Science.gov

Sample records for nanostructured superhydrophobic surfaces

  1. Superhydrophobic elastomer surfaces with nanostructured micronails

    NASA Astrophysics Data System (ADS)

    Saarikoski, Inka; Joki-Korpela, Fatima; Suvanto, Mika; Pakkanen, Tuula T.; Pakkanen, Tapani A.

    2012-01-01

    New approaches to the fabrication of microstructures of special shape were developed for polymers. Unusual superhydrophobic surface structures were achieved with the use of flexible polymers and hierarchical molds. Flexible polyurethane-acrylate coatings were patterned with microstructures with use of microstructured aluminum mold in a controlled UV-curing process. Electron microscope images of the UV-cured coatings on polymethylmethacrylate (PMMA) substrates revealed micropillars that were significantly higher than the corresponding depressions of the mold (even 47 vs. 35 μm). The elongation was achieved by detaching the mold from the flexible, partially cured acrylate surface and then further curing the separated microstructure. The modified acrylate surface is superhydrophobic with a water contact angle of 156° and sliding angle of < 10°. Acrylic thermoplastic elastomers (TPE) were patterned with micro-nanostructured aluminum oxide molds through injection molding. The hierarchical surface of the elastomer showed elongated micropillars (57 μm) with nail-head tops covered with nanograss. Comparison with a reference microstructure of the same material (35 μm) indicated that the nanopores of the micro-nanomold assisted the formation of the nail-shaped micropillars. The elasticity of the TPE materials evidently plays a role in the elongation because similar elongation has not been found in hierarchically structured thermoplastic surfaces. The hierarchical micronail structure supports a high water contact angle (164°), representing an increase of 88° relative to the smooth TPE surface. The sliding angle was close to zero degrees, indicating the Cassie-Baxter state.

  2. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.

    PubMed

    Teisala, Hannu; Tuominen, Mikko; Aromaa, Mikko; Stepien, Milena; Mäkelä, Jyrki M; Saarinen, Jarkko J; Toivakka, Martti; Kuusipalo, Jurkka

    2012-02-14

    Hierarchical roughness is known to effectively reduce the liquid-solid contact area and water droplet adhesion on superhydrophobic surfaces, which can be seen for example in the combination of submicrometer and micrometer scale structures on the lotus leaf. The submicrometer scale fine structures, which are often referred to as nanostructures in the literature, have an important role in the phenomenon of superhydrophobicity and low water droplet adhesion. Although the fine structures are generally termed as nanostructures, their actual dimensions are often at the submicrometer scale of hundreds of nanometers. Here we demonstrate that small nanometric structures can have very different effect on surface wetting compared to the large submicrometer scale structures. Hierarchically rough superhydrophobic TiO(2) nanoparticle surfaces generated by the liquid flame spray (LFS) on board and paper substrates revealed that the nanoscale surface structures have the opposite effect on the droplet adhesion compared to the larger submicrometer and micrometer scale structures. Variation in the hierarchical structure of the nanoparticle surfaces contributed to varying droplet adhesion between the high- and low-adhesive superhydrophobic states. Nanoscale structures did not contribute to superhydrophobicity, and there was no evidence of the formation of the liquid-solid-air composite interface around the nanostructures. Therefore, larger submicrometer and micrometer scale structures were needed to decrease the liquid-solid contact area and to cause the superhydrophobicity. Our study suggests that a drastic wetting transition occurs on superhydrophobic surfaces at the nanometre scale; i.e., the transition between the Cassie-Baxter and Wenzel wetting states will occur as the liquid-solid-air composite interface collapses around nanoscale structures. Consequently, water adheres tightly to the surface by penetrating into the nanostructure. The droplet adhesion mechanism presented in

  3. Superhydrophobic Behavior on Nano-structured Surfaces

    NASA Astrophysics Data System (ADS)

    Schaeffer, Daniel

    2008-05-01

    Superhydrophobic behavior is observed in natural occurrences and has been thoroughly studied over the past few years. Water repellant properties on uniform arrays of vertically aligned nano-cones were investigated to determine the highest achievable contact angle (a measure of water drop repellency), which is measured from the reference plane on which the water drop sits to the tangent line of the point at which the drop makes contact with the reference plane. At low aspect ratios (height vs. width of the nano-cones), surface tension pulls the water into the nano-cone array, resulting in a wetted surface. Higher aspect ratios reverse the effect of the surface tension, resulting in a larger contact angle that causes water drops to roll off the surface. Fiber drawing, bundling, and redrawing are used to produce the structured array glass composite surface. Triple-drawn fibers are fused together, annealed, and sliced into thin wafers. The surface of the composite glass is etched to form nano-cones through a differential etching process and then coated with a fluorinated self-assembled monolayer (SAM). Cone aspect ratios can be varied through changes in the chemistry and concentration of the etching acid solution. Superhydrophobic behavior occurs at contact angles >150 and it is predicted and measured that optimal behavior is achieved when the aspect ratio is 4:1, which displays contact angles >=175 .

  4. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    SciTech Connect

    Miljkovic, N; Enright, R; Nam, Y; Lopez, K; Dou, N; Sack, J; Wang, E

    2013-01-09

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

  5. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.

    PubMed

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-12-23

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ≈ 30 μm at moderate heat fluxes (q″ > 2 W/cm(2)). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes.

  6. Superhydrophobic surfaces

    SciTech Connect

    Wang, Evelyn N; McCarthy, Matthew; Enright, Ryan; Culver, James N; Gerasopoulos, Konstantinos; Ghodssi, Reza

    2015-03-24

    Surfaces having a hierarchical structure--having features of both microscale and nanoscale dimensions--can exhibit superhydrophobic properties and advantageous condensation and heat transfer properties. The hierarchical surfaces can be fabricated using biological nanostructures, such as viruses as a self-assembled nanoscale template.

  7. Fabrication of surface micro- and nanostructures for superhydrophobic surfaces in electric and electronic applications

    NASA Astrophysics Data System (ADS)

    Xiu, Yonghao

    In our study, the superhydrophobic surface based on biomimetic lotus leave is explored to maintain the desired properties for self-cleaning. Parameters in controlling bead-up and roll-off characteristics of water droplets were investigated on different model surfaces. The governing equations were proposed. Heuristic study is performed. First, the fundamental understanding of the effect of roughness on superhydrophobicity is performed. The effect of hierarchical roughness, i.e., two scale roughness effect on roughness is investigated using systems of (1) monodisperse colloidal silica sphere (submicron) arrays and Au nanoparticle on top and (2) Si micrometer pyramids and Si nanostructures on top from KOH etching and metal assisted etching of Si. The relation between the contact area fraction and water droplet contact angles are derived based on Wenzel and Cassie-Baxter equation for the systems and the two scale effect is explained regarding the synergistic combination of two scales. Previously the microscopic three-phase-contact line is thought to be the key factor in determining contact angles and hystereses. In our study, Laplace pressure was brought up and related to the three-phase-contact line and taken as a key figure of merit in determining superhydrophobicity. In addition, we are one of the first to study the effect of tapered structures (wall inclination). Combining with a second scale roughness on the tapered structures, stable Cassie state for both water and low surface energy oil may be achieved. This is of great significance for designing both superhydrophobicity and superoleophobicity. Regarding the origin of contact angle hysteresis, study of superhydrophobicity on micrometer Si pillars was performed. The relation between the interface work of function and contact angle hysteresis was proposed and derived mathematically based on the Young-Dupre equation. The three-phase-contact line was further related to a secondary scale roughness induced. Based on

  8. Dropwise condensation on superhydrophobic nanostructured surfaces: literature review and experimental analysis

    NASA Astrophysics Data System (ADS)

    Bisetto, A.; Torresin, D.; Tiwari, M. K.; Del, D., Col; Poulikakos, D.

    2014-04-01

    It is well established that the dropwise condensation (DWC) mode can lead up to significant enhancement in heat transfer coefficients as compared to the filmwise mode (FWC). Typically, hydrophobic surfaces are expected to promote DWC, while hydrophilic ones induce FWC. To this end, superhydrophobic surfaces, where a combination of low surface energy and surface texturing is used to enhance the hydrophobicity, have recently been proposed as a promising approach to promote dropwise condensation. An attractive feature of using superhydrophobic surfaces is to facilitate easy roll-off of the droplets as they form during condensation, thus leading to a significant improvement in the heat transfer associated with the condensation process. High droplet mobility can be obtained acting on the surface chemistry, decreasing the surface energy, and on the surface structure, obtaining a micro- or nano- superficial roughness. The first part of this paper will present a literature review of the most relevant works about DWC on superhydrophobic nanotextured substrates, with particular attention on the fabrication processes. In the second part, experimental data about DWC on superhydrophobic nanotextured samples will be analyzed. Particular attention will be paid to the effect of vapour velocity on the heat transfer. Results clearly highlight the excellent potential of nanostructured surfaces for application in flow condensation applications. However, they highlight the need to perform flow condensation experiments at realistic high temperature and saturation conditions in order to evaluate the efficacy of superhydrophobic surfaces for practically relevant pure vapor condensation applications.

  9. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films.

    PubMed

    Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Haynes, J Allen

    2013-08-01

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.

  10. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films

    NASA Astrophysics Data System (ADS)

    Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Haynes, J. Allen

    2013-08-01

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.

  11. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.

    PubMed

    Miljkovic, Nenad; Enright, Ryan; Wang, Evelyn N

    2012-02-28

    Condensation on superhydrophobic nanostructured surfaces offers new opportunities for enhanced energy conversion, efficient water harvesting, and high performance thermal management. These surfaces are designed to be Cassie stable and favor the formation of suspended droplets on top of the nanostructures as compared to partially wetting droplets which locally wet the base of the nanostructures. These suspended droplets promise minimal contact line pinning and promote passive droplet shedding at sizes smaller than the characteristic capillary length. However, the gas films underneath such droplets may significantly hinder the overall heat and mass transfer performance. We investigated droplet growth dynamics on superhydrophobic nanostructured surfaces to elucidate the importance of droplet morphology on heat and mass transfer. By taking advantage of well-controlled functionalized silicon nanopillars, we observed the growth and shedding behavior of suspended and partially wetting droplets on the same surface during condensation. Environmental scanning electron microscopy was used to demonstrate that initial droplet growth rates of partially wetting droplets were 6× larger than that of suspended droplets. We subsequently developed a droplet growth model to explain the experimental results and showed that partially wetting droplets had 4-6× higher heat transfer rates than that of suspended droplets. On the basis of these findings, the overall performance enhancement created by surface nanostructuring was examined in comparison to a flat hydrophobic surface. We showed these nanostructured surfaces had 56% heat flux enhancement for partially wetting droplet morphologies and 71% heat flux degradation for suspended morphologies in comparison to flat hydrophobic surfaces. This study provides insights into the previously unidentified role of droplet wetting morphology on growth rate, as well as the need to design Cassie stable nanostructured surfaces with tailored droplet

  12. Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces.

    PubMed

    Ölçeroğlu, Emre; Hsieh, Chia-Yun; Rahman, Md Mahamudur; Lau, Kenneth K S; McCarthy, Matthew

    2014-07-01

    While superhydrophobic nanostructured surfaces have been shown to promote condensation heat transfer, the successful implementation of these coatings relies on the development of scalable manufacturing strategies as well as continued research into the fundamental physical mechanisms of enhancement. This work demonstrates the fabrication and characterization of superhydrophobic coatings using a simple scalable nanofabrication technique based on self-assembly of the Tobacco mosaic virus (TMV) combined with initiated chemical vapor deposition. TMV biotemplating is compatible with a wide range of surface materials and applicable over large areas and complex geometries without the use of any power or heat. The virus-structured coatings fabricated here are macroscopically superhydrophobic (contact angle >170°) and have been characterized using environmental electron scanning microscopy showing sustained and robust coalescence-induced ejection of condensate droplets. Additionally, full-field dynamic characterization of these surfaces during condensation in the presence of noncondensable gases is reported. This technique uses optical microscopy combined with image processing algorithms to track the wetting and growth dynamics of 100s to 1000s of microscale condensate droplets simultaneously. Using this approach, over 3 million independent measurements of droplet size have been used to characterize global heat transfer performance as a function of nucleation site density, coalescence length, and the apparent wetted surface area during dynamic loading. Additionally, the history and behavior of individual nucleation sites, including coalescence events, has been characterized. This work elucidates the nature of superhydrophobic condensation and its enhancement, including the role of nucleation site density during transient operation.

  13. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.

    PubMed

    Han, Joong Tark; Kim, Sangcheol; Karim, Alamgir

    2007-02-27

    A novel strategy for a tunable sigmoidal wetting transition from superhydrophobicity to superhydrophilicity on a continuous nanostructured hybrid film via gradient UV-ozone (UVO) exposure is presented. Along a single wetting gradient surface (40 mm), we could visualize the superhydrophobic (thetaH2O > 165 degrees and low contact angle hysteresis) transition (165 degrees > thetaH2O > 10 degrees ) and superhydrophilic (thetaH2O < 10 degrees within 1 s) regions simply through the optical images of water droplets on the surface. The film is prepared through layer-by-layer assembly of negatively charged silica nanoparticles (11 nm) and positively charged poly(allylamine hydrochloride) with an initial deposition in a fractal manner. The extraordinary wetting transition on chemically modified nanoparticle layered surfaces with submicrometer- to micrometer-scale pores represents a competition between the chemical wettability and hierarchical roughness of surfaces as often occurs in nature (e.g., lotus leaves, insect wings, etc).

  14. Nanostructured Superhydrophobic Coatings

    SciTech Connect

    2009-03-01

    This factsheet describes a research project that deals with the nanostructured superhydrophobic (SH) powders developed at ORNL. This project seeks to (1) improve powder quality; (2) identify binders for plastics, fiberglass, metal (steel being the first priority), wood, and other products such as rubber and shingles; (3) test the coated product for coating quality and durability under operating conditions; and (4) application testing and production of powders in quantity.

  15. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    PubMed

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-01

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  16. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    PubMed

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-01

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance. PMID:25419845

  17. Multiscale effect of hierarchical self-assembled nanostructures on superhydrophobic surface.

    PubMed

    Passoni, Luca; Bonvini, Giacomo; Luzio, Alessandro; Facibeni, Anna; Bottani, Carlo E; Di Fonzo, Fabio

    2014-11-18

    In this work, we describe self-assembled surfaces with a peculiar multiscale organization, from the nanoscale to the microscale, exhibiting the Cassie-Baxter wetting regime with extremely low water adhesion: floating drops regime with roll-off angles < 5°. These surfaces comprise bundles of hierarchical, quasi-one-dimensional (1D) TiO2 nanostructures functionalized with a fluorinated molecule (PFNA). While the hierarchical nanostructures are the result of a gas-phase self-assembly process, their bundles are the result of the capillary forces acting between them when the PFNA solvent evaporates. Nanometric features are found to influence the hydrophobic behavior of the surface, which is enhanced by the micrometric structures up to the achievement of the superhydrophobic Cassie-Baxter state (contact angle (CA) ≫ 150°). Thanks to their high total and diffuse transmittance and their self-cleaning properties, these surfaces could be interesting for several applications such as smart windows and photovoltaics where light management and surface cleanliness play a crucial role. Moreover, the multiscale analysis performed in this work contributes to the understanding of the basic mechanisms behind extreme wetting behaviors. PMID:25346328

  18. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.

    PubMed

    Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru

    2011-04-19

    The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed.

  19. A Thermochromic Superhydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Cataldi, Pietro; Bayer, Ilker S.; Cingolani, Roberto; Marras, Sergio; Chellali, Ryad; Athanassiou, Athanassia

    2016-06-01

    Highly enhanced solid-state thermochromism is observed in regioregular poly(3-hexylthiophene), P3HT, when deposited on a superhydrophobic polymer-SiO2 nanocomposite coating. The conformal P3HT coating on the nanocomposite surface does not alter or reduce superhydrophicity while maintaining its reversible enhanced thermochromism. The polymeric matrix of the superhydrophobic surface is comprised of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) copolymer and an acrylic adhesive. Based on detailed X-ray diffraction measurements, this long-lasting, repeatable and hysteresis-free thermochromic effect is attributed to the enhancement of the Bragg peak associated with the d-spacing of interchain directional packing (100) which remains unaltered during several heating-cooling cycles. We propose that the superhydrophobic surface confines π–π interchain stacking in P3HT with uniform d-spacing into its nanostructured texture resulting in better packing and reduction in face-on orientation. The rapid response of the system to sudden temperature changes is also demonstrated by water droplet impact and bounce back on heated surfaces. This effect can be exploited for embedded thin film temperature sensors for metal coatings.

  20. A Thermochromic Superhydrophobic Surface.

    PubMed

    Cataldi, Pietro; Bayer, Ilker S; Cingolani, Roberto; Marras, Sergio; Chellali, Ryad; Athanassiou, Athanassia

    2016-01-01

    Highly enhanced solid-state thermochromism is observed in regioregular poly(3-hexylthiophene), P3HT, when deposited on a superhydrophobic polymer-SiO2 nanocomposite coating. The conformal P3HT coating on the nanocomposite surface does not alter or reduce superhydrophicity while maintaining its reversible enhanced thermochromism. The polymeric matrix of the superhydrophobic surface is comprised of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) copolymer and an acrylic adhesive. Based on detailed X-ray diffraction measurements, this long-lasting, repeatable and hysteresis-free thermochromic effect is attributed to the enhancement of the Bragg peak associated with the d-spacing of interchain directional packing (100) which remains unaltered during several heating-cooling cycles. We propose that the superhydrophobic surface confines π-π interchain stacking in P3HT with uniform d-spacing into its nanostructured texture resulting in better packing and reduction in face-on orientation. The rapid response of the system to sudden temperature changes is also demonstrated by water droplet impact and bounce back on heated surfaces. This effect can be exploited for embedded thin film temperature sensors for metal coatings. PMID:27301422

  1. A Thermochromic Superhydrophobic Surface

    PubMed Central

    Cataldi, Pietro; Bayer, Ilker S.; Cingolani, Roberto; Marras, Sergio; Chellali, Ryad; Athanassiou, Athanassia

    2016-01-01

    Highly enhanced solid-state thermochromism is observed in regioregular poly(3-hexylthiophene), P3HT, when deposited on a superhydrophobic polymer-SiO2 nanocomposite coating. The conformal P3HT coating on the nanocomposite surface does not alter or reduce superhydrophicity while maintaining its reversible enhanced thermochromism. The polymeric matrix of the superhydrophobic surface is comprised of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) copolymer and an acrylic adhesive. Based on detailed X-ray diffraction measurements, this long-lasting, repeatable and hysteresis-free thermochromic effect is attributed to the enhancement of the Bragg peak associated with the d-spacing of interchain directional packing (100) which remains unaltered during several heating-cooling cycles. We propose that the superhydrophobic surface confines π–π interchain stacking in P3HT with uniform d-spacing into its nanostructured texture resulting in better packing and reduction in face-on orientation. The rapid response of the system to sudden temperature changes is also demonstrated by water droplet impact and bounce back on heated surfaces. This effect can be exploited for embedded thin film temperature sensors for metal coatings. PMID:27301422

  2. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.

    PubMed

    Chavan, Shreyas; Cha, Hyeongyun; Orejon, Daniel; Nawaz, Kashif; Singla, Nitish; Yeung, Yip Fun; Park, Deokgeun; Kang, Dong Hoon; Chang, Yujin; Takata, Yasuyuki; Miljkovic, Nenad

    2016-08-01

    Understanding the fundamental mechanisms governing vapor condensation on nonwetting surfaces is crucial to a wide range of energy and water applications. In this paper, we reconcile classical droplet growth modeling barriers by utilizing two-dimensional axisymmetric numerical simulations to study individual droplet heat transfer on nonwetting surfaces (90° < θa < 170°). Incorporation of an appropriate convective boundary condition at the liquid-vapor interface reveals that the majority of heat transfer occurs at the three phase contact line, where the local heat flux can be up to 4 orders of magnitude higher than at the droplet top. Droplet distribution theory is incorporated to show that previous modeling approaches underpredict the overall heat transfer by as much as 300% for dropwise and jumping-droplet condensation. To verify our simulation results, we study condensed water droplet growth using optical and environmental scanning electron microscopy on biphilic samples consisting of hydrophobic and nanostructured superhydrophobic regions, showing excellent agreement with the simulations for both constant base area and constant contact angle growth regimes. Our results demonstrate the importance of resolving local heat transfer effects for the fundamental understanding and high fidelity modeling of phase change heat transfer on nonwetting surfaces.

  3. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.

    PubMed

    Chavan, Shreyas; Cha, Hyeongyun; Orejon, Daniel; Nawaz, Kashif; Singla, Nitish; Yeung, Yip Fun; Park, Deokgeun; Kang, Dong Hoon; Chang, Yujin; Takata, Yasuyuki; Miljkovic, Nenad

    2016-08-01

    Understanding the fundamental mechanisms governing vapor condensation on nonwetting surfaces is crucial to a wide range of energy and water applications. In this paper, we reconcile classical droplet growth modeling barriers by utilizing two-dimensional axisymmetric numerical simulations to study individual droplet heat transfer on nonwetting surfaces (90° < θa < 170°). Incorporation of an appropriate convective boundary condition at the liquid-vapor interface reveals that the majority of heat transfer occurs at the three phase contact line, where the local heat flux can be up to 4 orders of magnitude higher than at the droplet top. Droplet distribution theory is incorporated to show that previous modeling approaches underpredict the overall heat transfer by as much as 300% for dropwise and jumping-droplet condensation. To verify our simulation results, we study condensed water droplet growth using optical and environmental scanning electron microscopy on biphilic samples consisting of hydrophobic and nanostructured superhydrophobic regions, showing excellent agreement with the simulations for both constant base area and constant contact angle growth regimes. Our results demonstrate the importance of resolving local heat transfer effects for the fundamental understanding and high fidelity modeling of phase change heat transfer on nonwetting surfaces. PMID:27409353

  4. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  5. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.

    PubMed

    Ölçeroğlu, Emre; McCarthy, Matthew

    2016-03-01

    Superhydrophobic surfaces enhance condensation by inhibiting the formation of an insulating liquid layer. While this produces efficient heat transfer at low supersaturations, superhydrophobicity has been shown to break down at increased supersaturations. As heat transfer increases, the random distribution and high density of nucleation sites produces pinned droplets, which lead to uncontrollable flooding. In this work, engineered variations in wettability are used to promote the self-organization of microscale droplets, which is shown to effectively delay flooding. Virus-templated superhydrophobic surfaces are patterned with an array of superhydrophilic islands designed to minimize surface adhesion while promoting spatial order. By use of optical and electron microscopy, the surfaces are optimized and characterized during condensation. Mixed wettability imparts spatial order not only through preferential nucleation but more importantly through the self-organization of coalescing droplets at high supersaturations. The self-organization of microscale droplets (diameters of <25 μm) is shown to effectively delay flooding and govern the global wetting behavior of larger droplets (diameters of >1 mm) on the surface. As heat transfer increases, the surfaces transition from jumping-mode to shedding-mode removal with no flooding. This demonstrates the ability to engineer surfaces to resist flooding and can act as the basis for developing robust superhydrophobic surfaces for condensation applications.

  6. Optically Transparent, Mechanically Durable, Nanostructured Superhydrophobic Surfaces Enabled by Spinodally Phase-Separated Glass Thin Films

    SciTech Connect

    Aytug, Tolga; Christen, David K; Hillesheim, Daniel A; Hunter, Scott Robert; Ivanov, Ilia N; Jellison Jr, Gerald Earle; Lupini, Andrew R; Pennycook, Stephen J; Trejo, Rosa M; Winters, Kyle O.; Haynes, James A; Simpson, John T

    2013-01-01

    Inspired by highly non-wetting natural biological surfaces (e.g., lotus leaves and water strider legs), artificial superhydrophobic surfaces that exhibit water droplet contact angles exceeding 150o have previously been constructed by utilizing various synthesis strategies.[ , , ] Such bio-inspired, water-repellent surfaces offer significant potential for numerous uses ranging from marine applications (e.g., anti-biofouling, anti-corrosion), anti-condensation (e.g., anti-icing, anti-fogging), membranes for selective separation (e.g., oil-water, gas-liquid), microfluidic systems, surfaces requiring reduced maintenance and cleaning, to applications involving glasses and optical materials.[ ] In addition to superhydrophobic attributes, for integration into device systems that have extended operational limits and overall improved performance, surfaces that also possess multifunctional characteristics are desired, where the functionality should match to the application-specific requirements.

  7. Developing superhydrophobic and oleophobic nanostructure by a facile chemical transformation of zirconium hydroxide surface

    NASA Astrophysics Data System (ADS)

    Sengupta, Arundhati; Malik, Satya Narayan; Bahadur, D.

    2016-02-01

    Stable hydro/oleo-phobic and superhydrophobic nanopowders, useful for self-cleaning applications, are synthesized at room temperature by modifying Zr(OH)4·nH2O with a very low surface-energy molecule-1H,1H,2H,2H-perfluorododecyltrichlorosilane whose long chain {sbnd (CH2)2(CF2)9CF3 moiety (PFD)} serves as surface-protrusion. The PFD-content is varied over 3.6-18.7 wt% in optimizing a hydrophilic to hydro/oleo-phobic or even to superhydrophobic transformation. Two halos in the X-ray diffraction pattern of amorphous Zr(OH)4·nH2O are accompanied by a peak at 2θ = 18.0° which grows in intensity progressively as the PFD-content increases from 5.2 to 18.7 wt%. The peak corresponds to sbnd CF2sbnd CF2sbnd crystalline order (10-20 nm) at the PFD-functionalized surface. The microstructure shows Zr(OH)4·nH2O as a cloud-like phase, bonded to plate-like sheaths (PFD moiety). The Csbnd F stretching bands at 1150 and 1210 cm-1 grow in intensity relative to that of Osbnd H stretching at 3460 cm-1 in proportion to the PFD-content. An 18.7 wt% PFD-functionalized sample exhibits a high contact angle CA = 153° for water (contact angle hysteresis = 4° and roll-off angle <4°), together with CA = 132° for glycerol, CA = 130° for diethylene glycol, and CA = 113° for n-hexadecane, supporting good superhydrophobicity and oleophobicity. Surface-energy reduction due to PFD moiety together with an optimal spacing between the surface-protrusions explains the water/organic liquid repellency.

  8. Facile Synthesis of Three-Dimensional ZnO Nanostructure: Realization of a Multifunctional Stable Superhydrophobic Surface

    PubMed Central

    Wu, Jun; Xia, Jun; Lei, Wei; Wang, Baoping

    2011-01-01

    Background After comprehensive study of various superhydrophobic phenomena in nature, it is no longer a puzzle for researchers to realize such fetching surfaces. However, the different types of artificial surfaces may get wetted and lose its water repellence if there exist defects or the liquid is under pressure. With respect to the industry applications, in which the resistance of wetting transition is critical important, new nanostructure satisfied a certain geometric criterion should be designed to hold a stable gas film at the base area to avoid the wet transition. Methodology A thermal deposition method was utilized to produce a thin ZnO seeds membrane on the aluminum foil. And then a chemical self-assemble technology was developed in present work to fabricate three-dimensional (3D) hierarchical dune-like ZnO architecture based on the prepared seeds membrane. Results Hierarchical ZnO with micro scale dune-like structure and core-sharing nanosheets was generated. The characterization results showed that there exist plenty of gaps and interfaces among the micro-dune and nanosheets, and thus the surface area was enlarged by such a unique morphology. Benefited from this unique 3D ZnO hierarchical nanostructure, the obtained surface exhibited stable water repellency after modification with Teflon, and furthermore, based on solid theory analysis, such 3D ZnO nanostructure would exhibit excellent sensing performance. PMID:22194987

  9. Modification of nanostructured fused silica for use as superhydrophobic, IR-transmissive, anti-reflective surfaces

    NASA Astrophysics Data System (ADS)

    Boyd, Darryl A.; Frantz, Jesse A.; Bayya, Shyam S.; Busse, Lynda E.; Kim, Woohong; Aggarwal, Ishwar; Poutous, Menelaos; Sanghera, Jasbinder S.

    2016-04-01

    In order to mimic and enhance the properties of moth eye-like materials, nanopatterned fused silica was chemically modified to produce self-cleaning substrates that have anti-reflective and infrared transmissive properties. The characteristics of these substrates were evaluated before and after chemical modification. Furthermore, their properties were compared to fused silica that was devoid of surface features. The chemical modification imparted superhydrophobic character to the substrates, as demonstrated by the average water contact angles which exceeded 170°. Finally, optical analysis of the substrates revealed that the infrared transmission capabilities of the fused silica substrates (nanopatterned to have moth eye on one side) were superior to those of the regular fused silica substrates within the visible and near-infrared region of the light spectrum, with transmission values of 95% versus 92%, respectively. The superior transmission properties of the fused silica moth eye were virtually unchanged following chemical modification.

  10. Mechanically durable superhydrophobic surfaces.

    PubMed

    Verho, Tuukka; Bower, Chris; Andrew, Piers; Franssila, Sami; Ikkala, Olli; Ras, Robin H A

    2011-02-01

    Development of durable non-wetting surfaces is hindered by the fragility of the microscopic roughness features that are necessary for superhydrophobicity. Mechanical wear on superhydrophobic surfaces usually shows as increased sticking of water, leading to loss of non-wettability. Increased wear resistance has been demonstrated by exploiting hierarchical roughness where nanoscale roughness is protected to some degree by large scale features, and avoiding the use of hydrophilic bulk materials is shown to help prevent the formation of hydrophilic defects as a result of wear. Additionally, self-healing hydrophobic layers and roughness patterns have been suggested and demonstrated. Nevertheless, mechanical contact not only causes damage to roughness patterns but also surface contamination, which shortens the lifetime of superhydrophobic surfaces in spite of the self-cleaning effect. The use of photocatalytic effect and reduced electric resistance have been suggested to prevent the accumulation of surface contaminants. Resistance to organic contaminants is more challenging, however, oleophobic surface patterns which are non-wetting to organic liquids have been demonstrated. While the fragility of superhydrophobic surfaces currently limits their applicability, development of mechanically durable surfaces will enable a wide range of new applications in the future. PMID:21274919

  11. Mechanically durable superhydrophobic surfaces.

    PubMed

    Verho, Tuukka; Bower, Chris; Andrew, Piers; Franssila, Sami; Ikkala, Olli; Ras, Robin H A

    2011-02-01

    Development of durable non-wetting surfaces is hindered by the fragility of the microscopic roughness features that are necessary for superhydrophobicity. Mechanical wear on superhydrophobic surfaces usually shows as increased sticking of water, leading to loss of non-wettability. Increased wear resistance has been demonstrated by exploiting hierarchical roughness where nanoscale roughness is protected to some degree by large scale features, and avoiding the use of hydrophilic bulk materials is shown to help prevent the formation of hydrophilic defects as a result of wear. Additionally, self-healing hydrophobic layers and roughness patterns have been suggested and demonstrated. Nevertheless, mechanical contact not only causes damage to roughness patterns but also surface contamination, which shortens the lifetime of superhydrophobic surfaces in spite of the self-cleaning effect. The use of photocatalytic effect and reduced electric resistance have been suggested to prevent the accumulation of surface contaminants. Resistance to organic contaminants is more challenging, however, oleophobic surface patterns which are non-wetting to organic liquids have been demonstrated. While the fragility of superhydrophobic surfaces currently limits their applicability, development of mechanically durable surfaces will enable a wide range of new applications in the future.

  12. Superhydrophobic nanostructured Kapton® surfaces fabricated through Ar + O2 plasma treatment: Effects of different environments on wetting behaviour

    NASA Astrophysics Data System (ADS)

    Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.

    2013-03-01

    Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.

  13. Wettability of natural superhydrophobic surfaces.

    PubMed

    Webb, Hayden K; Crawford, Russell J; Ivanova, Elena P

    2014-08-01

    Since the description of the 'Lotus Effect' by Barthlott and Neinhuis in 1997, the existence of superhydrophobic surfaces in the natural world has become common knowledge. Superhydrophobicity is associated with a number of possible evolutionary benefits that may be bestowed upon an organism, ranging from the ease of dewetting of their surfaces and therefore prevention of encumbrance by water droplets, self-cleaning and removal of particulates and potential pathogens, and even to antimicrobial activity. The superhydrophobic properties of natural surfaces have been attributed to the presence of hierarchical microscale (>1 μm) and nanoscale (typically below 200 nm) structures on the surface, and as a result, the generation of topographical hierarchy is usually considered of high importance in the fabrication of synthetic superhydrophobic surfaces. When one surveys the breadth of data available on naturally existing superhydrophobic surfaces, however, it can be observed that topographical hierarchy is not present on all naturally superhydrophobic surfaces; in fact, the only universal feature of these surfaces is the presence of a sophisticated nanoscale structure. Additionally, several natural surfaces, e.g. those present on rose petals and gecko feet, display high water contact angles and high adhesion of droplets, due to the pinning effect. These surfaces are not truly superhydrophobic, and lack significant degrees of nanoscale roughness. Here, we discuss the phenomena of superhydrophobicity and pseudo-superhydrophobicity in nature, and present an argument that while hierarchical surface roughness may aid in the stability of the superhydrophobic effect, it is nanoscale surface architecture alone that is the true determinant of superhydrophobicity.

  14. Adhesion behaviors on superhydrophobic surfaces.

    PubMed

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces.

  15. A general approach for fabrication of superhydrophobic and superamphiphobic surfaces

    NASA Astrophysics Data System (ADS)

    Xi, Jinming; Feng, Lin; Jiang, Lei

    2008-02-01

    A simple one-step electrodeposition process is developed for the fabrication of superhydrophobic surfaces on a series of substrates such as copper, titanium, iron, zinc, aluminum, and stannum. The hierarchical micro- and nanostructures endow these surfaces with excellent super-hydrophobicity and the resulting surfaces show superhydrophobicity even for some corrosive liquids including salt solutions and acidic and basic solutions at all pH values. Importantly, this approach can be easily applied to other systems such as the fabrication of superamphiphobic surfaces as long as the substrates are electrically conductive.

  16. Dropwise condensation on superhydrophobic surfaces with two-tier roughness

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Hua; Cai, Qingjun; Tsai, Chialun; Chen, Chung-Lung; Xiong, Guangyong; Yu, Ying; Ren, Zhifeng

    2007-04-01

    Dropwise condensation can enhance heat transfer by an order of magnitude compared to film condensation. Superhydrophobicity appears ideal to promote continued dropwise condensation which requires rapid removal of condensate drops; however, such promotion has not been reported on engineered surfaces. This letter reports continuous dropwise condensation on a superhydrophobic surface with short carbon nanotubes deposited on micromachined posts, a two-tier texture mimicking lotus leaves. On such micro-/nanostructured surfaces, the condensate drops prefer the Cassie state which is thermodynamically more stable than the Wenzel state. With a hexadecanethiol coating, superhydrophobicity is retained during and after condensation and rapid drop removal is enabled.

  17. Thermocapillary flow on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Baier, Tobias; Steffes, Clarissa; Hardt, Steffen

    2010-09-01

    A liquid in Cassie-Baxter state above a structured superhydrophobic surface is ideally suited for surface driven transport due to its large free surface fraction in close contact to a solid. We investigate thermal Marangoni flow over a superhydrophobic array of fins oriented parallel or perpendicular to an applied temperature gradient. In the Stokes limit we derive an analytical expression for the bulk flow velocity above the surface and compare it with numerical solutions of the Navier-Stokes equation. Even for moderate temperature gradients comparatively large flow velocities are induced, suggesting to utilize this principle for microfluidic pumping.

  18. Facile fabrication of superhydrophobic Bi/Bi2O3 surfaces with hierarchical micro-nanostructures by electroless deposition or electrodeposition

    NASA Astrophysics Data System (ADS)

    Cao, Ling; Lu, Xiaoqing; Pu, Fang; Yin, Xiangle; Xia, Yue; Huang, Wei; Li, Zelin

    2014-01-01

    Superhydrophobic metallic surfaces are attracting wide interest. In this work, two facile one-step methods (displacement reaction and electrodeposition) were developed to fabricate superhydrophobic Bi/Bi2O3 surfaces with hierarchical porous dendritic structures, where the Bi2O3 cover layer was formed by surface self-passivation of the deposited Bi. The influence of various experimental parameters on the surface morphology and wettability were investigated in detail, including concentration of solutions, deposition times, and deposition potentials. A maximum contact angle about 164° can be obtained on the fabricated superhydrophobic Bi/Bi2O3 surfaces by these two methods under optimized conditions without additional surface modification.

  19. Flow condensation on copper-based nanotextured superhydrophobic surfaces.

    PubMed

    Torresin, Daniele; Tiwari, Manish K; Del Col, Davide; Poulikakos, Dimos

    2013-01-15

    Superhydrophobic surfaces have shown excellent ability to promote dropwise condensation with high droplet mobility, leading to enhanced surface thermal transport. To date, however, it is unclear how superhydrophobic surfaces would perform under the stringent flow condensation conditions of saturated vapor at high temperature, which can affect superhydrophobicity. Here, we investigate this issue employing "all-copper" superhydrophobic surfaces with controlled nanostructuring for minimal thermal resistance. Flow condensation tests performed with saturated vapor at a high temperature (110 °C) showed the condensing drops penetrate the surface texture (i.e., attain the Wenzel state with lower droplet mobility). At the same time, the vapor shear helped ameliorate the mobility and enhanced the thermal transport. At the high end of the examined vapor velocity range, a heat flux of ~600 kW m(-2) was measured at 10 K subcooling and 18 m s(-1) vapor velocity. This clearly highlights the excellent potential of a nanostructured superhydrophobic surface in flow condensation applications. The surfaces sustained dropwise condensation and vapor shear for five days, following which mechanical degradation caused a transition to filmwise condensation. Overall, our results underscore the need to investigate superhydrophobic surfaces under stringent and realistic flow condensation conditions before drawing conclusions regarding their performance in practically relevant condensation applications.

  20. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf.

    PubMed

    Yamamoto, Minehide; Nishikawa, Naoki; Mayama, Hiroyuki; Nonomura, Yoshimune; Yokojima, Satoshi; Nakamura, Shinichiro; Uchida, Kingo

    2015-07-01

    Theoretical study is presented on the wetting behaviors of water droplets over a lotus leaf. Experimental results are interpreted to clarify the trade-offs among the potential energy change, the local pinning energy, and the adhesion energy. The theoretical parameters, calculated from the experimental results, are used to qualitatively explain the relations among surface fractal dimension, surface morphology, and dynamic wetting behaviors. The surface of a lotus leaf, which shows the superhydrophobic lotus effect, was dipped in ethanol to remove the plant waxes. As a result, the lotus effect is lost. The contact angle of a water drop decreased dramatically from 161° of the original surface to 122°. The water droplet was pinned on the surface. From the fractal analysis, the fractal region of the original surface was divided into two regions: a smaller-sized roughness region of 0.3-1.7 μm with D of 1.48 and a region of 1.7-19 μm with D of 1.36. By dipping the leaf in ethanol, the former fractal region, characterized by wax tubes, was lost, and only the latter large fractal region remained. The lotus effect is attributed to a surface structure that is covered with needle-shaped wax tubes, and the remaining surface allows invasion of the water droplet and enlarges the interaction with water. PMID:26075949

  1. Current trend in fabrication of complex morphologically tunable superhydrophobic nano scale surfaces

    NASA Astrophysics Data System (ADS)

    Abdulhussein, Ali T.; Kannarpady, Ganesh K.; Wright, Andrew B.; Ghosh, Anindya; Biris, Alexandru S.

    2016-10-01

    Superhydrophobic surfaces are found in nature and possess several fascinating properties, including the ability to self-clean. A typical superhydrophobic surface has micro/nanostructure roughness and low surface energy, which combine to give it its unusual anti-wetting properties. Because of their unique capabilities, these surfaces have interested scientists in research and industry fields for years. In recent decades, researchers have developed a number of synthetic methods for producing novel superhydrophobic surfaces that mimic natural surfaces. These synthetic surfaces have been widely applied on different types of substrates for potential widespread, practical applications. This review article focuses on these advances in fabricating manmade superhydrophobic surfaces.

  2. Water droplet impact on elastic superhydrophobic surfaces.

    PubMed

    Weisensee, Patricia B; Tian, Junjiao; Miljkovic, Nenad; King, William P

    2016-01-01

    Water droplet impact on surfaces is a ubiquitous phenomenon in nature and industry, where the time of contact between droplet and surface influences the transfer of mass, momentum and energy. To manipulate and reduce the contact time of impacting droplets, previous publications report tailoring of surface microstructures that influence the droplet - surface interface. Here we show that surface elasticity also affects droplet impact, where a droplet impacting an elastic superhydrophobic surface can lead to a two-fold reduction in contact time compared to equivalent rigid surfaces. Using high speed imaging, we investigated the impact dynamics on elastic nanostructured superhydrophobic substrates having membrane and cantilever designs with stiffness 0.5-7630 N/m. Upon impact, the droplet excites the substrate to oscillate, while during liquid retraction, the substrate imparts vertical momentum back to the droplet with a springboard effect, causing early droplet lift-off with reduced contact time. Through detailed experimental and theoretical analysis, we show that this novel springboarding phenomenon is achieved for a specific range of Weber numbers (We >40) and droplet Froude numbers during spreading (Fr >1). The observation of the substrate elasticity-mediated droplet springboard effect provides new insight into droplet impact physics.

  3. Water droplet impact on elastic superhydrophobic surfaces.

    PubMed

    Weisensee, Patricia B; Tian, Junjiao; Miljkovic, Nenad; King, William P

    2016-01-01

    Water droplet impact on surfaces is a ubiquitous phenomenon in nature and industry, where the time of contact between droplet and surface influences the transfer of mass, momentum and energy. To manipulate and reduce the contact time of impacting droplets, previous publications report tailoring of surface microstructures that influence the droplet - surface interface. Here we show that surface elasticity also affects droplet impact, where a droplet impacting an elastic superhydrophobic surface can lead to a two-fold reduction in contact time compared to equivalent rigid surfaces. Using high speed imaging, we investigated the impact dynamics on elastic nanostructured superhydrophobic substrates having membrane and cantilever designs with stiffness 0.5-7630 N/m. Upon impact, the droplet excites the substrate to oscillate, while during liquid retraction, the substrate imparts vertical momentum back to the droplet with a springboard effect, causing early droplet lift-off with reduced contact time. Through detailed experimental and theoretical analysis, we show that this novel springboarding phenomenon is achieved for a specific range of Weber numbers (We >40) and droplet Froude numbers during spreading (Fr >1). The observation of the substrate elasticity-mediated droplet springboard effect provides new insight into droplet impact physics. PMID:27461899

  4. Water droplet impact on elastic superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Weisensee, Patricia B.; Tian, Junjiao; Miljkovic, Nenad; King, William P.

    2016-07-01

    Water droplet impact on surfaces is a ubiquitous phenomenon in nature and industry, where the time of contact between droplet and surface influences the transfer of mass, momentum and energy. To manipulate and reduce the contact time of impacting droplets, previous publications report tailoring of surface microstructures that influence the droplet - surface interface. Here we show that surface elasticity also affects droplet impact, where a droplet impacting an elastic superhydrophobic surface can lead to a two-fold reduction in contact time compared to equivalent rigid surfaces. Using high speed imaging, we investigated the impact dynamics on elastic nanostructured superhydrophobic substrates having membrane and cantilever designs with stiffness 0.5–7630 N/m. Upon impact, the droplet excites the substrate to oscillate, while during liquid retraction, the substrate imparts vertical momentum back to the droplet with a springboard effect, causing early droplet lift-off with reduced contact time. Through detailed experimental and theoretical analysis, we show that this novel springboarding phenomenon is achieved for a specific range of Weber numbers (We >40) and droplet Froude numbers during spreading (Fr >1). The observation of the substrate elasticity-mediated droplet springboard effect provides new insight into droplet impact physics.

  5. A facile approach to fabricate superhydrophobic and corrosion resistant surface

    NASA Astrophysics Data System (ADS)

    Wei, Guijuan; Wang, Zhaojie; Zhao, Xixia; Feng, Juan; Wang, Shutao; Zhang, Jun; An, Changhua

    2015-01-01

    In the present study, we have fabricated superhydrophobic CuO nanostructured surfaces by a simple solution-immersion process and a subsequent chemical modification with various thiol groups. The morphology of the CuO nanostructures on the copper foil could be easily controlled by simply changing the reaction time. The influences of reaction time and the thiol groups on hydrophobic properties have been discussed in detail. It is shown that the chemically modified CuO nanostructured surfaces present remarkable superhydrophobic performance and non-sticking behaviour. Furthermore, a lower corrosion current density (icorr) and a higher corrosion potential (Ecorr) of the prepared superhydrophobic surface was observed in comparison with the bare Cu foil by immersing in a 3.5 wt% NaCl solution, indicating a good corrosion resistance capability. Our work provides a general, facile and low-cost route towards the preparation of superhydrophobic surface, which has potential applications in the fields of self-cleaning, anti-corrosion, and oil-water separation.

  6. Wettability Switching Techniques on Superhydrophobic Surfaces

    PubMed Central

    2007-01-01

    The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces.

  7. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Cao, Ling; Zhao, Wei; Xia, Yue; Huang, Wei; Li, Zelin

    2015-01-01

    Electrochemical fabrication of micro/nanostructured metallic surfaces with superhydrophobicity has recently aroused great attention. However, the origin still remains unclear why smooth hydrophilic metal surfaces become superhydrophobic by making micro/nanostructures without additional surface modifications. In this work, several superhydrophobic micro/nanostructured metal surfaces were prepared by a facile one-step electrodeposition process, including non-noble and noble metals such as copper, nickel, cadmium, zinc, gold, and palladium with (e.g. Cu) or without (e.g. Au) surface oxide films. We demonstrated by SEM and XPS that both hierarchical micro/nanostructures and spontaneous adsorption of airborne hydrocarbons endowed these surfaces with excellent superhydrophobicity. We revealed by XPS that the adsorption of airborne hydrocarbons at the Ar+-etched clean Au surface was rather quick, such that organic contamination can hardly be prevented in practical operation of surface wetting investigation. We also confirmed by XPS that ultraviolet-O3 treatment of the superhydrophobic metal surfaces did not remove the adsorbed hydrocarbons completely, but mainly oxidized them into hydrophilic oxygen-containing organic substances. We hope our findings here shed new light on deeper understanding of superhydrophobicity for micro/nanostructured metal surfaces with and without surface oxide films.

  8. An easy route to make superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Panda, Kalpataru; Kumar, N.; Polaki, S. R.; Panigrahi, B. K.

    2012-06-01

    Superhydrophobic films with excellent flexibility have been fabricated on silicon surface, generated by means of a chemical galvanic cell route, within a short span of 10 sec. The results show a water contact angle of 155° (superhydrophobic) for the chemically modified silicon surface while it is 63° (hydrophilic) in pure silicon substrate. The surface roughness increases with well ordered protrusions after the chemical treatment. Surface roughness and low surface energy are ascribed for the superhydrophobic behavior of these chemically modified silicon surfaces.

  9. Dynamic contact angle measurements on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyun; Kavehpour, H. Pirouz; Rothstein, Jonathan P.

    2015-03-01

    In this paper, the dynamic advancing and receding contact angles of a series of aqueous solutions were measured on a number of hydrophobic and superhydrophobic surfaces using a modified Wilhelmy plate technique. Superhydrophobic surfaces are hydrophobic surfaces with micron or nanometer sized surface roughness. These surfaces have very large static advancing contact angles and little static contact angle hysteresis. In this study, the dynamic advancing and dynamic receding contact angles on superhydrophobic surfaces were measured as a function of plate velocity and capillary number. The dynamic contact angles measured on a smooth hydrophobic Teflon surface were found to obey the scaling with capillary number predicted by the Cox-Voinov-Tanner law, θD3 ∝ Ca. The response of the dynamic contact angle on the superhydrophobic surfaces, however, did not follow the same scaling law. The advancing contact angle was found to remain constant at θA = 160∘, independent of capillary number. The dynamic receding contact angle measurements on superhydrophobic surfaces were found to decrease with increasing capillary number; however, the presence of slip on the superhydrophobic surface was found to result in a shift in the onset of dynamic contact angle variation to larger capillary numbers. In addition, a much weaker dependence of the dynamic contact angle on capillary number was observed for some of the superhydrophobic surfaces tested.

  10. Pancake bouncing on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Yahua; Moevius, Lisa; Xu, Xinpeng; Qian, Tiezheng; Yeomans, Julia M.; Wang, Zuankai

    2014-07-01

    Engineering surfaces that promote rapid drop detachment is of importance to a wide range of applications including anti-icing, dropwise condensation and self-cleaning. Here we show how superhydrophobic surfaces patterned with lattices of submillimetre-scale posts decorated with nanotextures can generate a counter-intuitive bouncing regime: drops spread on impact and then leave the surface in a flattened, pancake shape without retracting. This allows a fourfold reduction in contact time compared with conventional complete rebound . We demonstrate that the pancake bouncing results from the rectification of capillary energy stored in the penetrated liquid into upward motion adequate to lift the drop. Moreover, the timescales for lateral drop spreading over the surface and for vertical motion must be comparable. In particular, by designing surfaces with tapered micro/nanotextures that behave as harmonic springs, the timescales become independent of the impact velocity, allowing the occurrence of pancake bouncing and rapid drop detachment over a wide range of impact velocities.

  11. Unidirectional superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Prakash, Manu; Bush, John

    2007-11-01

    It has long been known that the hairy, waxy cuticle of water-walking insects renders them water-repellent; they thus exhibit high static contact angles. We have recently demonstrated that by the virtue of the geometry and flexibility of the hair, the integument is also directionally anisotropic and so plays a key propulsive role. We here report our attempts to design and implement an analogous synthetic surface that exhibits unidirectional adhesion. The surface effectively acts like a fluidic-diode; allowing contact lines to advance in only one direction. When vibrated randomly, drops suspended on the surface advance in only one direction. Applications in valve-less pumps and drop transport in microfluidic devices are discussed.

  12. Vapor stabilizing surfaces for superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Patankar, Neelesh

    2010-11-01

    The success of rough substrates designed for superhydrophobicity relies crucially on the presence of air pockets in the roughness grooves. This air is supplied by the surrounding environment. However, if the rough substrates are used in enclosed configurations, such as in fluidic networks, the air pockets may not be sustained in the roughness grooves. In this work a design approach based on sustaining a vapor phase of the liquid in the roughness grooves, instead of relying on the presence of air, is explored. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling, and dropwise condensation heat transfer, among others.

  13. Facile Preparation of Nanostructured, Superhydrophobic Filter Paper for Efficient Water/Oil Separation.

    PubMed

    Wang, Jianhua; Wong, Jessica X H; Kwok, Honoria; Li, Xiaochun; Yu, Hua-Zhong

    2016-01-01

    In this paper, we present a facile and cost-effective method to obtain superhydrophobic filter paper and demonstrate its application for efficient water/oil separation. By coupling structurally distinct organosilane precursors (e.g., octadecyltrichlorosilane and methyltrichlorosilane) to paper fibers under controlled reaction conditions, we have formulated a simple, inexpensive, and efficient protocol to achieve a desirable superhydrophobic and superoleophilic surface on conventional filter paper. The silanized superhydrophobic filter paper showed nanostructured morphology and demonstrated great separation efficiency (up to 99.4%) for water/oil mixtures. The modified filter paper is stable in both aqueous solutions and organic solvents, and can be reused multiple times. The present study shows that our newly developed binary silanization is a promising method of modifying cellulose-based materials for practical applications, in particular the treatment of industrial waste water and ecosystem recovery. PMID:26982055

  14. Facile Preparation of Nanostructured, Superhydrophobic Filter Paper for Efficient Water/Oil Separation.

    PubMed

    Wang, Jianhua; Wong, Jessica X H; Kwok, Honoria; Li, Xiaochun; Yu, Hua-Zhong

    2016-01-01

    In this paper, we present a facile and cost-effective method to obtain superhydrophobic filter paper and demonstrate its application for efficient water/oil separation. By coupling structurally distinct organosilane precursors (e.g., octadecyltrichlorosilane and methyltrichlorosilane) to paper fibers under controlled reaction conditions, we have formulated a simple, inexpensive, and efficient protocol to achieve a desirable superhydrophobic and superoleophilic surface on conventional filter paper. The silanized superhydrophobic filter paper showed nanostructured morphology and demonstrated great separation efficiency (up to 99.4%) for water/oil mixtures. The modified filter paper is stable in both aqueous solutions and organic solvents, and can be reused multiple times. The present study shows that our newly developed binary silanization is a promising method of modifying cellulose-based materials for practical applications, in particular the treatment of industrial waste water and ecosystem recovery.

  15. Facile Preparation of Nanostructured, Superhydrophobic Filter Paper for Efficient Water/Oil Separation

    PubMed Central

    Wang, Jianhua; Wong, Jessica X. H.; Kwok, Honoria; Li, Xiaochun; Yu, Hua-Zhong

    2016-01-01

    In this paper, we present a facile and cost-effective method to obtain superhydrophobic filter paper and demonstrate its application for efficient water/oil separation. By coupling structurally distinct organosilane precursors (e.g., octadecyltrichlorosilane and methyltrichlorosilane) to paper fibers under controlled reaction conditions, we have formulated a simple, inexpensive, and efficient protocol to achieve a desirable superhydrophobic and superoleophilic surface on conventional filter paper. The silanized superhydrophobic filter paper showed nanostructured morphology and demonstrated great separation efficiency (up to 99.4%) for water/oil mixtures. The modified filter paper is stable in both aqueous solutions and organic solvents, and can be reused multiple times. The present study shows that our newly developed binary silanization is a promising method of modifying cellulose-based materials for practical applications, in particular the treatment of industrial waste water and ecosystem recovery. PMID:26982055

  16. Spontaneous recovery of superhydrophobicity on nanotextured surfaces.

    PubMed

    Prakash, Suruchi; Xi, Erte; Patel, Amish J

    2016-05-17

    Rough or textured hydrophobic surfaces are dubbed "superhydrophobic" due to their numerous desirable properties, such as water repellency and interfacial slip. Superhydrophobicity stems from an aversion of water for the hydrophobic surface texture, so that a water droplet in the superhydrophobic "Cassie state" contacts only the tips of the rough surface. However, superhydrophobicity is remarkably fragile and can break down due to the wetting of the surface texture to yield the "Wenzel state" under various conditions, such as elevated pressures or droplet impact. Moreover, due to large energetic barriers that impede the reverse transition (dewetting), this breakdown in superhydrophobicity is widely believed to be irreversible. Using molecular simulations in conjunction with enhanced sampling techniques, here we show that on surfaces with nanoscale texture, water density fluctuations can lead to a reduction in the free energetic barriers to dewetting by circumventing the classical dewetting pathways. In particular, the fluctuation-mediated dewetting pathway involves a number of transitions between distinct dewetted morphologies, with each transition lowering the resistance to dewetting. Importantly, an understanding of the mechanistic pathways to dewetting and their dependence on pressure allows us to augment the surface texture design, so that the barriers to dewetting are eliminated altogether and the Wenzel state becomes unstable at ambient conditions. Such robust surfaces, which defy classical expectations and can spontaneously recover their superhydrophobicity, could have widespread importance, from underwater operation to phase-change heat transfer applications. PMID:27140619

  17. Scale effect on dropwise condensation on superhydrophobic surfaces.

    PubMed

    Lo, Ching-Wen; Wang, Chi-Chuan; Lu, Ming-Chang

    2014-08-27

    Micro/nano (two-tier) structures are often employed to achieve superhydrophobicity. In condensation, utilizing such a surface is not necessarily advantageous because the macroscopically observed Cassie droplets are usually in fact partial Wenzel in condensation. The increase in contact angle through introducing microstructures on such two-tier roughened surfaces may result in an increase in droplet departure diameter and consequently deteriorate the performance. In the meantime, nanostructure roughened surfaces could potentially yield efficient shedding of liquid droplets, whereas microstructures roughened surfaces often lead to highly pinned Wenzel droplets. To attain efficient shedding of liquid droplets in condensation on a superhydrophobic surface, a Bond number (a dimensionless number for appraising dropwise condensation) and a solid-liquid fraction smaller than 0.1 and 0.3, respectively, are suggested.

  18. Mechanically durable superhydrophobic surfaces prepared by abrading

    NASA Astrophysics Data System (ADS)

    Wang, Fajun; Yu, Shan; Ou, Junfei; Xue, Mingshan; Li, Wen

    2013-09-01

    Superhydrophobic surfaces with both excellent mechanical durability and easy reparability based on polytetrafluoroethylene/room temperature vulcanized silicone rubber (PTFE/RTVSR) composites were prepared by a simple abrading method. The surface energy of RTVSR matrix decreased with the increasing volume fraction of PTFE particles, and the surface rough microstructures of the composites were created by abrading. A water droplet on the surface exhibited a contact angle of about 165° ± 3.4° and a sliding angle of about 7.3° ± 1.9°. Such superhydrophobic surfaces showed strong mechanical durability against sandpaper because the surfaces were prepared in the way of mechanical abrasion, and the fresh exposed surfaces were still superhydrophobic. In addition, the micro-structures on the elastic surface of the composite will be compressed by elastic deformation to avoid being broken during the friction cycles when cotton fabric was used as an abrasion surface. The deformation will rebound to renew the original surface structures when the load is withdrawn. Therefore, the elastic PTFE/RTVSR composites are of advantage to construct superhydrophobic surfaces with better abrasion resistance. More importantly, such superhydrophobicity can be repaired by a simple abrading regeneration process within a few minutes when the surface is damaged or polluted by organic contaminant.

  19. Completely superhydrophobic PDMS surfaces for microfluidics.

    PubMed

    Tropmann, Artur; Tanguy, Laurent; Koltay, Peter; Zengerle, Roland; Riegger, Lutz

    2012-06-01

    This study presents a straightforward two-step fabrication process of durable, completely superhydrophobic microchannels in PDMS. First, a composite material of PDMS/PTFE particles is prepared and used to replicate a master microstructure. Superhydrophobic surfaces are formed by subsequent plasma treatment, in which the PDMS is isotropically etched and PTFE particles are excavated. We compare the advancing and receding contact angles of intrinsic PDMS samples and composite PTFE/PDMS samples (1 wt %, 8 wt %, and 15 wt % PTFE particle concentration) and demonstrate that both the horizontal and vertical surfaces are indeed superhydrophobic. The best superhydrophobicity is observed for samples with a PTFE particle concentration of 15 wt %, which have advancing and receding contact angles of 159° ± 4° and 158° ± 3°, respectively. PMID:22590992

  20. Functional superhydrophobic surfaces made of Janus micropillars

    PubMed Central

    Mammen, Lena; Bley, Karina; Papadopoulos, Periklis; Schellenberger, Frank; Encinas, Noemí; Butt, Hans-Jürgen; Weiss, Clemens K.

    2015-01-01

    We demonstrate the fabrication of superhydrophobic surfaces consisting of micropillars with hydrophobic sidewalls and hydrophilic tops, referred to as Janus micropillars. Therefore we first coat a micropillar array with a mono- or bilayer of polymeric particles, and merge the particles together to shield the top faces while hydrophobizing the walls. After removing the polymer film, the top faces of the micropillar arrays can be selectively chemically functionalised with hydrophilic groups. The Janus arrays remain superhydrophobic even after functionalisation as verified by laser scanning confocal microscopy. The robustness of the superhydrophobic behaviour proves that the stability of the entrapped air cushion is determined by the forces acting at the rim of the micropillars. This insight should stimulate a new way of designing super liquid-repellent surfaces with tunable liquid adhesion. In particular, combining superhydrophobicity with the functionalisation of the top faces of the protrusions with hydrophilic groups may have exciting new applications, including high-density microarrays for high-throughput screening of bioactive molecules, cells, or enzymes or efficient water condensation. However, so far chemical attachment of hydrophilic molecules has been accompanied with complete wetting of the surface underneath. The fabrication of superhydrophobic surfaces where the top faces of the protrusions can be selectively chemically post-functionalised with hydrophilic molecules, while retaining their superhydrophobic properties, is both promising and challenging. PMID:25415839

  1. Optimum conditions for fabricating superhydrophobic surface on copper plates via controlled surface oxidation and dehydration processes

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Li, Wen; Ma, Fumin; Yu, Zhanlong; Ruan, Min; Ding, Yigang; Deng, Xiangyi

    2013-09-01

    The superhydrophobic surfaces on copper substrate were fabricated by direct oxidation and dehydration processes, and the reaction and modification conditions were optimized. Firstly, the oxidation conditions including the concentrations of K2S2O8 and NaOH, the oxidation time were studied. It is found that the superhydrophobicity would be better if the copper plates were oxidized in 0.06 M K2S2O8 and 3.0 M NaOH solution at 65 °C for 35 min. Then, the modification conditions including modifier concentration and modification time were investigated. The results showed that 5 wt% lauric acid and 1 h modification time were suitable modification conditions for preparing copper-based superhydrophobic surfaces. The surface fabricated under optimized conditions displayed excellent superhydrophobicity of high water contact angle of 161.1° and a low contact angle hysteresis of 2.5°. The surface microstructure and composition of the superhydrophobic surfaces were also characterized by SEM and FT-IR. It is found that the highly concentrated micro/nanostructured sheets and the low surface energy materials on the surface should be responsible for the high superhydrophobicity.

  2. Robust hybrid elastomer/metal-oxide superhydrophobic surfaces.

    PubMed

    Hoshian, S; Jokinen, V; Franssila, S

    2016-08-21

    We introduce a new type of hybrid material: a nanostructured elastomer covered by a hard photoactive metal-oxide thin film resembling the exoskeleton of insects. It has extreme water repellency and fast self-recovery after damage. A new fabrication method for replicating high aspect ratio, hierarchical re-entrant aluminum structures into polydimethylsiloxane (PDMS) is presented. The method is based on a protective titania layer deposited by atomic layer deposition (ALD) on the aluminum template. The ALD titania transfers to the elastomeric scaffold via sacrificial release etching. The sacrificial release method allows for high aspect ratio, even 100 μm deep and successful release of overhanging structures, unlike conventional peeling. The ALD titania conformally covers the 3D multihierarchical structures of the template and protects the polymer during the release etch. Afterwards it prevents the high aspect ratio nanostructures from elasticity based collapse. The resulting nanostructured hybrid PDMS/titania replicas display robust superhydrophobicity without any further fluoro-coating or modification. Their mechanical and thermal robustness results from a thick nanostructured elastomeric layer which is conformally covered by ceramic titania instead of a monolayer hydrophobic coating. We have demonstrated the durability of these replicas against mechanical abrasion, knife scratches, rubbing, bending, peel tape test, high temperature annealing, UV exposure, water jet impingement and long term underwater storage. Though the material loses its superhydrophobicity in oxygen plasma exposure, a fast recovery from superhydrophilic to superhydrophobic can be achieved after 20 min UV irradiation. UV-assisted recovery is correlated with the high photoactivity of ALD titania film. This novel hybrid material will be applicable to the large area superhydrophobic surfaces in practical outdoor applications. PMID:27418238

  3. Robust hybrid elastomer/metal-oxide superhydrophobic surfaces.

    PubMed

    Hoshian, S; Jokinen, V; Franssila, S

    2016-08-21

    We introduce a new type of hybrid material: a nanostructured elastomer covered by a hard photoactive metal-oxide thin film resembling the exoskeleton of insects. It has extreme water repellency and fast self-recovery after damage. A new fabrication method for replicating high aspect ratio, hierarchical re-entrant aluminum structures into polydimethylsiloxane (PDMS) is presented. The method is based on a protective titania layer deposited by atomic layer deposition (ALD) on the aluminum template. The ALD titania transfers to the elastomeric scaffold via sacrificial release etching. The sacrificial release method allows for high aspect ratio, even 100 μm deep and successful release of overhanging structures, unlike conventional peeling. The ALD titania conformally covers the 3D multihierarchical structures of the template and protects the polymer during the release etch. Afterwards it prevents the high aspect ratio nanostructures from elasticity based collapse. The resulting nanostructured hybrid PDMS/titania replicas display robust superhydrophobicity without any further fluoro-coating or modification. Their mechanical and thermal robustness results from a thick nanostructured elastomeric layer which is conformally covered by ceramic titania instead of a monolayer hydrophobic coating. We have demonstrated the durability of these replicas against mechanical abrasion, knife scratches, rubbing, bending, peel tape test, high temperature annealing, UV exposure, water jet impingement and long term underwater storage. Though the material loses its superhydrophobicity in oxygen plasma exposure, a fast recovery from superhydrophilic to superhydrophobic can be achieved after 20 min UV irradiation. UV-assisted recovery is correlated with the high photoactivity of ALD titania film. This novel hybrid material will be applicable to the large area superhydrophobic surfaces in practical outdoor applications.

  4. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.

    PubMed

    Latthe, Sanjay S; Terashima, Chiaki; Nakata, Kazuya; Fujishima, Akira

    2014-01-01

    The lotus plant is recognized as a 'King plant' among all the natural water repellent plants due to its excellent non-wettability. The superhydrophobic surfaces exhibiting the famous 'Lotus Effect', along with extremely high water contact angle (>150°) and low sliding angle (<10°), have been broadly investigated and extensively applied on variety of substrates for potential self-cleaning and anti-corrosive applications. Since 1997, especially after the exploration of the surface micro/nanostructure and chemical composition of the lotus leaves by the two German botanists Barthlott and Neinhuis, many kinds of superhydrophobic surfaces mimicking the lotus leaf-like structure have been widely reported in the literature. This review article briefly describes the different wetting properties of the natural superhydrophobic lotus leaves and also provides a comprehensive state-of-the-art discussion on the extensive research carried out in the field of artificial superhydrophobic surfaces which are developed by mimicking the lotus leaf-like dual scale micro/nanostructure. This review article could be beneficial for both novice researchers in this area as well as the scientists who are currently working on non-wettable, superhydrophobic surfaces. PMID:24714190

  5. Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles.

    PubMed

    Ramos Chagas, Gabriela; Darmanin, Thierry; Guittard, Frédéric

    2015-01-01

    Materials with bioinspired superhydrophobic properties are highly desirable for many potential applications. Here, nine novel monomers derived from indole are synthesized to obtain these properties by electropolymerization. These monomers differ by the length (C4F9, C6F13 and C8F17) and the position (4-, 5- and 6-position of indole) of the perfluorinated substituent. Polymeric films were obtained with C4F9 and C6F13 chains and differences in the surface morphology depend especially on the substituent position. The polyindoles exhibited hydrophobic and superhydrophobic properties even with a very low roughness. The best results are obtained with PIndole-6-F 6 for which superhydrophobic and highly oleophobic properties are obtained due to the presence of spherical nanoparticles and low surface energy compounds. PMID:26665079

  6. Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles

    PubMed Central

    Ramos Chagas, Gabriela; Darmanin, Thierry

    2015-01-01

    Summary Materials with bioinspired superhydrophobic properties are highly desirable for many potential applications. Here, nine novel monomers derived from indole are synthesized to obtain these properties by electropolymerization. These monomers differ by the length (C4F9, C6F13 and C8F17) and the position (4-, 5- and 6-position of indole) of the perfluorinated substituent. Polymeric films were obtained with C4F9 and C6F13 chains and differences in the surface morphology depend especially on the substituent position. The polyindoles exhibited hydrophobic and superhydrophobic properties even with a very low roughness. The best results are obtained with PIndole-6-F 6 for which superhydrophobic and highly oleophobic properties are obtained due to the presence of spherical nanoparticles and low surface energy compounds. PMID:26665079

  7. Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles.

    PubMed

    Ramos Chagas, Gabriela; Darmanin, Thierry; Guittard, Frédéric

    2015-01-01

    Materials with bioinspired superhydrophobic properties are highly desirable for many potential applications. Here, nine novel monomers derived from indole are synthesized to obtain these properties by electropolymerization. These monomers differ by the length (C4F9, C6F13 and C8F17) and the position (4-, 5- and 6-position of indole) of the perfluorinated substituent. Polymeric films were obtained with C4F9 and C6F13 chains and differences in the surface morphology depend especially on the substituent position. The polyindoles exhibited hydrophobic and superhydrophobic properties even with a very low roughness. The best results are obtained with PIndole-6-F 6 for which superhydrophobic and highly oleophobic properties are obtained due to the presence of spherical nanoparticles and low surface energy compounds.

  8. Superhydrophobic nanocomposite surface topography and ice adhesion.

    PubMed

    Davis, Alexander; Yeong, Yong Han; Steele, Adam; Bayer, Ilker S; Loth, Eric

    2014-06-25

    A method to reduce the surface roughness of a spray-casted polyurethane/silica/fluoroacrylic superhydrophobic nanocomposite coating was demonstrated. By changing the main slurry carrier fluid, fluoropolymer medium, surface pretreatment, and spray parameters, we achieved arithmetic surface roughness values of 8.7, 2.7, and 1.6 μm on three test surfaces. The three surfaces displayed superhydrophobic performance with modest variations in skewness and kurtosis. The arithmetic roughness level of 1.6 μm is the smoothest superhydrophobic surface yet produced with these spray-based techniques. These three nanocomposite surfaces, along with a polished aluminum surface, were impacted with a supercooled water spray in icing conditions, and after ice accretion occurred, each was subjected to a pressurized tensile test to measure ice-adhesion. All three superhydrophobic surfaces showed lower ice adhesion than that of the polished aluminum surface. Interestingly, the intermediate roughness surface yielded the best performance, which suggests that high kurtosis and shorter autocorrelation lengths improve performance. The most ice-phobic nanocomposite showed a 60% reduction in ice-adhesion strength when compared to polished aluminum.

  9. Electrodeposited nanostructured cobalt film and its dual modulation of both superhydrophobic property and adhesiveness

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Hu, Anmin; Hang, Tao; Li, Ming

    2015-01-01

    We report a novel shell-like cobalt nanostructure prepared by galvanostatic electrochemical deposition which exhibit prominent superhydrophobic property. By adjusting the electroplating conditions, cobalt nanocrystals with different morphologies like nanocones and fluffy shells can be obtained while the hydrophobic and adhesive behavior of each after surface modification is observed. After a brief discussion on the growth mechanism of those shapes, we explained the lotus effect presented on such structures which would probably provide a strong evidence to the existing models of superhydrophobic surfaces. Based on the above, we propose a novel approach to modulate both adhesiveness and wettability of Co film by tuning of deposition parameters along with a simple heat treatment and dipping. With cobalt's anisotropic magnetic properties, such facile surface coating would be used in a wide range of applications such as commercial fabrication of tunable anti-corrosive magnetic devices.

  10. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces.

    PubMed

    Rykaczewski, Konrad

    2012-05-22

    By promoting dropwise condensation of water, nanostructured superhydrophobic coatings have the potential to dramatically increase the heat transfer rate during this phase change process. As a consequence, these coatings may be a facile method of enhancing the efficiency of power generation and water desalination systems. However, the microdroplet growth mechanism on surfaces which evince superhydrophobic characteristics during condensation is not well understood. In this work, the sub-10 μm dynamics of droplet formation on nanostructured superhydrophobic surfaces are studied experimentally and theoretically. A quantitative model for droplet growth in the constant base (CB) area mode is developed. The model is validated using optimized environmental scanning electron microscopy (ESEM) imaging of microdroplet growth on a superhydrophobic surface consisting of immobilized alumina nanoparticles modified with a hydrophobic promoter. The optimized ESEM imaging procedure increases the image acquisition rate by a factor of 10-50 as compared to previous research. With the improved imaging temporal resolution, it is demonstrated that nucleating nanodroplets coalesce to create a wetted flat spot with a diameter of a few micrometers from which the microdroplet emerges in purely CB mode. After the droplet reaches a contact angle of 130-150°, its base diameter increases in a discrete steplike fashion. The droplet height does not change appreciably during this steplike base diameter increase, leading to a small decrease of the contact angle. Subsequently, the drop grows in CB mode until it again reaches the maximum contact angle and increases its base diameter in a steplike fashion. This microscopic stick-and-slip motion can occur up to four times prior to the droplet coalescence with neighboring drops. Lastly, the constant contact angle (CCA) and the CB growth models are used to show that modeling formation of a droplet with a 150° contact angle in the CCA mode rather than in

  11. Drop impact on inclined superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Wonjae; Leclear, Sani; Leclear, Johnathon; Abhijeet, .; Park, Kyoo-Chul

    We report an empirical study and dimensional analysis on the impact patterns of water drops on inclined superhydrophobic surfaces. While the classic Weber number determines the spreading and recoiling dynamics of a water drop on a horizontal / smooth surface, for a superhydrophobic surface, the dynamics depends on two distinct Weber numbers, each calculated using the length scale of the drop or of the pores on the surface. Impact on an inclined superhydrophobic surface is even more complicated, as the velocity that determines the Weber number is not necessarily the absolute speed of the drop but the velocity components normal and tangential to the surface. We define six different Weber numbers, using three different velocities (absolute, normal and tangential velocities) and two different length scales (size of the drop and of the texture). We investigate the impact patterns on inclined superhydrophobic surfaces with three different types of surface texture: (i) posts, (ii) ridges aligned with and (iii) ridges perpendicular to the impact direction. Results suggest that all six Weber numbers matter, but affect different parts of the impact dynamics, ranging from the Cassie-Wenzel transition, maximum spreading, to anisotropic deformation. We acknowledge financial support from the Office of Naval Research (ONR) through Contract 3002453812.

  12. Hierarchically nanotextured surfaces maintaining superhydrophobicity under severely adverse conditions

    NASA Astrophysics Data System (ADS)

    Maitra, Tanmoy; Antonini, Carlo; Auf der Mauer, Matthias; Stamatopoulos, Christos; Tiwari, Manish K.; Poulikakos, Dimos

    2014-07-01

    Superhydrophobic surfaces are highly desirable for a broad range of technologies and products affecting everyday life. Despite significant progress in recent years in understanding the principles of hydrophobicity, mostly inspired by surface designs found in nature, many man-made surfaces employ readily processable materials, ideal to demonstrate principles, but with little chance of survivability outside a very limited range of well-controlled environments. Here we focus on the rational development of robust, hierarchically nanostructured, environmentally friendly, metal-based (aluminum) superhydrophobic surfaces, which maintain their performance under severely adverse conditions. Based on their functionality, we superpose selected hydrophobic layers (i.e. self-assembled monolayers, thin films, or nanofibrous coatings) on hierarchically textured aluminum surfaces, collectively imparting high level robustness of superhydrophobicity under adverse conditions. These surfaces simultaneously exhibit chemical stability, mechanical durability and droplet impalement resistance. They impressively maintained their superhydrophobicity after exposure to severely adverse chemical environments like strong alkaline (pH ~ 9-10), acidic (pH ~ 2-3), and ionic solutions (3.5 weight% of sodium chloride), and could simultaneously resist water droplet impalement up to an impact velocity of 3.2 m s-1 as well as withstand standard mechanical durability tests.Superhydrophobic surfaces are highly desirable for a broad range of technologies and products affecting everyday life. Despite significant progress in recent years in understanding the principles of hydrophobicity, mostly inspired by surface designs found in nature, many man-made surfaces employ readily processable materials, ideal to demonstrate principles, but with little chance of survivability outside a very limited range of well-controlled environments. Here we focus on the rational development of robust, hierarchically

  13. Energy Conversion over Super-hydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhai, Shengjie

    2015-11-01

    The streaming potential generated by a pressure-driven flow over a charged slip-stick surface with an arbitrary double layer thickness is both theoretically and experimentally studied. To understand the impact of the slip, the streaming potential is compared against that over a homogenously charged smooth surface. Our results indicate that the streaming potential over a super-hydrophobic surface only can be enhanced under certain conditions. In addition, the Onsager relation which directly relates the magnitude of electro-osmotic effect to that of the streaming current effect has been explicitly proved to be valid for thin and thick double layers and homogeneously charged super-hydrophobic surfaces. Comparisons between the streaming current and electro-osmotic mobility for an arbitrary electric double layer thickness under various conditions indicate that the Onsager relation seems applicable for arbitrary weakly charged super-hydrophobic surfaces though there is no general proof. Knowledge of the streaming potential over a slip-stick surface can provide guidance for designing novel and efficient microfluidic energy-conversion devices using super-hydrophobic surfaces. The work was supported by the NSF Grant No. ECCS-1509866.

  14. Composite, nanostructured, super-hydrophobic material

    DOEpatents

    D'Urso, Brian R.; Simpson, John T.

    2007-08-21

    A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

  15. Direct fabrication of superhydrophobic ceramic surfaces with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chung, Jihoon; Lee, Sukyung; Yong, Hyungseok; Lee, Sangmin; Park, Yong Tae

    2016-02-01

    Super-hydrophobic surfaces having contact angles > 150° for water are of great interest due to their potential use in a wide variety of applications. Although many reports on the wettability of different surfaces have been published, few or no studies have been done on the formation of a super-hydrophobic surface on a ceramic substrate. In this paper, we demonstrate the creation of a super-hydrophobic surface on a ceramic substrate by using zinc oxide nanowires (ZnO NWs) prepared by using a direct hydrothermal method. A self-assembled monolayer of heptadecafluoro- 1,1,2,2-tetrahydrodecyl trichlorosilane (HDFS) lowered the surface energy between the water droplet and the nano-textured surface. The length of the ZnO NWs was found to play a key role in the formation of a nanostructure that increased the surface roughness of the substrate. Furthermore, the length of the ZnO NWs could be controlled by changing the growth time, and HDFS-coated ZnO NWs were found to be super-hydrophobic after a growth time of 3 h. We have demonstrated the potential application of this nanostructure for ceramic tableware by introducing a ZnO-NW-textured surface on a ceramic cup, which resulted in water and alcohol repellency. This method is a simple and practical way to achieve a super-hydrophobic surface; hence, our method is expected to be widely used in various ceramic applications.

  16. Formation of superhydrophobic poly(dimethysiloxane) by ultrafast laser-induced surface modification.

    PubMed

    Yoon, Tae Oh; Shin, Hyun Joo; Jeoung, Sae Chae; Park, Youn-Il

    2008-08-18

    The formation of hemispherical nanostructures and microscaled papilla by ultrafast laser irradiation was found to be a potential method to generate superhydrophbic surface of synthetic polymers. Irradiation of femtosecond laser creates roughened poly(dimethylsiloxane) (PDMS) surface in nano- and microscales, of which topography fairly well imitate a Lotus leaf in nature. The modified surface showed superhydrophobicity with a contact angle higher than 170 degrees as well as sliding angle less than 3 degrees. We further demonstrated that negative replica of the processed PDMS surface exhibit large contact angle hysteresis with a sliding angle of 90 degrees while the positive replica maintains superhydrophobicity.

  17. Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Kuang, Ping; Hsieh, Mei-Li; Lin, Shawn-Yu

    2015-06-01

    In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ˜95% for λ = 400-620 nm over a wide angular acceptance of θ = 0°-60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400-870 nm. Furthermore, the use of the slanted SiO2 nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θCB ˜ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.

  18. Facile fabrication of nano-structured silica hybrid film with superhydrophobicity by one-step VAFS approach

    NASA Astrophysics Data System (ADS)

    Jia, Yi; Yue, Renliang; Liu, Gang; Yang, Jie; Ni, Yong; Wu, Xiaofeng; Chen, Yunfa

    2013-01-01

    Here we report a novel one-step vapor-fed aerosol flame synthesis (VAFS) method to attain silica hybrid film with superhydrophobicity on normal glass and other engineering material substrates using hexamethyldisiloxane (HMDSO) as precursor. The deposited nano-structured silica films represent excellent superhydrophobicity with contact angle larger than 150° and sliding angle below 5°, without any surface modification or other post treatments. SEM photographs proved that flame-made SiO2 nanoparticles formed dual-scale surface roughness on the substrates. It was confirmed by FTIR and XPS that the in situ formed organic fragments on the particle surface as species like (CH3)xSiO2-x/2 (x = 1, 2, 3) which progressively lowered the surface energy of fabricated films. Thus, these combined dual-scale roughness and lowered surface energy cooperatively produced superhydrophobic films. IR camera had been used to monitor the real-time flame temperature. It is found that the inert dilution gas inflow played a critical role in attaining superhydrophobicity due to its cooling and anti-oxidation effect. This method is facile and scalable for diverse substrates, without any requirement of complex equipments and multiple processing steps. It may contribute to the industrial fabrication of superhydrophobic films.

  19. Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation

    NASA Astrophysics Data System (ADS)

    Dietz, C.; Rykaczewski, K.; Fedorov, A. G.; Joshi, Y.

    2010-07-01

    Droplet departure frequency is investigated using environmental scanning electron microscopy with implications to enhancing the rate of dropwise condensation on superhydrophobic surfaces. Superhydrophobic surfaces, formed by cupric hydroxide nanostructures, allow the condensate to depart from a surface with a tilt angle of 30° from the horizontal. The resulting decrease in drop departure size shifts the drop size distribution to smaller radii, which may enhance the heat transfer rate during dropwise condensation. The heat transfer enhancement is estimated by modifying the Rose and Le Fevre drop distribution function to account for a smaller maximum droplet size on a superhydrophobic surface.

  20. Drag reduction on a patterned superhydrophobic surface.

    PubMed

    Truesdell, Richard; Mammoli, Andrea; Vorobieff, Peter; van Swol, Frank; Brinker, C Jeffrey

    2006-07-28

    We present an experimental study of a low-Reynolds number shear flow between two surfaces, one of which has a regular grooved texture augmented with a superhydrophobic coating. The combination reduces the effective fluid-surface contact area, thereby appreciably decreasing the drag on the surface and effectively changing the macroscopic boundary condition on the surface from no slip to limited slip. We measure the force on the surface and the velocity field in the immediate vicinity on the surface (and thus the wall shear) simultaneously. The latter facilitates a direct assessment of the effective slip length associated with the drag reduction.

  1. Formation of superhydrophobic/superhydrophilic patterns by combination of nanostructure-imprinted perfluoropolymer and nanostructured silicon oxide for biological droplet generation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Taizo; Shimizu, Kazunori; Kaizuma, Yoshihiro; Konishi, Satoshi

    2011-03-01

    In this letter, we report a technology for fabricating superhydrophobic/superhydrophilic patterns using a combination of a nanostructure-imprinted perfluoropolymer and nanostructured silicon oxide. In our previous study, we used a combination of hydrophobic and superhydrophilic materials. However, it was difficult to split low-surface-tension liquids such as biological liquids into droplets solely using hydrophobic/hydrophilic patterns. In this study, the contact angle of the hydrophobic region was enhanced from 109.3° to 155.6° by performing nanostructure imprinting on a damage-reduced perfluoropolymer. The developed superhydrophobic/superhydrophilic patterns allowed the splitting of even those media that contained fetal bovine serum into droplets of a desired shape.

  2. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    PubMed

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  3. Superhydrophobic cuprous oxide nanostructures on phosphor-copper meshes and their oil-water separation and oil spill cleanup.

    PubMed

    Kong, Ling-Hao; Chen, Xin-Hua; Yu, Lai-Gui; Wu, Zhi-Shen; Zhang, Ping-Yu

    2015-02-01

    A simple aqueous solution-immersion process was established to fabricate highly dense ordered Cu2O nanorods on commercial phosphor-copper mesh, with which the preparation was accomplished in distilled water. The present method, with the advantages of simple operation, low cost, short reaction time, and environmental friendliness, can be well adopted to fabricate desired Cu2O nanostructures on the phosphor-copper mesh under mild conditions. After surface modification with 1-dodecanethiol, the Cu2O nanostructure obtained on the phosphor-copper mesh exhibits excellent superhydrophobicity and superoleophilicity. Besides, a "mini boat" made from the as-prepared superhydrophobic phosphor-copper mesh can float freely on water surface and in situ collect oil from water surface. This demonstrates that the present approach, being facile, inexpensive, and environmentally friendly, could find promising application in oil-water separation and off shore oil spill cleanup. PMID:25590434

  4. Laser-induced nanoscale superhydrophobic structures on metal surfaces.

    PubMed

    Jagdheesh, R; Pathiraj, B; Karatay, E; Römer, G R B E; Huis in't Veld, A J

    2011-07-01

    The combination of a dual-scale (nano and micro) roughness with an inherent low-surface energy coating material is an essential factor for the development of superhydrophobic surfaces. Ultrashort pulse laser (USPL) machining/structuring is a promising technique for obtaining the dual-scale roughness. Sheets of stainless steel (AISI 304 L SS) and Ti-6Al-4V alloys were laser-machined with ultraviolet laser pulses of 6.7 ps, with different numbers of pulses per irradiated area. The surface energy of the laser-machined samples was reduced via application of a layer of perfluorinated octyltrichlorosilane (FOTS). The influence of the number of pulses per irradiated area on the geometry of the nanostructure and the wetting properties of the laser-machined structures has been studied. The results show that with an increasing number of pulses per irradiated area, the nanoscale structures tend to become predominantly microscale. The top surface of the microscale structures is seen covered with nanoscale protrusions that are most pronounced in Ti-6Al-4V. The laser-machined Ti-6Al-4V surface attained superhydrophobicity, and the improvement in the contact angle was >27% when compared to that of a nontextured surface.

  5. Fabrication of biomimetic superhydrophobic steel surface under an oxygen rich environment

    NASA Astrophysics Data System (ADS)

    Yin, Liang; Zhang, Haifeng; Li, Yuyang; Wang, Yang; Zhang, Ruimin; Chen, Weiping; Liu, Xiaowei

    2016-09-01

    A novel and facile approach was proposed to fabricate superhydrophobic surface with similar micro- and nanostructures of lotus leaf on the steel foil. The acidic solution was used to grow Fe3O4 nanosheet films consisted of hydrochloric acid and potassium chloride under an O2 rich environment. The as-prepared superhydrophobic steel surfaces had water CA (contact angle) of 166 ± 2°. The water SA (sliding angle) was less than 2°. In order to estimate the drag reduction property of the as-prepared surface, the experimental setup of the liquid-solid friction drag was proposed. The drag reduction ratio for superhydrophobic surface was 61.3% compare with untreated surface at a flow velocity of 1.66 m s-1.

  6. Superhydrophobic nature of nanostructures on an indigenous Australian eucalyptus plant and its potential application

    PubMed Central

    Poinern, Gérrard Eddy Jai; Le, Xuan Thi; Fawcett, Derek

    2011-01-01

    In this preliminary study, the morphology and nanostructured features formed by the epicuticular waxes of the mottlecah (Eucalyptus macrocarpa) leaf were investigated and quantified. The surface features formed by the waxes give the leaf remarkable wetting and self-cleaning properties that enhance the plant’s survival in an arid climate. This paper also provides experimental evidence of the self-assembly properties of the epicuticular waxes. Analysis of the water contact angle measurements gave a mean static contact angle of 162.00 ± 6.10 degrees, which clearly indicated that the mottlecah’s leaf surface was superhydrophobic. Detailed field emission scanning electron microscopy examination revealed that the surface was covered by bumps approximately 20 μm in diameter and regularly spaced at a distance of around 26 μm. The bumps are capped by nanotubules/pillars with an average diameter of 280 nm at the tips. Self-cleaning experiments indicated that the mottlecah’s leaf could be effectively cleaned by a fine spray of water droplets that rolled over the surface picking up contaminants. Field emission scanning electron microscopy investigation of extracted epicuticular waxes revealed that the waxes were capable of self-reassembly and formed features similar to those of the original leaf surface. Furthermore, also reported is a simple technique for surface treating one side of a planar surface to produce a superhydrophobic surface that can be used as a planar floatation platform for microdevices. PMID:24198490

  7. Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution--immersion successive ionic layer adsorption and reaction process.

    PubMed

    Suresh Kumar, P; Sundaramurthy, J; Mangalaraj, D; Nataraj, D; Rajarathnam, D; Srinivasan, M P

    2011-11-01

    A simple and cost-effective successive ionic layer adsorption and reaction (SILAR) method was adopted to fabricate hydrophobic ZnO nanostructured surfaces on transparent indium-tin oxide (ITO), glass and polyethylene terephthalate (PET) substrates. ZnO films deposited on different substrates show hierarchical structures like spindle, flower and spherical shape with diameters ranging from 30 to 300 nm. The photo-induced switching behaviors of ZnO film surfaces between hydrophobic and hydrophilic states were examined by water contact angle and X-ray photoelectron spectroscopy (XPS) analysis. ZnO nanostructured films had contact angles of ~140° and 160°±2 on glass and PET substrates, respectively, exhibiting hydrophobic behavior without any surface modification or treatment. Upon exposure to ultraviolet (UV) illumination, the films showed hydrophilic behavior (contact angle: 15°±2), which upon low thermal stimuli revert back to its original hydrophobic nature. Such reversible and repeatable switching behaviors were observed upon cyclical exposure to ultraviolet radiation. These biomimetic ZnO surfaces exhibit good anti-reflective properties with lower reflectance of 9% for PET substrates. Thus, the present work is significant in terms of its potential application in switching devices, solar coatings and self-cleaning smart windows.

  8. Plastron properties of a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.; Perry, Carole C.; Pyatt, F. Brian

    2006-09-01

    Most insects and spiders drown when submerged during flooding or tidal inundation, but some are able to survive and others can remain submerged indefinitely without harm. Many achieve this by natural adaptations to their surface morphology to trap films of air, creating plastrons which fix the water-vapor interface and provide an incompressible oxygen-carbon dioxide exchange surface. Here the authors demonstrate how the surface of an extremely water-repellent foam mimics this mechanism of underwater respiration and allows direct extraction of oxygen from aerated water. The biomimetic principle demonstrated can be applied to a wide variety of man-made superhydrophobic materials.

  9. A simple approach to fabricate stable superhydrophobic glass surfaces

    NASA Astrophysics Data System (ADS)

    Ji, Haiyan; Chen, Gang; Yang, Jin; Hu, Jie; Song, Haojie; Zhao, Yutao

    2013-02-01

    We present a facile method to fabricate superhydrophobic glass surface via one-step hydrothermal method and chemical modification. The etched glass surface shows the hierarchical textured morphology as well as the multiple scales of roughness and large numbers of nanorods and pores. The formation mechanism of the hierarchically structured surface is discussed in detail. After surface modification with vinyltriethoxysilane, the glass surface exhibits stable superhydrophobicity with a high contact angle of 155° and a low sliding angle of 5°. A water droplet of 10 μL can bounce away from the surface when it vertically hit the superhydrophobic glass surface. Moreover, the contact angle of the superhydrophobic glass surface under different pH values and storage time are measured to study the stability of the superhydrophobic property.

  10. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    NASA Astrophysics Data System (ADS)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  11. Superhydrophobics

    ScienceCinema

    Schaeffer, Daniel; Winter, Kyle

    2016-07-12

    A water repellent developed by researchers at the Department of Energy's Oak Ridge National Laboratory outperforms nature at its best and could open a floodgate of commercial possibilities. The super-water repellent (superhydrophobic) material, developed by John Simpson, is easy to fabricate and uses inexpensive base materials. The process could lead to the creation of a new class of water repellant products, including windshields, eyewear, clothing, building materials, road surfaces, ship hulls and self-cleaning coatings. The list of likely applications is virtually endless.

  12. Superhydrophobics

    SciTech Connect

    Schaeffer, Daniel; Winter, Kyle

    2013-05-02

    A water repellent developed by researchers at the Department of Energy's Oak Ridge National Laboratory outperforms nature at its best and could open a floodgate of commercial possibilities. The super-water repellent (superhydrophobic) material, developed by John Simpson, is easy to fabricate and uses inexpensive base materials. The process could lead to the creation of a new class of water repellant products, including windshields, eyewear, clothing, building materials, road surfaces, ship hulls and self-cleaning coatings. The list of likely applications is virtually endless.

  13. Remodeling of Super-hydrophobic Surfaces.

    PubMed

    Extrand, C W

    2016-08-30

    An experimental study on the underlying mechanisms of structured super-hydrophobic surfaces was recently published [ Butt, H.-J.; et al. How Water Advances on Superhydrophobic Surfaces. Phys. Rev. Lett. 2016, 116, 096101 . DOI: 10.1103/PhysRevLett.116.096101 ]. After depositing small drops of water, Butt's group inclined their surfaces to initiate movement. They examined the contact between the water and structured surfaces with confocal microscopy. They observed that drops were suspended atop the protruding features and movement of water was different at the advancing and receding edges. At the advancing edge, the water interface descended downward and draped itself across the features. At the receding edge, water jumped from one feature to the next. As Butt and co-workers did not test their data against any existing model, that is done in this paper. Here, a previously proposed model that employs linear averaging at the contact line was adapted to their surfaces in an attempt to estimate their contact and sliding angles. Predictions from the model generally agreed with their experimental measurements. PMID:27541362

  14. Superhydrophobic Surface Based on a Coral-Like Hierarchical Structure of ZnO

    PubMed Central

    Wu, Jun; Xia, Jun; Lei, Wei; Wang, Baoping

    2010-01-01

    Background Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare. Methodology This study presents a simple and reproducible method to fabricate a superhydrophobic surface with micro-scale roughness based on zinc oxide (ZnO) hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0°), while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168°). The procedure reported here can be applied to substrates consisting of other materials and having various shapes. Results The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essential characteristic for a superhydrophobic surface. PMID:21209931

  15. Theoretical explanation of the photoswitchable superhydrophobicity of diarylethene microcrystalline surfaces.

    PubMed

    Nishikawa, Naoki; Mayama, Hiroyuki; Nonomura, Yoshimune; Fujinaga, Noriko; Yokojima, Satoshi; Nakamura, Shinichiro; Uchida, Kingo

    2014-09-01

    Two types of superhydrophobic surfaces which show lotus and petal effects were induced on photochromic diarylethene microcrystalline surfaces by UV and visible light irradiation and temperature control. On the surfaces showing the lotus effect, a low-adhesion superhydrophobic property is attributed to the surface structure being covered with densely standing needle-shaped crystals of the closed-ring isomer. On surfaces showing the petal effect, a high-adhesion superhydrophobic surface consists of fine needle-shaped crystals with high density together with a few rod-shaped crystals, where an invasion phenomenon occurs between these rod-shaped crystals. Furthermore, the different superhydrophobic properties of the surfaces are theoretically explained using multipillar surface models. PMID:25111681

  16. Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks.

    PubMed

    Limongi, Tania; Cesca, Fabrizia; Gentile, Francesco; Marotta, Roberto; Ruffilli, Roberta; Barberis, Andrea; Dal Maschio, Marco; Petrini, Enrica Maria; Santoriello, Stefania; Benfenati, Fabio; Di Fabrizio, Enzo

    2013-02-11

    The generation of 3D networks of primary neurons is a big challenge in neuroscience. Here, a novel method is presented for a 3D neuronal culture on superhydrophobic (SH) substrates. How nano-patterned SH devices stimulate neurons to build 3D networks is investigated. Scanning electron microscopy and confocal imaging show that soon after plating neurites adhere to the nanopatterned pillar sidewalls and they are subsequently pulled between pillars in a suspended position. These neurons display an enhanced survival rate compared to standard cultures and develop mature networks with physiological excitability. These findings underline the importance of using nanostructured SH surfaces for directing 3D neuronal growth, as well as for the design of biomaterials for neuronal regeneration.

  17. Spontaneous droplet trampolining on rigid superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Schutzius, Thomas M.; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos

    2015-11-01

    Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces.

  18. Spontaneous droplet trampolining on rigid superhydrophobic surfaces.

    PubMed

    Schutzius, Thomas M; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos

    2015-11-01

    Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces. PMID:26536959

  19. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    PubMed

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  20. Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions.

    PubMed

    Shi, Chen; Cui, Xin; Zhang, Xurui; Tchoukov, Plamen; Liu, Qingxia; Encinas, Noemi; Paven, Maxime; Geyer, Florian; Vollmer, Doris; Xu, Zhenghe; Butt, Hans-Jürgen; Zeng, Hongbo

    2015-07-01

    Superhydrophobic surfaces are usually characterized by a high apparent contact angle of water drops in air. Here we analyze the inverse situation: Rather than focusing on water repellency in air, we measure the attractive interaction of air bubbles and superhydrophobic surfaces in water. Forces were measured between microbubbles with radii R of 40-90 μm attached to an atomic force microscope cantilever and submerged superhydrophobic surfaces. In addition, forces between macroscopic bubbles (R = 1.2 mm) at the end of capillaries and superhydrophobic surfaces were measured. As superhydrophobic surfaces we applied soot-templated surfaces, nanofilament surfaces, micropillar arrays with flat top faces, and decorated micropillars. Depending on the specific structure of the superhydrophobic surfaces and the presence and amount of entrapped air, different interactions were observed. Soot-templated surfaces in the Cassie state showed superaerophilic behavior: Once the electrostatic double-layer force and a hydrodynamic repulsion were overcome, bubbles jumped onto the surface and fully merged with the entrapped air. On nanofilaments and micropillar arrays we observed in addition the formation of sessile bubbles with finite contact angles below 90° or the attachment of bubbles, which retained their spherical shape.

  1. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces

    SciTech Connect

    Boreyko, Jonathan B; Collier, Pat

    2013-01-01

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.

  2. Particle deposition on superhydrophobic surfaces by sessile droplet evaporation

    NASA Astrophysics Data System (ADS)

    Dicuangco, Mercy Grace

    Prediction and active control of the spatial distribution of particulate deposits obtained from sessile droplet evaporation is essential in ink-jet printing, nanostructure assembly, biotechnology, and other applications that require localized deposits. In recent years, sessile droplet evaporation on bio-inspired superhydrophobic surfaces has become an attractive method for depositing materials on a site-specific, localized region, but is less explored compared to evaporative deposition on hydrophilic surfaces. It is therefore of interest to understand particle deposition during droplet evaporation on superhydrophobic surfaces to enable accurate prediction and tunable control of localized deposits on such surfaces. The purpose of the present work is to explore the morphology of particles deposited on superhydrophobic surfaces by the evaporation of sessile water droplets containing suspended latex spheres. Droplet evaporation experiments are performed on non-wetting, textured surfaces with varying geometric parameters. The temporal evolution of the droplet contact radius and contact angle throughout the evaporation process are tracked by visualizing the transient droplet shape and wetting behavior. The droplets are observed to exhibit a combination of the following modes of evaporation: the constant contact radius mode, the constant contact angle mode, and the mixed mode in which the contact angle and the contact radius change simultaneously. After complete dry-out, the remaining particulate deposits are qualitatively and quantitatively characterized to describe their spatial distribution. In the first part of the study, the test surfaces are maintained at different temperatures. Experiments are conducted at ambient conditions and at elevated substrate temperatures of approximately 40°C, 50°C, and 60°C. The results show that droplet evaporation on superhydrophobic surfaces, driven by either mass diffusion at ambient conditions or by substrate heating, suppresses

  3. Manufacturing of Superhydrophobic Surfaces with Nanoscale and Microscale Features

    SciTech Connect

    2009-06-01

    This factsheet describes a research project that will develop a technology that will enable nanoscale and microscale superhydrophobic (SHP) features to be imaged onto surfaces for the high-volume manufacturing of water-repellent components and coatings.

  4. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.

    PubMed

    Xu, Wei; Leeladhar, Rajesh; Kang, Yong Tae; Choi, Chang-Hwan

    2013-05-21

    Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.

  5. Multifunctional polymer nano-composite based superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Maitra, Tanmoy; Asthana, Ashish; Buchel, Robert; Tiwari, Manish K.; Poulikakos, Dimos

    2014-11-01

    Superhydrophobic surfaces become desirable in plethora of applications in engineering fields, automobile industry, construction industries to name a few. Typical fabrication of superhydrophobic surface consists of two steps: first is to create rough morphology on the substrate of interest, followed by coating of low energy molecules. However, typical exception of the above fabrication technique would be direct coating of functional polymer nanocomposites on substrate where superhydrophobicity is needed. Also in this case, the use of different nanoparticles in the polymer matrix can be exploited to impart multi-functional properties to the superhydrophobic coatings. Herein, different carbon nanoparticles like graphene nanoplatelets (GNP), carbon nanotubes (CNT) and carbon black (CB) are used in fluropolymer matrix to prepare superhydrophobic coatings. The multi-functional properties of coatings are enhanced by combining two different carbon fillers in the matrix. The aforementioned superhydrophobic coatings have shown high electrical conductivity and excellent droplet meniscus impalement resistance. Simultaneous superhydrophobic and oleophillic character of the above coating is used to separate mineral oil and water through filtration of their mixture. Swiss National Science Foundation (SNF) Grant 200021_135479.

  6. Integrated three-dimensional photonic nanostructures for achieving near-unity solar absorption and superhydrophobicity

    SciTech Connect

    Kuang, Ping; Lin, Shawn-Yu; Hsieh, Mei-Li

    2015-06-07

    In this paper, we proposed and realized 3D photonic nanostructures consisting of ultra-thin graded index antireflective coatings (ARCs) and woodpile photonic crystals. The use of the integrated ARC and photonic crystal structure can achieve broadband, broad-angle near unity solar absorption. The amorphous silicon based photonic nanostructure experimentally shows an average absorption of ∼95% for λ = 400–620 nm over a wide angular acceptance of θ = 0°–60°. Theoretical studies show that a Gallium Arsenide (GaAs) based structure can achieve an average absorption of >95% for λ = 400–870 nm. Furthermore, the use of the slanted SiO{sub 2} nanorod ARC surface layer by glancing angle deposition exhibits Cassie-Baxter state wetting, and superhydrophobic surface is obtained with highest water contact angle θ{sub CB} ∼ 153°. These properties are fundamentally important for achieving maximum solar absorption and surface self-cleaning in thin film solar cell applications.

  7. Topographical length scales of hierarchical superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Dhillon, P. K.; Brown, P. S.; Bain, C. D.; Badyal, J. P. S.; Sarkar, S.

    2014-10-01

    The morphology of hydrophobic CF4 plasma fluorinated polybutadiene surfaces has been characterised using atomic force microscopy (AFM). Judicious choice of the plasma power and exposure duration leads to formation of three different surface morphologies (Micro, Nano, and Micro + Nano). Scaling theory analysis shows that for all three surface topographies, there is an initial increase in roughness with length scale followed by a levelling-off to a saturation level. At length scales around 500 nm, it is found that the roughness is very similar for all three types of surfaces, and the saturation roughness value for the Micro + Nano morphology is found to be intermediate between those for the Micro and Nano surfaces. Fast Fourier Transform (FFT) analysis has shown that the Micro + Nano topography comprises a hierarchical superposition of Micro and Nano morphologies. Furthermore, the Micro + Nano surfaces display the highest local roughness (roughness exponent α = 0.42 for length scales shorter than ∼500 nm), which helps to explain their superhydrophobic behaviour (large water contact angle (>170°) and low hysteresis (<1°)).

  8. How Water Advances on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  9. Effects of Contact Angle Hysteresis on Ice Adhesion and Growth over Superhydrophobic Surfaces under Dynamic Flow Conditions

    SciTech Connect

    Sarshar, Mohammad Amin; Swarctz, Christopher; Hunter, Scott Robert; Simpson, John T; Choi, Chang-Hwan

    2012-01-01

    In this paper, the iceophobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating the substrates of aluminum and steel plates with nano-structured hydrophobic particles. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 F accompanying micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by high-resolution CCD cameras. Results show that the superhydrophobic coatings significantly delay the ice formation and accretion even under the dynamic flow condition of the highly energetic impingement of accelerated super-cooled water droplets. It is found that there is a time scale for this phenomenon (delay of the ice formation) which has a clear correlation with the contact angle hysteresis and the length scale of surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finer surface roughness. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis (dynamic property) and the non-wetting superhydrophobic state under the hydrodynamic pressure of impinging droplets, rather than to only have a high contact angle (static property), in order to result in efficient anti-icing properties under dynamic conditions such as forced flows.

  10. Manipulating dynamic drops using a hybrid superhydrophobic/hydrophilic surface

    NASA Astrophysics Data System (ADS)

    Guo, Yunhe; Song, Dong; Song, Baowei; Hu, Haibao

    2016-11-01

    A hybrid surface composed of superhydrophobic patterns on hydrophilic substrate was fabricated by selective painting. The impingement of a water drop on this surface was investigated using lattice Boltzmann simulation. When a drop impinged on the boundary line between the superhydrophobic and hydrophilic area, the drop would spread preferentially to the hydrophilic area while the spreading at the superhydrophobic area was highly impeded. The maximum spreading diameters as well as the spreading time, which are extremely important for the heat transfer on solid surfaces, were analyzed in detail. By adjusting the distance between the landing point and the boundary line of the superhydrophobic/hydrophilic area, the maximum spreading diameter and spreading time could be altered precisely. The impinging velocity has been found to be important on the manipulation of the dynamic droplet as well.

  11. Superhydrophobic surfaces: From the lotus leaf to the submarine

    NASA Astrophysics Data System (ADS)

    Samaha, Mohamed A.; Tafreshi, Hooman Vahedi; Gad-el-Hak, Mohamed

    2012-01-01

    In this review we discuss the current state of the art in evaluating the fabrication and performance of biomimetic superhydrophobic materials and their applications in engineering sciences. Superhydrophobicity, often referred to as the lotus effect, could be utilized to design surfaces with minimal skin-friction drag for applications such as self-cleaning and energy conservation. We start by discussing the concept of the lotus effect and continue to present a review of the recent advances in manufacturing superhydrophobic surfaces with ordered and disordered microstructures. We then present a discussion on the resistance of the air-water interface to elevated pressures—the phenomenon that enables a water strider to walk on water. We conclude the article by presenting a brief overview of the latest advancements in studying the longevity of submerged superhydrophobic surfaces for underwater applications.

  12. Fabrication of superhydrophobic and highly oleophobic silicon-based surfaces via electroless etching method

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Phuong Nhung; Dufour, Renaud; Thomy, Vincent; Senez, Vincent; Boukherroub, Rabah; Coffinier, Yannick

    2014-03-01

    This study reports on a simple method for the preparation of superhydrophobic and highly oleophobic nanostructured silicon surfaces. The technique relies on metal-assisted electroless etching of silicon in sodium tetrafluoroborate (NaBF4) aqueous solution. Then, silver particles were deposited on the obtained surfaces, changing their overall physical morphology. Finally, the surfaces were coated by either C4F8, a fluoropolymer deposited by plasma, or by SiOx overlayers chemically modified with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFTS) through silanization reaction. All these surfaces exhibit a superhydrophobic character (large apparent contact angle and low hysteresis with respect to water). In addition, they present high oleophobic properties, i.e. a high repellency to low surface energy liquids with various contact angle hysteresis, both depending on the morphology and type of coating.

  13. Formation of superhydrophobic surfaces by biomimetic silicification and fluorination.

    PubMed

    Cho, Woo Kyung; Kang, Sung Min; Kim, Dong Jin; Yang, Sung Ho; Choi, Insung S

    2006-12-19

    The amazing water repellency of many biological surfaces, exemplified by lotus leaves, has recently received a great deal of interest. These surfaces, called superhydrophobic surfaces, exhibit water contact angles larger than 150 degrees and a low contact angle hysteresis because of both their low surface energy and heterogeneously rough structures. In this paper, we suggest a biomimetic method, "biosilicification", for generating heterogeneously rough structures and fabricating superhydrophobic surfaces. The superhydrophobic surface was prepared by a combination of the formation of heterogeneously rough, nanosphere-like silica structures through biosilicification and the formation of self-assembled monolayers of fluorosilane on the surface. The resulting surface exhibited the water contact angle of 160.1 degrees and the very low water contact angle hysteresis of only 2.3 degrees, which are definite characteristics of superhydrophobic surfaces. The superhydrophobic property of our system probably resulted from the air trapped in the rough surface. The wetting behavior on the surface was in the heterogeneous regime, which was totally supported by Cassie-Baxter equation.

  14. Nano-engineering of superhydrophobic aluminum surfaces for anti-corrosion

    NASA Astrophysics Data System (ADS)

    Jeong, Chanyoung

    Metal corrosion is a serious problem, both economically and operationally, for engineering systems such as aircraft, automobiles, pipelines, and naval vessels. In such engineering systems, aluminum is one of the primary materials of construction due to its light weight compared to steel and good general corrosion resistance. However, because of aluminum's relatively lower resistance to corrosion in salt water environments, protective measures such as thick coatings, paints, or cathodic protection must be used for satisfactory service life. Unfortunately, such anti-corrosion methods can create other concerns, such as environmental contamination, protection durability, and negative impact on hydrodynamic efficiency. Recently, a novel approach to preventing metal corrosion has emerged, using superhydrophobic surfaces. Superhydrophobic surfaces create a composite interface to liquid by retaining air within the surface structures, thus minimizing the direct contact of the liquid environment to the metal surface. The result is a highly non-wetting and anti-adherent surface that can offer other benefits such as biofouling resistance and hydrodynamic low friction. Prior research with superhydrophobic surfaces for corrosion applications was based on irregular surface roughening and/or chemical coatings, which resulted in random surface features, mostly on the micrometer scale. Such microscale surface roughness with poor controllability of structural dimensions and shapes has been a critical limitation to deeper understanding of the anti-corrosive effectiveness and optimized application of this approach. The research reported here provides a novel approach to producing controlled superhydrophobic nanostructures on aluminum that allows a systematic investigation of the superhydrophobic surface parameters on the corrosion resistance and hence can provide a route to optimization of the surface. Electrochemical anodization is used to controllably modulate the oxide layer

  15. Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays.

    PubMed

    Li, Yue; Huang, Xing Jiu; Heo, Sung Hwan; Li, Cun Cheng; Choi, Yang Kyu; Cai, Wei Ping; Cho, Sung Oh

    2007-02-13

    Superhydrophobic bionic surfaces with hierarchical micro/nano structures were synthesized by decorating single-walled or multiwalled carbon nanotubes (CNTs) on monolayer polystyrene colloidal crystals using a wet chemical self-assembly technique and subsequent surface treatment with a low surface-energy material of fluoroalkylsilane. The bionic surfaces are based on the regularly ordered colloidal crystals, and thus the surfaces have a uniform superhydrophobic property on the whole surface. Moreover, the wettability of the bionic surface can be well controlled by changing the distribution density of CNTs or the size of polystyrene microspheres. The morphologies of the synthesized bionic surfaces bear much resemblance to natural lotus leaves, and the wettability exhibited remarkable superhydrophobicity with a water contact angle of about 165 degrees and a sliding angle of 5 degrees.

  16. Mechanically robust, chemically inert superhydrophobic charcoal surfaces.

    PubMed

    Xie, Jian-Bo; Li, Liang; Knyazeva, Anastassiya; Weston, James; Naumov, Panče

    2016-08-11

    We report a fast and cost-effective strategy towards the preparation of superhydrophobic composites where a double-sided adhesive tape is paved with charcoal particles. The composites are mechanically robust, and resistant to strong chemical agents. PMID:27405255

  17. Wetting of soap bubbles on hydrophilic, hydrophobic, and superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Arscott, Steve

    2013-06-01

    Wetting of sessile bubbles on various wetting surfaces (solid and liquid) has been studied. A model is presented for the apparent contact angle of a sessile bubble based on a modified Young's equation--the experimental results agree with the model. Wetting a hydrophilic surface results in a bubble contact angle of 90° whereas using a superhydrophobic surface one observes 134°. For hydrophilic surfaces, the bubble angle diminishes with bubble radius whereas on a superhydrophobic surface, the bubble angle increases. The size of the plateau borders governs the bubble contact angle, depending on the wetting of the surface.

  18. Spontaneous Jumping of Coalescing Drops on a Superhydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan; Chen, Chuan-Hua

    2009-11-01

    When micrometric drops coalesce in-plane on a superhydrophobic surface, a surprising out-of-plane jumping motion was observed. Such jumping motion triggered by drop coalescence was reproduced on a Leidenfrost surface. High-speed imaging revealed that this jumping motion results from the elastic interaction of the bridged drops with the superhydrophobic/Leidenfrost surface. Experiments on both the superhydrophobic and Leidenfrost surfaces compare favorably to a simple scaling model relating the kinetic energy of the merged drop to the surface energy released upon coalescence. The spontaneous jumping motion on water repellent surfaces enables the autonomous removal of water condensate independently of gravity; this process is highly desirable for sustained dropwise condensation.

  19. Fabrication of superhydrophobic polyurethane/organoclay nano-structured composites from cyclomethicone-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Bayer, I. S.; Steele, A.; Martorana, P. J.; Loth, E.

    2010-11-01

    Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D 5), dodecamethylcyclohexasiloxane (D 6) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155° and low contact angle hysteresis (<8°). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.

  20. Fabrication of superhydrophobic surfaces on engineering material surfaces with stearic acid

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Zhang, Bingwu; Qu, Mengnan; Zhang, Junyan; He, Deyan

    2008-01-01

    Via a simple wet chemical etching followed by stearic acid modification, the presence of synergistic binary structures at micro- and nanometer scales and stearic acid bestows superhydrophobic property on steel and aluminum alloy surfaces. The as-prepared surfaces show superhydrophobic not only for pure water but also for corrosive liquids such as acid, basic and salt solutions. The stable superhydrophobicity of steel and aluminum alloy surfaces will extend their applications as engineering materials.

  1. Selectively splitting a droplet using superhydrophobic stripes on hydrophilic surfaces.

    PubMed

    Song, Dong; Song, Baowei; Hu, Haibao; Du, Xiaosong; Zhou, Feng

    2015-06-01

    Superhydrophobic patterns were fabricated on hydrophilic surfaces by selective painting. The impinging process of water droplets on these hybrid surfaces was investigated. The droplet can be split by impinging on the hydrophilic surface with a single stripe at a high velocity. The time to split the droplet is independent of the impact velocity and it is smaller than the contact time of a droplet impinging on the fully superhydrophobic surface. The volume ratios of the split mini-droplets could be precisely controlled by adjusting the landing position of the original droplet. The droplet could be split uniformly into more mini-marbles by increasing the stripe numbers. PMID:25946666

  2. Condensation heat transfer on two-tier superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Cheng, Jiangtao; Vandadi, Aref; Chen, Chung-Lung

    2012-09-01

    We investigated water vapor condensation on a two-tier superhydrophobic surface in an environmental scanning electron microscope (ESEM) and in a customer-designed vapor chamber. We have observed continuous dropwise condensation (DWC) on the textured surface in ESEM. However, a film layer of condensate was formed on the multiscale texture in the vapor chamber. Due to the filmwise condensation, the condensation heat transfer coefficient of the superhydrophobic surface is lower than that of a flat hydrophobic surface especially under high heat flux situations. Our studies indicate that adaptive and prompt condensate droplet purging is the dominant factor for sustaining long-term DWC.

  3. Fabrication of superhydrophobic and lyophobic slippery surface on steel substrate

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Xiong, Dangsheng; Pan, Sai; Deng, Yaling; Shi, Yan

    2016-11-01

    Superhydrophobic/oleophilic coating was prepared on steel via wet chemical etching, and followed by surface modification. Surface grafting was manifested to be realized mainly on the oxidized area. Slippery liquid infused porous surface(s) (SLIPS) was prepared by infusing perfluorinated lubricant into the prepared superhydrophobic coating, to repel water, coffee, kerosene, and even hexane, suggesting a transition from superoleophilicity to lyophobicity. Furthermore, the lyohobicity was accessible only when the substrate is fluorinated. Moreover, the kinematic viscosity was demonstrated to be negatively correlated to the traveling speed of the liquids on the SLIPS.

  4. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays.

    PubMed

    Yong, Jiale; Chen, Feng; Yang, Qing; Zhang, Dongshi; Bian, Hao; Du, Guangqing; Si, Jinhai; Meng, Xiangwei; Hou, Xun

    2013-03-12

    This paper presents a one-step method to fabricate superhydrophobic surfaces with extremely controllable adhesion based on PDMS microwell arrays. The microwell array structures are rapidly produced on PDMS films by a point-by-point femtosecond laser scanning process. The as-prepared superhydrophobic surfaces show water controllable adhesion that ranges from ultrahigh to ultralow by adjusting the extent of overlap of the adjacent microwells, on which the sliding angle can be controlled from 180° (a water droplet can not slide down even when the as-prepared surface is turned upside down) to 3°. A "micro-airbag effect" is introduced to explain the adhesion transition phenomenon of the microwell array structures. This work provides a facile and promising strategy to fabricate superhydrophobic surfaces with controllable adhesion.

  5. Stability of plasma treated superhydrophobic surfaces under different ambient conditions.

    PubMed

    Chen, Faze; Liu, Jiyu; Cui, Yao; Huang, Shuai; Song, Jinlong; Sun, Jing; Xu, Wenji; Liu, Xin

    2016-05-15

    Plasma hydrophilizing of superhydrophobic substrates has become an important area of research, for example, superhydrophobic-(super)hydrophilic patterned surfaces have significant practical applications such as lab-on-chip systems, cell adhesion, and control of liquid transport. However, the stability of plasma-induced hydrophilicity is always considered as a key issue since the wettability tends to revert back to the untreated state (i.e. aging behavior). This paper focuses on the stability of plasma treated superhydrophobic surface under different ambient conditions (e.g. temperature and relative humidity). Water contact angle measurement and X-ray photoelectron spectroscopy are used to monitor the aging process. Results show that low temperature and low relative humidity are favorable to retard the aging process and that pre-storage at low temperature (-10°C) disables the treated surface to recover superhydrophobicity. When the aging is performed in water, a long-lasting hydropholicity is obtained. As the stability of plasma-induced hydrophilcity over a desired period of time is a very important issue, this work will contribute to the optimization of storage conditions of plasma treated superhydrophobic surfaces. PMID:26945118

  6. Super-hydrophobicity of PMMA and PDMS surfaces structured by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Jeong, Hong-Myeong; Lee, Woon-Young; Lee, Jin-Ho; Yang, Deok-Cho; Lim, Ki-Soo

    2013-03-01

    Surface wettability depends on both physical surface structure and chemical material. In this report, we demonstrate super-hydrophobic surface of cast polymethyl methacrylate (PMMA) sheet by femtosecond laser fabrication. Twodimensional micro-array structures of square-typed pillars with various heights, widths, and intervals were fabricated on the PMMA surface by femtosecond laser irradiation and chemical etching. The Yb:KGW femtosecond laser processing system (λ=1030 nm) delivering 250 fs pulses at a repetition rate 100 kHz was employed for fabrication. The contact angle of PMMA changed 64° (hydrophilic plane) to 150° (super-hydrophobic structure). We also improved superhydrophobicity up to 170° contact angle by spin-coating PMMA surface with PDMS and fabricating regular microstructures including irregular nano-structures. We also coated the structured PMMA surface with a car ash spray material to use another combination of surface morphology and chemistry. All the experimental results were compared with those expected values by Cassie-Baxter model.

  7. High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Ming; Hong, Siang-Jie; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-08-01

    A typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle (CA) hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious CA hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing CA, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of CA hysteresis, the surface remains superhydrophobic but becomes highly adhesive.

  8. One-step electrodeposition process to fabricate cathodic superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Li, Feng; Hao, Limei; Chen, Anqi; Kong, Youchao

    2011-12-01

    In this work, a rapid one-step process is developed to fabricate superhydrophobic cathodic surface by electrodepositing copper plate in an electrolyte solution containing manganese chloride (MnCl2·4H2O), myristic acid (CH3(CH2)12COOH) and ethanol. The superhydrophobic surfaces were characterized by means of scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shortest electrolysis time for fabricating a superhydrophobic surface is about 1 min, the measured maximum contact angle is 163° and rolling angle is less than 3°. Furthermore, this method can be easily extended to other conductive materials. The approach is time-saving and cheap, and it is supposed to have a promising future in industrial fields.

  9. Investigating the interface of superhydrophobic surfaces in contact with water.

    PubMed

    Doshi, Dhaval A; Shah, Pratik B; Singh, Seema; Branson, Eric D; Malanoski, Anthony P; Watkins, Erik B; Majewski, Jaroslaw; van Swol, Frank; Brinker, C Jeffrey

    2005-08-16

    Neutron reflectivity (NR) is used to probe the solid, liquid, vapor interface of a porous superhydrophobic (SH) surface submerged in water. A low-temperature, low-pressure technique was used to prepare a rough, highly porous organosilica aerogel-like film. UV/ozone treatments were used to control the surface coverage of hydrophobic organic ligands on the silica framework, allowing the contact angle with water to be continuously varied over the range of 160 degrees (superhydrophobic) to <10 degrees (hydrophilic). NR shows that the superhydrophobic nature of the surface prevents infiltration of water into the porous film. Atomic force microscopy and density functional theory simulations are used in combination to interpret the NR results and help establish the location, width, and nature of the SH film-water interface.

  10. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    SciTech Connect

    Branson, Eric D.; Singh, Seema; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements

  11. Predictive model for ice formation on superhydrophobic surfaces.

    PubMed

    Bahadur, Vaibhav; Mishchenko, Lidiya; Hatton, Benjamin; Taylor, J Ashley; Aizenberg, Joanna; Krupenkin, Tom

    2011-12-01

    The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of supercooled water droplets. This modeling approach analyzes the multiple phenomena influencing ice formation on superhydrophobic surfaces through the development of submodels describing droplet impact dynamics, heat transfer, and heterogeneous ice nucleation. These models are then integrated together to achieve a comprehensive understanding of ice formation upon impact of liquid droplets at freezing conditions. The accuracy of this model is validated by its successful prediction of the experimental findings that demonstrate that superhydrophobic surfaces can fully prevent the freezing of impacting water droplets down to surface temperatures of as low as -20 to -25 °C. The model can be used to study the influence of surface morphology, surface chemistry, and fluid and thermal properties on dynamic ice formation and identify parameters critical to achieving icephobic surfaces. The framework of the present work is the first detailed modeling tool developed for the design and analysis of surfaces for various ice prevention/reduction strategies. PMID:21899285

  12. A novel preparation of polystyrene film with a superhydrophobic surface using a template method

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqing; Chen, Hong; Tang, Jianxin; Gong, Huifang; Liu, Yuejun; Wang, Zhengxiang; Shi, Pu; Zhang, Jide; Chen, Xin

    2007-06-01

    Inspired by the self-cleaning superhydrophobic taro leaf, a polystyrene (PS) film with superhydrophobic surface was obtained using a natural taro leaf as template. The water contact angle and the sliding angle of the superhydrophobic PS surface were 158° ± 1.6° and 3°, respectively. The PS surface was still superhydrophobic when contacting with black ink, fresh blood and even viscous glue water. SEM shows that the surface structure comprises many uniform papillae with the diameters ranging from 10 to 15 µm, which is similar to the surface structure of natural taro leaf. Such a special surface morphology may result in the superhydrophobic property.

  13. Micro-and nanostructured silicon-based superomniphobic surfaces.

    PubMed

    Nguyen, Thi Phuong Nhung; Boukherroub, Rabah; Thomy, Vincent; Coffinier, Yannick

    2014-02-15

    We report on the fabrication of silicon nanostructured superhydrophobic and superoleophobic surfaces also called "superomniphobic" surfaces. For this purpose, silicon interfaces with different surface morphologies, single or double scale structuration, were investigated. These structured surfaces were chemically treated with perfluorodecyltrichlorosilane (PFTS), a low surface energy molecule. The morphology of the resulting surfaces was characterized using scanning electron microscopy (SEM). Their wetting properties: static contact angle (CA) and contact angle hysteresis (CAH) were investigated using liquids of various surface tensions. Despite that we found that all the different morphologies display a superhydrophobic character (CA>150° for water) and superoleophobic behavior (CA ≈ 140° for hexadecane), values of hysteresis are strongly dependent on the liquid surface tension and surface morphology. The best surface described in this study was composed of a dual scale texturation i.e. silicon micropillars covered by silicon nanowires. Indeed, this surface displayed high static contact angles and low hysteresis for all tested liquids.

  14. Mechanical stability of surface architecture--consequences for superhydrophobicity.

    PubMed

    Dyett, Brendan P; Wu, Alex H; Lamb, Robert N

    2014-11-12

    Wet chemistry methods such as sol-gel provide a facile means of preparing coatings with controlled surface chemistry and architecture. The manipulation of colloidal "building blocks," film constituents, and reaction conditions makes it a promising method for simple, scalable, and routine production of superhydrophobic coatings. Despite all of this, the practical application of superhydrophobic coatings remains limited by low mechanical durability. The translation of chemistry to mechanical strength within superhydrophobic films is severely hindered by the requisite physical structure. More specifically, porosity and the surface architecture of roughness in sol-gel-derived films contribute significantly to poor mechanical properties. These physical effects emphasize that collective structure and chemistry-based strategies are required. This challenge is not unique to superhydrophobics, and there are many principles that can be drawn upon to greatly improve performance. The delicate interplay between chemistry and physical structure has been highlighted through theory and characterization of porous and rough interfaces within and outside the framework of superhydrophobics. Insights can further be drawn from biology. Nature's capacity for self-repair remains extremely challenging to mimic in materials. However, nature does demonstrate strategies for structuring nano- and microbuilding blocks to achieve generally mutually exclusive properties. Difficulties with characterization and example mechanical characterization methods have also been emphasized. PMID:25318076

  15. Local Flow Field and Slip Length of Superhydrophobic Surfaces.

    PubMed

    Schäffel, David; Koynov, Kaloian; Vollmer, Doris; Butt, Hans-Jürgen; Schönecker, Clarissa

    2016-04-01

    While the global slippage of water past superhydrophobic surfaces has attracted wide interest, the local distribution of slip still remains unclear. Using fluorescence correlation spectroscopy, we performed detailed measurements of the local flow field and slip length for water in the Cassie state on a microstructured superhydrophobic surface. We revealed that the local slip length is finite, nonconstant, anisotropic, and sensitive to the presence of surfactants. In combination with numerical calculations of the flow, we can explain all these properties by the local hydrodynamics. PMID:27081981

  16. Bacterial growth on a superhydrophobic surface containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.

    2013-12-01

    The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.

  17. Collapse and Reversibility of the Superhydrophobic State on Nanotextured Surfaces

    NASA Astrophysics Data System (ADS)

    Checco, Antonio; Ocko, Benjamin M.; Rahman, Atikur; Black, Charles T.; Tasinkevych, Mykola; Giacomello, Alberto; Dietrich, Siegfried

    2014-05-01

    Superhydrophobic coatings repel liquids by trapping air inside microscopic surface textures. However, the resulting composite interface is prone to collapse under external pressure. Nanometer-size textures should facilitate more resilient coatings owing to geometry and confinement effects at the nanoscale. Here, we use in situ x-ray diffraction to study the collapse of the superhydrophobic state in arrays of ≈20 nm-wide silicon textures with cylindrical, conical, and linear features defined by block-copolymer self-assembly and plasma etching. We reveal that the superhydrophobic state vanishes above critical pressures which depend on texture shape and size. This phenomenon is irreversible for all but the conical surface textures which exhibit a spontaneous, partial reappearance of the trapped gas phase upon liquid depressurization. This process is influenced by the kinetics of gas-liquid exchange.

  18. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.

    PubMed

    Peng, Shan; Tian, Dong; Miao, Xinrui; Yang, Xiaojun; Deng, Wenli

    2013-11-01

    Hierarchical alumina surfaces with different morphologies were fabricated by a simple one-step anodization method. These alumina films were fabricated by a new raw material: silica gel plate (aluminum foil with a low purity of 97.17%). The modulation of anodizing time enabled the formation of nanowires-on-nanopores hybrid nanostructures having controllable nanowires topographies through a self-assembly process. The resultant structures were demonstrated to be able to achieve superhydrophobicity without any hydrophobic coating layer. More interestingly, it is found that the as-prepared superhydrophobic alumina surfaces exhibited high contrast water adhesion. Hierarchical alumina film with nanowire bunches-on-nanopores (WBOP) morphology presents extremely slippery property which can obtain a sliding angle (SA) as low as 1°, nanowire pyramids-on-nanopores (WPOP) structure shows strongly sticky water adhesion with the adhesive ability to support 15 μL inverted water droplet at most. The obtained superhydrophobic alumina surfaces show remarkable mechanical durability even treated by crimping or pressing without impact on the water-repellent performance. Moreover, the created surfaces also show excellent resistivity to ice water, boiling water, high temperature, organic solvent and oil contamination, which could expand their usefulness and efficacy in harsh conditions.

  19. Facile and fast fabrication of superhydrophobic surface on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Zhongwei; Li, Qing; She, Zuxin; Chen, Funan; Li, Longqin; Zhang, Xiaoxu; Zhang, Peng

    2013-04-01

    Superhydrophobic surface has many special functions and is widely investigated by researchers. Magnesium alloy is one of the lightest metal materials among the practice metals. It plays an important role in automobile, airplane and digital product for reducing devices weight. But due to the low standard potential, magnesium alloy has a high chemical activity and easily be corroded. That seriously impedes the application of magnesium alloy. In the process of fabrication a superhydrophobic surface on magnesium alloy, there are two ineluctable problems that must be solved: (1) high chemical activity and (2) the chemical activity is inhomogeneous on surface. In this study, we solved those problems by using the two characters to gain a rough surface on magnesium alloy and obtained a superhydrophobic surface after following modification process. The results show that the as-prepared superhydrophobic surface has obvious anti-corrosion effect in typically corrosive solution and naturally humid air. The delay-icing and self-cleaning effects are also investigated. The presented method is low-cost, fast and has great potential value in large-scale industry production.

  20. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES

    NASA Astrophysics Data System (ADS)

    Jia, Shanshan; Liu, Ming; Wu, Yiqiang; Luo, Sha; Qing, Yan; Chen, Haibo

    2016-11-01

    In this study, an efficient, facile method has been developed for fabricating superhydrophobic surfaces on wood substrates using silica nanoparticles modified by VTES. The as-prepared superhydrophobic wood surface had a water contact angle of 154° and water slide angle close to 0°. Simultaneously, this superhydrophobic wood showed highly durable and robust wear resistance when having undergone a long period of sandpaper abrasion or being scratched by a knife. Even under extreme conditions of boiling water, the superhydrophobicity of the as-prepared wood composite was preserved. Characterizations by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy showed that a typical and tough hierarchical micro/nanostructure was created on the wood substrate and vinyltriethoxysilane contributed to preventing the agglomeration of silica nanoparticles and serving as low-surface-free-energy substances. This superhydrophobic wood was easy to fabricate, mechanically resistant and exhibited long-term stability. Therefore, it is considered to be of significant importance in the industrial production of functional wood, especially for outdoor applications.

  1. Analysis on superhydrophobic silver decorated copper Oxide nanostructured thin films for SERS studies.

    PubMed

    Jayram, Naidu Dhanpal; Aishwarya, D; Sonia, S; Mangalaraj, D; Kumar, P Suresh; Rao, G Mohan

    2016-09-01

    The present work demonstrates the superhydrophobic and Surface Enhanced Raman Spectroscopy (SERS) active substrate performance of silver coated copper oxide (Ag@CuO) nanostructured thin films prepared by the SILAR process. Super hydrophobic substrates that combine super hydrophobic condensation effect and high enhancement ability of Ag@CuO nanoflowers are investigated for SERS studies. The possible growth mechanism for the formation of nanoflower arrays from nanospindles has been discussed. Morphology and crystallinity of the Ag@CuO thin films are confirmed using FESEM and XRD. The results obtained in the present study indicate that the as-deposited hydrophobic nanospindles structure converts to super hydrophobic nanoflower arrays on annealing at 200°C. The Ag@CuO super hydrophobic nanoflowers thin film based SERS substrates show highly enhanced Raman spectra with an EF value of 2.0×10(7) for (Rhodamine 6G) R6G, allowing a detection limit from a 10(-10)molL(-1) solution. The present study may provide a new perception in fabricating efficient super hydrophobic substrates for SERS, suggesting that the fabricated substrates are promising candidates for trace analysis of R6G dye and are expected to be widely used as highly sensitive SERS active substrates for various toxic dyes in the future. PMID:27294970

  2. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  3. Self-Propelled Sweeping Removal of Dropwise Condensate on Two-Tier Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan; Qu, Xiaopeng; Liu, Fangjie; Agapov, Rebecca; Lavrik, Nickolay; Retterer, Scott; Feng, James; Collier, Patrick; Chen, Chuan-Hua; Nature-Inspired Fluids; Interfaces Team; Microscale Physicochemical Hydrodynamics Laboratory Team; CenterNanophase Materials Sciences Team; Department of Mathematics Team

    2015-11-01

    Dropwise condensation can be enhanced by nanostructured superhydrophobic surfaces, on which the condensate drops spontaneously jump upon coalescence. However, the self-propelled jumping in prior reports is mostly perpendicular to the substrate. Here, we propose a substrate design with regularly spaced micropillars. Coalescence on the sidewalls of the micropillars leads to self-propelled jumping in a direction nearly orthogonal to the pillars and therefore parallel to the substrate. This in-plane motion in turn produces sweeping removal of multiple neighboring drops. The spontaneous sweeping mechanism may greatly enhance dropwise condensation in a self-sustained manner.

  4. Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings.

    PubMed

    Cheng, Mengjiao; Song, Mengmeng; Dong, Hongyu; Shi, Feng

    2015-04-01

    Nanomaterials with superhydrophobic properties are promising as drag-reducing coatings. However, debates regarding whether superhydrophobic surfaces are favorable for drag reduction require further clarification. A quantified water adhesive force measurement is proposed as a metric and its effectiveness demonstrated using three typical superhydrophobic coatings on model ships with in situ sailing tests. PMID:25418808

  5. Surface adhesive forces: a metric describing the drag-reducing effects of superhydrophobic coatings.

    PubMed

    Cheng, Mengjiao; Song, Mengmeng; Dong, Hongyu; Shi, Feng

    2015-04-01

    Nanomaterials with superhydrophobic properties are promising as drag-reducing coatings. However, debates regarding whether superhydrophobic surfaces are favorable for drag reduction require further clarification. A quantified water adhesive force measurement is proposed as a metric and its effectiveness demonstrated using three typical superhydrophobic coatings on model ships with in situ sailing tests.

  6. Drag reduction in turbulent flows over superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Daniello, Robert J.; Waterhouse, Nicholas E.; Rothstein, Jonathan P.

    2009-08-01

    In this paper, we demonstrate that periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flow drag reduction, are capable of reducing drag in the turbulent flow regime. Superhydrophobic surfaces contain micro- or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to drag reductions approaching 50%. At a given Reynolds number, drag reduction is found to increase with increasing feature size and spacing, as in laminar flows. No observable drag reduction was noted in the laminar regime, consistent with previous experimental results for the channel geometry considered. The onset of drag reduction occurs at a critical Reynolds number where the viscous sublayer thickness approaches the scale of the superhydrophobic microfeatures and performance is seen to increase with further reduction in viscous sublayer height. These results indicate superhydrophobic surfaces may provide a significant drag reducing mechanism for marine vessels.

  7. Durable superhydrophobic PTFE films through the introduction of micro- and nanostructured pores

    NASA Astrophysics Data System (ADS)

    Zhang, Yao-Yao; Ge, Quan; Yang, Long-Lai; Shi, Xiao-Jun; Li, Jiao-Jiao; Yang, De-Quan; Sacher, Edward

    2015-06-01

    A superhydrophobic surface, highly water repellant and self-cleaning, is typically made by introducing micro- and nanoscale roughness onto the surface of a low surface energy material. Herein, we offer a new process of superhydrophobic film formation, accomplishing the same thing through the production of micro- and nanoscale surface porosities. Such a material is prepared by introducing zinc acetate (ZnAc2) and sodium chloride (NaCl) into a commercially available PTFE (polytetrafluoroethylene) emulsion. On drying, baking and washing with acetic acid, the PTFE film produced from the emulsion had both micro- and nanoscale surface porosities, and demonstrated superhydrophobic properties, with a static contact angle >150° and a slide angle <10°. From SEM observation, NaCl contributes microscale porosity, while ZnAc2 decomposes to ZnO, contributing nanoscale porosity. Using either ZnAc2 or NaCl alone produces a surface with a static contact angle >150°, but with a slide angle >10°. Based on XPS and SEM data, we explore herein the affect of chemistry and porosity on the mechanism of superhydrophobic surface formation, and the durability of that surface under abrasion.

  8. Studies of drag on the nanocomposite superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Brassard, Jean-Denis; Sarkar, D. K.; Perron, Jean

    2015-01-01

    The nanocomposite thin films of stearic acid (SA)-functionalized ZnO nanoparticles incorporated in epoxy polymer matrix have been achieved. The X-ray diffraction (XRD) studies show the formation of zinc stearate on ZnO nanoparticles as the confirmation of SA-functionalization of ZnO nanoparticles in the thin films. Morphological analyses reveal the presence of micro-holes with the presence of irregular nanoparticles. The measured root mean square (rms) roughness of the thin film is found to be 12 ± 1 μm with the adhesion of 5B on both glass and aluminum substrates. The wetting property shows that the surface of the film is superhydrophobic with the contact angle of water of 156 ± 4° having contact angle hysteresis (CAH) of 4 ± 2°. The average terminal velocity in the water of the as-received glass spheres and superhydrophobic spheres were found to be 0.66 ± 0.01 m/s and 0.72 ± 0.01 m/s respectively. Consequently, the calculated average coefficients of the surface drag of the as-received glass sphere and superhydrophobic glass sphere were 2.30 ± 0.01 and 1.93 ± 0.03, respectively. Hence, the drag reduction on the surface of superhydrophobic glass sphere is found to be approximately 16% lower than as-received glass sphere.

  9. PREFACE: Nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real

  10. Microcavity-array superhydrophobic surfaces: Limits of the model

    NASA Astrophysics Data System (ADS)

    Salvadori, M. C.; Oliveira, M. R. S.; Spirin, R.; Teixeira, F. S.; Cattani, M.; Brown, I. G.

    2013-11-01

    Superhydrophobic surfaces formed of microcavities can be designed with specific desired advancing and receding contact angles using a new model described by us in prior work. Here, we discuss the limits of validity of the model, and explore the application of the model to surfaces fabricated with small cavities of radius 250 nm and with large cavities of radius 40 μm. The Wenzel model is discussed and used to calculate the advancing and receding contact angles for samples for which our model cannot be applied. We also consider the case of immersion of a sample containing microcavities in pressurized water. A consideration that then arises is that the air inside the cavities can be dissolved in the water, leading to complete water invasion into the cavities and compromising the superhydrophobic character of the surface. Here, we show that this effect does not destroy the surface hydrophobia when the surface is subsequently removed from the water.

  11. Micro to nano: Surface size scale and superhydrophobicity.

    PubMed

    Dorrer, Christian; Rühe, Jürgen

    2011-01-01

    This work looks at the fundamental question of how the surface mobility of drops in the composite state is related to the size scale of the roughness features of the surface. To this end, relevant literature is first reviewed and the important terms are clarified. We then describe and discuss contact and roll-off angle measurements on a set of hydrophobicized silicon post surfaces for which all parameters except for the surface size scale were held constant. It was found that a critical transition from "sticky superhydrophobic" (composite state with large contact angle hysteresis) to "truly superhydrophobic" (composite state with low hysteresis) takes place as the size of the surface features reaches 1 μm. PMID:21977446

  12. Behavior of severely supercooled water drops impacting on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Maitra, Tanmoy; Antonini, Carlo; Tiwari, Manish K.; Mularczyk, Adrian; Imeri, Zulkufli; Schoch, Philippe; Poulikakos, Dimos

    2014-11-01

    Surface icing, commonplace in nature and technology, has broad implications to daily life. To prevent surface icing, superhydrophobic surfaces/coatings with rationally controlled roughness features (both at micro and nano-scale) are considered to be a promising candidate. However, to fabricate/synthesize a high performance icephobic surface or coating, understanding the dynamic interaction between water and the surface during water drop impact in supercooled state is necessary. In this work, we investigate the water/substrate interaction using drop impact experiments down to -17°C. It is found that the resulting increased viscous effect of water at low temperature significantly affects all stages of drop dynamics such as maximum spreading, contact time and meniscus penetration into the superhydrophobic texture. Most interestingly, the viscous effect on the meniscus penetration into roughness feature leads to clear change in the velocity threshold for rebounding to sticking transition by 25% of supercooled drops. Swiss National Science Foundation (SNF) Grant 200021_135479.

  13. Structure irregularity impedes drop roll-off at superhydrophobic surfaces.

    PubMed

    Larsen, Simon Tylsgaard; Andersen, Nis Korsgaard; Søgaard, Emil; Taboryski, Rafael

    2014-05-01

    We study water drop roll-off at superhydrophobic surfaces with different surface patterns. Superhydrophobic microcavity surfaces were fabricated in silicon and coated with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS). For the more irregular surface patterns, the observed increase in roll-off angles is found to be caused by a decrease of the receding contact angle, which in turn is caused by an increase of the triple phase contact line of the drops for those more irregular surfaces. To understand the observation, we propose to treat the microdrops as rigid bodies and apply a torque balance between the torque exerted by the projected gravity force and the torque exerted by the adhesion force acting along the triple line on the receding side of the drop. This simple model provides a proper order of magnitude estimate of the measured effects.

  14. Mechanically Robust Superhydrophobic Surfaces for Turbulent Drag Reduction

    NASA Astrophysics Data System (ADS)

    Golovin, Kevin; Boban, Mathew; Xia, Charlotte; Tuteja, Anish

    2014-11-01

    Superhydrophobic surfaces (SHS) resist wetting by keeping a thin air layer within their texture. Such surfaces have been shown to reduce skin friction during laminar and transitional flows. However, turbulent boundary layer flows exhibit high shear stresses that damage the fragile microstructure of most SHS, and it is yet unclear to what extent these surfaces can reduce drag. Moreover, the increasing pressure fluctuations and decreasing wall unit length experienced during turbulent flow makes designing mechanically robust SHS with the correct roughness scales a challenge. In this work we evaluate many different SHS in terms of their hydrophobicity, mechanical durability and roughness. Whereas even commercially available SHS lose their superhydrophobic properties after slight mechanical abrasion, our novel coatings survive up to 200x longer. Moreover, we evaluate how the roughness of such surfaces changes with mechanical abrasion, and we design SHS with the correct roughness to display optimal drag reduction in turbulent boundary layer flows. Funding from ONR.

  15. Drop impact dynamics on liquid-infused superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyun; Rothstein, Jonathan

    2015-11-01

    In this talk, we present a series of experiments investigating the drop impact dynamics on hydrophobic, air-infused and lubricant-infused superhydrophobic surfaces. To create the superhydrophobic surfaces, smooth Teflon (PTFE) surfaces were roughened by a 240-grit sandpaper. The immiscible and incompressible silicone oils with different viscosities were infused into features of the superhydrophobic surfaces by a skim coating technique. The spreading and retraction dynamics on a series of the tested surfaces will be presented. We will show that the maximal deformation of the drops on lubricant-infused surfaces grows with increasing viscosity ratio between a water drop and the infused oil. We will show that this increase in the maximal deformation with the viscosity ratio is consistent with increasing the velocity and the viscosity of the drops but the rims of the drops destabilize with increasing the drop velocity. Finally, we will demonstrate that increasing the viscosity of the infused oil induces higher viscous force at the contact line, resulting in reduction in the movement of the drops during retraction and corresponding increase in the final drop size.

  16. Drop impact and wettability: From hydrophilic to superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Antonini, Carlo; Amirfazli, Alidad; Marengo, Marco

    2012-10-01

    Experiments to understand the effect of surface wettability on impact characteristics of water drops onto solid dry surfaces were conducted. Various surfaces were used to cover a wide range of contact angles (advancing contact angle from 48° to 166°, and contact angle hysteresis from 5° to 56°). Several different impact conditions were analyzed (12 impact velocities on 9 different surfaces, among which 2 were superhydrophobic). Results from impact tests with millimetric drops show that two different regimes can be identified: a moderate Weber number regime (30 < We < 200), in which wettability affects both drop maximum spreading and spreading characteristic time; and a high Weber number regime (We > 200), in which wettability effect is secondary, because capillary forces are overcome by inertial effects. In particular, results show the role of advancing contact angle and contact angle hysteresis as fundamental wetting parameters to allow understanding of different phases of drop spreading and beginning of recoiling. It is also shown that drop spreading on hydrophilic and superhydrophobic surfaces occurs with different time scales. Finally, if the surface is superhydrophobic, eventual impalement, i.e., transition from Cassie to Wenzel wetting state, which might occur in the vicinity of the drop impact area, does not influence drop maximum spreading.

  17. Self-propelled droplet behavior during condensation on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Chu, Fuqiang; Wu, Xiaomin; Zhu, Bei; Zhang, Xuan

    2016-05-01

    Self-propelled droplet motion has applications in various engineering fields such as self-cleaning surfaces, heat transfer enhancement, and anti-icing methods. A superhydrophobic surface was fabricated using two simultaneous chemical reactions with droplet condensation experiments performed on the horizontal superhydrophobic surface to characterize the droplet behavior. The droplet behavior is classified into three types based on their motion features and leftover marks as immobile droplet coalescence, self-propelled droplet jumping, and self-propelled droplet sweeping. This study focuses on the droplet sweeping that occurs due to the ultra-small rolling angle of the superhydrophobic surface, where the resulting droplet sweeps along the surface, merging with all the droplets it meets and leaving a long, narrow, clear track with a large droplet at the end of the track. An easy method is developed to predict the droplet sweeping direction based on the relative positions of the droplets just before coalescence. The droplet sweeping always absorbs dozens of droplets and is not limited by the surface structures; thus, this sweeping has many useful applications. In addition, the relationships between the droplet behavior and the number of participating droplets are also analyzed statistically.

  18. One-step process for the fabrication of superhydrophobic surfaces with easy repairability

    NASA Astrophysics Data System (ADS)

    Li, Jian; Wan, Hongqi; Ye, Yinping; Zhou, Huidi; Chen, Jianmin

    2012-01-01

    A simple technique for fabrication of superhydrophobic surfaces was developed by spraying copper stearate suspension on various substrates. The copper stearate suspension is prepared by the reaction of copper acetate and stearic acid in ethanol solution. The as-prepared surfaces exhibit both superhydrophobicity and self-cleaning properties. When the superhydrophobic surfaces were destroyed, the damaged surfaces could be easily repaired by spraying the copper stearate suspension on the wrecked surfaces again, and the superhydrophobicity of the surfaces was regenerated at the same time.

  19. Droplet detachment by air flow for microstructured superhydrophobic surfaces.

    PubMed

    Hao, Pengfei; Lv, Cunjing; Yao, Zhaohui

    2013-04-30

    Quantitative correlation between critical air velocity and roughness of microstructured surface has still not been established systematically until the present; the dynamics of water droplet detachment by air flow from micropillar-like superhydrophobic surfaces is investigated by combining experiments and simulation comparisons. Experimental evidence demonstrates that the onset of water droplet detachment from horizontal micropillar-like superhydrophobic surfaces under air flow always starts with detachment of the rear contact lines of the droplets from the pillar tops, which exhibits a similar dynamic mechanism for water droplet motion under a gravity field. On the basis of theoretical analysis and numerical simulation, an explicit analytical model is proposed for investigating the detaching mechanism, in which the critical air velocity can be fully determined by several intrinsic parameters: water-solid interface area fraction, droplet volume, and Young's contact angle. This model gives predictions of the critical detachment velocity of air flow that agree well with the experimental measurements.

  20. Bioinspired superhydrophobic, self-cleaning and low drag surfaces

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat

    2013-09-01

    Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. This article provides an overview of four topics: (1) Lotus Effect used to develop superhydrophobic and self-cleaning/antifouling surfaces with low adhesion, (2) Shark Skin Effect to develop surfaces with low fluid drag and anti-fouling characteristics, and (3-4) Rice Leaf and Butterfly Wing Effect to develop superhydrophobic and self-cleaning surfaces with low drag. Rice Leaf and Butterfly Wings combine the Shark Skin and Lotus Effects.

  1. Computational study of bouncing and non-bouncing droplets impacting on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Bange, Prathamesh G.; Bhardwaj, Rajneesh

    2016-06-01

    We numerically investigate bouncing and non-bouncing of droplets during isothermal impact on superhydrophobic surfaces. An in-house, experimentally validated, finite element method-based computational model is employed to simulate the droplet impact dynamics and transient fluid flow within the droplet. The liquid-gas interface is tracked accurately in Lagrangian framework with dynamic wetting boundary condition at three-phase contact line. The interplay of kinetic, surface and gravitational energies is investigated via systematic variation of impact velocity and equilibrium contact angle. The numerical simulations demonstrate that the droplet bounces off the surface if the total droplet energy at the instance of maximum recoiling exceeds the initial surface and gravitational energy, otherwise not. The non-bouncing droplet is characterized by the oscillations on the free surface due to competition between the kinetic and surface energy. The droplet dimensions and shapes obtained at different times by the simulations are compared with the respective measurements available in the literature. Comparisons show good agreement of numerical data with measurements, and the computational model is able to reconstruct the bouncing and non-bouncing of the droplet as seen in the measurements. The simulated internal flow helps to understand the impact dynamics as well as the interplay of the associated energies during the bouncing and non-bouncing. A regime map is proposed to predict the bouncing and non-bouncing on a superhydrophobic surface with an equilibrium contact angle of 155°, using data of 86 simulations and the measurements available in the literature. We discuss the validity of the computational model for the wetting transition from Cassie to Wenzel state on micro- and nanostructured superhydrophobic surfaces. We demonstrate that the numerical simulation can serve as an important tool to quantify the internal flow, if the simulated droplet shapes match the respective

  2. Multifunctional superhydrophobic surfaces templated from innately microstructured hydrogel matrix.

    PubMed

    Wang, Yaqun; Shi, Ye; Pan, Lijia; Yang, Meng; Peng, Lele; Zong, Shi; Shi, Yi; Yu, Guihua

    2014-08-13

    Superhydrophobic surfaces are of immense scientific and technological interests for a broad range of applications. However, a major challenge remains in developing scalable methodologies that enable superhydrophobic coatings on versatile substrates with a combination of strong mechanical stability, optical transparency, and even stretchability. Herein, we developed a scalable methodology to versatile hydrophobic surfaces that combine with strong mechanical stability, optical transparency, and stretchability by using a self-assembled hydrogel as the template to in situ generate silica microstructures and subsequent silanization. The superhydrophobic coatings can be enabled on virtually any substrates via large-area deposition techniques like dip coating. Transparent surfaces with optical transmittance as high as 98% were obtained. Moreover, the coatings exhibit superior mechanical flexibility and robustness that it can sustain contact angles ∼ 160° even after 5000 cycles of mechanically stretching at 100% strain. The multifunctional surfaces can be used as screen filters and sponges for the oil/water separation that can selectively absorb oils up to 40× their weight. PMID:24977920

  3. Low-cost one-step fabrication of superhydrophobic surface on Al alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Youfa; Wu, Jie; Yu, Xinquan; Wu, Hao

    2011-07-01

    A stable superhydrophobicity on aluminum alloy has been rendered by a low-cost one-step method, simply immersing the substrates in a solution containing hydrochloric acid and fatty acid molecules. The formation mechanism of such a surface was proposed by SEM morphology and EDS results. The resulting surface shows superhydrophobicity and low adhesion. This low cost and facile process provides a real feasible avenue for large-scale production of superhydrophobic surfaces.

  4. Deposition and tuning of nanostructured hydrocarbon deposits: From superhydrophobic to superhydrophilic and back

    SciTech Connect

    Berndt, J.; Acid, H.; Kovacevic, E.; Cachoncinlle, C.; Boufendi, L.; Strunskus, Th.

    2013-02-14

    Carbonaceous fluorine free nanoparticles synthesized in a low temperature acetylene discharge are used in a first step for the production of (super)hydrophobic coatings. In a second step, the influence of different plasma and UV induced functionalizations on the wetting characteristics of these materials is investigated. The experiments show that the superhydrophobic surfaces can be turned continuously and reversibly into hydrophilic (superhydrophilic) surfaces by means of the different treatment methods. The reversibility of these processes is studied in a third step. It is shown that the changes of the surface which are induced by the plasma treatment can be undone by means of EUV irradiation. The switchability of the surface due to external stimuli can be easily used for the controlled production of patterned surfaces. This is demonstrated by means of one simple example.

  5. Deposition and tuning of nanostructured hydrocarbon deposits: From superhydrophobic to superhydrophilic and back

    NASA Astrophysics Data System (ADS)

    Berndt, J.; Acid, H.; Kovacevic, E.; Cachoncinlle, C.; Strunskus, Th.; Boufendi, L.

    2013-02-01

    Carbonaceous fluorine free nanoparticles synthesized in a low temperature acetylene discharge are used in a first step for the production of (super)hydrophobic coatings. In a second step, the influence of different plasma and UV induced functionalizations on the wetting characteristics of these materials is investigated. The experiments show that the superhydrophobic surfaces can be turned continuously and reversibly into hydrophilic (superhydrophilic) surfaces by means of the different treatment methods. The reversibility of these processes is studied in a third step. It is shown that the changes of the surface which are induced by the plasma treatment can be undone by means of EUV irradiation. The switchability of the surface due to external stimuli can be easily used for the controlled production of patterned surfaces. This is demonstrated by means of one simple example.

  6. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces.

    PubMed

    Feng, Jie; Qin, Zhaoqian; Yao, Shuhuai

    2012-04-10

    The coalescence-induced condensate drop motion on some superhydrophobic surfaces (SHSs) has attracted increasing attention because of its potential applications in sustained dropwise condensation, water collection, anti-icing, and anticorrosion. However, an investigation of the mechanism of such self-propelled motion including the factors for designing such SHSs is still limited. In this article, we fabricated a series of superhydrophobic copper surfaces with nanoribbon structures using wet chemical oxidation followed by fluorization treatment. We then systematically studied the influence of surface roughness and the chemical properties of as-prepared surfaces on the spontaneous motion of condensate drops. We quantified the "frequency" of the condensate drop motion based on microscopic sequential images and showed that the trend of this frequency varied with the nanoribbon structure and extent of fluorination. More obvious spontaneous condensate drop motion was observed on surfaces with a higher extent of fluorization and nanostructures possessing sufficiently narrow spacing and higher perpendicularity. We attribute this enhanced drop mobility to the stable Cassie state of condensate drops in the dynamic dropwise condensation process that is determined by the nanoscale morphology and local surface energy.

  7. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.

    PubMed

    Goswami, Debmita; Medda, Samar Kumar; De, Goutam

    2011-09-01

    The paper deals with the fabrication of sol-gel-derived superhydrophobic films on glass based on the macroscopic silica network with surface modification. The fabricated transparent films were composed of a hybrid -Si(CH(3))(3)-functionalized SiO(2) nanospheres exhibiting the desired micro/nanostructure, water repellency, and antireflection (AR) property. The wavelength selective AR property can be tuned by controlling the physical thickness of the films. Small-angle X-ray scattering (SAXS) studies revealed the existence of SiO(2) nanoparticles of average size ∼9.4 nm in the sols. TEM studies showed presence of interconnected SiO(2) NPs of ∼10 nm in size. The films were formed with uniformly packed SiO(2) aggregates as observed by FESEM of film surface. FTIR of the films confirmed presence of glasslike Si-O-Si bonding and methyl functionalization. The hydrophobicity of the surface was depended on the thickness of the deposited films. A critical film thickness (>115 nm) was necessary to obtain the air push effect for superhydrophobicity. Trimethylsilyl functionalization of SiO(2) and the surface roughness (rms ≈30 nm as observed by AFM) of the films were also contributed toward the high water contact angle (WCA). The coated glass surface showed WCA value of the droplet as high as 168 ± 3° with 6 μL of water. These superhydrophobic films were found to be stable up to about 230-240 °C as confirmed by TG/DTA studies, and WCA measurements of the films with respect to the heat-treatment temperatures. These high water repellant films can be deposited on relatively large glass surfaces to remove water droplets immediately without any mechanical assistance. PMID:21823656

  8. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.

    PubMed

    Goswami, Debmita; Medda, Samar Kumar; De, Goutam

    2011-09-01

    The paper deals with the fabrication of sol-gel-derived superhydrophobic films on glass based on the macroscopic silica network with surface modification. The fabricated transparent films were composed of a hybrid -Si(CH(3))(3)-functionalized SiO(2) nanospheres exhibiting the desired micro/nanostructure, water repellency, and antireflection (AR) property. The wavelength selective AR property can be tuned by controlling the physical thickness of the films. Small-angle X-ray scattering (SAXS) studies revealed the existence of SiO(2) nanoparticles of average size ∼9.4 nm in the sols. TEM studies showed presence of interconnected SiO(2) NPs of ∼10 nm in size. The films were formed with uniformly packed SiO(2) aggregates as observed by FESEM of film surface. FTIR of the films confirmed presence of glasslike Si-O-Si bonding and methyl functionalization. The hydrophobicity of the surface was depended on the thickness of the deposited films. A critical film thickness (>115 nm) was necessary to obtain the air push effect for superhydrophobicity. Trimethylsilyl functionalization of SiO(2) and the surface roughness (rms ≈30 nm as observed by AFM) of the films were also contributed toward the high water contact angle (WCA). The coated glass surface showed WCA value of the droplet as high as 168 ± 3° with 6 μL of water. These superhydrophobic films were found to be stable up to about 230-240 °C as confirmed by TG/DTA studies, and WCA measurements of the films with respect to the heat-treatment temperatures. These high water repellant films can be deposited on relatively large glass surfaces to remove water droplets immediately without any mechanical assistance.

  9. Hot embossing of PTFE: Towards superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Jucius, D.; Grigaliūnas, V.; Mikolajūnas, M.; Guobienė, A.; Kopustinskas, V.; Gudonytė, A.; Narmontas, P.

    2011-01-01

    Three types of reusable stamps with features in the form of 2D arrays of pits having lateral dimensions in the range of 2-80 μm and heights of 1.5-15 μm were successfully employed for the hot embossing of PTFE at temperatures up to 50 °C above the glass transition temperature of PTFE amorphous phase. Due to the softening of PTFE at the temperatures used in this study, we were able to decrease imprint pressure significantly when comparing with the imprint conditions reported by other authors. Impact of the imprint temperature, pressure and time on the fidelity of pattern transfer as well as on water repellency was tested. The best results of embossing were achieved by applying pressure of 10 kg/cm 2 for 2 min at 170 °C. In this case, flattening of a natural PTFE roughness and pretty accurate deep replicas of the stamp patterns were observable on the whole imprinted area. Improvement in water repellency was largest for the samples imprinted by Ni stamp patterned with a 2D array of 2 μm square pits spaced by the same dimension and having a depth of 1.5 μm. Cassie-Baxter wetting regime was observed for the deepest imprints with water contact angles up to the superhydrophobic limit.

  10. Droplets on superhydrophobic surfaces: visualization of the contact area by cryo-scanning electron microscopy.

    PubMed

    Ensikat, Hans J; Schulte, Anna J; Koch, Kerstin; Barthlott, Wilhelm

    2009-11-17

    The contact area between liquids and solid surfaces plays the crucial role in the wetting and self-cleaning properties of surfaces. In this study, we have developed a cryo-preparation method to visualize the contact area between liquids and superhydrophobic biological surfaces by scanning electron microscopy. Aqueous liquids that do not crystallize during freezing, such as glycerol and phosphoric acid, were used. First, the samples in contact with the liquid droplets were cooled with liquid nitrogen. After this, the droplets were separated and the contact areas on the frozen droplets were visualized by scanning electron microscopy. The contact areas of droplets on various biological and artificial surfaces with microstructure, nanostructure, and hierarchical structures are shown in detail. It could be shown that spaces between nanostructures were not penetrated by the droplet, which rested only on top of the structures. Measurements of the contact areas showed the largest reduction in the solid-liquid contact area on hierarchically structured leaf surfaces. On these surfaces, the droplets are in the "Cassie state" at both levels of surface structuring. On plant surfaces, the varying height of the epidermal cells and the surface relief caused considerable variations in the contact between droplet and surface. The examples demonstrate that this new approach provides detailed insights into the wetting behavior of surfaces in the Cassie state with partial contact with the liquid. PMID:19899819

  11. Self-propelled dropwise condensate on superhydrophobic surfaces.

    PubMed

    Boreyko, Jonathan B; Chen, Chuan-Hua

    2009-10-30

    In conventional dropwise condensation on a hydrophobic surface, the condensate drops must be removed by external forces for continuous operation. This Letter reports continuous dropwise condensation spontaneously occurring on a superhydrophobic surface without any external forces. The spontaneous drop removal results from the surface energy released upon drop coalescence, which leads to a surprising out-of-plane jumping motion of the coalesced drops at a speed as high as 1 m/s. The jumping follows an inertial-capillary scaling and gives rise to a micrometric average diameter at steady state.

  12. Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan B.; Chen, Chuan-Hua

    2009-10-01

    In conventional dropwise condensation on a hydrophobic surface, the condensate drops must be removed by external forces for continuous operation. This Letter reports continuous dropwise condensation spontaneously occurring on a superhydrophobic surface without any external forces. The spontaneous drop removal results from the surface energy released upon drop coalescence, which leads to a surprising out-of-plane jumping motion of the coalesced drops at a speed as high as 1m/s. The jumping follows an inertial-capillary scaling and gives rise to a micrometric average diameter at steady state.

  13. Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath

    NASA Astrophysics Data System (ADS)

    Sun, Qinghe; Liu, Hongtao; Chen, Tianchi; Wei, Yan; Wei, Zhu

    2016-04-01

    Superhydrophobic surface is of wide application in the field of catalysis, lubrication, waterproof, biomedical materials, etc. The superhydrophobic surface based on hard metal is worth further study due to its advantages of high strength and wear resistance. This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion and studies the properties of as-prepared superhydrophobic surface. The hydrophobic properties were characterized by a water sliding angle (SA) and a water contact angle (CA) measured by the Surface tension instrument. A Scanning electron microscope was used to analyze the structure of the corrosion surface. The surface compositions were characterized by an Energy Dispersive Spectrum. The Electrochemical workstation was used to measure its anti-corrosion property. The anti-icing performance was characterized by a steam-freezing test in Environmental testing chamber. The SiC sandpaper and 500 g weight were used to test the friction property. The research result shows that the superhydrophobic surface can be successfully fabricated by electrocorrosion on carbon steel substrate under appropriate process; the contact angle of the as-prepared superhydrophobic surface can be up to 152 ± 0.5°, and the sliding angle is 1-2°; its anti-corrosion property, anti-icing performance and the friction property all show an excellent level. This method provides the possibility of industrialization of superhydrophobic surface based on iron substrate as it can prepare massive superhydrophobic surface quickly.

  14. Roughness-Based Superhydrophobic Surfaces: Fundamentals and Future Directions

    NASA Astrophysics Data System (ADS)

    Patankar, Neelesh

    2011-11-01

    Superhydrophobicity of rough surfaces has attracted global interest through the past decade. There are naturally occurring instances of such surfaces, e.g., lotus leaves, which led to the popular term ``lotus effect.'' Numerous applications in wide ranging areas such as drag reduction, self-cleaning, heat exchangers, energy conversion, condensation, anti-icing, textile, desalination, etc., are being explored by researchers worldwide. The signature configuration for superhydrophobicity has been ``bead-like'' drops on rough surfaces that roll-off easily. This becomes possible if the liquid does not impale the roughness grooves, and if the contact angle hysteresis is low. Finding appropriate surface roughness is therefore necessary. A thermodynamic framework to enable analysis of this problem will be presented. It will be noted that the success of rough superhydrophobic substrates relies on the presence of gas pockets in the roughness grooves underneath the liquid. These gas pockets could be those of air from the surrounding environment. Current design strategies rely on the availability of air. However, if the rough substrates are fully submerged in the liquid then the trapped air in the roughness grooves may not be sustained. A design approach based on sustaining a vapor phase of the liquid itself in the roughness grooves, instead of relying on the presence of air, will be presented. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling at dramatically low superheats, among others. The concept can be generalized to other transitions on the phase diagram, thus enabling the design of rough surfaces for phase manipulation in general.

  15. Numerical simulations of drop impact on superhydrophobic structured surfaces

    NASA Astrophysics Data System (ADS)

    Guzzetti, Davide; Larentis, Stefano; Pugno, Nicola

    2011-11-01

    During the last decade drop impact dynamics on superhydrophobic surfaces has been intensively investigated because of the incredible properties of water repellency exhibited by this kind of surfaces, mostly inspired by biological examples such as Lotus leave. Thanks to the recent progress in micro-fabrication technology is possible to tailor surfaces wettability defining specific pillar-like structured surfaces. In this work, the behavior of impinging drops on these pillar-like surfaces is simulated, characterizing temporal evolution of droplets contact radius and drop maximal deformation dependence on Weber number. Numerical simulations results are compared with theoretical and experimental results guaranteeing simulation reliability. Fingering patterns obtained from drop impact has been studied obtaining a correlation between number of fingers and Weber number. Drop fragmentation pattern obtained from simulations supports the proposed correlation. Different drop impact outcomes (e.g. rebound, fragmentation) on structured superhydrophobic surfaces are simulated, focusing on the influence of micro-structured surface geometrical pattern. This investigation is relevant in order to define design rules for possible reliable non wettable surfaces. Financial support by Alta Scuola Politecnica.

  16. 3D aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Konrad; Scott, John Henry J.; Rajauria, Sukumar; Chinn, Jeff; Chinn, Amy M.; Jones, Wanda

    2011-11-01

    Only a few selected natural and artificial surfaces with water contact angles above 150 degrees retain their superhydrophobic characteristics during water condensation. On these robust superhydrophobic surfaces, individual droplets emerge out of a few micrometer wetted area between the nanostructures and initially grow mainly by increasing their contact angle. After reaching a nearly spherical shape with a diameter between 4 um and 6 um, the droplets grow in a near constant contact angle mode while remaining in an immobile Wenzel state. Microdroplets can depart the surface by coalescing with another large drop and forming a new drop in the mobile Cassie-Baxter state. Here we report that high contact angle primary drops can project over growing nano-to-microscale satellite droplets. We show that the large primary drops can sweep up the small satellite droplets without wetting their nucleation site, promoting rapid condensation of multiple satellite droplets from the same nucleation site. We discuss the effect of this coalescence mechanism on the drop size distribution and heat transfer during the dropwise condensation process.

  17. Pendant bubble method for an accurate characterization of superhydrophobic surfaces.

    PubMed

    Ling, William Yeong Liang; Ng, Tuck Wah; Neild, Adrian

    2011-12-01

    The commonly used sessile drop method for measuring contact angles and surface tension suffers from errors on superhydrophobic surfaces. This occurs from unavoidable experimental error in determining the vertical location of the liquid-solid-vapor interface due to a camera's finite pixel resolution, thereby necessitating the development and application of subpixel algorithms. We demonstrate here the advantage of a pendant bubble in decreasing the resulting error prior to the application of additional algorithms. For sessile drops to attain an equivalent accuracy, the pixel count would have to be increased by 2 orders of magnitude. PMID:22017500

  18. Learning from superhydrophobic plants: the use of hydrophilic areas on superhydrophobic surfaces for droplet control.

    PubMed

    Shirtcliffe, N J; McHale, G; Newton, M I

    2009-12-15

    In many countries, the mornings in spring are graced with spectacular displays of dew drops hanging on spiders' webs and on leaves. Some leaves, in particular, sport particularly large droplets that last well into the morning. In this paper, we study a group of plants that show this effect on their superhydrophobic leaves to try to discover how and why they do it. We describe the structures they use to gather droplets and suggest that these droplets are used as a damper to absorb kinetic energy allowing water to be redirected from sideways motion into vertical motion. Model surfaces in the shape of leaves and as more general flat sheets show that this principle can be used to manipulate water passively, such as on the covers of solar panels, and could also be used in parts of microfluidic devices. The mode of transport can be switched between rolling droplets and rivulets to maximize control. PMID:20560556

  19. Facile formation of superhydrophobic aluminum alloy surface and corrosion-resistant behavior

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Yan, Zhongna; Qiang, Xiaohu; Liu, Yanhua; Wang, Yanping

    2016-03-01

    Superhydrophobic surface with excellent corrosion resistance was prepared on aluminum alloy via boiling water treatment and surface modification with stearic acid. Results suggested that the micro- and nanoscale hierarchical structure along with the hydrophobic chemical composition surface confers the aluminum alloy surface with good superhydrophobicity, and the water contact angle and the water sliding angle can reach 156.6° and 3°, respectively. The corrosion resistance of the superhydrophobic aluminum alloy was first characterized by potentiodynamic polarization, and then the long-term corrosion resistance was investigated by immersing the sample in NaCl solution for 90 days. The surface wettability, morphology, and composition before and after immersion were examined, and results showed that the superhydrophobic aluminum alloy surface possessed good corrosion resistance under the experimental conditions, which is favorable for its practical application as an engineering material in seawater corrosion conditions. Finally, the mechanism of the superhydrophobicity and excellent corrosion resistance is deduced.

  20. Communication: anti-icing characteristics of superhydrophobic surfaces investigated by quartz crystal microresonators.

    PubMed

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-28

    We investigated the anti-icing characteristics of superhydrophobic surfaces with various morphologies by using quartz crystal microresonators. Anodic aluminum oxide (AAO) or ZnO nanorods were synthesized directly on gold-coated quartz crystal substrates and their surfaces were rendered hydrophobic via chemical modifications with octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODS), or octadecanethiol (ODT). Four different hydrophobic nanostructures were prepared on the quartz crystals: ODT-modified hydrophobic plain gold (C18-Au), an OTS-modified AAO nanostructure (C8-AAO), an ODS-modified AAO nanostructure (C18-AAO), and ODT-modified ZnO nanorods (C18-ZnO). The water contact angles on the C18-Au, C8-AAO, C18-AAO, and C18-ZnO surfaces were measured to be 91.4°, 147.2°, 156.3°, and 157.8°, respectively. A sessile water droplet was placed on each quartz crystal and its freezing temperature was determined by monitoring the drastic changes in the resonance frequency and Q-factor upon freezing. The freezing temperature of a water droplet was found to decrease with decreases in the water contact radius due to the decreases in the number of active sites available for ice nucleation. PMID:25637961

  1. Synthesis of superhydrophobic PTFE-like thin films by self-nanostructuration in a hybrid plasma process

    NASA Astrophysics Data System (ADS)

    Henry, Frédéric; Renaux, Fabian; Coppée, Séverine; Lazzaroni, Roberto; Vandencasteele, Nicolas; Reniers, François; Snyders, Rony

    2012-12-01

    Superhydrophobic poly(tetrafluoro-ethylene) (PTFE) like thin films were grown on silicon wafers using a plasma-based hybrid process consisting on sputtering a carbon target in an Ar/CF4 atmosphere. The influence of the bias voltage applied to the substrate (VBias) as well as of the gas mixture composition (%CF4) on the chemical composition, the wettability and the morphology of the deposited thin films were evaluated. The chemical composition measured by X-ray Photoelectron Spectroscopy (XPS) has revealed that the F/C atomic ratio is always lower than for conventional PTFE (F/C = 2) and that it decreases when VBias increases (from F/C = 1 for VBias = - 100 V to F/C = 0.75 for VBias = - 200 V). This behavior is associated with the preferential sputtering of the fluorine atoms during the plasma-assisted growth of the films. Consecutively, a self-nanostructuration enhanced when increasing VBias is observed. As a consequence, the water contact angle (WCA) measurements range from 70° up to 150° depending on (i) the fluorine concentration and (ii) on the magnitude of the nanostructuration. In addition, for the films presenting the highest WCAs, a small hysteresis between the advancing and receding WCAs is observed (< 10°) allowing these films to fulfill completely the requirements of superhydrophobicity. The nanostructuration is probably due to the chemical etching by fluorine atoms of the fluorinated group. In order to get more understanding on the wettability mechanisms of these surfaces, the topography of the films has been evaluated by atomic force microscopy (AFM). The data have revealed, for all films, a dense and regular structure composed by conic objects (AvH is their average height and AvD is the average distance between them) for which the dimensions increase with VBias. A correlation between AvH/AvD, defined as the "morphological ratio", with the WCA was established. Theoretical evaluations of the WCA using the Wenzel and Cassie equations with, as inputs

  2. Dynamic superhydrophobic behavior in scalable random textured polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Moreira, David; Park, Sung-hoon; Lee, Sangeui; Verma, Neil; Bandaru, Prabhakar R.

    2016-03-01

    Superhydrophobic (SH) surfaces, created from hydrophobic materials with micro- or nano- roughness, trap air pockets in the interstices of the roughness, leading, in fluid flow conditions, to shear-free regions with finite interfacial fluid velocity and reduced resistance to flow. Significant attention has been given to SH conditions on ordered, periodic surfaces. However, in practical terms, random surfaces are more applicable due to their relative ease of fabrication. We investigate SH behavior on a novel durable polymeric rough surface created through a scalable roll-coating process with varying micro-scale roughness through velocity and pressure drop measurements. We introduce a new method to construct the velocity profile over SH surfaces with significant roughness in microchannels. Slip length was measured as a function of differing roughness and interstitial air conditions, with roughness and air fraction parameters obtained through direct visualization. The slip length was matched to scaling laws with good agreement. Roughness at high air fractions led to a reduced pressure drop and higher velocities, demonstrating the effectiveness of the considered surface in terms of reduced resistance to flow. We conclude that the observed air fraction under flow conditions is the primary factor determining the response in fluid flow. Such behavior correlated well with the hydrophobic or superhydrophobic response, indicating significant potential for practical use in enhancing fluid flow efficiency.

  3. Synthesis of Discrete Alkyl-Silica Hybrid Nanowires and Their Assembly into Nanostructured Superhydrophobic Membranes.

    PubMed

    Yi, Deliang; Xu, Chenglong; Tang, Ruidie; Zhang, Xuehua; Caruso, Frank; Wang, Yajun

    2016-07-11

    We report the synthesis of highly flexible and mechanically robust hybrid silica nanowires (NWs) which can be used as novel building blocks to construct superhydrophobic functional materials with three-dimensional macroporous networks. The hybrid silica NWs, with an average diameter of 80 nm and tunable length of up to 12 μm, are prepared by anisotropic deposition of the hydrolyzed tetraethylorthosilicate in water/n-pentanol emulsions. A mechanistic investigation reveals that the trimethoxy(octadecyl)silane introduced to the water-oil interface in the synthesis plays key roles in stabilizing the water droplets to sub-100 nm and also growing a layer of octadecyl groups on the NW surface. This work opens a solution-based route for the one-pot preparation of monodisperse, hydrophobic silica NWs and represents an important step toward the bottom-up construction of 3D superhydrophobic materials and macroporous membranes. PMID:27278242

  4. Synthesis of Discrete Alkyl-Silica Hybrid Nanowires and Their Assembly into Nanostructured Superhydrophobic Membranes.

    PubMed

    Yi, Deliang; Xu, Chenglong; Tang, Ruidie; Zhang, Xuehua; Caruso, Frank; Wang, Yajun

    2016-07-11

    We report the synthesis of highly flexible and mechanically robust hybrid silica nanowires (NWs) which can be used as novel building blocks to construct superhydrophobic functional materials with three-dimensional macroporous networks. The hybrid silica NWs, with an average diameter of 80 nm and tunable length of up to 12 μm, are prepared by anisotropic deposition of the hydrolyzed tetraethylorthosilicate in water/n-pentanol emulsions. A mechanistic investigation reveals that the trimethoxy(octadecyl)silane introduced to the water-oil interface in the synthesis plays key roles in stabilizing the water droplets to sub-100 nm and also growing a layer of octadecyl groups on the NW surface. This work opens a solution-based route for the one-pot preparation of monodisperse, hydrophobic silica NWs and represents an important step toward the bottom-up construction of 3D superhydrophobic materials and macroporous membranes.

  5. Free-surface liquid jet impingement on rib patterned superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Maynes, D.; Johnson, M.; Webb, B. W.

    2011-05-01

    We report experimental results characterizing the dynamics of a liquid jet impinging normally on hydrophilic, hydrophobic, and superhydrophobic surfaces spanning the Weber number (based on the jet velocity and diameter) range from 100 to 1900. The superhydrophobic surfaces are fabricated with both hydrophobically coated silicon and polydimethylsiloxane that exhibit alternating microribs and cavities. For all surfaces a transition from a thin radially moving liquid sheet occurs. This takes the form of the classical hydraulic jump for the hydrophilic surfaces but is markedly different for the hydrophobic and superhydrophobic surfaces, where the transition is significantly influenced by surface tension and a break-up into droplets is observed at high Weber number. For the superhydrophobic surfaces, the transition exhibits an elliptical shape with the major axis being aligned parallel to the ribs, concomitant with the frictional resistance being smaller in the parallel direction than in the transverse direction. However, the total projected area of the ellipse exhibits a nearly linear dependence on the jet Weber number, and was nominally invariant with varying hydrophobicity and relative size of the ribs and cavities. For the hydrophobic and superhydrophobic scenarios, the local Weber number based on the local radial velocity and local depth of the radially moving liquid sheet is observed to be of order unity at the transition location. The results also reveal that for increasing relative size of the cavities, the ratio of the ellipse axis (major-to-minor) increases.

  6. Fabrication and characterization of a cotton candy like surface with superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Hu, You; Huang, Chengya; Su, Dong; Jiang, Qiangwei; Zhu, Yunfeng

    2011-05-01

    Superhydrophobic thin films were prepared on glass by air-brushing the in situ polymerization compositions of D 5/SiO 2. The wettability and morphology were investigated by contact angle measurement and scanning electron microscopy. The most superhydrophobic samples prepared had a static water contact angle of 157° for a 5 μl droplet and a sliding angle of ˜1° for 10 μl droplet. Thermal stability analysis showed that the surface maintained superhydrophobic at temperature up to 450 °C. Air trapping and capillary force on superhydrophobic behavior were evaluated.

  7. Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination

    NASA Astrophysics Data System (ADS)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun; Mei, Xuesong

    2016-05-01

    Bioinspired superhydrophilic/phobic self-cleaning surfaces have recently drawn a lot of interest in both fundamental and applied research. A hybrid method to produce the self-cleaning property of micro/nanostructured surface using ultra-fast laser pulses followed by chemical fluorination is proposed. The typical micro/nanocomposite structures that form from microporous arrays and microgroove groups have been processed by picosecond laser on titanium alloy surface. The surface hydrophilic/phobic and self-cleaning properties of micro/nanostructures before and after fluorination with fluoroalkyl-silane were investigated using surface contact angle measurements. The results indicate that surface properties change from hydrophilic to hydrophobic after fluorination, and the micro/nanostructured surface with increased roughness contributes to the improvement of surface hydrophobicity. The micro/nanomodification can make the original hydrophilic titanium alloy surface more hydrophilic or superhydrophilic. It also can make an originally hydrophobic fluorinated titanium alloy surface more hydrophobic or superhydrophobic. The produced micro/nanostructured titanium alloy surfaces show excellent self-cleaning properties regardless of the fluorination treatment, although the fluorinated surfaces have slightly better self-cleaning properties. It is found that surface treatment using ultra-fast laser pulses and subsequent chemical fluorination is an effective way to manipulate surface wettability and obtain self-cleaning properties.

  8. Super-hydrophobic bandages and method of making the same

    DOEpatents

    Simpson, John T.; D'Urso, Brian R.

    2012-06-05

    A bandage that includes a material, which can be breathable, having a first surface, and a plurality of superhydrophobic particles attached to the first surface. The plurality of superhydrophobic particles ranging in size from about 100 nanometers to about 10 micrometers. The superhydrophobic particles including a protrusive material defining a plurality of nanopores and a plurality of spaced apart nanostructures that define an external boundary of the hydrophobic particles. The nanopores providing a flow through porosity. The first surface can be rendered superhydrophobic by the attached superhydrophobic particles. The material can have a second surface opposite the first surface that is hydrophilic. The superhydrophobic particles can be adhered to the first surface by a binder. Also included is a method of making the bandages described herein.

  9. Grafting of PMMA brushes layer on Cu surface to create a stable superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Zhang, Junhong; Cai, Junyan; Li, Ming

    2016-11-01

    In this paper, poly(methyl methacrylate) (PMMA) brushes were grafted on Cu micro-cone structured substrate by a simple one-step cathodic electro-initiated polymerization method which was carried out in aqueous solution at room temperature in the open air. The PMMA brushes were continuous, uniform and thickness-controllable, and it covalently bonded to the Cu surface. In the brushes, nitrophenyl moieties acted as cross-linker between PMMA chains. After removed from the solution followed by treated with water, the PMMA brushes (basically a hydrophilic material)/micro-cone structured Cu surface was hydrophilic with water contact angle (CA) of 74.4°. However, it exhibited superhydrophobicity by treating it in the acetone. The conversion from hydrophilic surface to superhydrophobic one may due to rearrangement of nitrophenyl moieties and PMMA chains at the topmost of the brushes. In addition, its water CA increased with grafting time of the brushes from 145° to about 166°, because there was no available space in thinner film for group reorientation. The surface was conversed to hydrophilic again after treated with hot water, but it was still superhydrophobic after treated in water at room temperature. This revealed that the group reorientation also easily occurred in hot water like in the acetone. More importantly, the surface retained good superhydrophobic stability in acidic environment and in long-time storage. Furthermore, the superhydrophobic surface had excellent resistance that can provide effective protection for the bare Cu substrate.

  10. Passive water control at the surface of a superhydrophobic lichen.

    PubMed

    Hamlett, Christopher A E; Shirtcliffe, Neil James; Pyatt, F Brian; Newton, Michael I; McHale, Glen; Koch, Kerstin

    2011-12-01

    Some lichens have a super-hydrophobic upper surface, which repels water drops, keeping the surface dry but probably preventing water uptake. Spore ejection requires water and is most efficient just after rainfall. This study was carried out to investigate how super-hydrophobic lichens manage water uptake and repellence at their fruiting bodies, or podetia. Drops of water were placed onto separate podetia of Cladonia chlorophaea and observed using optical microscopy and cryo-scanning-electron microscopy (cryo-SEM) techniques to determine the structure of podetia and to visualise their interaction with water droplets. SEM and optical microscopy studies revealed that the surface of the podetia was constructed in a three-level structural hierarchy. By cryo-SEM of water-glycerol droplets placed on the upper part of the podetium, pinning of the droplet to specific, hydrophilic spots (pycnidia/apothecia) was observed. The results suggest a mechanism for water uptake, which is highly sophisticated, using surface wettability to generate a passive response to different types of precipitation in a manner similar to the Namib Desert beetle. This mechanism is likely to be found in other organisms as it offers passive but selective water control.

  11. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis.

    PubMed

    Dash, Susmita; Garimella, Suresh V

    2013-08-27

    We report on experiments of droplet evaporation on a structured superhydrophobic surface that displays very high contact angle (CA ∼ 160 deg), and negligible contact angle hysteresis (<1 deg). The droplet evaporation is observed to occur in a constant-contact-angle mode, with contact radius shrinking for almost the entire duration of evaporation. Experiments conducted on Teflon-coated smooth surface (CA ∼ 120 deg) as a baseline also support an evaporation process that is dominated by a constant-contact-angle mode. The experimental results are compared with an isothermal diffusion model for droplet evaporation from the literature. Good agreement is observed for the Teflon-coated smooth surface between the analytical expression and experimental results in terms of the total time for evaporation, transient volume, contact angle, and contact radius. However, for the structured superhydrophobic surface, the experiments indicate that the time taken for complete evaporation of the droplet is greater than the predicted time, across all droplet volumes. This disparity is attributed primarily to the evaporative cooling at the droplet interface due to the high aspect ratio of the droplet and also the lower effective thermal conductivity of the substrate due to the presence of air gaps. This hypothesis is verified by numerically evaluating the temperature distribution along the droplet interface. We propose a generalized relation for predicting the instantaneous volume of droplets with initial CA > 90 deg, irrespective of the mode of evaporation.

  12. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Yong, Jiale; Yang, Qing; Chen, Feng; Zhang, Dongshi; Bian, Hao; Ou, Yan; Si, Jinhai; Du, Guangqing; Hou, Xun

    2013-04-01

    Inspired by the lotus leaf, a new superhydrophobic surface with hierarchical mesh-porous structure is fabricated by femtosecond laser irradiation on silicon. The fabricated surface shows a superhydrophobic character with water contact angle being found to reach up to 158∘±1∘ and sliding angle of 4∘±0.5∘. The superhydrophobicity is stable even if the PH of solution changes from 1 to 14. And the surface also exhibits excellent self-cleaning effect and bouncing behavior, implying that the adhesion of the surface is extremely low. This work will enhance further understanding of the wettability of a solid surface with special surface morphology.

  13. Uniting Superhydrophobic, Superoleophobic and Lubricant Infused Slippery Behavior on Copper Oxide Nano-structured Substrates

    PubMed Central

    Ujjain, Sanjeev Kumar; Roy, Pritam Kumar; Kumar, Sumana; Singha, Subhash; Khare, Krishnacharya

    2016-01-01

    Alloys, specifically steel, are considered as the workhorse of our society and are inimitable engineering materials in the field of infrastructure, industry and possesses significant applications in our daily life. However, creating a robust synthetic metallic surface that repels various liquids has remained extremely challenging. The wettability of a solid surface is known to be governed by its geometric nano-/micro structure and the chemical composition. Here, we are demonstrating a facile and economical way to generate copper oxide micro-nano structures with spherical (0D), needle (1D) and hierarchical cauliflower (3D) morphologies on galvanized steel substrates using a simple chemical bath deposition method. These nano/micro textured steel surfaces, on subsequent coating of a low surface energy material display excellent superhydrophobic, superoleophobic and slippery behavior. Polydimethylsiloxane coated textured surfaces illustrate superhydrophobicity with water contact angle about 160°(2) and critical sliding angle ~2°. When functionalized with low-surface energy perfluoroalkylsilane, these surfaces display high repellency for low surface tension oils as well as hydrocarbons. Among them, the hierarchical cauliflower morphology exhibits re-entrant structure thereby showing the best superoleophobicity with contact angle 149° for dodecane. Once infused with a lubricant like silicone oil, they show excellent slippery behavior with low contact angle hysteresis (~ 2°) for water drops. PMID:27752098

  14. Dynamic contact of droplet with superhydrophobic surface in conditions favour icing

    NASA Astrophysics Data System (ADS)

    Remer, M.; Sobieraj, G.; Gumowski, K.; Rokicki, J.; Psarski, M.; Marczak, J.; Celichowski, G.

    2014-08-01

    Flight like droplet impact with superhydrophobic substrate in conditions favour icing is discussed in this work. Test stand with fast camera and equipment eligible to obtain temperatures and humidity at different ranges, lead to results which can prove, that superhydrophobic surface might be good ice repellent substrate. The influence of air humidity on droplet freezing was confirmed.

  15. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    NASA Astrophysics Data System (ADS)

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-02-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on.

  16. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity

    PubMed Central

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-01-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on. PMID:26853810

  17. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity.

    PubMed

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-01-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on. PMID:26853810

  18. Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity.

    PubMed

    Wang, Guoyong; Liu, Shuai; Wei, Sufeng; Liu, Yan; Lian, Jianshe; Jiang, Qing

    2016-01-01

    Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhydrophobic and self-cleaning. The ultrahigh hardness and electrochemical stability of Al2O3 coating endowed the surface excellent mechanical durability and good corrosion resistance. Because the method is scalable, it may find practical application on body panels of automobiles and aircrafts and so on.

  19. Characterization of Superhydrophobic Surfaces for Anti-icing in a Low-Temperature Wind Tunnel

    SciTech Connect

    Swarctz, Christopher; Alijallis, Elias; Hunter, Scott Robert; Simpson, John T; Choi, Chang-Hwan

    2010-01-01

    In this study, a closed loop low-temperature wind tunnel was custom-built and uniquely used to investigate the anti-icing mechanism of superhydrophobic surfaces in regulated flow velocities, temperatures, humidity, and water moisture particle sizes. Silica nanoparticle-based hydrophobic coatings were tested as superhydrophobic surface models. During tests, images of ice formation were captured by a camera and used for analysis of ice morphology. Prior to and after wind tunnel testing, apparent contact angles of water sessile droplets on samples were measured by a contact angle meter to check degradation of surface superhydrophobicity. A simple peel test was also performed to estimate adhesion of ice on the surfaces. When compared to an untreated sample, superhydrophobic surfaces inhibited initial ice formation. After a period of time, random droplet strikes attached to the superhydrophobic surfaces and started to coalesce with previously deposited ice droplets. These sites appear as mounds of accreted ice across the surface. The appearance of the ice formations on the superhydrophobic samples is white rather than transparent, and is due to trapped air. These ice formations resemble soft rime ice rather than the transparent glaze ice seen on the untreated sample. Compared to untreated surfaces, the icing film formed on superhydrophobic surfaces was easy to peel off by shear flows.

  20. Launching droplets from a super-hydrophobic surface using electrowetting

    NASA Astrophysics Data System (ADS)

    Wang, Zhantao; Ende, Dirk Van Den; Cavalli, Andrea; Wijnperle, Daniel; Mugele, Frieder

    2015-11-01

    Electrowetting (EW) on super-hydrophobic surfaces in ambient air has been reported to be mostly irreversible due to the transition from the Cassie to the Wenzel state. By applying short voltage pulses using interdigitated electrodes, embedded in the substrate we demonstrate a reversible contact angle variation up to 70 degrees on a single-tier super-hydrophobic surface, which is much higher than previously reported. For a range of voltages and pulse durations the droplet can be launched from the substrate due to conversion of interfacial energy to kinetic energy of the center of mass. We have studied the jumping height as a function of the applied voltage and pulse duration and identified the parameters to maximize this height. The energy dissipation during the droplet detachment and subsequent bouncing was also analyzed by analyzing the drop shape and position from the side and bottom view recordings of the jumping drop. We also investigate the role of the ambient phase by considering the EW-actuated detachment of water drops in oils of different viscosities. We acknowledge financial support by the Dutch Technology Foundation STW.

  1. Corrosion resistance properties of superhydrophobic copper surfaces fabricated by one-step electrochemical modification process

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Sarkar, D. K.; Gallant, Danick; Chen, X.-Grant

    2013-10-01

    Superhydrophobic copper surfaces have been prepared by a one-step electrochemical modification process in an ethanolic stearic acid solution. In this work, the corrosion properties of hydrophobic copper surface and superhydrophobic copper surfaces were analyzed by means of electrochemical analyses and compared with that of as-received bare copper substrate. The decrease of corrosion current density (icorr) as well as the increase of polarization resistance (Rp) obtained from potentiodynamic polarization curves revealed that the superhydrophobic film on the copper surfaces improved the corrosion resistance performance of the copper substrate.

  2. Superhydrophobic aluminum alloy surfaces by a novel one-step process.

    PubMed

    Saleema, N; Sarkar, D K; Paynter, R W; Chen, X-G

    2010-09-01

    A simple one-step process has been developed to render aluminum alloy surfaces superhydrophobic by immersing the aluminum alloy substrates in a solution containing NaOH and fluoroalkyl-silane (FAS-17) molecules. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements have been performed to characterize the morphological features, chemical composition and superhydrophobicity of the surfaces. The resulting surfaces provided a water contact angle as high as ∼162° and a contact angle hysteresis as low as ∼4°. The study indicates that it is possible to fabricate superhydrophobic aluminum surfaces easily and effectively without involving the traditional two-step processes.

  3. Droplet condensation on superhydrophobic surfaces with enhanced dewetting under a tangential AC electric field

    NASA Astrophysics Data System (ADS)

    Yan, Xinzhu; Li, Jian; Li, Licheng; Huang, Zhengyong; Wang, Feipeng; Wei, Yuan

    2016-10-01

    In this Letter, the dewetting behavior of superhydrophobic condensing surfaces under a tangential AC electric field is reported. The surface coverage of condensed droplets only exhibits a negligible increase with time. The jumping frequency of droplets is enhanced. The AC electric field motivates the dynamic transition of droplets from stretch to recoil, resulting in the counterforce propelling droplet jumping. The considerable horizontal component of jumping velocity facilitates droplet departure from superhydrophobic surfaces. Both the amplitude and frequency of AC voltage are important factors for droplet departure and dewetting effect. Thereby, the tangential electric field provides a unique and easily implementable approach to enhance droplet removal from superhydrophobic condensing surfaces.

  4. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.

    PubMed

    Xu, Wenji; Song, Jinlong; Sun, Jing; Lu, Yao; Yu, Ziyuan

    2011-11-01

    A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2° and a water tilting angle of approximately 2°. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined. PMID:22008385

  5. Facile stamp patterning method for superhydrophilic/superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Lyu, Sungnam; Hwang, Woonbong

    2015-11-01

    Patterning techniques are essential to many research fields such as chemistry, biology, medicine, and micro-electromechanical systems. In this letter, we report a simple, fast, and low-cost superhydrophobic patterning method using a superhydrophilic template. The technique is based on the contact stamping of the surface during hydrophobic dip coating. Surface characteristics were measured using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. The results showed that the hydrophilic template, which was contacted with the stamp, was not affected by the hydrophobic solution. The resolution study was conducted using a stripe shaped stamp. The patterned line was linearly proportional to the width of the stamp line with a constant narrowing effect. A surface with regions of four different types of wetting was fabricated to demonstrate the patterning performance.

  6. Facile stamp patterning method for superhydrophilic/superhydrophobic surfaces

    SciTech Connect

    Lyu, Sungnam Hwang, Woonbong

    2015-11-16

    Patterning techniques are essential to many research fields such as chemistry, biology, medicine, and micro-electromechanical systems. In this letter, we report a simple, fast, and low-cost superhydrophobic patterning method using a superhydrophilic template. The technique is based on the contact stamping of the surface during hydrophobic dip coating. Surface characteristics were measured using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. The results showed that the hydrophilic template, which was contacted with the stamp, was not affected by the hydrophobic solution. The resolution study was conducted using a stripe shaped stamp. The patterned line was linearly proportional to the width of the stamp line with a constant narrowing effect. A surface with regions of four different types of wetting was fabricated to demonstrate the patterning performance.

  7. Effect of Vapor Flow on Jumping Droplets during Condensation on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Preston, Daniel J.; Miljkovic, Nenad; Enright, Ryan; Limia, Alexander; Wang, Evelyn N.

    2013-11-01

    Upon coalescence of droplets on a superhydrophobic surface, the net reduction in droplet surface area results in a release of surface energy that can cause the coalesced droplet to ``jump'' away from the surface. Jumping condensing surfaces have been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. While the heat transfer enhancement of jumping condensation is well documented, droplet behavior after departure from the surface has not been considered. Vapor flows to the condensing surface due to mass conservation. This flow can increase drag on departing droplets, resulting in complete droplet reversal and return to the surface. Upon return, these larger droplets impede heat transfer until they jump again or finally shed due to gravity. By characterizing individual droplet trajectories during condensation on hydrophobic nanostructured copper oxide surfaces for a variety of heat fluxes (q'' = 0.1 - 2 W/cm2), we showed that vapor flow entrainment dominates droplet motion for droplets smaller than R ~ 30 um at high heat fluxes (q'' >2 W/cm2). Furthermore, we developed an analytical model of droplet motion based on first principles and the Reynolds drag equation which agreed well with the experimental data. We considered condensation on both flat and tubular geometries with our model, and we suggest avenues to further enhance heat transfer which minimize droplet return due to entrainment.

  8. EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces.

    PubMed

    Jönsson-Niedziółka, M; Lapierre, F; Coffinier, Y; Parry, S J; Zoueshtiagh, F; Foat, T; Thomy, V; Boukherroub, R

    2011-02-01

    Environmental air monitoring is of great interest due to the large number of people concerned and exposed to different possible risks. From the most common particles in our environment (e.g. by-products of combustion or pollens) to more specific and dangerous agents (e.g. pathogenic micro-organisms), there are a large range of particles that need to be controlled. In this article we propose an original study on the collection of electrostatically deposited particles using electrowetting droplet displacement. A variety of particles were studied, from synthetic particles (e.g. Polystyrene Latex (PSL) microsphere) to different classes of biological particle (proteins, bacterial spores and a viral simulant). Furthermore, we have compared ElectroWetting-On-Dielectric (EWOD) collecting efficiency using either a hydrophobic or a superhydrophobic counter electrode. We observe different cleaning efficiencies, depending on the hydrophobicity of the substrate (varying from 45% to 99%). Superhydrophobic surfaces show the best cleaning efficiency with water droplets for all investigated particles (MS2 bacteriophage, BG (Bacillus atrophaeus) spores, OA (ovalbumin) proteins, and PSL).

  9. EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces.

    PubMed

    Jönsson-Niedziółka, M; Lapierre, F; Coffinier, Y; Parry, S J; Zoueshtiagh, F; Foat, T; Thomy, V; Boukherroub, R

    2011-02-01

    Environmental air monitoring is of great interest due to the large number of people concerned and exposed to different possible risks. From the most common particles in our environment (e.g. by-products of combustion or pollens) to more specific and dangerous agents (e.g. pathogenic micro-organisms), there are a large range of particles that need to be controlled. In this article we propose an original study on the collection of electrostatically deposited particles using electrowetting droplet displacement. A variety of particles were studied, from synthetic particles (e.g. Polystyrene Latex (PSL) microsphere) to different classes of biological particle (proteins, bacterial spores and a viral simulant). Furthermore, we have compared ElectroWetting-On-Dielectric (EWOD) collecting efficiency using either a hydrophobic or a superhydrophobic counter electrode. We observe different cleaning efficiencies, depending on the hydrophobicity of the substrate (varying from 45% to 99%). Superhydrophobic surfaces show the best cleaning efficiency with water droplets for all investigated particles (MS2 bacteriophage, BG (Bacillus atrophaeus) spores, OA (ovalbumin) proteins, and PSL). PMID:21103534

  10. Self-cleaning of superhydrophobic surfaces by spontaneously jumping condensate drops

    NASA Astrophysics Data System (ADS)

    Wisdom, Katrina; Watson, Jolanta; Watson, Gregory; Chen, Chuan-Hua

    2012-11-01

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a new self-cleaning mechanism, whereby condensate drops spontaneously jump upon coalescence on a superhydrophobic surface, and the merged drop self-propels away from the surface along with the contaminants. The jumping-condensate mechanism is shown to autonomously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by external wind flow. Our findings offer new insights for the development of self-cleaning materials.

  11. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications

    NASA Astrophysics Data System (ADS)

    Fang, Yao; Yong, Jiale; Chen, Feng; Huo, Jinglan; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun

    2016-09-01

    Tunable adhesive superhydrophobic materials have attracted increasing research interest due to their applications in microdroplet manipulation, biological detection and microfluidic system. However, most of the artificial materials easily lose superhydrophobicity in harsh environments. The durability of superhydrophobic materials is very important to extend their lifetime in practical applications. In this paper, bioinspired durable superhydrophobicity with tunable adhesion on polytetrafluoroethylene surfaces is realized via a one-step femtosecond laser irradiation. On the laser-induced superhydrophobic surfaces, the sliding angle can be tuned from 1° to 90° (water droplet is pinned on the surface at any titled angles). The tunable water adhesion results from different contact states which change from the lotus state to the transition state and then to the composite state with increasing average distance of irradiation points. Water droplet quick localization and no-loss droplet transportation were achieved through designing surface adhesion. In addition, the resultant surfaces are so stable that they can maintain superhydrophobicity even after storing in harsh environments, without dramatical superhydrophobicity decay for a long time.

  12. Fabrication of the superhydrophobic surface on aluminum alloy by anodizing and polymeric coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Luo, Yuting; Sun, Linyu; Wu, Ruomei; Jiang, Haiyun; Liu, Yuejun

    2013-01-01

    We reported the preparation of the superhydrophobic surface on aluminum alloy via anodizing and polymeric coating. Both the different anodizing processes and different polymeric coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. The results showed that a good superhydrophobic surface was facilely fabricated by polypropylene (PP) coating after anodizing. The optimum conditions for anodizing were determined by orthogonal experiments. When the concentration of oxalic acid was 10 g/L, the concentration of NaCl was 1.25 g/L, anodization time was 40 min, and anodization current was 0.4 A, the best superhydrophobic surface on aluminum alloy with the contact angle (CA) of 162° and the sliding angle of 2° was obtained. On the other hand, the different polymeric coatings, such as polystyrene (PS), polypropylene (PP) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after anodizing. The results showed that the superhydrophobicity was most excellent by coating PP, while the duration of the hydrophobic surface was poor. By modifying the surface with the silane coupling agent before PP coating, the duration of the superhydrophobic surface was improved. The morphologies of the superhydrophobic surface were further confirmed by optical microscope (OM) and scanning electron microscope (SEM). Combined with the material of PP with the low surface free energy, the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  13. Simple approach to superhydrophobic nanostructured Al for practical antifrosting application based on enhanced self-propelled jumping droplets.

    PubMed

    Kim, Aeree; Lee, Chan; Kim, Hyungmo; Kim, Joonwon

    2015-04-01

    Frost formation can cause operational difficulty and efficiency loss for many facilities such as aircraft, wind turbines, and outdoor heat exchangers. Self-propelled jumping by condensate droplets on superhydrophobic surfaces delays frost formation, so many attempts have been made to exploit this phenomenon. However, practical application of this phenomenon is currently unfeasible because many processes to fabricate the superhydrophobic surfaces are inefficient and because self-propelled jumping is difficult to be achieved in a humid and low-temperature environment because superhydrophobicity is degraded in these conditions. Here, we achieved significantly effective anti-icing superhydrophobic aluminum. Its extremely low adhesive properties allow self-propelled jumping under highly supersaturated conditions of high humidity or low surface temperature. As a result, this surface helps retard frost formation at that condition. The aluminum was made superhydrophobic by a simple and cost-effective process that is adaptable to any shape. Therefore, it has promise for use in practical and industrial applications. PMID:25782028

  14. Bouncing of a Droplet on Superhydrophobic Surface in AC Electrowetting

    NASA Astrophysics Data System (ADS)

    Kang, Kwan Hyoung; Lee, Seung Jun; Hong, Jiwoo

    2009-11-01

    Oscillation of a droplet is induced in ac electrowetting by time-dependent electrical wetting tension. A droplet placed on a superhydrophobic surface bounces up like a rubber ball when an ac signal is applied. The bouncing pattern is highly frequency dependent. We investigated how the shape deformation and bouncing of a droplet are affected by applied frequency. The droplet motion is analyzed with the spectral method. The droplet is modeled as a simple linear oscillator, and the mass and spring constants are determined based on analytical results. We found that bouncing occurs periodically at a resonance frequency of the droplet. The motion of a sessile droplet released from a fixed shape is analyzed based on the phase field method. The numerical results show qualitative agreement with the experimental results for a bouncing droplet. Details on the flow field inside a bouncing droplet will be discussed based on numerical results.

  15. Evaporating behaviors of water droplet on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Hao, PengFei; Lv, CunJing; He, Feng

    2012-12-01

    We investigated the dynamic evaporating behaviors of water droplet on superhydrophobic surfaces with micropillars. Our experimental data showed that receding contact angles of the water droplet increased with the decreasing of the scale of the micropillars during evaporation, even though the solid area fractions of the microstructured substrates remained constant. We also experimentally found that the critical contact diameters of the transition between the Cassie-Baxter and Wenzel states are affected not only by the geometrical parameters of the microstructures, but also by the initial volume of the water droplet. The measured critical pressure is consistent with the theoretical model, which validated the pressure-induced impalement mechanism for the wetting state transition.

  16. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate

    PubMed Central

    Wisdom, Katrina M.; Qu, Xiaopeng; Liu, Fangjie; Watson, Gregory S.; Chen, Chuan-Hua

    2013-01-01

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials. PMID:23630277

  17. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.

    PubMed

    Mondal, Bikash; Mac Giolla Eain, Marc; Xu, QianFeng; Egan, Vanessa M; Punch, Jeff; Lyons, Alan M

    2015-10-28

    Condensation of water vapor is an essential process in power generation, water collection, and thermal management. Dropwise condensation, where condensed droplets are removed from the surface before coalescing into a film, has been shown to increase the heat transfer efficiency and water collection ability of many surfaces. Numerous efforts have been made to create surfaces which can promote dropwise condensation, including superhydrophobic surfaces on which water droplets are highly mobile. However, the challenge with using such surfaces in condensing environments is that hydrophobic coatings can degrade and/or water droplets on superhydrophobic surfaces transition from the mobile Cassie to the wetted Wenzel state over time and condensation shifts to a less-effective filmwise mechanism. To meet the need for a heat-transfer surface that can maintain stable dropwise condensation, we designed and fabricated a hybrid superhydrophobic-hydrophilic surface. An array of hydrophilic needles, thermally connected to a heat sink, was forced through a robust superhydrophobic polymer film. Condensation occurs preferentially on the needle surface due to differences in wettability and temperature. As the droplet grows, the liquid drop on the needle remains in the Cassie state and does not wet the underlying superhydrophobic surface. The water collection rate on this surface was studied using different surface tilt angles, needle array pitch values, and needle heights. Water condensation rates on the hybrid surface were shown to be 4 times greater than for a planar copper surface and twice as large for silanized silicon or superhydrophobic surfaces without hydrophilic features. A convection-conduction heat transfer model was developed; predicted water condensation rates were in good agreement with experimental observations. This type of hybrid superhydrophobic-hydrophilic surface with a larger array of needles is low-cost, robust, and scalable and so could be used for heat

  18. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    PubMed

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys.

  19. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    PubMed

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys. PMID:25559356

  20. Superhydrophobic nanostructured ZnO thin films on aluminum alloy substrates by electrophoretic deposition process

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Sarkar, D. K.; Chen, X.-Grant

    2015-02-01

    Superhydrophobic thin films have been fabricated on aluminum alloy substrates by electrophoretic deposition (EPD) process using stearic acid (SA) functionalized zinc oxide (ZnO) nanoparticles suspension in alcohols at varying bath temperatures. The deposited thin films have been characterized using both X-ray diffraction (XRD) and infrared (IR) spectroscopy and it is found that the films contain low surface energy zinc stearate and ZnO nanoparticles. It is also observed that the atomic percentage of Zn and O, roughness and water contact angle of the thin films increase with the increase of the deposited bath temperature. Furthermore, the thin film deposited at 50 °C, having a roughness of 4.54 ± 0.23 μm, shows superhydrophobic properties providing a water contact angle of 155 ± 3° with rolling off properties. Also, the activation energy of electrophoretic deposition of stearic-acid-functionalized ZnO nanoparticles is calculated to be 0.5 eV.

  1. Durable Superhydrophobic Surfaces via Spontaneous Wrinkling of Teflon AF.

    PubMed

    Scarratt, Liam R J; Hoatson, Ben S; Wood, Elliot S; Hawkett, Brian S; Neto, Chiara

    2016-03-01

    We report the fabrication of both single-scale and hierarchical superhydrophobic surfaces, created by exploiting the spontaneous wrinkling of a rigid Teflon AF film on two types of shrinkable plastic substrates. Sub-100 nm to micrometric wrinkles were reproducibly generated by this simple process, with remarkable control over the size and hierarchy. Hierarchical Teflon AF wrinkled surfaces showed extremely high water repellence (contact angle 172°) and very low contact angle hysteresis (2°), resulting in droplets rolling off the surface at tilt angles lower than 5°. The wrinkling process intimately binds the Teflon AF layer with its substrate, making these surfaces mechanically robust, as revealed by macroscale and nanoscale wear tests: hardness values were close to that of commercial optical lenses and aluminum films, resistance to scratch was comparable to commercial hydrophobic coatings, and damage by extensive sonication did not significantly affect water repellence. By this fabrication method the size of the wrinkles can be reproducibly tuned from the nanoscale to the microscale, across the whole surface in one step; the fabrication procedure is extremely rapid, requiring only 2 min of thermal annealing to produce the desired topography, and uses inexpensive materials. The very low roll-off angles achieved in the hierarchical surfaces offer a potentially up-scalable alternative as self-cleaning and drag-reducing coatings.

  2. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ramachandran, Rahul

    Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is

  3. Self-cleaning superhydrophobic surface based on titanium dioxide nanowires combined with polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Guo, Yonggang; Zhang, Zhijun; Zhang, Pingyu

    2013-11-01

    The present work describes a simple dipping process for the preparation of superhydrophobic coatings based on titanium dioxide nanowires combined with polydimethylsiloxane. The coating surface morphology, composition and wettability were investigated by scanning electron microscope, X-ray photoelectron spectroscope and contact angle measurements, respectively. Interestingly, the superhydrophobic coatings turn into a hydrophilic one after UV irradiation. It is found that the superhydrophobic surface shows almost complete wet self-cleaning of dirt particles with water droplets. Furthermore, the coating surface shows the anti-fouling performance for organic solvents, which can self-remove the organic solvents layer and recovers its superhydrophobic behavior. The advantage of the present approach is that the damaged coating can be easily repaired.

  4. Delayed frost formation on hybrid nanostructured surfaces with patterned high wetting contrast

    NASA Astrophysics Data System (ADS)

    Hou, Youmin; Zhou, Peng; Yao, Shuhuai

    2014-11-01

    Engineering icephobic surfaces that can retard the frost formation and accumulation are important to vehicles, wind turbines, power lines, and HVAC systems. For condensation frosting, superhydrophobic surfaces promote self-removal of condensed droplets before freezing and consequently delay the frost growth. However, a small thermal fluctuation may lead to a Cassie-to-Wenzel transition, and thus dramatically enhance the frost formation and adhesion. In this work, we investigated the heterogeneous ice nucleation on hybrid nanostructured surfaces with patterned high wetting contrast. By judiciously introducing hydrophilic micro-patches into superhydrophobic nanostructured surface, we demonstrated that such a novel hybrid structure can efficiently defer the ice nucleation as compared to a superhydrophobic surface with nanostructures only. We observed efficient droplet jumping and higher coverage of droplets with diameter smaller than 10 μm, both of which suppress frost formation. The hybrid surface avoids the formation of liquid-bridges for Cassie-to-Wenzel transition, therefore eliminating the `bottom-up' droplet freezing from the cold substrate. These findings provide new insights to improve anti-frosting and anti-icing by using heterogeneous wettability in multiscale structures.

  5. Supramolecular polymers as surface coatings: rapid fabrication of healable superhydrophobic and slippery surfaces.

    PubMed

    Wei, Qiang; Schlaich, Christoph; Prévost, Sylvain; Schulz, Andrea; Böttcher, Christoph; Gradzielski, Michael; Qi, Zhenhui; Haag, Rainer; Schalley, Christoph A

    2014-11-19

    Supramolecular polymerization for non-wetting surface coatings is described. The self-assembly of low-molecular-weight gelators (LMWGs) with perfluorinated side chains can be utilized to rapidly construct superhydrophobic, as well as liquid-infused slippery surfaces within minutes. The lubricated slippery surface exhibits impressive repellency to biological li-quids, such as human serum and blood, and very fast self-healing. PMID:25236438

  6. Precipitation of salt in saline water drop on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Shin, Bongsu; Moon, Myoung-Woon; Kim, Ho-Young

    2012-11-01

    In the membrane distillation process, water vapor of heated, pressurized saline water is transported across the membrane to be collected as pure water. While the water-repellency of the membrane surface has been considered an important parameter affecting the distillation efficiency, the resistance of the membrane to the contamination due to salt has gathered little scientific interest thus far. Here we experimentally investigate the precipitation of salt in sessile saline water drops, to find drastic differences in salt crystallization behavior depending on the water-repellency of solid surface. On a moderately hydrophobic surface with a static contact angle with water being about 150 degrees, salt crystals are aligned and stacked along the initial contact line, forming an interesting structure resembling an igloo. On a superhydrophobic surface with about 164 degrees of static contact angle with water, salt crystallizes only at the center of the drop-solid contact area, forming a pebble-shaped structure. We explain this difference by comparing the evaporation modes (constant contact radius versus constant contact angle) of the sessile drops on those surfaces. We also visualize the liquid flow within drops undergoing evaporation and precipitation at the same time using PIV.

  7. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    NASA Astrophysics Data System (ADS)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  8. Directional motion of water drop on ratchet-like superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Sheng, Xianliang; Zhang, Jihua

    2011-05-01

    In this article, directional movements of drops on the ratchet-like superhydrophobic surfaces were observed. High-speed CCD images showed the caterpillar-like crawl of a drop on the inclined superhydrophobic surfaces as it rolled along the ridge of ratchet. In contrast, along the opposite direction, the movement of the drop only depended on the end of triple phase contact line while the front of contact line was pinned. The sliding angle (SA) measurements indicated that the ratchet-like superhydrophobic surfaces had directional drop retention traits. Moreover, the reduction of the rise angle ω1, the height d of the ratchet's ridge and the volume V of the drop can greatly enhance the directional difference of drop retention on the ratchet-like superhydrophobic surfaces. Therefore, it was concluded that the superhydrophobicity and the periodic ratchet-like microstructures were the keys to the directional drop sliding at one-dimensional level. We believe that these findings would be helpful to better understand the ratchet-like effect on the superhydrophobic surfaces and guide some novel engineering applications.

  9. Evolution and environmental degradation of superhydrophobic aspen and black locust leaf surfaces

    NASA Astrophysics Data System (ADS)

    Tranquada, George Christopher

    The current study is focused on the characterization of four natural leaf species (quaking, bigtooth and columnar european aspen as well as black locust) possessing a unique dual-scale cuticle structure composed of micro- and nano-scale asperities, which are able to effectively resist wetting (superhydrophobic), characteristic of The Lotus Effect. Scanning Electron Microscopy (SEM) was used to track the growth and evolution of their distinctive nano-scale epicuticular wax (ECW) morphologies over one full growing season. In addition, the stability of their superhydrophobic property was tested in various environments. It was determined that the long-term stability of these surfaces is tentatively linked to various environmental stress factors. Specifically, a combination of high temperature and humidity caused the degradation of nanoscale asperities and loss of the superhydrophobic property. The dual-scale surface structure was found to provide a suitable template for the design of future superhydrophobic engineering materials.

  10. Liquid-body resonance while contacting a rotating superhydrophobic surface.

    PubMed

    Chong, Matthew Lai Ho; Cheng, Michael; Katariya, Mayur; Muradoglu, Murat; Cheong, Brandon Huey-Ping; Zahidi, Alifa Afiah Ahmad; Yu, Yang; Liew, Oi Wah; Ng, Tuck Wah

    2015-11-01

    We advance a scheme in which a liquid body on a stationary tip in contact with a rotating superhydrophobic surface is able to maintain resonance primarily from stick-slip events. With tip-to-surface spacing in the range 2.73 ≤ h < 2.45 mm for a volume of 10 μL, the liquid body was found to exhibit resonance independent of the speed of the drum. The mechanics were found to be due to a surface-tension-controlled vibration mode based on the natural frequency values determined. With spacing in the range 2.45 ≤ h < 2.15 mm imposed for a volume of 10 μL, the contact length of the liquid body was found to vary with rotation of the SH drum. This was due to the stick-slip events being able to generate higher energy fluctuations causing the liquid-solid contact areas to vary since the almost oblate spheroid shape of the liquid body had intrinsically higher surface energies. This resulted in the natural frequency perturbations being frequency- and amplitude-modulated over a lower frequency carrier. These findings have positive implications for microfluidic sensing. PMID:26577818

  11. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Zhou, Ming; Li, Jian; Ye, Xia; Li, Gang; Cai, Lan

    2009-10-01

    Fabrication of superhydrophobic surfaces induced by femtosecond laser is a research hotspot of superhydrophobic surface studies nowadays. We present a simple and easily-controlled method for fabricating stainless steel-based superhydrophobic surfaces. The method consists of microstructuring stainless steel surfaces by irradiating samples with femtosecond laser pulses and silanizing the surfaces. By low laser fluence, we fabricated typical laser-induced periodic surface structures (LIPSS) on the submicron level. The apparent contact angle (CA) on the surface is 150.3°. With laser fluence increasing, we fabricated periodic ripples and periodic cone-shaped spikes on the micron scale, both covered with LIPSS. The stainless steel-based surfaces with micro- and submicron double-scale structure have higher apparent CAs. On the surface of double-scale structure, the maximal apparent CA is 166.3° and at the same time, the sliding angle (SA) is 4.2°.

  12. Thermomechanical Mechanisms of Reducing Ice Adhesion on Superhydrophobic Surfaces.

    PubMed

    Cohen, N; Dotan, A; Dodiuk, H; Kenig, S

    2016-09-20

    Superhydrophobic (SH) coatings have been shown to reduce freezing and ice nucleation rates, by means of low surface energy chemistry tailored with nano/micro roughness. Durability enhancement of SH surfaces is a crucial issue. Consequently, the present research on reducing ice adhesion is based on radiation-induced radical reaction for covalently bonding SiO2 nanoparticles to polymer coatings to obtain durable roughness. Results indicated that the proposed approach resulted in SH surfaces having high contact angles (>155°) and low sliding angles (<5°) with improved durability and transparency. In a subsequent stage, the synthesized SH coating was investigated for its icephobic characteristics using a variety of substrates. Results indicated that supercooled water drops bounced back when impinging on SH polycarbonate substrate and froze on SH copper substrate held at -10 to -30 °C and were easily peeled off when coated by ice formed during exposure to air/supercooled water drops at -20 °C. The ice shear adhesion investigation (at -20 °C) demonstrated reduction of shear adhesion to a variety of SH treated substrates having low thermal expansion coefficient (copper and aluminum) and high thermal expansion coefficient (polycarbonate and poly(methyl methacrylate)). It was concluded that the thermal mismatch between the adhering ice and the various substrates and its resultant interfacial thermal stresses affect the adhesion strength of the ice to the respective substrate. PMID:27578298

  13. Thermomechanical Mechanisms of Reducing Ice Adhesion on Superhydrophobic Surfaces.

    PubMed

    Cohen, N; Dotan, A; Dodiuk, H; Kenig, S

    2016-09-20

    Superhydrophobic (SH) coatings have been shown to reduce freezing and ice nucleation rates, by means of low surface energy chemistry tailored with nano/micro roughness. Durability enhancement of SH surfaces is a crucial issue. Consequently, the present research on reducing ice adhesion is based on radiation-induced radical reaction for covalently bonding SiO2 nanoparticles to polymer coatings to obtain durable roughness. Results indicated that the proposed approach resulted in SH surfaces having high contact angles (>155°) and low sliding angles (<5°) with improved durability and transparency. In a subsequent stage, the synthesized SH coating was investigated for its icephobic characteristics using a variety of substrates. Results indicated that supercooled water drops bounced back when impinging on SH polycarbonate substrate and froze on SH copper substrate held at -10 to -30 °C and were easily peeled off when coated by ice formed during exposure to air/supercooled water drops at -20 °C. The ice shear adhesion investigation (at -20 °C) demonstrated reduction of shear adhesion to a variety of SH treated substrates having low thermal expansion coefficient (copper and aluminum) and high thermal expansion coefficient (polycarbonate and poly(methyl methacrylate)). It was concluded that the thermal mismatch between the adhering ice and the various substrates and its resultant interfacial thermal stresses affect the adhesion strength of the ice to the respective substrate.

  14. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.

    PubMed

    Birbarah, Patrick; Li, Zhaoer; Pauls, Alexander; Miljkovic, Nenad

    2015-07-21

    Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding positively charged water droplets via coalescence-induced droplet jumping at length scales below the capillary length and allowing the use of external electric fields to enhance droplet removal and heat transfer, in what has been termed electric-field-enhanced (EFE) jumping-droplet condensation. However, achieving optimal EFE conditions for enhanced heat transfer requires capturing the details of transport processes that is currently lacking. While a comprehensive model has been developed for condensation on micro/nanostructured surfaces, it cannot be applied for EFE condensation due to the dynamic droplet-vapor-electric field interactions. In this work, we developed a comprehensive physical model for EFE condensation on superhydrophobic surfaces by incorporating individual droplet motion, electrode geometry, jumping frequency, field strength, and condensate vapor-flow dynamics. As a first step toward our model, we simulated jumping droplet motion with no external electric field and validated our theoretical droplet trajectories to experimentally obtained trajectories, showing excellent temporal and spatial agreement. We then incorporated the external electric field into our model and considered the effects of jumping droplet size, electrode size and geometry, condensation heat flux, and droplet jumping direction. Our model suggests that smaller jumping droplet sizes and condensation heat fluxes require less work input to be removed by the external fields. Furthermore, the results suggest that EFE electrodes can be optimized such that the work input is minimized depending on the condensation heat flux. To analyze overall efficiency, we defined an incremental coefficient of performance and showed that it is very high (∼10(6)) for EFE condensation. We finally proposed mechanisms

  15. Fabricating Super-hydrophobic Polydimethylsiloxane Surfaces by a Simple Filler-Dissolved Process

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Tsan; Chou, Jung-Hua

    2010-12-01

    The self-cleaning effect of super-hydrophobic surfaces has attracted the attention of researchers. Typical ways of manufacturing super-hydrophobic surfaces include the use of either dedicated equipment or a complex chemical process. In this study, a simple innovative filler-dissolved method is developed using mainly powder salt and rinsing to form hydrophobic surfaces. This method can produce large super-hydrophobic surfaces with porous and micro rib surface structures. It can also be applied to curved surfaces, including flexible membranes. The contact angle of the manufactured artificial hydrophobic surface is about 160°. Furthermore, water droplets roll off the surface readily at a sliding angle of less than 5°, resembling the nonwetting lotus like effect.

  16. Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions.

    PubMed

    Bengaluru Subramanyam, Srinivas; Kondrashov, Vitaliy; Rühe, Jürgen; Varanasi, Kripa K

    2016-05-25

    Ice adhesion on superhydrophobic surfaces can significantly increase in humid environments because of frost nucleation within the textures. Here, we studied frost formation and ice adhesion on superhydrophobic surfaces with various surface morphologies using direct microscale imaging combined with macroscale adhesion tests. Whereas ice adhesion increases on microtextured surfaces, a 15-fold decrease is observed on nanotextured surfaces. This reduction is because of the inhibition of frost formation within the nanofeatures and the stabilization of vapor pockets. Such "Cassie ice"-promoting textures can be used in the design of anti-icing surfaces. PMID:27150450

  17. Study on Super-Hydrophobic and Oleophobic Surfaces Prepared by Chemical Adsorption Technique

    NASA Astrophysics Data System (ADS)

    Tsuji, Issei; Ohkubo, Yuji; Ogawa, Kazufumi

    2009-04-01

    Preparation techniques for super-hydrophobic and oleophobic surfaces were studied by forming a fractally roughened surface and preparing a hydrophobic monolayer. In this study, the fractal structure on the surface of an aluminum substrate was formed by combining sand-blasting with electrolytical etching. Then, a hydrophobic monolayer was prepared on the roughened surface, without decreasing roughness. The surface of the treated substrate can be evaluated by contact angle measurement and field emission scanning electron microscopy (FE-SEM). The surface treated by a technique combining chemical adsorption, sandblasting, and electrolytical etching was super-hydrophobic and highly oleophobic.

  18. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.

    PubMed

    Aili, Abulimiti; Li, Hongxia; Alhosani, Mohamed H; Zhang, TieJun

    2016-08-24

    Superhydrophobic nanostructured surfaces have demonstrated outstanding capability in energy and water applications by promoting dropwise condensation, where fast droplet growth and efficient condensate removal are two key parameters. However, these parameters remain contradictory. Although efficient droplet removal is easily obtained through coalescence jumping on uniform superhydrophobic surfaces, simultaneously achieving fast droplet growth is still challenging. Also, on such surfaces droplets can grow to larger sizes without restriction if there is no coalescence. In this work, we show that superhydrophobic nanostructured microporous surfaces can manipulate the droplet growth and jumping. Microporous surface morphology effectively enhances the growth of droplets in pores owing to large solid-liquid contact area. At low supersaturations, the upward growth rate (1-1.5 μm/s) of these droplets in pores is observed to be around 15-25 times that of the droplets outside the pores. Meanwhile, their top curvature radius increases relatively slowly (∼0.25 μm/s) due to pore confinement, which results in a highly stretched droplet surface. We also observed forced jumping of stretched droplets in pores either through coalescence with spherical droplets outside pores or through self-pulling without coalescence. Both experimental observation and theoretical modeling reveal that excess surface free energy stored in the stretched droplet surface and micropore confinement are responsible for this pore-scale-forced jumping. These findings reveal the insightful physics of stretched droplet dynamics and offer guidelines for the design and fabrication of novel super-repellent surfaces with microporous morphology.

  19. Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.

    PubMed

    Aili, Abulimiti; Li, Hongxia; Alhosani, Mohamed H; Zhang, TieJun

    2016-08-24

    Superhydrophobic nanostructured surfaces have demonstrated outstanding capability in energy and water applications by promoting dropwise condensation, where fast droplet growth and efficient condensate removal are two key parameters. However, these parameters remain contradictory. Although efficient droplet removal is easily obtained through coalescence jumping on uniform superhydrophobic surfaces, simultaneously achieving fast droplet growth is still challenging. Also, on such surfaces droplets can grow to larger sizes without restriction if there is no coalescence. In this work, we show that superhydrophobic nanostructured microporous surfaces can manipulate the droplet growth and jumping. Microporous surface morphology effectively enhances the growth of droplets in pores owing to large solid-liquid contact area. At low supersaturations, the upward growth rate (1-1.5 μm/s) of these droplets in pores is observed to be around 15-25 times that of the droplets outside the pores. Meanwhile, their top curvature radius increases relatively slowly (∼0.25 μm/s) due to pore confinement, which results in a highly stretched droplet surface. We also observed forced jumping of stretched droplets in pores either through coalescence with spherical droplets outside pores or through self-pulling without coalescence. Both experimental observation and theoretical modeling reveal that excess surface free energy stored in the stretched droplet surface and micropore confinement are responsible for this pore-scale-forced jumping. These findings reveal the insightful physics of stretched droplet dynamics and offer guidelines for the design and fabrication of novel super-repellent surfaces with microporous morphology. PMID:27486890

  20. Directed Growth of Virus Nanofilaments on a Superhydrophobic Surface.

    PubMed

    Marinaro, Giovanni; Burghammer, Manfred; Costa, Luca; Dane, Thomas; De Angelis, Francesco; Di Fabrizio, Enzo; Riekel, Christian

    2015-06-17

    The evaporation of single droplets of colloidal tobacco mosaic virus (TMV) nanoparticles on a superhydrophobic surface with a hexagonal pillar-pattern results in the formation of coffee-ring type residues. We imaged surface features by optical, scanning electron, and atomic force microscopies. Bulk features were probed by raster-scan X-ray nanodiffraction. At ∼100 pg/μL nanoparticle concentration, the rim of the residue connects to neighboring pillars via fibrous extensions containing flow-aligned crystalline domains. At ∼1 pg/μL nanoparticle concentration, nanofilaments of ≥80 nm diameter and ∼20 μm length are formed, extending normal to the residue-rim across a range of pillars. X-ray scattering is dominated by the nanofilament form-factor but some evidence for crystallinity has been obtained. The observation of sheets composed of stacks of self-assembled nanoparticles deposited on pillars suggests that the nanofilaments are drawn from a structured droplet interface.

  1. Insulating oxide surfaces and nanostructures

    NASA Astrophysics Data System (ADS)

    Goniakowski, Jacek; Noguera, Claudine

    2016-03-01

    This contribution describes some peculiarities of the science of oxide surfaces and nanostructures and proposes a simple conceptual scheme to understand their electronic structure, in the spirit of Jacques Friedel's work. Major results on the effects of non-stoichiometry and polarity are presented, for both semi-infinite surfaces and ultra-thin films, and promising lines of research for the near future are sketched. xml:lang="fr"

  2. Electrochemical machining of super-hydrophobic Al surfaces and effect of processing parameters on wettability

    NASA Astrophysics Data System (ADS)

    Song, Jin-long; Xu, Wen-ji; Liu, Xin; Lu, Yao; Sun, Jing

    2012-09-01

    Super-hydrophobic aluminum (Al) surfaces were successfully fabricated via electrochemical machining in neutral NaClO3 electrolyte and subsequent fluoroalkylsilane (FAS) modification. The effects of the processing time, processing current density, and electrolyte concentration on the wettability, morphology, and roughness were studied. The surface morphology, chemical composition, and wettability of the Al surfaces were investigated using scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), white-light interferometry, roughness measurements, X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), and optical contact angle measurements. The results show that hierarchical rough structures and low surface energy films were present on the Al surfaces after electrochemical machining and FAS modification. The combination of the rough structures and the low surface energy materials plays a crucial role in achieving super-hydrophobicity. Compared with the anodic oxidation and chemical etching method, the method proposed in our work does not require strong acid or alkali, and causes less harm to the environment and operators but with high processing efficiency. The rough structures required by the super-hydrophobic surfaces were obtained at 30-s processing time and the best super-hydrophobicity with 164.6∘ water contact angle and 2∘ tilting angle was obtained at 360 s. The resulting super-hydrophobic Al surfaces have a long-time stability in air and an excellent resistance to corrosive liquids.

  3. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization.

    PubMed

    Xue, Chao-Hua; Li, Ya-Ru; Zhang, Ping; Ma, Jian-Zhong; Jia, Shun-Tian

    2014-07-01

    Superhydrophobic poly(ethylene terephthalate) (PET) textile surfaces with a self-cleaning property were fabricated by treating the microscale fibers with alkali followed by coating with polydimethylsiloxane (PDMS). Scanning electron microscopy analysis showed that alkali treatment etched the PET and resulted in nanoscale pits on the fiber surfaces, making the textiles have hierarchical structures. Coating of PDMS on the etched fibers affected little the roughening structures while lowered the surface energy of the fibers, thus making the textiles show slippery superhydrophobicity with a self-cleaning effect. Wettability tests showed that the superhydrophobic textiles were robust to acid/alkaline etching, UV irradiation, and long-time laundering. Importantly, the textiles maintained superhydrophobicity even when the textiles are ruptured by severe abrasion. Also colorful images could be imparted to the superhydrophobic textiles by a conventional transfer printing without affecting the superhydrophobicity.

  4. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth.

    PubMed

    Shen, Yizhou; Tao, Jie; Tao, Haijun; Chen, Shanlong; Pan, Lei; Wang, Tao

    2015-10-01

    On the basis of the icing-delay performance and ice adhesion strength, the anti-icing potential of the superhydrophobic surface has been well-investigated in the past few years. The present work mainly emphasized the investigations of ice nucleation and growth to fully explore the anti-icing potential of the superhydrophobic surface. We took the various surfaces ranging from hydrophilic to superhydrophobic as the research objects and, combining the classical nucleation theory, discussed the ice nucleation behaviors of the water droplets on these sample surfaces under the condition of supercooling. Meanwhile, the macroscopical growth processes of ice on these surfaces were analyzed on the basis of the growth mechanism of the ice nucleus. It was found that the superhydrophobic surface could greatly reduce the solid-liquid interface nucleation rate, owing to the extremely low actual solid-liquid contact area caused by the composite micro-nanoscale hierarchical structures trapping air pockets, leading to the bulk nucleation dominating the entire ice nucleation at the lower temperatures. Furthermore, ice on the superhydrophobic surface possessed a lower macroscopical growth velocity as a result of the less ice nucleation rate and the insulating action of the trapped air pockets. PMID:26367109

  5. Facile fabrication of biomimetic superhydrophobic surface with anti-frosting on stainless steel substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Bai, Yuan; Jin, Jingfu; Tian, Limei; Han, Zhiwu; Ren, Luquan

    2015-11-01

    Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, a superhydrophobic surface was achieved successfully by a chemical immersion process. Here, 304 SS (stainless steel) was used as substrates and a micro-nano hierarchical structure was obtained by chemical etching with a mixed solution containing ferric chloride. The results showed that the water contact angle (WAC) decreased obviously due to surface morphology changing after chemical etching process. However, we obtained a superhydrophobic surface with a WAC of 158.3 ± 2.8° after modification by DTS (CH3(CH2)11Si(OCH3)3). Furthermore, the superhydrophobic surface showed an excellent anti-frosting character compared to pure staining steel. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS and water contact angle measurements. This method could provide a facile, low-cost and stable route to fabricate a large-area superhydrophobic surface with anti-frosting for application in various environments including in humid condition.

  6. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.

    PubMed

    Kim, Tae-Hyun; Ha, Sung-Hun; Jang, Nam-Su; Kim, Jeonghyo; Kim, Ji Hoon; Park, Jong-Kweon; Lee, Deug-Woo; Lee, Jaebeom; Kim, Soo-Hyung; Kim, Jong-Man

    2015-03-11

    Optical transparency and mechanical flexibility are both of great importance for significantly expanding the applicability of superhydrophobic surfaces. Such features make it possible for functional surfaces to be applied to various glass-based products with different curvatures. In this work, we report on the simple and potentially cost-effective fabrication of highly flexible and transparent superhydrophobic films based on hierarchical surface design. The hierarchical surface morphology was easily fabricated by the simple transfer of a porous alumina membrane to the top surface of UV-imprinted polymeric micropillar arrays and subsequent chemical treatments. Through optimization of the hierarchical surface design, the resultant superhydrophobic films showed superior surface wetting properties (with a static contact angle of >170° and contact angle hysteresis of <3.5°) in the Cassie-Baxter wetting regime, considerable dynamic water repellency (with perfect bouncing of a water droplet dropped from an impact height of 30 mm), and good optical transparency (>82% at 550 nm wavelength). The superhydrophobic films were also experimentally found to be robust without significant degradation in the superhydrophobicity, even under repetitive bending and pressing for up to 2000 cycles. Finally, the practical usability of the proposed superhydorphobic films was clearly demonstrated by examining the antiwetting performance in real time while pouring water on the film and submerging the film in water. PMID:25688451

  7. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.

    PubMed

    Kim, Tae-Hyun; Ha, Sung-Hun; Jang, Nam-Su; Kim, Jeonghyo; Kim, Ji Hoon; Park, Jong-Kweon; Lee, Deug-Woo; Lee, Jaebeom; Kim, Soo-Hyung; Kim, Jong-Man

    2015-03-11

    Optical transparency and mechanical flexibility are both of great importance for significantly expanding the applicability of superhydrophobic surfaces. Such features make it possible for functional surfaces to be applied to various glass-based products with different curvatures. In this work, we report on the simple and potentially cost-effective fabrication of highly flexible and transparent superhydrophobic films based on hierarchical surface design. The hierarchical surface morphology was easily fabricated by the simple transfer of a porous alumina membrane to the top surface of UV-imprinted polymeric micropillar arrays and subsequent chemical treatments. Through optimization of the hierarchical surface design, the resultant superhydrophobic films showed superior surface wetting properties (with a static contact angle of >170° and contact angle hysteresis of <3.5°) in the Cassie-Baxter wetting regime, considerable dynamic water repellency (with perfect bouncing of a water droplet dropped from an impact height of 30 mm), and good optical transparency (>82% at 550 nm wavelength). The superhydrophobic films were also experimentally found to be robust without significant degradation in the superhydrophobicity, even under repetitive bending and pressing for up to 2000 cycles. Finally, the practical usability of the proposed superhydorphobic films was clearly demonstrated by examining the antiwetting performance in real time while pouring water on the film and submerging the film in water.

  8. Superhydrophobic and self-cleaning bio-fiber surfaces via ATRP and subsequent postfunctionalization.

    PubMed

    Nyström, Daniel; Lindqvist, Josefina; Ostmark, Emma; Antoni, Per; Carlmark, Anna; Hult, Anders; Malmström, Eva

    2009-04-01

    Superhydrophobic and self-cleaning cellulose surfaces have been obtained via surface-confined grafting of glycidyl methacrylate using atom transfer radical polymerization combined with postmodification reactions. Both linear and branched graft-on-graft architectures were used for the postmodification reactions to obtain highly hydrophobic bio-fiber surfaces by functionalization of the grafts with either poly(dimethylsiloxane), perfluorinated chains, or alkyl chains, respectively. Postfunctionalization using alkyl chains yielded results similar to those of surfaces modified by perfluorination, in terms of superhydrophobicity, self-cleaning properties, and the stability of these properties over time. In addition, highly oleophobic surfaces have been obtained when modification with perfluorinated chains was performed. PMID:20356007

  9. Superhydrophobic and self-cleaning bio-fiber surfaces via ATRP and subsequent postfunctionalization.

    PubMed

    Nyström, Daniel; Lindqvist, Josefina; Ostmark, Emma; Antoni, Per; Carlmark, Anna; Hult, Anders; Malmström, Eva

    2009-04-01

    Superhydrophobic and self-cleaning cellulose surfaces have been obtained via surface-confined grafting of glycidyl methacrylate using atom transfer radical polymerization combined with postmodification reactions. Both linear and branched graft-on-graft architectures were used for the postmodification reactions to obtain highly hydrophobic bio-fiber surfaces by functionalization of the grafts with either poly(dimethylsiloxane), perfluorinated chains, or alkyl chains, respectively. Postfunctionalization using alkyl chains yielded results similar to those of surfaces modified by perfluorination, in terms of superhydrophobicity, self-cleaning properties, and the stability of these properties over time. In addition, highly oleophobic surfaces have been obtained when modification with perfluorinated chains was performed.

  10. Superhydrophobic surfaces prepared from water glass and non-fluorinated alkylsilane on cotton substrates

    NASA Astrophysics Data System (ADS)

    Li, Zhengxiong; Xing, Yanjun; Dai, Jinjin

    2008-01-01

    Superhydrophobic surfaces have been successfully prepared by sol-gel method using water glass as starting material. Such surfaces were obtained first by dip-coating the silica hydrosols prepared via hydrolysis and condensation of water glass onto cotton substrates, then the surface of the silica coating was modified with a non-fluoro compound, hexadecyltrimethoxysilane (HDTMS), to gain a thin film through self-assembly, superhydrophobicity with a water contact angle higher than 151° can be achieved. The morphology and surface roughness were characterized by SEM and AFM.

  11. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    SciTech Connect

    Wang, Yang; Liu, Xiao Wei; Zhang, Hai Feng Zhou, Zhi Ping

    2014-03-15

    In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE) coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM) together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  12. Fabrication of a superhydrophobic surface from porous polymer using phase separation

    NASA Astrophysics Data System (ADS)

    Liu, Jianfeng; Xiao, Xinyan; Shi, Yinlong; Wan, Caixia

    2014-04-01

    The present work reports a simple method to fabricate superhydrophobic porous polymeric surfaces by a phase separation process. The method involves the in situ polymerization of butyl methacrylate (BMA) and ethylene dimethacrylate (EDMA) in the presence of co-porogens of 1,4-butanediol (BDO) and N-methyl-2-pyrrolidone (NMP) to afford superhydrophobic surfaces with the micro/nano roughness structure. The influences of the polymerization mixture on the morphology and hydrophobicity were investigated by adjusting the composition of the co-porogens and the mass ratio of monomers to co-porogens, respectively. And a precise description of the underlying mechanism of the microstructure formation was presented. The as-prepared surface shows a superhydrophobicity with water contact angle (WCA) of 159.5° and low sliding angle (SA) of 3.1°. Moreover, the superhydrophobic surface shows good chemical stability with better resistance to acid, alkali or salt aqueous solutions and excellent thermal stability. The method is simple and low-cost and can be used for the preparation of the self-cleaning superhydrophobic surfaces.

  13. A rapid one-step fabrication of patternable superhydrophobic surfaces driven by Marangoni instability.

    PubMed

    Kang, Sung-Min; Hwang, Sora; Jin, Si-Hyung; Choi, Chang-Hyung; Kim, Jongmin; Park, Bum Jun; Lee, Daeyeon; Lee, Chang-Soo

    2014-03-18

    We present a facile and inexpensive approach without any fluorinated chemistry to create superhydrophobic surface with exceptional liquid repellency, transportation of oil, selective capture of oil, optical bar code, and self-cleaning. Here we show experimentally that the control of evaporation is important and can be used to form superhydrophobic surface driven by Marangoni instability: the method involves in-situ photopolymerization in the presence of a volatile solvent and porous PDMS cover to afford superhydrophobic surfaces with the desired combination of micro- and nanoscale roughness. The porous PDMS cover significantly affects Marangoni convection of coating fluid, inducing composition gradients at the same time. In addition, the change of concentration of ethanol is able to produce versatile surfaces from hydrophilic to superhydrophobic and as a consequence to determine contact angles as well as roughness factors. In conclusion, the control of evaporation under the polymerization provides a convenient parameter to fabricate the superhydrophobic surface, without application of fluorinated chemistry and the elegant nanofabrication technique.

  14. Preparation of superhydrophobic nanodiamond and cubic boron nitride films

    SciTech Connect

    Zhou, Y. B.; Liu, W. M.; Wang, P. F.; Yang, Y.; Ye, Q.; He, B.; Pan, X. J.; Zhang, W. J.; Bello, I.; Lee, S. T.; Zou, Y. S.

    2010-09-27

    Superhydrophobic surfaces were achieved on the hardest and the second hardest materials, diamond and cubic boron nitride (cBN) films. Various surface nanostructures of nanocrystalline diamond (ND) and cBN films were constructed by carrying out bias-assisted reactive ion etching in hydrogen/argon plasmas; and it is shown that surface nanostructuring may enhance dramatically the hydrophobicity of ND and cBN films. Together with surface fluorination, superhydrophobic ND and cBN surfaces with a contact angle greater than 150 deg. and a sliding angle smaller than 10 deg. were demonstrated. The origin of hydrophobicity enhancement is discussed based on the Cassie model.

  15. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.

    PubMed

    Barthlott, W; Mail, M; Neinhuis, C

    2016-08-01

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354736

  16. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.

    PubMed

    Barthlott, W; Mail, M; Neinhuis, C

    2016-08-01

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

  17. Technique for needle-free drop deposition: Pathway for precise characterization of superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Waghmare, Prashant R.; Das, Siddhartha; Mitra, Sushanta K.

    2013-11-01

    The most important step for characterizing the wettability of a surface is to deposit a water drop on the surface and measure the contact angle made by the drop on the surface. This innocuously simple process relies on bringing a needle holding the water drop in close proximity to the surface, with a ``desire'' that the drop would spontaneously detach from the needle and get deposited on the surface. Problem occurs when the surface is superhydrophobic, expressing an ``unwillingness'' to ``see'' the water drop in preference to a much more ``water-loving'' needle surface. There exists no solution to this problem, and surfaces are invariably characterized where the drop-needle assembly contacts the superhydrophobic surface. Such a configuration will always lead to an incorrect estimation of the contact angle, as there is no certainty of the existence of the drop-surface contact. Here we shall discuss our recently invented technique, where we solve this long-standing problem-we indeed ensure a needle-free drop in contact with the superhydrophobic surface, thereby ascertaining precise determination of the contact angle. The successful application of the technique will address a major headache of the big research community interested in science and technology of superhydrophobic surfaces.

  18. Nonfunctionalized Polydimethyl Siloxane Superhydrophobic Surfaces Based on Hydrophobic-Hydrophilic Interactions

    SciTech Connect

    Polizos, Georgios; Tuncer, Enis; Qiu, Xiaofeng; Aytug, Tolga; Kidder, Michelle; Messman, Jamie M; Sauers, Isidor

    2011-01-01

    Superhydrophobic surfaces based on polydimethyl siloxane (PDMS) were fabricated using a 50:50 PDM-poly(ethylene glycol) (PEG) blend. PDMS was mixed with PEG, and incomplete phase separation yielded a hierarchic structure. The phase-separated mixture was annealed at a temperature close to the crystallization temperature of the PEG. The PEG crystals were formed isothermally at the PDMS/PEG interface, leading to an engineered surface with PDMS spherulites. The resulting roughness of the surface was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The PDMS spherulites, a few micrometers in diameter observed from SEM images, were found to have an undulated (rippled) surface with nanometer-sized features. The combination of micrometer- and nanometer-sized surface features created a fractal surface and increased the water contact angle (WCA) of PDMS more than 60, resulting in a superhydrophobic PDMS surface with WCA of >160 degrees. The active surface layer for the superhydrophobicity was approximately 100 mu m thick, illustrating that the material had bulk superhydrophobicity compared to conventional fluorocarbon or fluorinated coated rough surfaces. Theoretical analysis of the fractal surface indicates that the constructed surface has a fractal dimension of 2.5, which corresponds to the Apollonian sphere packing.

  19. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles.

    PubMed

    Xu, Lebo; Karunakaran, Raghuraman G; Guo, Jia; Yang, Shu

    2012-02-01

    We study the nonwettability and transparency from the assembly of fluorosilane modified silica nanoparticles (F-SiO(2) NPs) via one-step spin-coating and dip-coating without any surface postpassivation steps. When spin-coating the hydrophobic NPs (100 nm in diameter) at a concentration ≥ 0.8 wt % in a fluorinated solvent, the surface exhibited superhydrophobicity with an advancing water contact angle greater than 150° and a water droplet (5 μL) roll-off angle less than 5°. In comparison, superhydrophobicity was not achieved by dip-coating the same hydrophobic NPs. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images revealed that NPs formed a nearly close-packed assembly in the superhydrophobic films, which effectively minimized the exposure of the underlying substrate while offering sufficiently trapped air pockets. In the dip-coated films, however, the surface coverage was rather random and incomplete. Therefore, the underlying substrate was exposed and water was able to impregnate between the NPs, leading to smaller water contact angle and larger water contact angle hysteresis. The spin-coated superhydrophobic film was also highly transparent with greater than 95% transmittance in the visible region. Further, we demonstrated that the one-step coating strategy could be extended to different polymeric substrates, including poly(methyl methacrylate) and polyester fabrics, to achieve superhydrophobicity.

  20. Cutting a Drop of Water Pinned by Wire Loops Using a Superhydrophobic Surface and Knife

    PubMed Central

    Yanashima, Ryan; García, Antonio A.; Aldridge, James; Weiss, Noah; Hayes, Mark A.; Andrews, James H.

    2012-01-01

    A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation. PMID:23029297

  1. Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating

    NASA Astrophysics Data System (ADS)

    Xue, Chao-Hua; Ji, Xue-Qing; Zhang, Jing; Ma, Jian-Zhong; Jia, Shun-Tian

    2015-08-01

    Superhydrophobic surfaces on PET textiles were fabricated by combined bioinspiration from the strong adhesion of marine mussels and the two-scale structure of lotus leaves under mild conditions. Dopamine can spontaneously polymerize in alkaline aqueous solution to form a thin adhesive layer of polydopamine (PDA) wrapping on the micro-scale fibers. The as-formed thin PDA layer worked as a reactive template to generate PDA nanoparticles decorated on the fiber surfaces, imparting the textiles with excellent UV-shielding properties as well as a hierarchical structure similar to the morphology of the lotus leaf. After further modification with perfluorodecyl trichlorosilane, the textiles turned superhydrophobic with a water contact angle higher than 150°. Due to the strong adhesion of PDA to a wide range of materials, the present strategy may be extendable to fabrication of superhydrophobic surfaces on a variety of other substrates.

  2. Optimal conditions for the preparation of superhydrophobic surfaces on al substrates using a simple etching approach

    NASA Astrophysics Data System (ADS)

    Ruan, Min; Li, Wen; Wang, Baoshan; Luo, Qiang; Ma, Fumin; Yu, Zhanlong

    2012-07-01

    Many methods have been proposed to develop the fabrication techniques for superhydrophobic surfaces. However, such techniques are still at their infant stage and suffer many shortcomings. In this paper, the superhydrophobic surfaces on an Al substrate were prepared by a simple etching method. Effects of etching time, modifiers, and modification concentration and time were investigated, and optimal conditions for the best superhydrophobicity were studied. It was demonstrated that for etching the aluminum plate in Beck's dislocation, if the etching time was 15 s, modifier was Lauric acid-ethanol solution, and modification concentration and time was 5% and 1.5 h, respectively, the surface exhibited a water contact angle as high as 167.5° and a contact angle hysteresis as low as 2.3°.

  3. The fabrication of stable superhydrophobic surfaces using a thin Au/Pd coating over a hydrophilic 3C-SiC nanorod network

    NASA Astrophysics Data System (ADS)

    Khan, Afzal; Sohail, Shiraz; Jacob, Chacko

    2015-10-01

    In this work, it has been demonstrated that for hydrophilic materials, like SiC, etc., superhydrophobicity can be achieved by coating them with a material like Au/Pd with surface adsorbed organic contaminants, rather than modifying them by fluoropolymers as is usually done. Dense and randomly aligned 3C-SiC nanorods were grown in a cold-wall APCVD reactor using Ni as a catalyst which formed a network of micro/nano air pockets and exhibited superhydrophobic behavior when modified by an Au/Pd metal alloy coating by forming hierarchical nanostructures with surface adsorbed organic contaminants. A high water contact angle (160°), very low sliding angle (<5°), rebounding and a rubber ball-like behavior of a water droplet were observed on such a metal (Au/Pd) modified surface of 3C-SiC nanorods. The durability of the surface and reproducibility of the results was checked over a period of about 14 months under ambient atmosphere at room temperature, which demonstrates the long term stability of these superhydrophobic surfaces.

  4. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    ERIC Educational Resources Information Center

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  5. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability.

    PubMed

    Yong, Jiale; Chen, Feng; Yang, Qing; Fang, Yao; Huo, Jinglan; Hou, Xun

    2015-06-18

    A simple and one-step method to form a rough ZnO layer consisting of micro/nanoscale hierarchical structures via direct femtosecond laser ablation of the Zn surface is reported for the first time. The resultant surfaces show switchable wettability between superhydrophobicity and quasi-superhydrophilicity via alternate UV irradiation and dark storage.

  6. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure.

    PubMed

    Yokoi, Naoyuki; Manabe, Kengo; Tenjimbayashi, Mizuki; Shiratori, Seimei

    2015-03-01

    Inspired by naturally occurring superhydrophobic surfaces such as "lotus leaves", a number of approaches have been attempted to create specific surfaces having nano/microscale rough structures and a low surface free energy. Most importantly, much attention has been paid in recent years to the improvement of the durability of highly transparent superhydrophobic surfaces. In this report, superhydrophobic surfaces are fabricated using three steps. First, chemical and morphological changes are generated in the polyester mesh by alkaline treatment of NaOH. Second, alkaline treatment causes hydrophobic molecules of 1H,1H,2H,2H-perfluorodecyltrichlorosilane to react with the hydroxyl groups on the fiber surfaces forming covalent bonds by using the chemical vapor deposition method. Third, hydrophobicity is enhanced by treating the mesh with SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorooctyltriethoxysilane using a spray method. The transmittance of the fabricated superhydrophobic mesh is approximately 80% in the spectral range of 400-1000 nm. The water contact angle and the water sliding angle remain greater than 150° and lower than 25°, respectively, and the transmittance remains approximately 79% after 100 cycles of abrasion under approximately 10 kPa of pressure. The mesh surface exhibits a good resistance to acidic and basic solutions over a wide range of pH values (pH 2-14), and the surface can also be used as an oil/water separation material because of its mesh structure.

  7. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    PubMed

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials. PMID:24016423

  8. Electrostatic powder spraying process for the fabrication of stable superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Gu, Guotuan; Tian, Yuping; Li, Zhantie; Lu, Dongfang

    2011-03-01

    Nano-sized Al2O3 particles were modified by heptadecafluorodecyl trimethoxysilane and 2,3-epoxy propoxy propyl trimethoxysilicane to make it both hydrophobic and reactive. The reactive nano-particles were mixed with polyester resin containing curing agents and electrostatic sprayed on stainless steel substrates to obtain stable superhydrophobic coatings after curing. The water contact angle (WCA) on the hybrid coating is influenced by the content of Al2O3 particles in the coating. As the Al2O3 concentration in the coating was increased from 0% to 8%, WCA increased from 68° to 165°. Surface topography of the coatings was examined using scanning electron microscopy (SEM). Nano-particles covered on the coating surface formed continuous film with greatly enhanced roughness, which was found to be responsible for the superhydrophobicity. The method is simple and cost effective and can be used for preparing self-cleaning superhydrophobic coating on large areas.

  9. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties.

    PubMed

    Wang, Nan; Xiong, Dangsheng; Deng, Yaling; Shi, Yan; Wang, Kun

    2015-03-25

    A superhydrophobic steel surface was prepared through a facile method: combining hydrogen peroxide and an acid (hydrochloric acid or nitric acid) to obtain hierarchical structures on steel, followed by a surface modification treatment. Empirical grid maps based on different volumes of H2O2/acid were presented, revealing a wettability gradient from "hydrophobic" to "rose effect" and finally to "lotus effect". Surface grafting has been demonstrated to be realized only on the oxidized area. As-prepared superhydrophobic surfaces exhibited excellent anti-icing properties according to the water-dripping test under overcooled conditions and the artificial "steam-freezing" (from 50 °C with 90% humidity to the -20 °C condition) test. In addition, the surfaces could withstand peeling with 3M adhesive tape at least 70 times with an applied pressure of 31.2 kPa, abrasion by 400 grid SiC sandpaper for 110 cm under 16 kPa, or water impacting for 3 h without losing superhydrophobicity, suggesting superior mechanical durability. Moreover, outstanding corrosion resistance and UV-durability were obtained on the prepared surface. This successful fabrication of a robust, anti-icing, UV-durable, and anticorrosion superhydrophobic surface could yield a prospective candidate for various practical applications. PMID:25749123

  10. Capillary origami: superhydrophobic ribbon surfaces and liquid marbles

    PubMed Central

    Newton, Michael I; Shirtcliffe, Neil J; Geraldi, Nicasio R

    2011-01-01

    apply to superhydrophobic surfaces. The results are given for both droplets being wrapped by thin ribbons and for solid grains encapsulating droplets to form liquid marbles. PMID:21977426

  11. The icephobicity comparison of polysiloxane modified hydrophobic and superhydrophobic surfaces under condensing environments

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyi; Liu, Jun; Li, Mingzhen; Wang, Qingjun; Chen, Qingmin

    2016-11-01

    Four polydimethylsiloxane (PDMS) coatings with different surface free energies have been prepared and applied to smooth and roughened aluminum plates to form hydrophobic and superhydrophobic surfaces. Their surface wettability in terms of water contact angle (CA), sliding angle (SA) and water droplet impact dynamics was studied under an ambient (50% relative humidity, RH at 25 °C) and three different condensing environments (low, highly and extremely condensing, i.e. 30%, 60% and 90% RH at -10 °C). In addition, the surface ice adhesion was investigated under the extremely condensing condition. Different PDMS coatings on either smooth or roughened surfaces displayed a very similar impact to static and dynamic wettability under the ambient environment. However, the water impact behavior and ice adhesion under the extremely condensing condition between the hydrophobic and superhydrophobic surfaces are significantly different. One of the superhydrophobic surfaces (R2180) demonstrated an excellent water repelling capability to retard ice accumulation, and reduced ice adhesion strength even under the extremely condensing condition, and thus will be a good candidate for ice-phobic applications. This excellent ice-phobic property is attributed to the low surface free energy of the coating, which effectively prevents the water condensation inside the cavities of the hierarchical superhydrophobic structures and thus maintains "air cushion" on the solid/water interface, indicated by a very low solid-liquid contact area increase after surface is exposed to this condensing weather condition. This result demonstrates that the "air cushion" in a superhydrophobic surface could be maintained even under an extremely condensing condition by carefully selection of coating composition with a very low surface free energy.

  12. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications

    NASA Astrophysics Data System (ADS)

    Ta, Duong V.; Dunn, Andrew; Wasley, Thomas J.; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Connaughton, Colm; Shephard, Jonathan D.

    2015-12-01

    This work demonstrates superhydrophobic behavior on nanosecond laser patterned copper and brass surfaces. Compared with ultrafast laser systems previously used for such texturing, infrared nanosecond fiber lasers offer a lower cost and more robust system combined with potentially much higher processing rates. The wettability of the textured surfaces develops from hydrophilicity to superhydrophobicity over time when exposed to ambient conditions. The change in the wetting property is attributed to the partial deoxidation of oxides on the surface induced during laser texturing. Textures exhibiting steady state contact angles of up to ∼152° with contact angle hysteresis of around 3-4° have been achieved. Interestingly, the superhydrobobic surfaces have the self-cleaning ability and have potential for chemical sensing applications. The principle of these novel chemical sensors is based on the change in contact angle with the concentration of methanol in a solution. To demonstrate the principle of operation of such a sensor, it is found that the contact angle of methanol solution on the superhydrophobic surfaces exponentially decays with increasing concentration. A significant reduction, of 128°, in contact angle on superhydrophobic brass is observed, which is one order of magnitude greater than that for the untreated surface (12°), when percent composition of methanol reaches to 28%.

  13. Evolutions of hairpin vortexes over a superhydrophobic surface in turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxian; Tian, Haiping; Yao, Zhaohui; Hao, Pengfei; Jiang, Nan

    2016-09-01

    Turbulent flows over a superhydrophobic surface and a smooth surface have been measured and studied by particle image velocimetry technology at Reθ = 990. The Reynolds shear stress distributions over the two surfaces are significantly different. Specifically, for the superhydrophobic surface, the Reynolds shear stress is suppressed in the near-wall region (y/δ < 0.3, δ is the boundary layer thickness) and increases in the outer region (0.3 < y/δ < 0.5), which forms a second peak of the Reynolds shear stress curve. Evolutions of hairpin vortexes are analyzed to interpret differences in the Reynolds shear stress, based on some comparisons in the low-speed streaks and Q2/Q4 (ejection/sweep) events. The results show that, in the near wall region, the turbulent coherent structures (low-speed streaks and hairpin vortex) over the superhydrophobic surface are more stable and flat, due to the suppression in the strength and the lifting effect of the hairpin vortex. In the outer region, the superhydrophobic surface lifts the hairpin vortex away from the wall with a value of 0.14δ in our experiment, which makes the Q4 events occur further from the wall and contribute less to skin friction.

  14. A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel

    NASA Astrophysics Data System (ADS)

    Fan, Yi; He, Yi; Luo, Pingya; Chen, Xi; Liu, Bo

    2016-04-01

    Superhydrophobic Fe film with hierarchical micro/nano papillae structures is prepared on C45 steel surface by one-step electrochemical method. The superhydrophobic surface was measured with a water contact angle of 160.5 ± 0.5° and a sliding angle of 2 ± 0.5°. The morphology of the fabricated surface film was characterized by field emission scanning electron microscopy (FE-SEM), and the surface structure seems like accumulated hierarchical micro-nano scaled particles. Furthermore, according to the results of Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS), the chemical composition of surface film was iron complex with organic acid. Besides, the electrochemical measurements showed that the superhydrophobic surface improved the corrosion resistance of carbon steel in 3.5 wt.% NaCl solution significantly. The superhydrophobic layer can perform as a barrier and provide a stable air-liquid interface which inhibit penetration of corrosive medium. In addition, the as-prepared steel exhibited an excellent self-cleaning ability that was not favor to the accumulation of contaminants.

  15. Superhydrophobic surface fabricated on iron substrate by black chromium electrodeposition and its corrosion resistance property

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Feng, Haitao; Lin, Feng; Wang, Yabin; Wang, Liping; Dong, Yaping; Li, Wu

    2016-08-01

    The fabrication of superhydrophobic surface on iron substrate is carried out through 20 min black chromium electrodeposition, followed by immersing in 0.05 M ethanolic stearic acid solution for 12 h. The resultant superhydrophobic complex film is characterized by scanning electron microscope (SEM), disperse Spectrometer (EDS), atomic force microscope (AFM), water contact angle (CA), sliding angle (SA) and X-ray photoelectron spectroscope (XPS), and its corrosion resistance property is measured with cyclic voltammetry (CV), linear polarization and electrochemical impedance spectroscopy (EIS). The results show that the fabricated superhydrophobic film has excellent water repellency (CA, 158.8°; SA, 2.1°) and significantly high corrosion resistance (1.31 × 106 Ω cm-2) and excellent corrosion protection efficiency (99.94%).

  16. A novel and expeditious method to fabricate superhydrophobic metal carboxylate surface

    NASA Astrophysics Data System (ADS)

    Li, Feng; Geng, Xingguo; Chen, Zhi; Zhao, Lei

    2012-01-01

    This article has presented a novel method to fabricate superhydrophobic metal carboxylate surface on substrates like copper, ferrum, etc. This method markedly shortened the fabrication time to less than one second. The superhydrophobic effect is even better that the contact angle (CA) is 170±1° and the sliding angle (SA) <2°. Scanning electron microscopy (SEM) images showed micro-nano flower-like structures. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed that the flower-like structures are composed of Cu[CH3(CH2)12COO]2. The ethanol solution containing fatty acid and metal salt plays a key role in this method. This method has tremendous potentials in industrial production of superhydrophobic materials.

  17. A versatile cost-effective and one step process to engineer ZnO superhydrophobic surfaces on Al substrate

    NASA Astrophysics Data System (ADS)

    Siddaramanna, Ashoka; Saleema, N.; Sarkar, D. K.

    2014-08-01

    Multifunctional superhydrophobic surfaces based on photocatalytic material, ZnO have generated significant research interest from both fundamental and potential applications. Superhydrophobic ZnO surfaces are usually made in multi steps by creating rough surface and subsequent hydrophobization by low-surface-energy materials. Herein, a simple and one step chemical bath deposition has been developed to prepare superhydrophobic ZnO surfaces on aluminum substrate. The aluminum surfaces covered with randomly distributed ZnO particles can not only present multiscale surface roughness, but also readily coordinate with fatty acid, leading to special wettability. The contact angle of the resulting superhydrophobic surface reaches up to 165 ± 2° and contact angle hysteresis of 4°. The contact angle and contact angle hysteresis variation as a function of particle size has been discussed systematically based on surface morphology.

  18. Thermoresponsive PNIPAAm-modified cotton fabric surfaces that switch between superhydrophilicity and superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Wang, Qihua; Wang, Tingmei

    2012-03-01

    Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) was grafted onto the cotton fabric by atom transfer radical polymerization (ATRP). Introducing 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS) onto the surface, the density of PNIPAAm chains can be adjusted because of the competitive reactions of (3-aminopropyl) triethoxysilane (APS) and PFDTS. With the appropriate ratio of APS and PFDTS, the cotton fabric can be switched from superhydrophilic to superhydrophobic by controlling temperature. The prepared cotton fabric may find application in functional textiles, soft and folding superhydrophobic materials.

  19. A simple solution-immersion process for the fabrication of superhydrophobic cupric stearate surface with easy repairable property

    NASA Astrophysics Data System (ADS)

    Li, Jian; Liu, Xiaohong; Ye, Yinping; Zhou, Huidi; Chen, Jianmin

    2011-12-01

    The present work reports a simple and time-saving method to fabricate cupric stearate film on zinc substrate by a solution-immersion process. Superhydrophobic surfaces are conventionally prepared employing two steps: roughening a surface and lowering its surface energy. The fabrication of superhydrophobic cupric stearate surface is reported using a one-step process by immersing a zinc plate coated with copper into the stearic acid solution, simplifying the complexity of two different steps involved in the conventional methods. The surface of the zinc plate coated with copper is found to be covered with low surface energy cupric stearate film providing the water contact angle of 160 ± 1° with the rolling off properties. In addition, the damaged superhydrophobic surface can restore superhydrophobicity property by immersing the surface into the stearic acid solution again.

  20. SERS optrode as a "fishing rod" to direct pre-concentrate analytes from superhydrophobic surfaces.

    PubMed

    Fan, Meikun; Cheng, Fansheng; Wang, Cong; Gong, Zhengjun; Tang, Changyu; Man, Changzhen; Brolo, Alexandre G

    2015-02-01

    SERS optrodes were used to "fish" aqueous drops from superhydrophobic surfaces. The technique led to an improvement of 2-3 orders of magnitude in the lowest detectable amount of the Raman probe nile blue A, reaching 25 fg (34 attomoles). Further tests run on samples containing pesticide revealed that 20 pg of triazophos could be clearly detected from a single drop. PMID:25531897

  1. Superhydrophobic Surfaces as a Tool for the Fabrication of Hierarchical Spherical Polymeric Carriers.

    PubMed

    Costa, Ana M S; Alatorre-Meda, Manuel; Alvarez-Lorenzo, Carmen; Mano, João F

    2015-08-12

    Hierarchical polymeric carriers with high encapsulation efficiencies are fabricated via a biocompatible strategy developed using superhydrophobic (SH) surfaces. The carries are obtained by the incorporation of cell/BSA-loaded dextran-methacrylate (DEXT-MA) microparticles into alginate (ALG) macroscopic beads. Engineered devices like these are expected to boost the development of innovative and customizable systems for biomedical and biotechnological purposes. PMID:25764987

  2. Superhydrophobic Surfaces as a Tool for the Fabrication of Hierarchical Spherical Polymeric Carriers.

    PubMed

    Costa, Ana M S; Alatorre-Meda, Manuel; Alvarez-Lorenzo, Carmen; Mano, João F

    2015-08-12

    Hierarchical polymeric carriers with high encapsulation efficiencies are fabricated via a biocompatible strategy developed using superhydrophobic (SH) surfaces. The carries are obtained by the incorporation of cell/BSA-loaded dextran-methacrylate (DEXT-MA) microparticles into alginate (ALG) macroscopic beads. Engineered devices like these are expected to boost the development of innovative and customizable systems for biomedical and biotechnological purposes.

  3. Fabrication of biomimetic superhydrophobic surface on engineering materials by a simple electroless galvanic deposition method.

    PubMed

    Xu, Xianghui; Zhang, Zhaozhu; Yang, Jin

    2010-03-01

    We have reported an easy means in this paper to imitate the "lotus leaf" by constructing a superhydrophobic surface through a process combining both electroless galvanic deposition and self-assembly of n-octadecanethiol. Superhydrophobicity with a static water contact angle of about 169 +/- 2 degrees and a sliding angle of 0 +/- 2 degrees was achieved. Both the surface chemical compositions and morphological structures were analyzed. We have obtained a feather-like surface structure, and the thickness of the Ag film is about 10-30 microm. The stability of the superhydrophobic surface was tested under the following three conditions: (1) pH value from 1 to 13; (2) after freezing treatment at -20 degrees C; (3) at ambient temperature. It shows a notable stability in that the contact angle of the sample still remained higher than 150 degrees in different conditions. It can be concluded that our approach can provide an alternative way to fabricate stable superhydrophobic materials. PMID:20000636

  4. Fabrication of a superhydrophobic surface on copper foil based on ammonium bicarbonate and paraffin wax coating

    NASA Astrophysics Data System (ADS)

    Zeng, Ou; Wang, Xian; Yuan, Zhiqing; Wang, Menglei; Huang, Juan

    2015-09-01

    A simple and low cost approach was developed to fabricate a superhydrophobic surface on copper foil. The oxidation and etching of the copper foil surface were promoted in NH4HCO3 solution using a water and ethanol admixture as a component solvent. After 28 h in this solution, a hydrophilic rough surface structure was obtained on the copper foil surface. With modification using a paraffin wax coating, the hydrophilic rough copper surface changed to become hydrophobic or superhydrophobic. The surface morphology and wettability were characterized by scanning electron microscopy (SEM) and contact angle measurements, respectively. When the optimum concentration of paraffin wax was about 2 g L-1, its water contact angle could reach about 152 ± 1.5° and its sliding angle was around 7°. The formation mechanism of the rough copper surface was also explored in detail. Both the experimental process and the material are environmentally friendly.

  5. Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup.

    PubMed

    Wang, Gang; Zeng, Zhixiang; Wang, He; Zhang, Lin; Sun, Xiaodong; He, Yi; Li, Longyang; Wu, Xuedong; Ren, Tianhui; Xue, Qunji

    2015-12-01

    To efficiently remove and recycle oil spills, we construct aligned ZnO nanorod arrays on the surface of the porous stainless steel wire mesh to fabricate a porous unmanned ship (PUS) with properties of superhydrophobicity, superoleophilicity, and low drag by imitating the structure of nonwetting leg of water strider. The superhydrophobicity of the PUS is stable, which can support 16.5 cm water column with pore size of 100 μm. Water droplet can rebound without adhesion. In the process of oil/water separation, when the PUS contacts with oil, the oil is quickly pulled toward and penetrates into the PUS automatically. The superhydrophobicity and low water adhesion force of the PUS surface endow the PUS with high oil recovery capacity (above 94%) and drag-reducing property (31% at flowing velocity of 0.38m/s). In addition, the PUS has good corrosion resistance and reusability. We further investigate the wetting behavior of water and oil, oil recovery capacity, drag-reducing property, and corrosion resistance of the PUS after oil absorbed. The PUS surface changes significantly from superhydrophobic to hydrophobic after absorbing oil. However, the oil absorbed PUS possesses better drag-reducing property and corrosion resistance due to the changes of the motion state of the water droplets. PMID:26562211

  6. Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup.

    PubMed

    Wang, Gang; Zeng, Zhixiang; Wang, He; Zhang, Lin; Sun, Xiaodong; He, Yi; Li, Longyang; Wu, Xuedong; Ren, Tianhui; Xue, Qunji

    2015-12-01

    To efficiently remove and recycle oil spills, we construct aligned ZnO nanorod arrays on the surface of the porous stainless steel wire mesh to fabricate a porous unmanned ship (PUS) with properties of superhydrophobicity, superoleophilicity, and low drag by imitating the structure of nonwetting leg of water strider. The superhydrophobicity of the PUS is stable, which can support 16.5 cm water column with pore size of 100 μm. Water droplet can rebound without adhesion. In the process of oil/water separation, when the PUS contacts with oil, the oil is quickly pulled toward and penetrates into the PUS automatically. The superhydrophobicity and low water adhesion force of the PUS surface endow the PUS with high oil recovery capacity (above 94%) and drag-reducing property (31% at flowing velocity of 0.38m/s). In addition, the PUS has good corrosion resistance and reusability. We further investigate the wetting behavior of water and oil, oil recovery capacity, drag-reducing property, and corrosion resistance of the PUS after oil absorbed. The PUS surface changes significantly from superhydrophobic to hydrophobic after absorbing oil. However, the oil absorbed PUS possesses better drag-reducing property and corrosion resistance due to the changes of the motion state of the water droplets.

  7. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces.

    PubMed

    Lee, Hyungoo; Bhushan, Bharat

    2012-04-15

    The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces.

  8. Facile fabrication of superhydrophobic Cu(OH)2 nanorod and CuO nanosheet arrays on copper surface.

    PubMed

    Guo, Yonggang; Wu, Haihong; Li, Yongxiang; Jiang, Cheng; Wang, Qihua; Wang, Tingmei

    2012-03-01

    Cu(OH)2 nanorod and CuO nanosheet arrays have been successfully grown on the copper surfaces by a simple one-step solution-immersion process at ambient temperature and pressure. After the chemical modification with 1H, 1H, 2H, 2H-Perfluorodecyltriethoxysilane, the wettability of the copper substrate changed from superhydrophilic to superhydrophobic. Meanwhile, the sliding angle of the superhydrophobic surface is less than 5 degrees. It is confirmed that both the synergic effect of the surface morphology and the surface free energy contribute to this unique surface water repellence. Furthermore, the as-prepared surfaces were stable even after a long-term storage, and retained good superhydrophobicity for corrosive liquids. Such special superhydrophobic properties will greatly extend the applications of copper in many other important industrial fields.

  9. Nanostructured Surfaces of Dental Implants

    PubMed Central

    Bressan, Eriberto; Sbricoli, Luca; Guazzo, Riccardo; Tocco, Ilaria; Roman, Marco; Vindigni, Vincenzo; Stellini, Edoardo; Gardin, Chiara; Ferroni, Letizia; Sivolella, Stefano; Zavan, Barbara

    2013-01-01

    The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration) is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical processes find new applications to achieve the best dental implant technology. This review provides an overview of the most common manufacture techniques and the related cells-surface interactions and modulation. A Medline and a hand search were conducted to identify studies concerning nanostructuration of implant surface and their related biological interaction. In this paper, we stressed the importance of the modifications on dental implant surfaces at the nanometric level. Nowadays, there is still little evidence of the long-term benefits of nanofeatures, as the promising results achieved in vitro and in animals have still to be confirmed in humans. However, the increasing interest in nanotechnology is undoubted and more research is going to be published in the coming years. PMID:23344062

  10. Synthesis of superhydrophobic SiO{sub 2} layers via combination of surface roughness and fluorination

    SciTech Connect

    Kim, Eun-Kyeong; Yeong Kim, Ji; Sub Kim, Sang

    2013-01-15

    We describe the preparation of superhydrophobic SiO{sub 2} layers through a combination of surface roughness and fluorination. Electrospraying SiO{sub 2} precursor solutions that were prepared by a sol-gel route and included trichloro(1H,1H,2H,2H-perfluorooctyl)silane as a fluorination source produced highly rough, fluorinated SiO{sub 2} layers. In sharp contrast to the fluorinated flat SiO{sub 2} layer, the fluorinated rough SiO{sub 2} layer showed much enhanced repellency toward liquid droplets of different surface tensions. The surface fraction and the work of adhesion of the superhydrophobic SiO{sub 2} layers were determined, respectively, based on Cassie-Baxter and Young-Dupre equations. The satisfactory long-term stability for 30 days, the ultraviolet resistance and the thermal stability up to 400 {sup o}C of the superhydrophobic SiO{sub 2} layers prepared in this work confirm a promising practical application. - Graphical abstract: A schematic illustration of the electrospray deposition used for preparing SiO{sub 2} layers. Shapes of liquid droplets of water, glycerol, coffee, juice and milk created on the fluorinated rough SiO{sub 2} layer deposited on a silicon wafer. Highlights: Black-Right-Pointing-Pointer Superhydrophobic SiO{sub 2} layers are realized by a combination of surface roughness and fluorination. Black-Right-Pointing-Pointer The fluorinated rough SiO{sub 2} layer shows enhanced repellency toward various liquid droplets. Black-Right-Pointing-Pointer The wetting behavior is explained based on Cassie-Baxter and Young-Dupre equations. Black-Right-Pointing-Pointer The superhydrophobic SiO{sub 2} layers confirm a promising practical application.

  11. Preparation and surface properties of transparent UV-resistant "petal effect" superhydrophobic surface based on polybenzoxazine

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Lu, Xin; Xin, Zhong; Zhou, Changlu

    2015-10-01

    The rose petal shows super water repellence together with high adhesion of water, which was named as "pinned effect" or "petal effect". In this work, the "petal effect" superhydrophobic surface based on polybenzoxazine was prepared by one-step thermal curing method. The highest water CA was 161.5°. The droplets could be pinned to the surface and could not roll off, even when it was turned upside down. The morphological characterization of the samples was characterized by SEM, which exhibited that the surface had micro- and nano- structures. Meanwhile, it also possessed excellent surface properties, such as good UV-resistance, transparent property, thermal stability and strong adhesion to substrate which made it possible to apply in academic research and industrial applications.

  12. Superhydrophobic, Hybrid, Electrospun Cellulose Acetate Nanofibrous Mats for Oil/Water Separation by Tailored Surface Modification.

    PubMed

    Arslan, Osman; Aytac, Zeynep; Uyar, Tamer

    2016-08-01

    Electrospun cellulose acetate nanofibers (CA-NF) have been modified with perfluoro alkoxysilanes (FS/CA-NF) for tailoring their chemical and physical features aiming oil-water separation purposes. Strikingly, hybrid FS/CA-NF showed that perfluoro groups are rigidly positioned on the outer surface of the nanofibers providing superhydrophobic characteristic with a water contact angle of ∼155°. Detailed analysis showed that hydrolysis/condensation reactions led to the modification of the acetylated β(1 → 4) linked d-glucose chains of CA transforming it into a superhydrophobic nanofibrous mat. Analytical data have revealed that CA-NF surfaces can be selectively controlled for fabricating the durable, robust and water resistant hybrid electrospun nanofibrous mat. The -OH groups available on the CA structure allowed the basic sol-gel reactions started by the reactive FS hybrid precursor system which can be monitored by spectroscopic analysis. Since alkoxysilane groups on the perfluoro silane compound are capable of reacting for condensation together with the CA, superhydrophobic nanofibrous mat is obtained via electrospinning. This structural modification led to the facile fabrication of the novel oil/water nanofibrous separator which functions effectively demonstrated by hexane/oil and water separation experiments. Perfluoro groups consequently modified the hydrophilic CA nanofibers into superhydrophobic character and therefore FS/CA-NF could be quite practical for future applications like water/oil separators, as well as self-cleaning or water resistant nanofibrous structures. PMID:27398738

  13. Superhydrophobic, Hybrid, Electrospun Cellulose Acetate Nanofibrous Mats for Oil/Water Separation by Tailored Surface Modification.

    PubMed

    Arslan, Osman; Aytac, Zeynep; Uyar, Tamer

    2016-08-01

    Electrospun cellulose acetate nanofibers (CA-NF) have been modified with perfluoro alkoxysilanes (FS/CA-NF) for tailoring their chemical and physical features aiming oil-water separation purposes. Strikingly, hybrid FS/CA-NF showed that perfluoro groups are rigidly positioned on the outer surface of the nanofibers providing superhydrophobic characteristic with a water contact angle of ∼155°. Detailed analysis showed that hydrolysis/condensation reactions led to the modification of the acetylated β(1 → 4) linked d-glucose chains of CA transforming it into a superhydrophobic nanofibrous mat. Analytical data have revealed that CA-NF surfaces can be selectively controlled for fabricating the durable, robust and water resistant hybrid electrospun nanofibrous mat. The -OH groups available on the CA structure allowed the basic sol-gel reactions started by the reactive FS hybrid precursor system which can be monitored by spectroscopic analysis. Since alkoxysilane groups on the perfluoro silane compound are capable of reacting for condensation together with the CA, superhydrophobic nanofibrous mat is obtained via electrospinning. This structural modification led to the facile fabrication of the novel oil/water nanofibrous separator which functions effectively demonstrated by hexane/oil and water separation experiments. Perfluoro groups consequently modified the hydrophilic CA nanofibers into superhydrophobic character and therefore FS/CA-NF could be quite practical for future applications like water/oil separators, as well as self-cleaning or water resistant nanofibrous structures.

  14. Fabrication of non-flaking, superhydrophobic surfaces using a one-step solution-immersion process on copper foams

    NASA Astrophysics Data System (ADS)

    Xu, Jia; Xu, Jinliang; Cao, Yang; Ji, Xianbing; Yan, Yuying

    2013-12-01

    Non-flaking superhydrophobic surfaces were prepared using a simple one-step solution-immersion process on commercially obtained copper foam substrates. Copper foams were immersed in a 0.05 M ethanolic stearic acid solution at room temperature for several days. This formed coverage of copper stearate with micro- and nano-scale hierarchical surface morphology. The surface of the copper foam after 4 days of immersion demonstrates superhydrophobicity with a water contact angle of 156°. A sliding angel of 4° for a 5 μL droplet indicates excellent non-sticking behavior. Compared with a flat copper plate, the superhydrophobic surfaces based on copper foams are much more robust and mechanically stable. This work provides a promising strategy for scalable fabrication of superhydrophobic surfaces on 3D porous structures.

  15. Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy

    NASA Astrophysics Data System (ADS)

    Karmouch, Rachid; Ross, Guy G.

    2010-11-01

    Samples of wind turbine blade surface have been covered with a superhydrophobic coating made of silica nanoparticles embedded in commercial epoxy paint. The superhydrophobic surfaces have a water contact angle around 152°, a hysteresis less than 2° and a water drop sliding angle around 0.5°. These surfaces are water repellent so that water drops cannot remain motionless on the surface. Examination of coated and uncoated surfaces with scanning electron microscopy and atomic force microscopy, together with measurements of water contact angles, indicates that the air trapped in the cavity enhances the water repellency similarly to the lotus leaf effect. Moreover, this new coating is stable under UVC irradiation and water pouring. The production of this nanoscale coating film being simple and low cost, it can be considered as a suitable candidate for water protection of different outdoor structures.

  16. Microscopic Receding Contact Line Dynamics on Pillar and Irregular Superhydrophobic Surfaces

    PubMed Central

    Yeong, Yong Han; Milionis, Athanasios; Loth, Eric; Bayer, Ilker S.

    2015-01-01

    Receding angles have been shown to have great significance when designing a superhydrophobic surface for applications involving self-cleaning. Although apparent receding angles under dynamic conditions have been well studied, the microscopic receding contact line dynamics are not well understood. Therefore, experiments were performed to measure these dynamics on textured square pillar and irregular superhydrophobic surfaces at micron length scales and at micro-second temporal scales. Results revealed a consistent “slide-snap” motion of the microscopic receding line as compared to the “stick-slip” dynamics reported in previous studies. Interface angles between 40–60° were measured for the pre-snap receding lines on all pillar surfaces. Similar “slide-snap” dynamics were also observed on an irregular nanocomposite surface. However, the sharper features of the surface asperities resulted in a higher pre-snap receding line interface angle (~90°). PMID:25670630

  17. Surface studies on superhydrophobic and oleophobic polydimethylsiloxane-silica nanocomposite coating system

    NASA Astrophysics Data System (ADS)

    Basu, Bharathibai J.; Dinesh Kumar, V.; Anandan, C.

    2012-11-01

    Superhydrophobic and oleophobic polydimethylsiloxane (PDMS)-silica nanocomposite double layer coating was fabricated by applying a thin layer of low surface energy fluoroalkyl silane (FAS) as topcoat. The coatings exhibited WCA of 158-160° and stable oleophobic property with oil CA of 79°. The surface morphology was characterized by field emission scanning electron microscopy (FESEM) and surface chemical composition was determined by energy dispersive X-ray spectrometery (EDX) and X-ray photoelectron spectroscopy (XPS). FESEM images of the coatings showed micro-nano binary structure. The improved oleophobicity was attributed to the combined effect of low surface energy of FAS and roughness created by the random distribution of silica aggregates. This is a facile, cost-effective method to obtain superhydrophobic and oleophobic surfaces on larger area of various substrates.

  18. Superhydrophobic poly(L-lactic acid) surface as potential bacterial colonization substrate

    PubMed Central

    2011-01-01

    Hydrophobicity is a very important surface property and there is a growing interest in the production and characterization of superhydrophobic surfaces. Accordingly, it was recently shown how to obtain a superhydrophobic surface using a simple and cost-effective method on a polymer named poly(L-lactic acid) (PLLA). To evaluate the ability of such material as a substrate for bacterial colonization, this work assessed the capability of different bacteria to colonize a biomimetic rough superhydrophobic (SH) PLLA surface and also a smooth hydrophobic (H) one. The interaction between these surfaces and bacteria with different morphologies and cell walls was studied using one strain of Staphylococcus aureus and one of Pseudomonas aeruginosa. Results showed that both bacterial strains colonized the surfaces tested, although significantly higher numbers of S. aureus cells were found on SH surfaces comparing to H ones. Moreover, scanning electron microscopy images showed an extracellular matrix produced by P. aeruginosa on SH PLLA surfaces, indicating that this bacterium is able to form a biofilm on such substratum. Bacterial removal through lotus leaf effect was also tested, being more efficient on H coupons than on SH PLLA ones. Overall, the results showed that SH PLLA surfaces can be used as a substrate for bacterial colonization and, thus, have an exceptional potential for biotechnology applications. PMID:22018163

  19. Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation.

    PubMed

    Shang, Bin; Wang, Yanbing; Peng, Bo; Deng, Ziwei

    2016-11-15

    Frequent oil spillages and industrial discharge of oils/organic solvents have induced severe environmental pollution and ecological damage, and a great cost in energy and finance has been consumed to solve the problems raised. Therefore, it is urgent to develop a surface hydrophobic modification that can be applied to materials with desired properties of high separation efficiency, excellent selectivity and stable performance in extreme conditions during the oil/water separation. Herein, with combined bioinspirations from mussel adhesive protein (polydopamine) and superhydrophobic lotus leaf (hierarchical structures), we develop a general way to superhydrophobically modify various commercial materials, aiming for the selective removal of oils/organic solvents from water. In this procedure, immersing commercial materials (e.g. melamine sponge, stainless steel mesh, nylon netting and cotton cloth) into water/ethanol/ammonia mixtures at a low concentration of dopamine (DA, 2mg/mL) allows a polydopamine (PDA) coating with a tunable roughness appearing on the substrate in one step. This is because DA can self-polymerize and form PDA particles with a catalyst of ammonia, attaching to any surfaces due to abundant catechol and amine groups in PDA, and ultimately, resulting in hierarchical structures. The subsequent decoration with 1H, 1H, 2H, 2H-perfluorodecanethiol features the surface superhydrophobic and superoleophilic. This approach is straightforward and economic, and carried out under a mild, environmental-benign circumstance, with nonspecific substrate demands. In addition, the as-prepared superhydrophobic materials exhibit excellent separation performances including high absorption/separation capacity, excellent selectivity, and extraordinary recyclability for collecting various oils/organic solvents from water. These superhydrophobic materials have also verified to be highly chemical resistant, environment stable and mechanically durable. Therefore, this

  20. Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation.

    PubMed

    Shang, Bin; Wang, Yanbing; Peng, Bo; Deng, Ziwei

    2016-11-15

    Frequent oil spillages and industrial discharge of oils/organic solvents have induced severe environmental pollution and ecological damage, and a great cost in energy and finance has been consumed to solve the problems raised. Therefore, it is urgent to develop a surface hydrophobic modification that can be applied to materials with desired properties of high separation efficiency, excellent selectivity and stable performance in extreme conditions during the oil/water separation. Herein, with combined bioinspirations from mussel adhesive protein (polydopamine) and superhydrophobic lotus leaf (hierarchical structures), we develop a general way to superhydrophobically modify various commercial materials, aiming for the selective removal of oils/organic solvents from water. In this procedure, immersing commercial materials (e.g. melamine sponge, stainless steel mesh, nylon netting and cotton cloth) into water/ethanol/ammonia mixtures at a low concentration of dopamine (DA, 2mg/mL) allows a polydopamine (PDA) coating with a tunable roughness appearing on the substrate in one step. This is because DA can self-polymerize and form PDA particles with a catalyst of ammonia, attaching to any surfaces due to abundant catechol and amine groups in PDA, and ultimately, resulting in hierarchical structures. The subsequent decoration with 1H, 1H, 2H, 2H-perfluorodecanethiol features the surface superhydrophobic and superoleophilic. This approach is straightforward and economic, and carried out under a mild, environmental-benign circumstance, with nonspecific substrate demands. In addition, the as-prepared superhydrophobic materials exhibit excellent separation performances including high absorption/separation capacity, excellent selectivity, and extraordinary recyclability for collecting various oils/organic solvents from water. These superhydrophobic materials have also verified to be highly chemical resistant, environment stable and mechanically durable. Therefore, this

  1. Computational study of a self-cleaning process on superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Farokhirad, Samaneh

    All substances around us are bounded by interfaces. In general, interface between different phases of materials are categorized as fluid-fluid, solid-fluid, and solid-solid. Fluid-fluid interfaces exhibit a distinct behavior by adapting their shape in response to external stimulus. For example, a liquid droplet on a substrate can undergo different wetting morphologies depending on topography and chemical composition of the surface. Fundamentally, interfacial phenomena arise at the limit between two immiscible phases, namely interface. The interface dynamic governs, to a great extent, physical processes such as impact and spreading of two immiscible media, and stabilization of foams and emulsions from break-up and coalescence. One of the recent challenging problems in the interface-driven fluid dynamics is the self-propulsion mechanism of droplets by means of different types of external forces such as electrical potential, or thermal Marangoni effect. Rapid removal of self-propelled droplet from the surface is an essential factor in terms of expense and efficiency for many applications including self-cleaning and enhanced heat and mass transfer to save energy and natural resources. A recent study on superhydrophobic nature of micro- and nanostructures of cicada wings offers a unique way for the self-propulsion process with no external force, namely coalescence-induced self-propelled jumping of droplet which can act effectively at any orientation. The biological importance of this new mechanism is associated with protecting such surfaces from long term exposure to colloidal particles such as microbial colloids and virus particles. Different interfacial phenomena can occur after out-of-plane jumping of droplet. If the departed droplet is landed back by gravity, it may impact and spread on the surface or coalesce with another droplet and again self-peopled itself to jump away from the surface. The complete removal of the propelled droplet to a sufficient distance

  2. Transparent, superhydrophobic, and wear-resistant surfaces using deep reactive ion etching on PDMS substrates.

    PubMed

    Ebert, Daniel; Bhushan, Bharat

    2016-11-01

    Surfaces that simultaneously exhibit superhydrophobicity, low contact angle hysteresis, and high transmission of visible light are of interest for many applications, such as optical devices, solar panels, and self-cleaning windows. Superhydrophobicity could also find use in medical devices where antifouling characteristics are desirable. These applications also typically require mechanical wear resistance. The fabrication of such surfaces is challenging due to the competing goals of superhydrophobicity and transmittance in terms of the required degree of surface roughness. In this study, deep reactive ion etching (DRIE) was used to create rough surfaces on PDMS substrates using a O2/CF4 plasma. Surfaces then underwent an additional treatment with either octafluorocyclobutane (C4F8) plasma or vapor deposition of perfluorooctyltrichlorosilane (PFOTCS) following surface activation with O2 plasma. The effects of surface roughness and the additional surface modifications were examined with respect to the contact angle, contact angle hysteresis, and optical transmittance. To examine wear resistance, a sliding wear experiment was performed using an atomic force microscope (AFM).

  3. A new method for preparing bionic multi scale superhydrophobic functional surface on X70 pipeline steel

    NASA Astrophysics Data System (ADS)

    Yu, Sirong; Wang, Xiaolong; Wang, Wei; Yao, Qiang; Xu, Jun; Xiong, Wei

    2013-04-01

    The hydrophobic property of a rough surface with a low free energy coating was theoretically analyzed in this paper. In order to obtain a superhydrophobic surface, a rough surface morphology must be formed in addition to the low free energy coating on the surface. Through the shot blasting, chemical etching with concentrated hydrochloric acid, and low free energy modification with myristic acid ethanol solution, the superhydrophobic surface was obtained on X70 pipeline steel. The better process parameters for preparing superhydrophobic surface on X70 pipeline steel were obtained. The diameter of the stainless steel shot used in the shot blasting was 0.8-1.0 mm. The concentration of hydrochloric acid was 6 mol/L. The chemical etching time was 320 min. The concentration of myristic acid ethanol solution was 0.1 mol/L. The soaking time in myristic acid ethanol solution was 72 h. After X70 pipeline steel surface was treated using the process parameters mentioned above, the biggest contact angle between the specimen surface and distilled water was 153.5°, and the sliding angle was less than 5°.

  4. Transparent, superhydrophobic, and wear-resistant surfaces using deep reactive ion etching on PDMS substrates.

    PubMed

    Ebert, Daniel; Bhushan, Bharat

    2016-11-01

    Surfaces that simultaneously exhibit superhydrophobicity, low contact angle hysteresis, and high transmission of visible light are of interest for many applications, such as optical devices, solar panels, and self-cleaning windows. Superhydrophobicity could also find use in medical devices where antifouling characteristics are desirable. These applications also typically require mechanical wear resistance. The fabrication of such surfaces is challenging due to the competing goals of superhydrophobicity and transmittance in terms of the required degree of surface roughness. In this study, deep reactive ion etching (DRIE) was used to create rough surfaces on PDMS substrates using a O2/CF4 plasma. Surfaces then underwent an additional treatment with either octafluorocyclobutane (C4F8) plasma or vapor deposition of perfluorooctyltrichlorosilane (PFOTCS) following surface activation with O2 plasma. The effects of surface roughness and the additional surface modifications were examined with respect to the contact angle, contact angle hysteresis, and optical transmittance. To examine wear resistance, a sliding wear experiment was performed using an atomic force microscope (AFM). PMID:27454031

  5. Increased stability and size of a bubble on a superhydrophobic surface.

    PubMed

    Ling, William Yeong Liang; Lu, Gabriel; Ng, Tuck Wah

    2011-04-01

    Computational and theoretical models of millimeter-sized bubbles placed on upright hydrophobic and superhydrophobic surfaces are compared with experimental data here. Although the experimental data for a hydrophobic surface corroborated the computational and theoretical data, the case of a superhydrophobic surface showed the bubbles to be able to contain significantly larger volumes than predicted. This is attributed to the greater ability of the bubble contact line to advance compared with its tendency to detach from the surface because of buoyancy. We surmise that a static model therefore describes only an unstable equilibrium for these bubbles, which unless heavily isolated from external influences are more likely to assume a larger stable size. PMID:21361315

  6. Fabrication of superhydrophobic PDMS surfaces by combining acidic treatment and perfluorinated monolayers.

    PubMed

    de Givenchy, Elisabethpatricia Taffin; Amigoni, Sonia; Martin, Cédric; Andrada, Guillaume; Caillier, Laurent; Géribaldi, Serge; Guittard, Frédéric

    2009-06-01

    In this paper, polydimethylsiloxane (PDMS) with a superhydrophobic surface was generated by the combination of an acid corrosion followed by the covalent grafting of a highly fluorinated monolayer. The acid corrosion was performed with H2SO4 or HF, and the more effective was concentrated H2SO4. The resulting surface had a contact angle with water of 135 degrees. All the acid-treated samples were then functionalized by the covalent grafting of triethoxyaminopropylsilane followed by the reaction with semifluorinated acid chlorides, via the formation of an amide bond, or directly by a commercially available highly fluorinated silane, 1H,1H,2H,2H-perfluorodecyltriethoxysilane, to afford superhydrophobic surfaces (contact angle with water exceeding 160 degrees). The introduction of an amide function in the fluorinated monolayer afforded the best water repellency properties probably due to the organization induced by H-bonding between the surface grafted molecules.

  7. Rapid fabrication of superhydrophobic surfaces on copper substrates by electrochemical machining

    NASA Astrophysics Data System (ADS)

    Song, Jinlong; Xu, Wenji; Lu, Yao; Fan, Xujuan

    2011-10-01

    Hierarchical micrometer-nanometer-scale binary rough structures were fabricated on copper substrates by electrochemical machining in a neutral NaCl electrolyte. The rough structures are composed of the micrometer scale potato-like structures and the nanometer scale cube-like structures. After modified by the fluoroalkylsilane, the copper surfaces reached superhydrophobicity with a water contact angle of 164.3° and a water tilting angle less than 9°. This method has a high processing efficiency which can take just 3 s to fabricate the roughness required by the superhydrophobic surface. The effect of the processing time on wettability of the copper surfaces was investigated in this paper. The possible mechanism of the formation of the hierarchical roughness was also proposed, and the wettability of the copper surfaces was discussed on the basis of the Cassie-Baxter theory.

  8. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition

    NASA Astrophysics Data System (ADS)

    Ta, Van Duong; Dunn, Andrew; Wasley, Thomas J.; Li, Ji; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Esenturk, Emre; Connaughton, Colm; Shephard, Jonathan D.

    2016-03-01

    This work reports the laser surface modification of 304S15 stainless steel to develop superhydrophobic properties and the subsequent application for homogeneous spot deposition. Superhydrophobic surfaces, with steady contact angle of ∼154° and contact angle hysteresis of ∼4°, are fabricated by direct laser texturing. In comparison with common pico-/femto-second lasers employed for this patterning, the nanosecond fiber laser used in this work is more cost-effective, compact and allows higher processing rates. The effect of laser power and scan line separation on surface wettability of textured surfaces are investigated and optimized fabrication parameters are given. Fluid flows and transportations of polystyrene (PS) nanoparticles suspension droplets on the processed surfaces and unprocessed wetting substrates are investigated. After evaporation is complete, the coffee-stain effect is observed on the untextured substrates but not on the superhydrophobic surfaces. Uniform deposition of PS particles on the laser textured surfaces is achieved and the deposited material is confined to smaller area.

  9. One-step fabrication of near superhydrophobic aluminum surface by nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Jagdheesh, R.; García-Ballesteros, J. J.; Ocaña, J. L.

    2016-06-01

    Inspired by the micro and nano structures of biological surface such as lotus leaf, rice leaves, etc. a functional near superhydrophobic surface of pure aluminum has been fabricated using one-step nanosecond laser processing. Thin aluminum sheets are micro-patterned with ultraviolet laser pulses to create near superhydrophobic surface in one-step direct laser writing technique. The impact of number of pulses/microhole with respect to the geometry and static contact angle measurements has been investigated. The microstructure shows the formation of blind microholes along with the micro-wall by laser processing, which improves the composite interface between the three phases such as water, air and solid, thus enhance the wetting property of the surface. The geometrical changes are supported by the chemical changes induced on the surface for improving the degree of hydrophobicity. Laser processed microholes exhibited near superhydrophobic surface with SCA measurement of 148 ± 3°. The static contact angle values are very consistent for repeated measurement at same area and across the laser patterned surface.

  10. Influence of structured sidewalls on the wetting states and superhydrophobic stability of surfaces with dual-scale roughness

    NASA Astrophysics Data System (ADS)

    Wu, Huaping; Zhu, Kai; Wu, Bingbing; Lou, Jia; Zhang, Zheng; Chai, Guozhong

    2016-09-01

    The superhydrophobicity of biological surfaces with dual-scale roughness has recently received considerable attention because of the unique wettability of such surfaces. Based on this, artificial micro/nano hierarchical structures with structured sidewalls and smooth sidewalls were designed and the influences of sidewall configurations (i.e., structured and smooth) on the wetting state of micro/nano hierarchical structures were systematically investigated based on thermodynamics and the principle of minimum free energy. Wetting transition and superhydrophobic stability were then analyzed for a droplet on dual-scale rough surfaces with structured and smooth sidewalls. Theoretical analysis results show that dual-scale rough surfaces with structured sidewalls have a larger "stable superhydrophobic region" than those with smooth sidewalls. The dual-scale rough surfaces with smooth sidewalls can enlarge the apparent contact angle (ACA) without improvement in the superhydrophobic stability. By contrast, dual-scale rough surfaces with structured sidewalls present an advantage over those with smooth sidewalls in terms of enlarging ACA and enhancing superhydrophobic stability. The proposed thermodynamic model is valid when compared with previous experimental data and numerical analysis results, which is helpful for designing and understanding the wetting states and superhydrophobic stability of surfaces with dual-scale roughness.

  11. Morphology-driven nonwettability of nanostructured BN surfaces.

    PubMed

    Pakdel, Amir; Bando, Yoshio; Golberg, Dmitri

    2013-06-18

    Designing geometrical structures is an effective route to tailoring the wettability of a surface. BN-based hierarchical nano- and microstructures, in particular, vertically aligned and randomly distributed tubes and cones, were synthesized and employed as a platform for studying the influence of surface morphology on their static and dynamic interactions with water droplets. The variation of the contact angle in different hierarchical BN films is attributed to the combined effects of surface roughness and partial liquid-solid contact at the interface. Moreover, the impact response of water droplets impinging on BN arrays with different wetting properties is distinct. In the case of superhydrophobic films, the water droplet bounces off the surface several times whereas in less hydrophobic films it does not rebound and remains pinned to the surface. These results provide a facile route for the selective preparation of hierarchical BN nanostructure array films and a better understanding of their tunable water-repelling behavior, for which a number of promising applications in microelectronics and optics can be envisaged.

  12. On the collision and mixing of water droplets on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Nilsson, Michael A.; Rothstein, Jonathan P.

    2009-11-01

    The dynamics of water drop collisions on superhydrophobic surfaces is investigated using high-speed photography. Teflon is sanded to create the superhydrophobic surfaces. The results of the surface fabrication technique are presented, showing the effect of grit size on hysteresis. This method of creating superhydrophobic surfaces allows for the specification of varied advancing contact angles with similar hysteresis, or varying hysteresis with near similar advancing contact angles. Deionized water droplets are made to collide on these surfaces by propelling one droplet into another using a burst of pressurized air. The subsequent collision is captured, and several impact characteristics are calculated as a function of contact angle hysteresis. The Weber number and impact number are calculated, as well as the maximum deformation of the combined drop. In some experiments, the drops left the surface after collision even with low hysteresis at the low Weber numbers tested. Characteristic images of different regimes of the collision dynamics will be presented, as will how each of these regimes affect the mixing of the drops.

  13. Fabrication and characterization of superhydrophobic surface by using water vapor impingement method

    NASA Astrophysics Data System (ADS)

    Han, Kok Deng; Leo, C. P.; Chai, Siang Piao

    2012-07-01

    In this research, superhydrophobic coating with average static contact angle of 166° has been successfully prepared by using a new surface roughening method. Discussion on the applicability of Cassie and Wenzel equations used to determine surface parameters from experimental data is being included as well. This new surface roughening method uses accelerated water vapor to impinge wet film forming crater-like structure surface; analogous to meteor striking earth forming crater. Wet film is comprised of aluminium tri-sec butoxide, propan-2-ol, and ethyl acetoacetate according to molar ratio of 1:10:1. Craters with diameter distribution of 1-20 μm were formed on the roughened surface. It was then subjected to 10 min of immersion in boiling water, 20 min of immersion in fluoroalkylsilane solution, and 10 min of 100 °C hot air treatment producing superhydrophobic coating. This superhydrophobic crater-like structure surface has approximately 8% solid-to-liquid area fraction and high roughness value of 6.4. These values were obtained from both Cassie and Wenzel equations but with some minor modification in order to fit them into experimental data. Average sliding angle of 2.6° and hysteresis value of 10° were recorded.

  14. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Sun, Linyu; Luo, Yuting; Wu, Ruomei; Jiang, Haiyun; Chen, Yi; Zeng, Guangsheng; Liu, Yuejun

    2013-09-01

    The transition from the hydrophilic surface to the superhydrophilic and superhydrophobic surface on aluminum alloy via hydrochloric acid etching and polymer coating was investigated by contact angle (CA) measurements and scanning electron microscope (SEM). The effects of etching and polymer coating on the surface were discussed. The results showed that a superhydrophilic surface was facilely obtained after acid etching for 20 min and a superhydrophobic surface was readily fabricated by polypropylene (PP) coating after acid etching. When the etching time was 30 min, the CA was up to 157̊. By contrast, two other polymers of polystyrene (PS) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after acid etching. The results showed that the CA was up to 159̊ by coating PP-g-MAH, while the CA was only 141̊ by coating PS. By modifying the surface with the silane coupling agent before PP coating, the durability and solvent resistance performance of the superhydrophobic surface was further improved. The micro-nano concave-convex structures of the superhydrophilic surface and the superhydrophobic surface were further confirmed by scanning electron microscope (SEM). Combined with the natural hydrophilicity of aluminum alloy, the rough micro-nano structures of the surface led to the superhydrophilicity of the aluminum alloy surface, while the rough surface structures led to the superhydrophobicity of the aluminum alloy surface by combination with the material of PP with the low surface free energy.

  15. Preparation of self-cleaning surfaces with a dual functionality of superhydrophobicity and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Park, Eun Ji; Yoon, Hye Soo; Kim, Dae Han; Kim, Yong Ho; Kim, Young Dok

    2014-11-01

    Thin film of polydimethylsiloxane (PDMS) was deposited on SiO2 nanoparticles by chemical vapor deposition, and SiO2 became completely hydrophobic after PDMS coating. Mixtures of TiO2 and PDMS-coated SiO2 nanoparticles with various relative ratios were prepared, and distributed on glass surfaces, and water contact angles and photocatalytic activities of these surfaces were studied. Samples consisting of TiO2 and PDMS-coated SiO2 with a ratio of 7:3 showed a highly stable superhydrophobicity under UV irradiation with a water contact angle of 165° and UV-driven photocatalytic activity for decomposition of methylene blue and phenol in aqueous solution. Our process can be exploited for fabricating self-cleaning surfaces with dual functionality of superhydrophobicity and photocatalytic activity at the same time.

  16. Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Qing, Yan; Wu, Yiqiang; Liang, Jin; Luo, Sha

    2015-03-01

    Superhydrophobic nanocomposite surfaces were successfully fabricated on wood substrates via a one-step hydrothermal process. The morphology of the nanocomposite surfaces was characterized using scanning electron microscopy (SEM), and the elemental composition was determined via energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) analysis, and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the crystallization of the anatase phase of TiO2 was prevented because of the presence of vinyltriethoxysilane [VTES, CH2CHSi(OC2H5)3] during the hydrothermal process. In addition, the nanocomposite contained Ti/Si particles with diameters ranging from 50 to 100 nm that thoroughly covered the wood substrate. Furthermore, the roughness coupled with the presence of low surface free energy groups led to superhydrophobicity; the static water contact angle (WCA) was as high as 153°, and the sliding angle was very low.

  17. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    SciTech Connect

    Wang, Yang; Wei Liu, Xiao; Zhang, Hai Feng Zhou, Zhi Ping

    2015-04-15

    We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H{sub 2}O, and then in boiling water) and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene) and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  18. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wei Liu, Xiao; Zhang, Hai Feng; Zhou, Zhi Ping

    2015-04-01

    We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H2O, and then in boiling water) and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene) and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  19. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing.

    PubMed

    Manca, Michele; Cannavale, Alessandro; De Marco, Luisa; Aricò, Antonino S; Cingolani, Roberto; Gigli, Giuseppe

    2009-06-01

    We present a robust and cost-effective coating method to fabricate long-term durable superhydrophobic andsimultaneouslyantireflective surfaces by a double-layer coating comprising trimethylsiloxane (TMS) surface-functionalized silica nanoparticles partially embedded into an organosilica binder matrix produced through a sol-gel process. A dense and homogeneous organosilica gel layer was first coated onto a glass substrate, and then, a trimethylsilanized nanospheres-based superhydrophobic layer was deposited onto it. After thermal curing, the two layers turned into a monolithic film, and the hydrophobic nanoparticles were permanently fixed to the glass substrate. Such treated surfaces showed a tremendous water repellency (contact angle = 168 degrees ) and stable self-cleaning effect during 2000 h of outdoor exposure. Besides this, nanotextured topology generated by the self-assembled nanoparticles-based top layer produced a fair antireflection effect consisting of more than a 3% increase in optical transmittance. PMID:19466786

  20. Control of Water Droplets on Super-Hydrophobic Surfaces by Static Electric Field

    NASA Astrophysics Data System (ADS)

    Takeda, Koji; Nakajima, Akira; Murata, Yuji; Hashimoto, Kazuhito; Watanabe, Toshiya

    2002-01-01

    We investigated the control of water droplets on super-hydrophobic surfaces using a static electric field. The electric field required for droplet motion was decreased as the droplet size or the height from which the droplets were released increased. The Coulomb force of the electric charge provided to the water from the solid surface was the dominant driving force for the movement of the water droplet. In contrast, the contribution of dielectrophoretic force to the movement of the droplet was less than 10% that of the Coulomb force. The electric field required for droplet motion was not strongly influenced by the water conductivity. A film with a low sliding angle required a smaller electric field for droplet motion. Decreases in the sliding resistance had a greater effect than decreases in charge. Our experiments demonstrated that the use of a super-hydrophobic surface is advantageous for the control of water droplets by a small electric field.

  1. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing.

    PubMed

    Manca, Michele; Cannavale, Alessandro; De Marco, Luisa; Aricò, Antonino S; Cingolani, Roberto; Gigli, Giuseppe

    2009-06-01

    We present a robust and cost-effective coating method to fabricate long-term durable superhydrophobic andsimultaneouslyantireflective surfaces by a double-layer coating comprising trimethylsiloxane (TMS) surface-functionalized silica nanoparticles partially embedded into an organosilica binder matrix produced through a sol-gel process. A dense and homogeneous organosilica gel layer was first coated onto a glass substrate, and then, a trimethylsilanized nanospheres-based superhydrophobic layer was deposited onto it. After thermal curing, the two layers turned into a monolithic film, and the hydrophobic nanoparticles were permanently fixed to the glass substrate. Such treated surfaces showed a tremendous water repellency (contact angle = 168 degrees ) and stable self-cleaning effect during 2000 h of outdoor exposure. Besides this, nanotextured topology generated by the self-assembled nanoparticles-based top layer produced a fair antireflection effect consisting of more than a 3% increase in optical transmittance.

  2. A novel simple approach to preparation of superhydrophobic surfaces of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Xie, Degang; Li, Wen

    2011-11-01

    A novel two-step methodology is successfully developed to fabricate superhydrophobic surfaces of aluminum alloys. The essential procedure is that samples are first immersed and etched in a boiling aqueous solution of NaOH for 5 min without preprocessing, and then they are modified for 30 min in an ethanol solution of lauric acid, cheaper and more efficient than the fluorinated silane frequently adopted by other researchers. If the concentration of NaOH solution is larger than 5 g/L, the contact angle of the prepared surfaces will be larger than 150° with a negligible hysteresis. Such a fast, low-cost, and reliable method for superhydrophobic surfaces implies significant promising industrial applications.

  3. Superhydrophobic Surface Enhanced Raman Scattering Sensing using Janus Particle Arrays Realized by Site-Specific Electrochemical Growth

    PubMed Central

    Hricko, Patrick John; Huang, Po-Hsun; Li, Sixing; Zhao, Yanhui; Xie, Yuliang; Guo, Feng; Wang, Lin

    2014-01-01

    Site-specific electrochemical deposition is used to prepare polystyrene (PS)-Ag Janus particle arrays with superhydrophobic properties. The analyte molecules can be significantly enriched using the superhydrophobic property of the PS-Ag Janus particle array before SERS detections, enabling an extremely sensitive detection of molecules in a highly diluted solution (e.g., femtomolar level). This superhydrophobic surface enhanced Raman scattering sensing concept described here is of critical significance in biosensing and bioanalysis. Most importantly, the site-specific electrochemical growth method we developed here is a versatile approach that can be used to prepare Janus particle arrays with different properties for various applications. PMID:24748991

  4. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  5. Investigating the role of surface micro/nano structure in cell adhesion behavior of superhydrophobic polypropylene/nanosilica surfaces.

    PubMed

    Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Sadeghi, Gity Mir Mohamad; Jafari, Seyed Hassan; Khonakdar, Hossein Ali

    2015-03-01

    The main aim of the current study was to investigate the effects of different topographical features on the biological performance of polypropylene (PP)/silica coatings. To this end, a novel method including combined use of nanoparticles and non-solvent was used for preparation of superhydrophobic PP coatings. The proposed method led to a much more homogeneous appearance with a better adhesion to the glass substrate. Moreover, a notable reduction was observed in the required contents of nanoparticles (100-20 wt% with respect to the polymer) and non-solvent (35.5-9 vol%) for achieving superhydrophobicity. Surface composition and morphology of the coatings were also investigated via X-ray photoelectron spectroscopy and scanning electron microscopy. Based on both qualitative and quantitative evaluations, it was found that the superhydrophobic coatings with only nano-scale roughness strongly prevented adhesion and proliferation of 4T1 mouse mammary tumor cells as compared to the superhydrophobic surfaces with micro-scale structure. Such results demonstrate that the cell behavior could be controlled onto the polymer and nanocomposite-based surfaces via tuning the surface micro/nano structure.

  6. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques

    PubMed Central

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-01-01

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices. PMID:27046771

  7. Effects of isotropic and anisotropic slip on droplet impingement on a superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Clavijo, Cristian E.; Crockett, Julie; Maynes, Daniel

    2015-12-01

    The dynamics of single droplet impingement on micro-textured superhydrophobic surfaces with isotropic and anisotropic slip are investigated. While several analytical models exist to predict droplet impact on superhydrophobic surfaces, no previous model has rigorously considered the effect of the shear-free region above the gas cavities resulting in an apparent slip that is inherent for many of these surfaces. This paper presents a model that accounts for slip during spreading and recoiling. A broad range of Weber numbers and slip length values were investigated at low Ohnesorge numbers. The results show that surface slip exerts negligible influence throughout the impingement process for low Weber numbers but can exert significant influence for high Weber numbers (on the order of 102). When anisotropic slip prevails, the droplet exhibits an elliptical shape at the point of maximum spread, with greater eccentricity for increasing slip and increasing Weber number. Experiments were performed on isotropic and anisotropic micro-structured superhydrophobic surfaces and the agreement between the experimental results and the model is very good.

  8. One-step controllable fabrication of superhydrophobic surfaces with special composite structure on zinc substrates.

    PubMed

    Ning, Tao; Xu, Wenguo; Lu, Shixiang

    2011-09-01

    Stable superhydrophobic platinum surfaces have been effectively fabricated on the zinc substrates through one-step replacement deposition process without further modification or any other post-treatment procedures. The fabrication process was controllable, which could be testified by various morphologies and hydrophobic properties of different prepared samples. By conducting SEM and water CA analysis, the effects of reaction conditions on the surface morphology and hydrophobicity of the resulting surfaces were carefully studied. The results show that the optimum condition of superhydrophobic surface fabrication depends largely on the positioning of zinc plate and the concentrations of reactants. When the zinc plate was placed vertically and the concentration of PtCl(4) solution was 5 mmol/L, the zinc substrate would be covered by a novel and interesting composite structure. The structure was composed by microscale hexagonal cavities, densely packed nanoparticles layer and top micro- and nanoscale flower-like structures, which exhibit great surface roughness and porosity contributing to the superhydrophobicity. The maximal CA value of about 171° was obtained under the same reaction condition. The XRD, XPS and EDX results indicate that crystallite pure platinum nanoparticles were aggregated on the zinc substrates in accordance with a free deposition way.

  9. Fabrication of superhydrophobic surfaces on zinc substrates and their application as effective corrosion barriers

    NASA Astrophysics Data System (ADS)

    Ning, Tao; Xu, Wenguo; Lu, Shixiang

    2011-12-01

    Stable superhydrophobic surfaces have been effectively fabricated on the zinc substrates through one-step platinum replacement deposition process without the further modification or any other post processing procedures. The effect of reaction temperatures on the surface morphology and wettability was studied by using SEM and water contact angle (CA) analysis. Under room temperature, the composite structure formed on the zinc substrate was consisted of microscale hexagonal cavities, densely packed nanoparticles layer and micro/nanoscale structures like the flowers. The structure has exhibited great surface roughness and porosity contributing to the superhydrophobicity where the contact angle could reach an ultra high value of around 170°. Under reaction temperature of 80 °C, the composite structure, on the other hand, was hierarchical structure containing lots of nanoscale flowers and some large bushes and showed certain surface roughness (maximum CA value of about 150°). In addition, an optimal superhydrophobic platinum surface was able to provide an effective anticorrosive coating to the zinc substrate when it was immersed into an aqueous solution of sodium chloride (3% NaCl) for up to 20 days. The corrosion process was monitored through electrochemical means and the results are compared with those of unprotected zinc plates.

  10. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques.

    PubMed

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-04-05

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices.

  11. One-step process for superhydrophobic metallic surfaces by wire electrical discharge machining.

    PubMed

    Bae, Won Gyu; Song, Ki Young; Rahmawan, Yudi; Chu, Chong Nam; Kim, Dookon; Chung, Do Kwan; Suh, Kahp Y

    2012-07-25

    We present a direct one-step method to fabricate dual-scale superhydrophobic metallic surfaces using wire electrical discharge machining (WEDM). A dual-scale structure was spontaneously formed by the nature of exfoliation characteristic of Al 7075 alloy surface during WEDM process. A primary microscale sinusoidal pattern was formed via a programmed WEDM process, with the wavelength in the range of 200 to 500 μm. Notably, a secondary roughness in the form of microcraters (average roughness, Ra: 4.16 to 0.41 μm) was generated during the exfoliation process without additional chemical treatment. The low surface energy of Al 7075 alloy (γ = 30.65 mJ/m(2)) together with the presence of dual-scale structures appears to contribute to the observed superhydrophobicity with a static contact angle of 156° and a hysteresis less than 3°. To explain the wetting characteristics on dual-scale structures, we used a simple theoretical model. It was found that Cassie state is likely to present on the secondary roughness in all fabricated surfaces. On the other hand, either Wenzel or Cassie state can present on the primary roughness depending on the characteristic length of sinusoidal pattern. In an optimal condition of the serial cutting steps with applied powers of ∼30 and ∼8 kW, respectively, a stable, superhydrophobic metallic surface was created with a sinusoidal pattern of 500 μm wavelength.

  12. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-04-01

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices.

  13. Controlling the Adhesion of Superhydrophobic Surfaces Using Electrolyte Jet Machining Techniques.

    PubMed

    Yang, Xiaolong; Liu, Xin; Lu, Yao; Zhou, Shining; Gao, Mingqian; Song, Jinlong; Xu, Wenji

    2016-01-01

    Patterns with controllable adhesion on superhydrophobic areas have various biomedical and chemical applications. Electrolyte jet machining technique (EJM), an electrochemical machining method, was firstly exploited in constructing dimples with various profiles on the superhydrophobic Al alloy surface using different processing parameters. Sliding angles of water droplets on those dimples firstly increased and then stabilized at a certain value with the increase of the processing time or the applied voltages of the EJM, indicating that surfaces with different adhesion force could be obtained by regulating the processing parameters. The contact angle hysteresis and the adhesion force that restricts the droplet from sliding off were investigated through experiments. The results show that the adhesion force could be well described using the classical Furmidge equation. On account of this controllable adhesion force, water droplets could either be firmly pinned to the surface, forming various patterns or slide off at designed tilting angles at specified positions on a superhydrophobic surface. Such dimples on superhydrophopbic surfaces can be applied in water harvesting, biochemical analysis and lab-on-chip devices. PMID:27046771

  14. Rapid deposition of transparent super-hydrophobic layers on various surfaces using microwave plasma.

    PubMed

    Irzh, Alexander; Ghindes, Lee; Gedanken, Aharon

    2011-12-01

    We report herein on a very fast and simple process for the fabrication of transparent superhydrophobic surfaces by using microwave (MW) plasma. It was found that the reaction of various organic liquids in MW argon plasma yields hydrophobic polymeric layers on a large assortment of surfaces, including glass, polymeric surfaces, ceramics, metals, and even paper. In most cases, these polymers are deposited as a rough layer composed of 10-15 nm nanoparticles (NPs). This roughness, together with the chemical hydrophobic nature of the coated materials, is responsible for the superhydrophobic nature of the surface. The typical reaction time of the coating procedure was 1-10 s. The stability of these superhydrophobic surfaces was examined outdoors, and was found to last 2-5 days under direct exposure to the environment and to last 2 months when the sample was protected by a quartz cover. A detailed characterization study of the chemical composition of the layers followed using XPS, solid-state NMR, and IR measurements. Modifications were introduced in the products leading to a substantial improvement in the stability of the products outdoors.

  15. Superhydrophobic functionalized graphene aerogels.

    PubMed

    Lin, Yirong; Ehlert, Gregory J; Bukowsky, Colton; Sodano, Henry A

    2011-07-01

    Carbon-based nanomaterials such as carbon nanotubes and graphene are excellent candidates for superhydrophobic surfaces because of their intrinsically high surface area and nonpolar carbon structure. This paper demonstrates that graphene aerogels with a silane surface modification can provide superhydrophobicity. Graphene aerogels of various concentrations were synthesized and the receding contact angle of a water droplet was measured. It is shown that graphene aerogels are hydrophobic and become superhydrophobic following the application of a fluorinated surfactant. The aerogels produced for this experiment outperform previous carbon nanomaterials in creating superhydrophobic surfaces and offer a more scalable synthetic procedure for production.

  16. Direct Numerical Simulation of turbulent flows over superhydrophobic surfaces: capillary waves on gas-liquid interface

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; García-Mayoral, Ricardo; Mani, Ali

    2015-11-01

    Superhydrophobic surfaces under liquid flow can produce significant slip, and thus drag reduction, when they entrap gas bubbles within their roughness elements. Our work aims to explore the onset mechanism to the failure of drag reduction by superhydrophobic surfaces when they are exposed to turbulent boundary layers. We focus on the effect of finite surface tension to the dynamic response of deformable interfaces between overlying water flow and the gas pockets. To this end, we conduct direct numerical simulations of turbulent flows over superhydrophobic surfaces allowing deformable gas-liquid interface. DNS results show that spanwise-coherent, upstream-traveling waves develop on the gas-liquid interface as a result of its interactions with turbulence. We study the nature and scaling of the upstream-traveling waves through semi-analytical modeling. We will show that the traveling waves are well described by a Weber number based on the slip velocity at the interface. In higher Weber number, the stability of gas pocket decreases as the amplitude of interface deformation and the magnitude of pressure fluctuations are augmented. Supported by Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  17. Recent advances in superhydrophobic surfaces and their relevance to biology and medicine.

    PubMed

    Ciasca, G; Papi, M; Businaro, L; Campi, G; Ortolani, M; Palmieri, V; Cedola, A; De Ninno, A; Gerardino, A; Maulucci, G; De Spirito, M

    2016-02-01

    By mimicking naturally occurring superhydrophobic surfaces, scientists can now realize artificial surfaces on which droplets of a few microliters of water are forced to assume an almost spherical shape and an extremely high contact angle. In recent decades, these surfaces have attracted much attention due to their technological applications for anti-wetting and self-cleaning materials. Very recently, researchers have shifted their interest to investigate whether superhydrophobic surfaces can be exploited to study biological systems. This research effort has stimulated the design and realization of new devices that allow us to actively organize, visualize and manipulate matter at both the microscale and nanoscale levels. Such precise control opens up wide applications in biomedicine, as it allows us to directly manipulate objects at the typical length scale of cells and macromolecules. This progress report focuses on recent biological and medical applications of superhydrophobicity. Particular regard is paid to those applications that involve the detection, manipulation and study of extremely small quantities of molecules, and to those that allow high throughput cell and biomaterial screening. PMID:26844980

  18. Disintegration of a Round Liquid Jet due to Impact on a Superhydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Jalaal, Maziyar; Stoeber, Boris

    2013-11-01

    Liquid jet breakup has several applications such as Inkjet printers, diesel fuel injectors, and paint sprays. Very recently liquid jets have been shown to be useful for small volume transportation (Clestini et al. Soft Matter, 2010), where a micro-scale liquid jet on superhydrophobic surface was investigated. Although the instability of the liquid jet for some circumstances was shown, the disintegration of the liquid jet was not discussed. In the present study, we aim to analyze the breakup of a micro liquid jet due to inclined impact to a superhydrophobic surface. A range of Weber and Reynolds numbers have been explored experimentally. Water-glycerin solution as the working fluid. Generally, it is shown that the liquid jet forms a disc-like film over the surface and further rebounds (``bouncing jet''). A simple energy balance method is provided to estimate the diameter of the disc-like film. It is shown, for the case of low viscosity (large Re), this parameter is logarithmically proportional to the normal Weber number. Additionally, linear stability analysis for viscous jets provides a good estimate of droplet size. From an application point of view, using superhydrophobic surfaces 1) enables rebound of the liquid jet 2) advances the breakup point (shorten the breakup length).

  19. Trapping of Water Drops by Line-Shaped Defects on Superhydrophobic Surfaces.

    PubMed

    Olin, Pontus; Lindström, Stefan B; Wågberg, Lars

    2015-06-16

    We have investigated the effect of line-shaped topographical defects on the motion of water drops across superhydrophobic wax surfaces using a high-speed video camera. The defects are introduced onto the superhydrophobic wax surfaces by a scratching procedure. It is demonstrated that the motion of a drop interacting with the defect can be approximated by a damped harmonic oscillator. Whether a drop passes or gets trapped by the defect is determined by the incident speed and the properties of the oscillator, specifically by the damping ratio and a nondimensional forcing constant representing the effects of gravity and pinning forces. We also show that it is possible to predict a critical trapping speed as well as an exit speed in systems with negligible viscous dissipation using a simple work-energy consideration. PMID:26010934

  20. Fabrication of non-modified metallic superhydrophobic surfaces with temperature insensitivity and self-healing ability

    NASA Astrophysics Data System (ADS)

    Zhang, Wenwen; Wang, Shanlin; Yu, Xinquan; Zhang, Youfa

    2016-07-01

    Metallic hierarchical texture was prepared by nickel-cobalt electro-deposition and subsequent replacement reaction to coat silver. Due to energetically favorable hydrocarbon adsorption on the silver film, contact angle of the surface increased gradually over time after exposure to laboratory air. The substrate became superhydrophobic after three days to aqueous droplets with various pH values. It was found that the surface remained stable after exposing to extreme temperatures in the wide range from -196 °C to 200 °C. Importantly, self-healing of superhydrophobicity can be easily accomplished and repeated in an ambient environment while hydrocarbon desorption occurred under high temperature. Furthermore, this approach can be easily applied to other conductive substrates.

  1. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.

    PubMed

    Sasmal, Anup Kumar; Mondal, Chanchal; Sinha, Arun Kumar; Gauri, Samiran Sona; Pal, Jaya; Aditya, Teresa; Ganguly, Mainak; Dey, Satyahari; Pal, Tarasankar

    2014-12-24

    Superhydrophobic surfaces prevent percolation of water droplets and thus render roll-off, self-cleaning, corrosion protection, etc., which find day-to-day and industrial applications. In this work, we developed a facile, cost-effective, and free-standing method for direct fabrication of copper nanoparticles to engender superhydrophobicity for various flat and irregular surfaces such as glass, transparency sheet (plastic), cotton wool, textile, and silicon substrates. The fabrication of as-prepared superhydrophobic surfaces was accomplished using a simple chemical reduction of copper acetate by hydrazine hydrate at room temperature. The surface morphological studies demonstrate that the as-prepared surfaces are rough and display superhydrophobic character on wetting due to generation of air pockets (The Cassie-Baxter state). Because of the low adhesion of water droplets on the as-prepared surfaces, the surfaces exhibited not only high water contact angle (164 ± 2°, 5 μL droplets) but also superb roll-off and self-cleaning properties. Superhydrophobic copper nanoparticle coated glass surface uniquely withstands water (10 min), mild alkali (5 min in saturated aqueous NaHCO3 of pH ≈ 9), acids (10 s in dilute HNO3, H2SO4 of pH ≈ 5) and thiol (10 s in neat 1-octanethiol) at room temperature (25-35 °C). Again as-prepared surface (cotton wool) was also found to be very effective for water-kerosene separation due to its superhydrophobic and oleophilic character. Additionally, the superhydrophobic copper nanoparticle (deposited on glass surface) was found to exhibit antibacterial activity against both Gram-negative and Gram-positive bacteria.

  2. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Bharathidasan, T.; Kumar, S. Vijay; Bobji, M. S.; Chakradhar, R. P. S.; Basu, Bharathibai J.

    2014-09-01

    The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (τ) on silicone based hydrophobic surfaces was ∼ 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness.

  3. Direct numerical simulation of turbulent flows over superhydrophobic surfaces: gas-liquid interface dynamics

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; García-Mayoral, Ricardo; Mani, Ali

    2013-11-01

    Superhydrophobic surfaces can induce large slip velocities for liquid flows, reducing the skin friction on walls, by entrapping gas pockets within the surface roughness. This work explores the onset mechanism leading to gas depletion through interface breakage under turbulent conditions. We conduct direct numerical simulations of flows over superhydrophobic walls. The superhydrophobic texture is conventionally modeled as a pattern of slip/no-slip boundary conditions for the wall-parallel velocities but, to take into account the dynamic deformation of the gas-liquid interface, we also introduce non-zero boundary conditions for the wall-normal velocity. These conditions are derived from the deformation of the interface in response to the overlying turbulent pressure fluctuations, following the Young-Laplace equation. Surface protrusions in the form of posts and streamwise-aligned ridges are studied, and results are presented as a function of the ``deformability'' of the gas-liquid interfaces, expressed as a Weber number. We will also discuss results for misaligned ridges. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  4. Influence of fluid flow on the stability and wetting transition of submerged superhydrophobic surfaces.

    PubMed

    Xiang, Yaolei; Xue, Yahui; Lv, Pengyu; Li, Dandan; Duan, Huiling

    2016-05-14

    Superhydrophobic surfaces have attracted great attention for drag reduction application. However, these surfaces are subject to instabilities, especially under fluid flow. In this work, we in situ examine the stability and wetting transition of underwater superhydrophobicity under laminar flow conditions by confocal microscopy. The absolute liquid pressure in the flow channel is regulated to acquire the pinned Cassie-Baxter and depinned metastable states. The subsequent dynamic evolution of the meniscus morphology in the two states under shear flow is monitored. It is revealed that fluid flow does not affect the pressure-mediated equilibrium states but accelerates the air exchange between entrapped air cavities and bulk water. A diffusion-based model with varying effective diffusion lengths is used to interpret the experimental data, which show a good agreement. The Sherwood number representing the convection-enhanced mass transfer coefficient is extracted from the data, and is found to follow a classic 1/3-power-law relation with the Reynolds number as has been discovered in channel flows with diffusive boundary conditions. The current work paves the way for designing durable superhydrophobic surfaces under flow conditions. PMID:27071538

  5. Rapid transfer of hierarchical microstructures onto biomimetic polymer surfaces with gradually tunable water adhesion from slippery to sticky superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Chen, An-Fu; Huang, Han-Xiong

    2016-02-01

    Biomimetic superhydrophobic surfaces are generally limited to extremely high or quite low water droplet adhesion. The present work proposes flexible template replication methods for bio-inspired polypropylene (PP) surfaces with microtopographies and gradually tunable water droplet adhesion in one step using microinjection compression molding (μ-ICM). A dual-level microstructure appears on PP surfaces prepared using a flexible template. The microstructures obtained under low and high mold temperatures exhibit low-aspect-ratio (AR) micropillars with semi-spherical top and high-AR ones with conical top, resulting in the surfaces with high-adhesive hydrophobicity and low-adhesive superhydrophobicity, respectively. Further, silica nanoparticles (SNPs) coated on templates are transferred to viscous state-dominated melt during its filling in μ-ICM, and firmly adhered to the skin of the replicas, forming hierarchical microstructures on PP surfaces. The hydrophilic and hydrophobic SNPs on high-AR micropillared surfaces help achieve extremely high (petal effect) and extremely low (lotus effect) adhesion on superhydrophobic surfaces, respectively. The hybrid SNPs on low-AR micropillars change the Wenzel state-dominated surface to Cassie-Baxter state-dominated surface and preserves medium adhesion with superhydrophobicity. The proposed methods for fast and mass replication of superhydrophobic surfaces with the dual-level or hierarchical microtopography can be excellent candidates for the development of microfluidics, sensors, and labs on chip.

  6. Superhydrophobic diatomaceous earth

    DOEpatents

    Simpson, John T.; D'Urso, Brian R.

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  7. Superhydrophobic surfaces using selected zinc oxide microrod growth on ink-jetted patterns.

    PubMed

    Myint, Myo Tay Zar; Kitsomboonloha, Rungrot; Baruah, Sunandan; Dutta, Joydeep

    2011-02-15

    The synthesis and properties of superhydrophobic surfaces based on binary surface topography made of zinc oxide (ZnO) microrod-decorated micropatterns are reported. ZnO is intrinsically hydrophilic but can be utilized to create hydrophobic surfaces by creating artificial roughness via microstructuring. Micron scale patterns consisting of nanocrystalline ZnO seed particles were applied to glass substrates with a modified ink-jet printer. Microrods were then grown on the patterns by a hydrothermal process without any further chemical modification. Water contact angle (WCA)(1) up to 153° was achieved. Different micro array patterned surfaces with varying response of static contact angle or sessile droplet analysis are reported.

  8. Superhydrophobic surfaces based on dandelion-like ZnO microspheres

    NASA Astrophysics Data System (ADS)

    Pan, Qinmin; Cheng, Yuexiang

    2009-01-01

    This study presents a simple method to fabricate superhydrophobic surface based on ZnO nanoneedles. ZnO nanoneedles had been constructed on zinc layers by immersing in an aqueous NH 4OH solution at 80 °C. The ZnO films were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The ZnO films exhibited excellent superhydrophilicity (contact angle for water was 0°), while they changed wettability to superhydrophobicity with a water contact angle greater than 150° after further chemical modification with n-dodecanoic acid. The procedure reported here only needs readily available reagents and laboratory equipments, which can be applied to various substrates of any size and shape.

  9. Preliminary study on different technological tools and polymeric materials towards superhydrophobic surfaces for automotive applications

    NASA Astrophysics Data System (ADS)

    Pruna, A.; Ramiro, J.; Belforte, L.

    2013-11-01

    Nature-inspired fabrication of micro-structured superhydrophobic plastic film was aimed in this work in order to achieve smart materials with self-cleaning properties. Replicas of silicon masters were fabricated from different mixtures of base elements and by different processes. Corresponding microstructures were investigated by contact angle measurements, scanning electron microscopy and spectrophotometric analysis. Independently of the technology employed, the obtained films exhibited high contact angle value (larger than 150°), but while the acrylic polymers presented strong demoulding drawbacks, the polydimethylsiloxane (PDMS) films had good properties in terms of both contact angle and optical transparency. The results showed that most of the patterns realized by replica moulding and hot-embossing (on PDMS and polypropylene (PP), respectively) produced superhydrophobic self-cleaning surfaces.

  10. Anisotropic particle synthesis inside droplet templates on superhydrophobic surfaces.

    PubMed

    Rastogi, Vinayak; García, Antonio A; Marquez, Manuel; Velev, Orlin D

    2010-01-18

    We demonstrate how droplet templates dispensed on superhydrophobic substrates can be used to fabricate both shape-anisotropic ("doughnut") and composition-anisotropic ("patchy magnetic") supraparticles. The macroscopic shape of the closely-packed particle assemblies is guided by the droplet meniscus. Aqueous droplets of monodisperse microsphere suspensions dispensed on the substrates initially acquire near-spherical shape due to a high contact angle. During the solvent evaporation, however, silica suspension droplets undergo shape transitions (concaving) guiding the structure of the final assemblies into doughnut supraparticles. Composition anisotropy is achieved by drying a droplet containing a mixed suspension of latex and magnetic nanoparticles, while exposing it to magnetic field gradients. Depending on the pattern of the magnetic fields, the magnetic nanoparticles segregate into single, bilateral, or trilateral, patched spherical supraparticles. The physical effects leading to the development of anisotropy are discussed. Unlike the conventional wet self-assembly (WSA) methods where the final structures need to be extracted from the liquid environment, this efficient one-step procedure produces ready to use "dry" supraparticles.

  11. Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kibar, Ali; Karabay, Hasan; Yiğit, K. Süleyman; Ucar, Ikrime O.; Erbil, H. Yıldırım

    2010-11-01

    In this study, the behaviour of an inclined water jet, which is impinged onto hydrophobic and superhydrophobic surfaces, has been investigated experimentally. Water jet was impinged with different inclination angles (15°-45°) onto five different hydrophobic surfaces made of rough polymer, which were held vertically. The water contact angles on these surfaces were measured as 102°, 112°, 123°, 145° and 167° showing that the last surface was superhydrophobic. Two different nozzles with 1.75 and 4 mm in diameters were used to create the water jet. Water jet velocity was within the range of 0.5-5 m/s, thus the Weber number varied from 5 to 650 and Reynolds number from 500 to 8,000 during the experiments. Hydrophobic surfaces reflected the liquid jet depending on the surface contact angle, jet inclination angle and the Weber number. The variation of the reflection angle with the Weber number showed a maximum value for a constant jet angle. The maximum value of the reflection angle was nearly equal to half of the jet angle. It was determined that the viscous drag decreases as the contact angle of the hydrophobic surface increases. The drag force on the wall is reduced dramatically with superhydrophobic surfaces. The amount of reduction of the average shear stress on the wall was about 40%, when the contact angle of the surface was increased from 145° to 167°. The area of the spreading water layer decreased as the contact angle of the surface increased and as the jet inclination angle, Weber number and Reynolds number decreased.

  12. Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces.

    PubMed

    Sojoudi, H; Wang, M; Boscher, N D; McKinley, G H; Gleason, K K

    2016-02-21

    Formation, adhesion, and accumulation of ice, snow, frost, glaze, rime, or their mixtures can cause severe problems for solar panels, wind turbines, aircrafts, heat pumps, power lines, telecommunication equipment, and submarines. These problems can decrease efficiency in power generation, increase energy consumption, result in mechanical and/or electrical failure, and generate safety hazards. To address these issues, the fundamentals of interfaces between liquids and surfaces at low temperatures have been extensively studied. This has lead to development of so called "icephobic" surfaces, which possess a number of overlapping, yet distinctive, characteristics from superhydrophobic surfaces. Less attention has been given to distinguishing differences between formation and adhesion of ice, snow, glaze, rime, and frost or to developing a clear definition for icephobic, or more correctly pagophobic, surfaces. In this review, we strive to clarify these differences and distinctions, while providing a comprehensive definition of icephobicity. We classify different canonical families of icephobic (pagophobic) surfaces providing a review of those with potential for scalable and robust development. PMID:26757856

  13. Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces.

    PubMed

    Sojoudi, H; Wang, M; Boscher, N D; McKinley, G H; Gleason, K K

    2016-02-21

    Formation, adhesion, and accumulation of ice, snow, frost, glaze, rime, or their mixtures can cause severe problems for solar panels, wind turbines, aircrafts, heat pumps, power lines, telecommunication equipment, and submarines. These problems can decrease efficiency in power generation, increase energy consumption, result in mechanical and/or electrical failure, and generate safety hazards. To address these issues, the fundamentals of interfaces between liquids and surfaces at low temperatures have been extensively studied. This has lead to development of so called "icephobic" surfaces, which possess a number of overlapping, yet distinctive, characteristics from superhydrophobic surfaces. Less attention has been given to distinguishing differences between formation and adhesion of ice, snow, glaze, rime, and frost or to developing a clear definition for icephobic, or more correctly pagophobic, surfaces. In this review, we strive to clarify these differences and distinctions, while providing a comprehensive definition of icephobicity. We classify different canonical families of icephobic (pagophobic) surfaces providing a review of those with potential for scalable and robust development.

  14. Self-Healing Superhydrophobic Fluoropolymer Brushes as Highly Protein-Repellent Coatings.

    PubMed

    Wang, Zhanhua; Zuilhof, Han

    2016-06-28

    Superhydrophobic surfaces with micro/nanostructures are widely used to prevent nonspecific adsorption of commercial polymeric and/or biological materials. Herein, a self-healing superhydrophobic and highly protein-repellent fluoropolymer brush was grafted onto nanostructured silicon by surface-initiated atom transfer radical polymerization (ATRP). Both the superhydrophobicity and antifouling properties (as indicated for isolated protein solutions and for 10% blood plasma) are well repaired upon serious chemical degradation (by e.g. air plasma). This brush still maintains excellent superhydrophobicity and good antifouling properties even after 5 damage-repair cycles, which opens a new door to fabricate long-term antifouling coatings on various substrates that can be used in harsh environments. PMID:27305351

  15. Synergistic Effect of Superhydrophobicity and Oxidized Layers on Corrosion Resistance of Aluminum Alloy Surface Textured by Nanosecond Laser Treatment.

    PubMed

    Boinovich, Ludmila B; Emelyanenko, Alexandre M; Modestov, Alexander D; Domantovsky, Alexandr G; Emelyanenko, Kirill A

    2015-09-01

    We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed. PMID:26271017

  16. The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar flow surfaces

    NASA Astrophysics Data System (ADS)

    Kok, Mariana; Young, Trevor M.

    2014-09-01

    Surface contamination caused by insects on laminar flow wing surfaces causes a disruption of the flow, resulting in an increase in drag and fuel consumption. Consequently, the use of superhydrophobic coatings to mitigate insect residue adhesion was investigated. A range of hierarchical superhydrophobic coatings with different surface chemistry and topography was examined. Candidate coatings were characterized in terms of their morphology and hydrophobic properties by scanning electron microscopy (SEM) and static and dynamic contact angle measurements, respectively. Arithmetic mean surface roughness (Ra) values were measured using profilometry. Only superhydrophobic coatings with a specific topography showed complete mitigation against insect residue adhesion. A surface which exhibited a specific microstructure (Ra = 5.26 μm) combined with a low sliding angle (SA = 7.6°) showed the best anti-contamination properties. The dynamics of an insect impact event and its influence on the wetting and adhesion mechanisms of insect residue to a surface were discussed.

  17. Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes

    NASA Astrophysics Data System (ADS)

    Ogawa, Tasuku; Ding, Bin; Sone, Yuji; Shiratori, Seimei

    2007-04-01

    We have recently fabricated super-hydrophobic membrane surfaces based on the inspiration of self-cleaning silver ragwort leaves. This biomimetic super-hydrophobic surface was composed of fluoroalkylsilane (FAS)-modified layer-by-layer (LBL) structured film-coated electrospun nanofibrous membranes. The rough fibre surface caused by the electrostatic LBL coating of TiO2 nanoparticles and poly(acrylic acid) (PAA) was used to imitate the rough surface of nanosized grooves along the silver ragwort leaf fibre axis. The results showed that the FAS modification was the key process for increasing the surface hydrophobicity of the fibrous membranes. Additionally, the dependence of the hydrophobicity of the membrane surfaces upon the number of LBL coating bilayers was affected by the membrane surface roughness. Moreover, x-ray photoelectron spectroscopy (XPS) results further indicated that the surface of LBL film-coated fibres absorbed more fluoro groups than the fibre surface without the LBL coating. A (TiO2/PAA)10 film-coated cellulose acetate nanofibrous membrane with FAS surface modification showed the highest water contact angle of 162° and lowest water-roll angle of 2°.

  18. Toward superhydrophobic and durable coatings: effect of needle vs crater surface architecture.

    PubMed

    Dyett, Brendan P; Wu, Alex H; Lamb, Robert N

    2014-06-25

    Practical application of sol-gel derived superhydrophobic films is limited by the fragility of "needlelike" surface roughness. An efficient one step procedure is developed to prepare robust thin films with "craterlike" surface roughness from a methyltrimethoxysilane matrix and polymer sphere templates. The films could be readily spray coated to produce roughened surface textures, which are governed by template concentration and geometry. The effect of this on the wettability and robustness of thin films was examined in detail, revealing a rapid trade-off between the two characteristics due to variations in coating porosity.

  19. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing

    NASA Astrophysics Data System (ADS)

    Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R.; Han, Intaek; Yun, Dong-Jin

    2015-10-01

    A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.

  20. Guided Self-Propelled Leaping of Droplets on a Micro-Anisotropic Superhydrophobic Surface.

    PubMed

    Liu, Jie; Guo, Haoyuan; Zhang, Bo; Qiao, Shasha; Shao, Mingzhe; Zhang, Xianren; Feng, Xi-Qiao; Li, Qunyang; Song, Yanlin; Jiang, Lei; Wang, Jianjun

    2016-03-18

    By introducing anisotropic micropatterns on a superhydrophobic surface, we demonstrate that water microdroplets can coalesce and leap over the surface spontaneously along a prescribed direction. This controlled behavior is attributed to anisotropic liquid-solid adhesion. An analysis relating the preferential leaping probability to the geometrical parameters of the system is presented with consistent experimental results. Surfaces with this rare quality demonstrate many unique characteristics, such as self-powered, and relatively long-distance transport of microdroplets by "relay" coalescence-induced leaping. PMID:26929097

  1. Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant.

    PubMed

    Ramachandran, Rahul; Nosonovsky, Michael

    2015-10-14

    We study the correlation of wetting properties and corrosion rates on hydrophobized cast iron. Samples of different surface roughnesses (abraded by sandpaper) are studied without coating and with two types of hydrophobic coatings (stearic acid and a liquid repelling spray). The contact angles and contact angle hysteresis are measured using a goniometer while corrosion rates are measured by a potentiodynamic polarization test. The data show a decrease in corrosion current density and an increase in corrosion potential after superhydrophobization. A similar trend is also found in the recent literature data. We conclude that a decrease in the corrosion rate can be attributed to the changing open circuit potential of a coated surface and increased surface area making the non-homogeneous (Cassie-Baxter) state possible. We interpret these results in light of the idea that the inherent surface energy is coupled with the electric potential in accordance with the Lippmann law of electrowetting and Le Châtelier's principle and, therefore, hydrophobization leads to a decrease in the corrosion potential. This approach can be used for novel anti-corrosive coatings. PMID:26344151

  2. Fabrication of lotus-leaf-like superhydrophobic surfaces via Ni-based nano-composite electro-brush plating

    NASA Astrophysics Data System (ADS)

    Liu, Hongtao; Wang, Xuemei; Ji, Hongmin

    2014-01-01

    Superhydrophobic surface has become a research hot topic in recent years due to its excellent performance and wide application prospect. This paper investigates the method to fabricate superhydrophobic surface on carbon steel substrate via two-layer nano-composite electro-brush plating and subsequent surface modification with low free energy materials. The hydrophobic properties of as-prepared coatings were characterized by a water sliding angle (SA) and a water contact angle (CA) measured by the Surface tension instrument. A Scanning electron microscope was used to analyze the surface structure of plating coatings. Anti-corrosion performance of the superhydrophobic coating was characterized by a potentiodynamic polarization curve measured by the Electrochemical workstation. The research result shows that: the superhydrophobic structure can be successfully prepared by plating nano-C/Ni and nano-Cu/Ni two-layer coating on carbon steel substrate under appropriate technology and has similarity with lotus-leaf-like micro/nano composite structure; the contact angle of the as-prepared superhydrophobic coating can be up to 155.5°, the sliding angle is 5°; the coating has better anti-corrosion performance compared with substrate.

  3. Robust and Superhydrophobic Surface Modification by a "Paint + Adhesive" Method: Applications in Self-Cleaning after Oil Contamination and Oil-Water Separation.

    PubMed

    Chen, Baiyi; Qiu, Jianhui; Sakai, Eiichi; Kanazawa, Nobuhiro; Liang, Ruilu; Feng, Huixia

    2016-07-13

    Conventional superhydrophobic surfaces have always depended on expensive, sophisticated, and fragile roughness structures. Therefore, poor robustness has turned into the bottleneck for large-scale industrial applications of the superhydrophobic surfaces. To handle this problem, a superhydrophobic surface with firm robustness urgently needs to be developed. In this work, we created a versatile strategy to fabricate robust, self-cleaning, and superhydrophobic surfaces for both soft and hard substrates. We created an ethanol based suspension of perfluorooctyltriethoxysilane-mdodified calcium carbonate nanoparticles which can be sprayed onto both hard and soft substrates to form superhydrophobic surfaces. For all kinds of substrates, spray adhesive was directly coated onto abluent substrate surfaces to promote the robustness. These superhydrophobic surfaces showed remarkable robustness against knife scratch and sandpaper abrasion, while retaining its superhydrophobicity even after 30 abrasion cycles with sandpaper. What is more, the superhydrophobic surfaces have shown promising potential applications in self-cleaning and oil-water separation. The surfaces retained their self-cleaning property even immersed in oil. In addition to oil-water separation, the water contents in oil after separation of various mixtures were all below 150 ppm, and for toluene even as low as 55 ppm. Furthermore, the as-prepared device for oil-water separation could be cycled 6 times and still retained excellent oil-water separation efficiency. PMID:27286474

  4. Robust and Superhydrophobic Surface Modification by a "Paint + Adhesive" Method: Applications in Self-Cleaning after Oil Contamination and Oil-Water Separation.

    PubMed

    Chen, Baiyi; Qiu, Jianhui; Sakai, Eiichi; Kanazawa, Nobuhiro; Liang, Ruilu; Feng, Huixia

    2016-07-13

    Conventional superhydrophobic surfaces have always depended on expensive, sophisticated, and fragile roughness structures. Therefore, poor robustness has turned into the bottleneck for large-scale industrial applications of the superhydrophobic surfaces. To handle this problem, a superhydrophobic surface with firm robustness urgently needs to be developed. In this work, we created a versatile strategy to fabricate robust, self-cleaning, and superhydrophobic surfaces for both soft and hard substrates. We created an ethanol based suspension of perfluorooctyltriethoxysilane-mdodified calcium carbonate nanoparticles which can be sprayed onto both hard and soft substrates to form superhydrophobic surfaces. For all kinds of substrates, spray adhesive was directly coated onto abluent substrate surfaces to promote the robustness. These superhydrophobic surfaces showed remarkable robustness against knife scratch and sandpaper abrasion, while retaining its superhydrophobicity even after 30 abrasion cycles with sandpaper. What is more, the superhydrophobic surfaces have shown promising potential applications in self-cleaning and oil-water separation. The surfaces retained their self-cleaning property even immersed in oil. In addition to oil-water separation, the water contents in oil after separation of various mixtures were all below 150 ppm, and for toluene even as low as 55 ppm. Furthermore, the as-prepared device for oil-water separation could be cycled 6 times and still retained excellent oil-water separation efficiency.

  5. Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Rykaczewski, K.; Scott, J. H. J.; Fedorov, A. G.

    2011-02-01

    Superhydrophobic surfaces (SHSs) show promise as promoters of dropwise condensation. Droplets with diameters below ˜10 μm account for the majority of the heat transferred during dropwise condensation but their growth dynamics on SHS have not been systematically studied. Due to the complex topography of the surface environmental scanning electron microscopy is the preferred method for observing the growth dynamics of droplets in this size regime. By studying electron beam heating effects on condensed water droplets we establish a magnification limit below which the heating effects are negligible and use this insight to study the mechanism of individual drop growth.

  6. Tuning cell adhesion on polymeric and nanocomposite surfaces: Role of topography versus superhydrophobicity.

    PubMed

    Zangi, Sepideh; Hejazi, Iman; Seyfi, Javad; Hejazi, Ehsan; Khonakdar, Hossein Ali; Davachi, Seyed Mohammad

    2016-06-01

    Development of surface modification procedures which allow tuning the cell adhesion on the surface of biomaterials and devices is of great importance. In this study, the effects of different topographies and wettabilities on cell adhesion behavior of polymeric surfaces are investigated. To this end, an improved phase separation method was proposed to impart various wettabilities (hydrophobic and superhydrophobic) on polypropylene surfaces. Surface morphologies and compositions were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cell culture was conducted to evaluate the adhesion of 4T1 mouse mammary tumor cells. It was found that processing conditions such as drying temperature is highly influential in cell adhesion behavior due to the formation of an utterly different surface topography. It was concluded that surface topography plays a more significant role in cell adhesion behavior rather than superhydrophobicity since the nano-scale topography highly inhibited the cell adhesion as compared to the micro-scale topography. Such cell repellent behavior could be very useful in many biomedical devices such as those in drug delivery and blood contacting applications as well as biosensors.

  7. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures.

    PubMed

    Im, Maesoon; Im, Hwon; Lee, Joo-Hyung; Yoon, Jun-Bo; Choi, Yang-Kyu

    2010-11-16

    A polydimethylsiloxane (PDMS) elastomer surface with perfectly ordered microstructures having an inverse-trapezoidal cross-sectional profile (simply PDMS trapezoids) showed superhydrophobic and transparent characteristics under visible light as reported in our previous work. The addition of a fluoropolymer (Teflon) coating enhances both features and provides oleophobicity. This paper focuses on the analytical modeling of the fabricated PDMS trapezoids structure and thermodynamic analysis based on the Gibbs free energy analysis. Additionally, the wetting characteristics of the fabricated PDMS trapezoids surface before and after the application of the Teflon coating are analytically explained. The Gibbs free energy analysis reveals that, due to the Teflon coating, the Cassie-Baxter state becomes energetically more favorable than the Wenzel state and the contact angle difference between the Cassie-Baxter state and the Wenzel state decreases. These two findings support the robustness of the superhydrophobicity of the fabricated Teflon-coated PDMS trapezoids. This is then verified via the impinging test of a water droplet at a high speed. The dependencies of the design parameters in the PDMS trapezoids on the hydrophobicity are also comprehensively studied through a thermodynamic analysis. Geometrical dependency on the hydrophobicity shows that overhang microstructures do not have a significant influence on the hydrophobicity. In contrast, the intrinsic contact angle of the structural material is most important in determining the apparent contact angle. On the other hand, the experimental results showed that the side angles of the overhangs are critical not for the hydrophobic but for the oleophobic property with liquids of a low surface tension. Understanding of design parameters in the PDMS trapezoids surface gives more information for implementation of superhydrophobic surfaces. PMID:20879754

  8. Analytical modeling and thermodynamic analysis of robust superhydrophobic surfaces with inverse-trapezoidal microstructures.

    PubMed

    Im, Maesoon; Im, Hwon; Lee, Joo-Hyung; Yoon, Jun-Bo; Choi, Yang-Kyu

    2010-11-16

    A polydimethylsiloxane (PDMS) elastomer surface with perfectly ordered microstructures having an inverse-trapezoidal cross-sectional profile (simply PDMS trapezoids) showed superhydrophobic and transparent characteristics under visible light as reported in our previous work. The addition of a fluoropolymer (Teflon) coating enhances both features and provides oleophobicity. This paper focuses on the analytical modeling of the fabricated PDMS trapezoids structure and thermodynamic analysis based on the Gibbs free energy analysis. Additionally, the wetting characteristics of the fabricated PDMS trapezoids surface before and after the application of the Teflon coating are analytically explained. The Gibbs free energy analysis reveals that, due to the Teflon coating, the Cassie-Baxter state becomes energetically more favorable than the Wenzel state and the contact angle difference between the Cassie-Baxter state and the Wenzel state decreases. These two findings support the robustness of the superhydrophobicity of the fabricated Teflon-coated PDMS trapezoids. This is then verified via the impinging test of a water droplet at a high speed. The dependencies of the design parameters in the PDMS trapezoids on the hydrophobicity are also comprehensively studied through a thermodynamic analysis. Geometrical dependency on the hydrophobicity shows that overhang microstructures do not have a significant influence on the hydrophobicity. In contrast, the intrinsic contact angle of the structural material is most important in determining the apparent contact angle. On the other hand, the experimental results showed that the side angles of the overhangs are critical not for the hydrophobic but for the oleophobic property with liquids of a low surface tension. Understanding of design parameters in the PDMS trapezoids surface gives more information for implementation of superhydrophobic surfaces.

  9. Multifunctional polymethylsilsesquioxane (PMSQ) surfaces prepared by electrospinning at the sol-gel transition: superhydrophobicity, excellent solvent resistance, thermal stability and enhanced sound absorption property.

    PubMed

    Xiang, Haifan; Zhang, Liang; Wang, Zhen; Yu, Xiaolan; Long, Yuhua; Zhang, Xiaoli; Zhao, Ning; Xu, Jian

    2011-07-01

    Multifunctional superhydrophobic polymethylsilsesquioxane (PMSQ) surfaces with excellent solvent resistance, thermal stability and enhanced sound absorption property were manufactured by electrospinning. The surfaces with various hierarchical morphologies and hydrophobicity were obtained by electrospinning at the different stages of sol-gel transition of PMSQ prepolymer solution. At the stage with a proper viscosity the superhydrophobic PMSQ surface with a contact angle as high as 151° and a sliding angle as low as 8° was prepared. Due to the excellent thermal stability and solvent resistance properties of the cured PMSQ, the resultant surfaces remain superhydrophobicity after thermal treatment at 300 °C and immersion into many solvents. Additionally, an enhanced acoustical performance and ultra water repellency were obtained simultaneously when the traditional acoustical sponge was decorated with the electrospun PMSQ superhydrophobic surface. The robust superhydrophobic PMSQ surfaces may promise practical applications in many fields.

  10. Fabrication and characterization of stable superhydrophobic surface with good friction-reducing performance on Al foil

    NASA Astrophysics Data System (ADS)

    Li, Peipei; Chen, Xinhua; Yang, Guangbin; Yu, Laigui; Zhang, Pingyu

    2014-05-01

    A lotus-leaf-like hierarchical structure with superhydrophobicity was created on Al foil by a facile three-step solution-immersion method involving etching in hydrochloric acid solution and immersing in hot water as well as surface-modification by stearic acid (denoted as STA). As-prepared etched-immersed Al/STA rough surface was characterized by means of scanning electron microscopy and X-ray photoelectron spectroscopy. Moreover, the water contact angles and water sliding angles of as-prepared etched-immersed Al/STA rough surface were measured, and the friction-reducing performance and self-cleaning ability of the as-prepared surface were also evaluated. Results indicate that the etched-immersed Al/STA rough surface consists of interconnected convex-concave micro-structure and uniformly distributed nano-sheets. Besides, it exhibits stable superhydrophobicity and good friction-reducing ability. Namely, it has a contact angle of water as high as 164.2° and a water sliding angle lower than 5°, while it retains good friction-reducing ability during extended sliding and possesses good self-cleaning ability as well. This demonstrates that the etched-immersed Al/STA rough surface may favor the applications of Al and its alloys in various industrial fields.

  11. Effect of superhydrophobic surfaces on the flow over a hydrofoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Kim, Hyunseok; Kim, Nayoung; Park, Hyungmin

    2014-11-01

    In the present study, we experimentally investigate the effect of superhydrophobic surface on the flow over a hydrofoil at low Rec <104 , where c is the chord length of a hydrofoil. As a hydrofoil, we consider the cross-sections typically used for airfoils like NACA0012, NACA0024, and NACA4412, which stand for thin, thick and cambered hydrofoils, respectively. Spray-coating of hydrophobic nanoparticles are applied onto the hydrofoil surface and subsequent velocity fields are measured in a water tunnel using two-dimensional particle image velocimetry at different angles of attack, α =0° -20° . At small α's (for example, less than 10°), it is found that the surface slip tends to affect the flow separation slightly and also modify the size of recirculation region in the wake. Since a massive separation occurs at the leading edge at larger α's, however, the effect of superhydrophobic surface becomes diminished. In the talk, the dependence of the hydrodynamic role of surface slip on the hydrofoil shape and Rec will be presented. Supported by the NRF Programs (NRF-2012M2A8A4055647, NRF-2013R1A1A1008373) of Korean government.

  12. Design of an outstanding super-hydrophobic surface by electro-spinning

    NASA Astrophysics Data System (ADS)

    Sarkar, Manas K.; Bal, Kausik; He, Fuen; Fan, Jintu

    2011-05-01

    A duel-layer super-hydrophobic surface, comprising polyvinylidene fluoride (PVDF) and fluorinated silane molecules (FSM), was engineered using electro-spinning a coating onto the glass. Scanning electron microscopy was used to confirm that, by reducing the percentage of PVDF in the spraying solution, the aspect ratio of the nano-beads could be changed and a sharp bead profile obtained. Energy dispersive spectroscopy was employed to ensure the maximum amount of FSM was present on the surface, which assists in achieving a high Water Contact Angle. Using a two-step process, involving PVDF and FSM, nano-beads, with high aspect ratio, were formed on a rough surface which produced a super-hydrophobic surface with a Water Contact Angle of 170.2° and a very low Water Roll-off Angle (<1°). Such a coating facilitates the speedy run-off of water drops from a surface and has many potential applications in buildings and other areas.

  13. Acids and alkali resistant sticky superhydrophobic surfaces by one-pot electropolymerization of perfluoroalkyl alkyl pyrrole.

    PubMed

    Nicolas, Mael

    2010-03-15

    Over the past few years, electropolymerization of semifluorinated monomers like thiophene or pyrrole has been used as a gentle and effective method to generate, in one step, stable superhydrophobic surfaces. The synthetic route mostly involves the coupling reaction between a carboxylic acid and an alcohol, using a carboxy group-activated reagent and a catalyst. As a consequence, the electroformed surfaces present high liquid repellency due to the concomitant effect of roughness and low surface energy. Nevertheless, the ester connector can be cleaved under acidic and basic conditions, preventing its use under a range of environmental conditions. To overcome this drawback, a new perfluoroalkyl alkyl pyrrole has been synthesized, the fluorinated segment being connected to the electropolymerizable part via an alkyl chain, and electropolymerized, leading to surfaces that exhibit a static contact angle with water superior to 150 degrees and no sliding angle, over a wide pH range and with a long lifetime. This represents the first example of a pure conducting polymer surface with sticky superhydrophobicity not only in pure water but also in corrosive solutions such as acids and bases, giving rise to new prospects in practical applications. PMID:20060984

  14. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces.

    PubMed

    Jung, Y C; Bhushan, B

    2008-01-01

    Superhydrophobic surfaces have considerable technological potential for various applications due to their extreme water repellent properties. The superhydrophobic surfaces may be generated by the use of hydrophobic coating, roughness and air pockets between solid and liquid. The geometric effects and dynamic effects, such as surface waves, can destroy the composite solid-air-liquid interface. The relationship between the water droplet size and geometric parameters governs the creation of composite interface and affects transition from solid-liquid interface to composite interface. Therefore, it is necessary to study the effect of droplets of various sizes. We have studied the effect of droplet size on contact angle by evaporation using droplets with radii ranging from about 300 to 700 microm. Experimental and theoretical studies of the wetting properties of silicon surfaces patterned with pillars of two different diameters and heights with varying pitch values are presented. We propose a criterion where the transition from Cassie and Baxter regime to Wenzel regime occurs when the droop of the droplet sinking between two asperities is larger than the depth of the cavity. The trends are explained based on the experimental data and the proposed transition criteria. An environmental scanning electron microscopy (ESEM) is used to form smaller droplets of about 20 microm radius and measure the contact angle on the patterned surfaces. The investigation has shown that ESEM provides a new approach to wetting studies on the microscale. PMID:18173651

  15. Acids and alkali resistant sticky superhydrophobic surfaces by one-pot electropolymerization of perfluoroalkyl alkyl pyrrole.

    PubMed

    Nicolas, Mael

    2010-03-15

    Over the past few years, electropolymerization of semifluorinated monomers like thiophene or pyrrole has been used as a gentle and effective method to generate, in one step, stable superhydrophobic surfaces. The synthetic route mostly involves the coupling reaction between a carboxylic acid and an alcohol, using a carboxy group-activated reagent and a catalyst. As a consequence, the electroformed surfaces present high liquid repellency due to the concomitant effect of roughness and low surface energy. Nevertheless, the ester connector can be cleaved under acidic and basic conditions, preventing its use under a range of environmental conditions. To overcome this drawback, a new perfluoroalkyl alkyl pyrrole has been synthesized, the fluorinated segment being connected to the electropolymerizable part via an alkyl chain, and electropolymerized, leading to surfaces that exhibit a static contact angle with water superior to 150 degrees and no sliding angle, over a wide pH range and with a long lifetime. This represents the first example of a pure conducting polymer surface with sticky superhydrophobicity not only in pure water but also in corrosive solutions such as acids and bases, giving rise to new prospects in practical applications.

  16. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: energy transformation

    NASA Astrophysics Data System (ADS)

    Kibar, Ali

    2016-02-01

    This study presents the theory of impinging an oblique liquid jet onto a vertical superhydrophobic surface based on both experimental and numerical results. A Brassica oleracea leaf with a 160° apparent contact angle was used for the superhydrophobic surface. Distilled water was sent onto the vertical superhydrophobic surface in the range of 1750-3050 Reynolds number, with an inclination angle of 20°-40°, using a circular glass tube with a 1.75 mm inner diameter. The impinging liquid jet spread onto the surface governed by the inertia of the liquid and then reflected off the superhydrophobic surface due to the surface energy of the spreading liquid. Two different energy approaches, which have time-scale and per-unit length, were performed to determine transformation of the energy. The kinetic energy of the impinging liquid jet was transformed into the surface energy with an increasing interfacial surface area between the liquid and air during spreading. Afterwards, this surface energy of the spreading liquid was transformed into the reflection kinetic energy.

  17. A computational study of the impingement of water droplets onto freezing superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Jin, Wen; Amirzadeh, Behrooz; Tootkaboni, Mazdak; Raessi, Mehdi; University of Massachusetts Dartmouth Team

    2015-11-01

    We present computational simulations of the impingement of micron-size water droplets onto freezing superhydrophobic surfaces at various Weber numbers, droplet initial temperatures, and surface temperatures. The simulation results are from an in-house volume-of-fluid based, free-surface flow solver with phase change. The objective is to investigate the conditions under which the droplets bounce off the surface or stick to the surface and freeze. The transition between the bouncing and sticking regimes is shown. Then, using a dimensional analysis of the timescales for droplet freezing and drop-surface contact, a theoretical model is proposed for predicting the above transition. Finally, the predictions of the theoretical model are compared to the transition conditions observed in the computational simulations. Funding from the National Science Foundation CBET-1336232 grant is gratefully acknowledged.

  18. One-step solution immersion process to fabricate superhydrophobic surfaces on light alloys.

    PubMed

    Ou, Junfei; Hu, Weihua; Xue, Mingshan; Wang, Fajun; Li, Wen

    2013-10-23

    A simple and universal one-step process bas been developed to render light alloys (including AZ91D Mg alloy, 5083 Al alloy, and TC4 Ti alloy) superhydrophobic by immersing the substrates in a solution containing low-surface-energy molecules of 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS, 20 μL), ethanol (10 mL), and H2O (10 mL for Al and Mg alloy)/H2O2 (15%, 10 mL for Ti alloy). Field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, and water contact angle measurements have been performed to characterize the morphological features, chemical composition, and wettability of the surfaces, respectively. The results indicate that the treated light alloys are rough-structured and covered by PFOTS molecules; consequently, the surfaces show static contact angles higher than 150° and sliding angles lower than 10°. This research reveals that it is feasible to fabricate superhydrophobic surfaces (SHS) easily and effectively without involving the traditional two-step processes. Moreover, this one-step process may find potential application in the field of industrial preparation of SHS because of its simplicity and universality.

  19. Fabrication of hierarchical structures for stable superhydrophobicity on metallic planar and cylindrical inner surfaces

    NASA Astrophysics Data System (ADS)

    Hao, Xiuqing; Wang, Li; Lv, Danhui; Wang, Quandai; Li, Liang; He, Ning; Lu, Bingheng

    2015-01-01

    Recently, the construction of stable superhydrophobicity on metallic wetting surfaces has gained increasing attention due to its potential wide applications. In this paper, we propose an economic fabricating method, which not only is suitable for metallic planar surfaces, but also could be applied onto cylindrical inner surfaces. It mainly involves two steps: etching micro-concaves by a movable mask electrochemical micromachining (EMM) technique and fabricating nanopillars of ZnO by a hydrothermal method. Then the influences of surface morphology on the static and dynamic behaviors of water droplets are investigated. The energy loss during impact on the surfaces is quantified in terms of the restitution coefficient for droplets bouncing off the surfaces. For hierarchical structures with excellent superhydrophobicity (contact angle ≈180° and sliding angle ≤1°), the droplet bounces off the surface several times, superior to the droplet's response on single nanopillars (contact angle ≈165.8° and sliding angle ≈6.29°) where droplet bounces off only for limited a number of times, and even far better than the dynamics of a liquid droplet impinging on microstructures (contact angle ≈132.1° and sliding angle >90°) where droplet does not rebound and remains pinned. The highest elasticity is obtained on the hierarchical surface, where the restitution coefficient can be as large as 0.94. The fabricating method is then applied onto the cylindrical inner surface and the wetting behavior is confirmed to be consistent with the planar surface. This method, which can be generalized to any kind of solid electroconductive metal or other surfaces with different shapes, could find wide practical applications in self-cleaning surfaces, chemical industry, microfluidic devices, mechanical engineering and aviation.

  20. Connector ability to design superhydrophobic and oleophobic surfaces from conducting polymers.

    PubMed

    Zenerino, Arnaud; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frédéric

    2010-08-17

    In the aim of creating superoleophobic surfaces using monomers with short perfluorinated chains, to avoid drawbacks associated with PFOA, original semifluorinated (C(4)F(9), C(6)F(13)) 3,4-ethylenedioxypyrrole derivatives were synthesized. These monomers were obtained using the faster synthetic method than previously described with some analogues, characterized and electrochemically polymerized on gold plates. The obtained surfaces exhibited superhydrophobic (contact angle with water of 157 degrees and 158 degrees, respectively) and oleophobic properties (contact angle with hexadecane: 88 degrees and 108 degrees, respectively). The comparison between these new monomers and already published analogue EDOP6 confirms the importance of the bipolaronic form of conductive polymer for obtaining surface nanoporosity and as a consequence improving surface oleophobicity. Thus, little change in the molecule design of the connector and the spacer of the monomer can have a significant influence on the surface oleophobicity. PMID:20695602

  1. Connector ability to design superhydrophobic and oleophobic surfaces from conducting polymers.

    PubMed

    Zenerino, Arnaud; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frédéric

    2010-08-17

    In the aim of creating superoleophobic surfaces using monomers with short perfluorinated chains, to avoid drawbacks associated with PFOA, original semifluorinated (C(4)F(9), C(6)F(13)) 3,4-ethylenedioxypyrrole derivatives were synthesized. These monomers were obtained using the faster synthetic method than previously described with some analogues, characterized and electrochemically polymerized on gold plates. The obtained surfaces exhibited superhydrophobic (contact angle with water of 157 degrees and 158 degrees, respectively) and oleophobic properties (contact angle with hexadecane: 88 degrees and 108 degrees, respectively). The comparison between these new monomers and already published analogue EDOP6 confirms the importance of the bipolaronic form of conductive polymer for obtaining surface nanoporosity and as a consequence improving surface oleophobicity. Thus, little change in the molecule design of the connector and the spacer of the monomer can have a significant influence on the surface oleophobicity.

  2. Superhydrophobic surfaces on diverse metals based on ultrafast sequential deposition of silver and stearic acid

    NASA Astrophysics Data System (ADS)

    Ou, Junfei; Shi, Qingwen; Chen, Yiwei; Wang, Fajun; Xue, Mingshan; Li, Wen

    2015-01-01

    In the presence of NaF, silver (Ag) was galvanically deposited onto aluminum (Al) substrate quickly (typically 10 s) from dilute aqueous AgNO3 solution. Subsequent immersion into ethanolic solution of stearic acid (SA, for 30 s) rendered Al superhydrophobic. The deposition and morphological evolution of Ag were investigated in detail. It was found that NaF was indispensable to initiate the Ag galvanic deposition by dissolving the barrier oxide layer. Moreover, as reaction time prolonging, surface morphology and surface wettability varied synchronously. This strategy to fabricate superhydrophobic surface (coded as SHS) was also applicable to many other metals, such as Fe, Co and Mo with oxide passivation layer (NaF was needed) or Mg, Zn, Sn, Pb, and Cu with no apparent oxide passivation layer (NaF was not needed). In summary, the strategy to fabricate SHS based on Ag deposition and SA modification was quite impressive for its time-saving benefits and wide substrate applicability.

  3. Drag reduction on laser-patterned hierarchical superhydrophobic surfaces.

    PubMed

    Tanvir Ahmmed, K M; Kietzig, Anne-Marie

    2016-06-14

    Hierarchical laser-patterned surfaces were tested for their drag reduction abilities. A tertiary level of surface roughness which supports stable Cassie wetting was achieved on the patterned copper samples by laser-scanning multiple times. The laser-fabricated micro/nano structures sustained the shear stress in liquid flow. A rheometer setup was used to measure the drag reduction abilities in term of slip lengths on eight different samples. A considerable increase in slip length (111% on a grate sample) was observed on these surfaces compared to the slip length predictions from the theoretical and the experimental models for the non-hierarchical surfaces. The increase in slip lengths was correlated to the secondary level of roughness observed on the patterned samples. The drag reduction abilities of three different arrangements of the surface features were also compared: posts in a square lattice, parallel grates, and posts in a hexagonal lattice. Although the latter facilitates a stable Cassie state, it nevertheless resulted in a lower normalized slip length compared to the other two arrangements at a similar solid fraction. Furthermore, we coated the laser-patterned surfaces with a silane to test the effect of surface chemistry on drag reduction. While the contact angles were surprisingly similar for both the non-silanized and the silanized samples, we observed higher slip lengths on the latter, which we were able to explain by measuring the respective penetration depths of the liquid-vapour interface between surface features. PMID:27146256

  4. Drag reduction on laser-patterned hierarchical superhydrophobic surfaces.

    PubMed

    Tanvir Ahmmed, K M; Kietzig, Anne-Marie

    2016-06-14

    Hierarchical laser-patterned surfaces were tested for their drag reduction abilities. A tertiary level of surface roughness which supports stable Cassie wetting was achieved on the patterned copper samples by laser-scanning multiple times. The laser-fabricated micro/nano structures sustained the shear stress in liquid flow. A rheometer setup was used to measure the drag reduction abilities in term of slip lengths on eight different samples. A considerable increase in slip length (111% on a grate sample) was observed on these surfaces compared to the slip length predictions from the theoretical and the experimental models for the non-hierarchical surfaces. The increase in slip lengths was correlated to the secondary level of roughness observed on the patterned samples. The drag reduction abilities of three different arrangements of the surface features were also compared: posts in a square lattice, parallel grates, and posts in a hexagonal lattice. Although the latter facilitates a stable Cassie state, it nevertheless resulted in a lower normalized slip length compared to the other two arrangements at a similar solid fraction. Furthermore, we coated the laser-patterned surfaces with a silane to test the effect of surface chemistry on drag reduction. While the contact angles were surprisingly similar for both the non-silanized and the silanized samples, we observed higher slip lengths on the latter, which we were able to explain by measuring the respective penetration depths of the liquid-vapour interface between surface features.

  5. Micro to nano: Surface size scale and superhydrophobicity

    PubMed Central

    Dorrer, Christian

    2011-01-01

    Summary This work looks at the fundamental question of how the surface mobility of drops in the composite state is related to the size scale of the roughness features of the surface. To this end, relevant literature is first reviewed and the important terms are clarified. We then describe and discuss contact and roll-off angle measurements on a set of hydrophobicized silicon post surfaces for which all parameters except for the surface size scale were held constant. It was found that a critical transition from “sticky superhydrophobic” (composite state with large contact angle hysteresis) to “truly superhydrophobic” (composite state with low hysteresis) takes place as the size of the surface features reaches 1 μm. PMID:21977446

  6. Dual hierarchical biomimic superhydrophobic surface with three energy states

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Hung; Hsu, Tsung-Hsing; Chuang, Yun-Ju; Tseng, Fan-Gang

    2009-07-01

    A low hysteresis surface prepared by two-length-scaled hierarchical textures to mimic the Lotus effect is proposed. The fabricated textures incorporate self-masked nanorods on microextrusions. A high static contact angle (160°) and low hysteresis (˜2.7°) are obtained and comparable to the surface properties of a natural lotus leaf. The stability of hydrophobicity is described with respect to three energy states (nonwetting, microwetting, and nanowetting) based on dynamic contact angle analysis by droplet impinging onto the surface. The estimated texture-induced energy barrier based on the principle of energy conservation is in good agreement to those estimated from Laplace's law.

  7. Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques

    PubMed Central

    Accardo, Angelo; Di Fabrizio, Enzo; Limongi, Tania; Marinaro, Giovanni; Riekel, Christian

    2014-01-01

    Droplets on artificially structured superhydrophobic surfaces represent quasi contact-free sample environments which can be probed by X-ray microbeams and nanobeams in the absence of obstructing walls. This review will discuss basic surface wettability concepts and introduce the technology of structuring surfaces. Quasi contact-free droplets are compared with contact-free droplets; processes related to deposition and evaporation on solid surfaces are discussed. Droplet coalescence based on the electrowetting effect allows the probing of short-time mixing and reaction processes. The review will show for several materials of biological interest that structural processes related to conformational changes, nucleation and assembly during droplet evaporation can be spatially and temporally resolved by raster-scan diffraction techniques. Orientational ordering of anisotropic materials deposited during solidification at pinning sites facilitates the interpretation of structural data. PMID:24971957

  8. Fabrication of superhydrophobic surfaces via CaCO3 mineralization mediated by poly(glutamic acid)

    NASA Astrophysics Data System (ADS)

    Cao, Heng; Yao, Jinrong; Shao, Zhengzhong

    2013-03-01

    Surfaces with micrometer and nanometer sized hierarchical structures were fabricated by an one-step in situ additive controlled CaCO3 mineralization method. After chemical modification, the surfaces with various morphologies showed superhydrophobicity in different states, which could be easily adjusted by the initial supersaturation of the mineralization solution (concentration of calcium ion and poly(glutamic acid)). Generally, the "lotus state" surface which was covered by a thick layer of tetrahedron-shaped CaCO3 particles to exhibit a contact angle (CA) of 157±1° and a very low contact angle hysteresis (CAH) (roll-off angle=1°) was produced under high supersaturation. On the other hands, the petal-like surface with flower-shaped calcite spherulites was obtained in a relative low supersaturation, which showed both high CA (156±2°) and CAH (180°) in a "Cassie impregnating wetting state".

  9. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces

    PubMed Central

    Chen, Xuemei; Patel, Ravi S.; Weibel, Justin A.; Garimella, Suresh V.

    2016-01-01

    Coalescence-induced jumping of condensate droplets from a superhydrophobic surface with hierarchical micro/nanoscale roughness is quantitatively characterized. Experimental observations show that the condensate droplet jumping is induced by coalescence of multiple droplets of different sizes, and that the coalesced droplet trajectories typically deviate from the surface normal. A depth-from-defocus image processing technique is developed to track the out-of-plane displacement of the jumping droplets, so as to accurately measure the droplet size and velocity. The results demonstrate that the highest jumping velocity is achieved when two droplets coalesce. The jumping velocity decreases gradually with an increase in the number of coalescing droplets, despite the greater potential surface energy released upon coalescence. A general theoretical model that accounts for viscous dissipation, surface adhesion, line tension, the initial droplet wetting states, and the number and sizes of the coalescing droplets is developed to explain the trends of droplet jumping velocity observed in the experiments. PMID:26725512

  10. Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces with Hydrophilic Patches

    SciTech Connect

    Mishchenko, Lidiya; Khan, M.; Aizenberg, Joanna; Hatton, Benjamin

    2013-09-25

    Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescence of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Furthermore, control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. The combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.

  11. Spatial Control of Condensation and Freezing on Superhydrophobic Surfaces with Hydrophilic Patches

    SciTech Connect

    Mishchenko, L; Khan, M; Aizenberg, J; Hatton, BD

    2013-07-03

    Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescence of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. This combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.

  12. Understanding the Formation of Anisometric Supraparticles: A Mechanistic Look Inside Droplets Drying on a Superhydrophobic Surface.

    PubMed

    Sperling, Marcel; Papadopoulos, Periklis; Gradzielski, Michael

    2016-07-12

    Evaporating drops of nanoparticle suspensions on superhydrophobic surfaces can give anisotropic superaparticles. Previous studies implied the formation of a stiff shell that collapses, but the exact mechanism leading to anisotropy was unclear so far. Here we report on a new experiment using confocal laser scanning microscopy for a detailed characterization of particle formation from droplets of aqueous colloidal dispersions on superhydrophobic surfaces. In a customized setup, we investigated droplets of fumed silica suspensions using two different fluorescent dyes for independently marking silica and the water phase. Taking advantage of interfacial reflection, we locate the drop-air interface and extract normalized time-resolved intensity profiles for dyed silica throughout the drying process. Using comprehensive image analysis we observe and quantify shell-like interfacial particle accumulation arising from droplet evaporation. This leads to a buildup of a stiff fumed silica mantle of ∼20 μm thickness that causes deformation of the droplet throughout further shrinkage, consequently leading to the formation of solid anisometric fumed silica particles. PMID:27336463

  13. Singlet Oxygen Generation on Porous Superhydrophobic Surfaces: Effect of Gas Flow and Sensitizer Wetting on Trapping Efficiency

    PubMed Central

    2015-01-01

    We describe physical-organic studies of singlet oxygen generation and transport into an aqueous solution supported on superhydrophobic surfaces on which silicon–phthalocyanine (Pc) particles are immobilized. Singlet oxygen (1O2) was trapped by a water-soluble anthracene compound and monitored in situ using a UV–vis spectrometer. When oxygen flows through the porous superhydrophobic surface, singlet oxygen generated in the plastron (i.e., the gas layer beneath the liquid) is transported into the solution within gas bubbles, thereby increasing the liquid–gas surface area over which singlet oxygen can be trapped. Higher photooxidation rates were achieved in flowing oxygen, as compared to when the gas in the plastron was static. Superhydrophobic surfaces were also synthesized so that the Pc particles were located in contact with, or isolated from, the aqueous solution to evaluate the relative effectiveness of singlet oxygen generated in solution and the gas phase, respectively; singlet oxygen generated on particles wetted by the solution was trapped more efficiently than singlet oxygen generated in the plastron, even in the presence of flowing oxygen gas. A mechanism is proposed that explains how Pc particle wetting, plastron gas composition and flow rate as well as gas saturation of the aqueous solution affect singlet oxygen trapping efficiency. These stable superhydrophobic surfaces, which can physically isolate the photosensitizer particles from the solution may be of practical importance for delivering singlet oxygen for water purification and medical devices. PMID:24885074

  14. Conversion of an electrospun nanofibrous cellulose acetate mat from a super-hydrophilic to super-hydrophobic surface

    NASA Astrophysics Data System (ADS)

    Ding, Bin; Li, Chunrong; Hotta, Yoshio; Kim, Jinho; Kuwaki, Oriha; Shiratori, Seimei

    2006-09-01

    We report a new approach to convert an electrospun nanofibrous cellulose acetate mat surface from super-hydrophilic to super-hydrophobic. Super-hydrophilic cellulose acetate nanofibrous mats can be obtained by electrospinning hydrophilic cellulose acetate. The surface properties of the fibrous mats were modified from super-hydrophilic to super-hydrophobic with a simple sol-gel coating of decyltrimethoxysilane (DTMS) and tetraethyl orthosilicate (TEOS). The resultant samples were characterized by field emission scanning electron microscopy (FE-SEM), x-ray photoelectron spectroscopy (XPS), water contact angle, Brunauer-Emmett-Teller (BET) surface area, atomic force microscopy (AFM), and UV-visible measurements. The results of FE-SEM and XPS showed that the sol-gel (I) films were formed on the rough fibrous mats only after immersion in sol-gel. After the sol-gel (I) coating, the cellulose acetate fibrous mats formed in both 8 and 10 wt% cellulose acetate solutions showed the super-hydrophobic surface property. Additionally, the average sol-gel film thickness coated on 10 wt% cellulose acetate fibrous mats was calculated to be 80 nm. The super-hydrophobicity of fibrous mats was attributed to the combined effects of the high surface roughness of the electrospun nanofibrous mats and the hydrophobic DTMS sol-gel coating. Additionally, hydrophobic sol-gel nanofilms were found to be transparent according to UV-visible measurements.

  15. Wetting behavior and drag reduction of superhydrophobic layered double hydroxides films on aluminum

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Yin, Liang; Liu, Xiaowei; Weng, Rui; Wang, Yang; Wu, Zhiwen

    2016-09-01

    We present a novel method to fabricate Zn-Al LDH (layered double hydroxides) film with 3D flower-like micro-and nanostructure on the aluminum foil. The wettability of the Zn-Al LDH film can be easily changed from superhydrophilic to superhydrophobic with a simple chemical modification. The as-prepared superhydrophobic surfaces have water CAs (contact angles) of 165 ± 2°. In order to estimate the drag reduction property of the surface with different adhesion properties, the experimental setup of the liquid/solid friction drag is proposed. The drag reduction ratio for the as-prepared superhydrophobic sample is 20-30% at low velocity. Bearing this in mind, we construct superhydrophobic surfaces that have numerous technical applications in drag reduction field.

  16. A novel method to fabricate superhydrophobic surfaces based on well-defined mulberry-like particles and self-assembly of polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Yang, Jinxin; Pi, Pihui; Wen, Xiufang; Zheng, Dafeng; Xu, Mengyi; Cheng, Jiang; Yang, Zhuoru

    2009-01-01

    A superhydrophobic surface was obtained by combining application of CaCO 3/SiO 2 mulberry-like composite particles, which originated from violent stirring and surface modification, and self-assembly of polydimethylsiloxane. Water contact angle and sliding angle of the superhydrophobic surface were measured to be about 164 ± 2.5° and 5°, respectively. The excellent hydrophobicity is attributed to the synergistic effect of micro-submicro-nano-meter scale roughness (fabricated by composite particles) and the low surface energy (provided by polydimethylsiloxane). This procedure makes it possible for widespread applications of superhydrophobic film due to its simplicity and practicability.

  17. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    NASA Astrophysics Data System (ADS)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  18. Bioinspired superhydrophobic surfaces, fabricated through simple and scalable roll-to-roll processing

    PubMed Central

    Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R.; Han, InTaek; Yun, Dong-Jin

    2015-01-01

    A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements. PMID:26490133

  19. Superhydrophobic, antiadhesive, and antireflective surfaces mediated by hybrid biomimetic salvinia leaf with moth-eye structures

    NASA Astrophysics Data System (ADS)

    Yang, Cho-Yun; Tsai, Yu-Lin; Yang, Cho-Yu; Sung, Cheng-Kuo; Yu, Peichen; Kuo, Hao-Chung

    2014-08-01

    In this paper, we successfully demonstrate multifunctional surfaces based on scaffolding biomimetic structures, namely, hybrid salvinia leaves with moth-eye structures (HSMSs). The novel fabrication process employs scalable polystyrene nanosphere lithography and a lift-off process. Systematic characterizations show the biomimetic HSMS exhibiting superhydrophobic, self-cleaning, antiadhesive, and antireflective properties. Furthermore, the resulting surface tension gradient (known as the Marangoni effect) leads to a superior air retention characteristic in the HSMS under water droplet impact, compared with the traditional hybrid lotus leaf with a moth-eye structure (HLMS). Such results and learnings pave the way towards the attainment and mass deployment of dielectric surfaces with multiple functionalities for versatile biological and optoelectronic applications.

  20. Mussel-inspired one-step copolymerization to engineer hierarchically structured surface with superhydrophobic properties for removing oil from water.

    PubMed

    Huang, Shouying

    2014-10-01

    In the present study, a superhydrophobic polyurethane (PU) sponge with hierarchically structured surface, which exhibits excellent performance in absorbing oils/organic solvents, was fabricated for the first time through mussel-inspired one-step copolymerization approach. Specifically, dopamine (a small molecular bioadhesive) and n-dodecylthiol were copolymerized in an alkaline aqueous solution to generate polydopamine (PDA) nanoaggregates with n-dodecylthiol motifs on the surface of the PU sponge skeletons. Then, the superhydrophobic sponge that comprised a hierarchical structured surface similar to the chemical/topological structures of lotus leaf was fabricated. The topological structures, surface wettability, and mechanical property of the sponge were characterized by scanning electron microscopy, contact angle experiments, and compression test. Just as a result of the highly porous structure, superhydrophobic property and strong mechanical stability, this sponge exhibited desirable absorption capability of oils/organic solvents (weight gains ranging from 2494% to 8670%), suggesting a promising sorbents for the removal of oily pollutants from water. Furthermore, thanks to the nonutilization of the complicated processes or sophisticated equipment, the fabrication of the superhydrophobic sponge seemed to be quite easy to scale up. All these merits make the sponge a competitive candidate when compared to the conventional absorbents, for example, nonwoven polypropylene fabric.

  1. Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition.

    PubMed

    Crick, Colin R; Bear, Joseph C; Kafizas, Andreas; Parkin, Ivan P

    2012-07-10

    A new class of superhydrophobic photocatalytic surfaces that are self-cleaning through light-induced photodegradation and the Lotus effect are presented. The films are formed in a single-step aerosol-assisted chemical vapor deposition (AACVD) process. The films are durable and show no degradation on continuous exposure to UV-C radiation. PMID:22706974

  2. Super-hydrophobic transparent surface by femtosecond laser micro-patterned catalyst thin film for carbon nanotube cluster growth

    NASA Astrophysics Data System (ADS)

    Tang, M.; Hong, M. H.; Choo, Y. S.; Tang, Z.; Chua, Daniel H. C.

    2010-11-01

    In this work, super-hydrophobic surfaces were fabricated by femtosecond laser micro-machining and chemical vapor deposition to constitute hybrid scale micro/nano-structures formed by carbon nanotube (CNT) clusters. Nickel thin-film microstructures, functioning as CNT growth catalyst, precisely control the distribution of the CNT clusters. To obtain minimal heat-affected zones, femtosecond laser was used to trim the nickel thin-film coating. Plasma treatment was subsequently carried out to enhance the lotus-leaf effect. The wetting property of the CNT surface is improved from hydrophilicity to super-hydrophobicity at an advancing contact angle of 161 degrees. The dynamic water drop impacting test further confirms its enhanced water-repellent property. Meanwhile, this super-hydrophobic surface exhibits excellent transparency with quartz as the substrate. This hybrid fabrication technique can achieve super-hydrophobic surfaces over a large area, which has potential applications as self-cleaning windows for vehicles, solar cells and high-rise buildings.

  3. Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering (SERS)

    PubMed Central

    Kiraly, Brian; Yang, Shikuan

    2014-01-01

    We have fabricated porous silicon nanopillar arrays over large areas with a rapid, simple, and low-cost technique. The porous silicon nanopillars show unique longitudinal features along their entire length and have porosity with dimensions on the single-nanometer scale. Both Raman spectroscopy and photoluminescence data were used to determine the nanocrystallite size to be < 3 nm. The porous silicon nanopillar arrays also maintained excellent ensemble properties, reducing reflection nearly fivefold from planar silicon in the visible range without any optimization and approaching superhydrophobic behavior with increasing aspect ratio, demonstrating contact angles up to 138°. Finally, the porous silicon nanopillar arrays were made into sensitive surface enhanced Raman scattering (SERS) substrates by depositing metal onto the pillars. The SERS performance of the substrates was demonstrated using a chemical dye Rhodamine 6G. With their multitude of properties (i.e., antireflection, superhydrophobicity, photoluminescence, and sensitive SERS), the porous silicon nanopillar arrays described here can be valuable in applications such as solar harvesting, electrochemical cells, self-cleaning devices, and dynamic biological monitoring. PMID:23703091

  4. Micro-/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches.

    PubMed

    Lima, Ana Catarina; Mano, João F

    2015-01-01

    Inspired by natural structures, great attention has been devoted to the study and development of surfaces with extreme wettable properties. The meticulous study of natural systems revealed that the micro/nano-topography of the surface is critical to obtaining unique wettability features, including superhydrophobicity. However, the surface chemistry also has an important role in such surface characteristics. As the interaction of biomaterials with the biological milieu occurs at the surface of the materials, it is expected that synthetic substrates with extreme and controllable wettability ranging from superhydrophilic to superhydrophobic regimes could bring about the possibility of new investigations of cell-material interactions on nonconventional surfaces and the development of alternative devices with biomedical utility. This first part of the review will describe in detail how proteins and cells interact with micro/nano-structured surfaces exhibiting extreme wettabilities.

  5. Ultra lightweight PMMA-based composite plates with robust super-hydrophobic surfaces.

    PubMed

    Pareo, Paola; De Gregorio, Gian Luca; Manca, Michele; Pianesi, Maria Savina; De Marco, Luisa; Cavallaro, Francesco; Mari, Margherita; Pappadà, Silvio; Ciccarella, Giuseppe; Gigli, Giuseppe

    2011-11-15

    Extremely lightweight plates made of an engineered PMMA-based composite material loaded with hollow glass micro-sized spheres, nano-sized silica particles and aluminum hydroxide prismatic micro-flakes were realized by cast molding. Their interesting bulk mechanical properties were combined to properly tailored surface topography compatible with the achievement of a superhydrophobic behavior after the deposition of a specifically designed hydrophobic coating. With this aim, we synthesized two different species of fluoromethacrylic polymers functionalized with methoxysilane anchoring groups to be covalently grafted onto the surface protruding inorganic fillers. By modulating the feed composition of the reacting monomers, it was possible to combine the hydrophobic character of the polymer with an high adhesion strength to the substrate and hence to maximize both the water contact angle (up to 157°) and the durability of the easy-to-clean effect (up to 2000 h long outdoor exposure).

  6. A superhydrophobic to superhydrophilic in situ wettability switch of microstructured polypyrrole surfaces.

    PubMed

    Chang, Jean H; Hunter, Ian W

    2011-05-18

    We present an electrochemical layered system that allows for the fast, in situ wettability switch of microstructured PPy upon the application of an electric stimulus. We have eliminated the need for PPy to be immersed in an electrolyte to switch between wetting states, laying the groundwork for PPy to be used as a viable material in many applications, including microfluidics or smart textiles. The PPy surface was switched from the superhydrophobic state (contact angle=159) to the superhydrophilic state (contact angle=0) in 3 s. A wettability gradient was also created on a PPy surface using the layered system, causing a 3 µL droplet to travel approximately 2 mm in 0.8 s. PMID:21544891

  7. Surface plasmon resonance in super-periodic metal nanostructures

    NASA Astrophysics Data System (ADS)

    Leong, Haisheng

    Surface plasmon resonances in periodic metal nanostructures have been investigated over the past decade. The periodic metal nanostructures have served as new technology platforms in fields such as biological and chemical sensing. An existing method to determine the surface plasmon resonance properties of these metal nanostructures is the measurement of the light transmission or reflection from these nanostructures. The measurement of surface plasmon resonances in either the transmission or reflection allows one to resolve the surface plasmon resonance in metal nanostructures. In this dissertation, surface plasmon resonances in a new type of metal nanostructures were investigated. The new nanostructures were created by patterning traditional periodic nanohole and nanoslit arrays into diffraction gratings. The patterned nanohole and 11anoslit arrays have two periods in the structures. The new nanostructures are called "super-periodic" nanostructures. With rigorous finite difference time domain (FDTD) numerical simulations, surface plasmon resonances in super-periodic nanoslit and nanohole arrays were investigated. It was found that by creating a super-period in periodic metal nanostructures, surface plasmon radiations can be observed in the non-zero order diffractions. This discovery presents a new method of characterizing the surface plasmon resonances in metal nanostructures. Super-periodic gold nanoslit and nanohole arrays were fabricated with the electron beam lithography technique. The surface plasmon resonances were measured in the first order diffraction by using a CCD. The experimental results confirm well with the FDTD numerical simulations.

  8. Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity

    NASA Astrophysics Data System (ADS)

    Su, Chunping; Lu, Zhong; Zhao, Huiping; Yang, Hao; Chen, Rong

    2015-10-01

    Special wettability such as superhydrophobicity and superhydrophilicity has aroused considerable attention in recent years, especially for the surface that can be switched between superhydrophobicity and superhydrophilicity. In this work, hierarchical bismuth nanostructures with hyperbranched dendritic architectures were synthesized via the galvanic replacement reaction between zinc plate and BiCl3 in ethylene glycol solution, which was composed of a trunk, branches (secondary branch), and leaves (tertiary branch). After being modified by stearic acid, the as-prepared bismuth coating shows superhydrophobicity with a high water contact angle of 164.8° and a low sliding angle of 3°. More importantly, a remarkable surface wettability transition between superhydrophobicity and superhydrophilicity could be easily realized by the alternation of UV-vis irradiation and modification with stearic acid. The tunable wetting behavior of bismuth coating could be used as smart materials to make a great application in practice.

  9. Superhydrophobic and superoleophobic surface by electrodeposition on magnesium alloy substrate: Wettability and corrosion inhibition.

    PubMed

    Liu, Yan; Li, Shuyi; Wang, Yaming; Wang, Huiyuan; Gao, Ke; Han, Zhiwu; Ren, Luquan

    2016-09-15

    Superamphiphobic (both superhydrophobic and superoleophobic) surfaces have attracted great interests in the fundamental research and practical application. This research successfully fabricated the superamphiphobic surfaces by combining the nickel plating process and modification with perfluorocaprylic acid. The cooperation of hierarchical micro-nano structures and perfluorocaprylic acid with low surface energy plays an important role in the formation of superamphiphobic surfaces. The contact angles of water/oil have reached up to 160.2±1°/152.4±1°, respectively. Contrast with bare substrate, the electrochemical measurements of superamphiphobic surfaces, not only the EIS measurement, but also potentiodynamic polarization curves, all revealed that, the surface corrosion inhibition was improved significantly. Moreover, superamphiphobic surfaces exhibited superior stability in the solutions with a large pH range, also could maintain excellent performance after storing for a long time in the air. This method is easy, feasible and effective, and could be used to fabricate large-area mutli-functional surface. Such a technique will develop a new approach to fabricate superamphiphobic surfaces on different engineering materials.

  10. Article coated with flash bonded superhydrophobic particles

    DOEpatents

    Simpson, John T [Clinton, TN; Blue, Craig A [Knoxville, TN; Kiggans, Jr., James O [Oak Ridge, TN

    2010-07-13

    A method of making article having a superhydrophobic surface includes: providing a solid body defining at least one surface; applying to the surface a plurality of diatomaceous earth particles and/or particles characterized by particle sizes ranging from at least 100 nm to about 10 .mu.m, the particles being further characterized by a plurality of nanopores, wherein at least some of the nanopores provide flow through porosity, the particles being further characterized by a plurality of spaced apart nanostructured features that include a contiguous, protrusive material; flash bonding the particles to the surface so that the particles are adherently bonded to the surface; and applying a hydrophobic coating layer to the surface and the particles so that the hydrophobic coating layer conforms to the nanostructured features.

  11. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    NASA Astrophysics Data System (ADS)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2015-08-01

    Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO3) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO3 concentration had little effect on the wetting behavior, but a high AgNO3 concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for untreated iron. Meanwhile, the superhydrophobic iron surface maintained superhydrophobicity after 10 icing and de-icing cycles in cold conditions.

  12. Temperature-induced coalescence of colliding binary droplets on superhydrophobic surface.

    PubMed

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-01-01

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling. PMID:24603362

  13. Temperature-induced coalescence of colliding binary droplets on superhydrophobic surface.

    PubMed

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-03-07

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling.

  14. Temperature-Induced Coalescence of Colliding Binary Droplets on Superhydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-03-01

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling.

  15. Temperature-Induced Coalescence of Colliding Binary Droplets on Superhydrophobic Surface

    PubMed Central

    Yi, Nan; Huang, Bin; Dong, Lining; Quan, Xiaojun; Hong, Fangjun; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao

    2014-01-01

    This report investigates the impact of droplet temperature on the head-on collision of binary droplets on a superhydrophobic surface. Understanding droplet collision is critical to many fundamental processes and industrial applications. There are many factors, including collision speed, collision angle, and droplet composition, that influence the outcome of the collision between binary droplets. This work provides the first experimental study of the influence of droplet temperature on the collision of binary droplets. As the droplet temperature increases, the possibility increases for the two droplets to coalesce after collision. The findings in this study can be extended to collision of droplets under other conditions where control of the droplet temperature is feasible. Such findings will also be beneficial to applications that involve droplet collision, such as in ink-jet printing, steam turbines, engine ignition, and spraying cooling. PMID:24603362

  16. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces

    PubMed Central

    Reker, Meike; Barthlott, Wilhelm

    2014-01-01

    Summary Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect) are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m2 depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes. PMID:24991518

  17. Preparation and characterization of superhydrophobic surfaces based on hexamethyldisilazane-modified nanoporous alumina

    PubMed Central

    2011-01-01

    Superhydrophobic nanoporous anodic aluminum oxide (alumina) surfaces were prepared using treatment with vapor-phase hexamethyldisilazane (HMDS). Nanoporous alumina substrates were first made using a two-step anodization process. Subsequently, a repeated modification procedure was employed for efficient incorporation of the terminal methyl groups of HMDS to the alumina surface. Morphology of the surfaces was characterized by scanning electron microscopy, showing hexagonally ordered circular nanopores with approximately 250 nm in diameter and 300 nm of interpore distances. Fourier transform infrared spectroscopy-attenuated total reflectance analysis showed the presence of chemically bound methyl groups on the HMDS-modified nanoporous alumina surfaces. Wetting properties of these surfaces were characterized by measurements of the water contact angle which was found to reach 153.2 ± 2°. The contact angle values on HMDS-modified nanoporous alumina surfaces were found to be significantly larger than the average water contact angle of 82.9 ± 3° on smooth thin film alumina surfaces that underwent the same HMDS modification steps. The difference between the two cases was explained by the Cassie-Baxter theory of rough surface wetting. PMID:21827683

  18. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces.

    PubMed

    Mayser, Matthias J; Bohn, Holger F; Reker, Meike; Barthlott, Wilhelm

    2014-01-01

    Some plants and animals feature superhydrophobic surfaces capable of retaining a layer of air when submerged under water. Long-term air retaining surfaces (Salvinia-effect) are of high interest for biomimetic applications like drag reduction in ship coatings of up to 30%. Here we present a novel method for measuring air volumes and air loss under water. We recorded the buoyancy force of the air layer on leaf surfaces of four different Salvinia species and on one biomimetic surface using a highly sensitive custom made strain gauge force transducer setup. The volume of air held by a surface was quantified by comparing the buoyancy force of the specimen with and then without an air layer. Air volumes retained by the Salvinia-surfaces ranged between 0.15 and 1 L/m(2) depending on differences in surface architecture. We verified the precision of the method by comparing the measured air volumes with theoretical volume calculations and could find a good agreement between both values. In this context we present techniques to calculate air volumes on surfaces with complex microstructures. The introduced method also allows to measure decrease or increase of air layers with high accuracy in real-time to understand dynamic processes.

  19. Surface plasmon polaritons in artificial metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Briscoe, Jayson Lawrence

    Surface plasmon polaritons have been the focus of intense research due to their many unique properties such as high electromagnetic field localization, extreme sensitivity to surface conditions, and subwavelength confinement of electromagnetic waves. The area of potential impact is vast and includes promising advancements in photonic circuits, high speed photodetection, hyperspectral imaging, spectroscopy, enhanced solar cells, ultra-small scale lithography, and microscopy. My research has focused on utilizing these properties to design and demonstrate new phenomena and implement real-world applications using artificial metallic nanostructures. Artificial metallic nanostructures employed during my research begin as thin planar gold films which are then lithographically patterned according to previously determined dimensions. The result is a nanopatterned device which can excite surface plasmon polaritons on its surface under specific conditions. Through my research I characterized the optical properties of these devices for further insight into the interesting properties of surface plasmon polaritons. Exploration of these properties led to advancements in biosensing, development of artificial media to enhance and control light-matter interactions at the nanoscale, and hybrid plasmonic cavities. Demonstrations from these advancements include: label-free immunosensing of Plasmodium in a whole blood lysate, low part-per-trillion detection of microcystin-LR, enhanced refractive index sensitivity of novel resonant plasmonic devices, a defect-based plasmonic crystal, spontaneous emission modification of colloidal quantum dots, and coupling of plasmonic and optical Fabry-Perot resonant modes in a hybrid cavity.

  20. Patterning liquids on inkjet-imprinted surfaces with highly adhesive superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Bao, Bin; Sun, Jiazhen; Gao, Meng; Zhang, Xingye; Jiang, Lei; Song, Yanlin

    2016-05-01

    The rapidly increasing research interest in microfluidics, microreactors and solution-processable fabrication technologies requires the development of patterning techniques to obtain large-scale functional liquid arrays. To achieve this objective, photolithography, microcontact printing and mask-based UV irradiation have been utilized to physically or chemically pattern surfaces into templates where ordered arrays of liquid materials are constructed. However, these methods require elaborately fabricated templates or expensive vacuum-deposited masks that restrict their practical applications. Herein, we fabricate physically patterned superhydrophobic surfaces with high adhesion by modifying inkjet-imprinted surfaces through nanoparticle deposition, and utilize these surfaces as templates for liquid patterning. Various functional liquid materials are patterned into defined shapes through a simple dipping-withdrawing process. Moreover, functional material patterns such as photonic crystal patterns, arrays of inorganic nanoparticles and crystals are formed after solvent evaporation of the liquid droplets. Furthermore, chemical reactions can be carried out on the patterns. These surfaces demonstrate excellent performance in liquid patterning, which will find numerous applications in optoelectronic devices, lab-on-chip devices, microreactors, and related fields.The rapidly increasing research interest in microfluidics, microreactors and solution-processable fabrication technologies requires the development of patterning techniques to obtain large-scale functional liquid arrays. To achieve this objective, photolithography, microcontact printing and mask-based UV irradiation have been utilized to physically or chemically pattern surfaces into templates where ordered arrays of liquid materials are constructed. However, these methods require elaborately fabricated templates or expensive vacuum-deposited masks that restrict their practical applications. Herein, we fabricate

  1. Tailoring the morphology of raspberry-like carbon black/polystyrene composite microspheres for fabricating superhydrophobic surface

    SciTech Connect

    Bao, Yubin; Li, Qiuying; Xue, Pengfei; Huang, Jianfeng; Wang, Jibin; Guo, Weihong; Wu, Chifei

    2011-05-15

    In our previous report, raspberry-like carbon black/polystyrene (CB/PS) composite microsphere was prepared through heterocoagulation process. Based on the previous study, in the present work, the morphology of raspberry-like CB/PS particle is tailored through adjusting the polarity and the concentration ratio of CB/PS colloidal suspension with the purpose to prepare particulate film for the fabrication of superhydrophobic surface. Scanning electron microscope (SEM) confirms the morphology of raspberry-like particle and the coverage of CB. Rough surfaces fabricated by raspberry-like particles with proper morphology are observed by SEM and clear evidence of superhydrophobic surface is shown. The structure of raspberry-like particle is analyzed by atom force microscope. The proposed relationship between the hydrophobicity and the structure of CB aggregates on the surface of PS microsphere is discussed in details.

  2. Control of the near wake behind a circular cylinder using superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Nayoung; Kim, Hyunseok; Park, Hyungmin

    2014-11-01

    In the present study, the effect of superhydrophobic (SHPo) surface on turbulent wake behind a circular cylinder is studied. Using 2D particle image velocimetry, velocity fields are measured in a water tunnel at ReD = 0 . 7 - 2 . 5 ×104 . For SHPo surfaces, spray-coating of hydrophobic nanoparticles and roughened Teflon (with a sandpaper) are applied. The griding direction of a Teflon surface is varied as streamwise and spanwise ones, respectively, to see the effect of slip direction as well. It is found that the surface slip increases the turbulence in the flows above the circular cylinder and along the separating shear layers, which result in the delay of flow separation and early vortex roll-up in the wake. As a result, the recirculation bubble in the wake is reduced by up to 50%, and the wake survey estimates the drag reduction of about 10%. On the other hand, the spanwise slip is found to be more effective than streamwise one in flow control, supporting the suggested mechanism. Finally, the SHPo surfaces are applied locally by varying its installation angle and SHPo surface applied around the separation point was most effective, indicating that the surface slip directly controls the flow separation. Supported by the NRF Programs (NRF-2012M2A8A4055647, NRF-2013R1A1A1008373) of Korean government.

  3. The effect of contact angle hysteresis on droplet motion and collisions on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Nilsson, Michael; Rothstein, Jonathan

    2010-11-01

    The effect of varying the contact angle hysteresis of a superhydrophobic surface on the characteristics and dynamics of water droplet motion and their subsequent collision are investigated using a high-speed camera. The surfaces are created by imparting random roughness to Teflon through sanding. With this technique, it is possible to create surfaces with similar advancing contact angles near 150 degrees, but with varying contact angle hysteresis. This talk will focus on a number of interesting experimental observations pertaining to drop dynamics along a surface with uniform hysteresis, drop motion along surfaces with transition zones from one hysteresis to another, and the collision of droplets on surfaces of uniform hysteresis. For single drop studies, gravity is used as the driving force, while the collision studies use pressurized air to propel one drop into the other. For the case of droplet collision, the effect of hysteresis, Weber number, and impact number on the maximum deformation of the drops, and the post-collision dynamics will be discussed. For the single droplet measurements, the resistance to motion will be characterized as well as the transition from rolling to sliding as a function of drop size, inclination angle, and hysteresis. Additionally, we will quantify the effect of surface transitions on the resulting motion, mixing, and deflection of the drops.

  4. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale.

    PubMed

    Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N

    2012-10-01

    Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 μm and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water.

  5. Nanostructured surfaces investigated by quantitative morphological studies

    NASA Astrophysics Data System (ADS)

    Perani, Martina; Carapezzi, Stefania; Rani Mutta, Geeta; Cavalcoli, Daniela

    2016-05-01

    The morphology of different surfaces has been investigated by atomic force microscopy and quantitatively analyzed in this paper. Two different tools have been employed to this scope: the analysis of the height-height correlation function and the determination of the mean grain size, which have been combined to obtain a complete characterization of the surfaces. Different materials have been analyzed: SiO x N y , InGaN/GaN quantum wells and Si nanowires, grown with different techniques. Notwithstanding the presence of grain-like structures on all the samples analyzed, they present very diverse surface design, underlying that this procedure can be of general use. Our results show that the quantitative analysis of nanostructured surfaces allows us to obtain interesting information, such as grain clustering, from the comparison of the lateral correlation length and the grain size.

  6. Durable, superhydrophobic, superoleophobic and corrosion resistant coating on the stainless steel surface using a scalable method

    NASA Astrophysics Data System (ADS)

    Valipour Motlagh, N.; Birjandi, F. Ch.; Sargolzaei, J.; Shahtahmassebi, N.

    2013-10-01

    In this study, superamphiphobic coating was produced using low surface energy materials and fabrication of hierarchical structures on stainless steel surface. Hierarchical structure was fabricated by silica multilayer coatings and adequate control of particles size in each layer. The surface energy was decreased by fluoropolymer compounds. The maximum static contact angle of DI water, ethylene glycol and fuel oil droplets on the prepared surface increased from 64° to 166°, from 33° to 157° and from 0° to 116°, respectively. Also, the minimum sliding angles of DI water, ethylene glycol and fuel oil droplets on the prepared surface were less than 2°, 5° and 12°, respectively. These results confirmed the superhydrophobicity and superoleophobicity of coated surfaces. These films maintained their superamphiphobicity after 16 days of immersion in water. In electrochemical corrosion evaluation, the highest protection efficiency of fabricated films reached as high as 97.33%. These satisfied results confirmed that this simple method can be used to fabricate large scale samples.

  7. Tensiometric Characterization of Superhydrophobic Surfaces As Compared to the Sessile and Bouncing Drop Methods.

    PubMed

    Hisler, Valentin; Jendoubi, Hiba; Hairaye, Camille; Vonna, Laurent; Le Houérou, Vincent; Mermet, Frédéric; Nardin, Michel; Haidara, Hamidou

    2016-08-01

    We have considered in this work the Wilhelmy plate tensiometer to characterize the wetting properties of two model surface textures: (i) a series of three superhydrophobic micropillared surfaces and (ii) a series of two highly water-repellent surfaces microtextured with a femtosecond laser. The wetting forces obtained on these surfaces with the Wilhelmy plate technique were compared to the contact angles of water droplets measured with the sessile drop technique and to the bouncing behavior of water droplets recorded at a high frame rate. We showed that it is possible with this technique to directly measure triple-line anchoring forces that are not accessible with the commonly used sessile drop technique. In addition, we have demonstrated on the basis of the bouncing drop experiments wetting transitions induced by the specific test conditions associated with the Wilhelmy plate tensiometer for the two series of textured surfaces. Finally, the tensiometer technique is proposed as an alternative test for characterizing the wetting properties of highly liquid-repellent surface, especially under immersion conditions. PMID:27408983

  8. A durable, superhydrophobic, superoleophobic and corrosion-resistant coating with rose-like ZnO nanoflowers on a bamboo surface

    NASA Astrophysics Data System (ADS)

    Jin, Chunde; Li, Jingpeng; Han, Shenjie; Wang, Jin; Sun, Qingfeng

    2014-11-01

    Bamboo remains a vital component of modern-day society; however, its use is severely limited in certain applications because of its hydrophilic and oleophilic properties. In this work, we present a method to render bamboo surfaces superamphiphobic by combining control of ZnO nanostructures and fluoropolymer deposition while maintaining their corrosion resistance. Large-scale rose-like ZnO nanoflowers (RZN) were planted on the bamboo surface by a hydrothermal method. After fluoroalkylsilane (FAS) film deposition to lower the surface energy, the resulting surface showed superamphiphobicity toward water, oil, and even certain corrosive liquids, including salt solutions and acidic and basic solutions at all pH values. The as-prepared superamphiphobic bamboo surface was durable and maintained its superhydrophobic property with water contact angles >150° when stored under ambient condition for two months or immersed in a hydrochloric acid solution of pH 1 and a sodium hydroxide solution of pH 14 for 3 h at 50 °C.

  9. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.

    PubMed

    Peng, Shan; Tian, Dong; Yang, Xiaojun; Deng, Wenli

    2014-04-01

    In this study, a large-area superhydrophobic alumina surface with a series of superior properties was fabricated via an economical, simple, and highly effective one-step anodization process, and subsequently modified with low-surface-energy film. The effects of the anodization parameters including electrochemical anodization time, current density, and electrolyte temperature on surface morphology and surface wettability were investigated in detail. The hierarchical alumina pyramids-on-pores (HAPOP) rough structure which was produced quickly through the one-step anodization process together with a low-surface-energy film deposition [1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES) and stearic acid (STA)] confer excellent superhydrophobicity and an extremely low sliding angle. Both the PDES-modified superhydrophobic (PDES-MS) and the STA-modified superhydrophobic (STA-MS) surfaces present fascinating nonwetting and extremely slippery behaviors. The chemical stability and mechanical durability of the PDES-MS and STA-MS surfaces were evaluated and discussed. Compared with the STA-MS surface, the as-prepared PDES-MS surface possesses an amazing chemical stability which not only can repel cool liquids (water, HCl/NaOH solutions, around 25 °C), but also can show excellent resistance to a series of hot liquids (water, HCl/NaOH solutions, 30-100 °C) and hot beverages (coffee, milk, tea, 80 °C). Moreover, the PDES-MS surface also presents excellent stability toward immersion in various organic solvents, high temperature, and long time period. In particular, the PDES-MS surface achieves good mechanical durability which can withstand ultrasonication treatment, finger-touch, multiple fold, peeling by adhesive tape, and even abrasion test treatments without losing superhydrophobicity. The corrosion resistance and durability of the diverse-modified superhydrophobic surfaces were also examined. These fascinating performances makes the present method suitable for large

  10. Study on hierarchical structured PDMS for surface super-hydrophobicity using imprinting with ultrafast laser structured models

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Wenjun; Jiang, Gedong; Mei, Xuesong; Wang, Zibao; Wang, Kedian; Cui, Jianlei

    2016-02-01

    We report a simple and inexpensive method for producing super-hydrophobic surfaces through direct replication of micro/nano-structures on polydimethylsiloxane (PDMS) from a replication master prepared by ultrafast-laser texturing process. Gratings were obtained on 304L stainless steel plate using picosecond laser ablation. It has been used as a master with grating areas of different structural features. PDMS negative replica was prepared from the masters, and PDMS positive replica was prepared from the negative replica thereafter. Wettability of samples of the steel master, negative and positive replicas was distinguished using the apparent contact angle (CA) of water drop. Relationships between the CAs on three kinds of samples and structural features were presented. Super-hydrophobic behavior with self-cleaning, exhibited by a water contact angle of 164.5° and sliding angle of 8.44°, was observed on the PDMS negative replica surface. The negative and positive replicas were sputtered on gold films, which were used to metalized PDMS and eliminate the submicron/nano-structures in hierarchical structures. Results prove that submicro/nano-structures of hierarchical structures enhance the hydrophobicity of material surface remarkably. This replication method can be applied for large scale production of micro/nano textured super-hydrophobic surfaces for commercial applications.

  11. Simple and Green Fabrication of a Superhydrophobic Surface by One-Step Immersion for Continuous Oil/Water Separation.

    PubMed

    Zhu, Jingfang; Liu, Bin; Li, Longyang; Zeng, Zhixiang; Zhao, Wenjie; Wang, Gang; Guan, Xiaoyan

    2016-07-21

    In this paper, stainless steel meshes with superhydrophobic and superoleophilic surfaces were fabricated by rapid and simple one-step immersion in a solution containing hydrochloric acid and stearic acid. The apparent contact angles were tested by a video contact angle measurement system (CA). Field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were conducted to characterize the surface topographies and chemical compositions. The SEM results showed that mesh surfaces were covered by ferric stearate (Fe[CH3(CH2)16COO]2) with low surface energy. The CA test results showed that the mesh had a maximum apparent contact angle of 160 ± 1.0° and a sliding angle of less than 5.0° for the water droplet, whereas the apparent contact angle for the oil droplet was zero. Ultrasound oscillation and exposure tests at atmospheric conditions and immersion tests in 3.5 wt % NaCl aqueous solution were conducted to confirm the mesh with excellent superhydrophobic and superoleophilic properties. On the basis of the superhydrophobic mesh, a miniature separation device pump was designed to collect pure oil from the oil/water mixture. It showed that the device was easier and convenient. The techniques and materials presented in this work are promising for application to wastewater and oil spill treatment.

  12. Simple and Green Fabrication of a Superhydrophobic Surface by One-Step Immersion for Continuous Oil/Water Separation.

    PubMed

    Zhu, Jingfang; Liu, Bin; Li, Longyang; Zeng, Zhixiang; Zhao, Wenjie; Wang, Gang; Guan, Xiaoyan

    2016-07-21

    In this paper, stainless steel meshes with superhydrophobic and superoleophilic surfaces were fabricated by rapid and simple one-step immersion in a solution containing hydrochloric acid and stearic acid. The apparent contact angles were tested by a video contact angle measurement system (CA). Field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were conducted to characterize the surface topographies and chemical compositions. The SEM results showed that mesh surfaces were covered by ferric stearate (Fe[CH3(CH2)16COO]2) with low surface energy. The CA test results showed that the mesh had a maximum apparent contact angle of 160 ± 1.0° and a sliding angle of less than 5.0° for the water droplet, whereas the apparent contact angle for the oil droplet was zero. Ultrasound oscillation and exposure tests at atmospheric conditions and immersion tests in 3.5 wt % NaCl aqueous solution were conducted to confirm the mesh with excellent superhydrophobic and superoleophilic properties. On the basis of the superhydrophobic mesh, a miniature separation device pump was designed to collect pure oil from the oil/water mixture. It showed that the device was easier and convenient. The techniques and materials presented in this work are promising for application to wastewater and oil spill treatment. PMID:27328269

  13. Superhydrophobic and oleophobic surface from fluoropolymer-SiO2 hybrid nanocomposites.

    PubMed

    Wang, Li; Liang, Junyan; He, Ling

    2014-12-01

    The fluoropolymer-SiO2 hybrid nanocomposite consisting of core-corona fluoropolymer-grafted SiO2 nanoparticle (NP) and poly(dodecafluoroheptyl methacrylate) (PDFHM) was obtained by radical solution polymerization of the vinyl trimethoxy silane (VTMS)-treated SiO2 NP with DFHM in this work. In H2O/tetrahydrofuran (THF) solution, PDFHM self-assembles into dendritic micelle and the increase in H2O volume is favorable for fluoropolymer-grafted SiO2 NPs to create dense fluoropolymer corona layer. It also shows that the addition of H2O to the THF suspension of fluoropolymer-SiO2 nanocomposite could cause a transfer for surface morphology of cast film from smooth film-covered aggregation to bare-exposed flaky aggregation and microsphere aggregation, which results in an increase in surface RMS roughness of cast film and induces a superhydrophobicity. Oleophobicity of cast film can be improved by thermal annealing, because strong surface self-segregation of PDFHM chains during thermal annealing process arouses a marked increase in surface fluorine content. PMID:25218050

  14. Turbulent flows over superhydrophobic surfaces with shear-dependent slip length

    NASA Astrophysics Data System (ADS)

    Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre

    2015-11-01

    Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).

  15. Multipurpose ultra and superhydrophobic surfaces based on oligodimethylsiloxane-modified nanosilica.

    PubMed

    de Francisco, Raquel; Tiemblo, Pilar; Hoyos, Mario; González-Arellano, Camino; García, Nuria; Berglund, Lars; Synytska, Alla

    2014-11-12

    Nonfluorinated hydrophobic surfaces are of interest for reduced cost, toxicity, and environmental problems. Searching for such surfaces together with versatile processing, A200 silica nanoparticles are modified with an oligodimethylsiloxane and used by themselves or with a polymer matrix. The goal of the surface modification is controlled aggregate size and stable suspensions. Characterization is done by NMR, microanalysis, nitrogen adsorption, and dynamic light scattering. The feasibility of the concept is then demonstrated. The silica aggregates are sprayed in a scalable process to form ultrahydrophobic and imperceptible coatings with surface topographies of controlled nanoscale roughness onto different supports, including nanofibrillated cellulose. To improve adhesion and wear properties, the organosilica was mixed with polymers. The resulting composite coatings are characterized by FE-SEM, AFM, and contact angle measurements. Depending on the nature of the polymer, different functionalities can be developed. Poly(methyl methacrylate) leads to almost superhydrophobic and highly transparent coatings. Composites based on commercial acrylic car paint show "pearl-bouncing" droplet behavior. A light-emitting polyfluorene is synthesized to prepare luminescent and water repellent coatings on different supports. The interactions between polymers and the organosilica influence coating roughness and are critical for wetting behavior. In summary, the feasibility of a facile, rapid, and fluorine-free hydrophobization concept was successfully demonstrated in multipurpose antiwetting applications. PMID:25275966

  16. Multipurpose ultra and superhydrophobic surfaces based on oligodimethylsiloxane-modified nanosilica.

    PubMed

    de Francisco, Raquel; Tiemblo, Pilar; Hoyos, Mario; González-Arellano, Camino; García, Nuria; Berglund, Lars; Synytska, Alla

    2014-11-12

    Nonfluorinated hydrophobic surfaces are of interest for reduced cost, toxicity, and environmental problems. Searching for such surfaces together with versatile processing, A200 silica nanoparticles are modified with an oligodimethylsiloxane and used by themselves or with a polymer matrix. The goal of the surface modification is controlled aggregate size and stable suspensions. Characterization is done by NMR, microanalysis, nitrogen adsorption, and dynamic light scattering. The feasibility of the concept is then demonstrated. The silica aggregates are sprayed in a scalable process to form ultrahydrophobic and imperceptible coatings with surface topographies of controlled nanoscale roughness onto different supports, including nanofibrillated cellulose. To improve adhesion and wear properties, the organosilica was mixed with polymers. The resulting composite coatings are characterized by FE-SEM, AFM, and contact angle measurements. Depending on the nature of the polymer, different functionalities can be developed. Poly(methyl methacrylate) leads to almost superhydrophobic and highly transparent coatings. Composites based on commercial acrylic car paint show "pearl-bouncing" droplet behavior. A light-emitting polyfluorene is synthesized to prepare luminescent and water repellent coatings on different supports. The interactions between polymers and the organosilica influence coating roughness and are critical for wetting behavior. In summary, the feasibility of a facile, rapid, and fluorine-free hydrophobization concept was successfully demonstrated in multipurpose antiwetting applications.

  17. Drop evaporation on superhydrophobic PTFE surfaces driven by contact line dynamics.

    PubMed

    Ramos, S M M; Dias, J F; Canut, B

    2015-02-15

    In the present study, we experimentally study the evaporation modes and kinetics of sessile drops of water on highly hydrophobic surfaces (contact angle ∼160°), heated to temperatures ranging between 40° and 70 °C. These surfaces were initially constructed by means of controlled tailoring of polytetrafluoroethylene (PTFE) substrates. The evaporation of droplets was observed to occur in three distinct phases, which were the same for the different substrate temperatures. The drops started to evaporate in the constant contact radius (CCR) mode, then switched to a more complex mode characterized by a set of stick-slip events accompanied by a decrease in contact angle, and finally shifted to a mixed mode in which the contact radius and contact angle decreased simultaneously until the drops had completely evaporated. It is shown that in the case of superhydrophobic surfaces, the energy barriers (per unit length) associated with the stick-slip motion of a drop ranges in the nJ m(-1) scale. Furthermore, analysis of the evaporation rates, determined from experimental data show that, even in the CCR mode, a linear relationship between V(2/3) and the evaporation time is verified. The values of the evaporation rate constants are found to be higher in the pinned contact line regime (the CCR mode) than in the moving contact line regime. This behavior is attributed to the drop's higher surface to volume ratio in the CCR mode.

  18. Superhydrophobic and oleophobic surface from fluoropolymer-SiO2 hybrid nanocomposites.

    PubMed

    Wang, Li; Liang, Junyan; He, Ling

    2014-12-01

    The fluoropolymer-SiO2 hybrid nanocomposite consisting of core-corona fluoropolymer-grafted SiO2 nanoparticle (NP) and poly(dodecafluoroheptyl methacrylate) (PDFHM) was obtained by radical solution polymerization of the vinyl trimethoxy silane (VTMS)-treated SiO2 NP with DFHM in this work. In H2O/tetrahydrofuran (THF) solution, PDFHM self-assembles into dendritic micelle and the increase in H2O volume is favorable for fluoropolymer-grafted SiO2 NPs to create dense fluoropolymer corona layer. It also shows that the addition of H2O to the THF suspension of fluoropolymer-SiO2 nanocomposite could cause a transfer for surface morphology of cast film from smooth film-covered aggregation to bare-exposed flaky aggregation and microsphere aggregation, which results in an increase in surface RMS roughness of cast film and induces a superhydrophobicity. Oleophobicity of cast film can be improved by thermal annealing, because strong surface self-segregation of PDFHM chains during thermal annealing process arouses a marked increase in surface fluorine content.

  19. Superhydrophobic perfluoropolymer surfaces having heterogeneous roughness created by dip-coating from solutions containing a nonsolvent

    NASA Astrophysics Data System (ADS)

    Cengiz, Ugur; Erbil, H. Yildirim

    2014-02-01

    Superhydrophobic and oleophobic rough copolymer surfaces containing micro- and nano-hierarchical ball-like islands having diameters between 100 nm and 7 μm were formed using styrene-perfluoromethacrylate random copolymers which were dip-coated on glass slides from THF and MEK mixture containing methanol as nonsolvent. These copolymers were synthesized in a CO2-expanded monomer medium at 250 bar pressure and 80 °C. The sizes of the micro-islands can be controlled by varying the copolymer composition; and the degree of phase separation by adjusting the solvent/non-solvent ratio. Flat and lotus-like hierarchical surfaces of the copolymers were characterized using contact angle measurements and SEM. The increase in the perfluoromethacrylate content of the flat copolymers resulted in a decrease of the total surface free energy of the flat copolymer surfaces from 18.3 down to 14.2 mJ/m2. The increase in the methanol non-solvent fraction resulted in decrease of the micro-island diameter from 7 μm down to 100 nm and the water contact angle increased from 117° up to 160° and hexadecane from 65° up to 90°.

  20. Facile fabrication of corrosion-resistant superhydrophobic and superoleophilic surfaces with MnWO(4):Dy(3+) microbouquets.

    PubMed

    Li, Taohai; Li, Quanguo; Yan, Jing; Li, Feng

    2014-04-21

    Superhydrophobic and superoleophilic MnWO4:Dy(3+) microbouquets were successfully fabricated via a facile hydrothermal process. The surface morphologies and chemical composition were investigated by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The wettability of the as-synthesized MnWO4:Dy(3+) microbouquet film was studied by measuring the water contact angle (CA). A static CA for water of 165° and a very low sliding angle (SA) were observed, which were closely related to both the MnWO4:Dy(3+) microbouquet structure and chemical modification. Furthermore, the as-prepared MnWO4:Dy(3+) surface showed superhydrophobicity for some corrosive liquids such as aqueous basic and salt solutions.

  1. Computational characterization of ordered nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Mohieddin Abukhdeir, Nasser

    2016-08-01

    A vital and challenging task for materials researchers is to determine relationships between material characteristics and desired properties. While the measurement and assessment of material properties can be complex, quantitatively characterizing their structure is frequently a more challenging task. This issue is magnified for materials researchers in the areas of nanoscience and nanotechnology, where material structure is further complicated by phenomena such as self-assembly, collective behavior, and measurement uncertainty. Recent progress has been made in this area for both self-assembled and nanostructured surfaces due to increasing accessibility of imaging techniques at the nanoscale. In this context, recent advances in nanomaterial surface structure characterization are reviewed including the development of new theory and image processing methods.

  2. Water Drop Evaporation on Mushroom-like Superhydrophobic Surfaces: Temperature Effects.

    PubMed

    do Nascimento, Rodney Marcelo; Cottin-Bizonne, Cécile; Pirat, Christophe; Ramos, Stella M M

    2016-03-01

    We report on experiments of drop evaporation on heated superhydrophobic surfaces decorated with micrometer-sized mushroom-like pillars. We analyze the influence of two parameters on the evaporation dynamics: the solid-liquid fraction and the substrate temperature, ranging between 30 and 80 °C. In the different configurations investigated, the drop evaporation appears to be controlled by the contact line dynamics (pinned or moving). The experimental results show that (i) in the pinned regime, the depinning angles increase with decreasing contact fraction and the substrate heating promotes the contact line depinning and (ii) in the moving regime, the droplet motion is described by periodic stick-slip events and contact-angle oscillations. These features are highly smoothed at the highest temperatures, with two possible mechanisms suggested to explain such a behavior, a reduction in the elasticity of the triple line and a decrease in the depinning energy barriers. For all surfaces, the observed remarkable stability of the "fakir" state to the temperature is attributed to the re-entrant micropillar curvature that prevents surface imbibition. PMID:26854562

  3. Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces.

    PubMed

    Lv, Cunjing; Hao, Pengfei; Zhang, Xiwen; He, Feng

    2015-12-22

    Although realizing dewetting transitions of droplets spontaneously on solid textured surfaces is quite challenging, it has become a key research topic in many practical applications that require highly efficient removal of liquid. Despite intensive efforts over the past few decades, due to impalement of vapor pockets inducing strong pinning of the contact lines, how to realize the self-removal of small droplets trapped in the textures remains an urgent problem. We report an in situ spontaneous dewetting transition of condensed droplets occurring on pillared surfaces with two-tier roughness, from the valleys to the tops of the pillars, owing to the nanotexture-enhanced superhydrophobicity, as well as the topology of the micropillars. Three wetting transition modes are observed. It is found that a further decreased Laplace pressure on the top side of the individual droplets accounts for such a surprising transition and self-removal of condensed water. An explicit model is constructed, which quite effectively predicts the Laplace pressure of droplets trapped by the textures. Our model also reveals that the critical size of the droplet for transition scales as the spacing of the micropillars. These findings are expected to be crucial to a fundamental understanding, as well as a remarkable strategy to guide the fabrication, of optimum super-water-repellant surfaces.

  4. Superhydrophobic surfaces as smart platforms for the analysis of diluted biological solutions.

    PubMed

    Gentile, Francesco; Coluccio, Maria Laura; Coppedè, Nicola; Mecarini, Federico; Das, Gobind; Liberale, Carlo; Tirinato, Luca; Leoncini, Marco; Perozziello, Gerardo; Candeloro, Patrizio; De Angelis, Francesco; Di Fabrizio, Enzo

    2012-06-27

    The aim of this paper is to expound on the rational design, fabrication and development of superhydrophobic surfaces (SHSs) for the manipulation and analysis of diluted biological solutions. SHSs typically feature a periodic array or pattern of micropillars; here, those pillars were modified to incorporate on the head, at the smallest scales, silver nanoparticles aggregates. These metal nanoclusters guarantee superior optical properties and especially SERS (surface enhanced Raman scattering) effects, whereby a molecule, adsorbed on the surface, would reveal an increased spectroscopy signal. On account of their two scale-hybrid nature, these systems are capable of multiple functions which are (i) to concentrate a solution, (ii) to vehicle the analytes of interest to the active areas of the substrate and, therefore, (iii) to measure the analytes with exceptional sensitivity and very low detection limits. Forasmuch, combining different technologies, these devices would augment the performance of conventional SERS substrates and would offer the possibility of revealing a single molecule. In this work, similar SHSs were used to detect Rhodamine molecules in the fairly low atto molar range. The major application of this novel family of devices would be the early detection of tumors or other important pathologies, with incredible advances in medicine.

  5. Water Drop Evaporation on Mushroom-like Superhydrophobic Surfaces: Temperature Effects.

    PubMed

    do Nascimento, Rodney Marcelo; Cottin-Bizonne, Cécile; Pirat, Christophe; Ramos, Stella M M

    2016-03-01

    We report on experiments of drop evaporation on heated superhydrophobic surfaces decorated with micrometer-sized mushroom-like pillars. We analyze the influence of two parameters on the evaporation dynamics: the solid-liquid fraction and the substrate temperature, ranging between 30 and 80 °C. In the different configurations investigated, the drop evaporation appears to be controlled by the contact line dynamics (pinned or moving). The experimental results show that (i) in the pinned regime, the depinning angles increase with decreasing contact fraction and the substrate heating promotes the contact line depinning and (ii) in the moving regime, the droplet motion is described by periodic stick-slip events and contact-angle oscillations. These features are highly smoothed at the highest temperatures, with two possible mechanisms suggested to explain such a behavior, a reduction in the elasticity of the triple line and a decrease in the depinning energy barriers. For all surfaces, the observed remarkable stability of the "fakir" state to the temperature is attributed to the re-entrant micropillar curvature that prevents surface imbibition.

  6. Inkjet patterned superhydrophobic paper for open-air surface microfluidic devices.

    PubMed

    Elsharkawy, Mohamed; Schutzius, Thomas M; Megaridis, Constantine M

    2014-03-21

    We present a facile approach for the fabrication of low-cost surface biomicrofluidic devices on superhydrophobic paper created by drop-casting a fluoroacrylic copolymer onto microtextured paper. Wettability patterning is performed with a common household printer, which produces regions of varying wettability by simply controlling the intensity of ink deposited over prespecified domains. The procedure produces surfaces that are capable of selective droplet sliding and adhesion, when inclined. Using this methodology, we demonstrate the ability to tune the sliding angles of 10 μL water droplets in the range from 13° to 40° by printing lines of constant ink intensity and varied width from 0.1 mm to 2 mm. We also formulate a simple model to predict the onset of droplet sliding on printed lines of known width and wettability. Experiments demonstrate open-air surface microfluidic devices that are capable of pumpless transport, mixing and rapid droplet sampling (~0.6 μL at 50 Hz). Lastly, post treatment of printed areas with pH indicator solutions exemplifies the utility of these substrates in point-of-care diagnostics, which are needed at geographical locations where access to sophisticated testing equipment is limited or non-existent.

  7. Fabrication of Hydrophobic Nanostructured Surfaces for Microfluidic Control.

    PubMed

    Morikawa, Kyojiro; Tsukahara, Takehiko

    2016-01-01

    In the field of micro- and nanofluidics, various kinds of novel devices have been developed. For such devices, not only fluidic control but also surface control of micro/nano channels is essential. Recently, fluidic control by hydrophobic nanostructured surfaces have attracted much attention. However, conventional fabrication methods of nanostructures require complicated steps, and integration of the nanostructures into micro/nano channels makes fabrication procedures even more difficult and complicated. In the present study, a simple and easy fabrication method of nanostructures integrated into microchannels was developed. Various sizes of nanostructures were successfully fabricated by changing the plasma etching time and etching with a basic solution. Furthermore, it proved possible to construct highly hydrophobic nanostructured surfaces that could effectively control the fluid in microchannels at designed pressures. We believe that the fabrication method developed here and the results obtained are valuable contributions towards further applications in the field of micro- and nanofluidics. PMID:26753710

  8. Superhydrophobic and superoleophillic surface of porous beaded electrospun polystrene and polysytrene-zeolite fiber for crude oil-water separation

    NASA Astrophysics Data System (ADS)

    Alayande, S. Oluwagbemiga; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.

    2016-04-01

    This research presents a cheap route procedure for the preparation of a potential adsorbent with superhydrophobic/superoleophillic properties for selective removal of crude oil from water. In this study, expanded polystyrene (EPS) was electrospun to produce beaded fibers in which zeolite was introduced to the polymer matrix in order to impart rough surface to non-beaded fiber. Films of the EPS and EPS/Zeolite solutions were also made for comparative study. The electrospun fibers EPS, EPS/Zeolite and resultant films were characterized using SEM, BET, FTIR and optical contact angle. The fibers exhibited superhydrophobic and superoleophillic wetting properties with water (>1500) and crude oil (00). The selective removal of crude oil presents new opportunity for the re-use of EPS as adsorbent in petroleum/petrochemical industry.

  9. Superhydrophobic metallic surfaces functionalized via femtosecond laser surface processing for long term air film retention when submerged in liquid

    NASA Astrophysics Data System (ADS)

    Zuhlke, Craig A.; Anderson, Troy P.; Li, Pengbo; Lucis, Michael J.; Roth, Nick; Shield, Jeffrey E.; Terry, Benjamin; Alexander, Dennis R.

    2015-03-01

    Femtosecond laser surface processing (FLSP) is a powerful technique used to create self-organized microstructures with nanoscale features on metallic surfaces. By combining FLSP surface texturing with surface chemistry changes, either induced by the femtosecond laser during processing or introduced through post processing techniques, the wetting properties of metals can be altered. In this work, FLSP is demonstrated as a technique to create superhydrophobic surfaces on grade 2 titanium and 304 stainless steel that can retain an air film (plastron) between the surface and a surrounding liquid when completely submerged. It is shown that the plastron lifetime when submerged in distilled water or synthetic stomach acid is critically dependent on the specific degree of surface micro- and nano-roughness, which can be tuned by controlling various FLSP parameters. The longest plastron lifetime was on a 304 stainless steel sample that was submerged in distilled water and maintained a plastron for 41 days, the length of time of the study, with no signs of degradation. Also demonstrated for the first time is the precise control of pulse fluence and pulse count to produce three unique classes of surface micron/nano-structuring on titanium.

  10. Preparation of porous super-hydrophobic and super-oleophilic polyvinyl chloride surface with corrosion resistance property

    NASA Astrophysics Data System (ADS)

    Kang, Yingke; Wang, Jinyan; Yang, Guangbin; Xiong, Xiujuan; Chen, Xinhua; Yu, Laigui; Zhang, Pingyu

    2011-11-01

    Porous super-hydrophobic polyvinyl chloride (PVC) surfaces were obtained via a facile solvent/non-solvent coating process without introducing compounds with low surface energy. The microstructure, wetting behavior, and corrosion resistance of resultant super-hydrophobic PVC coatings were investigated in relation to the effects of dosage of glacial acetic acid and the temperature of drying the mixed PVC solution spread over glass slide substrate. As-prepared PVC coatings had porous microstructure, and the one obtained at a glacial acetic acid to tetrahydrofuran volume ratio of 2.5:10.0 and under a drying temperature of 17 °C had a water contact angle of 150 ± 1.5°, showing super-hydrophobicity. In the meantime, it possessed very small contact angles for liquid paraffin and diiodomethane and good corrosion resistance against acid and alkali corrosive mediums, showing promising applications in self-cleaning, waterproof for outer wall of building, seawater resistant coating, and efficient separation of oil and water.

  11. Surface Localization of Buried III-V Semiconductor Nanostructures.

    PubMed

    Alonso-González, P; González, L; Fuster, D; Martín-Sánchez, J; González, Yolanda

    2009-01-01

    In this work, we study the top surface localization of InAs quantum dots once capped by a GaAs layer grown by molecular beam epitaxy. At the used growth conditions, the underneath nanostructures are revealed at the top surface as mounding features that match their density with independence of the cap layer thickness explored (from 25 to 100 nm). The correspondence between these mounds and the buried nanostructures is confirmed by posterior selective strain-driven formation of new nanostructures on top of them, when the distance between the buried and the superficial nanostructures is short enough (d = 25 nm).

  12. Atomically Bonded Transparent Superhydrophobic Coatings

    SciTech Connect

    Aytug, Tolga

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  13. Fabrication of Highly-Oleophobic and Superhydrophobic Surfaces on Microtextured al Substrates

    NASA Astrophysics Data System (ADS)

    Liu, Changsong; Zhou, Jigen; Zheng, Dongmei; Wan, Yong; Li, Zhiwen

    2011-06-01

    Theoretical calculations suggest that creating highly-oleophobic surfaces would require a surface energy lower than that of any known materials. In the present work, we demonstrate microtextured Al substrate surfaces with veins-like micro/nanostructures displaying apparent contact angles (CA) greater than 120°, even with nitromethane (surface tension γ1 = 37 mN/m). The Al substrate was microtextured by a chemical solution mixed by zinc nitrate hexahydrate, hexamethyltetramine and a little of hydrofluoric acid. A fluoroalkylsilane (FAS) agent was used to tune the surface wettability. The Al substrates were microtextured by veins-like micro/nanostructures and generating a solid-liquid-vapor composite interface. Combination with FAS modification, the Al surfaces resulted in an oleophobicity with CA for nitromethane was 126.3° (152.7° for diethylene glycol, γ1 = 45.2 mN/m). In addition, the Al surfaces demonstrated a low rolling-off angle with < 6° even for diethylene glycol. However, nitromethane droplet favored to pin on the sample surface even the sample stage is tilted to 90°. It is noted that this highly-oleophobic behavior is induced mainly by topography, which form a composite surface of air and solid with oil drop sitting partially on air. The results are expected to promote the study on self-cleaning applications, especially in the condition with oil contaminations.

  14. Preparation and anti-icing behavior of superhydrophobic surfaces on aluminum alloy substrates.

    PubMed

    Ruan, Min; Li, Wen; Wang, Baoshan; Deng, Binwei; Ma, Fumin; Yu, Zhanlong

    2013-07-01

    It has been expected that superhydrophobic (SHP) surfaces could have potential anti-icing applications due to their excellent water-repellence properties. However, a thorough understanding on the anti-icing performance of such surfaces has never been reported; even systematic characterizations on icing behavior of various surfaces are still rare because of the lack of powerful instrumentations. In this study, we employed the electrochemical anodic oxidation and chemical etching methods to simplify the fabrication procedures for SHP surfaces on the aluminum alloy substrates, aiming at the anti-icing properties of SHP surfaces of various engineering materials. We found that the one-step chemical etching with FeCl3 and HCl as the etchants was the most effective for ideal SHP surfaces with a large contact angle (CA, 159.1°) and a small contact angle hysteresis (CAH, 4.0°). To systematically investigate the anti-icing behavior of the prepared SHP surfaces, we designed a robust apparatus with a real-time control system based on the two stage refrigerating method. This system can monitor the humidity, pressure, and temperature during the icing process on the surfaces. We demonstrated that the SHP surfaces exhibited excellent anti-icing properties, i.e., from the room temperature of 16.0 °C, the icing time on SHP surfaces can be postponed from 406s to 676s compared to the normal aluminum alloy surface if the surfaces were put horizontally, and the icing temperature can be decreased from -2.2 °C to -6.1 °C. If such surfaces were tilted, the sprayed water droplets on the normal surfaces iced up at the temperature of -3.9 °C, but bounced off the SHP surface even as the temperature reached as low as -8.0 °C. The present study therefore suggests a general, simple, and low-cost methodology for the promising anti-icing applications in various engineering materials and different fields (e.g., power lines and aircrafts).

  15. Synthesis and Characterization of a Novel Polyacetal & Design and Preparation of Superhydrophobic Photocatalytic Surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyuan

    controlled and thus the rate of photocatalytic reactions can be increased. In addition, the fraction of TiO2 particles that become fully embedded in the polymer surface, and so inaccessible to photocatalysis reactions, can be reduced through lamination process control, thereby reducing costs. In Chapter 4 and Chapter 5, a general approach is presented to incorporating particles into a superhydrophobic surface that catalyze the formation of reactive oxygen species. Superhydrophobic photocatalytic surfaces are prepared using hydrophilic TiO2 nanoparticles and hydrophobic Silicon-Phthalocyanine photosensitizer particles. A stable Cassie state was maintained, even on surfaces fabricated with hydrophilic TiO2 particles, due to significant hierarchical roughness. A triple phase photogenerator is designed and fabricated. By printing the surface on a porous support, oxygen could be flowed through the plastron resulting in significantly higher photooxidation rates relative to a static ambient. Photooxidation of Rhodamine B and BSA were studied on TiO2-containing surfaces and singlet oxygen was trapped on surfaces incorporating Silicon-Phthalocyanine photosensitizer particles. Catalyst particles could be isolated in the plastron to avoid contamination by the solution. This approach may prove useful for water purification and medical devices where isolation of the catalyst particle from the solution is necessary and so Cassie stability is required. (Abstract shortened by UMI.).

  16. Fabrication of a lotus-like micro-nanoscale binary structured surface and wettability modulation from superhydrophilic to superhydrophobic.

    PubMed

    Wu, Xufeng; Shi, Gaoquan

    2005-10-01

    We report a simple method for fabricating a lotus-like micro-nanoscale binary structured surface of copper phosphate dihydrate. The copper phosphate dihydrate nanosheets were generated by galvanic cell corrosion of a copper foil with aqueous phosphorus acid solution drops and dried in an oxygen gas atmosphere, and they self-organized into a film with a lotus-like micro-nanoscale binary structured surface. The wettability of this surface can be changed from superhydrophilic to highly hydrophobic or superhydrophobic by heating or modifying it with an n-dodecanethiol monolayer.

  17. Fabrication of a lotus-like micro nanoscale binary structured surface and wettability modulation from superhydrophilic to superhydrophobic

    NASA Astrophysics Data System (ADS)

    Wu, Xufeng; Shi, Gaoquan

    2005-10-01

    We report a simple method for fabricating a lotus-like micro-nanoscale binary structured surface of copper phosphate dihydrate. The copper phosphate dihydrate nanosheets were generated by galvanic cell corrosion of a copper foil with aqueous phosphorus acid solution drops and dried in an oxygen gas atmosphere, and they self-organized into a film with a lotus-like micro-nanoscale binary structured surface. The wettability of this surface can be changed from superhydrophilic to highly hydrophobic or superhydrophobic by heating or modifying it with an n-dodecanethiol monolayer.

  18. Collection efficiencies of an electrostatic sampler with superhydrophobic surface for fungal bioaerosols

    PubMed Central

    Han, T.; Nazarenko, Y.; Lioy, P. J.; Mainelis, G.

    2014-01-01

    We recently developed an electrostatic precipitator with superhydrophobic surface (EPSS), which collects particles into a 10- to 40-μl water droplet allowing achievement of very high concentration rates (defined as the ratio of particle concentration in the collection liquid vs. the airborne particle concentration per time unit) when sampling airborne bacteria. Here, we analyzed the performance of this sampler when collecting three commonly found fungal spores – Cladosporium cladosporioides, Penicillium melinii, and Aspergillus versicolor – under different operating conditions. We also adapted adenosine triphosphate (ATP)-based bioluminescence for the analysis of collection efficiency and the concentration rates. The collection efficiency ranged from 10 to 36% at a sampling flow rate of 10 l/min when the airborne fungal spore concentration was approximately 105–106 spores/m3 resulting in concentration rates in the range of 1 × 105–3 × 105/min for a 10-μl droplet. The collection efficiency was inversely proportional to the airborne spore concentration and it increased to above 60% for common ambient spore concentrations, e.g., 104–105 spores/m3. The spore concentrations determined by the ATP-based method were not statistically different from those determined by microscopy and allowed us to analyze spore concentrations that were too low to be reliably detected by microscopy. PMID:21204982

  19. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Seo, Jungmok; Lee, Seoung-Ki; Lee, Jaehong; Seung Lee, Jung; Kwon, Hyukho; Cho, Seung-Woo; Ahn, Jong-Hyun; Lee, Taeyoon

    2015-07-01

    Here, we developed a novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing. When a vacuum pressure was applied below the PDMS substrate, a local dimple structure was formed and the water adhesion force of structure was significantly changed owing to the dynamically varied pillar density. With the help of the lowered water adhesion force and the slope angle of the formed dimple structure, the motion of individual water droplets could be precisely controlled, which facilitated the creation of a droplet-based microfluidic platform capable of a programmable manipulation of droplets. We showed that the platform could be used in newer and emerging microfluidic operations such as surface-enhanced Raman spectroscopy with extremely high sensing capability (10-15 M) and in vitro small interfering RNA transfection with enhanced transfection efficiency of ~80%.

  20. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface.

    PubMed

    Seo, Jungmok; Lee, Seoung-Ki; Lee, Jaehong; Seung Lee, Jung; Kwon, Hyukho; Cho, Seung-Woo; Ahn, Jong-Hyun; Lee, Taeyoon

    2015-01-01

    Here, we developed a novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing. When a vacuum pressure was applied below the PDMS substrate, a local dimple structure was formed and the water adhesion force of structure was significantly changed owing to the dynamically varied pillar density. With the help of the lowered water adhesion force and the slope angle of the formed dimple structure, the motion of individual water droplets could be precisely controlled, which facilitated the creation of a droplet-based microfluidic platform capable of a programmable manipulation of droplets. We showed that the platform could be used in newer and emerging microfluidic operations such as surface-enhanced Raman spectroscopy with extremely high sensing capability (10(-15) M) and in vitro small interfering RNA transfection with enhanced transfection efficiency of ~80%. PMID:26202206

  1. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface

    PubMed Central

    Seo, Jungmok; Lee, Seoung-Ki; Lee, Jaehong; Seung Lee, Jung; Kwon, Hyukho; Cho, Seung-Woo; Ahn, Jong-Hyun; Lee, Taeyoon

    2015-01-01

    Here, we developed a novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing. When a vacuum pressure was applied below the PDMS substrate, a local dimple structure was formed and the water adhesion force of structure was significantly changed owing to the dynamically varied pillar density. With the help of the lowered water adhesion force and the slope angle of the formed dimple structure, the motion of individual water droplets could be precisely controlled, which facilitated the creation of a droplet-based microfluidic platform capable of a programmable manipulation of droplets. We showed that the platform could be used in newer and emerging microfluidic operations such as surface-enhanced Raman spectroscopy with extremely high sensing capability (10−15 M) and in vitro small interfering RNA transfection with enhanced transfection efficiency of ~80%. PMID:26202206

  2. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation.

    PubMed

    Anderson, David M; Gupta, Maneesh K; Voevodin, Andrey A; Hunter, Chad N; Putnam, Shawn A; Tsukruk, Vladimir V; Fedorov, Andrei G

    2012-04-24

    Controlling coalescence events in a heterogeneous ensemble of condensing droplets on a surface is an outstanding fundamental challenge in surface and interfacial sciences, with a broad practical importance in applications ranging from thermal management of high-performance electronic devices to moisture management in high-humidity environments. Nature-inspired superhydrophobic surfaces have been actively explored to enhance heat and mass transfer rates by achieving favorable dynamics during dropwise condensation; however, the effectiveness of such chemically homogeneous surfaces has been limited because condensing droplets tend to form as pinned Wenzel drops rather than mobile Cassie ones. Here, we introduce an amphiphilic nanostructured surface, consisting of a hydrophilic base with hydrophobic tips, which promotes the periodic regeneration of nucleation sites for small droplets, thus rendering the surface self-rejuvenating. This unique amphiphilic nanointerface generates an arrangement of condensed Wenzel droplets that are fluidically linked by a wetted sublayer, promoting previously unobserved coalescence events where numerous droplets simultaneously merge, without direct contact. Such ensemble coalescences rapidly create fresh nucleation sites, thereby shifting the overall population toward smaller droplets and enhancing the rates of mass and heat transfer during condensation.

  3. Rational nanostructuring of surfaces for extraordinary icephobicity.

    PubMed

    Eberle, Patric; Tiwari, Manish K; Maitra, Tanmoy; Poulikakos, Dimos

    2014-05-01

    Icing of surfaces is commonplace in nature, technology and everyday life, bringing with it sometimes catastrophic consequences. A rational methodology for designing materials with extraordinary resistance to ice formation and adhesion remains however elusive. We show that ultrafine roughnesses can be fabricated, so that the ice nucleation-promoting effect of nanopits on surfaces is effectively counteracted in the presence of an interfacial quasiliquid layer. The ensuing interface confinement strongly suppresses the stable formation of ice nuclei. We explain why such nanostructuring leads to the same extremely low, robust nucleation temperature of ∼-24 °C for over three orders of magnitude change in RMS size (∼0.1 to ∼100 nm). Overlaying such roughnesses on pillar-microtextures harvests the additional benefits of liquid repellency and low ice adhesion. When tested at a temperature of -21 °C, such surfaces delayed the freezing of a sessile supercooled water droplet at the same temperature by a remarkable 25 hours. PMID:24667802

  4. Polarity of oxide surfaces and nanostructures

    NASA Astrophysics Data System (ADS)

    Goniakowski, Jacek; Finocchi, Fabio; Noguera, Claudine

    2008-01-01

    Whenever a compound crystal is cut normal to a randomly chosen direction, there is an overwhelming probability that the resulting surface corresponds to a polar termination and is highly unstable. Indeed, polar oxide surfaces are subject to complex stabilization processes that ultimately determine their physical and chemical properties. However, owing to recent advances in their preparation under controlled conditions and to improvements in the experimental techniques for their characterization, an impressive variety of structures have been investigated in the last few years. Recent progress in the fabrication of oxide nano-objects, which have been largely stimulated by a growing demand for new materials for applications ranging from micro-electronics to heterogeneous catalysis, also offer interesting examples of exotic polar structures. At odds with polar orientations of macroscopic samples, some smaller size polar nano-structures turn out to be perfectly stable. Others are subject to unusual processes of stabilization, which are absent or not effective in their extended counterparts. In this context, a thorough and comprehensive reflexion on the role that polarity plays at oxide surfaces, interfaces and in nano-objects seems timely. This review includes a first section which presents the theoretical concepts at the root of the polar electrostatic instability and its compensation and introduces a rigorous definition of polar terminations that encompasses previous theoretical treatments; a second section devoted to a summary of all experimental and theoretical results obtained since the first review paper by Noguera (2000 J. Phys.: Condens. Matter 12 R367); and finally a discussion section focusing on the relative strength of the stabilization mechanisms, with special emphasis on ternary compound surfaces and on polarity effects in ultra-thin films.

  5. Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture

    NASA Astrophysics Data System (ADS)

    Jelly, T. O.; Jung, S. Y.; Zaki, T. A.

    2014-09-01

    Direct numerical simulations of turbulent flow in a channel with superhydrophobic surfaces (SHS) were performed, and the effects of the surface texture on the turbulence and skin-friction coefficient were examined. The SHS is modeled as a planar boundary comprised of spanwise-alternating regions of no-slip and free-slip boundary conditions. Relative to the reference no-slip channel flow at the same bulk Reynolds number, the overall mean skin-friction coefficient is reduced by 21.6%. A detailed analysis of the turbulence kinetic energy budget demonstrates a reduction in production over the no-slip phases, which is explained by aid of quadrant analysis of the Reynolds shear stresses and statistical analysis of the turbulence structures. The results demonstrate a significant reduction in the strength of streamwise vortical structures in the presence of the SHS texture and a decrease in the Reynolds shear-stress component ⟨R12⟩ which has a favorable influence on drag over the no-slip phases. A secondary flow which is set up at the edges of the texture also effects a beneficial change in drag. Nonetheless, the skin-friction coefficient on the no-slip features is higher than the reference levels in a simple no-slip channel flow. The increase in the skin-friction coefficient is attributed to two factors. First, spanwise diffusion of the mean momentum from free-slip to no-slip regions increases the local skin-friction coefficient on the edges of the no-slip features. Second, the drag-reducing capacity of the SHS is further reduced due to additional Reynolds stresses, ⟨R13⟩.

  6. Superhydrophobic Surfaces with Very Low Hysteresis Prepared by Aggregation of Silica Nanoparticles During In Situ Urea-Formaldehyde Polymerization.

    PubMed

    Diwan, Anubhav; Jensen, David S; Gupta, Vipul; Johnson, Brian I; Evans, Delwyn; Telford, Clive; Linford, Matthew R

    2015-12-01

    We present a new method for the preparation of superhydrophobic materials by in situ aggregation of silica nanoparticles on a surface during a urea-formaldehyde (UF) polymerization. This is a one-step process in which a two-tier topography is obtained. The polymerization is carried out for 30, 60, 120, 180, and 240 min on silicon shards. Silicon surfaces are sintered to remove the polymer. SEM and AFM show both an increase in the area covered by the nanoparticles and their aggregation with increasing polymerization time. Chemical vapor deposition of a fluorinated silane in the presence of a basic catalyst gives these surfaces hydrophobicity. Deposition of this low surface energy silane is confirmed by the F 1s signal in XPS. The surfaces show advancing water contact angles in excess of 160 degrees with very low hysteresis (< 7) after 120 min and 60 min polymerization times for 7 nm and 14 nm silica, respectively. Depositions are successfully demonstrated on glass substrates after they are primed with a UF polymer layer. Superhydrophobic surfaces can also be prepared on unsintered substrates.

  7. A facile cost-effective method for preparing poinsettia-inspired superhydrophobic ZnO nanoplate surface on Al substrate with corrosion resistance

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Han, Huilong; Li, Junfeng; Fan, Xiaoliang; Ding, Haimin; Wang, Jinfeng

    2016-02-01

    This paper reports an easy method to imitate the "poinsettia leaves" by constructing ZnO nanoplates on Al substrate. Using ammonium hydroxide as the reactant, together with zinc nitrate hexahydrate, randomly distributed ZnO nanoplates can be fabricated on the Al substrate directly. The morphology of the ZnO nanoplates can be controlled by the growth time, and the nanoplate growth mechanism is discussed in detail. After modification with stearic acid, the nanoplate surface shows a stable superhydrophobicity. Moreover, the superhydrophobic ZnO nanoplate surface showed much smaller corrosion current density, reduced 23,088-fold from the bare Al 6061 substrate. This facile and low-cost method may open a new avenue in the design and fabrication of superhydrophobic surfaces on Al materials with anticorrosive property.

  8. A low-cost filler-dissolved process for fabricating super-hydrophobic poly(dimethylsiloxane) surfaces with either lotus or petal effect

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Tsan; Chou, Jung-Hua

    2014-05-01

    A low-cost filler (salt) water-dissolved method is developed to produce large-area and flexible super-hydrophobic surfaces by using poly(dimethylsiloxane) (PDMS) material. Five levels of salt grain sizes are used to examine the filler size effect on fabricating the super-hydrophobic surfaces and on the hydrophobic mechanism involved. The results show that the surfaces fabricated using grain sizes of 53-74 and 74-104 µm exhibit the lotus effect (cell adhesion (CA) > 150° and self-adhesion (SA) < 10°) whereas those using grain sizes of 0-25 µm and above 104 µm reveal the petal effect (CA > 150° and high adhesion even upside-down). The super-hydrophobic characteristic is achieved mainly by the large micro rib-like structures, small micro rock-like bumps, and textures on the bump due to the fillers.

  9. No-Loss Transportation of Water Droplets by Patterning a Desired Hydrophobic Path on a Superhydrophobic Surface.

    PubMed

    Hu, Haibao; Yu, Sixiao; Song, Dong

    2016-07-26

    The directional transportation of droplets on solid surfaces is essential in a wide range of engineering applications. It is convenient to guide liquid droplets in a given direction by utilizing the gradient of wettability, by which the binding forces can be produced. In contrast to the mass-loss transportation of a droplet moving along hydrophilic paths on a horizontal superhydrophobic surface, we present no-loss transportation by fabricating a hydrophobic path on the same surface under tangential wind. In experimental exploration and theoretical analysis, the conditions of no-loss transportation of a droplet are mainly considered. We demonstrate that the lower (or upper) critical wind velocity, under which the droplet starts on the path (or is derailed from the path), is determined by the width of the path, the length of the contact area in the direction parallel to the path, the drift angle between the path and the wind direction, and the surface wettability of the pattern. Meanwhile, the no-loss transportation of water droplets along the desired path zigzagging on a superhydrophobic surface can be achieved steadily under appropriate conditions. We anticipate that such robust no-loss transportation will find an extensive range of applications.

  10. Water-Repellent Properties of Superhydrophobic and Lubricant-Infused "Slippery" Surfaces: A Brief Study on the Functions and Applications.

    PubMed

    Cao, Moyuan; Guo, Dawei; Yu, Cunming; Li, Kan; Liu, Mingjie; Jiang, Lei

    2016-02-17

    Bioinspired water-repellent materials offer a wealth of opportunities to solve scientific and technological issues. Lotus-leaf and pitcher plants represent two types of antiwetting surfaces, i.e., superhydrophobic and lubricant-infused "slippery" surfaces. Here we investigate the functions and applications of those two types of interfacial materials. The superhydrophobic surface was fabricated on the basis of a hydrophobic fumed silica nanoparticle/poly(dimethylsiloxane) composite layer, and the lubricant-infused "slippery" surface was prepared on the basis of silicone oil infusion. The fabrication, characteristics, and functions of both substrates were studied, including the wettability, transparency, adhesive force, dynamic droplet impact, antifogging, self-cleaning ability, etc. The advantages and disadvantages of the surfaces were briefly discussed, indicating the most suitable applications of the antiwetting materials. This contribution is aimed at providing meaningful information on how to select water-repellent substrates to solve the scientific and practical issues, which can also stimulate new thinking for the development of antiwetting interfacial materials. PMID:26447551

  11. Plasmonic nanostructures for surface enhanced spectroscopic methods.

    PubMed

    Jahn, Martin; Patze, Sophie; Hidi, Izabella J; Knipper, Richard; Radu, Andreea I; Mühlig, Anna; Yüksel, Sezin; Peksa, Vlastimil; Weber, Karina; Mayerhöfer, Thomas; Cialla-May, Dana; Popp, Jürgen

    2016-02-01

    A comprehensive review of theoretical approaches to simulate plasmonic-active metallic nano-arrangements is given. Further, various fabrication methods based on bottom-up, self-organization and top-down techniques are introduced. Here, analytical approaches are discussed to investigate the optical properties of isotropic and non-magnetic spherical or spheroidal particles. Furthermore, numerical methods are introduced to research complex shaped structures. A huge variety of fabrication methods are reviewed, e.g. bottom-up preparation strategies for plasmonic nanostructures to generate metal colloids and core-shell particles as well as complex-shaped structures, self-organization as well as template-based methods and finally, top-down processes, e.g. electron beam lithography and its variants as well as nanoimprinting. The review article is aimed at beginners in the field of surface enhanced spectroscopy (SES) techniques and readers who have a general interest in theoretical modelling of plasmonic substrates for SES applications as well as in the fabrication of the desired structures based on methods of the current state of the art.

  12. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    SciTech Connect

    Davids, P. S.; Intravia, F; Dalvit, Diego A.

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  13. Super-hydrophilicity to super-hydrophobicity transition of a surface with Ni micro-nano cones array

    NASA Astrophysics Data System (ADS)

    Geng, Wenyan; Hu, Anmin; Li, Ming

    2012-12-01

    A surface with Ni micro-nano cones array (MCA) was fabricated with electro-deposition method and exhibited super-hydrophilic nature when freshly prepared. Spontaneous transition from super-hydrophilicity to super-hydrophobicity was observed when the surface was exposed in air at room temperature. The special surface structure of MCA played an important role in amplifying the surface wettability. Since the surface structure remained the same as the freshly prepared Ni MCA films during the storage, the transition was proved to be attributed to the change of surface chemical composition. Such wettability transition property of Ni MCA films might shed light on the high-tech areas of self-cleaners, anti-corrosion materials, anti-contamination materials, etc.

  14. Formation and Mechanism of Superhydrophobic/Hydrophobic Surfaces Made from Amphiphiles through Droplet-Mediated Evaporation-Induced Self-Assembly.

    PubMed

    Dong, Fangyuan; Zhang, Mi; Tang, Wai-Wa; Wang, Yi

    2015-04-23

    Superhydrophobic/hydrophobic surfaces have attracted wide attention because of their broad applications in various regions, including coating, textile, packaging, electronic devices, and bioengineering. Many studies have been focused on the fabrication of superhydrophobic/hydrophobic surfaces using natural materials. In this paper, superhydrophobic/hydrophobic surfaces were formed by an amphiphilic natural protein, zein, using electrospinning. Water contact angle (WCA) and scanning electron microscopy (SEM) were used to characterize the hydrophobicity and surface morphology of the electrospun structures. The highest WCA of the zein electrospun surfaces could reach 155.5 ± 1.4°. To further understand the mechanism of superhydrophobic surface formation from amphiphiles using electrospinning, a synthetic amphiphilic polymer was selected, and also, a method similar to electrospinning, spray drying, was tried. The electrospun amphiphilic polymer surface showed a high hydrophobicity with a WCA of 141.4 ± 0.7°. WCA of the spray-dried zein surface could reach 125.3 ± 2.1°. The secondary structures of the zein in the electrospun film and cast-dried film were studied using ATR-FTIR, showing that α-helix to β-sheet transformation happened during the solvent evaporation in the cast drying process but not in the electrospinning process. A formation mechanism was proposed on the basis of the orientation of the amphiphiles during the solvent evaporation of different fabrication methods. The droplet-based or jet-based evaporation during electrospinning and spray drying led to the formation of the superhydrophobic/hydrophobic surface by the accumulation of the hydrophobic groups of the amphiphiles on the surface, while the surface-based evaporation during cast drying led to the formation of the hydrophilic surface by the accumulation of the hydrophilic groups of the amphiphiles on the surface.

  15. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation

    NASA Astrophysics Data System (ADS)

    Zhang, Wenfei; Lu, Xin; Xin, Zhong; Zhou, Changlu

    2015-11-01

    Two important properties--the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles--are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a simple dip coating and subsequent thermal curing method. The resulting PBZT reveals excellent mechanical durability and strong resistance to ultraviolet (UV) irradiation as well as acid and alkali. This durable superhydrophobic and superoleophilic fabric is efficient for separating oil/water mixtures by gravity with high separation efficiency, and it can also purify wastewater that contains soluble dyes, which makes it more effective and promising in treating water pollution. Importantly, PBZT demonstrates an integrated self-cleaning performance on the removal of both oil and particle contamination. It is expected that this simple process can be readily adopted for the design of multifunctional PBZ/TiO2 based materials for oil/water separation.Two important properties--the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles--are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a simple dip coating and subsequent thermal curing method. The resulting PBZT reveals excellent mechanical durability and strong resistance to ultraviolet (UV) irradiation as well as acid and alkali. This durable superhydrophobic and superoleophilic fabric is efficient for separating oil/water mixtures by gravity with high separation efficiency, and it can also purify wastewater that contains soluble dyes, which makes it more effective and

  16. A bioinspired planar superhydrophobic microboat

    NASA Astrophysics Data System (ADS)

    Yong, Jiale; Yang, Qing; Chen, Feng; Zhang, Dongshi; Du, Guangqing; Si, Jinhai; Yun, Feng; Hou, Xun

    2014-03-01

    In nature, a frog can easily rest on a lotus leaf even though the frog's weight is several times the weight of the lotus leaf. Inspired by the lotus leaf, we fabricated a planar superhydrophobic microboat (SMB) with a superhydrophobic upper surface on a PDMS sheet which was irradiated by a focused femtosecond laser. The SMB can not only float effortlessly over the water surface but can also hold up some heavy objects, exhibiting an excellent loading capacity. The water surface is curved near the edge of the upper surface and the SMB's upper edge is below the water level, greatly enhancing the displacement. Experimental results and theoretical analysis demonstrate that the superhydrophobicity on the edge of the upper surface is responsible for the SMB's large loading capacity. Here, we call it the ‘superhydrophobic edge effect’.

  17. Rapid fabrication of SERS substrate and superhydrophobic surface with different micro/nano-structures by electrochemical shaping of smooth Cu surface

    NASA Astrophysics Data System (ADS)

    Guo, Manman; Liu, Meili; Zhao, Wei; Xia, Yue; Huang, Wei; Li, Zelin

    2015-10-01

    Direct electrochemical shaping of metal surfaces into micro/nano-structures with desired functions is interesting and attractive. In this work, we employed square wave potential pulses (SWPP) to shape a smooth Cu surface into micro/nano-structures efficiently in a blank H2SO4 solution. Delightedly, we obtained Cu sub-micrometric islands on the surface with very strong surface enhanced Raman scattering (SERS) effect in 5 s, and fabricated a coral-like micro/nano-structured copper film with superhydrophobicity in 40 s. This method is green, facile, fast, and easy to control.

  18. Strength Improvement of Glass Substrates by Using Surface Nanostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T.; Yeh, J. Andrew

    2016-05-01

    Defects and heterogeneities degrade the strength of glass with different surface and subsurface properties. This study uses surface nanostructures to improve the bending strength of glass and investigates the effect of defects on three glass types. Borosilicate and aluminosilicate glasses with a higher defect density than fused silica exhibited 118 and 48 % improvement, respectively, in bending strength after surface nanostructure fabrication. Fused silica, exhibited limited strength improvement. Therefore, a 4-μm-deep square notch was fabricated to study the effect of a dominant defect in low defect density glass. The reduced bending strength of fused silica caused by artificial defect increased 65 % in the presence of 2-μm-deep nanostructures, and the fused silica regained its original strength when the nanostructures were 4 μm deep. In fragmentation tests, the fused silica specimen broke into two major portions because of the creation of artificial defects. The number of fragments increased when nanostructures were fabricated on the fused silica surface. Bending strength improvement and fragmentation test confirm the usability of this method for glasses with low defect densities when a dominant defect is present on the surface. Our findings indicate that nanostructure-based strengthening is suitable for all types of glasses irrespective of defect density, and the observed Weibull modulus enhancement confirms the reliability of this method.

  19. Chemical nature of superhydrophobic aluminum alloy surfaces produced via a one-step process using fluoroalkyl-silane in a base medium.

    PubMed

    Saleema, N; Sarkar, D K; Gallant, D; Paynter, R W; Chen, X-G

    2011-12-01

    Various surface characterization techniques were used to study the modified surface chemistry of superhydrophobic aluminum alloy surfaces prepared by immersing the substrates in an aqueous solution containing sodium hydroxide and fluoroalkyl-silane (FAS-17) molecules. The creation of a rough micronanostructure on the treated surfaces was revealed by scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) and infrared reflection absorption spectroscopy (IRRAS) confirmed the presence of low surface energy functional groups of fluorinated carbon on the superhydrophobic surfaces. IRRAS also revealed the presence of a large number of OH groups on the hydrophilic surfaces. A possible bonding mechanism of the FAS-17 molecules with the aluminum alloy surfaces has been suggested based on the IRRAS and XPS studies. The resulting surfaces demonstrated water contact angles as high as ~166° and contact angle hystereses as low as ~4.5°. A correlation between the contact angle, rms roughnesses, and the chemical nature of the surface has been elucidated.

  20. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    NASA Astrophysics Data System (ADS)

    Pruna, R.; Palacio, F.; López, M.; Pérez, J.; Mir, M.; Blázquez, O.; Hernández, S.; Garrido, B.

    2016-08-01

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  1. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.

    PubMed

    Kim, Philseok; Wong, Tak-Sing; Alvarenga, Jack; Kreder, Michael J; Adorno-Martinez, Wilmer E; Aizenberg, Joanna

    2012-08-28

    Ice-repellent coatings can have significant impact on global energy savings and improving safety in many infrastructures, transportation, and cooling systems. Recent efforts for developing ice-phobic surfaces have been mostly devoted to utilizing lotus-leaf-inspired superhydrophobic surfaces, yet these surfaces fail in high-humidity conditions due to water condensation and frost formation and even lead to increased ice adhesion due to a large surface area. We report a radically different type of ice-repellent material based on slippery, liquid-infused porous surfaces (SLIPS), where a stable, ultrasmooth, low-hysteresis lubricant overlayer is maintained by infusing a water-immiscible liquid into a nanostructured surface chemically functionalized to have a high affinity to the infiltrated liquid and lock it in place. We develop a direct fabrication method of SLIPS on industrially relevant metals, particularly aluminum, one of the most widely used lightweight structural materials. We demonstrate that SLIPS-coated Al surfaces not only suppress ice/frost accretion by effectively removing condensed moisture but also exhibit at least an order of magnitude lower ice adhesion than state-of-the-art materials. On the basis of a theoretical analysis followed by extensive icing/deicing experiments, we discuss special advantages of SLIPS as ice-repellent surfaces: highly reduced sliding droplet sizes resulting from the extremely low contact angle hysteresis. We show that our surfaces remain essentially frost-free in which any conventional materials accumulate ice. These results indicate that SLIPS is a promising candidate for developing robust anti-icing materials for broad applications, such as refrigeration, aviation, roofs, wires, outdoor signs, railings, and wind turbines. PMID:22680067

  2. Maskless fabrication of broadband antireflection nanostructures on glass surfaces

    NASA Astrophysics Data System (ADS)

    Tamayo R, E. E.; Hoshii, T.; Tamaki, R.; Watanabe, K.; Sugiyama, M.; Okada, Y.; Miyano, K.

    2016-06-01

    In order to reduce reflection losses at the surface of glass optical components, we have developed a plasma-etching fabrication method in which a CaF2 mask is self-assembled on the glass surface, generating nanostructures of around 100 nm in size, fabricated with an approximate etching rate of 10 nm per minute, and with controllable height, depending on the process time. By treating glasses with different compositions, it was found that the nanostructures can be successfully fabricated in a glass composed mainly of SiO2, but with 10% CaO content. In addition to the high aspect ratio and tapered geometry of the nanostructures, through cross-section composition analysis, graded Si and O compositions were also found within the nanostructures. The combined contribution of the geometrical and graded composition effects resulted in broadband 96% and over 99% transmittance on one-side and both-side treated glass substrates, respectively.

  3. Nano-structured surface plasmon resonance sensor for sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ho; Kim, Hyo-Sop; Kim, Jin-Ho; Choi, Sung-Wook; Cho, Yong-Jin

    2008-08-01

    A new nano-structured SPR sensor was devised to improve its sensitivity. Nano-scaled silica particles were used as the template to fabricate nano-structure. The surface of the silica particles was modified with thiol group and a single layer of the modified silica particles was attached on the gold or silver thin film using Langmuir-Blodgett (LB) method. Thereafter, gold or silver was coated on the template by an e-beam evaporator. Finally, the nano-structured surface with basin-like shape was obtained after removing the silica particles by sonication. Applying the new developed SPR sensor to a model food of alcoholic beverage, the sensitivities for the gold and silver nano-structured sensors, respectively, had 95% and 126% higher than the conventional one.

  4. Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors

    NASA Astrophysics Data System (ADS)

    Hsiao, Chaio-Ru; Lin, Cheng-Wei; Chou, Chia-Man; Chung, Chi-Jen; He, Ju-Liang

    2015-08-01

    This paper proposes a plasma polymerization system that can be used to modify the surface of the widely used biomaterial, polyurethane (PU), by employing low-cost hexamethyldisiloxane (HMDSO) and tetrafluoromethane (CF4) as precursors; this system features a pulsed-dc power supply. Plasma-polymerized HMDSO/CF4 (pp-HC) with coexisting micro- and nanoscale morphology was obtained as a superhydrophobic coating material by controlling the HMDSO/CF4 (fH) monomer flow ratio. The developed surface modification technology can be applied to medical devices, because it is non-cytotoxic and has favorable hemocompatibility, and no blood clots form when the device surface direct contacts. Experimental results reveal that the obtained pp-HC films contained SiOx nanoparticles randomly dispersed on the micron-scale three-dimensional network film surface. The sbnd CF functional group, sbnd CF2 bonding, and SiOx were detected on the film surface. The maximal water contact angle of the pp-HC coating was 161.2°, apparently attributable to the synergistic effect of the coexisting micro- and nanoscale surface morphology featuring a low surface-energy layer. The superhydrophobic and antifouling characteristics of the coating were retained even after it was rubbed 20 times with a steel wool tester. Results of in vitro cytotoxicity, fibrinogen adsorption, and platelet adhesion tests revealed favorable myoblast cell proliferation and the virtual absence of fibrinogen adsorption and platelet adhesion on the pp-HC coated specimens. These quantitative findings imply that the pp-HC coating can potentially prevent the formation of thrombi and provide an alternative means of modifying the surfaces of blood-contacting biomaterials.

  5. Roll-to-roll, shrink-induced superhydrophobic surfaces for antibacterial applications, enhanced point-of-care detection, and blood anticoagulation

    NASA Astrophysics Data System (ADS)

    Nokes, Jolie McLane

    Superhydrophobic (SH) surfaces are desirable because of their unique anti-wetting behavior. Fluid prefers to bead up (contact angle >150°) and roll off (contact angle hysteresis <10°) a SH surface because micro- and nanostructure features trap air pockets. Fluid only adheres to the peaks of the structures, causing minimal adhesion to the surface. Here, shrink-induced SH plastics are fabricated for a plethora of applications, including antibacterial applications, enhanced point-of-care (POC) detection, and reduced blood coagulation. Additionally, these purely structural SH surfaces are achieved in a roll-to-roll (R2R) platform for scalable manufacturing. Because their self-cleaning and water resistant properties, structurally modified SH surfaces prohibit bacterial growth and obviate bacterial chemical resistance. Antibacterial properties are demonstrated in a variety of SH plastics by preventing gram-negative Escherichia coli (E. coli) bacterial growth >150x compared to flat when fluid is rinsed and >20x without rinsing. Therefore, a robust and stable means to prevent bacteria growth is possible. Next, protein in urine is detected using a simple colorimetric output by evaporating droplets on a SH surface. Contrary to evaporation on a flat surface, evaporation on a SH surface allows fluid to dramatically concentrate because the weak adhesion constantly decreases the footprint area. On a SH surface, molecules in solution are confined to a footprint area 8.5x smaller than the original. By concentrating molecules, greater than 160x improvements in detection sensitivity are achieved compared to controls. Utility is demonstrated by detecting protein in urine in the pre-eclampsia range (150-300microgmL -1) for pregnant women. Further, SH surfaces repel bodily fluids including blood, urine, and saliva. Importantly, the surfaces minimize blood adhesion, leading to reduced blood coagulation without the need for anticoagulants. SH surfaces have >4200x and >28x reduction of

  6. Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering

    NASA Astrophysics Data System (ADS)

    Accardo, Angelo; Tirinato, Luca; Altamura, Davide; Sibillano, Teresa; Giannini, Cinzia; Riekel, Christian; di Fabrizio, Enzo

    2013-02-01

    Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates.Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr34032e

  7. Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering.

    PubMed

    Accardo, Angelo; Tirinato, Luca; Altamura, Davide; Sibillano, Teresa; Giannini, Cinzia; Riekel, Christian; Di Fabrizio, Enzo

    2013-03-21

    Drops of exosome dispersions from healthy epithelial colon cell line and colorectal cancer cells were dried on a superhydrophobic PMMA substrate. The residues were studied by small- and wide-angle X-ray scattering using both a synchrotron radiation micrometric beam and a high-flux table-top X-ray source. Structural differences between healthy and cancerous cells were detected in the lamellar lattices of the exosome macro-aggregates.

  8. Fast, active droplet interaction: coalescence and reactive mixing controlled by electrowetting on a superhydrophobic surface.

    PubMed

    Accardo, Angelo; Mecarini, Federico; Leoncini, Marco; Brandi, Fernando; Di Cola, Emanuela; Burghammer, Manfred; Riekel, Christian; Di Fabrizio, Enzo

    2013-02-01

    A novel electrowetting-on-dielectrics (EWOD) device in open planar geometry allows probing of droplet mixing on a superhydrophobic substrate under quasi contact-free conditions. We demonstrate a droplet-based microreactor with integrated convective-flow mixing for the reactive-mixing of CaCl(2)/Na(2)CO(3) solutions. The device provides unique conditions for scattering, spectroscopy and imaging probes requiring an unobstructed droplet-access.

  9. Integrating anti-reflection and superhydrophobicity of moth-eye-like surface morphology on a large-area flexible substrate

    NASA Astrophysics Data System (ADS)

    Liu, Chia-Hsing; Niu, Pei-Lun; Sung, Cheng-Kuo

    2014-01-01

    This paper proposes an ultraviolet nanoimprint lithography (UV-NIL) roll-to-roll (R2R) process with argon and oxygen (Ar-O2) plasma ashing and coating of a dilute perfluorodecyltrichlorosilane (FDTS) layer to fabricate the large-area moth-eye-like surface morphology on a polyethylene terephthalate substrate. By using Maxwell-Garnett's effective medium theory, the optimal dimensions of the moth-eye-like surface morphology was designed and fabricated with UV-NIL R2R process to obtain maximum transmittance ratio. In addition, the base angle (θ = 30.1°) of the moth-eye-like surface morphology was modified with Ar-O2 plasma ashing and coated with a dilute FDTS layer to possess both superhydrophobic and air-retention properties. This increases both the transmittance ratio of 4% and contact angle to 153°.

  10. Facile preparation of super durable superhydrophobic materials.

    PubMed

    Wu, Lei; Zhang, Junping; Li, Bucheng; Fan, Ling; Li, Lingxiao; Wang, Aiqin

    2014-10-15

    The low stability, complicated and expensive fabrication procedures seriously hinder practical applications of superhydrophobic materials. Here we report an extremely simple method for preparing super durable superhydrophobic materials, e.g., textiles and sponges, by dip coating in fluoropolymers (FPs). The morphology, surface chemical composition, mechanical, chemical and environmental stabilities of the superhydrophobic textiles were investigated. The results show how simple the preparation of super durable superhydrophobic textiles can be! The superhydrophobic textiles outperform their natural counterparts and most of the state-of-the-art synthetic superhydrophobic materials in stability. The intensive mechanical abrasion, long time immersion in various liquids and repeated washing have no obvious influence on the superhydrophobicity. Water drops are spherical in shape on the samples and could easily roll off after these harsh stability tests. In addition, this simple dip coating approach is applicable to various synthetic and natural textiles and can be easily scaled up. Furthermore, the results prove that a two-tier roughness is helpful but not essential with regard to the creation of super durable superhydrophobic textiles. The combination of microscale roughness of textiles and materials with very low surface tension is enough to form super durable superhydrophobic textiles. According to the same procedure, superhydrophobic polyurethane sponges can be prepared, which show high oil absorbency, oil/water separation efficiency and stability. PMID:25069050

  11. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation.

    PubMed

    Zhang, Wenfei; Lu, Xin; Xin, Zhong; Zhou, Changlu

    2015-12-14

    Two important properties-the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles-are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a simple dip coating and subsequent thermal curing method. The resulting PBZT reveals excellent mechanical durability and strong resistance to ultraviolet (UV) irradiation as well as acid and alkali. This durable superhydrophobic and superoleophilic fabric is efficient for separating oil/water mixtures by gravity with high separation efficiency, and it can also purify wastewater that contains soluble dyes, which makes it more effective and promising in treating water pollution. Importantly, PBZT demonstrates an integrated self-cleaning performance on the removal of both oil and particle contamination. It is expected that this simple process can be readily adopted for the design of multifunctional PBZ/TiO2 based materials for oil/water separation.

  12. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation.

    PubMed

    Zhang, Wenfei; Lu, Xin; Xin, Zhong; Zhou, Changlu

    2015-12-14

    Two important properties-the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles-are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a simple dip coating and subsequent thermal curing method. The resulting PBZT reveals excellent mechanical durability and strong resistance to ultraviolet (UV) irradiation as well as acid and alkali. This durable superhydrophobic and superoleophilic fabric is efficient for separating oil/water mixtures by gravity with high separation efficiency, and it can also purify wastewater that contains soluble dyes, which makes it more effective and promising in treating water pollution. Importantly, PBZT demonstrates an integrated self-cleaning performance on the removal of both oil and particle contamination. It is expected that this simple process can be readily adopted for the design of multifunctional PBZ/TiO2 based materials for oil/water separation. PMID:26530425

  13. Superhydrophobic surfaces: A model approach to predict contact angle and surface energy of soil particles

    NASA Astrophysics Data System (ADS)

    Shirtcliffe, Neil; Hamlett, Christopher; McHale, Glen; Newton, Michael; Bachmann, Joerg; Woche, S.

    2010-05-01

    C. Hamlett(a), G. McHALE(a), N. Shirtcliffe(a), M. Newton(a), S.K. Woche(b), and J. BACHMANN(b) aSchool of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK and bInstitute of Soil Science, Leibniz University Hannover, Herrenhaeuser Str.2, 30419, Hannover, Germany. Summary Wettability of soil affects a wide variety of processes including infiltration, preferential flow and surface runoff. The problem of determining contact angles and surface energy of powders, such as soil particles, remains unsolved. So far, several theories and approaches have been proposed, but formulation of surface and interfacial free energy, as regards its components, is still a very debatable issue. In the present study, the general problem of the interpretation of contact angles and surface free energy on chemically heterogeneous and rough soil particle surfaces are evaluated by a reformulation of the Cassie-Baxter equation assuming that the particles are attached on to a plane and rigid surface. Compared with common approaches, our model considers a roughness factor which depends on the Young's Law contact angle determined by the surface chemistry. Results of the model are discussed and compared with independent contact angle measurements using the Sessile Drop and the Wilhelmy Plate methods. Based on contact angle data, the critical surface tension of the grains were determined by the method proposed by Zisman. Experiments were made with glass beads and three soil materials ranging from sand to clay. Soil particles were coated with different loadings of dichlorodimethylsilane (DCDMS) to vary the wettability. Varying the solid surface tension using DCDMS treatments provided pure water wetting behaviours ranging from wettable to extremely hydrophobic with contact angles >150°. Results showed that the critical surface energy measured on grains with the highest DCDMS loadings was similar to the surface energy measured independently on ideal DCDMS

  14. Facile Synthesis of Smart Nanocontainers as Key Components for Construction of Self-Healing Coating with Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Liang, Yi; Wang, MingDong; Wang, Cheng; Feng, Jing; Li, JianSheng; Wang, LianJun; Fu, JiaJun

    2016-04-01

    SiO2-imidazoline nanocomposites (SiO2-IMI) owning high loading capacity of corrosion inhibitor, 1-hexadecyl-3-methylimidazolium bromide (HMID), and a special acid/alkali dual-stimuli-accelerated release property have been synthesized via a one-step modified Stöber method. SiO2-IMI were uniformly distributed into the hydrophobic SiO2 sol to construct "host"-"guest" feedback active coating with a superhydrophobic surface (SiO2-IMI@SHSC) on aluminium alloy, AA2024, by dip-coating technique. SiO2-IMI as "guest" components have good compatibility with "host" sol-gel coating, and more importantly, once localized corrosion occurs on the surface of AA2024, SiO2-IMI can simultaneously respond to the increase in environmental pH around corrosive micro-cathodic regions and decrease in pH near micro-anodic regions, promptly releasing HMID to form a compact molecular film on the damaged surface, inhibiting corrosion spread and executing a self-healing function. The scanning vibrating electrode technique (SVET) was applied to illustrate the suppression process of cathodic/anodic corrosion activities. Furthermore, benefiting from the superhydrophobic surface, SiO2-IMI@SHSC remained its protective ability after immersion in 0.5 M NaCl solution for 35 days, which is far superior to the conventional sol-gel coating with the same coating thickness. The facile fabrication method of SiO2-IMI simplifies the construction procedure of SiO2-IMI@SHSC, which have great potential to replace non-environmental chromate conversion coatings for practical use.

  15. Facile Synthesis of Smart Nanocontainers as Key Components for Construction of Self-Healing Coating with Superhydrophobic Surfaces.

    PubMed

    Liang, Yi; Wang, MingDong; Wang, Cheng; Feng, Jing; Li, JianSheng; Wang, LianJun; Fu, JiaJun

    2016-12-01

    SiO2-imidazoline nanocomposites (SiO2-IMI) owning high loading capacity of corrosion inhibitor, 1-hexadecyl-3-methylimidazolium bromide (HMID), and a special acid/alkali dual-stimuli-accelerated release property have been synthesized via a one-step modified Stöber method. SiO2-IMI were uniformly distributed into the hydrophobic SiO2 sol to construct "host"-"guest" feedback active coating with a superhydrophobic surface (SiO2-IMI@SHSC) on aluminium alloy, AA2024, by dip-coating technique. SiO2-IMI as "guest" components have good compatibility with "host" sol-gel coating, and more importantly, once localized corrosion occurs on the surface of AA2024, SiO2-IMI can simultaneously respond to the increase in environmental pH around corrosive micro-cathodic regions and decrease in pH near micro-anodic regions, promptly releasing HMID to form a compact molecular film on the damaged surface, inhibiting corrosion spread and executing a self-healing function. The scanning vibrating electrode technique (SVET) was applied to illustrate the suppression process of cathodic/anodic corrosion activities. Furthermore, benefiting from the superhydrophobic surface, SiO2-IMI@SHSC remained its protective ability after immersion in 0.5 M NaCl solution for 35 days, which is far superior to the conventional sol-gel coating with the same coating thickness. The facile fabrication method of SiO2-IMI simplifies the construction procedure of SiO2-IMI@SHSC, which have great potential to replace non-environmental chromate conversion coatings for practical use.

  16. Facile Synthesis of Smart Nanocontainers as Key Components for Construction of Self-Healing Coating with Superhydrophobic Surfaces.

    PubMed

    Liang, Yi; Wang, MingDong; Wang, Cheng; Feng, Jing; Li, JianSheng; Wang, LianJun; Fu, JiaJun

    2016-12-01

    SiO2-imidazoline nanocomposites (SiO2-IMI) owning high loading capacity of corrosion inhibitor, 1-hexadecyl-3-methylimidazolium bromide (HMID), and a special acid/alkali dual-stimuli-accelerated release property have been synthesized via a one-step modified Stöber method. SiO2-IMI were uniformly distributed into the hydrophobic SiO2 sol to construct "host"-"guest" feedback active coating with a superhydrophobic surface (SiO2-IMI@SHSC) on aluminium alloy, AA2024, by dip-coating technique. SiO2-IMI as "guest" components have good compatibility with "host" sol-gel coating, and more importantly, once localized corrosion occurs on the surface of AA2024, SiO2-IMI can simultaneously respond to the increase in environmental pH around corrosive micro-cathodic regions and decrease in pH near micro-anodic regions, promptly releasing HMID to form a compact molecular film on the damaged surface, inhibiting corrosion spread and executing a self-healing function. The scanning vibrating electrode technique (SVET) was applied to illustrate the suppression process of cathodic/anodic corrosion activities. Furthermore, benefiting from the superhydrophobic surface, SiO2-IMI@SHSC remained its protective ability after immersion in 0.5 M NaCl solution for 35 days, which is far superior to the conventional sol-gel coating with the same coating thickness. The facile fabrication method of SiO2-IMI simplifies the construction procedure of SiO2-IMI@SHSC, which have great potential to replace non-environmental chromate conversion coatings for practical use. PMID:27121439

  17. Uni-directional liquid spreading on asymmetric nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Chu, Kuang-Han; Xiao, Rong; Wang, Evelyn N.

    2010-05-01

    Controlling surface wettability and liquid spreading on patterned surfaces is of significant interest for a broad range of applications, including DNA microarrays, digital lab-on-a-chip, anti-fogging and fog-harvesting, inkjet printing and thin-film lubrication. Advancements in surface engineering, with the fabrication of various micro/nanoscale topographic features, and selective chemical patterning on