edu

    2015-12-15

    Highlights: • N-doped TiO{sub 2} scattering particles were synthesized for embedding into commercial photoanode of dye sensitized solar cells. • Embedded scatterers improved optical and electrical features of the cells. • These multifunctional scatterers increased cell performance up to 17%. - Abstract: Aggregated sub-micron size nitrogen doped TiO{sub 2} (N-TiO{sub 2}) particles with superior optical and electrical features were successfully synthesized for embedding into commercial mesoporous TiO{sub 2} photoelectrode of dye sensitized solar cells (DSSCs) as the light scattering particles compared to undoped one. X-ray photoelectron spectroscopy and absorption spectra confirmed that the titanium dioxide is sufficiently doped by nitrogenmore » in N-TiO{sub 2} sample. Employing these high-surface N-TiO{sub 2} in mesoporous photoelectrode of solar cells, the power conversion efficiency of 8% has been achieved which shows 17% improvement for the optimum embedded level of doping (30 wt%) compared to commercial photoelectrode without additive; while enhanced efficiency is only 3% embedding undoped sub-micron size TiO{sub 2} particles. These results can introduce the novel multifunctional photoelectrode for nanostructured solar cells with enhanced values of scattering efficiency and improved electrical features including trap states density reduction in comparison to commercial mesoporous photoelectrodes.« less

  2. FAST TRACK COMMUNICATION: Spin waves in the (0, π) and (0, π, π) ordered SDW states of the t-t' Hubbard model: application to doped iron pnictides

    NASA Astrophysics Data System (ADS)

    Raghuvanshi, Nimisha; Singh, Avinash

    2010-10-01

    Spin waves in the (0, π) and (0, π, π) ordered spin-density-wave (SDW) states of the t-t' Hubbard model are investigated at finite doping. In the presence of small t', these composite ferro-antiferromagnetic (F-AF) states are found to be strongly stabilized at finite hole doping due to enhanced carrier-induced ferromagnetic spin couplings as in metallic ferromagnets. Anisotropic spin-wave velocities, a spin-wave energy scale of around 200 meV, reduced magnetic moment and rapid suppression of magnetic order with electron doping x (corresponding to F substitution of O atoms in LaO1 - xFxFeAs or Ni substitution of Fe atoms in BaFe2 - xNixAs2) obtained in this model are in agreement with observed magnetic properties of doped iron pnictides.

  3. Cobalt-doping-induced synthesis of ceria nanodisks and their significantly enhanced catalytic activity.

    PubMed

    Guo, Xiao-Hui; Mao, Chao-Chao; Zhang, Ji; Huang, Jun; Wang, Wa-Nv; Deng, Yong-Hui; Wang, Yao-Yu; Cao, Yong; Huang, Wei-Xin; Yu, Shu-Hong

    2012-05-21

    High-quality cobalt-doped ceria nanostructures with triangular column, triangular slab, and disklike shapes are synthesized by tuning the doping amount of cobalt nitrate in a facile hydrothermal reaction. The cobalt-doped ceria nanodisks display significantly enhanced catalytic activity in CO oxidation due to exposed highly active crystal planes and the presence of numerous surface defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. [Measurement of chromaticity of five hued zirconia].

    PubMed

    Wen, Ning; Shao, Long-quan; Yi, Yuan-fu; Deng, Bin; Liu, Hong-chen

    2009-05-01

    To determine the chroma value of sintered IL1-IL5 zirconia materials in comparison with the Vita In-Ceram YZ color shade. Five types of shading dental zirconia ceramics with color gradient were prepared by adding Fe2O3, CeO2, and Bi2O3 to the zirconia powder, and their chroma values were determined using a spectrophotometer and the color difference was calculated. The chroma value ranges were L: 67.76-77.78, a: -2.19-3.80, and b: 12.13-25.01. Slight deltaE was found between IL1 and LL1, IL2 and LL2, and IL3 and LL3. The deltaE between IL4 and LL4 could be compensated by veneering porcelain, whereas deltaL between IL5 and LL5 could not be compensated in this manner. Shading dental zirconia ceramics can be prepared by addition of metal oxides with color similar to the Vita In-Ceram YZ color shades to match that of the veneering porcelain in clinical practice.

  5. Zirconia ceramics for excess weapons plutonium waste

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Lutze, W.; Ewing, R. C.

    2000-01-01

    We synthesized a zirconia (ZrO 2)-based single-phase ceramic containing simulated excess weapons plutonium waste. ZrO 2 has large solubility for other metallic oxides. More than 20 binary systems A xO y-ZrO 2 have been reported in the literature, including PuO 2, rare-earth oxides, and oxides of metals contained in weapons plutonium wastes. We show that significant amounts of gadolinium (neutron absorber) and yttrium (additional stabilizer of the cubic modification) can be dissolved in ZrO 2, together with plutonium (simulated by Ce 4+, U 4+ or Th 4+) and impurities (e.g., Ca, Mg, Fe, Si). Sol-gel and powder methods were applied to make homogeneous, single-phase zirconia solid solutions. Pu waste impurities were completely dissolved in the solid solutions. In contrast to other phases, e.g., zirconolite and pyrochlore, zirconia is extremely radiation resistant and does not undergo amorphization. Baddeleyite (ZrO 2) is suggested as the natural analogue to study long-term radiation resistance and chemical durability of zirconia-based waste forms.

  6. Processing of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2003-01-01

    Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.

  7. The effect of Cu doping on the mechanical and optical properties of zinc oxide nanowires synthesized by hydrothermal route.

    PubMed

    Robak, Elżbieta; Coy, Emerson; Kotkowiak, Michał; Jurga, Stefan; Załęski, Karol; Drozdowski, Henryk

    2016-04-29

    Zinc oxide (ZnO) is a wide-bandgap semiconductor material with applications in a variety of fields such as electronics, optoelectronic and solar cells. However, much of these applications demand a reproducible, reliable and controllable synthesis method that takes special care of their functional properties. In this work ZnO and Cu-doped ZnO nanowires are obtained by an optimized hydrothermal method, following the promising results which ZnO nanostructures have shown in the past few years. The morphology of as-prepared and copper-doped ZnO nanostructures is investigated by means of scanning electron microscopy and high resolution transmission electron microscopy. X-ray diffraction is used to study the impact of doping on the crystalline structure of the wires. Furthermore, the mechanical properties (nanoindentation) and the functional properties (absorption and photoluminescence measurements) of ZnO nanostructures are examined in order to assess their applicability in photovoltaics, piezoelectric and hybrids nanodevices. This work shows a strong correlation between growing conditions, morphology, doping and mechanical as well as optical properties of ZnO nanowires.

  8. Lateral bending of tapered piezo-semiconductive nanostructures for ultra-sensitive mechanical force to voltage conversion.

    PubMed

    Araneo, Rodolfo; Falconi, Christian

    2013-07-05

    Quasi-1D piezoelectric nanostructures may offer unprecedented sensitivity for transducing minuscule input mechanical forces into high output voltages due to both scaling laws and increased piezoelectric coefficients. However, until now both theoretical and experimental studies have suggested that, for a given mechanical force, lateral bending of piezoelectric nanowires results in lower output electric potentials than vertical compression. Here we demonstrate that this result only applies to nanostructures with a constant cross-section. Moreover, though it is commonly believed that the output electric potential of a strained piezo-semiconductive device can only be reduced by the presence of free charges, we show that the output piezopotential of laterally bent tapered nanostructures, with typical doping levels and very small input forces, can be even increased up to two times by free charges.Our analyses confirm that, though not optimal for piezoelectric energy harvesting, lateral bending of tapered nanostructures with typical doping levels can be ideal for transducing tiny input mechanical forces into high and accessible piezopotentials. Our results provide guidelines for designing high-performance piezo-nano-devices for energy harvesting, mechanical sensing, piezotronics, piezo-phototronics, and piezo-controlled chemical reactions, among others.

  9. pH control of the structure, composition, and catalytic activity of sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir K.; Baranchikov, Alexander Ye.; Kopitsa, Gennady P.; Lermontov, Sergey A.; Yurkova, Lyudmila L.; Gubanova, Nadezhda N.; Ivanova, Olga S.; Lermontov, Anatoly S.; Rumyantseva, Marina N.; Vasilyeva, Larisa P.; Sharp, Melissa; Pranzas, P. Klaus; Tretyakov, Yuri D.

    2013-02-01

    We report a detailed study of structural and chemical transformations of amorphous hydrous zirconia into sulfated zirconia-based superacid catalysts. Precipitation pH is shown to be the key factor governing structure, composition and properties of amorphous sulfated zirconia gels and nanocrystalline sulfated zirconia. Increase in precipitation pH leads to substantial increase of surface fractal dimension (up to ˜2.7) of amorphous sulfated zirconia gels, and consequently to increase in specific surface area (up to ˜80 m2/g) and simultaneously to decrease in sulfate content and total acidity of zirconia catalysts. Complete conversion of hexene-1 over as synthesized sulfated zirconia catalysts was observed even under ambient conditions.

  10. Translucency of Zirconia Ceramics before and after Artificial Aging.

    PubMed

    Walczak, Katarzyna; Meißner, Heike; Range, Ursula; Sakkas, Andreas; Boening, Klaus; Wieckiewicz, Mieszko; Konstantinidis, Ioannis

    2018-03-11

    The aging of zirconia ceramics (Y-TZP) is associated with tetragonal to monoclinic phase transformation. This change in microstructure may affect the optical properties of the ceramic. This study examines the effect of aging on the translucency of different zirconia materials. 120 disc-shaped specimens were fabricated from four zirconia materials: Cercon ht white, BruxZir Solid Zirconia, Zenostar T0, Lava Plus (n = 30 per group). Accelerated aging was performed in a steam autoclave (134°C, 0.2 MPa, 5 hours). CIELab coordinates (L*, a*, b*) and luminous reflectance (Y) were measured with a spectrophotometer before and after aging. Contrast ratio (CR) and translucency parameter (TP) were calculated from the L*, a*, b*, and Y tristimulus values. The general linear model (Bonferroni adjusted) was used to compare both parameters before and after aging, as well as between the different zirconia materials (p ≤ 0.05). CR and TP differed significantly before and after aging in all groups tested. Before aging, Zenostar T showed the highest and Lava Plus showed the lowest translucency. After aging, Cercon ht and Zenostar T showed the highest and BruxZir and Lava Plus the lowest translucency. Aging reduced the translucency in all specimens tested. Furthermore, translucency differed between the zirconia brands tested. Nevertheless, the differences were below the detectability threshold of the human eye. The aging process can influence the translucency and thus the esthetic outcome of zirconia restorations; however, the changes in translucency were minimal and probably undetectable by the human eye. © 2018 by the American College of Prosthodontists.

  11. Nitrogen-doped hollow carbon spheres wrapped with graphene nanostructure for highly sensitive electrochemical sensing of parachlorophenol.

    PubMed

    Yi, Yinhui; Zhu, Gangbing; Sun, Heng; Sun, Jianfan; Wu, Xiangyang

    2016-12-15

    Owing to awfully harmful to the environment and human health, the qualitative and quantitative determination of parachlorophenol (PCP) is of great significance. In this paper, by using silica@polydopamine as template, nitrogen-doped hollow carbon spheres wrapped with reduced graphene oxide (NHCNS@RG) nanostructure was prepared successfully via a self-assembly approach due to the electrostatic interaction, and the obtained NHCNS@RG could exhibit the unique properties of NHCNS and RG: the NHCNS could impede the aggregation tendency of RG and possess high electrocatalytic activity; the RG enlarges the contacting area and offers many area-normalized edge-plane structures and active sites. Scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray diffraction and electrochemical method were used to characterize the morphology and structure of NHCNS@RG. Then, the NHCNS@RG hybrids were applied for the electrochemical sensing of PCP, under the optimized conditions, the detection limit of PCP obtained in this work is 0.01μM and the linear range is 0.03-38.00μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Nanostructured Thin Film Synthesis by Aerosol Chemical Vapor Deposition for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Chadha, Tandeep S.

    structures, due to a combination of high surface area, improved lithium diffusivity and electronic conductivity. The model developed allows for the prediction of optimized nanostructure geometry depending on the end-use application. Increasing demand for lithium-ion batteries, posing concerns for lithium supply and costs in future, have motivated research in sodium-ion batteries as alternatives. In this work, the nanostructured TiO2 electrodes have been studied as anodes for sodium ion batteries. To improve the performance, a new multi-component ACVD process has been developed to achieve single-step synthesis of doped nanostructured thin films. One-dimensional niobium doped TiO2 thin films have been synthesized and characterized as a novel anode material for sodium-ion batteries. The doped nanostructured thin films deliver significant improvements on capacity over their undoped counterparts and demonstrate feasibility of sodium-ion batteries. In summary, the studies conducted in this dissertation develop a detailed understanding of the ACVD process and demonstrate its ability to synthesize superior nanostructured thin films for energy storage applications, thereby motivating process scalability for commercial applications.

  13. Electrospark doping of steel with tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisova, Yulia, E-mail: yukolubaeva@mail.ru; Shugurov, Vladimir, E-mail: shugurov@opee.hcei.tsc.ru; Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com

    2016-01-15

    The paper is devoted to the numerical modeling of thermal processes and the analysis of the structure and properties of the surface layer of carbon steel subjected to electrospark doping with tungsten. The problem of finding the temperature field in the system film (tungsten) / substrate (iron) is reduced to the solution of the heat conductivity equation. A one-dimensional case of heating and cooling of a plate with the thickness d has been considered. Calculations of temperature fields formed in the system film / substrate synthesized using methods of electrospark doping have been carried out as a part of one-dimensionalmore » approximation. Calculations have been performed to select the mode of the subsequent treatment of the system film / substrate with a high-intensity pulsed electron beam. Authors revealed the conditions of irradiation allowing implementing processes of steel doping with tungsten. A thermodynamic analysis of phase transformations taking place during doping of iron with tungsten in equilibrium conditions has been performed. The studies have been carried out on the surface layer of the substrate modified using the method of electrospark doping. The results showed the formation in the surface layer of a structure with a highly developed relief and increased strength properties.« less

  14. Application of nanodimensional particles and aluminum hydroxide nanostructures for cancer diagnosis and therapy

    NASA Astrophysics Data System (ADS)

    Korovin, M. S.; Fomenko, A. N.

    2017-09-01

    Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less researchers' attention has been paid to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However, recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with different aluminum oxide/hydroxide nanoparticles and nanostructures.

  15. Determination of oxygen vacancy limit in Mn substituted yttria stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Stepień, Joanna; Sikora, Marcin; Kapusta, Czesław; Pomykalska, Daria; Bućko, Mirosław M.

    2018-05-01

    A series of Mnx(Y0.148Zr0.852)1-xO2-δ ceramics was systematically studied by means of X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) and DC magnetic susceptibility. The XAS and XES results show the changes in manganese oxidation state and a gradual evolution of the local atomic environment around Mn ions upon increasing dopant contents, which is due to structural relaxation caused by the growing amount of oxygen vacancies. Magnetic susceptibility measurements reveal that Mn3O4 precipitates are formed for x ≥ 0.1 and enable independent determination of the actual quantity of Mn ions dissolved in Yttria Stabilized Zirconia (YSZ) solid solution. We show that the amount of oxygen vacancies generated by manganese doping into YSZ is limited to ˜0.17 per formula unit.

  16. Unified Phase Diagram for Iron-Based Superconductors.

    PubMed

    Gu, Yanhong; Liu, Zhaoyu; Xie, Tao; Zhang, Wenliang; Gong, Dongliang; Hu, Ding; Ma, Xiaoyan; Li, Chunhong; Zhao, Lingxiao; Lin, Lifang; Xu, Zhuang; Tan, Guotai; Chen, Genfu; Meng, Zi Yang; Yang, Yi-Feng; Luo, Huiqian; Li, Shiliang

    2017-10-13

    High-temperature superconductivity is closely adjacent to a long-range antiferromagnet, which is called a parent compound. In cuprates, all parent compounds are alike and carrier doping leads to superconductivity, so a unified phase diagram can be drawn. However, the properties of parent compounds for iron-based superconductors show significant diversity and both carrier and isovalent dopings can cause superconductivity, which casts doubt on the idea that there exists a unified phase diagram for them. Here we show that the ordered moments in a variety of iron pnictides are inversely proportional to the effective Curie constants of their nematic susceptibility. This unexpected scaling behavior suggests that the magnetic ground states of iron pnictides can be achieved by tuning the strength of nematic fluctuations. Therefore, a unified phase diagram can be established where superconductivity emerges from a hypothetical parent compound with a large ordered moment but weak nematic fluctuations, which suggests that iron-based superconductors are strongly correlated electron systems.

  17. Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance.

    PubMed

    Wang, Ziya; Wang, Fengping; Li, Yan; Hu, Jianlin; Lu, Yanzhen; Xu, Mei

    2016-04-07

    Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g(-1) even under a high mass loading (∼5 mg cm(-2)). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm(-3)) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g(-1). The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices.

  18. Nanostructured Catalytic Hybrid Materials for Energy Conversion or Storage

    DTIC Science & Technology

    2017-08-27

    and 6) and characterized them using bomb calorimetry, DSC and XRD. - We are organizing the data to make research articles and patents. [Iron...Unlimited Distribution Figure 4 • Bomb calorimeter (BC) enthalpy plot of Al-encapsulated nanofibers Nanostructured catalytic hybrid materials for energy

  19. Biaxial flexural strength of bilayered zirconia using various veneering ceramics

    PubMed Central

    Chantranikul, Natravee

    2015-01-01

    PURPOSE The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. MATERIALS AND METHODS Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:2008 into five groups according to veneering ceramics as follows; Katana zirconia veneering with CZR (K/CZR), Katana zirconia veneering with LV (K/LV), Katana zirconia veneering with CC (K/CC), Katana zirconia veneering with EM (K/EM) and Katana zirconia veneering with VT (K/VT). After 20,000 thermocycling, load tests were conducted using a universal testing machine (Instron). The BFS were calculated and analyzed with one-way ANOVA and Tukey HSD (α=0.05). The Weibull analysis was performed for reliability of strength. The mode of fracture and fractured surface were observed by SEM. RESULTS It showed that K/CC had significantly the highest BFS, followed by K/LV. BFS of K/CZR, K/EM and K/VT were not significantly different from each other, but were significantly lower than the other two groups. Weibull distribution reported the same trend of reliability as the BFS results. CONCLUSION From the result of this study, the BFS of the bilayered zirconia/veneer composite did not only depend on the Young's modulus value of the materials. Further studies regarding interfacial strength and sintering factors are necessary to achieve the optimal strength. PMID:26576251

  20. Evaluation of participants' perception and taste thresholds with a zirconia palatal plate.

    PubMed

    Wada, Takeshi; Takano, Tomofumi; Tasaka, Akinori; Ueda, Takayuki; Sakurai, Kaoru

    2016-10-01

    Zirconia and cobalt-chromium can withstand a similar degree of loading. Therefore, using a zirconia base for removable dentures could allow the thickness of the palatal area to be reduced similarly to metal base dentures. We hypothesized that zirconia palatal plate for removable dentures provides a high level of participants' perception without influencing taste thresholds. The purpose of this study was to evaluate the participants' perception and taste thresholds of zirconia palatal plate. Palatal plates fabricated using acrylic resin, zirconia, and cobalt-chromium alloy were inserted into healthy individuals. Taste thresholds were investigated using the whole-mouth gustatory test, and participants' perception was evaluated using the 100-mm visual analog scale to assess the ease of pronunciation, ease of swallowing, sensation of temperature, metallic taste, sensation of foreign body, subjective sensory about weight, adhesiveness of chewing gum, and general satisfaction. For the taste thresholds, no significant differences were noted in sweet, salty, sour, bitter, or umami tastes among participants wearing no plate, or the resin, zirconia, and metal plates. Speech was easier and foreign body sensation was lower with the zirconia plate than with the resin plate. Evaluation of the adhesiveness of chewing gum showed that chewing gum does not readily adhere to the zirconia plate in comparison with the metal plate. The comprehensive participants' perception of the zirconia plate was evaluated as being superior to the resin plate. A zirconia palatal plate provides a high level of participants' perception without influencing taste thresholds. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  1. Dehydration and crystallization kinetics of zirconia-yttria gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, S.; Muraleedharan, R.V.; Roy, S.K.

    1995-02-01

    Zirconia and zirconia-yttria gels containing 4 and 8 mol% yttria were obtained by coprecipitation and drying at 373 K. The dehydration and crystallization behavior of the dried gels was studied by DSC, TG, and XRD. The gels undergo elimination of water over a wide temperature range of 373--673 K. The peak temperature of the endotherm corresponding to dehydration and the kinetic constants for the process were not influenced by the yttria content of the gel. The enthalpy of dehydration observed was in good agreement with the heat of vaporization data. The dehydration was followed by a sharp exothermic crystallization process.more » The peak temperature of the exotherm and the activation energy of the process increased with an increase in yttria content, while the enthalpy of crystallization showed a decrease. The ``glow effect`` reduced with increasing yttria content. Pure zirconia crystallizes in the tetragonal form while the zirconia containing 4 and 8 mol% yttria appears to crystallize in the cubic form.« less

  2. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and differencemore » envelope density analysis, with electron microscopy imag-ing and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiO xH y clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield hetero-bimetallic metal-oxo nanowires. Finally, this bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering-resistance of these clusters during the hydrogenation of light olefins.« less

  3. Bridging Zirconia Nodes within a Metal-Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires.

    PubMed

    Platero-Prats, Ana E; League, Aaron B; Bernales, Varinia; Ye, Jingyun; Gallington, Leighanne C; Vjunov, Aleksei; Schweitzer, Neil M; Li, Zhanyong; Zheng, Jian; Mehdi, B Layla; Stevens, Andrew J; Dohnalkova, Alice; Balasubramanian, Mahalingam; Farha, Omar K; Hupp, Joseph T; Browning, Nigel D; Fulton, John L; Camaioni, Donald M; Lercher, Johannes A; Truhlar, Donald G; Gagliardi, Laura; Cramer, Christopher J; Chapman, Karena W

    2017-08-02

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis, and difference envelope density analysis, with electron microscopy imaging and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiO x H y clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield heterobimetallic metal-oxo nanowires. This bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering resistance of these clusters during the hydrogenation of light olefins.

  4. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

    DOE PAGES

    Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia; ...

    2017-07-11

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. Notably, atomic layer deposition (ALD) in MOFs has recently emerged as a versatile approach to functionalize MOF surfaces with a wide variety of catalytic metal-oxo species. Understanding the structure of newly deposited species and how they are tethered within the MOF is critical to understanding how these components couple to govern the active material properties. By combining local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and differencemore » envelope density analysis, with electron microscopy imag-ing and computational modeling, we resolve the precise atomic structure of metal-oxo species deposited in the MOF NU-1000 through ALD. These analyses demonstrate that deposition of NiO xH y clusters occurs selectively within the smallest pores of NU-1000, between the zirconia nodes, serving to connect these nodes along the c-direction to yield hetero-bimetallic metal-oxo nanowires. Finally, this bridging motif perturbs the NU-1000 framework structure, drawing the zirconia nodes closer together, and also underlies the sintering-resistance of these clusters during the hydrogenation of light olefins.« less

  5. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    PubMed

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  6. Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers

    NASA Technical Reports Server (NTRS)

    Mess, Derek

    2003-01-01

    yttria in suitable proportions has shown promise of being a superior thermal- barrier coating (TBC) material, relative to zirconia stabilized with yttria only. More specifically, a range of compositions in the zirconia/scandia/yttria material system has been found to afford increased resistance to deleterious phase transformations at temperatures high enough to cause deterioration of yttria-stabilized zirconia. Yttria-stabilized zirconia TBCs have been applied to metallic substrates in gas turbine and jet engines to protect the substrates against high operating temperatures. These coatings have porous and microcracked structures, which can accommodate strains induced by thermal-expansion mismatch and thermal shock. The longevity of such a coating depends upon yttria as a stabilizing additive that helps to maintain the zirconia in an yttria-rich, socalled non-transformable tetragonal crystallographic phase, thus preventing transformation to the monoclinic phase with an associated deleterious volume change. However, at a temperature greater than about 1,200 C, there is sufficient atomic mobility that the equilibrium, transformable zirconia phase is formed. Upon subsequent cooling, this phase transforms to the monoclinic phase, with an associated volume change that adversely affects the integrity of the coating. Recently, scandia was identified as a stabilizer that could be used instead of, or in addition to, yttria. Of particular interest are scandia-and-yttria-stabilized zirconia (SYSZ) compositions of about 6 mole percent scandia and 1 mole percent yttria, which have been found to exhibit remarkable phase stability at a temperature of 1,400 C in simple aging tests. Unfortunately, scandia is expensive, so that the problem becomes one of determining whether there are compositions with smaller proportions of scandia that afford the required high-temperature stability. In an attempt to solve this problem, experiments were performed on specimens made with reduced

  7. Revealing Surface States in In-Doped SnTe Nanoplates with Low Bulk Mobility.

    PubMed

    Shen, Jie; Xie, Yujun; Cha, Judy J

    2015-06-10

    Indium (In) doping in topological crystalline insulator SnTe induces superconductivity, making In-doped SnTe a candidate for a topological superconductor. SnTe nanostructures offer well-defined nanoscale morphology and high surface-to-volume ratios to enhance surface effects. Here, we study In-doped SnTe nanoplates, In(x)Sn(1-x)Te, with x ranging from 0 to 0.1 and show they superconduct. More importantly, we show that In doping reduces the bulk mobility of In(x)Sn(1-x)Te such that the surface states are revealed in magnetotransport despite the high bulk carrier density. This is manifested by two-dimensional linear magnetoresistance in high magnetic fields, which is independent of temperature up to 10 K. Aging experiments show that the linear magnetoresistance is sensitive to ambient conditions, further confirming its surface origin. We also show that the weak antilocalization observed in In(x)Sn(1-x)Te nanoplates is a bulk effect. Thus, we show that nanostructures and reducing the bulk mobility are effective strategies to reveal the surface states and test for topological superconductors.

  8. Iron-catalyzed synthesis of secondary amines: on the way to green reductive aminations.

    PubMed

    Stemmler, Tobias; Surkus, Annette-Enrika; Pohl, Marga-Martina; Junge, Kathrin; Beller, Matthias

    2014-11-01

    Amines represent important intermediates in chemical and biological processes. Herein, we describe the use of a nanostructured iron-based catalyst for the tandem reductive amination between nitroarenes and aldehydes using hydrogen as reductant. The nanostructured iron-catalyst is prepared by immobilization of an iron-phenanthroline complex onto a commercially available carbon support. In the reaction sequence a primary amine is formed in situ from the corresponding nitro compound. Reversible condensation with aldehydes forms the respective imines, which are finally reduced to the desired secondary amine. This synthesis of secondary amines is atom-economical and environmentally attractive using cheap and readily available organic compounds as starting materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural, electrical and magnetic properties of (Fe, Co) co-doped SnO2 diluted magnetic semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Mehraj, Sumaira; Ansari, M. Shahnawaze; Alimuddin

    2015-01-01

    Nanostructures (NSs) of basic composition Sn1-xFex/2Cox/2O2 with x=0.00, 0.04, 0.06, 0.08 and 0.1 were synthesized by citrate-gel route and characterized to understand their structural, electrical and magnetic properties. X-ray diffraction and Raman spectroscopy were used to confirm the formation of single phase rutile type tetragonal structure. The crystallite sizes calculated by using Williamson Hall were found to decrease with increasing doping level. In addition to the fundamental Raman peaks of rutile SnO2, the other three weak Raman peaks at about 505, 537 and 688 cm-1 were also observed. Field emission scanning electron microscopy studies showed the emergence of structural transformation. Electric properties such as dc electrical resistivity as a function of temperature and ac conductivity as a function of frequency were also studied. The variation of dielectric properties with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general. Hysteresis loops were clearly observed in M-H curves of Fe and Co co-doped SnO2 NSs. However, pure SnO2 nanoparticles (NPs) showed paramagnetic behaviour which vanished at higher values of magnetic field. The grain and grain boundary contribution in the conduction process is estimated through complex impedance plot fitted with non-linear least square (NLLS) approach which shows that the role of grain boundaries increases rapidly as compared to the grain volume with the increase of Fe and Co ions in to system.

  10. Nanostructured hematite thin films for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Maabong, Kelebogile; Machatine, Augusto G. J.; Mwankemwa, Benard S.; Braun, Artur; Bora, Debajeet K.; Toth, Rita; Diale, Mmantsae

    2018-04-01

    Nanostructured hematite thin films prepared by dip coating technique were investigated for their photoelectrochemical activity for generation of hydrogen from water splitting. Structural, morphological and optical analyses of the doped/undoped films were performed by X-ray diffraction, high resolution field emission-scanning electron microscopy, UV-vis spectrophotometry and Raman spectroscopy. The photoelectrochemical measurements of the films showed enhanced photoresponse and cathodic shift of the onset potential upon Ti doping indicating improved transfer of photoholes at the semiconductor-electrolyte interface. Films doped with 1 at% Ti produced 0.72 mA/cm2 at 1.23 V vs RHE which is 2 times higher than current density for the pure film (0.30 mA/cm2, at 1.23 V vs RHE). Gas chromatography analysis of the films also showed enhanced hydrogen evolution at 1 at% Ti with respect to pure film.

  11. Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures

    PubMed Central

    Huang, Jin; Wan, Qing

    2009-01-01

    This article provides a comprehensive review of recent (2008 and 2009) progress in gas sensors based on semiconducting metal oxide one-dimensional (1D) nanostructures. During last few years, gas sensors based on semiconducting oxide 1D nanostructures have been widely investigated. Additionally, modified or doped oxide nanowires/nanobelts have also been synthesized and used for gas sensor applications. Moreover, novel device structures such as electronic noses and low power consumption self-heated gas sensors have been invented and their gas sensing performance has also been evaluated. Finally, we also point out some challenges for future investigation and practical application. PMID:22303154

  12. Ionic pH and glucose sensors fabricated using hydrothermal ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Jyh-Liang; Yang, Po-Yu; Hsieh, Tsang-Yen; Juan, Pi-Chun

    2016-01-01

    Hydrothermally synthesized aluminum-doped ZnO (AZO) nanostructures have been adopted in extended-gate field-effect transistor (EGFET) sensors to demonstrate the sensitive and stable pH and glucose sensing characteristics of AZO-nanostructured EGFET sensors. The AZO-nanostructured EGFET sensors exhibited the following superior pH sensing characteristics: a high current sensitivity of 0.96 µA1/2/pH, a high linearity of 0.9999, less distortion of output waveforms, a small hysteresis width of 4.83 mV, good long-term repeatability, and a wide sensing range from pHs 1 to 13. The glucose sensing characteristics of AZO-nanostructured biosensors exhibited the desired sensitivity of 60.5 µA·cm-2·mM-1 and a linearity of 0.9996 up to 13.9 mM. The attractive characteristics of high sensitivity, high linearity, and repeatability of using ionic AZO-nanostructured EGFET sensors indicate their potential use as electrochemical and disposable biosensors.

  13. Nanostructured KTaTeO6 and Ag-doped KTaTeO6 Defect Pyrochlores: Promising Photocatalysts for Dye Degradation and Water Splitting

    NASA Astrophysics Data System (ADS)

    Venkataswamy, Perala; Sudhakar Reddy, CH.; Gundeboina, Ravi; Sadanandam, Gullapelli; Veldurthi, Naveen Kumar; Vithal, M.

    2018-03-01

    In this study, the nanostructured parent KTaTeO6 (KTTO) and Ag-doped KTaTeO6 (ATTO) catalysts with defect pyrochlore structure were prepared by solid-state and ion-exchange methods, respectively. The synthesized materials were characterized by various techniques to determine their chemical composition, morphology and microstructural features. The XRD studies show that both KTTO and ATTO have cubic structure (space group Fd3m) with high crystallinity. The doping of Ag altered the BET surface area of parent KTTO. The nano nature of the samples was studied by TEM images. A considerable red-shift in the absorption edge is observed for ATTO compared to KTTO. Incorporation of Ag+ in the KTTO lattice is clearly identified from EDX, elemental mapping and XPS results. Degradation of methyl violet and solar water splitting reactions were used to access the photocatalytic activity of KTTO and ATTO. The results obtained suggest that compared to KTTO, the ATTO showed higher photocatalytic activity in both cases. The favourable properties such as high surface area, more surface hydroxyl groups, stronger light absorption in visible region and narrower band gap energy were supposed to be the reasons for the high activity observed in ATTO.

  14. Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon.

    PubMed

    Wang, Zhengfang; Nie, Er; Li, Jihua; Yang, Mo; Zhao, Yongjun; Luo, Xingzhang; Zheng, Zheng

    2011-08-01

    Two series of activated carbons modified by Fe (II) and Fe (III) (denoted as AC/N-Fe(II) and AC/N-Fe(III)), respectively, were used as adsorbents for the removal of phosphate in aqueous solutions. The synthesized adsorbent materials were investigated by different experimental analysis means. The adsorption of phosphate on activated carbons has been studied in kinetic and equilibrium conditions taking into account the adsorbate concentration, temperature, and solution pH as major influential factors. Maximum removals of phosphate are obtained in the pH range of 3.78-6.84 for both adsorbents. Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Results suggest that the main phase formed in AC/N-Fe(II) and AC/N-Fe(III) is goethite and akaganeite, respectively; the presence of iron oxides significantly affected the surface area and the pore structure of the activated carbon. Studies revealed that iron-doped activated carbons were effective in removing phosphate. AC/N-Fe(II) has a higher phosphate removal capacity than AC/N-Fe(III), which could be attributed to its better intra-particle diffusion and higher binding energy. The activation energy for adsorption was calculated to be 22.23 and 10.89 kJ mol(-1) for AC/N-Fe(II) and AC/N-Fe(III), respectively. The adsorption process was complex; both surface adsorption and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.

  15. Nonlinear refraction of Nd3+-Li+ co-doped CdS-PVP nanostructure

    NASA Astrophysics Data System (ADS)

    Talwatkar, S. S.; Sunatkari, A. L.; Tamgadge, Y. S.; Muley, G. G.

    2018-05-01

    Third-order optical nonlinearity of the co-doped CdS nanoparticles embedded in polymer thin films is studied with the Z-scan technique with 632.8 nm excitation using a cw laser. The results show that the co-doped CdS nanocomposite film exhibits enhanced negative nonlinear refractive index in the order of n2 ≈ 10-5 cm2/W, as compared to the undoped CdS nanoparticles. Nonlinear refractive index of co-doped CdS-PVP thin film are found maximum for the sample doped with 5 wt% of Nd3+-Li+ concentration. The underlying mechanism is discussed.

  16. Methyltrimethoxysilane (MTMS)-based silica-iron oxide superhydrophobic nanocomposites.

    PubMed

    Nadargi, Digambar; Gurav, Jyoti; Marioni, Miguel A; Romer, Sara; Matam, Santhosh; Koebel, Matthias M

    2015-12-01

    We report a facile synthesis of superhydrophobic silica-iron oxide nanocomposites via a co-precursor sol-gel process. The choice of the silica precursor (Methyltrimethoxysilane, MTMS) in combination with iron nitrate altered the pore structure dramatically. The influence of iron oxide doping on the structural properties of pristine MTMS aerogel is discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Nanostructured ZnO - its challenging properties and potential for device applications

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, D.

    2017-01-01

    Nanostructured ZnO possessing interesting structural and optical properties offers challenging opportunities for innovative applications. In this lecture the review of the optical and structural properties of ZnO nanostructured layers is presented. It is shown that they have a direct impact on the parameters of devices involving ZnO. An analysis of current trends in the photovoltaic (PV) field shows that improved light harvesting and efficiency of solar cells can be obtained by implementing nanostructured ZnO layers to process advanced solar cell structures. Because of amenability to doping, high chemical stability, sensitivity to different adsorbed gases, nontoxicity and low cost ZnO attracted much attention for application as gas sensors. The sensitivity of nano-grain ZnO gas elements is comparatively high because of the grain-size effect. Application of nanostructured ZnO for gas sensors and for increasing of light harvesting in solar cells is demonstrated.

  18. Transitions between type A flake, type D flake, and coral graphite eutectic structures in cast irons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.S.; Verhoeven, J.D.

    1996-09-01

    Directional solidification experiments were used to measure the transition velocities between the type A and coral eutectic structures in high-purity cast irons and between the type A and type D eutectic structures in S and Te doped cast irons. Introduction of O into the gas atmosphere was found to have little effect on the A {R_arrow} D transition velocities in S doped alloys, but it produced a strong reduction in the A {R_arrow} coral transition velocities in high-purity irons. Transmission electron microscopy revealed interesting variations in the defect structures of the graphite in the flake irons vs the type ofmore » flake (A or D) and the type of doping element. Scanning Auger microscopy demonstrated that both S and Te segregate to the iron/graphite interface. In the S doped alloys, type A flakes are generally covered with a monolayer of S with patches of O in the form of iron oxide having a thickness on the order of 2 nm. A series of experiments, including examination of fracture surfaces at the quenched solid/liquid growth front, have shown that S segregates to the iron/graphite interfaces from the liquid at the growth front, but O forms at these interfaces during the cooldown. These results are discussed in relation to current models of eutectic growth in cast irons.« less

  19. In2O3-ZnO heterostructure development in electrical and photoluminescence properties of In2O3 1-D nanostructures

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Ghafouri, V.

    2014-05-01

    Indium Oxide quasi one-dimensional (1D) nanostructures known as nanowires and nanorods synthesis using the thermal evaporation method, has been articulated. To nucleate growth sites, substrate seeding promoted 1D nanostructures growth. The catalyst-mediated growth mechanism showed more favorable morphologies and physical properties in under vacuum conditions associated with bottom-up technique. Scanning electron microscopy (SEM) results showed that the Zn-doped 1D nanostructures had spherical caps. The X-ray diffraction (XRD) pattern and energy-dispersive X-ray (EDX) spectrum indicated that these caps intensively associated with ZnO. Therefore, it was reasonable that the vapor-liquid-solid mechanism (VLS) was responsible for the growth of the In2O3-ZnO heterostructure nanowires. This technique enhances optical and electrical properties in nanostructures. The photoluminescence (PL) analysis in Zn-doped In2O3 nanowires and nanorods shows that the intensity of the visible and UV-region emissions overwhelmingly increases and resistance measurement professes the improvement of linear conductance in VLS growth mechanism.

  20. Improvements to Zirconia Thick-Film Oxygen Sensors

    NASA Astrophysics Data System (ADS)

    Maskell, William C.; Brett, Daniel J. L.; Brandon, Nigel P.

    2013-06-01

    Thick-film zirconia gas sensors are normally screen-printed onto a planar substrate. A sandwich of electrode-electrolyte-electrode is fired at a temperature sufficient to instigate sintering of the zirconia electrolyte. The resulting porous zirconia film acts as both the electrolyte and as the diffusion barrier through which oxygen diffuses. The high sintering temperature results in de-activation of the electrodes so that sensors must be operated at around 800 °C for measurements in the percentage range of oxygen concentration. This work shows that the use of cobalt oxide as a sintering aid allows reduction of the sensor operating temperature by 100-200 °C with clear benefits. Furthermore, an interesting and new technique is presented for the investigation of the influence of dopants and of the through-porosity of ionically-conducting materials.

  1. Electronic structure of ruthenium-doped iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Winiarski, M. J.; Samsel-Czekała, M.; Ciechan, A.

    2014-12-01

    The structural and electronic properties of hypothetical RuxFe1-xSe and RuxFe1-xTe systems have been investigated from first principles within the density functional theory (DFT). Reasonable values of lattice parameters and chalcogen atomic positions in the tetragonal unit cell of iron chalcogenides have been obtained with the use of norm-conserving pseudopotentials. The well known discrepancies between experimental data and DFT-calculated results for structural parameters of iron chalcogenides are related to the semicore atomic states which were frozen in the used here approach. Such an approach yields valid results of the electronic structures of the investigated compounds. The Ru-based chalcogenides exhibit the same topology of the Fermi surface (FS) as that of FeSe, differing only in subtle FS nesting features. Our calculations predict that the ground states of RuSe and RuTe are nonmagnetic, whereas those of the solid solutions RuxFe1-xSe and RuxFe1-xTe become the single- and double-stripe antiferromagnetic, respectively. However, the calculated stabilization energy values are comparable for each system. The phase transitions between these magnetic arrangements may be induced by slight changes of the chalcogen atom positions and the lattice parameters a in the unit cell of iron selenides and tellurides. Since the superconductivity in iron chalcogenides is believed to be mediated by the spin fluctuations in single-stripe magnetic phase, the RuxFe1-xSe and RuxFe1-xTe systems are good candidates for new superconducting iron-based materials.

  2. Multinuclear NMR study of silica fiberglass modified with zirconia.

    PubMed

    Lapina, O B; Khabibulin, D F; Terskikh, V V

    2011-01-01

    Silica fiberglass textiles are emerging as uniquely suited supports in catalysis, which offer unprecedented flexibility in designing advanced catalytic systems for chemical and auto industries. During manufacturing fiberglass materials are often modified with additives of various nature to improve glass properties. Glass network formers, such as zirconia and alumina, are known to provide the glass fibers with higher strength and to slow down undesirable devitrification processes. In this work multinuclear (1)H, (23)Na, (29)Si, and (91)Zr NMR spectroscopy was used to characterize the effect of zirconia on the molecular-level fiberglass structure. (29)Si NMR results help in understanding why zirconia-modified fiberglass is more stable towards devitrification comparing with pure silica glass. Internal void spaces formed in zirconia-silica glass fibers after acidic leaching correlate with sodium and water distributions in the starting bulk glass as probed by (23)Na and (1)H NMR. These voids spaces are important for stabilization of catalytically active species in the supported catalysts. Potentials of high-field (91)Zr NMR spectroscopy to study zirconia-containing glasses and similarly disordered systems are illustrated. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. High-temperature zirconia insulation and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.; Lewis, J. Jr.

    The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2,000/sup 0/C are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600/sup 0/C for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950/sup 0/ to 1,250/sup 0/C to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1800/sup 0/ to 2000/sup 0/C further improves structural rigidity.

  4. High-temperature zirconia insulation and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.; Lewis, J. Jr.

    1988-05-10

    The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2,000 C are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder, dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600 C for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950 to 1,250 C to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1,800 to 2,000 C further improves structural rigidity.

  5. High-temperature zirconia insulation and method for making same

    DOEpatents

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.; Lewis, Jr., John

    1988-01-01

    The present invention is directed to a highly pure, partially stabilized, fibrous zirconia composite for use as thermal insulation in environments where temperatures up to about 2000.degree. C. are utilized. The composite of the present invention is fabricated into any suitable configuration such as a cone, cylinder, dome or the like by vacuum molding an aqueous slurry of partially stabilized zirconia fibers into a desired configuration on a suitably shaped mandrel. The molded fibers are infiltrated with zirconyl nitrate and the resulting structure is then dried to form a rigid structure which may be removed and placed in a furnace. The structure is then heated in air to a temperature of about 600.degree. C. for driving off the nitrate from the structure and for oxidizing the zirconyl ion to zirconia. Thereafter, the structure is heated to about 950.degree. to 1,250.degree. C. to fuse the zirconia fibers at their nexi in a matrix of zirconia. The composite produced by the present invention is self-supporting and can be readily machined to desired final dimensions. Additional heating to about 1800.degree. to 2000.degree. C. further improves structural rigidity.

  6. Plasmonic Switches and Sensors Based on PANI-Coated Gold Nanostructures

    NASA Astrophysics Data System (ADS)

    Jiang, Nina

    Gold nanostructures have been received intense and growing attention due to their unique properties associated with localized surface plasmon resonance (LSPR). The frequency and strength of the LSPR are highly dependent on the dielectric properties of the surrounding environment around gold nanostructures. Such dependence offers the essential basis for the achievement of plasmonic switching and sensing. While the plasmonic response of gold nanostructures is tuned by changing their dielectric environment, the external stimuli inducing the changes in the dielectric environment will be read out through the plasmonic response of gold nanostructures. As a consequence, plasmonic sensors and switches can be engineered by integrating active media that can respond to external stimuli with gold nanostructures. In this thesis research, I have achieved the coating of polyaniline (PANI) ' a conductive polymer, on gold nanostructures, and exploited the application of the core/shell nanostructures in plasmonic switching and sensing. Large modulation of the longitudinal plasmon resonance of single gold nanorods is achieved by coating PANI shell onto gold nanorods to produce colloidal plasmonic switches. The dielectric properties of PANI shell can be tuned by changing the proton-doping levels, which allows for the modulation of the plasmonic response of gold nanorods. The coated nanorods are sparsely housed in a simple microfluidic chamber. HCl and NaOH solutions are alternately pumped through the chamber for the realization of proton doping and dedoping. The plasmonic switching behavior is examined by monitoring the single-particle scattering spectra under the proton-doped and dedoped state of PANI. The coated nanorods exhibit a remarkable switching performance, with the modulation depth and scattering peak shift reaching 10 dB and 100 nm, respectively. Electrodynamic simulations are employed to confirm the plasmon switching behavior. I have further investigated the modulation of

  7. Twenty-nine-month follow-up of a paediatric zirconia dental crown.

    PubMed

    Lopez Cazaux, Serena; Hyon, Isabelle; Prud'homme, Tony; Dajean Trutaud, Sylvie

    2017-06-14

    The aim of this paper is to present the long-term follow-up of one paediatric zirconia crown on a deciduous molar. Preformed crowns are part of the armamentarium in paediatric dentistry. In recent years, aesthetic alternatives to preformed metal crowns have been developed, first preveneered crowns and then zirconia crowns. This paper describes the restoration of a primary molar with a zirconia crown (EZ-Pedo, Loomis, California, USA) in an 8-year-old boy. In this clinical case, the protocol for the implementation and maintenance of zirconia crowns is detailed. The patient was followed up for 29 months until the natural exfoliation of his primary molar. The adaptation of the zirconia crown, the gingival health and the wear on the opposing tooth were considered. In this case, the paediatric zirconia crown allowed sustainable functional restoration while restoring a natural appearance of the tooth. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Properties and rapid sintering of a nanostructured tetragonal zirconia composites

    NASA Astrophysics Data System (ADS)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae

    2017-09-01

    4YSZ is generally used as oxygen sensors, fuel cells, thermal barrier and hip and knee joint replacements as a result of these excellent properties with its high biocompatibility, low density, good resistance against corrosion, high ionic conductivity, hard phase and melting point. However, 4YTZ with coarse grain has low resistance to wear and abrasion because of low hardness and low fracture toughness at room temperature. The fracture toughness and hardness of a 4YTZ can be improved by forming nanostructured composites and addition of a second hard phase. In this study, nanostuctured 4YTZ-graphene composites with nearly full density were achieved using high-frequency induction heated sintering for one min at a pressure of 80 MPa. The rapid consolidation and addition of graphene to 4YTZ retained the nano-scale structure of the ceramic by inhibiting grain growth. The grain size of 4YTZ was reduced remarkably by the addition of graphene and the addition of graphene to 4YTZ greatly improved the fracture toughness without decrease of hardness.

  9. Alumina additions may improve the damage tolerance of soft machined zirconia-based ceramics.

    PubMed

    Oilo, Marit; Tvinnereim, Helene M; Gjerdet, Nils Roar

    2011-01-01

    The aim of this study was to evaluate the damage tolerance of different zirconia-based materials. Bars of one hard machined and one soft machined dental zirconia and an experimental 95% zirconia 5% alumina ceramic were subjected to 100,000 stress cycles (n = 10), indented to provoke cracks on the tensile stress side (n = 10), and left untreated as controls (n = 10). The experimental material demonstrated a higher relative damage tolerance, with a 40% reduction compared to 68% for the hard machined zirconia and 84% for the soft machined zirconia.

  10. Single Crystal Growth of Zirconia Utilizing a Skull Melting Technique,

    DTIC Science & Technology

    1979-08-01

    23 REFERENCES 24 Illustrations 1. Cutaway View of Skull Crucible 11 2. Section View of Skull Crucible 11 3. Stabilized Zirconia Powder Being Added to...E. R., (1968) J. Cryst. Growth, 2:243. 11 ... . . l l&I. .. . .:. . . N ’ - . . . . . . i . . . . . . . . .: P Figure 3. Stabilized Zirconia Powder Figure...colorless. The zirconia powder used in these experiments was obtained from N. L. Industries, Inc. Samples of the powder with 25 weight percent Y 2 0 3

  11. Room Temperature Magnetic Behavior In Nanocrystalline Ni-Doped Zro2 By Microwave-Assisted Polyol Synthesis

    NASA Astrophysics Data System (ADS)

    Parimita Rath, Pragyan; Parhi, Pankaj Kumar; Ranjan Panda, Sirish; Priyadarshini, Barsharani; Ranjan Sahoo, Tapas

    2017-08-01

    This article, deals with a microwave-assisted polyol method to demonstrate a low temperature route < 250°C, to prepare a high temperature cubic zirconia phase. Powder XRD pattern shows broad diffraction peaks suggesting nanometric size of the particles. Magnetic behavior of 1-5 at% Ni doped samples show a threshold for substitutional induced room temperature ferromagnetism up to 3 at% of Ni. TGA data reveals that Ni-doped ZrO2 polyol precursors decompose exothermically below 300°C. IR data confirms the reduction of Zr(OH)4 precipitates to ZrO2, in agreement with the conclusions drawn from the TGA analysis.

  12. Evaluation of experimental coating to improve the zirconia-veneering ceramic bond strength.

    PubMed

    Matani, Jay D; Kheur, Mohit; Jambhekar, Shantanu Subhashchandra; Bhargava, Parag; Londhe, Aditya

    2014-12-01

    To evaluate the shear bond strength (SBS) between zirconia and veneering ceramic following different surface treatments of zirconia. The efficacy of an experimental zirconia coating to improve the bond strength was also evaluated. Zirconia strips were fabricated and were divided into four groups as per their surface treatment: polished (control), airborne-particle abrasion, laser irradiation, and application of the experimental coating. The surface roughness and the residual monoclinic content were evaluated before and after the respective surface treatments. A scanning electron microscope (SEM) analysis of the experimental surfaces was performed. All specimens were subjected to shear force in a universal testing machine. The SBS values were analyzed with one-way ANOVA followed by Bonferroni post hoc for groupwise comparisons. The fractured specimens were examined to observe the failure mode. The SBS (29.17 MPa) and roughness values (0.80) of the experimental coating group were the highest among the groups. The residual monoclinic content was minimal (0.32) when compared to the remaining test groups. SEM analysis revealed a homogenous surface well adhered to an undamaged zirconia base. The other test groups showed destruction of the zirconia surface. The analysis of failure following bond strength testing showed entirely cohesive failures in the veneering ceramic in all study groups. The experimental zirconia surface coating is a simple technique to increase the microroughness of the zirconia surface, and thereby improve the SBS to the veneering ceramic. It results in the least monoclinic content and produces no structural damage to the zirconia substructure. © 2014 by the American College of Prosthodontists.

  13. Effect of nanoparticles dispersion on viscoelastic properties of epoxy–zirconia polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Singh, Sushil Kumar; Kumar, Abhishek; Jain, Anuj

    2018-03-01

    In the present work zirconia-nanoparticles were dispersed in epoxy matrix to form epoxy-zirconia polymer nanocomposites using ultrasonication and viscoelastic properties of nanocomposites were investigated. For the same spherical zirconia-nanoparticles (45 nm) were dispersed in weight fraction of 2, 4, 6 and 8 % to reinforce the epoxy. DMA results show the significant enhancement in viscoelastic properties with the dispersion of zirconia nanoparticles in the epoxy matrix. The value of storage modulus and glass transition temperature increases from 179 MPa (pristine) to 225 MPa (6 wt.% ZrO2) and 61 °C (pristine) to 70 °C (6 wt.% ZrO2) respectively with the dispersion of zirconia nanoparticles in the epoxy.

  14. Effect of nanoparticles dispersion on viscoelastic properties of epoxy-zirconia polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Singh, Sushil Kumar; Kumar, Abhishek; Jain, Anuj

    2018-03-01

    In the present work zirconia-nanoparticles were dispersed in epoxy matrix to form epoxy-zirconia polymer nanocomposites using ultrasonication and viscoelastic properties of nanocomposites were investigated. For the same spherical zirconia-nanoparticles (45 nm) were dispersed in weight fraction of 2, 4, 6 and 8 % to reinforce the epoxy. DMA results show the significant enhancement in viscoelastic properties with the dispersion of zirconia nanoparticles in the epoxy matrix. The value of storage modulus and glass transition temperature increases from 179 MPa (pristine) to 225 MPa (6 wt.% ZrO2) and 61 °C (pristine) to 70 °C (6 wt.% ZrO2) respectively with the dispersion of zirconia nanoparticles in the epoxy.

  15. Electrolytic photodissociation of chemical compounds by iron oxide electrodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1984-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  16. Surface roughness of zirconia for full-contour crowns after clinically simulated grinding and polishing.

    PubMed

    Hmaidouch, Rim; Müller, Wolf-Dieter; Lauer, Hans-Christoph; Weigl, Paul

    2014-12-01

    The aim of this study was to evaluate the effect of controlled intraoral grinding and polishing on the roughness of full-contour zirconia compared to classical veneered zirconia. Thirty bar-shaped zirconia specimens were fabricated and divided into two groups (n=15). Fifteen specimens (group 1) were glazed and 15 specimens (group 2) were veneered with feldspathic ceramic and then glazed. Prior to grinding, maximum roughness depth (Rmax) values were measured using a profilometer, 5 times per specimen. Simulated clinical grinding and polishing were performed on the specimens under water coolant for 15 s and 2 N pressure. For grinding, NTI diamonds burs with grain sizes of 20 µm, 10 µm, and 7.5 µm were used sequentially. The ground surfaces were polished using NTI kits with coarse, medium and fine polishers. After each step, Rmax values were determined. Differences between groups were examined using one-way analysis of variance (ANOVA). The roughness of group 1 was significantly lower than that of group 2. The roughness increased significantly after coarse grinding in both groups. The results after glazing were similar to those obtained after fine grinding for non-veneered zirconia. However, fine-ground veneered zirconia had significantly higher roughness than venerred, glazed zirconia. No significant difference was found between fine-polished and glazed zirconia, but after the fine polishing of veneered zirconia, the roughness was significantly higher than after glazing. It can be concluded that for full-contour zirconia, fewer defects and lower roughness values resulted after grinding and polishing compared to veneered zirconia. After polishing zirconia, lower roughness values were achieved compared to glazing; more interesting was that the grinding of glazed zirconia using the NTI three-step system could deliver smooth surfaces comparable to untreated glazed zirconia surfaces.

  17. Surface roughness of zirconia for full-contour crowns after clinically simulated grinding and polishing

    PubMed Central

    Hmaidouch, Rim; Müller, Wolf-Dieter; Lauer, Hans-Christoph; Weigl, Paul

    2014-01-01

    The aim of this study was to evaluate the effect of controlled intraoral grinding and polishing on the roughness of full-contour zirconia compared to classical veneered zirconia. Thirty bar-shaped zirconia specimens were fabricated and divided into two groups (n=15). Fifteen specimens (group 1) were glazed and 15 specimens (group 2) were veneered with feldspathic ceramic and then glazed. Prior to grinding, maximum roughness depth (Rmax) values were measured using a profilometer, 5 times per specimen. Simulated clinical grinding and polishing were performed on the specimens under water coolant for 15 s and 2 N pressure. For grinding, NTI diamonds burs with grain sizes of 20 µm, 10 µm, and 7.5 µm were used sequentially. The ground surfaces were polished using NTI kits with coarse, medium and fine polishers. After each step, Rmax values were determined. Differences between groups were examined using one-way analysis of variance (ANOVA). The roughness of group 1 was significantly lower than that of group 2. The roughness increased significantly after coarse grinding in both groups. The results after glazing were similar to those obtained after fine grinding for non-veneered zirconia. However, fine-ground veneered zirconia had significantly higher roughness than venerred, glazed zirconia. No significant difference was found between fine-polished and glazed zirconia, but after the fine polishing of veneered zirconia, the roughness was significantly higher than after glazing. It can be concluded that for full-contour zirconia, fewer defects and lower roughness values resulted after grinding and polishing compared to veneered zirconia. After polishing zirconia, lower roughness values were achieved compared to glazing; more interesting was that the grinding of glazed zirconia using the NTI three-step system could deliver smooth surfaces comparable to untreated glazed zirconia surfaces. PMID:25059249

  18. Assessment of in vivo systemic toxicity and biodistribution of iron-doped silica nanoshells.

    PubMed

    Mendez, Natalie; Liberman, Alexander; Corbeil, Jacqueline; Barback, Christopher; Viveros, Robert; Wang, James; Wang-Rodriguez, Jessica; Blair, Sarah L; Mattrey, Robert; Vera, David; Trogler, William; Kummel, Andrew C

    2017-04-01

    Silica nanoparticles are an emerging class of biomaterials which may be used as diagnostic and therapeutic tools for biomedical applications. In particular, hollow silica nanoshells are attractive due to their hollow core. Approximately 70% of a 500 nm nanoshell is hollow, therefore more particles can be administered on a mg/kg basis compared to solid nanoparticles. Additionally, their nanoporous shell permits influx/efflux of gases and small molecules. Since the size, shape, and composition of a nanoparticle can dramatically alter its toxicity and biodistribution, the toxicology of these nanomaterials was assessed. A single dose toxicity study was performed in vivo to assess the toxicity of 500 nm iron-doped silica nanoshells at clinically relevant doses of 10-20 mg/kg. This study showed that only a trace amount of silica was detected in the body 10 weeks post-administration. The hematology, biochemistry and pathological results show that the nanoshells exhibit no acute or chronic toxicity in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Synthesis and surface characterization of alumina-silica-zirconia nanocomposite ceramic fibres on aluminium at room temperature

    NASA Astrophysics Data System (ADS)

    Mubarak Ali, M.; Raj, V.

    2010-04-01

    Alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres were synthesized by conventional anodization route. Scanning Electron Microscopy (SEM), Atomic Force microscopy (AFM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX) were used to characterize the morphology and crystalloid structure of ASZNC fibres. Current density (DC) is one of the important parameters to get the alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres by this route. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity. The root mean square roughness of the sample observed from atomic force microscopic analysis is about 71.5 nm which is comparable to the average grain size of the coatings which is about 72 nm obtained from X-Ray diffraction. The results indicate that, the ASZNC fibres are arranged well in the nanostructure. The thickness of the coating increased with the anodizing time, but the coatings turned rougher and more porous. At the initial stage the growth of ceramic coating increases inwards to the metal substrate and outwards to the coating surface simultaneously. Subsequently, it mainly grows towards the metal substrate and the density of the ceramic coating increases gradually, which results in the decrease of the total thickness as anodizing time increases. This new approach of preparing ASZNC ceramic fibres may be important in applications ranging from gas sensors to various engineering materials.

  20. High-performance transition metal-doped Pt 3Ni octahedra for oxygen reduction reaction

    DOE PAGES

    Huang, Xiaoqing; Zhao, Zipeng; Cao, Liang; ...

    2015-06-11

    Bimetallic platinum-nickel (Pt-Ni) nanostructures represent an emerging class of electrocatalysts for oxygen reduction reaction (ORR) in fuel cells, but practical applications have been limited by catalytic activity and durability. We surface-doped Pt 3Ni octahedra supported on carbon with transition metals, termed M-Pt 3Ni/C, where M is vanadium, chromium, manganese, iron, cobalt, molybdenum (Mo), tungsten, or rhenium. The Mo-Pt 3Ni/C showed the best ORR performance, with a specific activity of 10.3 mA/cm2 and mass activity of 6.98 A/mgPt, which are 81- and 73-fold enhancements compared with the commercial Pt/C catalyst (0.127 mA/cm 2 and 0.096 A/mg Pt). In conclusion, theoretical calculationsmore » suggest that Mo prefers subsurface positions near the particle edges in vacuum and surface vertex/edge sites in oxidizing conditions, where it enhances both the performance and the stability of the Pt3Ni catalyst.« less

  1. Controlling BaZrO3 nanostructure orientation in YBa2Cu3O{}_{7-\\delta } films for a three-dimensional pinning landscape

    NASA Astrophysics Data System (ADS)

    Wu, J. Z.; Shi, J. J.; Baca, F. J.; Emergo, R.; Wilt, J.; Haugan, T. J.

    2015-12-01

    The orientation phase diagram of self-assembled BaZrO3 (BZO) nanostructures in c-oriented YBa2Cu3O{}7-δ (YBCO) films on flat and vicinal SrTiO3 substrates was studied experimentally with different dopant concentrations and vicinal angles and theoretically using a micromechanical model based on the theory of elasticity. The organized BZO nanostructure configuration was found to be tunable, between c-axis to ab-plane alignment, by the dopant concentration in the YBCO film matrix strained via lattice mismatched substrates. The correlation between the local strain caused by the BZO doping and the global strain on the matrix provides a unique approach for controllable growth of dopant nanostructure landscapes. In particular, a mixed phase of the c-axis-aligned nanorods and the ab-plane-aligned planar nanostructures can be obtained, leading to a three-dimensional pinning landscape with single impurity doping and much improved J c in almost all directions of applied magnetic field.

  2. Preparation and Properties of Iron Doped II-VI Chalcogenides

    DTIC Science & Technology

    1990-03-29

    Toulmin (13) have reported that the solubility limit of iron in the system Znl-xFexS was 58 mole percent iron. Papalardo and Dietz (14) studied the...of iron in zinc sulfide has previously been determined by Barton and Toulmin (13) to be 58 mole percent iron at 890OC. The samples in their studies...1988). 13. P. Barton and P. Toulmin , Economic Geology, 61, (5), 815 (1966). 14. R. Pappalardo and R. Dietz, Phys Rev., 123 (4) 1188 (1961). 15. P. W, R

  3. Facile synthesis of one dimensional ZnO nanostructures for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.

    2016-05-01

    Development of zinc oxide (ZnO) nanostructure based third generation dye sensitized solar cell is interesting compared to conventional silicon solar cells. ZnO nanostructured thin films were electrochemically deposited onto fluorine doped tin oxide (FTO) glass substrate. The effect of ethylene-diamine-tetra-acetic acid (EDTA) on structural, morphological and optical properties is investigated using X-ray diffraction (XRD) meter, field emission scanning electron microscope (FE-SEM) and micro Raman spectroscopy. XRD patterns reveal that the prepared nanostructures are hexagonal wutrzite structures with (101) plane orientation, the nanostructure prepared using EDTA exhibits better crystallinity. FE-SEM images illustrate that the morphological changes are observed from nanorod structure to cauliflower like structure as EDTA is added. Micro Raman spectra predict that cauliflower like structure possesses a higher crystalline nature with less atomic defects compared to nanorod structures. Dye sensitized solar cell (DSSC) is constructed for the optimized cauliflower structure, and open circuit voltage, short circuit density, fill factor and efficiency are estimated from the J-V curve.

  4. Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping.

    PubMed

    Ning, Guoqing; Ma, Xinlong; Zhu, Xiao; Cao, Yanming; Sun, Yuzhen; Qi, Chuanlei; Fan, Zhuangjun; Li, Yongfeng; Zhang, Xin; Lan, Xingying; Gao, Jinsen

    2014-09-24

    Here, we report a new approach to synthesizing S-doped porous carbons and achieving both a high capacity and a high Coulombic efficiency in the first cycle for carbon nanostructures as anodes for Li ion batteries. S-doped porous carbons (S-PCs) were synthesized by carbonization of pitch using magnesium sulfate whiskers as both templates and S source, and a S doping up to 10.1 atom % (corresponding to 22.5 wt %) was obtained via a S doping reaction. Removal of functional groups or highly active C atoms during the S doping has led to formation of much thinner solid-electrolyte interface layer and hence significantly enhanced the Coulombic efficiency in the first cycle from 39.6% (for the undoped porous carbon) to 81.0%. The Li storage capacity of the S-PCs is up to 1781 mA h g(-1) at the current density of 50 mA g(-1), more than doubling that of the undoped porous carbon. Due to the enhanced conductivity, the hierarchically porous structure and the excellent stability, the S-PC anodes exhibit excellent rate capability and reliable cycling stability. Our results indicate that S doping can efficiently promote the Li storage capacity and reduce the irreversible Li combination for carbon nanostructures.

  5. Synthesis of graphene and graphene nanostructures by ion implantation and pulsed laser annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaotie; Rudawski, Nicholas G.; Appleton, Bill R.

    2016-07-14

    In this paper, we report a systematic study that shows how the numerous processing parameters associated with ion implantation (II) and pulsed laser annealing (PLA) can be manipulated to control the quantity and quality of graphene (G), few-layer graphene (FLG), and other carbon nanostructures selectively synthesized in crystalline SiC (c-SiC). Controlled implantations of Si{sup −} plus C{sup −} and Au{sup +} ions in c-SiC showed that both the thickness of the amorphous layer formed by ion damage and the doping effect of the implanted Au enhance the formation of G and FLG during PLA. The relative contributions of the amorphousmore » and doping effects were studied separately, and thermal simulation calculations were used to estimate surface temperatures and to help understand the phase changes occurring during PLA. In addition to the amorphous layer thickness and catalytic doping effects, other enhancement effects were found to depend on other ion species, the annealing environment, PLA fluence and number of pulses, and even laser frequency. Optimum II and PLA conditions are identified and possible mechanisms for selective synthesis of G, FLG, and carbon nanostructures are discussed.« less

  6. Spectroscopic characterization of iron-doped II-VI compounds for laser applications

    NASA Astrophysics Data System (ADS)

    Martinez, Alan

    currently covered by available sources while maintaining absorption which overlaps with available pump sources. Because optimization of these materials requires extensive experimentation, a technique to fabricate and characterize novel crystals in powder form was developed, eliminating the need for the crystal growth. Powders were characterized using Raman, photoluminescence studies, and kinetics of luminescence. The first demonstration of random lasing of Fe:ZnCdTe powder at 6 microm was reported. These results show promise for the development of these TM-doped ternary II-VI compounds as laser gain media operating at 6 microm and longer. The second major objective was to study the performance of TM:II-VI elements as saturable absorber Q-switches and mode-lockers in flash lamp pumped Er:YAG and Er:Cr:YSGG cavities. Different cavity schemes were arranged to eliminate depolarization losses and improve Q-switching performance in Er:YAG and the first use of Cr:ZnSe to passively Q -switch an Er:Cr:YSGG cavity was demonstrated. While post-growth thermal diffusion is an effective way to prepare large-scale highly doped TM:II-VI laser elements, the diffusion rate of some ions into II-VI semiconductors is too low to make this method practical for large crystals. The third objective was to improve the rate of thermal diffusion of iron into II-VI semiconductor crystals by means of gamma-irradiation during the diffusion process. When exposed to a dose rate of 44 R/s during the diffusion process, the diffusion coefficient for Fe into ZnSe showed improvement of 60% and the diffusion coefficient of Fe into ZnS showed improvement of 30%.

  7. Bond Strength of Resin Cements to Zirconia Ceramic Using Adhesive Primers.

    PubMed

    Stefani, Ariovaldo; Brito, Rui Barbosa; Kina, Sidney; Andrade, Oswaldo Scopin; Ambrosano, Gláucia Maria Bovi; Carvalho, Andreia Assis; Giannini, Marcelo

    2016-07-01

    To evaluate the influence of adhesive primers on the microshear bond strength of resin cements to zirconia ceramic. Fifty zirconia plates (12 mm × 5 mm × 1.5 mm thick) of a commercially available zirconium oxide ceramic (ZirCad) were sintered, sandblasted with aluminum oxide particles, and cleaned ultrasonically before bonding. The plates were randomly divided into five groups of 10. Three resin cements were selected (RelyX ARC, Multilink Automix, Clearfil SA Cement self-adhesive resin cement), along with two primers (Metal-Zirconia Primer, Alloy Primer) and one control group. The primers and resin cements were used according to manufacturers' recommendations. The control group comprised the conventional resin cement (RelyX ARC) without adhesive primer. Test cylinders (0.75 mm diameter × 1 mm high) were formed on zirconia surfaces by filling cylindrical Tygon tube molds with resin cement. The specimens were stored in distilled water for 24 hours at 37°C, then tested for shear strength on a Shimadzu EZ Test testing machine at 0.5 mm/min. Bond strength data were analyzed statistically by two-way ANOVA and Dunnett's test (5%). The bond strength means in MPa (± s.d.) were: RelyX ARC: 28.1 (6.6); Multilink Automix: 37.6 (4.5); Multilink Automix + Metal-Zirconia Primer: 55.7 (4.0); Clearfil SA Cement: 46.2 (3.3); and Clearfil SA Cement + Alloy Primer: 47.0 (4.1). Metal-Zirconia Primer increased the bond strength of Multilink Automix resin cement to zirconia, but no effect was observed for Alloy Primer using Clearfil SA Cement. RelyX ARC showed the lowest bond strength to zirconia. © 2015 by the American College of Prosthodontists.

  8. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  9. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherly, K. B.; Rakesh, K.

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with themore » theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.« less

  10. 3D-characterization of the veneer-zirconia interface using FIB nano-tomography.

    PubMed

    Mainjot, Amélie K; Douillard, Thierry; Gremillard, Laurent; Sadoun, Michaël J; Chevalier, Jérôme

    2013-02-01

    The phenomena occurring during zirconia frameworks veneering process are not yet fully understood. In particular the study of zirconia behavior at the interface with the veneer remains a challenge. However this interface has been reported to act on residual stress in the veneering ceramic, which plays a significant role in clinical failures such as chipping. The objective of this study was thus to investigate the veneer-zirconia interface using a recent 3D-analysis tool and to confront these observations to residual stress measurements in the veneering ceramic. Two cross-sectioned bilayered disc samples (veneer on zirconia), exhibiting different residual stress profiles in the veneering ceramic, were investigated using 2D and 3D imaging (respectively Scanning Electron Microscopy (SEM) and Focused Ion Beam nanotomography (FIB-nt), associated with chemical analysis by Energy Dispersive X-ray Spectroscopy (EDS). The observations did not reveal any structural change in the bulk of zirconia layer of both samples. However the presence of structural alterations and sub-surface microcracks were highlighted in the first micrometer of zirconia surface, exclusively for the sample exhibiting interior tensile stress in the veneering ceramic. No interdiffusion phenomena were observed. FIB nanotomography was proven to be a powerful technique to study the veneer-zirconia interface. The determination of the origin and the nature of zirconia alterations need to be further studied. The results of the present study support the hypothesis that zirconia surface property changes could be involved in the development of tensile stress in the veneering ceramic, increasing the risk of chipping. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads.

    PubMed

    Catledge, Shane A; Cook, Monique; Vohra, Yogesh K; Santos, Erick M; McClenny, Michelle D; David Moore, K

    2003-10-01

    One new and nine explanted zirconia femoral heads were studied using glancing angle X-ray diffraction, scanning electron microscopy, and nanoindentation hardness techniques. All starting zirconia implants consisted only of tetragonal zirconia polycrystals (TZP). For comparison, one explanted alumina femoral head was also studied. Evidence for a surface tetragonal-to-monoclinic zirconia phase transformation was observed in some implants, the extent of which was varied for different in-service conditions. A strong correlation was found between increasing transformation to the monoclinic phase and decreasing surface hardness. Microscopic investigations of some of the explanted femoral heads revealed ultra high molecular weight polyethylene and metallic transfer wear debris.

  12. Antiferroelectricity in lanthanum doped zirconia without metallic capping layers and post-deposition/-metallization anneals

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Gaskell, Anthony Arthur; Dopita, Milan; Kriegner, Dominik; Tasneem, Nujhat; Mack, Jerry; Mukherjee, Niloy; Karim, Zia; Khan, Asif Islam

    2018-05-01

    We report the effects of lanthanum doping/alloying on antiferroelectric (AFE) properties of ZrO2. Starting with pure ZrO2, an increase in La doping leads to the narrowing of the AFE double hysteresis loops and an increase in the critical voltage/electric field for AFE → ferroelectric transition. At higher La contents, the polarization-voltage characteristics of doped/alloyed ZrO2 resemble that of a non-linear dielectric without any discernible AFE-type hysteresis. X-ray diffraction based analysis indicates that the increased La content while preserving the non-polar, parent AFE, tetragonal P42/nmc phase leads to a decrease in tetragonality and the (nano-)crystallite size and an increase in the unit cell volume. Furthermore, antiferroelectric behavior is obtained in the as-deposited thin films without requiring any capping metallic layers and post-deposition/-metallization anneals due to which our specific atomic layer deposition system configuration crystallizes and stabilizes the AFE tetragonal phase during growth.

  13. Alumina-Reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  14. Optical properties and light irradiance of monolithic zirconia at variable thicknesses.

    PubMed

    Sulaiman, Taiseer A; Abdulmajeed, Aous A; Donovan, Terrence E; Ritter, André V; Vallittu, Pekka K; Närhi, Timo O; Lassila, Lippo V

    2015-10-01

    The aims of this study were to: (1) estimate the effect of polishing on the surface gloss of monolithic zirconia, (2) measure and compare the translucency of monolithic zirconia at variable thicknesses, and (3) determine the effect of zirconia thickness on irradiance and total irradiant energy. Four monolithic partially stabilized zirconia (PSZ) brands; Prettau® (PRT, Zirkonzahn), Bruxzir® (BRX, Glidewell), Zenostar® (ZEN, Wieland), Katana® (KAT, Noritake), and one fully stabilized zirconia (FSZ); Prettau Anterior® (PRTA, Zirkonzahn) were used to fabricate specimens (n=5/subgroup) with different thicknesses (0.5, 0.7, 1.0, 1.2, 1.5, and 2.0mm). Zirconia core material ICE® Zircon (ICE, Zirkonzahn) was used as a control. Surface gloss and translucency were evaluated using a reflection spectrophotometer. Irradiance and total irradiant energy transmitted through each specimen was quantified using MARC® Resin Calibrator. All specimens were then subjected to a standardized polishing method and the surface gloss, translucency, irradiance, and total irradiant energy measurements were repeated. Statistical analysis was performed using two-way ANOVA and post-hoc Tukey's tests (p<0.05). Surface gloss was significantly affected by polishing (p<0.05), regardless of brand and thickness. Translucency values ranged from 5.65 to 20.40 before polishing and 5.10 to 19.95 after polishing. The ranking from least to highest translucent (after polish) was: BRX=ICE=PRTzirconia and the amount was brand dependent (p<0.05). Brand selection, thickness, and polishing of monolithic zirconia can affect the ultimate clinical outcome of the optical properties of zirconia restorations. FSZ is relatively more polishable and translucent than PSZ. Copyright © 2015 Academy of Dental

  15. Influence of cleaning methods on resin bonding to saliva-contaminated zirconia.

    PubMed

    Yoshida, Keiichi

    2018-02-08

    The aim of this study was to investigate the influence of different cleaning methods on the shear bond strengths of 2 resin cements to saliva-contaminated zirconia. After saliva contamination, alumina-blasted zirconia specimens were cleaned with 1 of 5 methods of water-rinsing (SA), K-etchant GEL phosphoric acid (PA), Ivoclean (IC), AD Gel (ADG), or additional alumina-blasting (AB). Alumina-blasted zirconia without saliva contamination was used as control group (Cont). Composite cylinders were bonded to the zirconia with 1 of 2 dual-cured resin cements. The bond strengths were measured by shear testing after 24 hours (TC0) and after thermal cycling at 4°C-60°C (TC10 000) and specimen surfaces were evaluated using X-ray photoelectron spectroscopy (XPS). Data were statistically analyzed using 3-way analysis of variance and Tukey test (α = 0.05). There were no significant differences in the bond strengths of 2 resin cements between the Cont ADG, and AB groups before and after TCs (P > .05). SA, PA, and IC groups did not exhibit durable resin bonding to zirconia. XPS showed that carbon and nitrogen increased in the SA group in comparison to the Cont group. The concentration of carbon in other 4 groups returned to the concentration range of the Cont group; however, nitrogen was not detected in the only AB group. Saliva contamination significantly reduced the bond strength of 2 resin cements to zirconia. Additional AB or cleaning with ADG resulted in effective cleaning of saliva contamination and preserved resin cement bond strength to zirconia. Saliva contamination occurs during clinical procedures for adjustment of zirconia ceramic restorations in the oral environment. AD Gel application is effective for removing saliva contaminants on the alumina-blasted zirconia surface beforehand by the dental laboratory instead of additional AB since AD Gel application and AB had a similar effect on the removal of organic components of saliva. © 2018 Wiley Periodicals

  16. Computational design of surfaces, nanostructures and optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Choudhary, Kamal

    Properties of engineering materials are generally influenced by defects such as point defects (vacancies, interstitials, substitutional defects), line defects (dislocations), planar defects (grain boundaries, free surfaces/nanostructures, interfaces, stacking faults) and volume defects (voids). Classical physics based molecular dynamics and quantum physics based density functional theory can be useful in designing materials with controlled defect properties. In this thesis, empirical potential based molecular dynamics was used to study the surface modification of polymers due to energetic polyatomic ion, thermodynamics and mechanics of metal-ceramic interfaces and nanostructures, while density functional theory was used to screen substituents in optoelectronic materials. Firstly, polyatomic ion-beams were deposited on polymer surfaces and the resulting chemical modifications of the surface were examined. In particular, S, SC and SH were deposited on amorphous polystyrene (PS), and C2H, CH3, and C3H5 were deposited on amorphous poly (methyl methacrylate) (PMMA) using molecular dynamics simulations with classical reactive empirical many-body (REBO) potentials. The objective of this work was to elucidate the mechanisms by which the polymer surface modification took place. The results of the work could be used in tailoring the incident energy and/or constituents of ion beam for obtaining a particular chemistry inside the polymer surface. Secondly, a new Al-O-N empirical potential was developed within the charge optimized many body (COMB) formalism. This potential was then used to examine the thermodynamic stability of interfaces and mechanical properties of nanostructures composed of aluminum, its oxide and its nitride. The potentials were tested for these materials based on surface energies, defect energies, bulk phase stability, the mechanical properties of the most stable bulk phase, its phonon properties as well as with a genetic algorithm based evolution theory of

  17. Luminescence properties of rare earth doped metal oxide nanostructures: A case of Eu-ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, D.; Acharya, B. S.; Panda, N. R., E-mail: nihar@iitbbs.ac.in

    2016-05-06

    The present study reports the growth and luminescence properties of Eu doped ZnO nanostructures. The experiment has been carried out by synthesizing the materials by simple wet-chemical method. X-ray diffraction (XRD) studies show expansion of ZnO lattice with the incorporation of Eu ions which has been confirmed from the appearance of Eu{sub 2}O{sub 3} as a minor phase in the XRD pattern. The estimation of crystallite size from XRD results matches closely with the results obtained from transmission electron microscopy. Further, these results show the formation of nanosized Eu-ZnO particles of average size around 60 nm stacked on each other. FTIRmore » studies show the presence of both Zn-O and Eu-O modes in the spectra supporting the results obtained from XRD. The interesting results obtained from photoluminescence (PL) measurements show the presence of both band edge emission in UV region and the defect emissions in violet, blue and green region. The appearance of {sup 5}D{sub 0}→{sup 7}F{sub J} transitions of Eu{sup 3+} ions in red region clearly suggests the possible occurrence of energy transfer between the energy states of ZnO host and Eu{sup 3+} ions.« less

  18. Iron incorporation in InP layers using a ferrocene source in atmospheric pressure MOVPE

    NASA Astrophysics Data System (ADS)

    Robein, D.; Kazmierski, C.; Pougnet, A. M.; Rose, B.

    1991-02-01

    Iron incorporation into InP has been studied using an AP MOVPE method. A very good control of the iron doping has been obtained with a ferrocene diffusion cell source. Semi-insulating material with a resistivity as a high as 5 × 10 8 Ω cm has been measured on n-SI-n diodes with iron-doped 1 mum thick layers. A compensation activity of iron near 100% has been found. An iron incorporation activition energy of 2.5 eV has been determined below the solubility limit. The iron concentration was found to be proportional to the gas-phase ferrocene concentration and to follow an inverse square-root law under increasing phosphine flow. In order to explain the observed phenomena, an incorporation mechanism model is developed assuming a two-phosphorus vacancy— substitutional iron complex as the incorporated species.

  19. Infrared wire-grid polarizer with sol-gel zirconia grating

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Ishihara, Yoshiro

    2017-05-01

    The infrared wire-grid polarizer consisting of an Al grating, Si, and sol-gel derived zirconia grating film was fabricated by soft imprint process and Al shadow coating processes. A silicone mold was used because of its low surface energy, flexibility, and capability of transferring submicrosized patterns. As a result, the Al grating with a pitch of 400 nm and a depth of 100 nm was obtained on the zirconia grating film. The fabricated polarizer exhibited a polarization function with the TM transmittance greater than that of the Si substrate in the specific wavelength range of 3.6-8.5 μm, because the zirconia film acted as an antireflection film. The maximum value was 63% at a wavelength of 5.2 μm. This increment of the TM transmission spectrum results in interference within the zirconia film. Also, the extinction ratio exceeded almost 20 dB in the 3-8.8 μm wavelength range.

  20. Innovations in bonding to zirconia-based materials. Part II: Focusing on chemical interactions.

    PubMed

    Aboushelib, Moustafa N; Mirmohamadi, Hesam; Matinlinna, Jukka P; Kukk, Edwin; Ounsi, Hani F; Salameh, Ziad

    2009-08-01

    The zirconia-resin bond strength was enhanced using novel engineered zirconia primers in combination with selective infiltration etching as a surface pre-treatment. The aim of this study was to evaluate the effect of artificial aging on the chemical stability of the established bond and to understand the activation mechanism of the used primers. Selective infiltration etched zirconia discs (Procera; NobelBiocare) were coated with one of four novel engineered zirconia primers containing reactive monomers and were bonded to resin-composite discs (Panavia F2.0). Fourier transform infrared spectroscopy (FT-IR) was carried out to examine the chemical activation of zirconia primers from mixing time and up to 60min. The bilayered specimens were cut into microbars (1mm(2) in cross-section area) and zirconia-resin microtensile bond strength (MTBS) was evaluated immediately and after 90 days of water storage at 37 degrees C. Scanning electron microscopy (SEM) was used to analyze the fracture surface. There was a significant drop in MTBS values after 90 days of water storage for all tested zirconia primers from ca. 28-41MPa to ca. 15-18MPa after completion of artificial aging. SEM revealed increase in percentage of interfacial failure after water storage. FTIR spectra suggested adequate activation of the experimental zirconia primers within 1h of mixing time. The novel engineered zirconia primers produced initially high bond strength values which were significantly reduced after water storage. Long-term bond stability requires developing more stable primers.

  1. Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns

    PubMed Central

    Kwon, Taek-Ka; Pak, Hyun-Soon; Han, Jung-Suk; Lee, Jai-Bong; Kim, Sung-Hun

    2013-01-01

    PURPOSE All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. MATERIALS AND METHODS Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. RESULTS The mean fracture strengths were as follows: 54.9 ± 15.6 N for the Lava CAD/CAM zirconia crowns and 87.0 ± 16.0 N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. CONCLUSION The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain. PMID:23755332

  2. Comparative fracture strength analysis of Lava and Digident CAD/CAM zirconia ceramic crowns.

    PubMed

    Kwon, Taek-Ka; Pak, Hyun-Soon; Yang, Jae-Ho; Han, Jung-Suk; Lee, Jai-Bong; Kim, Sung-Hun; Yeo, In-Sung

    2013-05-01

    All-ceramic crowns are subject to fracture during function. To minimize this common clinical complication, zirconium oxide has been used as the framework for all-ceramic crowns. The aim of this study was to compare the fracture strengths of two computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia crown systems: Lava and Digident. Twenty Lava CAD/CAM zirconia crowns and twenty Digident CAD/CAM zirconia crowns were fabricated. A metal die was also duplicated from the original prepared tooth for fracture testing. A universal testing machine was used to determine the fracture strength of the crowns. THE MEAN FRACTURE STRENGTHS WERE AS FOLLOWS: 54.9 ± 15.6 N for the Lava CAD/CAM zirconia crowns and 87.0 ± 16.0 N for the Digident CAD/CAM zirconia crowns. The difference between the mean fracture strengths of the Lava and Digident crowns was statistically significant (P<.001). Lava CAD/CAM zirconia crowns showed a complete fracture of both the veneering porcelain and the core whereas the Digident CAD/CAM zirconia crowns showed fracture only of the veneering porcelain. The fracture strengths of CAD/CAM zirconia crowns differ depending on the compatibility of the core material and the veneering porcelain.

  3. In Vitro Cell Proliferation and Mechanical Behaviors Observed in Porous Zirconia Ceramics

    PubMed Central

    Li, Jing; Wang, Xiaobei; Lin, Yuanhua; Deng, Xuliang; Li, Ming; Nan, Cewen

    2016-01-01

    Zirconia ceramics with porous structure have been prepared by solid-state reaction using yttria-stabilized zirconia and stearic acid powders. Analysis of its microstructure and phase composition revealed that a pure zirconia phase can be obtained. Our results indicated that its porosity and pore size as well as the mechanical characteristics can be tuned by changing the content of stearic acid powder. The optimal porosity and pore size of zirconia ceramic samples can be effective for the increase of surface roughness, which results in higher cell proliferation values without destroying the mechanical properties. PMID:28773341

  4. Scanning Tunneling Microscopy/Spectroscopy study on Optimally Potassium Doped Single Crystal BaFe2 As 2

    NASA Astrophysics Data System (ADS)

    Ma, Jihua; Li, Ang; Zhang, Chenglin; Dai, Pengcheng; Pan, Shuheng

    2011-03-01

    The iron pnictide parent compound material can be brought into superconducting state by chemical doping. It is worthwhile to study and compare the hole- and electron-doped iron pnictides. Among the well-known family of AEFe 2 As 2 (AE=Ca, Sr, Ba), the scanning tunneling microscopy/spectroscopy study on hole-doped samples is insufficient. In this talk we will present high resolution STM/STS results on (001) surface of the optimally doped single crystal Ba 0.6 K0.4 Fe 2 As 2 (Tc ~ 37 K). With the data we will discuss the spatial variation of the superconducting energy gap.

  5. Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation.

    PubMed

    Zhou, Xiongtu; Lin, Tihang; Liu, Yuhui; Wu, Chaoxing; Zeng, Xiangyao; Jiang, Dong; Zhang, Yong-ai; Guo, Tailiang

    2013-10-23

    High-quality tetrapod-shaped Sn-doped ZnO (T-SZO) nanostructures have been successfully synthesized via the thermal evaporation of mixed Zn and Sn powder. The effects of the Sn dopant on the morphology, microstructure, optical, and field-emission (FE) properties of T-SZO were investigated. It was found that the growth direction of the legs of T-SZO is parallel to the [0001] crystal c-axis direction and that the incorporation of Sn in the ZnO matrix increases the aspect ratio of the tetrapods, leads to blue shift in the UV region, and considerably improves the FE performance. The results also show that tetrapod cathodes with around a 0.84 atom % Sn dosage have the best FE properties, with a turn-on field of 1.95 V/μm, a current density of 950 μA/cm2 at a field of 4.5 V/μm, and a field-enhancement factor as high as 9556.

  6. Osseointegration of zirconia implants: an SEM observation of the bone-implant interface.

    PubMed

    Depprich, Rita; Zipprich, Holger; Ommerborn, Michelle; Mahn, Eduardo; Lammers, Lydia; Handschel, Jörg; Naujoks, Christian; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich

    2008-11-06

    The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.

  7. Effect of doping on structural, optical and electrical properties of nanostructure ZnO films deposited onto a-Si:H/Si heterojunction

    NASA Astrophysics Data System (ADS)

    Sali, S.; Boumaour, M.; Kermadi, S.; Keffous, A.; Kechouane, M.

    2012-09-01

    We investigated the structural; optical and electrical properties of ZnO thin films as the n-type semiconductor for silicon a-Si:H/Si heterojunction photodiodes. The ZnO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of doping on device performance. The results show that the X-ray diffraction (XRD) spectra revealed a preferred orientation of the crystallites along c-axis. SEM images show that all films display a granular, polycrystalline morphology and the ZnO:Al exhibits a better grain uniformity. The transmittance of the doped films was found to be higher when compared to undoped ZnO. A low resistivity of the order of 2.8 × 10-4 Ω cm is obtained for ZnO:Al using 0.4 M concentration of zinc acetate. The photoluminescence (PL) spectra exhibit a blue band with two peaks centered at 442 nm (2.80 eV) and 490 nm (2.53 eV). It is noted that after doping the ZnO films a shift of the band by 22 nm (0.15 eV) is recorded and a high luminescence occurs when using Al as a dopant. Dark I-V curves of ZnO/a-Si:H/Si structure showed large difference, which means there is a kind of barrier to current flow between ZnO and a-Si:H layer. Doping films was applied and the turn-on voltages are around 0.6 V. Under reverse bias, the current of the ZnO/a-Si:H/Si heterojunction is larger than that of ZnO:Al/a-Si:H/Si. The improvement with ZnO:Al is attributed to a higher number of generated carriers in the nanostructure (due to the higher transmittance and a higher luminescence) that increases the probability of collisions.

  8. Influence of full-contour zirconia surface roughness on wear of glass-ceramics.

    PubMed

    Luangruangrong, Palika; Cook, N Blaine; Sabrah, Alaa H; Hara, Anderson T; Bottino, Marco C

    2014-04-01

    The purpose of this study was to evaluate the influence of full-contour (Y-TZP) zirconia surface roughness (glazed vs. as-machined) on the wear behavior of glass-ceramics. Thirty-two full contour Y-TZP (Diazir®) specimens (hereafter referred to as zirconia sliders) (ϕ = 2 mm, 1.5 mm in height) were fabricated using CAD/CAM and sintered according to the manufacturer's instructions. Zirconia sliders were embedded in brass holders using acrylic resin and then randomly assigned (n = 16) according to the surface treatment received, that is, as-machined or glazed. Glass-ceramic antagonists, Empress/EMP and e.max/EX, were cut into tabs (13 × 13 × 2 mm(3) ), wet-finished, and similarly embedded in brass holders. Two-body pin-on-disk wear testing was performed at 1.2 Hz for 25,000 cycles under a 3 kg load. Noncontact profilometry was used to measure antagonist height (μm) and volume loss (mm(3) ). Qualitative data of the zirconia testing surfaces and wear tracks were obtained using SEM. Statistics were performed using ANOVA with a significance level of 0.05. As-machined yielded significantly higher mean roughness values (Ra = 0.83 μm, Rq = 1.09 μm) than glazed zirconia (Ra = 0.53 μm, Rq = 0.78 μm). Regarding glass-ceramic antagonist loss, as-machined zirconia caused significantly less mean height and volume loss (68.4 μm, 7.6 mm(3) ) for EMP than the glazed group (84.9 μm, 9.9 mm(3) ), while no significant differences were found for EX. Moreover, EMP showed significantly lower mean height and volume loss than EX (p < 0.0001). SEM revealed differences on wear characteristics between the glass-ceramics tested. e.max wear was not affected by zirconia surface roughness; however, Empress wear was greater when opposing glazed zirconia. Overall, surface glazing on full-contour zirconia did not minimize glass-ceramic wear when compared with as-machined zirconia. © 2013 by the American College of Prosthodontists.

  9. A sol-powder coating technique for fabrication of yttria stabilised zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wattanasiriwech, Darunee; Wattanasiriwech, Suthee; Stevens, Ron

    Yttria stabilised zirconia has been prepared using a simple sol-powder coating technique. The polymeric yttria sol, which was prepared using 1,3 propanediol as a network modifier, was homogeneously mixed with nanocrystalline zirconia powder and it showed a dual function: as a binder which promoted densification and a phase modifier which stabilised zirconia in the tetragonal and cubic phases. Thermal analysis and X-ray diffraction revealed that the polymeric yttria sol which decomposed at low temperature into yttrium oxide could change the m {sup {yields}} t phase transformation behaviour of the zirconia, possibly due to the small particle size and very highmore » surface area of both yttria and zirconia particles allowing rapid alloying. The sintered samples exhibited three crystalline phases: monoclinic, tetragonal and cubic, in which cubic and tetragonal are the major phases. The weight fractions of the individual phases present in the selected specimens were determined using quantitative Rietveld analysis.« less

  10. Bonding of Resin Cement to Zirconia with High Pressure Primer Coating

    PubMed Central

    Wang, Ying-jie; Jiao, Kai; Liu, Yan; Zhou, Wei; Shen, Li-juan; Fang, Ming; Li, Meng; Zhang, Xiang; Tay, Franklin R.; Chen, Ji-hua

    2014-01-01

    Objectives To investigate the effect of air-drying pressure during ceramic primer coating on zirconia/resin bonding and the surface characteristics of the primed zirconia. Methods Two ceramic primers (Clearfil Ceramic Primer, CCP, Kuraray Medical Inc. and Z-Prime Plus, ZPP, Bisco Inc.) were applied on the surface of air-abraded zirconia (Katana zirconia, Noritake) and dried at 4 different air pressures (0.1–0.4 MPa). The primed zirconia ceramic specimens were bonded with a resin-based luting agent (SA Luting Cement, Kuraray). Micro-shear bond strengths of the bonded specimens were tested after 3 days of water storage or 5,000× thermocycling (n = 12). Failure modes of the fractured specimens were examined with scanning electron miscopy. The effects of air pressure on the thickness of the primer layers and the surface roughness (Sa) of primed zirconia were evaluated using spectroscopic ellipsometry (n = 6), optical profilometry and environmental scanning electron microscopy (ESEM) (n = 6), respectively. Results Clearfil Ceramic Primer air-dried at 0.3 and 0.4 MPa, yielding significantly higher µSBS than gentle air-drying subgroups (p<0.05). Compared to vigorous drying conditions, Z-Prime Plus air-dried at 0.2 MPa exhibited significantly higher µSBS (p<0.05). Increasing air-drying pressure reduced the film thickness for both primers. Profilometry measurements and ESEM showed rougher surfaces in the high pressure subgroups of CCP and intermediate pressure subgroup of ZPP. Conclusion Air-drying pressure influences resin/zirconia bond strength and durability significantly. Higher air-drying pressure (0.3-0.4 MPa) for CCP and intermediate pressure (0.2 MPa) for ZPP are recommended to produce strong, durable bonds between resin cement and zirconia ceramics. PMID:24992678

  11. Reactions of yttria-stabilized zirconia with oxides and sulfates of various elements

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1978-01-01

    The reactions between partially stabilized zirconia, containing 8 weight-percent yttria, and oxides and sulfates of various elements were studied at 1200, 1300, and 1400 C for times to 800, 400, and 200 hours, respectively. These oxides and sulfates represent impurities and additives potentially present in gas turbine fuels or impurities in the turbine combustion air as well as the elements of the substrate alloys in contact with zirconia. Based on the results, these compounds can be classified in four groups: (1) compounds which did not react with zirconia (Na2SO4, K2SO4, Cr2O3, Al2O3 and NiO); (2) compounds that reached completely with both zirconia phases (CaO, BaO, and BaSO4); (3) compounds that reacted preferentially with monoclinic zirconia (Na2O, K2O, CoO, Fe2O3, MgO, SiO2, and ZnO); and (4) compounds that reacted preferentially with cubic zirconia (V2O5, P2O5).

  12. Effective Parameters in Axial Injection Suspension Plasma Spray Process of Alumina-Zirconia Ceramics

    NASA Astrophysics Data System (ADS)

    Tarasi, F.; Medraj, M.; Dolatabadi, A.; Oberste-Berghaus, J.; Moreau, C.

    2008-12-01

    Suspension plasma spray (SPS) is a novel process for producing nano-structured coatings with metastable phases using significantly smaller particles as compared to conventional thermal spraying. Considering the complexity of the system there is an extensive need to better understand the relationship between plasma spray conditions and resulting coating microstructure and defects. In this study, an alumina/8 wt.% yttria-stabilized zirconia was deposited by axial injection SPS process. The effects of principal deposition parameters on the microstructural features are evaluated using the Taguchi design of experiment. The microstructural features include microcracks, porosities, and deposition rate. To better understand the role of the spray parameters, in-flight particle characteristics, i.e., temperature and velocity were also measured. The role of the porosity in this multicomponent structure is studied as well. The results indicate that thermal diffusivity of the coatings, an important property for potential thermal barrier applications, is barely affected by the changes in porosity content.

  13. The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth.

    PubMed

    Siswomihardjo, Widowati; Sunarintyas, Siti; Tontowi, Alva Edy

    2012-01-01

    Synthetic hydroxyapatite (HA) has been widely used and developed as the material for bone substitute in medical applications. The addition of zirconia is needed to improve the strength of hydroxyapatite as the bone substitute. One of the drawbacks in the use of biomedical materials is the occurrence of biomaterial-centred infections. The recent method of limiting the presence of microorganism on biomaterials is by providing biomaterial-bound metal-containing compositions. In this case, S. epidermidis is the most common infectious organism in biomedical-centred infection. Objective. This study was designed to evaluate the effect of zirconia concentrations in hydroxyapatite on the growth of S. epidermidis. Methods and Materials. The subjects of this study were twenty hydroxyapatite discs, divided into four groups in which one was the control and the other three were the treatment groups. Zirconia powder with the concentrations of 20%, 30%, and 40% was added into the three different treatment groups. Scanning electron microscope analysis was performed according to the hydroxyapatite and hydroxyapatite-zirconia specimens. All discs were immersed into S. epidermidis culture for 24 hours and later on they were soaked into a medium of PBS. The cultured medium was spread on mannitol salt agar. After incubation for 24 hours at 37°C , the number of colonies was measured with colony counter. Data obtained were analyzed using the ANOVA followed by the pairwise comparison. Result. The statistical analysis showed that different concentrations of zirconia powder significantly influenced the number of S. epidermidis colony (P < 0.05) . Conclusion. The addition of zirconia into hydroxyapatite affected the growth of S. epidermidis. Hydroxyapatite with 20% zirconia proved to be an effective concentration to inhibit the growth of S. epidermidis colony.

  14. Bioactive and Thermally Compatible Glass Coating on Zirconia Dental Implants

    PubMed Central

    Kirsten, A.; Hausmann, A.; Weber, M.; Fischer, J.

    2015-01-01

    The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58·10–6 K–1) than that of the zirconia (11.67·10–6 K–1). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. PMID:25421839

  15. The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth

    PubMed Central

    Siswomihardjo, Widowati; Sunarintyas, Siti; Tontowi, Alva Edy

    2012-01-01

    Synthetic hydroxyapatite (HA) has been widely used and developed as the material for bone substitute in medical applications. The addition of zirconia is needed to improve the strength of hydroxyapatite as the bone substitute. One of the drawbacks in the use of biomedical materials is the occurrence of biomaterial-centred infections. The recent method of limiting the presence of microorganism on biomaterials is by providing biomaterial-bound metal-containing compositions. In this case, S. epidermidis is the most common infectious organism in biomedical-centred infection. Objective. This study was designed to evaluate the effect of zirconia concentrations in hydroxyapatite on the growth of S. epidermidis. Methods and Materials. The subjects of this study were twenty hydroxyapatite discs, divided into four groups in which one was the control and the other three were the treatment groups. Zirconia powder with the concentrations of 20%, 30%, and 40% was added into the three different treatment groups. Scanning electron microscope analysis was performed according to the hydroxyapatite and hydroxyapatite-zirconia specimens. All discs were immersed into S. epidermidis culture for 24 hours and later on they were soaked into a medium of PBS. The cultured medium was spread on mannitol salt agar. After incubation for 24 hours at 37°C , the number of colonies was measured with colony counter. Data obtained were analyzed using the ANOVA followed by the pairwise comparison. Result. The statistical analysis showed that different concentrations of zirconia powder significantly influenced the number of S. epidermidis colony (P < 0.05) . Conclusion. The addition of zirconia into hydroxyapatite affected the growth of S. epidermidis. Hydroxyapatite with 20% zirconia proved to be an effective concentration to inhibit the growth of S. epidermidis colony. PMID:22919390

  16. Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1985-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  17. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications.

    PubMed

    Gautam, Chandkiram; Joyner, Jarin; Gautam, Amarendra; Rao, Jitendra; Vajtai, Robert

    2016-12-06

    Zirconia (ZrO 2 ) based dental ceramics have been considered to be advantageous materials with adequate mechanical properties for the manufacturing of medical devices. Due to its very high compression strength of 2000 MPa, ZrO 2 can resist differing mechanical environments. During the crack propagation on the application of stress on the surface of ZrO 2 , a crystalline modification diminishes the propagation of cracks. In addition, zirconia's biocompatibility has been studied in vivo, leading to the observation of no adverse response upon the insertion of ZrO 2 samples into the bone or muscle. In vitro experimentation has exhibited the absence of mutations and good viability of cells cultured on this material leading to the use of ZrO 2 in the manufacturing of hip head prostheses. The mechanical properties of zirconia fixed partial dentures (FPDs) have proven to be superior to other ceramic/composite restorations and hence leading to their significant applications in implant supported rehabilitations. Recent developments were focused on the synthesis of zirconia based dental materials. More recently, zirconia has been introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures in combination with computer aided design/computer aided manufacturing (CAD/CAM) techniques. This systematic review covers the results of past as well as recent scientific studies on the properties of zirconia based ceramics such as their specific compositions, microstructures, mechanical strength, biocompatibility and other applications in dentistry.

  18. Shear bond strength of indirect composite material to monolithic zirconia.

    PubMed

    Sari, Fatih; Secilmis, Asli; Simsek, Irfan; Ozsevik, Semih

    2016-08-01

    This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia.

  19. Zirconia in dentistry: part 2. Evidence-based clinical breakthrough.

    PubMed

    Koutayas, Spiridon Oumvertos; Vagkopoulou, Thaleia; Pelekanos, Stavros; Koidis, Petros; Strub, Jörg Rudolf

    2009-01-01

    An ideal all-ceramic restoration that conforms well and demonstrates enhanced biocompatibility, strength, fit, and esthetics has always been desirable in clinical dentistry. However, the inherent brittleness, low flexural strength, and fracture toughness of conventional glass and alumina ceramics have been the main obstacles for extensive use. The recent introduction of zirconia-based ceramics as a restorative dental material has generated considerable interest in the dental community, which has been expressed with extensive industrial, clinical, and research activity. Contemporary zirconia powder technology contributes to the fabrication of new biocompatible all-ceramic restorations with improved physical properties for a wide range of promising clinical applications. Especially with the development of computer-aided design (CAD)/computer-aided manufacturing (CAM) systems, high-strength zirconia frameworks can be viable for the fabrication of full and partial coverage crowns, fixed partial dentures, veneers, posts and/or cores, primary double crowns, implant abutments, and implants. Data from laboratory and clinical studies are promising regarding their performance and survival. However, clinical data are considered insufficient and the identified premature complications should guide future research. In addition, different zirconia-based dental auxiliary components (i.e., cutting burs and surgical drills, extra-coronal attachments and orthodontic brackets) can also be technologically feasible. This review aims to present and discuss zirconia manufacturing methods and their potential for successful clinical application in dentistry.

  20. Delicate Ag/V2O5/TiO2 ternary nanostructures as a high-performance photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-Dong; Zheng, Ya-Lun; Feng, Yu-Jie; Sun, Ke-Ning

    2018-02-01

    Here we report, for the first time, delicate ternary nanostructures consisting of TiO2 nanoplatelets co-doped with Ag and V2O5 nanoparticles. The relationship between the composition and the morphology is systematically studied. We find a remarkable synergistic effect among the three components, and the resulting delicate Ag/V2O5/TiO2 ternary nanostructures exhibit a superior photocatalytic performance over neat TiO2 nanoplatelets as well as Ag/TiO2 and V2O5/TiO2 binary nanostructures for the degradation of methyl orange. We believe our delicate Ag/V2O5/TiO2 ternary nanostructures may lay a basis for developing next-generating, high-performance composite photocatalysts.

  1. Fracture resistance and reliability of new zirconia posts.

    PubMed

    Oblak, Cedomir; Jevnikar, Peter; Kosmac, Tomaz; Funduk, Nenad; Marion, Ljubo

    2004-04-01

    The radicular portion of zirconia endodontic posts often need to be reshaped to achieve a definitive form and may be airborne-particle abraded to improve adhesion during luting. Therefore, the surface of the tetragonal zirconia ceramics may be transformed and damaged, influencing the mechanical properties of the material. This study compared the fracture resistance of prefabricated zirconia posts with a new retentive post-head after different surface treatments. Experimental zirconia posts of 2 different diameters, 1.3 mm and 1.5 mm, were produced from commercially available zirconia powder. A cylindro-conical outline form was used for the root portion of the system and a post-head with 3 retentive rings was designed. Sixty posts of each diameter were divided into 3 groups (n=20). Group 1 was ground with a coarse grit diamond bur; Group 2 was airborne-particle abraded with 110-microm fused alumina particles, and Group 3 was left as-received (controls). Posts were luted into the root-shaped artificial canals with the Clearfil adhesive system and Panavia 21 adhesive resin luting agent. The posts were loaded in a universal testing machine at an inclination of 45 degrees with the constant cross-head speed of 1 mm/min. The fracture load (N) necessary to cause post fracture was recorded, and the statistical significance of differences among groups was analyzed with 1-way ANOVA followed by the Fischer LSD test (alpha=.05). The variability was analyzed using Weibull statistics. Load to fracture values of all zirconia posts depended primarily on post diameter. Mean fracture loads (SD) in Newtons were 518.4 (+/-101.3), 993.6 (+/-224.1), and 622.7 (+/-110.3) for Groups 1 through 3, respectively, for thicker posts, and 385.9 (+/-110.3), 627.0 (+/-115.1), and 451.2 (+/-81.4) for Groups 1 through 3, respectively, for thinner posts. Airborne-particle-abraded posts exhibited significantly higher resistance to fracture (P<.05) than those in the other 2 groups for diameters 1.3 mm

  2. Finite Element Analysis of IPS Empress II Ceramic Bridge Reinforced by Zirconia Bar

    PubMed Central

    Kermanshah, H.; Bitaraf, T.; Geramy, A.

    2012-01-01

    Objective: The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS –Empress II core ceramics. Materials and Methods: The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB), zirconia bar with vertical trench (VZB) and zirconia bar with horizontal trench (HZB) (cross sections of these bars were circular). The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component and von Mises stresses were evaluated along a defined path. Results: In the connector area, von Mises stress in MPa were approximately identical in the specimens with ZB (at molar connector (MC): 4.75 and at premolar connector (PC): 6.40) and without ZB (MC: 5.50, PC: 6.68), and considerable differences were not recognized. Whereas, Von-Mises stress (MPa) in the specimens with horizontal trenched Zirconia bar (HZB) (MC: 3.91, PC: 2.44) and Vertical trenched Zirconia bar (VZB) (MC: 2.53, PC: 2.56) was decreased considerably. Conclusion: Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures. PMID:23323181

  3. Finite Element Analysis of IPS Empress II Ceramic Bridge Reinforced by Zirconia Bar.

    PubMed

    Kermanshah, H; Bitaraf, T; Geramy, A

    2012-01-01

    The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS -Empress II core ceramics. The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB), zirconia bar with vertical trench (VZB) and zirconia bar with horizontal trench (HZB) (cross sections of these bars were circular). The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component and von Mises stresses were evaluated along a defined path. IN THE CONNECTOR AREA, VON MISES STRESS IN MPA WERE APPROXIMATELY IDENTICAL IN THE SPECIMENS WITH ZB (AT MOLAR CONNECTOR (MC): 4.75 and at premolar connector (PC): 6.40) and without ZB (MC: 5.50, PC: 6.68), and considerable differences were not recognized. Whereas, Von-Mises stress (MPa) in the specimens with horizontal trenched Zirconia bar (HZB) (MC: 3.91, PC: 2.44) and Vertical trenched Zirconia bar (VZB) (MC: 2.53, PC: 2.56) was decreased considerably. Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures.

  4. Cubic zirconia as a species permeable coating for zinc diffusion in gallium arsenide

    NASA Astrophysics Data System (ADS)

    Bisberg, J. E.; Dabkowski, F. P.; Chin, A. K.

    1988-10-01

    Diffusion of zinc into GaAs through an yttria-stabilized cubic zirconia (YSZ) passivation layer has been demonstrated with an open-tube diffusion method. Pure zinc or GaAs/Zn2As3 sources produced high quality planar p-n junctions. The YSZ layer protects the GaAs surface from excessive loss of arsenic, yet is permeable to zinc, allowing its diffusion into the semiconductor. The YSZ films, deposited by electron beam evaporation, were typically 2000 Å thick. Zinc diffusion coefficients (DT) at 650 °C in the YSZ passivated GaAs ranged from 3.6×10-10 cm2/min for the GaAs/Zn2As3 source to 1.9×10-9 cm2/min for the pure zinc source. Doping concentrations for both YSZ passivated and uncapped samples were approximately 5×1019 cm-3.

  5. Surface Modification of Zirconia Substrate by Calcium Phosphate Particles Using Sol-Gel Method.

    PubMed

    Jin, So Dam; Um, Sang Cheol; Lee, Jong Kook

    2015-08-01

    Surface modification with a biphasic composition of hydroxyapatite (HA) and tricalcium phosphate (TCP) was performed on a zirconia substrate using a sol-gel method. An initial calcium phosphate sol was prepared by mixing a solution of Ca(NO3)2 · 4H20 and (C2H5O)3P(O), while both porous and dense zirconia were used as substrates. The sol-gel coating was performed using a spin coater. The coated porous zirconia substrate was re-sintered at 1350 °C 2 h, while coated dense zirconia substrate was heat-treated at 750 °C 1 h. The microstructure of the resultant HA/TCP coatings was found to be dependent on the type of zirconia substrate used. With porous zirconia as a starting substrate, numerous isolated calcium phosphate particles (TCP and HA) were uniformly dispersed on the surface, and the particle size and covered area were dependent on the viscosity of the calcium phosphate sol. Conversely, when dense zirconia was used as a starting substrate, a thick film of nano-sized HA particles was obtained after heat treatment, however, substantial agglomeration and cracking was also observed.

  6. Deposition of crystalline hydroxyapatite nano-particle on zirconia ceramic: a potential solution for the poor bonding characteristic of zirconia ceramics to resin cement.

    PubMed

    Azari, Abbas; Nikzad, Sakineh; Yazdani, Arash; Atri, Faezeh; Fazel Anvari-Yazdi, Abbas

    2017-07-01

    The poor bonding strength of zirconia to different dental substrates is one of the challenging issues in restorative dentistry. Hydroxyapatite is an excellent biocompatible material with fine bonding properties. In this study, it was hypothesized that hydroxyapatite coating on zirconia would improve its bond strength. Forty-five zirconia blocks were prepared and randomly divided into three groups: hydroxyapatite coating, sandblasting, and no preparation (control). The blocks were bonded to cement and the micro-shear bond strength was measured following load application. The bond strength values were analyzed with the Kruskal-Wallis test in 3 groups and paired comparisons were made using the Mann-Whitney U test. The failure patterns of the specimens were studied by a stereomicroscope and a scanning electron microscope and then analyzed by the chi-square test (significance level = 0.05). Deposition of hydroxyapatite on the zirconia surface significantly improved its bond strength to the resin cement in comparison with the control specimens (p < 0.0001). Also, the bond strength was similar to the sandblasted group (p = 0.34). The sandblasted and control group only showed adhesive failure, but the hydroxyapatite coated group had mixed failures, indicating the better quality of bonding (p < 0.0001). As a final point, hydroxyapatite coating on the zirconia surface improved the bond strength quality and values.

  7. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafura, A. K., E-mail: shafura@ymail.com; Azhar, N. E. I.; Uzer, M.

    2016-07-06

    CH{sub 4} gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10{sup −3} S/cm and 11.5%, respectively.

  8. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles.

    PubMed

    Xiao, Ning; Gu, Wei; Wang, Hao; Deng, Yunlong; Shi, Xin; Ye, Ling

    2014-03-01

    To overcome the negative contrast limitations of iron oxide-based contrast agents and to improve the biocompatibility of Gd-chelate contrast agents, PEGylated Gd-doped iron oxide (PEG-GdIO) NPs as a T1-T2 dual-modal contrast agent were synthesized by the polyol method. The transverse relaxivity (r2) and longitudinal relaxivity (r1) of PEG-GdIO were determined to be 66.9 and 65.9 mM(-1) s(-1), respectively. The high r1 value and low r2/r1 ratio make PEG-GdIO NPs suitable as a T1-T2 dual-modal contrast agent. The in vivo MRI demonstrated a brighter contrast enhancement in T1-weighted image and a simultaneous darken effect in T2-weighted MR image compared to the pre-contrast image in the region of glioma. Furthermore, the biocompatibility of PEG-GdIO NPs was confirmed by the in vitro MTT cytotoxicity and in vivo histological analyses (H&E). Therefore, PEG-GdIO NPs hold great potential in T1-T2 dual-modal imaging for the diagnosis of brain glioma. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Self-catalytic crystal growth, formation mechanism, and optical properties of indium tin oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Liang, Yuan-Chang; Zhong, Hua

    2013-08-01

    In-Sn-O nanostructures with rectangular cross-sectional rod-like, sword-like, and bowling pin-like morphologies were successfully synthesized through self-catalytic growth. Mixed metallic In and Sn powders were used as source materials, and no catalyst layer was pre-coated on the substrates. The distance between the substrate and the source materials affected the size of the Sn-rich alloy particles during crystal growth in a quartz tube. This caused In-Sn-O nanostructures with various morphologies to form. An X-ray photoelectron spectroscope and a transmittance electron microscope with an energy-dispersive X-ray spectrometer were used to investigate the elemental binding states and compositions of the as-synthesized nanostructures. The Sn doping and oxygen vacancies in the In2O3 crystals corresponded to the blue-green and yellow-orange emission bands of the nanostructures, respectively.

  10. Evaluation of a conditioning method to improve core-veneer bond strength of zirconia restorations.

    PubMed

    Teng, Jili; Wang, Hang; Liao, Yunmao; Liang, Xing

    2012-06-01

    The high strength and fracture toughness of zirconia have supported its extensive application in esthetic dentistry. However, the fracturing of veneering porcelains remains one of the primary causes of failure. The purpose of this study was to evaluate, with shear bond strength testing, the effect of a simple and novel surface conditioning method on the core-veneer bond strength of a zirconia ceramic system. The shear bond strength of a zirconia core ceramic to the corresponding veneering porcelain was tested by the Schmitz-Schulmeyer method. Thirty zirconia core specimens (10 × 5 × 5 mm) were layered with a veneering porcelain (5 × 3 × 3 mm). Three different surface conditioning methods were evaluated: polishing with up to 1200 grit silicon carbide paper under water cooling, airborne-particle abrasion with 110 μm alumina particles, and modification with zirconia powder coating before sintering. A metal ceramic system was used as a control group. All specimens were subjected to shear force in a universal testing machine at a crosshead speed of 0.5 mm/min. The shear bond strength values were analyzed with 1-way ANOVA and Tukey's post hoc pairwise comparisons (α=.05). The fractured specimens were examined with a scanning electron microscope to observe the failure mode. The mean (SD) shear bond strength values in MPa were 47.02 (6.4) for modified zirconia, 36.66 (8.6) for polished zirconia, 39.14 (6.5) for airborne-particle-abraded zirconia, and 46.12 (7.1) for the control group. The mean bond strength of the control (P=.028) and modified zirconia groups (P=.014) was significantly higher than that of the polished zirconia group. The airborne-particle-abraded group was not significantly different from any other group. Scanning electron microscopy evaluation showed that cohesive fracture in the veneering porcelain was the predominant failure mode of modified zirconia, while the other groups principally fractured at the interface. Modifying the zirconia surface

  11. Comparison of peri-implant bone formation around injection-molded and machined surface zirconia implants in rabbit tibiae

    PubMed Central

    Kim, Hong-Kyun; Woo, Kyung mi; Shon, Won-Jun; Ahn, Jin-Soo; Cha, Seunghee; Park, Young-Seok

    2017-01-01

    The aim of this study was to compare osseointegration and surface characteristics of zirconia implants made by the powder injection molding (PIM) technique and made by the conventional milling procedure in rabbit tibiae. Surface characteristics of 2 types of implant were evaluated. Sixteeen rabbits received 2 types of external hex implants with similar geometry, machined zirconia implants and PIM zirconia implants, in the tibiae. Removal torque tests and histomorphometric analyses were performed. The roughness of PIM zirconia implants was higher than that of machined zirconia implants. The PIM zirconia implants exhibited significantly higher bone-implant contact and removal torque values than the machined zirconia implants (P < 0.001). The osseointegration of the PIM zirconia implant is promising, and PIM, using the roughened mold etching technique, can produce substantially rough surfaces on zirconia implants. PMID:26235717

  12. Fracture loads and failure modes of customized and non-customized zirconia abutments.

    PubMed

    Moris, Izabela Cristina Maurício; Chen, Yung-Chung; Faria, Adriana Cláudia Lapria; Ribeiro, Ricardo Faria; Fok, Alex Sui-Lun; Rodrigues, Renata Cristina Silveira

    2018-05-05

    This study aimed to evaluate the fracture load and pattern of customized and non-customized zirconia abutments with Morse-taper connection. 18 implants were divided into 3 groups according to the abutments used: Zr - with non-customized zirconia abutments; Zrc - with customized zirconia abutments; and Ti - with titanium abutments. To test their load capacity, a universal test machine with a 500-kgf load cell and a 0.5-mm/min speed were used. After, one implant-abutment assembly from each group was analyzed by Scanning Electron Microscopy (SEM). For fractographic analysis, the specimens were transversely sectioned above the threads of the abutment screw in order to examine their fracture surfaces using SEM. A significant difference was noted between the groups (Zr=573.7±11.66N, Zrc=768.0±8.72N and Ti=659.1±7.70N). Also, the zirconia abutments fractured while the titanium abutments deformed plastically. Zrc presented fracture loads significantly higher than Zr (p=0.009). All the zirconia abutments fractured below the implant platform, starting from the area of contact between the abutment and implant and propagating to the internal surface of the abutment. All the zirconia abutments presented complete cleavage in the mechanical test. Fractography detected differences in the position and pattern of fracture between the two groups with zirconia abutments, probably because of the different diameters in the transmucosal region. Customization of zirconia abutments did not affect their fracture loads, which were comparable to that of titanium and much higher than the maximum physiological limit for the anterior region of the maxilla. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  13. The shift of optical band gap in W-doped ZnO with oxygen pressure and doping level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, J.; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science, Chongqing 400714; Peng, X.Y.

    2014-06-01

    Highlights: • CVD–PLD co-deposition technique was used. • Better crystalline of the ZnO samples causes the redshift of the optical band gap. • Higher W concentration induces blueshift of the optical band gap. - Abstract: Tungsten-doped (W-doped) zinc oxide (ZnO) nanostructures were synthesized on quartz substrates by pulsed laser and hot filament chemical vapor co-deposition technique under different oxygen pressures and doping levels. We studied in detail the morphological, structural and optical properties of W-doped ZnO by SEM, XPS, Raman scattering, and optical transmission spectra. A close correlation among the oxygen pressure, morphology, W concentrations and the variation of bandmore » gaps were investigated. XPS and Raman measurements show that the sample grown under the oxygen pressure of 2.7 Pa has the maximum tungsten concentration and best crystalline structure, which induces the redshift of the optical band gap. The effect of W concentration on the change of morphology and shift of optical band gap was also studied for the samples grown under the fixed oxygen pressure of 2.7 Pa.« less

  14. Structure of spin excitations in heavily electron-doped Li 0.8Fe 0.2ODFeSe superconductors

    DOE PAGES

    Pan, Bingying; Shen, Yao; Hu, Die; ...

    2017-07-25

    Heavily electron-doped iron-selenide high-transition-temperature (high-T c) superconductors, which have no hole Fermi pockets, but have a notably high T c, have challenged the prevailing s± pairing scenario originally proposed for iron pnictides containing both electron and hole pockets. The microscopic mechanism underlying the enhanced superconductivity in heavily electron-doped iron-selenide remains unclear. Here, we used neutron scattering to study the spin excitations of the heavily electron-doped iron-selenide material Li 0.8Fe 0.2ODFeSe (T c = 41 K). Our data revealed nearly ring-shaped magnetic resonant excitations surrounding (π, π) at ~21 meV. As the energy increased, the spin excitations assumed a diamond shape,more » and they dispersed outward until the energy reached ~60 meV and then inward at higher energies. The observed energy-dependent momentum structure and twisted dispersion of spin excitations near (π, π) are analogous to those of hole-doped cuprates in several aspects, thus implying that such spin excitations are essential for the remarkably high T c in these materials.« less

  15. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun [Orinda, CA; Shakouri, Ali [Santa Cruz, CA; Sands, Timothy D [Moraga, CA; Yang, Peidong [Berkeley, CA; Mao, Samuel S [Berkeley, CA; Russo, Richard E [Walnut Creek, CA; Feick, Henning [Kensington, CA; Weber, Eicke R [Oakland, CA; Kind, Hannes [Schaffhausen, CH; Huang, Michael [Los Angeles, CA; Yan, Haoquan [Albany, CA; Wu, Yiying [Albany, CA; Fan, Rong [El Cerrito, CA

    2009-08-04

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  16. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2010-11-16

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  17. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOEpatents

    Majumdar, Arun; Shakouri, Ali; Sands, Timothy D.; Yang, Peidong; Mao, Samuel S.; Russo, Richard E.; Feick, Henning; Weber, Eicke R.; Kind, Hannes; Huang, Michael; Yan, Haoquan; Wu, Yiying; Fan, Rong

    2018-01-30

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  18. Sulfation of ceria-zirconia model automotive emissions control catalysts

    NASA Astrophysics Data System (ADS)

    Nelson, Alan Edwin

    Cerium-zirconium mixed metal oxides are used in automotive emissions control catalysts to regulate the partial pressure of oxygen near the catalyst surface. The near surface oxygen partial pressure is regulated through transfer of atomic oxygen from the ceria-zirconia solid matrix to the platinum group metals to form metal oxides capable of oxidizing carbon monoxide and unburned hydrocarbons. Although the addition of zirconium in the cubic lattice of ceria increases the oxygen storage capacity and thermal stability of the ceria matrix, the cerium-zirconium oxide system remains particularly susceptible to deactivation from sulfur compounds. While the overall effect of sulfur on these systems is understood (partially irreversible deactivation), the fundamental and molecular interaction of sulfur with ceria-zirconia remains a challenging problem. Ceria-zirconia metal oxide solid solutions have been prepared through co-precipitation with nitrate precursors. The prepared powders were calcined and subsequently formed into planer wafers and characterized for chemical and physical attributes. The prepared samples were subsequently exposed to a sulfur dioxide based environment and characterized with spectroscopic techniques to characterize the extent of sulfation and the nature of surface sulfur species. The extent of sulfation of the model ceria-zirconia systems was characterized with Auger electron spectroscopy (AES) prior to and after treatment in a microreactor. Strong dependencies were observed between the atomic ratio of ceria to zirconia and the extent of sulfation. In addition, the partial pressure of sulfur dioxide during treatments also correlated to the extent of sulfation, while temperature only slightly effected the extent of sulfation. The AES data suggests the gas phase sulfur dioxide preferentially chemisorbs on surface ceria atoms and the extent of sulfation is heavily dependent on sulfur dioxide concentrations and only slightly dependent on catalyst

  19. Disruptive chemical doping in a ferritin-based iron oxide nanoparticle to decrease r2 and enhance detection with T1-weighted MRI.

    PubMed

    Clavijo Jordan, M Veronica; Beeman, Scott C; Baldelomar, Edwin J; Bennett, Kevin M

    2014-01-01

    Inorganic doping was used to create flexible, paramagnetic nanoparticle contrast agents for in vivo molecular magnetic resonance imaging (MRI) with low transverse relaxivity (r2). Most nanoparticle contrast agents formed from superparamagnetic metal oxides are developed with high r2. While sensitive, they can have limited in vivo detection due to a number of constraints with T2 or T2*-weighted imaging. T1-weighted imaging is often preferred for molecular MRI, but most T1-shortening agents are small chelates with low metal payload or are nanoparticles that also shorten T2 and limit the range of concentrations detectable with T1-weighting. Here we used tungsten and iron deposition to form doped iron oxide crystals inside the apoferritin cavity to form a WFe nanoparticle with a disordered crystal and un-coupled atomic magnetic moments. The atomic magnetic moments were thus localized, resulting in a principally paramagnetic nanoparticle. The WFe nanoparticles had no coercivity or saturation magnetization at 5 K and sweeping up to ± 20,000 Oe, while native ferritin had a coercivity of 3000 Oe and saturation at ± 20,000 Oe. This tungsten-iron crystal paramagnetism resulted in an increased WFe particle longitudinal relaxivity (r1) of 4870 mm(-1) s(-1) and a reduced transverse relaxivity (r2) of 9076 mm(-1) s(-1) compared with native ferritin. The accumulation of the particles was detected with T1-weighted MRI in concentrations from 20 to 400 nm in vivo, both injected in the rat brain and targeted to the rat kidney glomerulus. The WFe apoferritin nanoparticles were not cytotoxic up to 700 nm particle concentrations, making them potentially important for targeted molecular MRI. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Thermodynamic properties of some metal oxide-zirconia systems

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1989-01-01

    Metal oxide-zirconia systems are a potential class of materials for use as structural materials at temperatures above 1900 K. These materials must have no destructive phase changes and low vapor pressures. Both alkaline earth oxide (MgO, CaO, SrO, and BaO)-zirconia and some rare earth oxide (Y2O3, Sc2O3, La2O3, CeO2, Sm2O3, Gd2O3, Yb2O3, Dy2O3, Ho2O3, and Er2O3)-zirconia system are examined. For each system, the phase diagram is discussed and the vapor pressure for each vapor species is calculated via a free energy minimization procedure. The available thermodynamic literature on each system is also surveyed. Some of the systems look promising for high temperature structural materials.