NASA Astrophysics Data System (ADS)
Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua
2016-03-01
One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future researches in these fields.
Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua
2016-12-01
One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future researches in these fields.
Synthesis and Characterization of Polymer-Metal Nanostructured Membranes
ions creating unique polymer -metal nanostructured membranes. A comprehensive materials characterization study was performed to understand their...fluoropolymers were also investigated. First the polymer -metal nanostructure of Nafion with several counter-ions was studied upon supercritical fluid CO2...processing. Then, novel fluorinated block copolymers were synthesized using atom transfer radical polymerization (ATRP) and their resulting nanostructure was
Tang, Wen-Xiang; Gao, Pu-Xian
2016-11-10
Nanostructured cerium oxide (CeO 2) with outstanding physical and chemical properties has attracted extensive interests over the past few decades in environment and energy-related applications. With controllable synthesis of nanostructured CeO 2, much more features were technologically brought out from defect chemistry to structure-derived effects. This paper highlights recent progress on the synthesis and characterization of nanostructured ceria-based materials as well as the traditional and new applications. Specifically, several typical applications based on the desired ceria nanostructures are focused to showcase the importance of nanostructure-derived effects. Moreover, some challenges and perspectives on the nanostructured ceria are presented, such as defectsmore » controlling and retainment, scale-up fabrication, and monolithic devices. Hopefully, this paper can provide an improved understanding of nanostructured CeO 2 and offer new opportunities to promote the further research and applications in the future.« less
Kim, S H; Ibrahim, Ahmed A; Kumar, R; Umar, Ahmad; Abaker, M; Hwang, S W; Baskoutas, S
2016-03-01
Herein, the synthesis of mimosa pudica leaves shaped a-iron oxide (α-Fe2O3) nanostructures is reported through simple and facile hydrothermal process. The prepared α-Fe2O3 nanostructures were characterized in terms of their morphological, structural, compositional and optical properties through a variety of characterization techniques such as FESEM, EDS, XRD, FTIR and Raman spectroscopy. The detailed characterizations revealed the well-crystallinity and dense growth of mimosa pudica leaf shaped α-Fe2O3 nanostructures. Further, the prepared nanomaterials were used as efficient electron mediator to fabricate sensitive ethanol chemical sensor. The fabricated sensor exhibited a high sensitivity of -30.37 μAmM(-1) cm(-2) and low detection limit of -0.62 μM. The observed linear dynamic range (LDR) was in the range from 10 μM-0.625 μM.
Rosenthal, Sandra J.; McBride, James; Pennycook, Stephen J.; Feldman, Leonard C.
2011-01-01
Nanostructures, with their very large surface to volume ratio and their non-planar geometry, present an important challenge to surface scientists. New issues arise as to surface characterization, quantification and interface formation. This review summarizes the current state of the art in the synthesis, composition, surface and interface control of CdSe nanocrystal systems, one of the most studied and useful nanostructures. PMID:21479151
Quasi-one dimensional (Q1D) nanostructures: Synthesis, integration and device application
NASA Astrophysics Data System (ADS)
Chien, Chung-Jen
Quasi-one-dimensional (Q1D) nanostructures such as nanotubes and nanowires have been widely regarded as the potential building blocks for nanoscale electronic, optoelectronic and sensing devices. In this work, the content can be divided into three categories: Nano-material synthesis and characterizations, alignment and integration, physical properties and application. The dissertation consists of seven chapters as following. Chapter 1 will give an introduction to low dimensional nano-materials. Chapter 2 explains the mechanism how Q1D nanostructure grows. Chapter 3 describes the methods how we horizontally and vertically align the Q1D nanostructure. Chapter 4 and 5 are the electrical and optical device characterization respectively. Chapter 6 demonstrates the integration of Q1D nanostructures and the device application. The last chapter will discuss the future work and conclusion of the thesis.
Bigdeli, Fahime; Ghasempour, Hosein; Azhdari Tehrani, Alireza; Morsali, Ali; Hosseini-Monfared, Hassan
2017-07-01
A 3D, porous Zn(II)-based metal-organic framework {[Zn 2 (oba) 2 (4-bpmn)]·(DMF) 1.5 } n (TMU-21), (4-bpmn=N,N'-Bis-pyridin-4-ylmethylene-naphtalene-1,5-diamine, H 2 oba=4,4'-oxybis(benzoic acid)) with nano-rods morphology under ultrasonic irradiation at ambient temperature and atmospheric pressure was prepared and characterized by scanning electron microscopy. Sonication time and concentration of initial reagents effects on the size and morphology of nano-structured MOFs were studied. Also {[Zn 2 (oba) 2 (4-bpmn)] (TMU-21) and {[Zn 2 (oba) 2 (4-bpmb)] (TMU-6), 4-bpmb=N,N'-(1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) were easily prepared by mechanochemical synthesis. Nanostructures of Zinc(II) oxide were obtained by calcination of these compounds and their de-solvated analogue as activated MOFs, at 550°C under air atmosphere. As a result of that, different Nanostructures of Zinc(II) oxide were obtained. The ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
Epitaxial growth of hybrid nanostructures
NASA Astrophysics Data System (ADS)
Tan, Chaoliang; Chen, Junze; Wu, Xue-Jun; Zhang, Hua
2018-02-01
Hybrid nanostructures are a class of materials that are typically composed of two or more different components, in which each component has at least one dimension on the nanoscale. The rational design and controlled synthesis of hybrid nanostructures are of great importance in enabling the fine tuning of their properties and functions. Epitaxial growth is a promising approach to the controlled synthesis of hybrid nanostructures with desired structures, crystal phases, exposed facets and/or interfaces. This Review provides a critical summary of the state of the art in the field of epitaxial growth of hybrid nanostructures. We discuss the historical development, architectures and compositions, epitaxy methods, characterization techniques and advantages of epitaxial hybrid nanostructures. Finally, we provide insight into future research directions in this area, which include the epitaxial growth of hybrid nanostructures from a wider range of materials, the study of the underlying mechanism and determining the role of epitaxial growth in influencing the properties and application performance of hybrid nanostructures.
2013-10-01
public release; distribution is unlimited. October 2013 HDTRA1-03-D-0009 Mansoor Sheik- Bahae Prepared by: OVPR...Characterization of Nanostructured Glass Ceramic Scintillators for Miniature High-Energy Radiation Sensors HDTRA01-03-D-0009 Mansoor Sheik- Bahae 26 OVPR...Table of Contents…………………………………………………………….3 I . Synthesis of Nano-Structured Glass Ceramic…..……………………………4 II. Characterize Structure and
Single step synthesis of nanostructured boron nitride for boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay
2015-05-01
Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).
Shape-controlled solvothermal synthesis of bismuth subcarbonate nanomaterials
NASA Astrophysics Data System (ADS)
Cheng, Gang; Yang, Hanmin; Rong, Kaifeng; Lu, Zhong; Yu, Xianglin; Chen, Rong
2010-08-01
Much effort has been devoted to the synthesis of novel nanostructured materials because of their unique properties and potential applications. Bismuth subcarbonate ((BiO) 2CO 3) is one of commonly used antibacterial agents against Helicobacter pylori ( H. pylori). Different (BiO) 2CO 3 nanostructures such as cube-like nanoparticles, nanobars and nanoplates, were fabricated from bismuth nitrate via a simple solvothermal method. The nanostructures were characterized by powder X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). It was found that the solvents and precursors have an influence on the morphologies of (BiO) 2CO 3 nanostructures. The possible formation mechanism of different (BiO) 2CO 3 nanostructures fabricated under different conditions was also discussed.
High-Yield Synthesis of Stoichiometric Boron Nitride Nanostructures
Nocua, José E.; Piazza, Fabrice; Weiner, Brad R.; ...
2009-01-01
Boron nimore » tride (BN) nanostructures are structural analogues of carbon nanostructures but have completely different bonding character and structural defects. They are chemically inert, electrically insulating, and potentially important in mechanical applications that include the strengthening of light structural materials. These applications require the reliable production of bulk amounts of pure BN nanostructures in order to be able to reinforce large quantities of structural materials, hence the need for the development of high-yield synthesis methods of pure BN nanostructures. Using borazine ( B 3 N 3 H 6 ) as chemical precursor and the hot-filament chemical vapor deposition (HFCVD) technique, pure BN nanostructures with cross-sectional sizes ranging between 20 and 50 nm were obtained, including nanoparticles and nanofibers. Their crystalline structure was characterized by (XRD), their morphology and nanostructure was examined by (SEM) and (TEM), while their chemical composition was studied by (EDS), (FTIR), (EELS), and (XPS). Taken altogether, the results indicate that all the material obtained is stoichiometric nanostructured BN with hexagonal and rhombohedral crystalline structure.« less
Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures.
Xi, Guangcheng; Liu, Yankuan; Liu, Xiaoyan; Wang, Xiaoqing; Qian, Yitai
2006-07-27
In this article, a novel magnesium-catalyzed co-reduction route was developed for the large-scale synthesis of aligned beta-SiC one-dimensional (1D) nanostructures at relative lower temperature (600 degrees C). By carefully controlling the reagent concentrations, we could synthesize beta-SiC rodlike and needlelike nanostructures. The possible growth mechanism of the as-synthesized beta-SiC 1D nanostructures has been investigated. The structure and morphology of the as-synthesized beta-SiC nanostructures are characterized using X-ray diffraction, Fourier transform infrared absorption, and scanning and transmission electron microscopes. Raman and photoluminescence properties are also investigated at room temperature. The as-synthesized beta-SiC nanostructures exhibit strong shape-dependent field emission properties. Corresponding to their shapes, the as-synthesized nanorods and nanoneedles display the turn-on fields of 12, 8.4, and 1.8 V/microm, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goveas, J. J., E-mail: jenicegoveas@gmail.com; Gonsalves, R. A.; Rao, P.
2016-05-23
Dyes act as major pollutants in water and can be degraded by photocatalysis. This paper establishes the role of electrochemically generated nanostructures of Zinc-Molybdenum oxides (ZMO) as photocatalysts by degrading EBT (Eriochrome Black- T) taken as a model pollutant under UV light. A facile, rapid and low cost process to synthesize these nanostructures (ZMO) is presented. Various factors that affect the synthesis and photocatalytic activity of these nanostructures are discussed. The role of calcination temperature and pulverization on the photocatalytic action has also been established. Particles have been synthesized in pure form as well as using surfactants such as cetrimidemore » (cetyl trimethyl ammonium bromide), polyethylene glycol (PEG) and SDS (sodium dodecyl sulphate) to enhance their photocatalytic action. This paper also discusses the characterization of these nanoparticles by powder XRD, SEM, FT-IR and UV-Visible spectroscopy. Decolourisation was achieved to completion under optimum experimental conditions at room temperature ascertaining the application of these nanostructures as effective photocatalysts.« less
Single step synthesis of nanostructured boron nitride for boron neutron capture therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com
2015-05-15
Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications asmore » well boron neutron capture therapy (BNCT)« less
NASA Astrophysics Data System (ADS)
López-Miranda, A.; Viramontes-Gamboa, G.; López-Valdivieso, A.
2014-02-01
The synthesis of silver nanoparticles has been investigated using Ag(CN) 2 - species as precursor, citrate ions as reducing agent, and dodecyl sulfate ions as stabilizer, at pH 11 and 97 °C, in a batch stirred glass reactor. The role of Cu2+ ions in the synthesis was also studied. Bird- of- paradise flower-type nanostructures composed of AgCN nanowires having inside Ag and AgCN nanoparticles were produced in the absence of Cu2+ ions. The nanostructures slowly grew and transformed to AgCN nanowires with embedded Ag and AgCN nanoparticles, having a mean size of 9.7 ± 3.6 nm. The presence of Cu2+ ions in the synthesis significantly enhanced the production of the nanostructures. Nanowires having a thickness of 63 ± 33 nm and length of up to 20 μm were produced. Cu2+ ions also simultaneously lead to the synthesis of ordinary free Ag nanoparticles with a bimodal size distribution (mean sizes of 9.9 ± 3.9 and 65.5 ± 27 nm) and a low experimental formation kinetic rate constant of 1.22 × 10-4 s-1. Feasible mechanisms are presented for the origin of the AgCN nanowires, Ag and AgCN nanoparticles inside the nanowires, and for the free Ag nanoparticles. UV/Vis spectrometry was used to measure the surface plasmon resonance of the nanoparticles and the synthesis kinetic rate constant of the free Ag nanoparticles. ATR-FTIR spectroscopy, EDS-SEM, EDS-TEM, and HRTEM were used to characterize the size, crystal structure, texture, and chemical composition of the synthesis products.
Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications
Pimentel, Ana; Samouco, Ana; Araújo, Andreia; Martins, Rodrigo; Fortunato, Elvira
2017-01-01
In the present work, tracing and Whatman papers were used as substrates to grow zinc oxide (ZnO) nanostructures. Cellulose-based substrates are cost-efficient, highly sensitive and environmentally friendly. ZnO nanostructures with hexagonal structure were synthesized by hydrothermal under microwave irradiation using an ultrafast approach, that is, a fixed synthesis time of 10 min. The effect of synthesis temperature on ZnO nanostructures was investigated from 70 to 130 °C. An Ultra Violet (UV)/Ozone treatment directly to the ZnO seed layer prior to microwave assisted synthesis revealed expressive differences regarding formation of the ZnO nanostructures. Structural characterization of the microwave synthesized materials was carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical characterization has also been performed. The time resolved photocurrent of the devices in response to the UV turn on/off was investigated and it has been observed that the ZnO nanorod arrays grown on Whatman paper substrate present a responsivity 3 times superior than the ones grown on tracing paper. By using ZnO nanorods, the surface area-to-volume ratio will increase and will improve the sensor sensibility, making these types of materials good candidates for low cost and disposable UV sensors. The sensors were exposed to bending tests, proving their high stability, flexibility and adaptability to different surfaces. PMID:29140304
Bundaleska, N; Tsyganov, D; Dias, A; Felizardo, E; Henriques, J; Dias, F M; Abrashev, M; Kissovski, J; Tatarova, E
2018-05-23
An experimental and theoretical study on microwave (2.45 GHz) plasma enabled assembly of carbon nanostructures, such as multilayer graphene sheets and nanoparticles, was performed. The carbon nanostructures were fabricated at different Ar-CH4 gas mixture composition and flows at atmospheric pressure conditions. The synthesis method is based on decomposition of the carbon-containing precursor (CH4) in the "hot" microwave plasma environment into carbon atoms and molecules, which are further converted into solid carbon nuclei in the "colder" plasma zones. By tailoring of the plasma environment, a controlled synthesis of graphene sheets and diamond-like nanoparticles was achieved. Selective synthesis of graphene flakes was achieved at a microwave power of 1 kW, Ar and methane flow rates of 600 sccm and 2 sccm respectively, while the predominant synthesis of diamond-like nanoparticles was obtained at the same power, but with higher flow rates, i.e. 1000 and 7.5 sccm, respectively. Optical emission spectroscopy was applied to detect the plasma emission related to carbon species from the 'hot' plasma zone and to determine the main plasma parameters. Raman spectroscopy and scanning electron microscopy have been applied to characterize the synthesized nanostructures. A previously developed theoretical model was further updated and employed to understand the mechanism of CH4 decomposition and formation of the main building units, i.e. C and C2, of the carbon nanostructures. An insight into the physical chemistry of carbon nanostructure formation in a high energy density microwave plasma environment is presented.
Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications
Gentile, Antonella; Ruffino, Francesco; Grimaldi, Maria Grazia
2016-01-01
Due to their peculiar qualities, metal-based nanostructures have been extensively used in applications such as catalysis, electronics, photography, and information storage, among others. New applications for metals in areas such as photonics, sensing, imaging, and medicine are also being developed. Significantly, most of these applications require the use of metals in the form of nanostructures with specific controlled properties. The properties of nanoscale metals are determined by a set of physical parameters that include size, shape, composition, and structure. In recent years, many research fields have focused on the synthesis of nanoscale-sized metallic materials with complex shape and composition in order to optimize the optical and electrical response of devices containing metallic nanostructures. The present paper aims to overview the most recent results—in terms of fabrication methodologies, characterization of the physico-chemical properties and applications—of complex-morphology metal-based nanostructures. The paper strongly focuses on the correlation between the complex morphology and the structures’ properties, showing how the morphological complexity (and its nanoscale control) can often give access to a wide range of innovative properties exploitable for innovative functional device production. We begin with an overview of the basic concepts on the correlation between structural and optical parameters of nanoscale metallic materials with complex shape and composition, and the possible solutions offered by nanotechnology in a large range of applications (catalysis, electronics, photonics, sensing). The aim is to assess the state of the art, and then show the innovative contributions that can be proposed in this research field. We subsequently report on innovative, versatile and low-cost synthesis techniques, suitable for providing a good control on the size, surface density, composition and geometry of the metallic nanostructures. The main purpose of this study is the fabrication of functional nanoscale-sized materials, whose properties can be tailored (in a wide range) simply by controlling the structural characteristics. The modulation of the structural parameters is required to tune the plasmonic properties of the nanostructures for applications such as biosensors, opto-electronic or photovoltaic devices and surface-enhanced Raman scattering (SERS) substrates. The structural characterization of the obtained nanoscale materials is employed in order to define how the synthesis parameters affect the structural characteristics of the resulting metallic nanostructures. Then, macroscopic measurements are used to probe their electrical and optical properties. Phenomenological growth models are drafted to explain the processes involved in the growth and evolution of such composite systems. After the synthesis and characterization of the metallic nanostructures, we study the effects of the incorporation of the complex morphologies on the optical and electrical responses of each specific device. PMID:28335236
Zaidi, Saleem [Albuquerque, NM; Tringe, Joseph W [Walnut Creek, CA; Vanamu, Ganesh [Sunnyvale, CA; Prinja, Rajiv [Albuquerque, NM
2012-01-10
A nanostructure includes a nanowire having metallic spheres formed therein, the spheres being characterized as having at least one of about a uniform diameter and about a uniform spacing there between. A nanostructure in another embodiment includes a substrate having an area with a nanofeature; and a nanowire extending from the nanofeature, the nanowire having metallic spheres formed therein, the spheres being characterized as having at least one of about a uniform diameter and about a uniform spacing there between. A method for forming a nanostructure is also presented. A method for reading and writing data is also presented. A method for preparing nanoparticles is also presented.
NASA Astrophysics Data System (ADS)
Mansournia, Mohammadreza; Arbabi, Akram
2017-01-01
Shape control of inorganic nanostructures generally requires using surfactants or ligands to passivate certain crystallographic planes. This paper describes a novel additive-free synthesis of cupric oxide nanostructures with different morphologies from the aqueous solutions of copper(II) with Cl-, NO3 -, and SO4 2- as counter ions. Through a one-step approach, CuO nanoleaves, nanoparticles and flower-like microspheres were directly synthesized at 80°C upon exposure to ammonia vapor using a cupric solution as a single precursor. Furthermore, during a two-step process, Cu(OH)2 nanofibers and nanorods were prepared under an ammonia atmosphere, then converted to CuO nanostructures with morphology preservation by heat treatment in air. The as-prepared Cu(OH)2 and CuO nanostructures are characterized using x-ray diffraction, scanning electron microscopy and Fourier transformation infrared spectroscopy techniques.
CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyson, D.; Laboratorio de Ensino de Ciencias, DME Universidade Federal da Paraiba, PB; Volanti, D.P.
This letter reports the synthesis of CuO urchin-nanostructures by a simple and novel hydrothermal microwave method. The formation and growth of urchin-nanostructures is mainly affected by the addition of polyethylene glycol (PEG). The hierarchical malachite particles are uniform spheres with a diameter of 0.7-1.9 {mu}m. CuO urchin-nanostructures were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FEG-SEM) and nitrogen adsorption (BET). The specific surface area of the CuO nanostructured microspheres was about 170.5 m{sup 2}/g. A possible mechanism for the formation of such CuO urchin-nanostructures is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakina, O. V., E-mail: ovbakina@ispms.tsc.ru; Fomenko, A. N., E-mail: alserova@ispms.tsc.ru; Korovin, M. S., E-mail: msk@ispms.tsc.ru
Core-shell micro/nanostructures were fabricated by the reaction of Al/Cu bimetallic nanoparticles with water. Al/Cu nanoparticles have been obtained using the method of simultaneous electrical explosion of a pair of the corresponding metal wires in an argon atmosphere. The nanoparticles are chemically active and interact with water at 60°C to form core-shell micro/nanostructures. The obtained products were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering and the nitrogen adsorption method. The antibacterial activity of the synthesized structures was investigated against E. coli and St. aureus. The toxic effect of these nanostructures against themore » Neuro-2a neuroblastoma cell line was investigated. AlOOH/Cu nanostructures are shown to inhibit cell proliferation. The AlOOH/Cu nanostructures are good candidates for medical applications.« less
NASA Astrophysics Data System (ADS)
Bakina, O. V.; Fomenko, A. N.; Korovin, M. S.; Glazkova, E. A.; Svarovskaya, N. V.
2016-08-01
Core-shell micro/nanostructures were fabricated by the reaction of Al/Cu bimetallic nanoparticles with water. Al/Cu nanoparticles have been obtained using the method of simultaneous electrical explosion of a pair of the corresponding metal wires in an argon atmosphere. The nanoparticles are chemically active and interact with water at 60°C to form core-shell micro/nanostructures. The obtained products were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering and the nitrogen adsorption method. The antibacterial activity of the synthesized structures was investigated against E. coli and St. aureus. The toxic effect of these nanostructures against the Neuro-2a neuroblastoma cell line was investigated. AlOOH/Cu nanostructures are shown to inhibit cell proliferation. The AlOOH/Cu nanostructures are good candidates for medical applications.
Boron-based nanostructures: Synthesis, functionalization, and characterization
NASA Astrophysics Data System (ADS)
Bedasso, Eyrusalam Kifyalew
Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any contamination and with a uniform size distribution. Various reaction parameters such as temperature, reaction time, and sonication were altered to find the optimal reaction conditions. Once these conditions were determined, boron nanorods were produced then functionalized with amine-terminated polyethylene glycol.
NASA Astrophysics Data System (ADS)
Swami, Anuradha; Mittal, Sherry; Chopra, Adity; Sharma, Rohit K.; Wangoo, Nishima
2018-03-01
In recent years, the synthesis of gold nanostructures of controllable shapes and dimensions has become a subject of intensive and interesting studies. Especially, anisotropic gold nanostructures such as nanoplates, nanoribbons, nanoprisms and nanorods have attracted much attention due to their striking optical properties and promising applications in electronics, photonics, sensing and biomedicine. Keeping this in mind, in the present report, an unprecedented, facile and one pot synthesis of isotropic (spherical) and anisotropic (triangular, pentagonal, hexagonal, rod shaped) gold nanomaterials via pH controlled shape modulation using hydroxyl moeity containing α-amino acids (Serine, Threonine, Tyrosine) as both reducing and capping agents is reported. The synthesized nanostructures have been further characterized by UV-Vis spectroscopy and transmission electron microscopy. It was deduced from these studies that pH played a key role in the anisotropic growth of gold nanostructures. These gold nanoparticles can be further used for applications in biosensing, plasmonics, and electrocatalysis and others involving surface enhanced raman scattering. This study is therefore, important from the point of view of using amino acids for the synthesis of gold nanoparticles of different shapes and sizes leading towards the development of inventive biosensors and biocompatible nanoconstructs.
Pugin, Benoit; Cornejo, Fabián A.; Muñoz-Díaz, Pablo; Muñoz-Villagrán, Claudia M.; Vargas-Pérez, Joaquín I.; Arenas, Felipe A.
2014-01-01
Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells. PMID:25193000
Pani, Alok; Lee, Joong Hee; Yun, Soon-Ii
2016-01-01
The increasing use of nanoparticles and nanocomposite in pharmaceutical and processed food industry have increased the demand for nontoxic and inert metallic nanostructures. Chemical and physical method of synthesis of nanostructures is most popular in industrial production, despite the fact that these methods are labor intensive and/or generate toxic effluents. There has been an increasing demand for rapid, ecofriendly and relatively cheaper synthesis of nanostructures. Here, we propose a strategy, for one-minute green synthesis of AgNPs and a one-pot one-minute green synthesis of Au-Ag nanocomposite, using Melia azedarach bark aqueous extract as reducing agent. The hydrothermal mechanism of the autoclave technology has been successfully used in this study to accelerate the nucleation and growth of nano-crystals. The study also presents high antimicrobial potential of the synthesized nano solutions against common food and water born pathogens. The multistep characterization and analysis of the synthesized nanomaterial samples, using UV-visible spectroscopy, ICP-MS, FT-IR, EDX, XRD, HR-TEM and FE-SEM, also reveal the reaction dynamics of AgNO3, AuCl3 and plant extract in synthesis of the nanoparticles and nanocomposite. The antimicrobial effectiveness of the synthesized Au-Ag nanocomposite, with high gold to silver ratio, reduces the dependency on the AgNPs, which is considered to be environmentally more toxic than the gold counterpart. We hope that this new strategy will change the present course of green synthesis. The rapidity of synthesis will also help in industrial scale green production of nanostructures using Melia azedarach.
Synthesis and evaluation of optical and antimicrobial properties of Ag-SnO2 nanocomposites
NASA Astrophysics Data System (ADS)
Kumar Nair, Kishore; Kumar, Promod; Kumar, Vinod; Harris, R. A.; Kroon, R. E.; Viljoen, Bennie; Shumbula, P. M.; Mlambo, M.; Swart, H. C.
2018-04-01
We report on the sol-gel based room temperature synthesis of undoped SnO2 and Ag-SnO2 nanostructures. The synthesized nanostructures were characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, High-resolution transmission electron microscopy (HR-TEM) and UV-visible spectroscopy. The XRD pattern confirmed that the obtained nanostructures have a tetragonally rutile structure. No extra phase changes were observed after Ag doping. UV-visible spectroscopy measurements indicated that the band gap of 3.59 eV for pure SnO2 nanostructures, decreased to 3.39 eV after doping. TEM analysis showed that no regular shape morphology existed and some rod-shaped particles were also detected in the nanostructures. The antibacterial activity of the nanostructures against E. coli was evaluated and a continuous decrease of microbial count was observed. The microbial population decreased from 6 × 105 cfu/ml to 7 × 104 cfu/ml and 5 × 104 cfu/ml on SnO2 and Ag-SnO2 treatments, respectively. Thus, the nanostructures can be used for the biorational management of E. coli for waste water treatment before discharge.
NASA Astrophysics Data System (ADS)
Fei, Xiang; Shao, Zhengzhong; Chen, Xin
2013-08-01
Three-dimensional (3D) copper oxide (CuO) nanostructures were synthesized in a regenerated Bombyx mori silk fibroin aqueous solution at room temperature. In the synthesis process, silk fibroin served as the template and helped to form the hierarchical CuO nanostructures by self-assembly. Cu(OH)2 nanowires were formed initially, and then they transformed into almond-like CuO nanostructures with branched edges and a compact middle. The size of the final CuO nanostructures can be tuned by varying the concentration of silk fibroin in the reaction system. A possible mechanism has been proposed based on various characterization techniques, such as scanning and transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis. The synthesized CuO nanostructured material has been evaluated as an anode material for lithium ion batteries, and the result showed that they had a good electrochemical performance. The straightforward energy-saving method developed in this research may provide a useful preparation strategy for other functional inorganic materials through an environmentally friendly process.Three-dimensional (3D) copper oxide (CuO) nanostructures were synthesized in a regenerated Bombyx mori silk fibroin aqueous solution at room temperature. In the synthesis process, silk fibroin served as the template and helped to form the hierarchical CuO nanostructures by self-assembly. Cu(OH)2 nanowires were formed initially, and then they transformed into almond-like CuO nanostructures with branched edges and a compact middle. The size of the final CuO nanostructures can be tuned by varying the concentration of silk fibroin in the reaction system. A possible mechanism has been proposed based on various characterization techniques, such as scanning and transmission electron microscopy, X-ray diffraction, and thermogravimetric analysis. The synthesized CuO nanostructured material has been evaluated as an anode material for lithium ion batteries, and the result showed that they had a good electrochemical performance. The straightforward energy-saving method developed in this research may provide a useful preparation strategy for other functional inorganic materials through an environmentally friendly process. Electronic supplementary information (ESI) available: SEM image of the synthesized CuO without silk fibroin addition, and TEM images of the synthesized CuO with different silk fibroin concentrations. See DOI: 10.1039/c3nr01872e
NASA Astrophysics Data System (ADS)
Hooshyar, Ali; Kokabi, Mehrdad
2018-01-01
One-dimensional silicon carbide (1D SiC) nanostructure has shown unusual properties such as extremely high strength, good flexibility, fracture toughness, wide band gap ( 3.2eV), large breakdown electric field strength (>2 MV cm-1, 10 times that of silicon), and inverse Hall-Petch effect. Because of these advantages, 1D SiC nanomaterial has gained extensive attention on the wide range of applications in microelectronics, optoelectronics, nanocomposites, and catalyst supports. Many methods have been used for the synthesis of 1D SiC nanostructures such as chemical vapor deposition, carbon nanotube-confined reaction, laser ablation, high-frequency induction heating, and arc discharge. However, these methods have also some shortcomings such as using catalyst, high-cost, low yield, irregular geometry and impurity. In this work, electrospinning was used to prepare aligned PVA/SiO2 composite nanofibers and the effect of fiber alignment on the production efficiency and quality of 1D SiC nanostructure was investigated. For this purpose, aligned electrospun nanofibers, as the desirable precursor, were put in a tube furnace and heated up to 1250°C under a controlled program in an inert atmosphere. Finally, the grown 1D SiC nanostructure product was characterized using SEM, XRD, and FTIR. The results confirmed the successful synthesis of pure crystalline1D β-SiC nanostructure with high yield, more regular, and metal catalyst-free.
Hybride magnetic nanostructure based on amino acids functionalized polypyrrole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica
Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy,more » transmission electron microscopy (TEM) and magnetic measurements.« less
Morphological and physical - chemical issues of metal nanostructures used in medical field
NASA Astrophysics Data System (ADS)
Duceac, L. D.; Velenciuc, N.; Dobre, E. C.
2016-06-01
In recent years applications of nanotechnology integrated into nanomedicine and bio-nanotechnology have attracted the attention of many researchers from different fields. Processes from chemical engineering especially nanostructured materials play an important role in medical and pharmaceutical development. Fundamental researches focused on finding simple, easily accomplished synthesis methods, morphological aspects and physico-chemical advanced characterization of nanomaterials. More over, by controlling synthesis conditions textural characteristics and physicochemical properties such as particle size, shape, surface, porosity, aggregation degree and composition can be tailored. Low cytotoxicity and antimicrobial effects of these nanostructured materials makes them be applied in medicine field. The major advantage of metal based nanoparticles is the use either for their antimicrobial properties or as drug-carriers having the potential to be active at low concentrations against infectious agents.
Pugin, Benoit; Cornejo, Fabián A; Muñoz-Díaz, Pablo; Muñoz-Villagrán, Claudia M; Vargas-Pérez, Joaquín I; Arenas, Felipe A; Vásquez, Claudio C
2014-11-01
Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Wang, Xun; Li, Yadong
2003-11-21
Various low-dimensional nanostructures, such as nanowires, nanotubes, nanosheets, and fullerene-like nanoparticles have been selectively synthesized from rare-earth compounds (hydroxides, fluorides) based on a facile hydrothermal method. The subsequent dehydration, sulfidation, and fluoridation processes lead to the formation of rare-earth oxide, oxysulfide, and oxyhalide nanostructures, which can be functionalized further by doping with other rare-earth ions or by coating with metal nanoparticles. Owing to the interesting combination of novel nanostructures and functional compounds, these nanostructures can be expected to bring new opportunities in the vast research areas of and application in biology, catalysts, and optoelectronic devices.
Synthesis of rose-like boron nitride particles with a high specific surface area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hongming; Huang, Xiaoxiao; Wen, Guangwu, E-mail: wgw@hitwh.edu.cn
2010-08-15
Novel rose-like BN nanostructures were synthesized on a large scale via a two-step procedure. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometer and nitrogen porosimetry. The results show that the obtained rose-like nanostructures are composed of a large amount of h-BN crystalline flakes and have a surface area of 90.31 m{sup 2}/g. A mechanism was proposed to explain the formation process of the rose-like BN nanostructures.
Synthesis and Oxidation of Silver Nano-particles
2011-01-01
solution (20%wt propyl alcohol, 5%wt hydrochloric acid and 5%wt stannous chloride in water). Scheme 1b and c illustrate the sensitization and silver... Synthesis and Oxidation of Silver Nano-particles Hua Qi*, D. A. Alexson, O.J. Glembocki and S. M. Prokes* Electronics Science and Technology...energy dispersive x-ray (EDX) techniques. The results Quantum Dots and Nanostructures: Synthesis , Characterization, and Modeling VIII, edited by Kurt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langie da Silva, Douglas, E-mail: douglas.langie@ufpel.edu.br; Moreira, Eduardo Ceretta; Dias, Fábio Teixeira
2015-01-15
Nanostructured cobalt vanadium oxide (V{sub 2}O{sub 5}) xerogels spread onto crystalline Si substrates were synthesized via peroxovanadate sol gel route. The resulting products were characterized by distinct experimental techniques. The surface morphology and the nanostructure of xerogels correlate with Co concentration. The decrease of the structural coherence length is followed by the formation of a loose network of nanopores when the concentration of intercalated species was greater than 4 at% of Co. The efficiency of the synthesis route also drops with the increase of Co concentration. The interaction between the Co(OH{sub 2}){sub 6}{sup 2+} cations and the (H{sub 2}V{sub 10}O{submore » 28}){sup 4−} anions during the synthesis was suggested as a possible explanation for the incomplete condensation of the V{sub 2}O{sub 5} gel. Finally the experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5}. In this scenario two possible preferential occupation sites for the metallic atoms in the framework of the xerogel were proposed. - Graphical abstract: Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}) nanoribbons synthesized by peroxovanadate sol gel route. - Highlights: • Nanostructured cobalt V{sub 2}O{sub 5} gel spread onto c{sub S}i were synthesized via peroxovanadate sol gel route. • The micro and nanostructure correlates with the cobalt content. • The efficiency of the synthesis route shows to be also dependent of Co content. • The experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5} xerogel.« less
NASA Astrophysics Data System (ADS)
Aguiar, Ivana; Olivera, Alvaro; Mombrú, Maia; Bentos Pereira, Heinkel; Fornaro, Laura
2017-01-01
Bismuth tri-iodide is a layered compound semiconductor which has suitable properties as material for ionizing radiation detection devices. Monocrystals and polycrystalline thin films have been studied for this application, but only recently, the development of nanostructures of this compound has emerged as an interesting alternative for using such nanostructures in new types of radiation detectors or for including them in other applications. Considering this, we present in this work BiI3 nanoparticles successfully synthesized by the hydrothermal method, using a Teflon-lined stainless steel autoclave, at a temperature of 180 °C during 8-20 h, with BiCl3 and NaI as source materials. We characterized the nanoparticles by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron dispersive spectroscopy (EDS). We obtained small rounded or hexagonal particles (10-20 nm in size) and larger structures. The maximum orientation of the nanostructures is along the (0 0 l) family planes and occurs after 16 h of synthesis, which arises as the best condition for obtaining BiI3 oriented nanostructures. When a 100 kV TEM electron beam was converged on the larger structures, we obtained highly oriented BiI3 hexagonal and rod shaped nanostructures. We found that particles' shape does not depend on the synthesis time. In addition, results were compared with the ones obtained for nanoparticles synthesized from solution. The present work is an advance in the synthesis of BiI3 nanostructures by the hydrothermal method, and is also the first step on seeking the amenable control of morphology and size of such structures using electron beam irradiation. This last process may be particularly appropriate for producing nanostructures for future applications in new devices.
Melanin-templated rapid synthesis of silver nanostructures
2014-01-01
Background As a potent antimicrobial agent, silver nanostructures have been used in nanosensors and nanomaterial-based assays for the detection of food relevant analytes such as organic molecules, aroma, chemical contaminants, gases and food borne pathogens. In addition silver based nanocomposites act as an antimicrobial for food packaging materials. In this prospective, the food grade melanin pigment extracted from sponge associated actinobacterium Nocardiopsis alba MSA10 and melanin mediated synthesis of silver nanostructures were studied. Based on the present findings, antimicrobial nanostructures can be developed against food pathogens for food industrial applications. Results Briefly, the sponge associated actinobacterium N. alba MSA10 was screened and fermentation conditions were optimized for the production of melanin pigment. The Plackett-Burman design followed by a Box-Behnken design was developed to optimize the concentration of most significant factors for improved melanin yield. The antioxidant potential, reductive capabilities and physiochemical properties of Nocardiopsis melanin was characterized. The optimum production of melanin was attained with pH 7.5, temperature 35°C, salinity 2.5%, sucrose 25 g/L and tyrosine 12.5 g/L under submerged fermentation conditions. A highest melanin production of 3.4 mg/ml was reached with the optimization using Box-Behnken design. The purified melanin showed rapid reduction and stabilization of silver nanostructures. The melanin mediated process produced uniform and stable silver nanostructures with broad spectrum antimicrobial activity against food pathogens. Conclusions The melanin pigment produced by N. alba MSA10 can be used for environmentally benign synthesis of silver nanostructures and can be useful for food packaging materials. The characteristics of broad spectrum of activity against food pathogens of silver nanostructures gives an insight for their potential applicability in incorporation of food packaging materials and antimicrobials for stored fruits and foods. PMID:24885756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jae Jin; Suh, Hyo Seon; Zhou, Chun
Tungsten oxide (WO3-x) nanostructures with hexagonal in-plane arrangements were fabricated by sequential infiltration synthesis (SIS), using the selective interaction of gas phase precursors with functional groups in one domain of a block copolymer (BCP) self-assembled template. Such structures are highly desirable for various practical applications and as model systems for fundamental studies. The nanostructures were characterized by cross-sectional scanning electron microscopy, grazing-incidence small/wide-angle X-ray scattering (GISAXS/GIWAXS), and X-ray absorption near edge structure (XANES) measurements at each stage during the SIS process and subsequent thermal treatments, to provide a comprehensive picture of their evolution in morphology, crystallography and electronic structure. Inmore » particular, we discuss the critical role of SIS Al2O3 seeds toward modifying the chemical affinity and free volume in a polymer for subsequent infiltration of gas phase precursors. The insights into SIS growth obtained from this study are valuable to the design and fabrication of a wide range of targeted nanostructures.« less
Self-assembled peptide nanostructures for functional materials
NASA Astrophysics Data System (ADS)
Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.
2016-10-01
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panigrahi, Pravas Kumar, E-mail: pravas.iit@gmail.com; Pathak, Amita, E-mail: ami@chem.iitkgp.ernet.in
Graphical abstract: Nanotubes and fullerene-like nanostructures of MoS{sub 2} were synthesized via a microwave-assisted route in solution phase. Highlights: Black-Right-Pointing-Pointer Microwave-assisted route for synthesis of nanotube and fullerene-like nanostructures of MoS{sub 2}. Black-Right-Pointing-Pointer Morphological analysis of the synthesized products. Black-Right-Pointing-Pointer Solvent plays important role in the modification of morphology of MoS{sub 2}. -- Abstract: The paper described the synthesis of nanotubes and fullerene-like nanostructures of MoS{sub 2} through a technically simple, rapid, and energy-efficient microwave-assisted synthesis technique, which involved the use of elemental sulfur dissolved in a mixture of monoethanolamine and hydrazine hydrate as the sulfide source. The microwave inducedmore » reaction between the molybdate with sulfide ions, in the presence of hydrazine hydrate in the reaction medium, resulted in the formation of gray colored powders of amorphous MoS{sub 2}. The as-obtained powders were calcined at 600 Degree-Sign C for 2 h and characterized by different techniques. HRTEM analysis of the calcined samples indicated the formation of fullerene-like MoS{sub 2} structures when the starting solution mixture was irradiated with microwave for a period of 200 s, while on 600 s of irradiation of the same revealed the formation of folded sheets like MoS{sub 2} nanotubes. BET surface areas of the calcined samples have been measured and a plausible reaction mechanism for the formation of nanotubes and fullerene-like nanostructures of MoS{sub 2} has been proposed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani, A. Daya; Subrahmanyam, Ch., E-mail: csubbu@iith.ac.in
2016-01-15
Highlights: • Novel one pot synthesis of CdS/TiO{sub 2} hetero nanostructures by combustion synthesis. • Excellent visible light photocatalytic activity for H{sub 2} production from water. • Enhanced activity for the removal of Cr(VI) from aqueous streams. - Abstract: To achieve more effective coupling of cadmium sulfide (CdS) to the TiO{sub 2}, single step synthesis of CdS/TiO{sub 2} composites is advantageous. In the present study a novel one pot synthesis of several CdS/TiO{sub 2} hetero-nanostructures was explored through combustion technique. As the process involves the simultaneous nucleation of CdS and TiO{sub 2} it leads to the proper connectivity between themore » constituent materials. All the catalysts were characterized by using several techniques and the excellent visible light activity of the composites has been asserted by the H{sub 2} production from water containing sacrificial reagents, removal of methylene blue and Cr(VI) from aqueous streams. Therefore the present synthetic strategy which is devoid of using molecular linker at interface is more suitable for solar applications, which require faster rates of electron transfer at the hetero junctions.« less
Facet-controlled facilitation of PbS nanoarchitectures by understanding nanocrystal growth
NASA Astrophysics Data System (ADS)
Loc, Welley Siu; Quan, Zewei; Lin, Cuikun; Pan, Jinfong; Wang, Yuxuan; Yang, Kaikun; Jian, Wen-Bin; Zhao, Bo; Wang, Howard; Fang, Jiye
2015-11-01
Nanostructured lead sulphide is a significant component in a number of energy-related sustainable applications such as photovoltaic cells and thermoelectric components. In many micro-packaging processes, dimensionality-controlled nano-architectures as building blocks with unique properties are required. This study investigates different facet-merging growth behaviors through a wet-chemical synthetic strategy to produce high-quality controlled nanostructures of lead sulphide in various dimensionalities. It was found that 1D nanowires or 2D nanosheets can be obtained by the merging of reactive {111}- or {110}-facets, respectively, while promoting {100} facets in the early stages after nucleation leads to the growth of 0D nanocubes. The influence of temperature, capping ligands and co-solvent in facilitating the crystal facet growth of each intermediate seed is also demonstrated. The novelty of this work is characterized by the delicate manipulation of various PbS nanoarchitectures based on the comprehension of the facet-merging evolution. The synthesis of facet-controlled PbS nanostructures could provide novel building blocks with desired properties for use in many applications.Nanostructured lead sulphide is a significant component in a number of energy-related sustainable applications such as photovoltaic cells and thermoelectric components. In many micro-packaging processes, dimensionality-controlled nano-architectures as building blocks with unique properties are required. This study investigates different facet-merging growth behaviors through a wet-chemical synthetic strategy to produce high-quality controlled nanostructures of lead sulphide in various dimensionalities. It was found that 1D nanowires or 2D nanosheets can be obtained by the merging of reactive {111}- or {110}-facets, respectively, while promoting {100} facets in the early stages after nucleation leads to the growth of 0D nanocubes. The influence of temperature, capping ligands and co-solvent in facilitating the crystal facet growth of each intermediate seed is also demonstrated. The novelty of this work is characterized by the delicate manipulation of various PbS nanoarchitectures based on the comprehension of the facet-merging evolution. The synthesis of facet-controlled PbS nanostructures could provide novel building blocks with desired properties for use in many applications. Electronic supplementary information (ESI) available: Experimental section (chemicals, synthesis, characterization methods), synthesis conditions, AFM image of NSs, SEM and TEM images of NWs prepared without OAm, and TEM images of truncated NCbs grown for 7.5 min at 180 °C. See DOI: 10.1039/c5nr04181c
NASA Astrophysics Data System (ADS)
Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre
2017-07-01
SnS1-xSex nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, -1 V, and 30 min, respectively. SnS1-xSex nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns revealed that the SnS1-xSex nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS1-xSex nanostructures due to Se-doping. PL and UV-vis spectroscopy were used to evaluate the optical properties of SnS1-xSex thin films. The PL spectra of SnS1-xSex nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV-vis spectra showed that the optical band gap energy (Eg) of SnS1-xSex nanostructures varied between 1.22-1.65 eV, due to Se-doping.
Synthesis, characterization and biological studies of copper oxide nanostructures
NASA Astrophysics Data System (ADS)
Jillani, Saquf; Jelani, Mohsan; Hassan, Najam Ul; Ahmad, Shahbaz; Hafeez, Muhammad
2018-04-01
The development of synthetic methods has been broadly accepted as an area of fundamental importance to the understanding and application of nanoscale materials. It allows the individual to modulate basic parameters such as morphology, particle size, size distributions, and composition. Several methods have been developed to synthesize CuO nanostructures with diverse morphologies, sizes, and dimensions using different chemical and physical based approaches. In this work, CuO nanostructures have been synthesized by aqueous precipitation method and simple chemical deposition method. The characterization of these products has been carried out by the x-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and UV–vis spectroscopy. Biological activity such as antibacterial nature of synthesized CuO is also explored. XRD peaks analysis revealed the monoclinic crystalline phase of copper oxide nanostructures. While the rod-like and particle-like morphologies have been observed in SEM results. FTIR spectra have confirmed the formation of CuO nanoparticles by exhibiting its characteristic peaks corresponding to 494 cm‑1 and 604 cm‑1. The energy band gap of the as-prepared CuO nanostructures determined from UV–vis spectra is found to be 2.18 eV and 2.0 eV for precipitation and chemically deposited samples respectively. The antibacterial activity results described that the synthesized CuO nanoparticles showed better activity against Staphylococcus aureus. The investigated results suggested the synthesis of highly stable CuO nanoparticles with significant antibacterial activities.
Synthesis and characterization of nanostructured CaSiO3 biomaterial
NASA Astrophysics Data System (ADS)
Jagadale, Pramod N.; Kulal, Shivaji R.; Joshi, Meghanath G.; Jagtap, Pramod P.; Khetre, Sanjay M.; Bamane, Sambhaji R.
2013-04-01
Here we report a successful preparation of nanostructured calcium silicate by wet chemical approach. The synthesized sample was characterized by various physico-chemical methods. Thermal stability was investigated using thermo-gravimetric and differential thermal analysis (TG-DTA). Structural characterization of the sample was carried out by the X-ray diffraction technique (XRD) which confirmed its single phase hexagonal structure. Transmission electron microscopy (TEM) was used to study the nanostructure of the ceramics while homogeneous grain distribution was revealed by scanning electron microscopy studies (SEM). The elemental analysis data obtained from energy dispersive X-ray spectroscopy (EDAX) were in close agreement with the starting composition used for the synthesis. Superhydrophilic nature of CaSiO3 was investigated at room temperature by sessile drop technique. Effect of porous nanosized CaSiO3 on early adhesion and proliferation of human bone marrow mesenchymal stem cells (BMMSCs) and cord blood mesenchymal stem (CBMSCs) cells was measured in vitro. MTT cytotoxicity test and cell adhesion test showed that the material had good biocompatibility and promoted cell viability and cell proliferation. It has been stated that the cell viability and proliferation are significantly affected by time and concentration of CaSiO3. These findings indicate that the CaSiO3 ceramics has good biocompatibility and that it is promising as a biomaterial.
Jin, Rencheng; Chen, Gang; Pei, Jian; Sun, Jingxue; Wang, Yang
2011-09-01
The controlled synthesis of one-dimensional and three-dimensional Sb(2)Se(3) nanostructures has been achieved by a facile solvothermal process in the presence of citric acid. By simply controlling the concentration of citric acid, the nucleation, growth direction and exposed facet can be readily tuned, which brings the different morphologies and nanostructures to the final products. The as-prepared products have been characterized by means of X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM and selected area electron diffraction. Based on the electron microscope observations, a possible growth mechanism of Sb(2)Se(3) with distinctive morphologies including ultralong nanobelts, hierarchical urchin-like nanostructures is proposed and discussed in detail. The electrochemical hydrogen storage measurements reveal that the morphology plays a key role on the hydrogen storage capacity of Sb(2)Se(3) nanostructures. The Sb(2)Se(3) ultralong nanobelts with high percentage of {-111} facets exhibit higher hydrogen storage capacity (228.5 mA h g(-1)) and better cycle stability at room temperature.
NASA Astrophysics Data System (ADS)
Chadha, Tandeep S.
Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular structures, due to a combination of high surface area, improved lithium diffusivity and electronic conductivity. The model developed allows for the prediction of optimized nanostructure geometry depending on the end-use application. Increasing demand for lithium-ion batteries, posing concerns for lithium supply and costs in future, have motivated research in sodium-ion batteries as alternatives. In this work, the nanostructured TiO2 electrodes have been studied as anodes for sodium ion batteries. To improve the performance, a new multi-component ACVD process has been developed to achieve single-step synthesis of doped nanostructured thin films. One-dimensional niobium doped TiO2 thin films have been synthesized and characterized as a novel anode material for sodium-ion batteries. The doped nanostructured thin films deliver significant improvements on capacity over their undoped counterparts and demonstrate feasibility of sodium-ion batteries. In summary, the studies conducted in this dissertation develop a detailed understanding of the ACVD process and demonstrate its ability to synthesize superior nanostructured thin films for energy storage applications, thereby motivating process scalability for commercial applications.
LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.
Saji, Viswanathan S; Song, Hyun-Kon
2015-01-01
Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.
Development of High ZT Thermoelectric Materials with Nanostructure for Energy Applications
2010-03-03
film and nanowires array (embedded in alumina template) were fabricated by potentiostatically electrodeposition . The Seebeck coefficient, electrical...by potentiostatically electrodeposition . The followings are our reports on the synthesis and characterizations of these nano-materials. B1...Synthesis of the nanomaterials Bi2Te3 films were electrodeposited potentiostatically at -150 mV onto an ITO glass substrate from 1 M HNO3 solution
NASA Astrophysics Data System (ADS)
Khajuria, H.; Kumar, M.; Singh, R.; Ladol, J.; Nawaz Sheikh, H.
2018-05-01
One dimensional nanostructures of cerium doped dysprosium phosphate (DyPO4:Ce3+) were synthesized via hydrothermal route in the presence of different surfactants [sodium dodecyl sulfate (SDS), dodecyl sulfosuccinate (DSS), polyvinyl pyrollidone (PVP)] and solvent [ethylene glycol and water]. The prepared nanostructures were characterized by Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-VIS-NIR absorption spectrophotometer and photoluminescence (PL) studies. The PXRD and FTIR results indicate purity, good crystallinity and effective doping of Ce3+ in nanostructures. SEM and TEM micrographs display nanorods, nanowires and nanobundles like morphology of DyPO4:Ce3+. Energy-dispersive X-ray spectra (EDS) of DyPO4:Ce3+nanostructures confirm the presence of dopant. UV-VIS-NIR absorption spectra of prepared compounds are used to calculate band gap and explore their optical properties. Luminescent properties of DyPO4:Ce3+ was studied by using PL emission spectra. The effect of additives and solvents on the uniformity, morphology and optical properties of the nanostructures were studied in detail.
Fabrication of polystyrene/gold nanotubes and nanostructure-controlled growth of aluminate.
Zhu, Haifeng; Ai, Sufen; He, Qiang; Cui, Yue; Li, Junbai
2007-07-01
Direct adsorption of gold nanoparticles in the inner of alumina template and following immersion of polystyrene (PS) dichloromethane solution in the template resulted in the fabrication of composite nanotubes of PS and gold nanoparticles. Several methods have been used to characterize the tubular structure. Nanostructured sodium aluminates were formed when the anodic alumina oxide membrane was dissolved by the sodium hydroxide. A "flower" shape was found after etching the template while the synthesis process was recorded as function of a time. The results demonstrate that the shape and size of the aluminates nanostructure can be controlled by etching time and the pore diameter of the alumina membrane.
Synthesis of nanostructured marcasite FeS2 for energy storage applications
NASA Astrophysics Data System (ADS)
Kaur, Gurpreet; Sharma, Pooja D.; Thakur, Anup; Kumar, Manjeet; Bala, Rajni; Kumar, Akshay
2018-05-01
The synthesis of marcasite FeS2 is of great interest as this area is seldom studied due to its sophisticated synthesis methods. In fulfillment of growing energy demands, there is need of cost effective alternates for energy storage devices. Nanostructured marcasite iron disulfide (FeS2) is a promising candidate as anode material for energy storage devices. FeS2 exist in many phases out of which marcasite and pyrite are best suitable for energy storage applications. Purity of the phase is a big challenge for its application oriented use. Pure marcasite (FeS2) has been synthesized by low cost, environmentally friendly hydrothermal route. The synthesized material has been characterized by X-ray Diffraction (XRD). Cyclic voltammetry results show the significant electrochemical performance of marcasite. This work purposes a vision to develop marcasite based electrode material for energy storage devices.
Nanostructured materials: A novel approach to enhanced performance. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korth, G.E.; Froes, F.H.; Suryanarayana, C.
Nanostuctured materials are an emerging class of materials that can exhibit physical and mechanical characteristics often exceeding those exhibited by conventional course grained materials. A number of different techniques can be employed to produce these materials. In this program, the synthesis methods were (a) mechanical alloying , (b) physical vapor deposition, and (c) plasma processing. The physical vapor deposition and plasma processing were discontinued after initial testing with subsequent efforts focused on mechanical alloying. The major emphasis of the program was on the synthesis, consolidation, and characterization of nanostructured Al-Fe, Ti-Al, Ti-Al-Nb, and Fe-Al by alloying intermetallics with a viewmore » to increase their ductilities. The major findings of this project are reported.« less
Synthesis and magnetic properties of superparamagnetic CoAs nanostructures
NASA Astrophysics Data System (ADS)
Desai, P.; Ashokaan, N.; Masud, J.; Pariti, A.; Nath, M.
2015-03-01
This article provides a comprehensive guide on the synthesis and characterization of superparamagnetic CoAs nanoparticles and elongated nanostructures with high blocking temperature, (TB), via hot-injection precipitation and solvothermal methods. Cobalt arsenides constitute an important family of magnetically active solids that find a variety of applications ranging from magnetic semiconductors to biomedical imaging. While the higher temperature hot-injection precipitation technique (300 °C) yields pure CoAs nanostructures, the lower temperature solvothermal method (200 °C) yields a mixture of CoAs nanoparticles along with other Co-based impurity phases. The synthesis in all these cases involved usage of triphenylarsine ((C6H5)3As) as the As precursor which reacts with solid Co2(CO)8 by ligand displacement to yield a single source precursor. The surfactant, hexadecylamine (HDA) further assists in controlling the morphology of the nanostructures. HDA also provides a basic medium and molten flux-like conditions for the redox chemistry to occur between Co and As at elevated temperatures. The influence of the length of reaction time was investigated by studying the evolution of product morphology over time. It was observed that while spontaneous nucleation at higher temperature followed by controlled growth led to the predominant formation of short nanorods, with longer reaction time, the nanorods were further converted to nanoparticles. The size of the nanoparticles obtained, was mostly in the range of 10-15 nm. The key finding of this work is exceptionally high coercivity in CoAs nanostructures for the first time. Coercivity observed was as high as 0.1 T (1000 Oe) at 2 K. These kinds of magnetic nanostructures find multiple applications in spintronics, whereas the superparamagnetic nanoparticles are viable for use in magnetic storage, ferrofluids and as contrast enhancing agents in MRI.
Boron Nitride Nanostructures: Fabrication, Functionalization and Applications.
Yin, Jun; Li, Jidong; Hang, Yang; Yu, Jin; Tai, Guoan; Li, Xuemei; Zhang, Zhuhua; Guo, Wanlin
2016-06-01
Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two-dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN-involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One-dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Singh, Inderjeet; Landfester, Katharina; Chandra, Amreesh; Muñoz-Espí, Rafael
2015-11-01
We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism.We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism. Electronic supplementary information (ESI) available: Associated structural and morphological analysis, XPS characterization, BET surface area, catalytic measurements, recycle tests of the catalyst, and magnetic characterizations. See DOI: 10.1039/c5nr05579b
Electrochemical Deposition of Lanthanum Telluride Thin Films and Nanowires
NASA Astrophysics Data System (ADS)
Chi, Su (Ike); Farias, Stephen; Cammarata, Robert
2013-03-01
Tellurium alloys are characterized by their high performance thermoelectric properties and recent research has shown nanostructured tellurium alloys display even greater performance than bulk equivalents. Increased thermoelectric efficiency of nanostructured materials have led to significant interests in developing thin film and nanowire structures. Here, we report on the first successful electrodeposition of lanthanum telluride thin films and nanowires. The electrodeposition of lanthanum telluride thin films is performed in ionic liquids at room temperature. The synthesis of nanowires involves electrodepositing lanthanum telluride arrays into anodic aluminum oxide (AAO) nanoporous membranes. These novel procedures can serve as an alternative means of simple, inexpensive and laboratory-environment friendly methods to synthesize nanostructured thermoelectric materials. The thermoelectric properties of thin films and nanowires will be presented to compare to current state-of-the-art thermoelectric materials. The morphologies and chemical compositions of the deposited films and nanowires are characterized using SEM and EDAX analysis.
Barcode extension for analysis and reconstruction of structures
NASA Astrophysics Data System (ADS)
Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L.; Gootenberg, Jonathan S.; Yin, Peng
2017-03-01
Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.
Barcode extension for analysis and reconstruction of structures.
Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng
2017-03-13
Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures.
Barcode extension for analysis and reconstruction of structures
Myhrvold, Cameron; Baym, Michael; Hanikel, Nikita; Ong, Luvena L; Gootenberg, Jonathan S; Yin, Peng
2017-01-01
Collections of DNA sequences can be rationally designed to self-assemble into predictable three-dimensional structures. The geometric and functional diversity of DNA nanostructures created to date has been enhanced by improvements in DNA synthesis and computational design. However, existing methods for structure characterization typically image the final product or laboriously determine the presence of individual, labelled strands using gel electrophoresis. Here we introduce a new method of structure characterization that uses barcode extension and next-generation DNA sequencing to quantitatively measure the incorporation of every strand into a DNA nanostructure. By quantifying the relative abundances of distinct DNA species in product and monomer bands, we can study the influence of geometry and sequence on assembly. We have tested our method using 2D and 3D DNA brick and DNA origami structures. Our method is general and should be extensible to a wide variety of DNA nanostructures. PMID:28287117
Sulfur-Doped Zinc Oxide (ZnO) Nanostars: Synthesis and Simulation of Growth Mechanism
2011-10-01
Zinc Oxide ( ZnO ) Nanostars: Synthesis and Simulation of Growth Mechanism Jinhyun Cho1, Qiubao Lin2,3, Sungwoo...characterization, and ab initio simulations of star-shaped hexagonal zinc oxide ( ZnO ) nanowires. The ZnO nanostructures were synthesized by a low...Introduction Zinc oxide ( ZnO ) is a wide bandgap (3.37 eV), Ⅱ–Ⅵ semiconductor of great interest for optoelectronic applications [1–3]. Its
Magneto-ellipsometry as a powerful technique for investigating magneto-optical structures properties
NASA Astrophysics Data System (ADS)
Maximova, Olga; Kosyrev, Nikolay; Yakovlev, Ivan; Shevtsov, Dmitriy; Lyaschenko, Sergey; Varnakov, Sergey; Ovchinnikov, Sergey
2017-10-01
In this work we report on new magneto-ellipsometry set-up that allows to grow thin films and nanostructures by ultrahigh vacuum thermal evaporation as well as to conduct in situ measurements during the growth in order to analyze and control nanostructures properties. Ellipsometry and transverse magneto-optical Kerr effect measurements can be performed in situ inside this set-up. A uniform magnetic field of high intensity (more than 1 kOe) can be applied to samples inside the vacuum chamber. Also, we report on the developed method of data interpretation that is the base of the set-up software. Thus, we present a powerful tool for nanostructures synthesis and characterization.
Large-scale Synthesis of β-SiC Nanochains and Their Raman/Photoluminescence Properties.
Meng, Alan; Zhang, Meng; Gao, Weidong; Sun, Shibin; Li, Zhenjiang
2011-12-01
Although the SiC/SiO2 nanochain heterojunction has been synthesized, the chained homogeneous nanostructure of SiC has not been reported before. Herein, the novel β-SiC nanochains are synthesized assisted by the AAO template. The characterized results demonstrate that the nanostructures are constructed by spheres of 25-30 nm and conjoint wires of 15-20 nm in diameters. Raman and photoluminescence measurements are used to explore the unique optical properties. A speed-alternating vapor-solid (SA-VS) growth mechanism is proposed to interpret the formation of this typical nanochains. The achieved nanochains enrich the species of one-dimensional (1D) nanostructures and may hold great potential applications in nanotechnology.
Improvement of the BiOI photocatalytic activity optimizing the solvothermal synthesis
NASA Astrophysics Data System (ADS)
Mera, Adriana C.; Moreno, Yanko; Contreras, David; Escalona, Nestor; Meléndrez, Manuel F.; Mangalaraja, Ramalinga Viswanathan; Mansilla, Héctor D.
2017-01-01
BiOI nanostructured microspheres were obtained from the solvothermal synthesis route in the presence of ethylene glycol and KI as solvent and source of iodide, respectively. Optimal conditions for the synthesis were obtained by using multivariate analysis and choosing the photocatalytic oxidation rate constant of 3,4,5-trihydroxybenzoic acid (gallic acid) as response factor under simulated solar radiation. Response surface methodology (RSM) was used to determine the optimum values of the reaction time and temperature which were 18 h and 126 °C, respectively, to obtain the most active catalyst. In addition, BiOI synthesis using ionic liquid 1-butyl-3-methylimidazolium iodide ([bmim]I) as iodide source was also carried out for the comparison of microstructure and its photocatalytic efficiency. The obtained BiOI nanostructures were characterized by scanning electron microscopy (SEM) attached with energy dispersive spectrometer (EDS), nitrogen adsorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), Fourier transform infrared (FTIR) spectrometry, diffuse reflectance spectroscopy (DRS) and cyclic voltammetry (CV) analyses for their changes in morphological and structural behaviors. It was observed that the synthesis temperature of BiOI nanostructures strongly influenced the morphology, crystalline phase, surface area and electrochemical behavior, and thus affecting the photocatalytic efficiency. The higher photocatalytic removal of gallic acid (60%) was reached within 30 min of irradiation with UV-A on microspheres obtained with ionic liquid. The (1 1 0) crystal phase of BiOI influenced the photocatalytic efficiency.
NASA Astrophysics Data System (ADS)
Kelly, James P.
Ultra-high temperature ceramics (UHTCs) are a unique class of materials with the potential to withstand harsh environments due to covalent bonding, which gives these materials high melting temperatures, although decomposition temperatures should also be considered. For example, the melting temperature of TaC is near 4000 K, but may vaporize at lower temperatures. The high melting temperatures also make them difficult to process without high pressures and temperatures and to achieve dense ceramics with a nanostructure. Such materials however are appealing for aerospace technologies. The ability to generate high density compacts and maintain a nanostructure could allow for unprecedented control and improvement to the mechanical properties. The goal of this work is to develop processes for the synthesis and consolidation of nanostructured UHTCs. A self-propagating solvothermal synthesis technique for making UHTC nanopowders is presented. The technique is fast, scalable, and requires minimal external energy input. Synthesis of transition metal boride, carbide, and nitride powders is demonstrated. TaC is synthesized using a range of synthesis conditions and characterized to determine the fundamental mechanisms controlling the nanopowder characteristics. Discussion on purification of the powders is also presented. The sintering of TaC nanopowders produced by the solvothermal synthesis method is performed by resistance sintering. The effects of temperature, heating rate, and dwell time on densification and grain growth is presented. Adequate powder processing, carbon content, volatilization, and additives are found to be critical factors affecting the densification, microstructure, and grain growth. The optimal range of carbon addition for minimizing oxygen content is determined. WC and ZrC are evaluated as additives for reducing grain growth of TaC. Secondary phases and/or solid solutions are capable of suppressing grain growth. A unified approach to solid solution chemistries to control the densification, microstructure, and properties of UHTCs in general is presented. This work has important consequences on advancing the properties of UHTCs.
Shaping carbon nanostructures by controlling the synthesis process
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.; Voelkl, Edgar
2001-08-01
The ability to control the nanoscale shape of nanostructures in a large-scale synthesis process is an essential and elusive goal of nanotechnology research. Here, we report significant progress toward that goal. We have developed a technique that enables controlled synthesis of nanoscale carbon structures with conical and cylinder-on-cone shapes and provides the capability to dynamically change the nanostructure shape during the synthesis process. In addition, we present a phenomenological model that explains the formation of these nanostructures and provides insight into methods for precisely engineering their shape. Since the growth process we report is highly deterministic in allowing large-scale synthesis of precisely engineered nanoscale components at defined locations, our approach provides an important tool for a practical nanotechnology.
Microwave-Assisted Green Synthesis of Silver Nanostructures
This account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. The rapid and in-core MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Conceptually...
Xing, Yanlong; Dittrich, Petra S.
2018-01-01
Microfluidic-based synthesis of one-dimensional (1D) nanostructures offers tremendous advantages over bulk approaches e.g., the laminar flow, reduced sample consumption and control of self-assembly of nanostructures. In addition to the synthesis, the integration of 1D nanomaterials into microfluidic chips can enable the development of diverse functional microdevices. 1D nanomaterials have been used in applications such as catalysts, electronic instrumentation and sensors for physical parameters or chemical compounds and biomolecules and hence, can be considered as building blocks. Here, we outline and critically discuss promising strategies for microfluidic-assisted synthesis, alignment and various chemical and biochemical applications of 1D nanostructures. In particular, the use of 1D nanostructures for sensing chemical/biological compounds are reviewed. PMID:29303990
NASA Astrophysics Data System (ADS)
Cendrowski, K.; Chen, X.; Zielinska, B.; Kalenczuk, R. J.; Rümmeli, M. H.; Büchner, B.; Klingeler, R.; Borowiak-Palen, E.
2011-11-01
The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO2) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO2). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO2/TiO2) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO2-Degussa P25 catalyst is detected.
Jiang, Li; Mundoor, Haridas; Liu, Qingkun; Smalyukh, Ivan I
2016-07-26
Tunable composite materials with interesting physical behavior can be designed through integrating unique optical properties of solid nanostructures with facile responses of soft matter to weak external stimuli, but this approach remains challenged by their poorly controlled coassembly at the mesoscale. Using scalable wet chemical synthesis procedures, we fabricated anisotropic gold-silica-dye colloidal nanostructures and then organized them into the device-scale (demonstrated for square-inch cells) electrically tunable composites by simultaneously invoking molecular and colloidal self-assembly. We show that the ensuing ordered colloidal dispersions of shape-anisotropic nanostructures exhibit tunable fluorescence decay rates and intensity. We characterize how these properties depend on low-voltage fields and polarization of both the excitation and emission light, demonstrating a great potential for the practical realization of an interesting breed of nanostructured composite materials.
Composite-Nanoparticles Thermal History Sensors
2014-05-01
al. Lead Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions Fig. 5. SEM image of PbTe solid nano- and micro-cubes...Lead Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of PbSe microflowers, a similar pro...R C H A R TIC LE Poudel et al. Lead Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of
NASA Astrophysics Data System (ADS)
Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo
2018-03-01
The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.
Single Step In Situ Synthesis and Optical Properties of Polyaniline/ZnO Nanocomposites
Kaith, B. S.; Rajput, Jaspreet
2014-01-01
Polyaniline/ZnO nanocomposites were prepared by in situ oxidative polymerization of aniline monomer in the presence of different weight percentages of ZnO nanostructures. The steric stabilizer added to prevent the agglomeration of nanostructures in the polymer matrix was found to affect the final properties of the nanocomposite. ZnO nanostructures of various morphologies and sizes were prepared in the absence and presence of sodium lauryl sulphate (SLS) surfactant under different reaction conditions like in the presence of microwave radiation (microwave oven), under pressure (autoclave), under vacuum (vacuum oven), and at room temperature (ambient condition). The conductivity of these synthesized nanocomposites was evaluated using two-probe method and the effect of concentration of ZnO nanostructures on conductivity was observed. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible (UV-VIS) spectroscopy techniques were used to characterize nanocomposites. The optical energy band gap of the nanocomposites was calculated from absorption spectra and ranged between 1.5 and 3.21 eV. The reported values depicted the blue shift in nanocomposites as compared to the band gap energies of synthesized ZnO nanostructures. The present work focuses on the one-step synthesis and potential use of PANI/ZnO nanocomposite in molecular electronics as well as in optical devices. PMID:24523653
NASA Astrophysics Data System (ADS)
Hatta, M. N. M.; Hashim, M. S.; Hussin, R.; Aida, S.; Kamdi, Z.; Ainuddin, AR; Yunos, MZ
2017-10-01
In this study, carbon nanostructures were synthesized from High Density Polyethylene (HDPE) and Polyethylene terephthalate (PET) waste by single-stage chemical vapour deposition (CVD) method. In CVD, iron was used as catalyst and pyrolitic of carbon source was conducted at temperature 700, 800 and 900°C for 30 minutes. Argon gas was used as carrier gas with flow at 90 sccm. The synthesized carbon nanostructures were characterized by FESEM, EDS and calculation of carbon yield (%). FESEM micrograph shows that the carbon nanostructures were only grown as nanofilament when synthesized from PET waste. The synthesization of carbon nanostructure at 700°C was produced smooth and the smallest diameter nanofilament compared to others. The carbon yield of synthesized carbon nanostructures from PET was lower from HDPE. Furthermore, the carbon yield is recorded to increase with increasing of reaction temperature for all samples. Elemental study by EDS analysis were carried out and the formation of carbon nanostructures was confirmed after CVD process. Utilization of polymer waste to produce carbon nanostructures is beneficial to ensure that the carbon nanotechnology will be sustained in future.
Composite-Nanoparticles Thermal History Sensors
2014-05-01
Nanostructures Under Different Hydrothermal Synthesis Conditions Fig. 5. SEM image of PbTe solid nano- and micro-cubes obtained at 100 !C (a) and 160 !C (b...Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of PbSe microflowers, a similar pro- cedure was followed with NaTeO3...Telluride and Selenide Nanostructures Under Different Hydrothermal Synthesis Conditions For the preparation of PbSe microflowers, a similar pro- cedure
NASA Astrophysics Data System (ADS)
Jiang, Yanan; Liu, Baodan; Zhai, Zhaofeng; Liu, Xiaoyuan; Yang, Bing; Liu, Lusheng; Jiang, Xin
2015-11-01
A new method based on conventional plasma electrolytic oxidation (PEO) technology has been developed for the rational synthesis of metal tungstate nanostructures. Using this method, ZnWO4 and NiWO4 nanostructures with controllable morphologies (nanorods, nanosheets and microsheets) and superior crystallinity have been synthesized. It has been found that the morphology diversity of ZnWO4 nanostructures can be selectively tailored through tuning the electrolyte concentration and annealing temperatures, showing obvious advantages in comparison to traditional hydrothermal and sol-gel methods. Precise microscopy analyses on the cross section of the PEO coating and ZnWO4 nanostructures confirmed that the precursors initially precipitated in the PEO coating and its surface during plasma discharge process are responsible for the nucleation and subsequent growth of metal tungstate nanostructures by thermal annealing. The method developed in this work represents a general strategy toward the rational synthesis of metal oxide nanostructures and the formation mechanism of metal tungstate nanostructures fabricated by the PEO method is finally discussed.
Vibrational properties of gold nanoparticles obtained by green synthesis
NASA Astrophysics Data System (ADS)
Alvarez, Ramón A. B.; Cortez-Valadez, M.; Bueno, L. Oscar Neira; Britto Hurtado, R.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Serrano-Corrales, Luis Ivan; Arizpe-Chávez, H.; Flores-Acosta, M.
2016-10-01
This study reports the synthesis and characterization of gold nanoparticles through an ecological method to obtain nanostructures from the extract of the plant Opuntia ficus-indica. Colloidal nanoparticles show sizes that vary between 10-20 nm, and present various geometric morphologies. The samples were characterized through optical absorption, Raman Spectroscopy and Transmission Electron Microscopy (TEM). Additionally, low energy metallic clusters of Aun (n=2-20 atoms) were modeled by computational quantum chemistry. The theoretical results were obtained with Density Functional Theory (DFT). The predicted results of Au clusters show a tendency and are correlated with the experimental results concerning the optical absorption bands and Raman spectroscopy in gold nanoparticles.
Fabrication routes for one-dimensional nanostructures via block copolymers
NASA Astrophysics Data System (ADS)
Tharmavaram, Maithri; Rawtani, Deepak; Pandey, Gaurav
2017-05-01
Nanotechnology is the field which deals with fabrication of materials with dimensions in the nanometer range by manipulating atoms and molecules. Various synthesis routes exist for the one, two and three dimensional nanostructures. Recent advancements in nanotechnology have enabled the usage of block copolymers for the synthesis of such nanostructures. Block copolymers are versatile polymers with unique properties and come in many types and shapes. Their properties are highly dependent on the blocks of the copolymers, thus allowing easy tunability of its properties. This review briefly focusses on the use of block copolymers for synthesizing one-dimensional nanostructures especially nanowires, nanorods, nanoribbons and nanofibers. Template based, lithographic, and solution based approaches are common approaches in the synthesis of nanowires, nanorods, nanoribbons, and nanofibers. Synthesis of metal, metal oxides, metal oxalates, polymer, and graphene one dimensional nanostructures using block copolymers have been discussed as well.
Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review
Mammeri, Fayna; Ammar, Souad
2018-01-01
Iron oxide and gold-based magneto-plasmonic nanostructures exhibit remarkable optical and superparamagnetic properties originating from their two different components. As a consequence, they have improved and broadened the application potential of nanomaterials in medicine. They can be used as multifunctional nanoprobes for magneto-plasmonic heating as well as for magnetic and optical imaging. They can also be used for magnetically assisted optical biosensing, to detect extreme traces of targeted bioanalytes. This review introduces the previous work on magneto-plasmonic hetero-nanostructures including: (i) their synthesis from simple “one-step” to complex “multi-step” routes, including seed-mediated and non-seed-mediated methods; and (ii) the characterization of their multifunctional features, with a special emphasis on the relationships between their synthesis conditions, their structures and their properties. It also focuses on the most important progress made with regard to their use in nanomedicine, keeping in mind the same aim, the correlation between their morphology—namely spherical and non-spherical, core-satellite and core-shell, and the desired applications. PMID:29518969
Hydrothermal synthesis of alpha- and beta-HgS nanostructures
NASA Astrophysics Data System (ADS)
Galain, Isabel; María, Pérez Barthaburu; Ivana, Aguiar; Laura, Fornaro
2017-01-01
We synthesized HgS nanostructures by the hydrothermal method in order to use them as electron acceptors in hybrid organic-inorganic solar cells. We employed different mercury sources (HgO and Hg(CH3COO)2) and polyvinylpyrrolidone (PVP) or hexadecanethiol (HDT) as stabilizing/capping agent for controlling size, crystallinity, morphology and stability of the obtained nanostructures. We also used thiourea as sulfur source, and a temperature of 180 °C during 6 h. Synthesized nanostructures were characterized by powder X-Ray Diffraction, Diffuse Reflectance Infrared Fourier Transform and Transmission Electron Microscopy. When PVP acts as stabilizing agent, the mercury source has influence on the size -but not in morphology- of the beta-HgS obtained nansostructures. HDT has control over nanostructures' size and depending on the relation Hg:HDT, we obtained a mixture of alpha and beta HgS which can be advantageous in the application in solar cells, due their absorption in different spectral regions. The smallest nanostructures obtained have a mean diameter of 20 nm when using HDT as capping agent. Also, we deposited the aforementioned nanostructures onto flat glass substrates by the spin coating technique as a first approach of an active layer of a solar cell. The depositions were characterized by atomic force microscopy. We obtained smaller particle deposition and higher particle density -but a lower area coverage (5%) - in samples with HDT as capping agent. This work presents promising results on nanostructures for future application on hybrid solar cells. Further efforts will be focused on the deposition of organic-inorganic layers.
Nonequilibrium Synthesis of Highly Porous Single-Crystalline Oxide Nanostructures
Lee, Dongkyu; Gao, Xiang; Fan, Lisha; ...
2017-01-20
A novel synthesis route to the formation of vertically aligned single–crystalline oxide nanostructures is found by precisely controlling the nonequilibrium pulsed laser deposition process. Here, the columnar nanostructures with deep crevices offering a large surface area are generated owing to the diffusion limited geometric shadowing effect.
NASA Astrophysics Data System (ADS)
Yilmaz, Gamze
This thesis is essentially oriented to develop low-cost nanostructured transition metal (nickel and vanadium) oxides and sulfides with high energy density, power density and electrochemical stability via strategies of structural design, hybridization, functionalization and surface engineering. Metal oxide and metal oxide/sulfide hybrid nanostructures in several designs, including hierarchical porous nanostructures, hollow polyhedrons, nanocubes, nanoframes, octopod nanoframes, and nanocages, were synthesized to study the contribution of structural design, compositional engineering, functionalization and surface engineering to the electrochemical properties of the materials. Modulated compositional and structural features disclosed the opportunities of large accessible active sites, facile ion transport, robustness and enhanced electrical conductivity. The best electrochemical performance with merits of highest energy density (38.9 Wh kg-1), power density (7.4 kW kg-1) and electrochemical stability (90.9% after 10000 cycles) was obtained for nickel cobalt layered double hydroxide/cobalt sulfide (NiCo-LDH/Co9S8) hybrid hollow polyhedron structure.
Theoretical description of excited state dynamics in nanostructures
NASA Astrophysics Data System (ADS)
Rubio, Angel
2009-03-01
There has been much progress in the synthesis and characterization of nanostructures however, there remain immense challenges in understanding their properties and interactions with external probes in order to realize their tremendous potential for applications (molecular electronics, nanoscale opto-electronic devices, light harvesting and emitting nanostructures). We will review the recent implementations of TDDFT to study the optical absorption of biological chromophores, one-dimensional polymers and layered materials. In particular we will show the effect of electron-hole attraction in those systems. Applications to the optical properties of solvated nanostructures as well as excited state dynamics in some organic molecules will be used as text cases to illustrate the performance of the approach. Work done in collaboration with A. Castro, M. Marques, X. Andrade, J.L Alonso, Pablo Echenique, L. Wirtz, A. Marini, M. Gruning, C. Rozzi, D. Varsano and E.K.U. Gross.
Effects of Silica Nanostructures in Poly(ethylene oxide)-Based Composite Polymer Electrolytes.
Mohanta, Jagdeep; Anwar, Shahid; Si, Satyabrata
2016-06-01
The present work describes the synthesis of some poly(ethylene oxide)-based nanocomposite polymer electrolyte films using various silica nanostructures as the inorganic filler by simple solution mixing technique, in which the nature of the silica nanostructures play a vital role in modulating their electrochemical performances at room temperature. The silica nanostructures are prepared by ammonical hydrolysis of tetraethyl orthosilicate following the modified St6ber method. The resulting films are characterized by X-ray diffraction and differential scanning calorimeter to study their crystallinity. Room temperature AC impedance spectroscopy is utilized to determine the Li+ ion conductivity of the resulting films. The observed conductivity values of various NCPE films depend on the nature of silica filling as well as on their surface characteristics and also on the varying PEO-Li+ ratio, which is observed to be in the order of 10(-7)-10(-6) S cm(-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Supriya; Srivastava, Pratibha; Singh, Gurdip, E-mail: gsingh4us@yahoo.com
2013-02-15
Graphical abstract: Prepared nanoferrites were characterized by FE-SEM and bright field TEM micrographs. The catalytic effect of these nanoferrites was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG–DSC techniques. The kinetics of thermal decomposition of AP was evaluated using isothermal TG data by model fitting as well as isoconversional method. Display Omitted Highlights: ► Synthesis of ferrite nanostructures (∼20.0 nm) by wet-chemical method under different synthetic conditions. ► Characterization using XRD, FE-SEM, EDS, TEM, HRTEM and SAED pattern. ► Catalytic activity of ferrite nanostructures on AP thermal decomposition by thermal techniques. ► Burning rate measurements ofmore » CSPs with ferrite nanostructures. ► Kinetics of thermal decomposition of AP + nanoferrites. -- Abstract: In this paper, the nanoferrites of Mn, Co and Ni were synthesized by wet chemical method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive, X-ray spectra (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). It is catalytic activity were investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetry (TG), TG coupled with differential scanning calorimetry (TG–DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + nanoferrites have also been investigated using isoconversional and model fitting approaches which have been applied to data for isothermal TG decomposition. The burning rate of CSPs was considerably enhanced by these nanoferrites. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperature. All these studies reveal that ferrite nanorods show the best catalytic activity superior to that of nanospheres and nanocubes.« less
NASA Astrophysics Data System (ADS)
Krishnan, Deepti; Pradeep, T.
2009-07-01
Shape-selected synthesis of a large number of zinc oxide (ZnO) nano- and microstructures was achieved by the seed-mediated growth of oligoaniline-coated gold nanoparticle precursors. Distinctive ZnO structures such as nanoplates, nanospheres, microstars, microflowers, microthorns and micromultipods were synthesized by this method. Slightly different shapes were obtained in the absence of the seed solution. This is a fast, low temperature (60 °C) and biomimetic route to make a wide variety of structures. The structure and morphology of the nanostructures were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were utilized for the characterization of the nanostructures. A growth mechanism for these nanostructures was proposed based on these results. The concentrations of the reacting species were the main parameter causing the changes in the morphologies. The variation in morphologies of these structures is believed to be due to the ability of the seed solution as well as polyvinylpyrrolidone (PVP) to selectively suppress/depress the growth of certain planes, allowing growth to occur only in certain specific directions. Changes in the amount of growth nuclei with varying sodium hydroxide (NaOH) concentration is also seen to affect the morphology of these structures.
Nandini, Seetharamaiah; Nalini, Seetharamaiah; Reddy, M B Madhusudana; Suresh, Gurukar Shivappa; Melo, Jose Savio; Niranjana, Pathappa; Sanetuntikul, Jakkid; Shanmugam, Sangaraju
2016-08-01
This manuscript reports a new approach for the synthesis of one dimensional gold nanostructure (AuNs) and its application in the development of cholesterol biosensor. Au nanostructures have been synthesized by exploiting β-diphenylalanine (β-FF) as an sacrificial template, whereas the Au nanoparticles (AuNPs) were synthesized by ultrasound irradiation. X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDAX) have been employed to characterize the morphology and composition of the prepared samples. With the aim to develop a highly sensitive cholesterol biosensor, cholesterol oxidase (ChOx) was immobilized on AuNs which were appended on the graphite (Gr) electrode via chemisorption onto thiol-functionalized graphene oxide (GO-SH). This Gr/GO-SH/AuNs/ChOx biosensor has been characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy and chronoamperometry. CV results indicated a direct electron transfer between the enzyme and the electrode surface. A new potentiostat intermitant titration technique (PITT) has been studied to determine the diffusion coefficient and maxima potential value. The proposed biosensor showed rapid response, high sensitivity, wide linear range and low detection limit. Furthermore, our AuNs modified electrode showed excellent selectivity, repeatability, reproducibility and long term stability. The proposed electrode has also been used successfully to determine cholesterol in serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Synthesis and characterization of CdTe nanostructures grown by RF magnetron sputtering method
NASA Astrophysics Data System (ADS)
Akbarnejad, Elaheh; Ghoranneviss, Mahmood; Hantehzadeh, Mohammad Reza
2017-08-01
In this paper, we synthesize Cadmium Telluride nanostructures by radio frequency (RF) magnetron sputtering system on soda lime glass at various thicknesses. The effect of CdTe nanostructures thickness on crystalline, optical and morphological properties has been studied by means of X-ray diffraction (XRD), UV-VIS-NIR spectrophotometry, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. The XRD parameters of CdTe nanostructures such as microstrain, dislocation density, and crystal size have been examined. From XRD analysis, it could be assumed that increasing deposition time caused the formation of the wurtzite hexagonal structure of the sputtered films. Optical properties of the grown nanostructures as a function of film thickness have been observed. All the films indicate more than 60% transmission over a wide range of wavelengths. The optical band gap values of the films have obtained in the range of 1.62-1.45 eV. The results indicate that an RF sputtering method succeeded in depositing of CdTe nanostructures with high purity and controllable physical properties, which is appropriate for photovoltaic and nuclear detector applications.
Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage
Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi
2010-01-01
Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed. PMID:20717527
Conducting polymer nanostructures: template synthesis and applications in energy storage.
Pan, Lijia; Qiu, Hao; Dou, Chunmeng; Li, Yun; Pu, Lin; Xu, Jianbin; Shi, Yi
2010-07-02
Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.
NASA Astrophysics Data System (ADS)
da Silva, Wellington M.; Ribeiro, Hélio; Ferreira, Tiago H.; Ladeira, Luiz O.; Sousa, Edésia M. B.
2017-05-01
For the first time, patterned growth of boron nitride nanostructures (BNNs) is achieved by thermal chemical vapor deposition (TCVD) technique at 1150 °C using a mixture of FeS/Fe2O3 catalyst supported in alumina nanostructured, boron amorphous and ammonia (NH3) as reagent gas. This innovative catalyst was synthesized in our laboratory and systematically characterized. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The X-ray diffraction profile of the synthesized catalyst indicates the coexistence of three different crystal structures showing the presence of a cubic structure of iron oxide and iron sulfide besides the gamma alumina (γ) phase. The results show that boron nitride bamboo-like nanotubes (BNNTs) and hexagonal boron nitride (h-BN) nanosheets were successfully synthesized. Furthermore, the important contribution of this work is the manufacture of BNNs from FeS/Fe2O3 mixture.
Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.
Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David
2017-04-01
Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Suryawanshi, Abhijit Jagnnath
Electroactive polymers (EAP) such as polypyrrole (PPy) and polyaniline (PANI) are being explored intensively in the scientific community. Nanostructures of EAPs have low dimensions and high surface area enabling them to be considered for various useful applications. These applications are in several fields including corrosion inhibition, capacitors, artificial muscles, solar cells, polymer light emitting diodes, and energy storage devices. Nanostructures of EAPs have been synthesized in different morphologies such as nanowires, nanorods, nanotubes, nanospheres, and nanocapsules. This variety in morphology is traditionally achieved using soft templates, such as surfactant micelles, or hard templates, such as anodized aluminum oxide (AAO). Templates provide stability and groundwork from which the polymer can grow, but the templates add undesirable expense to the process and can change the properties of the nanoparticles by integrating its own properties. In this study a template free method is introduced to synthesize EAP nanostructures of PPy and PANI utilizing ozone oxidation. The simple techniques involve ozone exposure to the monomer solution to produce aqueous dispersions of EAP nanostructures. The synthesized nanostructures exhibit uniform morphology, low particle size distribution, and stability against agglomeration. Ozone oxidation is further explored for the synthesis of silver-PPy (Ag-PPy) core-shell nanospheres (CSNs). Coatings containing PPy nanospheres were formulated to study the corrosion inhibition efficiency of PPy nanospheres. Investigation of the coatings using electrochemical techniques revealed that the PPy nanospheres may provide corrosion inhibition against filiform corrosion by oxygen scavenging mechanism. Finally, organic corrosion inhibitors were incorporated in PPy to develop efficient corrosion inhibiting systems, by using the synergistic effects from PPy and organic corrosion inhibitors.
Graphene oxide assisted synthesis of GaN nanostructures for reducing cell adhesion.
Yang, Rong; Zhang, Ying; Li, Jingying; Han, Qiusen; Zhang, Wei; Lu, Chao; Yang, Yanlian; Dong, Hongwei; Wang, Chen
2013-11-21
We report a general approach for the synthesis of large-scale gallium nitride (GaN) nanostructures by the graphene oxide (GO) assisted chemical vapor deposition (CVD) method. A modulation effect of GaN nanostructures on cell adhesion has been observed. The morphology of the GaN surface can be controlled by GO concentrations. This approach, which is based on the predictable choice of the ratio of GO to catalysts, can be readily extended to the synthesis of other materials with controllable nanostructures. Cell studies show that GaN nanostructures reduced cell adhesion significantly compared to GaN flat surfaces. The cell-repelling property is related to the nanostructure and surface wettability. These observations of the modulation effect on cell behaviors suggest new opportunities for novel GaN nanomaterial-based biomedical devices. We believe that potential applications will emerge in the biomedical and biotechnological fields.
Sohrabnezhad, Sh; Zanjanchi, M A; Hosseingholizadeh, S; Rahnama, R
2014-04-05
The synthesis of CuS nanomaterial in MCM-41 matrix has been realized by chemical synthesis between MCM-41, copper sulfate pentahydrate and thiourea via a solvothermal method in ethylene glycol and water, separately. X-ray diffraction analysis (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and fourier transform infrared (FT-IR) were used to characterize the products. At synthesized CuS/MCM-41 sample in ethylene glycol, X-ray diffraction and diffuse reflectance spectroscopy showed pure covellite phase of copper sulfide with high crystality. But prepared CuS/MCM-41 sample in water shows the covellite, chalcocite and the djurleite phase of copper sulfide nanostructures. The formation of CuS nanostructures was confirmed by FT-IR. Photocatalytic activity of CuS/MCM-41 nanocomposites was studied for degradation of Methylene Blue (MB) under visible light. The CuS/MCM-41 nanocomposite is more effective nanocatalyst than synthesized CuS/MCM-41 sample in water for degradation of methylene blue. Several parameters were examined, catalyst amount (0.1-1gL(-1)), pH (1-13) and initial concentration of MB (0.96-10ppm). The extent of degradation was estimated from the residual concentration by spectrophotometrically. The support size was obtained in the range 60-145nm by TEM. In the same way, the average size of copper sulfide in CuSMCM-41E and CuS/MCM-41W nanostructures were obtained about 10nm and 16nm, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Synthesis and characterization of Cu nanotubes and nanothreads by electrical arc evaporation.
Yadav, Ram Manohar; Singh, A K; Srivastava, O N
2003-06-01
We report the formation and characterization of copper nanostructures, nanotubules and nanothreads, which were obtained by electrical arc evaporation of Cu electrodes under varied conditions of He ambience. Electrical arc evaporation was done with approximately 10 V and (approximately 50-100 A) DC current. The current was used in a pulse mode. The evaporated material was condensed on a formvar-coated Cu grid mounted on a liquid N2-cooled specimen holder. Transmission electron microscopy was employed to characterize the condensed materials. These investigations revealed that the condensed materials consisted of the mentioned nanostructures. Nanotubes and nanothreads are formed for a He pressure in the chamber corresponding to approximately 140 and approximately 500 torr, respectively. Extensive electron microscopic investigations showed that the diameter of the nanotubes varied from approximately 5 nm to approximately 50 nm and their length from 2 microns to 3 microns.
Joharian, Monika; Abedi, Sedigheh; Morsali, Ali
2017-11-01
A new Co(II) mixed-ligand coordination supramolecular polymer with composition [Co 2 (ppda)(4-bpdh) 2 (NO 3 ) 2 ] n (1) (where, ppda=p-phenylenediacrylic acid, 4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene) was synthesized using solvothermal, mechanochemical and sonochemical methods. Compound 1 and the new nanostructure have been characterized by single-crystal X-ray, infrared spectroscopy (IR), powder X-ray diffraction (PXRD) analysis and scanning electron microscopy (SEM). The thermal stability of compound 1 was also studied by thermal gravimetric analysis (TGA). The surface area of these compounds was determined by BET. The single-crystal X-ray data shows a new interesting two-dimensional coordination polymer (CP). In addition, the effect of various sonication concentrations of initial reagents, power of ultrasound irradiation and also the time on the size and morphology of nano-structured coordination polymer 1 were evaluated. Moreover, it has been demonstrated that the nanostructure of the CP1 can be used as a catalyst in Knoevenagel condensation reaction. Copyright © 2017 Elsevier B.V. All rights reserved.
Pezzella, Alessandro; Capelli, Luigia; Costantini, Aniello; Luciani, Giuseppina; Tescione, Fabiana; Silvestri, Brigida; Vitiello, Giuseppe; Branda, Francesco
2013-01-01
A large number of recent literature data focus on modification/modulation of surface chemistry of inorganic materials in order to improve their functional properties. Melanins, a wide class of natural pigments, are recently emerging as a powerful organic component for developing bioinspired active material for a large number of applications from organoelectronics to bioactive compounds. Here we report the use of the approach referred as "chimie douce", involving in situ formation of the hybrids through reactions of precursors under mild conditions, to prepare novel hybrid functional architectures based on eumelanin like 5,6 dihydroxyindole-2-carboxylic acid (DHICA) polymer and TiO2. Two synthesis procedures were carried out to get DHICA-melanin coated TiO2 nanoparticles as well as mixed DHICA/TiO2 hybrid nanostructures. Such systems were characterized through EPR, FT-IR and fluorescence spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and TEM microscopy in order to assess the effect of synthesis path as well as of DHICA content on structural, morphological and optical properties of TiO2 nanostructures. In particular, EPR, FT-IR spectra and TGA analysis confirmed the presence of DHICA-melanin in these samples. TEM measurements indicated the formation of the nanoparticles having relatively narrow size distribution with average particle size of about 10nm. DHICA-melanin does act as a morphological agent affecting morphology of hybrid nanostructures. XRD analysis proved that TiO2 hybrid nanoparticles kept anatase structures for DHICA-melanin contents within the range of investigated compositions, i.e. up to 50% wt/wt. Copyright © 2012 Elsevier B.V. All rights reserved.
Jang, Bora; Kim, Boyoung; Kim, Hyunsook; Kwon, Hyokyoung; Kim, Minjeong; Seo, Yunmi; Colas, Marion; Jeong, Hansaem; Jeong, Eun Hye; Lee, Kyuri; Lee, Hyukjin
2018-06-08
Enzymatic synthesis of RNA nanostructures is achieved by isothermal rolling circle transcription (RCT). Each arm of RNA nanostructures provides a functional role of Dicer substrate RNA inducing sequence specific RNA interference (RNAi). Three different RNAi sequences (GFP, RFP, and BFP) are incorporated within the three-arm junction RNA nanostructures (Y-RNA). The template and helper DNA strands are designed for the large-scale in vitro synthesis of RNA strands to prepare self-assembled Y-RNA. Interestingly, Dicer processing of Y-RNA is highly influenced by its physical structure and different gene silencing activity is achieved depending on its arm length and overhang. In addition, enzymatic synthesis allows the preparation of various Y-RNA structures using a single DNA template offering on demand regulation of multiple target genes.
Serra, Antonio; Monteduro, Anna Grazia; Padmanabhan, Sanosh Kunjalukkal; Licciulli, Antonio; Bonfrate, Valentina; Salvatore, Luca; Calcagnile, Lucio
2017-01-01
Mixed iron-manganese oxide nanoparticles, synthesized by a simple procedure, were used to remove nickel ion from aqueous solutions. Nanostructures, prepared by using different weight percents of manganese, were characterized by transmission electron microscopy, selected area diffraction, X-ray diffraction, Raman spectroscopy, and vibrating sample magnetometry. Adsorption/desorption isotherm curves demonstrated that manganese inclusions enhance the specific surface area three times and the pores volume ten times. This feature was crucial to decontaminate both aqueous samples and food extracts from nickel ion. Efficient removal of Ni2+ was highlighted by the well-known dimethylglyoxime test and by ICP-MS analysis and the possibility of regenerating the nanostructure was obtained by a washing treatment in disodium ethylenediaminetetraacetate solution. PMID:28804670
Synthesis of Photoresponsive Dual NIR Two-Photon Absorptive [60]Fullerene Triads and Tetrads
Jeon, Seaho; Wang, Min; Tan, Loon-Seng; Cooper, Thomas; Hamblin, Michael R.; Chiang, Long Y.
2013-01-01
Broadband nonlinear optical (NLO) organic nanostructures exhibiting both ultrafast photoresponse and a large cross-section of two-photon absorption throughout a wide NIR spectrum may make them suitable for use as nonlinear biophotonic materials. We report here the synthesis and characterization of two C60-(antenna)x analogous compounds as branched triad C60(>DPAF-C18)(>CPAF-C2M) and tetrad C60(>DPAF-C18)(>CPAF-C2M)2 nanostructures. These compounds showed approximately equal extinction coefficients of optical absorption over 400–550 nm that corresponds to near-IR two-photon based excitation wavelengths at 780–1,100 nm. Accordingly, they may be utilized as potential precursor candidates to the active-core structures of photosensitizing nanodrugs for 2γ-PDT in the biological optical window of 800–1,050 nm. PMID:23941881
Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura
2009-01-01
A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems. PMID:22408484
Nanostructured silver sulfide: synthesis of various forms and their application
NASA Astrophysics Data System (ADS)
Sadovnikov, S. I.; Rempel, A. A.; Gusev, A. I.
2018-04-01
The results of experimental studies on nanostructured silver sulfide are analyzed and generalized. The influence of small particle size on nonstoichiometry of silver sulfide is discussed. Methods for the synthesis of various forms of nanostructured Ag2S including nanopowders, stable colloidal solutions, quantum dots, core–shell nanoparticles and heteronanostructures are described. The advantages and drawbacks of different synthetic procedures are analyzed. Main fields of application of nanostructured silver sulfide are considered. The bibliography includes 184 references.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Landeros, J.; Departamento de Ingenieria Metalurgica, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, IPN, UPALM, Av. Instituto Politecnico Nacional s/n, CP 07738, Mexico DF; Contreras-Garcia, M.E.
Lithium metasilicate (Li{sub 2}SiO{sub 3}) was successfully synthesized using a hydrothermal process in the presence of different surfactants with cationic, non-ionic and anionic characters. The samples obtained were compared to a sample prepared by the conventional solid-state reaction method. The structural and microstructural characterizations of different Li{sub 2}SiO{sub 3} powders were performed using various techniques. Diffraction analyses revealed the successful crystallization of pure Li{sub 2}SiO{sub 3} single phase by hydrothermal technique, even without further heat-treatments and independent of the surfactant used. Electron microscopy analyses revealed that Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow spheremore » morphology and nanostructured walls. Finally, different thermal analyses showed that Li{sub 2}SiO{sub 3} samples preserved their structure and microstructure after further thermal treatments. Specific aspects regarding the formation mechanism of the spherical aggregates under hydrothermal conditions are discussed, and there is a special emphasis on the effect of the synthesis pathway on the morphological characteristics. -- Graphical abstract: Li{sub 2}SiO{sub 3} was synthesized using a hydrothermal process in the presence of different surfactants. Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow sphere morphology and nanostructured walls. Display Omitted Highlights: {yields} Pure Li{sub 2}SiO{sub 3} was synthesized by the hydrothermal method. {yields} Surfactant addition produced microstructural and morphological variations. {yields} TEM reveled the generation of nanostructured hollow spheres.« less
Quantitative Characterization of Nanostructured Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Frank
The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to real-world materials problems and to familiarize the materials research community with the state-of-the-art local structuremore » measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.« less
Synthesis of single-walled carbon nanotubes and graphene composite in arc for ultracapacitors
NASA Astrophysics Data System (ADS)
Li, Jian; Cheng, Xiaoqian; Shashurin, Alexey; Keidar, Michael
2012-10-01
Arc discharge supported by the erosion of graphite anode is considered as one of the most practical and efficient methods to synthesize various carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene with minimal defects and large yield due to the relatively high synthesis temperature and eco-friendly growth mechanism. By introducing a non-uniform magnetic field during synthesis process, large-scale graphene and high-purity SWCNT can be obtained in one step. In addition, the yield of graphene can be controlled by external parameters, such as the type and pressure of buffer gas, the temperature of substrate, and so on. Possessing the properties of highly accessible surface area and good electrical conductivity, the composite of graphene and SWCNT are promising nanomaterials for the electrodes of ultracapacitor, which can store electric energy with high level of capacitance. In this work, we fabricated electrodes of ultracapacitor based on nanostructures composite by wire-wound rod coating method, characterized them by SEM, EDX and Raman spectroscopy, and tested the performance by a potentiostat/galvanostat.
Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles.
Kuśnieruk, Sylwia; Wojnarowicz, Jacek; Chodara, Agnieszka; Chudoba, Tadeusz; Gierlotka, Stanislaw; Lojkowski, Witold
2016-01-01
Hydroxyapatite (HAp) nanoparticles of tunable diameter were obtained by the precipitation method at room temperature and by microwave hydrothermal synthesis (MHS). The following parameters of the obtained nanostructured HAp were determined: pycnometric density, specific surface area, phase purity, lattice parameters, particle size, particle size distribution, water content, and structure. HAp nanoparticle morphology and structure were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction measurements confirmed crystalline HAp was synthesized, which was pure in terms of phase. It was shown that by changing the synthesis parameters, the diameter of HAp nanoparticles could be controlled. The average diameter of the HAp nanoparticles was determined by Scherrer's equation via the Nanopowder XRD Processor Demo web application, which interprets the results of specific surface area and TEM measurements using the dark-field technique. The obtained nanoparticles with average particle diameter ranging from 8-39 nm were characterized by having homogeneous morphology with a needle shape and a narrow particle size distribution. Strong similarities were found when comparing the properties of some types of nanostructured hydroxyapatite with natural occurring apatite found in animal bones and teeth.
NASA Astrophysics Data System (ADS)
Badalyan, A. M.; Bakhturova, L. F.; Kaichev, V. V.; Polyakov, O. V.; Pchelyakov, O. P.; Smirnov, G. I.
2011-09-01
A new technique for depositing thin nanostructured layers on semiconductor and insulating substrates that is based on heterogeneous gas-phase synthesis from low-dimensional volatile metal complexes is suggested and tried out. Thin nanostructured copper layers are deposited on silicon and quartz substrates from low-dimensional formate complexes using a combined synthesis-mass transport process. It is found that copper in layers thus deposited is largely in a metal state (Cu0) and has the form of closely packed nanograins with a characteristic structure.
Shivhare, Kriti; Garg, Charu; Priyam, Ayushi; Gupta, Alka; Sharma, Ashwani Kumar; Kumar, Pradeep
2018-01-01
Molecular self-assembly of biodegradable amphiphilic polymers allows rational design of biocompatible nanomaterials for drug delivery. Use of substituted polysaccharides for such applications offers the ease of design and synthesis, and provides higher biofunctionality and biocompatibility to nanomaterials. The present work focuses on the synthesis, characterization and potential biomedical applications of self-assembled polysaccharide-based materials. We demonstrated that the synthesized amphiphilic inulin self-assembled in aqueous medium into nanostructures with average size in the range of 146-486nm and encapsulated hydrophobic therapeutic molecule, ornidazole. Hydrophophic dehydropeptide was conjugated with inulin via a biocompatible ester linkage. Dehydrophenylalanine, an unusual amino acid, was incorporated in the peptide to make it stable at a broader range of pH as well as against proteases. The resulting core-shell type of nanostructures could encapsulate ornidazole in the hydrophobic core and released it in a controlled fashion. By taking the advantage of inulin, which gets degraded in the colon by colonic bacteria, the effect of enzyme, inulinase, present in the microflora of the large intestine, on inulin-peptide degradation followed by drug release has been studied. Altogether, small peptide conjugated to inulin offers novel scaffold for the future design of nanostructures with potential applications in the field of targeted drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
Baker, Paul A; Goodloe, David R; Vohra, Yogesh K
2017-11-14
The purpose of this study is to understand the basic mechanisms responsible for the synthesis of nanostructured diamond films in a microwave plasma chemical vapor deposition (MPCVD) process and to identify plasma chemistry suitable for controlling the morphology and electrical properties of deposited films. The nanostructured diamond films were synthesized by MPCVD on Ti-6Al-4V alloy substrates using H₂/CH₄/N₂ precursor gases and the plasma chemistry was monitored by the optical emission spectroscopy (OES). The synthesized thin-films were characterized by x -ray diffraction and scanning electron microscopy. The addition of B₂H₆ to the feedgas during MPCVD of diamond thin-films changes the crystal grain size from nanometer to micron scale. Nanostructured diamond films grown with H₂/CH₄/N₂ gases demonstrate a broad (111) Bragg x -ray diffraction peak (Full-Width at Half-Maximum (FWHM) = 0.93° 2θ), indicating a small grain size, whereas scans show a definite sharpening of the diamond (111) peak (FWHM = 0.30° 2θ) with the addition of boron. OES showed a decrease in CN (carbon-nitrogen) radical in the plasma with B₂H₆ addition to the gas mixture. Our study indicates that CN radical plays a critical role in the synthesis of nanostructured diamond films and suppression of CN radical by boron-addition in the plasma causes a morphological transition to microcrystalline diamond.
Synthesis and Characterization of Thermoelectric Oxides at Macro- and Nano-scales
NASA Astrophysics Data System (ADS)
Ma, Feiyue
Thermoelectric materials can directly convert a temperature difference into electrical voltage and vice versa. Due to this unique property, thermoelectric materials are widely used in industry and scientific laboratories for temperature sensing and thermal management applications. Waste heat harvesting, another potential application of thermoelectric materials, has long been limited by the low conversion efficiency of the materials. Potential high temperature applications, such as power plant waste heat harvesting and combustion engine exhaust heat recovery, make thermoelectric oxides a very promising class of thermoelectric materials. In this thesis, the synthesis and characterization of thermoelectric oxide materials are explored. In the first part of this thesis, the measurement methodologies and instrumentation processes employed to investigate different thermoelectric properties, such as the Seebeck coefficient and carrier concentration at the bulk scale and the thermal conductivity at the nanoscale, are detailed. Existing scientific and engineering challenges associated with these measurements are also reviewed. To overcome such problems, original parts and methodologies have been designed. Three fully functional systems were ultimately developed for the characterization of macroscale thermoelectric properties as well as localized thermal conductivity. In the second part of the thesis, the synthesis of NaxCo 2O4, a thermoelectric oxide material, is discussed. Modification of both composition and structure were carried out so as to optimize the thermoelectric performance of NaxCo2O4. Nanostructuring methods, such as ball milling, electrospinning, auto-combustion synthesis, and core-shell structure fabrication, have been developed to refine the grain size of NaxCo2O4 in order to reduce its thermal conductivity. However, the structure of the nanostructured materials is very unstable at high temperature and limited improvement on thermoelectric performance is observed. Therefore, another technique was adopted to address this issue. A texturing process was also explored to optimize the NaxCo 2O4 structure. It was found that a highly textured structure can be obtained using a combined process of combustion synthesis, chemical demixing, and a flux method.
Oxidized guar gum-ZnO hybrid nanostructures: synthesis, characterization and antibacterial activity
NASA Astrophysics Data System (ADS)
Singh, Vandana; Dwivedi, Lalit Mohan; Baranwal, Kirti; Asthana, Sugandha; Sundaram, Shanthy
2018-04-01
In the present study, guar gum (GG) and oxidized guar gum (OGG) have been used for modulating the antibacterial activity of ZnO. Oxidized guar gum-zinc oxide (OGG-ZnO) or guar gum-zinc oxide (GG-ZnO) nanostructures were synthesized by adding aqueous ammonia to zinc acetate solution in the presence of OGG or GG, respectively. OGG could significantly enhance the antibacterial activity of ZnO for a range of Gram-negative and Gram-positive bacterial strains and this enhancement was most pronounced for Bacillus subtilis and Salmonella typhi. At the same time, GG-ZnO nanostructures were found to be less bioactive than the pure ZnO for the same strains. TEM analysis revealed that optimum OGG-ZnO nanostructure (Z4) is of 200 nm size, oblong in shape, and has slightly clustered texture, while XRD confirmed its crystalline structure with hexagonal phase. The extra surface oxygen species (thus oxygen deficiency) has been assigned for better antibacterial behavior of OGG-ZnO. The study may be extended for other polysaccharide/derivatives to obtain ZnO nanostructures with enhanced antibacterial properties.
Zhang, Xing-Hong; Shao, Rui-Wen; Jin, Lei; Wang, Jian-Yu; Zheng, Kun; Zhao, Chao-Liang; Han, Jie-Cai; Chen, Bin; Sekiguchi, Takashi; Zhang, Zhi; Zou, Jin; Song, Bo
2015-01-01
By understanding the growth mechanism of nanomaterials, the morphological features of nanostructures can be rationally controlled, thereby achieving the desired physical properties for specific applications. Herein, the growth habits of aluminum nitride (AlN) nanostructures and single crystals synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport process were investigated by transmission electron microscopy. The detailed structural characterizations strongly suggested that the growth of AlN nanostructures including AlN nanowires and nanohelixes follow a sequential and periodic rotation in the growth direction, which is independent of the size and shape of the material. Based on these experimental observations, an helical growth mechanism that may originate from the coeffect of the polar-surface and dislocation-driven growth is proposed, which offers a new insight into the related growth kinetics of low-dimensional AlN structures and will enable the rational design and synthesis of novel AlN nanostructures. Further, with the increase of temperature, the growth process of AlN grains followed the helical growth model. PMID:25976071
Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon
NASA Astrophysics Data System (ADS)
Nagarajappa, Kiran; Guha, Puspendu; Thirumurugan, Arun; Satyam, Parlapalli V.; Bhatta, Umananda M.
2018-06-01
Coherently, embedded metal nanostructures (endotaxial) are known to have potential applications concerning the areas of plasmonics, optoelectronics and thermoelectronics. Incorporating appropriate concentrations of metal atoms into crystalline silicon is critical for these applications. Therefore, choosing proper dose of low-energy ions, instead of depositing thin film as a source of metal atoms, helps in avoiding surplus concentration of metal atoms that diffuses into the silicon crystal. In this work, 30 keV silver negative ions are implanted into a SiO x /Si(100) at two different fluences: 1 × 1015 and 2.5 × 1015 Ag- ions/cm2. Later, the samples are annealed at 700 °C for 1 h in Ar atmosphere. Embedded silver nanostructures have been characterized using planar and cross-sectional TEM (XTEM) analysis. Planar TEM analysis shows the formation of mostly rectangular silver nanostructures following the fourfold symmetry of the substrate. XTEM analysis confirms the formation of prism-shaped silver nanostructures embedded inside crystalline silicon. Endotaxial nature of the embedded crystals has been discussed using selected area electron diffraction analysis.
FT-IR characterization of the acidic and basic sites on a nanostructured aluminum nitride surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraton, M.I.; Chen, X.; Gonsalves, K.E.
1997-12-31
A nanostructured aluminum nitride powder prepared by sol-gel type chemical synthesis is analyzed by Fourier transform infrared spectrometry. The surface acidic and basic sites are probed out by adsorption of several organic molecules. Resulting from the unavoidable presence of oxygen, the aluminum nitride surface is an oxinitride layer in fact, and its surface chemistry should present some analogies with alumina. Therefore, a thorough comparison between the acido-basicity of aluminum nitride and aluminum oxide is discussed. The remaining nitrogen atoms in the first atomic layer modify the acidity-basicity relative balance and reveals the specificity of the aluminum nitride surface.
NASA Astrophysics Data System (ADS)
Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran
2016-10-01
Vanadium metal powders, ball milled with different surfactants viz., stearic acid, KCl and NaCl, have been studied by X-ray diffraction and transmission electron microscopy. The surfactants alter the microstructural and morphological characteristics of the powders. Ball milling with stearic acid results in solid-state amorphization, while powders milled with KCl yield vanadium-tungsten carbide nanocomposite mixtures. NaCl proved to be an excellent surfactant for obtaining nanostructured fusion-grade vanadium powders. In order to understand the reaction mechanism behind any interstitial addition in the ball-milled powders, CHNOS analysis was performed.
Li, Jian; Shashurin, Alexey; Kundrapu, Madhusudhan; Keidar, Michael
2012-02-02
Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices(1-4). Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT (5), narrow the diameter distribution of metallic catalyst particles and carbon nanotubes (6), and change the ratio of metallic and semiconducting carbon nanotubes (7), as well as lead to graphene synthesis (8). Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the arc conditions.
Li, Jian; Shashurin, Alexey; Kundrapu, Madhusudhan; Keidar, Michael
2012-01-01
Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices1-4. Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT 5, narrow the diameter distribution of metallic catalyst particles and carbon nanotubes 6, and change the ratio of metallic and semiconducting carbon nanotubes 7, as well as lead to graphene synthesis 8. Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the arc conditions. PMID:22330847
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sciancalepore, Corrado, E-mail: corrado.sciancalepore@unimore.it; Bondioli, Federica; INSTM Consortium, Via G. Giusti 9, 51121 Firenze
2015-02-15
An innovative preparation procedure, based on microwave assisted non-hydrolytic sol–gel synthesis, to obtain spherical magnetite nanoparticles was reported together with a detailed quantitative phase analysis and microstructure characterization of the synthetic products. The nanoparticle growth was analyzed as a function of the synthesis time and was described in terms of crystallization degree employing the Rietveld method on the magnetic nanostructured system for the determination of the amorphous content using hematite as internal standard. Product crystallinity increases as the microwave thermal treatment is increased and reaches very high percentages for synthesis times longer than 1 h. Microstructural evolution of nanocrystals wasmore » followed by the integral breadth methods to obtain information on the crystallite size-strain distribution. The results of diffraction line profile analysis were compared with nanoparticle grain distribution estimated by dimensional analysis of the transmission electron microscopy (TEM) images. A variation both in the average grain size and in the distribution of the coherently diffraction domains is evidenced, allowing to suppose a relationship between the two quantities. The traditional integral breadth methods have proven to be valid for a rapid assessment of the diffraction line broadening effects in the above-mentioned nanostructured systems and the basic assumption for the correct use of these methods are discussed as well. - Highlights: • Fe{sub 3}O{sub 4} nanocrystals were obtained by MW-assisted non-hydrolytic sol–gel synthesis. • Quantitative phase analysis revealed that crystallinity up to 95% was reached. • The strategy of Rietveld refinements was discussed in details. • Dimensional analysis showed nanoparticles ranging from 4 to 8 nm. • Results of integral breadth methods were compared with microscopic analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes, O
2010-06-01
Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3more » or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.« less
Ultrasound-assisted synthesis of CuO nanostructures templated by cotton fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Yunling, E-mail: zouyunling1999@126.com; Li, Yan; Guo, Ying
Highlights: ► Flower-like and corn-like CuO nanostructures were synthesized by a simple method. ► Cotton fibers purchased from commercially are used as template. ► The concentration of Cu(NO{sub 3}){sub 2} solution is an important parameter. -- Abstract: Flower-like and corn-like CuO nanostructures composed of CuO nanoparticles were successfully synthesized via ultrasound-assisted template method, respectively, by controlling the initial concentration of Cu(NO{sub 3}){sub 2} solution. Here, cotton fibers were used as template agent. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and energy-dispersive spectroscopy (EDS), respectively. The results demonstrated that the initialmore » concentration of Cu(NO{sub 3}){sub 2} solution was an important parameter for determining whether CuO nanoparticles assembled into flower-like structures or corn-like structures. The mechanism of forming different nanostructures of CuO was discussed.« less
NASA Astrophysics Data System (ADS)
Shariati, Mohsen; Ghafouri, Vahid
2014-02-01
Synthesis of In2O3 nanostructures grown on Si substrate by the resistive evaporation of metallic indium granules followed by dry oxidation process has been articulated. To prepare nucleation growth sites, selected samples pre-annealed around indium melting point in free-oxygen atmosphere and then to fabricate 1-D nanostructures, they annealed in a horizontal thermal furnace in presence of argon and oxygen. For comparison, one sample, the same origin as initially pre-annealed samples, was excluded in pre-annealing process but presented in annealing step. Characterization of the products with FESEM revealed that the pre-annealed obtained nanostructures are mostly nanorod and nanowire with different morphologies. For the comparative sample, no 1-D structures achieved. X-ray diffraction (XRD) patterns for pre-annealed samples indicated that they are crystalline and the comparative one is polycrystalline. Photoluminescence (PL) measurements carried out at room temperature revealed that emission band shifted to shorter wavelength from pre-annealed samples to comparative one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, Ritu; Kumar, Ashok; Rana, Pawan S., E-mail: drpawansrana.phy@dcrustm.org
2015-08-28
This work deals with the synthesis of TiO{sub 2} nanostructures using sol-gel and hydrothermal method for evaluating their photodegradation performance towards decolorization of Rose Bengal (RB). A combination of characterization techniques including X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV–Vis spectroscopy were utilized to evaluate the structural, morphological and optical properties of the obtained nanostructures. It was observed that the TiO{sub 2} nanoparticles prepared using hydrothermal method were highly crystalline and possess higher band gap value, even when same conditions of temperature, pressure, precursor ratios and solvent amount was kept constant while synthesizing TiO{sub 2} nanostructures viamore » sol-gel method. The obvious effect of porous morphology exhibited by TiO{sub 2} nanoparticles prepared using hydrothermal route is reflected in its decolorization performance whereby 92.5% of the RB dye solution was degraded in 70 min of irradiation time.« less
Growth of hybrid carbon nanostructures on iron-decorated ZnO nanorods
NASA Astrophysics Data System (ADS)
Mbuyisa, Puleng N.; Rigoni, Federica; Sangaletti, Luigi; Ponzoni, Stefano; Pagliara, Stefania; Goldoni, Andrea; Ndwandwe, Muzi; Cepek, Cinzia
2016-04-01
A novel carbon-based nanostructured material, which includes carbon nanotubes (CNTs), porous carbon, nanostructured ZnO and Fe nanoparticles, has been synthetized using catalytic chemical vapour deposition (CVD) of acetylene on vertically aligned ZnO nanorods (NRs). The deposition of Fe before the CVD process induces the presence of dense CNTs in addition to the variety of nanostructures already observed on the process done on the bare NRs, which range from amorphous graphitic carbon up to nanostructured dendritic carbon films, where the NRs are partially or completely etched. The combination of scanning electron microscopy and in situ photoemission spectroscopy indicate that Fe enhances the ZnO etching, and that the CNT synthesis is favoured by the reduced Fe mobility due to the strong interaction between Fe and the NRs, and to the presence of many defects, formed during the CVD process. Our results demonstrate that the resulting new hybrid shows a higher sensitivity to ammonia gas at ambient conditions (∼60 ppb) than the carbon nanostructures obtained without the aid of Fe, the bare ZnO NRs, or other one-dimensional carbon nanostructures, making this system of potential interest for environmental ammonia monitoring. Finally, in view of the possible application in nanoscale optoelectronics, the photoexcited carrier behaviour in these hybrid systems has been characterized by time-resolved reflectivity measurements.
The SPRING Nanoenergetics Hub at UTD
2008-12-01
synthesis and processing of advanced nanostructured materials, the structure and property characterization needed for materials optimization, the...nano-particles into hexane solvent a deposited films. Here we are modeling that processes to see how the droplet evaporation progresses in time. What...nanofibers was determined by powder X-ray diffraction (XRD) (Scintag XDS 2000 X-ray diffractometer with Cu Ka radiation). The fiber morphology was
Synthesis and characterization of diverse Pt nanostructures in Nafion.
Ingle, N J C; Sode, A; Martens, I; Gyenge, E; Wilkinson, D P; Bizzotto, D
2014-02-25
With the aid of TEM characterization, we describe two distinct Pt nanostructures generated via the electroless reduction of Pt(NH3)4(NO2)2 within Nafion. Under one set of conditions, we produce bundles of Pt nanorods that are 2 nm in diameter and 10-20 nm long. These bundled Pt nanorods, uniformly distributed within 5 μm of the Nafion surface, are strikingly similar to the proposed hydrated nanomorphology of Nafion, and therefore strongly suggestive of Nafion templating. By altering the reaction environment (pH, reductant strength, and Nafion hydration), we can also generate nonregular polyhedron Pt nanoparticles that range in size from a few nanometers in diameter up to 20 nm. These Pt nanoparticles form a dense Pt layer within 100-200 nm from the Nafion surface and show a power-law dependence of particle size and distribution on the distance from the Nafion membrane surface. Control over the distribution and the type of Pt nanostructures in the surface region may provide a cost-effective, simple, and scaleable pathway for enhancing manufacturability, activity, stability, and utilization efficiency of Pt catalysts for electrochemical devices.
One‐Dimensional Ferroelectric Nanostructures: Synthesis, Properties, and Applications
Liang, Longyue; Kang, Xueliang
2016-01-01
One‐dimensional (1D) ferroelectric nanostructures, such as nanowires, nanorods, nanotubes, nanobelts, and nanofibers, have been studied with increasing intensity in recent years. Because of their excellent ferroelectric, ferroelastic, pyroelectric, piezoelectric, inverse piezoelectric, ferroelectric‐photovoltaic (FE‐PV), and other unique physical properties, 1D ferroelectric nanostructures have been widely used in energy‐harvesting devices, nonvolatile random access memory applications, nanoelectromechanical systems, advanced sensors, FE‐PV devices, and photocatalysis mechanisms. This review summarizes the current state of 1D ferroelectric nanostructures and provides an overview of the synthesis methods, properties, and practical applications of 1D nanostructures. Finally, the prospects for future investigations are outlined. PMID:27812477
Cao, Huaqiang; Zheng, He; Liu, Kaiyu; Warner, Jamie H
2010-02-01
Constructing complex nanostructures has become increasingly important in the development of hydrogen storage, self-cleaning materials, and the formation of chiral branched nanowires. Several approaches have been developed to generate complex nanostructures, which have led to novel applications. Combining biology and nanotechnology through the utilization of biomolecules to chemically template the growth of complex nanostructures during synthesis has aroused great interest. Herein, we use a biomolecule-assisted hydrothermal method to synthesize beta-phase Ni(OH)(2) peony-like complex nanostructures with second-order structure nanoplate structure. The novel beta-Ni(OH)(2) nanostructures exhibit high-power Ni/MH battery performance, close to the theoretical capacity of Ni(OH)(2), as well as controlled wetting behavior. We demonstrate that this bioinspired route to generate a complex nanostructure has applications in environmental protection and green secondary cells. This approach opens up opportunities for the synthesis and potential applications of new kinds of nanostructures.
NASA Astrophysics Data System (ADS)
Liu, Chaohong; Zhang, Dun
2015-03-01
The performances of Bi x O y I z photofunctional materials are very sensitive to their composition and microstructures; however, the morphology evolution and crystallization process of one-dimensional Bi x O y I z nanostructures, the roles of experimental factors, and related reaction mechanisms remain poorly understood. In this work, large-scale one-dimensional Bi x O y I z nanostructures were fabricated using simple inorganic iodine source. By combing the results of X-ray diffraction and scanning electron microscope, the effect of volume ratios of water and ethanol, concentration of NaOH, and reaction time on the morphologies and crystal phases of Bi x O y I z were elaborated. On the basis of characterizations, a possible process for the growth of Bi5O7I nanobelts was proposed. The optical performances of Bi x O y I z nanostructures were evaluated by ultraviolet-visible-near infrared diffuse reflectance spectra as well as photocatalytic degradation of organic dye and corrosive bacteria. The as-prepared Bi5O7I/Bi2O2CO3/BiOI composite showed excellent photocatalytic activity over malachite green under visible light irradiation, which was deduced closely related to its heterojunction structures.
Synthesis and characterization of nanostructured titanium carbide for fuel cell applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Paviter; Singh, Harwinder; Singh, Bikramjeet
2016-04-13
Titanium carbide (TiC) nanoparticles have been successfully synthesized by carbo-thermic reaction of titanium and acetone at 800 °C. This method is relatively low temperature synthesis route. It can be used for large scale production of TiC. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA) techniques. XRD analysis confirmed the formation of single phase TiC. XRD analysis confirmed that the particles are spherical in shape with an average particle size of 13 nm. DTA analysis shows that the phase is stable upto 900 °C and the material can be used formore » high temperature applications.« less
NASA Astrophysics Data System (ADS)
Riahi-Madvaar, Ramin; Taher, Mohammad Ali; Fazelirad, Hamid
2017-11-01
In the present paper, a green method was applied for the synthesis of SrAl2O4 nanostructures with the aid of microwave irradiation and pomegranate juice. SrAl2O4 nanocrystals were obtained when the raw materials were irradiated with 720-900 W for 6-10 min and then calcinated at 550 °C for 5 h. Using pomegranate juice as a dispersion and stabilizing agent, SrAl2O4 nanoparticles have been made with better properties in view of morphology and particle size. Also, the effect of some parameters affecting synthesis process such as microwave power and reaction time on the morphology and particle size of product was studied and optimized. X-ray diffraction and field emission-scanning electron microscopy were used to study and characterize the manufactured SrAl2O4 nanoparticles.
Zhang, X; Turcheniuk, K; Zusmann, B; Benson, J; Nelson, S; Luo, S; Magasinski, A; Yushin, G
2018-05-24
In this work, we report a novel, one-step, inexpensive and environmentally friendly synthesis of Cu nanostructures by means of chemical de-alloying of bulk Cu-Ca alloys in aqueous solutions. By controlling the synthesis conditions, we tune the morphology of the nanostructured Cu from nanoporous Cu to copper oxide nanowires.
Towards large-scale plasma-assisted synthesis of nanowires
NASA Astrophysics Data System (ADS)
Cvelbar, U.
2011-05-01
Large quantities of nanomaterials, e.g. nanowires (NWs), are needed to overcome the high market price of nanomaterials and make nanotechnology widely available for general public use and applications to numerous devices. Therefore, there is an enormous need for new methods or routes for synthesis of those nanostructures. Here plasma technologies for synthesis of NWs, nanotubes, nanoparticles or other nanostructures might play a key role in the near future. This paper presents a three-dimensional problem of large-scale synthesis connected with the time, quantity and quality of nanostructures. Herein, four different plasma methods for NW synthesis are presented in contrast to other methods, e.g. thermal processes, chemical vapour deposition or wet chemical processes. The pros and cons are discussed in detail for the case of two metal oxides: iron oxide and zinc oxide NWs, which are important for many applications.
Sung, Da-Young; Gunjakar, Jayavant L; Kim, Tae Woo; Kim, In Young; Lee, Yu Ri; Hwang, Seong-Ju
2013-05-27
A new prompt room temperature synthetic route to 2D nanostructured metal oxide-graphene-hybrid electrode materials can be developed by the application of colloidal reduced graphene oxide (RGO) nanosheets as an efficient reaction accelerator for the synthesis of δ-MnO2 2D nanoplates. Whereas the synthesis of the 2D nanostructured δ-MnO2 at room temperature requires treating divalent manganese compounds with persulfate ions for at least 24 h, the addition of RGO nanosheet causes a dramatic shortening of synthesis time to 1 h, underscoring its effectiveness for the promotion of the formation of 2D nanostructured metal oxide. To the best of our knowledge, this is the first example of the accelerated synthesis of 2D nanostructured hybrid material induced by the RGO nanosheets. The observed acceleration of nanoplate formation upon the addition of RGO nanosheets is attributable to the enhancement of the oxidizing power of persulfate ions, the increase of the solubility of precursor MnCO3, and the promoted crystal growth of δ-MnO2 2D nanoplates. The resulting hybridization between RGO nanosheets and δ-MnO2 nanoplates is quite powerful not only in increasing the surface area of manganese oxide nanoplate but also in enhancing its electrochemical activity. Of prime importance is that the present δ-MnO2 -RGO nanocomposites show much superior electrode performance over most of 2D nanostructured manganate systems including a similar porous assembly of RGO and layered MnO2 nanosheets. This result underscores that the present RGO-assisted solution-based synthesis can provide a prompt and scalable method to produce nanostructured hybrid electrode materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gunalan, Sangeetha; Sivaraj, Rajeshwari; Venckatesh, Rajendran
2012-11-01
In this paper, we report on the synthesis of nanostructured copper oxide particles by both chemical and biological method. A facile and efficient synthesis of copper oxide nanoparticles was carried out with controlled surface properties via green chemistry approach. The CuO nanoparticles synthesized are monodisperse and versatile and were characterized with the help of UV-Vis, PL, FT-IR, XRD, SEM, and TEM techniques. The particles are crystalline in nature and average sizes were between 15 and 30 nm. The morphology of the nanoparticles can be controlled by tuning the amount of Aloe vera extract. This new eco-friendly approach of synthesis is a novel, cheap, and convenient technique suitable for large scale commercial production and health related applications of CuO nanoparticles.
Multifunctional Nanomaterials: Design, Synthesis and Application Properties.
Martinelli, Marisa; Strumia, Miriam Cristina
2017-02-07
The immense scope of variation in dendritic molecules (hyper-branching, nano-sized, hydrophobicity/hydrophilicity, rigidity/flexibility balance, etc.) and their versatile functionalization, with the possibility of multivalent binding, permit the design of highly improved, novel materials. Dendritic-based materials are therefore viable alternatives to conventional polymers. The overall aim of this work is to show the advantages of dendronization processes by presenting the synthesis and characterization of three different dendronized systems: (I) microbeads of functionalized chitosan; (II) nanostructuration of polypropylene surfaces; and (III) smart dendritic nanogels. The particular properties yielded by these systems could only be achieved thanks to the dendronization process.
Synthesis and Characteristics of ZnS Nanospheres for Heterojunction Photovoltaic Device
NASA Astrophysics Data System (ADS)
Chou, Sheng-Hung; Hsiao, Yu-Jen; Fang, Te-Hua; Chou, Po-Hsun
2015-06-01
The synthesis of ZnS nanospheres produced using the microwave hydrothermal method was studied. The microstructure and surface and optical properties of ZnS nanospheres on glass were characterized using scanning electron microscopy, high-resolution transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. The influence of deposition time on the transmission and photovoltaic performance was determined. The power conversion efficiency of an Al-doped ZnO/ZnS nanosphere/textured p-Si device improved from 0.93 to 1.77% when the thickness of the ZnS nanostructured film was changed from 75 to 150 nm.
Nanostructured electrocatalysts with tunable activity and selectivity
NASA Astrophysics Data System (ADS)
Mistry, Hemma; Varela, Ana Sofia; Kühl, Stefanie; Strasser, Peter; Cuenya, Beatriz Roldan
2016-04-01
The field of electrocatalysis has undergone tremendous advancement in the past few decades, in part owing to improvements in catalyst design at the nanoscale. These developments have been crucial for the realization of and improvement in alternative energy technologies based on electrochemical reactions such as fuel cells. Through the development of novel synthesis methods, characterization techniques and theoretical methods, rationally designed nanoscale electrocatalysts with tunable activity and selectivity have been achieved. This Review explores how nanostructures can be used to control electrochemical reactivity, focusing on three model reactions: O2 electroreduction, CO2 electroreduction and ethanol electrooxidation. The mechanisms behind nanoscale control of reactivity are discussed, such as the presence of low-coordinated sites or facets, strain, ligand effects and bifunctional effects in multimetallic materials. In particular, studies of how particle size, shape and composition in nanostructures can be used to tune reactivity are highlighted.
Dhak, Debasis; Hong, Seungbum; Das, Soma; ...
2015-01-01
Recently, there has been an enormous increase in research activity in the field of ferroelectrics and ferromagnetics especially in multiferroic materials which possess both ferroelectric and ferromagnetic properties simultaneously. However, the ferroelectric, ferromagnetic, and multiferroic properties should be further improved from the utilitarian and commercial viewpoints. Nanostructural materials are central to the evolution of future electronics and information technologies. Ferroelectrics and ferromagnetics have already been established as a dominant branch in electronics sector because of their diverse applications. The ongoing dimensional downscaling of materials to allow packing of increased numbers of components into integrated circuits provides the momentum for evolutionmore » of nanostructural devices. Nanoscaling of the above materials can result in a modification of their functionality. Furthermore, nanoscaling can be used to form high density arrays of nanodomain nanostructures, which is desirable for miniaturization of devices.« less
Synthesis and characterization of nanostructured bismuth selenide thin films.
Sun, Zhengliang; Liufu, Shengcong; Chen, Lidong
2010-12-07
Nanostructured bismuth selenide thin films have been successfully fabricated on a silicon substrate at low temperature by rational design of the precursor solution. Bi(2)Se(3) thin films were constructed of coalesced lamella in the thickness of 50-80 nm. The nucleation and growth process of Bi(2)Se(3) thin films, as well as the influence of solution chemistry on the film structure were investigated in detail. As one of the most promising thermoelectric materials, the thermoelectric properties of the prepared Bi(2)Se(3) thin films were also investigated. The power factor increased with increasing carrier mobility, coming from the enlarged crystallites and enhanced coalesced structure, and reached 1 μW cm(-1) K(-1).
Lattice dynamics and thermoelectric properties of nanocrystalline silicon-germanium alloys
Claudio, Tania; Stein, Niklas; Peterman, Nils; ...
2015-10-26
The lattice dynamics and thermoelectric properties of sintered phosphorus-doped nanostructured silicon- germanium alloys obtained by gas-phase synthesis were studied. Measurements of the density of phonon states by inelastic neutron scattering were combined with measurements of the elastic constants and the low- temperature heat capacity. A strong influence of nanostructuring and alloying on the lattice dynamics was observed. The thermoelectric transport properties of samples with different doping as well as samples sintered at different temperature were characterized between room temperature and 1000C. A peak figure of merit zT = 0:88 at 900C is observed and comparatively insensitive to the aforementioned param-more » eter variations.« less
Amino acid-assisted synthesis of zinc oxide nanostructures
NASA Astrophysics Data System (ADS)
Singh, Baljinder; Moudgil, Lovika; Singh, Gurinder; Kaura, Aman
2018-05-01
In this manuscript we have used experimental approach that can provide a fundamental knowledge about the role played by biomolecules in designing the shape of nanostructure (NS) at a microscopic level. The three different amino acids (AAs) - Arginine (Arg), Aspartic acid (Asp) and Histidine (His) coated Zinc oxide (ZnO) NSs to explain the growth mechanism of nanoparticles of different shapes. Based on the experimental methodology we propose that AA-ZnO (Asp and Arg) nanomaterials could form of rod like configuration and His-ZnO NPs could form tablet like configuration. The synthesized samples are characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Results reveal that AAs are responsible for formation of different NSs
Microwave-assisted synthesis of noble nanostructures (Au, Pt, and Pd) using biodegradable polymer carboxymethyl cellulose (CMC) under microwave irradiation (MW) at 100 0C is reported. The reaction occurs within a few minutes, whereas at room temperature the reaction does not pro...
NASA Astrophysics Data System (ADS)
Addanki, Satish; Nedumaran, D.
2017-07-01
Core-Shell nanostructures play a vital role in the sensor field owing to their performance improvements in sensing characteristics and well-established synthesis procedures. These nanostructures can be ingeniously tuned to achieve tailored properties for a particular application of interest. In this work, an Ag-Au core-shell thin film nanoislands with APTMS (3-Aminopropyl trimethoxysilane) and PVA (Polyvinyl alcohol) binding agents was modeled, synthesized and characterized. The simulation results were used to fabricate the sensor through chemical route. The results of this study confirmed that the APTMS based Ag-Au core-shell thin film nanoislands offered a better performance over the PVA based Ag-Au core-shell thin film nanoislands. Also, the APTMS based Ag-Au core-shell thin film nanoislands exhibited better sensitivity towards ozone sensing over the other types, viz., APTMS/PVA based Au-Ag core-shell and standalone Au/Ag thin film nanoislands.
NASA Astrophysics Data System (ADS)
Mazloom, Fatemeh; Masjedi-Arani, Maryam; Salavati-Niasari, Masoud
2017-08-01
Zinc vanadate (Zn3V2O8) nanostructures have been successfully synthesized via simple, rapid and solvent-free solid-state method by using different complex precursors of Zn and NH4VO3 as novel starting materials. Effects of various zinc (II) Schiff base complex precursors and calcination temperatures were investigated to reach optimum condition. It was found that particle size and optical property of the as-prepared products could be greatly influenced via these parameters. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Photoluminescence and ultraviolet-visible (UV-Vis) spectroscopy. The photocatalytic activity of zinc vanadate nano and bulk structures were compared by degradation of phenol red aqueous solution.
NASA Astrophysics Data System (ADS)
Ciupinǎ, Victor; Prioteasa, Iulian; Ilie, Daniela; Manu, Radu; Petrǎşescu, Lucian; Tutun, Ştefan Gabriel; Dincǎ, Paul; MustaÅ£ǎ, Ion; Lungu, Cristian Petricǎ; Jepu, IonuÅ£; Vasile, Eugeniu; Nicolescu, Virginia; Vladoiu, Rodica
2017-02-01
Copper/Cobalt/Copper/Iron thin films were synthesized in order to obtain nanostructured materials with special magnetoresistive properties. The multilayer films were deposited on silicon substrates. In this respect we used Thermionic Vacuum Arc Discharge Method (TVA). The benefit of this deposition technique is the ability to have a controlled range of thicknesses starting from few nanometers to hundreds of nanometers. The purity of the thin films was insured by a high vacuum pressure and a lack of any kind of buffer gas inside the coating chamber. The morphology and structure of the thin films were analyzed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Techniques and Energy Dispersive X-ray Spectroscopy (EDXS). Magnetoresistive measurement results depict that thin films possess Giant Magneto-Resistance Effect (GMR). Magneto-Optic-Kerr Effect (MOKE) studies were performed to characterize the magnetic properties of these thin films.
NASA Technical Reports Server (NTRS)
VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.
2009-01-01
A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.
Trepka, Bastian; Erler, Philipp; Selzer, Severin; Kollek, Tom; Boldt, Klaus; Fonin, Mikhail; Nowak, Ulrich; Wolf, Daniel; Lubk, Axel; Polarz, Sebastian
2018-01-01
Semiconductors with native ferromagnetism barely exist and defined nanostructures are almost unknown. This lack impedes the exploration of a new class of materials characterized by a direct combination of effects on the electronic system caused by quantum confinement effects with magnetism. A good example is EuO for which currently no reliable routes for nanoparticle synthesis can be established. Bottom-up approaches applicable to other oxides fail because of the labile oxidation state +II. Instead of targeting a direct synthesis, the two steps-"structure control" and "chemical transformation"-are separated. The generation of a transitional, hybrid nanophase is followed by its conversion into EuO under full conservation of all morphological features. Hierarchical EuO materials are now accessible in the shape of oriented nanodisks stacked to tubular particles. Magnetically, the coupling of either vortex or onion states has been found. An unexpected temperature dependence is governed by thermally activated transitions between these states. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Knebel, Alexander; Wulfert-Holzmann, Paul; Friebe, Sebastian; Pavel, Janet; Strauß, Ina; Mundstock, Alexander; Steinbach, Frank; Caro, Jürgen
2018-04-17
Membranes from metal-organic frameworks (MOFs) are highly interesting for industrial gas separation applications. Strongly improved performances for carbon capture and H 2 purification tasks in MOF membranes are obtained by using highly reproducable and very accuratly, hierarchically grown ZIF-8-on-ZIF-67 (ZIF-8@ZIF-67) nanostructures. To forgo hardly controllable solvothermal synthesis, particles and layers are prepared by self-assembling methods. It was possible for the first time to confirm ZIF-8-on-ZIF-67 membrane growth on rough and porous ceramic supports using the layer-by-layer deposition. Additionally, hierarchical particles are made in a fast RT synthesis with high monodispersity. Characterization of the hierarchical and epitaxial grown layers and particles is performed by SEM, TEM, EDXM and gas permeation. The system ZIF-8@ZIF-67 shows a nearly doubled H 2 /CO 2 separation factor, regardless of whether neat membrane or mixed-matrix-membrane in comparison to other MOF materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Safaei-Ghomi, Javad; Javidan, Abdollah; Ziarati, Abolfazl; Shahbazi-Alavi, Hossein
2015-08-01
In the present paper, we report the successful synthesis of nanocrystalline MIIZr4(PO4)6 ceramics (M: Mn, Ni, Fe, Co). These nano-structures were characterized by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometer (VSM). Size of nano-structures was in the range of 20-150 nm. Nano-MIIZr4(PO4)6 as an efficient and green catalyst has been used for the preparation of 2-amino-4H-pyran-3,5-dicarboxylate derivatives by the three-component condensation reaction of ethyl cyanoacetate, ethyl acetoacetate, and various aromatic aldehydes under microwave irradiation. Extraordinarily, the best results were obtained using MnZr4(PO4)6 nanocrystallines as an efficient catalyst. This method provides several advantages including easy work-up, excellent yields, short reaction times, using of microwave as green method, recoverability of the catalyst, and little catalyst loading.
Bhojane, Prateek; Sharma, Alfa; Pusty, Manojit; Kumar, Yogendra; Sen, Somaditya; Shirage, Parasharam
2017-02-01
In this work, we report a low cost, facile synthesis method for Nickel ferrite (NiFe₂O₄) nanostructures obtained by chemical bath deposition method for alternate transition metal oxide electrode material as a solution for clean energy. We developed a template free ammonia assisted method for obtaining porous structure which offering better supercapacitive performance of NiFe₂O₄ electrode material than previously reported for pure NiFe₂O₄. Here we explore the physical characterizations X-ray diffraction, FESEM, HRTEM performed to under-stand its crystal structure and morphology as well as the electrochemical measurements was performed to understand the electrochemical behaviour of the material. Here ammonia plays an important role in governing the structure/morphology of the material and enhances the electrochemical performance. The specific capacitance of 541 Fg⁻¹ is achieved at 2 mVs⁻¹ scan rate which is highest for the pure NiFe₂O₄ electrode material without using any addition of carbon based material, heterostructure or template based method.
Recent progress on borophene: Growth and structures
NASA Astrophysics Data System (ADS)
Kong, Longjuan; Wu, Kehui; Chen, Lan
2018-06-01
Boron is the neighbor of carbon on the periodic table and exhibits unusual physical characteristics derived from electron-deficient, highly delocalized covalent bonds. As the nearest neighbor of carbon, boron is in many ways similar to carbon, such as having a short covalent radius and the flexibility to adopt sp 2 hybridization. Hence, boron could be capable of forming monolayer structural analogues of graphene. Although many theoretical papers have reported finding two-dimensional allotropes of boron, there had been no experimental evidence for such atom-thin boron nanostructures until 2016. Recently, the successful synthesis of single-layer boron (referred to as borophene) on the Ag(111) substrate opens the era of boron nanostructures. In this brief review, we will discuss the progress that has been made on borophene in terms of synthetic techniques, characterizations and the atomic models. However, borophene is just in infancy; more efforts are expected to be made in future on the controlled synthesis of quality samples and tailoring its physical properties.
Synthesis of fullerene@gold core-shell nanostructures.
Ren, Yupeng; Paira, Priyankar; Nayak, Tapas Ranjan; Ang, Wee Han; Pastorin, Giorgia
2011-07-21
A "direct encapsulation" method was developed for the synthesis of highly stable water-soluble fullerene@gold core-shell nanostructures, with gold nanoshells showing either closed or porous morphology. This gold nano-shell coating formed a "nano-oven", capable of decomposing encapsulated fullerene molecules rapidly when irradiated by laser. We envisaged this being a useful tool for chemical reactions as well as a novel scaffold for nano-material synthesis.
Kulkarni, Amol A; Sebastian Cabeza, Victor
2017-12-19
Continuous segmented flow interfacial synthesis of Au nanostructures is demonstrated in a microchannel reactor. This study brings new insights into the growth of nanostructures at continuous interfaces. The size as well as the shape of the nanostructures showed significant dependence on the reactant concentrations, reaction time, temperature, and surface tension, which actually controlled the interfacial mass transfer. The microchannel reactor assisted in achieving a high interfacial area, as well as uniformity in mass transfer effects. Hexagonal nanostructures were seen to be formed in synthesis times as short as 10 min. The wettability of the channel showed significant effect on the particle size as well as the actual shape. The hydrophobic channel yielded hexagonal structures of relatively smaller size than the hydrophilic microchannel, which yielded sharp hexagonal bipyramidal particles (diagonal distance of 30 nm). The evolution of particle size and shape for the case of hydrophilic microchannel is also shown as a function of the residence time. The interfacial synthesis approach based on a stable segmented flow promoted an excellent control on the reaction extent, reduction in axial dispersion as well as the particle size distribution.
Simple mass production of zinc oxide nanostructures via low-temperature hydrothermal synthesis
NASA Astrophysics Data System (ADS)
Ghasaban, Samaneh; Atai, Mohammad; Imani, Mohammad
2017-03-01
The specific properties of zinc oxide (ZnO) nanoparticles have attracted much attention within the scientific community as a useful material for biomedical applications. Hydrothermal synthesis is known as a useful method to produce nanostructures with certain particle size and morphology however, scaling up the reaction is still a challenging task. In this research, large scale hydrothermal synthesis of ZnO nanostructures (60 g) was performed in a 5 l stainless steel autoclave by reaction between anionic (ammonia or sodium hydroxide) and cationic (zinc acetate dehydrate) precursors in low temperature. Hydrothermal reaction temperature and time were decreased to 115 °C and 2 or 6 h. In batch repetitions, the same morphologies (plate- and needle-like) with reproducible particle size were obtained. The nanostructures formed were analyzed by powder x-ray diffraction, Fourier-transform infrared spectroscopy, energy dispersive x-ray analysis, scanning electron microscopy and BET analysis. The nanostructures formed were antibacterially active against Staphylococcus aureus.
Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S.; Demokritou, Philip
2016-01-01
A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3. PMID:26875817
NASA Astrophysics Data System (ADS)
Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S.; Demokritou, Philip
2016-02-01
A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm3.
Pyrgiotakis, Georgios; Vedantam, Pallavi; Cirenza, Caroline; McDevitt, James; Eleftheriadou, Mary; Leonard, Stephen S; Demokritou, Philip
2016-02-15
A chemical free, nanotechnology-based, antimicrobial platform using Engineered Water Nanostructures (EWNS) was recently developed. EWNS have high surface charge, are loaded with reactive oxygen species (ROS), and can interact-with, and inactivate an array of microorganisms, including foodborne pathogens. Here, it was demonstrated that their properties during synthesis can be fine tuned and optimized to further enhance their antimicrobial potential. A lab based EWNS platform was developed to enable fine-tuning of EWNS properties by modifying synthesis parameters. Characterization of EWNS properties (charge, size and ROS content) was performed using state-of-the art analytical methods. Further their microbial inactivation potential was evaluated with food related microorganisms such as Escherichia coli, Salmonella enterica, Listeria innocua, Mycobacterium parafortuitum, and Saccharomyces cerevisiae inoculated onto the surface of organic grape tomatoes. The results presented here indicate that EWNS properties can be fine-tuned during synthesis resulting in a multifold increase of the inactivation efficacy. More specifically, the surface charge quadrupled and the ROS content increased. Microbial removal rates were microorganism dependent and ranged between 1.0 to 3.8 logs after 45 mins of exposure to an EWNS aerosol dose of 40,000 #/cm(3).
NASA Astrophysics Data System (ADS)
Zhu, Bangshang; Yuan, Falei; Yuan, Xiaoya; Bo, Yang; Wang, Yongting; Yang, Guo-Yuan; Drummen, Gregor P. C.; Zhu, Xinyuan
2014-02-01
Micro-computed tomography (micro-CT) is a powerful tool for visualizing the vascular systems of tissues, organs, or entire small animals. Vascular contrast agents play a vital role in micro-CT imaging in order to obtain clear and high-quality images. In this study, a new kind of nanostructured barium phosphate was fabricated and used as a contrast agent for ex vivo micro-CT imaging of blood vessels in the mouse brain. Nanostructured barium phosphate was synthesized through a simple wet precipitation method using Ba(NO3)2, and (NH4)2HPO4 as starting materials. The physiochemical properties of barium phosphate were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermal analysis. Furthermore, the impact of the produced nanostructures on cell viability was evaluated via the MTT assay, which generally showed low to moderate cytotoxicity. Finally, the animal test images demonstrated that the use of nanostructured barium phosphate as a contrast agent in Micro-CT imaging produced sharp images with excellent contrast. Both major vessels and the microvasculature were clearly observable in the imaged mouse brain. Overall, the results indicate that nanostructured barium phosphate is a potential and useful vascular contrast agent for micro-CT imaging.
RISK REDUCTION VIA GREENER SYNTHESIS OF NOBLE METAL NANOSTRUCTURES AND NANOCOMPOSITES
Aqueous preparation of nanoparticles using vitamins B2 and C which can function both as reducing and capping agents are described. Bulk and shape-controlled synthesis of noble nanostructures via microwave (MW)-assisted spontaneous reduction of noble metal salts using a-D-glucose,...
Synthesis of metallic nanoshells on porphyrin-stabilized emulsions
Wang, Haorong [Albuquerque, NM; Song, Yujiang [Albuquerque, NM; Shelnutt, John A [Tijeras, NM; Medforth, Craig J [Winters, CA
2011-12-13
Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.
NASA Astrophysics Data System (ADS)
Shkir, Mohd; AlFaify, S.; Yahia, I. S.; Hamdy, Mohamed S.; Ganesh, V.; Algarni, H.
2017-10-01
Low-temperature hydrothermal-assisted synthesis of pure and cesium (Cs) (1, 3, 5, 7 and 10 wt%) doped lead iodide (PbI2) nanorods and nanosheets have been achieved successfully for the first time. The structural and vibrational studies confirm the formation of a 2H-polytypic PbI2 predominantly. Scanning electron microscope analysis confirms the formation of well-aligned nanorods of average size 100 nm at low concentration and nanosheets of average thicknesses in the range of 20-40 nm at higher concentrations of Cs doping. The presence of Cs doping was confirmed by energy dispersive X-ray study. Ultra-violet-visible absorbance spectra were recorded, and energy gap was calculated in the range of 3.33 to 3.45 eV for pure and Cs-doped PbI2 nanostructures which is higher than the bulk value (i.e., 2.27 eV) due to quantum confinement effect. Dielectric constant, loss, and AC conductivity studies have been done. Enhancement in Gamma linear absorption coefficient due to Cs doping confirms the suitability of prepared nanostructures for radiation detection applications. Furthermore, the photocatalytic performance of the synthesized nanostructures was evaluated in the decolorization of methyl green (MG) and methyl orange (MO) under the illumination of visible light (λ > 420 nm). The observed photocatalytic activity for 5 and 7 wt% Cs-doped PbI2 was observed to be more than pure PbI2 and also > 10 times higher than the commercially available photocatalysts. The results suggest that the prepared nanostructures are highly applicable in optoelectronic, radiation detection and many other applications. [Figure not available: see fulltext.
Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO 2 films
NASA Astrophysics Data System (ADS)
Chou, Shulei; Cheng, Fangyi; Chen, Jun
The thin films of carambola-like γ-MnO 2 nanoflakes with about 20 nm in thickness and at least 200 nm in width were prepared on nickel sheets by combination of potentiostatic and cyclic voltammetric electrodeposition techniques. The as-prepared MnO 2 nanomaterials, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were used as the active material of the positive electrode for primary alkaline Zn/MnO 2 batteries and electrochemical supercapacitors. Electrochemical measurements showed that the MnO 2 nanoflake films displayed high potential plateau (around 1.0 V versus Zn) in primary Zn/MnO 2 batteries at the discharge current density of 500 mA g -1 and high specific capacitance of 240 F g -1 at the current density of 1 mA cm -2. This indicated the potential application of carambola-like γ-MnO 2 nanoflakes in high-power batteries and electrochemical supercapacitors. The growth process for the one- and three-dimensional nanostructured MnO 2 was discussed on the basis of potentiostatic and cyclic voltammetric techniques. The present synthesis method can be extended to the preparation of other nanostructured metal-oxide films.
Ion beams provided by small accelerators for material synthesis and characterization
NASA Astrophysics Data System (ADS)
Mackova, Anna; Havranek, Vladimir
2017-06-01
The compact, multipurpose electrostatic tandem accelerators are extensively used for production of ion beams with energies in the range from 400 keV to 24 MeV of almost all elements of the periodic system for the trace element analysis by means of nuclear analytical methods. The ion beams produced by small accelerators have a broad application, mainly for material characterization (Rutherford Back-Scattering spectrometry, Particle Induced X ray Emission analysis, Nuclear Reaction Analysis and Ion-Microprobe with 1 μm lateral resolution among others) and for high-energy implantation. Material research belongs to traditionally progressive fields of technology. Due to the continuous miniaturization, the underlying structures are far beyond the analytical limits of the most conventional methods. Ion Beam Analysis (IBA) techniques provide this possibility as they use probes of similar or much smaller dimensions (particles, radiation). Ion beams can be used for the synthesis of new progressive functional nanomaterials for optics, electronics and other applications. Ion beams are extensively used in studies of the fundamental energetic ion interaction with matter as well as in the novel nanostructure synthesis using ion beam irradiation in various amorphous and crystalline materials in order to get structures with extraordinary functional properties. IBA methods serve for investigation of materials coming from material research, industry, micro- and nano-technology, electronics, optics and laser technology, chemical, biological and environmental investigation in general. Main research directions in laboratories employing small accelerators are also the preparation and characterization of micro- and nano-structured materials which are of interest for basic and oriented research in material science, and various studies of biological, geological, environmental and cultural heritage artefacts are provided too.
Influence of DC arc current on the formation of cobalt-based nanostructures
NASA Astrophysics Data System (ADS)
Orpe, P. B.; Balasubramanian, C.; Mukherjee, S.
2017-08-01
The synthesis of cobalt-based magnetic nanostructures using DC arc discharge technique with varying arc current is reported here. The structural, morphological, compositional and magnetic properties of these nanostructures were studied as a function of applied arc current. Various techniques like X-ray diffraction, transmission electron microscopy, EDAX and vibrating sample magnetometry were used to carry out this study and the results are reported here. The results clearly indicate that for a given oxygen partial pressure, an arc current of 100 A favours the formation of unreacted cobalt atomic species. Also change in arc current leads to variation in phase, diversity in morphology etc. Other property changes such as thermal changes, mechanical changes etc. are not addressed here. The magnetic characterization further indicates that the anisotropy in shape plays a crucial role in deciding the magnetic properties of the nanostructured materials. We have quantified an interesting result in our experiment, that is, for a given partial pressure, 100 A arc current results in unique variation in structural and magnetic properties as compared to other arc currents.
Synthesis of cobalt doped BiFeO3 multiferroic thin films on p-Si substrate by sol-gel method
NASA Astrophysics Data System (ADS)
Prasannakumara, R.; Shrisha, B. V.; Naik, K. Gopalakrishna
2018-05-01
Bismuth ferrite (BiFeO3) and cobalt doped BiFeO3 (BiFe1-xCoxO3) nanostructure thin films were grown on p-silicon substrates by sol-gel spin coating method with a sequence of coating and annealing process. The post-annealing of the grown films was carried out under high pure argon atmosphere. The grown nanostructure thin films were characterized using XRD, FESEM, and AFM for the structural, morphological and topological studies, respectively. The elemental compositions of the samples were studied by EDX spectra. The PL spectra of the grown sample shows a narrow emission peak around 559 nm which corresponds to the energy band gap of BFO thin films. The XRD peaks of the BiFeO3 nanostructure thin film reveals the rhombohedral structure and transformed from rhombohedral to orthorhombic or tetragonal structure in Co doped BiFeO3 thin films. The Co substitution in BiFeO3 helped to obtain higher dense nanostructure thin films with smaller grain size than the BiFeO3 thin films.
Microwave-assisted synthesis and humidity sensing of nanostructured {alpha}-Fe{sub 2}O{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, Rupali G.; Badadhe, Satish S.; Mulla, Imtiaz S.
2009-05-06
Nanocrystalline {alpha}-Fe{sub 2}O{sub 3} has been prepared on a large-scale by a facile microwave-assisted hydrothermal route from a solution of Fe(NO{sub 3}){sub 3}.9H{sub 2}O and pentaerythritol. A systematic study of the morphology, crystallinity and oxidation state of Fe using different characterization techniques, such as transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy was performed. It reveals that nanostructured {alpha}-Fe{sub 2}O{sub 3} comprises bundles of nanorods with a rhombohedral crystalline structure. The individual nanorod has 8-10 nm diameter and {approx}50 nm length. The as-prepared nanostructured {alpha}-Fe{sub 2}O{sub 3} (sensor) gives selective response towards humidity. The sensor shows high sensitivity, fastmore » linear response to change in the humidity with almost 100% reproducibility. The sensor works at room temperature and rejuvenates without heat treatment. The as-prepared nanostructured {alpha}-Fe{sub 2}O{sub 3} appears to be a promising humidity sensing material with the potential for commercialization.« less
NASA Astrophysics Data System (ADS)
Varol, T.; Canakci, A.
2013-06-01
In the present work, the effect of milling parameters on the morphology and microstructure of nanostructure Al2024-B4C composite powders obtained by mechanical alloying (MA) was studied. The effects of milling time and B4C content on the morphology, microstructure and particle size of nanostructure Al2024-B4C composite powders have been investigated. Different amounts of B4C particles (0, 5, 10 and 20 wt.%) were mixed with Al2024 powders and milled in a planetary ball mill for 30, 60, 120, 300, 420 and 600 min. Al 2024-B4C composite powders were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, X-ray diffraction analysis (XRD) and the Vickers microhardness test. The results showed that the nanostructure Al2024-B4C composite powders were produced when they were milled for 600 min. The size of composite powder in the milled powder mixture was affected by the milling time and content of B4C particles. Moreover, it was observed that when MA reached a steady state, the properties of composite powders were stabilized.
NASA Astrophysics Data System (ADS)
PrasannaKumari, K.; Thomas, Boben
2018-01-01
Nanostructured SnO2 thin film have been efficiently fabricated by spray pyrolysis using atomizers of different types. The structure and morphology of as-prepared samples are investigated by techniques such as x-ray diffraction, and field-emission scanning electron microscopy. Significant morphological changes are observed in films by modifying the precursor atomization as a result of change of spray device. The optical characterization indicates that change in atomization, affects the absorbance and the band gap, following the varied crystallite size. Gas sensing investigations on ultrasonically prepared tin oxide films show NH3 response at operating temperatures lower down to 50 °C. For 1000 ppm of LPG the response at 350 °C for air blast atomizer film is about 99%, with short response and recovery times. The photoluminescence emmision spectra reveal the correlation between atomization process and the quantity of oxygen vacancies present in the samples. The favorable size reduction in microstructure with good crystallinity with slight change in lattice properties suggest their scope in gas sensing applications. On the basis of these characterizations, the mechanism of LPG and NH3 gas sensing of nanostructured SnO2 thin films has been proposed.
Synthesis of nanostructured iron oxides and new magnetic ceramics using sol-gel and SPS techniques
NASA Astrophysics Data System (ADS)
Papynov, E. K.; Shichalin, O. O.; Belov, A. A.; Portnyagin, A. S.; Mayorov, V. Yu.; Gridasova, E. A.; Golub, A. V.; Nepomnyashii, A. S.; Tananaev, I. G.; Avramenko, V. A.
2017-02-01
The original way of synthesis of nanostructured iron oxides and based on them magnetic ceramics via sequential combination of sol-gel and SPS technologies has been suggested. High quality of nanostructured iron oxides is defined by porous structure (Sspec up to 47,3 n2/g) and by phase composition of mixed and individual crystal phases (γ-Fe2O3/Fe3O4 i α-Fe2O3), depending on synthesis conditions. High-temperature SPS consolidation of nanostructured hematite powder, resulting in magnetic ceramics of high mechanical strength (fracture strength 249 MPa) has been investigated. Peculiarities of change of phase composition and composite's microstructure in the range of SPS temperatures from 700 to 900 °C have been revealed. Magnetic properties have been studied and regularities of change of magnetization (Ms) and coercive force (Hc) values of the ceramics with respect to SPS sintering temperature have been described.
Synthesis and integration of one-dimensional nanostructures for chemical gas sensing applications
NASA Astrophysics Data System (ADS)
Parthangal, Prahalad Madhavan
The need for improved measurement technology for the detection and monitoring of gases has increased tremendously for maintenance of domestic and industrial health and safety, environmental surveys, national security, food-processing, medical diagnostics and various other industrial applications. Among the several varieties of gas sensors available in the market, solid-state sensors are the most popular owing to their excellent sensitivity, ruggedness, versatility and low cost. Semiconducting metal oxides such as tin oxide (SnO2), zinc oxide (ZnO), and tungsten oxide (WO3) are routinely employed as active materials in these sensors. Since their performance is directly linked to the exposed surface area of the sensing material, one-dimensional nanostructures possessing very high surface to volume ratios are attractive candidates for designing the next generation of sensors. Such nano-sensors also enable miniaturization thereby reducing power consumption. The key to achieve success in one-dimensional nanotechnologies lies in assembly. While synthesis techniques and capabilities continue to expand rapidly, progress in controlled assembly has been sluggish due to numerous technical challenges. In this doctoral thesis work, synthesis and characterization of various one-dimensional nanostructures including nanotubes of SnO2, and nanowires of WO3 and ZnO, as well as their direct integration into miniature sensor platforms called microhotplates have been demonstrated. The key highlights of this research include devising elegant strategies for growing metal oxide nanotubes using carbon nanotubes as templates, substantially reducing process temperatures to enable growth of WO3 nanowires on microhotplates, and successfully fabricating a ZnO nanowire array based sensor using a hybrid nanowire-nanoparticle assembly approach. In every process, the gas-sensing properties of one-dimensional nanostructures were observed to be far superior in comparison with thin films of the same material. Essentially, we have formulated simple processes for improving current thin film sensors as well as a means of incorporating nanostructures directly into miniature sensing devices. Apart from gas sensing applications, the approaches described in this work are suitable for designing future nanoelectronic devices such as gas-ionization, capacitive and calorimetric sensors, miniature sensor arrays for electronic nose applications, field emitters, as well as photonic devices such as nanoscale LEDs and lasers.
Thin metal nanostructures: synthesis, properties and applications
Fan, Zhanxi; Huang, Xiao; Tan, Chaoliang
2015-01-01
Two-dimensional nanomaterials, especially graphene and single- or few-layer transition metal dichalcogenide nanosheets, have attracted great research interest in recent years due to their distinctive physical, chemical and electronic properties as well as their great potentials for a broad range of applications. Recently, great efforts have also been devoted to the controlled synthesis of thin nanostructures of metals, one of the most studied traditional materials, for various applications. In this minireview, we review the recent progress in the synthesis and applications of thin metal nanostructures with a focus on metal nanoplates and nanosheets. First of all, various methods for the synthesis of metal nanoplates and nanosheets are summarized. After a brief introduction of their properties, some applications of metal nanoplates and nanosheets, such as catalysis, surface enhanced Raman scattering (SERS), sensing and near-infrared photothermal therapy are described. PMID:28553459
Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants
One-step green synthesis of gold (Au) nanostructures is described using naturally occurring biodegradable plant surfactants such as VeruSOL-3™ (mixture of d-limonene and plant-based surfactants), VeruSOL-10™, VeruSOL-11™ and VeruSOL-12™ (individual plant-based surfactants deri...
Golshan, Marzieh; Salami-Kalajahi, Mehdi; Mirshekarpour, Mina; Roghani-Mamaqani, Hossein; Mohammadi, Maryam
2017-07-01
The aim of current work is synthesis 4th-generation-poly(propylene imine) (PPI)-dendrimer modified gold nanoparticles (Au-G4A) as nanocarriers for doxorubicin (DOX) and studying in vitro drug release kinetics from nanocarriers into different media. Accordingly, AuNPs were synthesized by reduction of chloroauric acid (HAuCl 4 ) aqueous solution with trisodium citrate and modified with cysteamine to obtain amine-functionalized (Au-NH 2 ) nanoparticles. Au-NH 2 nanoparticles were used as multifunctional cores and participated in Michael addition of acrylonitrile and reduction process by lithium aluminum hydride (LAH) to synthesize Au-G4A nanoparticles. Also, peripheral primary amine groups of Au-G4A were conjugated with folic acid (FA) (Au-G4F) to study the bioconjugation effect on drug release behavior of nanostructures. Ultraviolet spectroscopy (UV-vis), atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA) were used to approve the synthesis of different nanostructures. Finally, Au-G4A and Au-G4F samples were loaded with DOX and exposed to environments with different pH values to examine the release properties of nanostructures. Also, drug release kinetics was investigated by fitting of experimental data with different release models. As a result, synthesized dendritic structures showed Higuchi and Korsmeyer-Peppas models release behavior due to better solubility of drug in release media with respect to dendrimer cavities and drug release through polymeric matrix respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claudio, Tania; Stein, Niklas; Petermann, Nils
2015-10-26
The lattice dynamics and thermoelectric properties of sintered phosphorus-doped nanostructured silicon–germanium alloys obtained by gas-phase synthesis were studied. Measurements of the density of phonon states by inelastic neutron scattering were combined with measurements of the elastic constants and the low-temperature heat capacity. A strong influence of nanostructuring and alloying on the lattice dynamics was observed. The thermoelectric transport properties of samples with different doping as well as samples sintered at different temperature were characterized between room temperature and 1000°C. A peak figure of merit zT=0.88 at 900°C is observed and is comparatively insensitive to the aforementioned parameter variations.
Synthesis and characterization of Graphene oxide/Zinc oxide nanorods sandwich structure
NASA Astrophysics Data System (ADS)
Boukhoubza, I.; Khenfouch, M.; Achehboune, M.; Mouthudi, B.; Zorkani, I.; Jorio, A.
2018-03-01
Graphene-ZnO nanostructures composite materials have been used as very efficient candidates for various optoelectronic applications. Nowadays, the composite structure formation of ZnO nanostructures with graphene or graphene oxide is a novel, cost effective and efficient approach to control the morphology, surface defect states, band gap of ZnO nanocrystals. In this paper, we have prepared ZnO nanorods between two layers graphene oxide (GO/ZnO NRs/GO) via a simple hydrothermal method. Their morphology, structural and optical properties have been investigated. The obtained results of our composites GO/ZnO NRs/GO presented here showing an enhancement in the structural and optical properties. Thus may hold great promise to the development of the optoelectronic devices.
Synthesis of nanodimensional TiO2 thin films.
Thakurdesai, Madhavi; Mohanty, T; John, J; Rao, T K Gundu; Raychaudhuri, Pratap; Bhattacharyya, V; Kanjilal, D
2008-08-01
Nanodimensional TiO2 has wide application in the field of photocatalysis, photovoltaic and photochromic devices. In present investigation TiO2 thin films deposited by pulsed laser deposition method are irradiated by 100 MeV Ag ion beam to achieve growth of nanophases. The nanostructure evolution is characterized by atomic force microscopy (AFM). The phases of TiO2 formed after irradiation are identified by glancing angle X-ray diffraction and Raman spectroscopy. The particle radius estimated by AFM varies from 10-13 nm. Anatase phase of TiO2 is formed after irradiation. The blue shift observed in UV-VIS absorption spectra indicates the nanostructure formation. The shape and size of nanoparticles formed due to high electronic excitation depend upon thickness of the film.
Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou
2015-01-01
Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold–gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon–hydrogen bonds with molecular oxygen. PMID:25902034
Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou
2015-04-22
Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.
NASA Astrophysics Data System (ADS)
Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou
2015-04-01
Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.
Synthesis, Characterization and Applications of One-Dimensional Metal Oxide Nanostructures
NASA Astrophysics Data System (ADS)
Santulli, Alexander
Nanomaterials have been of keen research interest, owing to their exciting and unique properties (e.g. optical, magnetic, electronic, and mechanical). These properties allow nanomaterials to have many applications in areas of medicine, alternative energy, catalysis, and information storage. In particular, one-dimensional (1D) nanomaterials are highly advantageous, owing to the inherent anisotropic nature, which allows for effective transport and study of properties on the nanoscale. More specifically, 1D metal oxide nanomaterials are of particular interest, owing to their high thermal and chemical stability, as well as their intriguing optical, electronic, and magnetic properties. Herein, we will investigate the synthesis and characterization of vanadium oxide, lithium niobate and chromium oxide. We will explore the methodologies utilized for the synthesis of these materials, as well as the overall properties of these unique nanomaterials. Furthermore, we will explore the application of titanium dioxide nanomaterials as the electron transport layer in dye sensitized solar cells (DSSCs), with an emphasis on the effect of the nanoscale morphology on the overall device efficiency.
Nanostructured SnSe: Synthesis, doping, and thermoelectric properties
NASA Astrophysics Data System (ADS)
Liu, Shuhao; Sun, Naikun; Liu, Mei; Sucharitakul, Sukrit; Gao, Xuan P. A.
2018-03-01
IV-VI monochalcogenide SnSe or SnS has recently been proposed as a promising two-dimensional (2D) material for valleytronics and thermoelectrics. We report the synthesis of SnSe nanoflakes and nanostructured thin films with chemical vapor deposition method and their thermoelectric properties. As grown SnSe nanostructures are found to be intrinsically p-type and the single SnSe nanoflake field effect transistor was fabricated. By Ag doping, the power factor of SnSe nanostructured thin films can be improved by up to one order of magnitude compared to the "intrinsic" as grown materials. Our work provides an initial step in the pursuit of IV-VI monochalcogenides as novel 2D semiconductors for electronics and thermoelectrics.
Bottom-Up Syntheses and Characterization of One Dimensional Nanomaterials
NASA Astrophysics Data System (ADS)
Yeh, Yao-Wen
Nanomaterials, materials having at least one dimension below 100 nm, have been creating exciting opportunities for fundamental quantum confinement studies and applications in electronic devices and energy technologies. One obvious and important aspect of nanomaterials is their production. Although nanostructures can be obtained by top-down reductive e-beam lithography and focused ion beam processes, further development of these processes is needed before these techniques can become practical routes to large scale production. On the other hand, bottom-up syntheses, with advantages in material diversity, throughput, and the potential for large volume production, may provide an alternative strategy for creating nanostructures. In this work, we explore syntheses of one dimensional nanostructures based on hydrothermal and arc discharge methods. The first project presented in this thesis involves syntheses of technologically important nanomaterials and their potential application in energy harvesting. In particular, it was demonstrated that single crystal ferroelectric lead magnesium niobate lead titanate (PMN-PT) nanowires can be synthesized by a hydrothermal route. The chemical composition of the synthesized nanowires is near the rhombohedral-monoclinic boundary of PMN-PT, which leads to a high piezoelectric coefficient of 381 pm/V. Finally, the potential use of PMN-PT nanowires in energy harvesting applications was also demonstrated. The second part of this thesis involves the synthesis of carbon and boron nitride nanotubes by dc arc discharges. In particular, we investigated how local plasma related properties affected the synthesis of carbon nanostructures. Finally, we investigated the anodic nature of the arc and how a dc arc discharge can be applied to synthesize boron nitride nanotubes.
Synthesis, characterization, and thermal stability of SiO2/TiO2/CR-Ag multilayered nanostructures
NASA Astrophysics Data System (ADS)
Díaz, Gabriela; Chang, Yao-Jen; Philipossian, Ara
2018-06-01
The controllable synthesis and characterization of novel thermally stable silver-based particles are described. The experimental approach involves the design of thermally stable nanostructures by the deposition of an interfacial thick, active titania layer between the primary substrate (SiO2 particles) and the metal nanoparticles (Ag NPs), as well as the doping of Ag nanoparticles with an organic molecule (Congo Red, CR). The nanostructured particles were composed of a 330-nm silica core capped by a granular titania layer (10 to 13 nm in thickness), along with monodisperse 5 to 30 nm CR-Ag NPs deposited on top. The titania-coated support (SiO2/TiO2 particles) was shown to be chemically and thermally stable and promoted the nucleation and anchoring of CR-Ag NPs, which prevented the sintering of CR-Ag NPs when the structure was exposed to high temperatures. The thermal stability of the silver composites was examined by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Larger than 10 nm CR-Ag NPs were thermally stable up to 300 °C. Such temperature was high enough to destabilize the CR-Ag NPs due to the melting point of the CR. On the other hand, smaller than 10 nm Ag NPs were stable at temperatures up to 500 °C because of the strong metal-metal oxide binding energy. Energy dispersion X-ray spectroscopy (EDS) was carried out to qualitatively analyze the chemical stability of the structure at different temperatures which confirmed the stability of the structure and the existence of silver NPs at temperatures up to 500 °C.
Synthesis of Co 2SnO 4@C core-shell nanostructures with reversible lithium storage
NASA Astrophysics Data System (ADS)
Qi, Yue; Du, Ning; Zhang, Hui; Wu, Ping; Yang, Deren
This paper reports the synthesis of Co 2SnO 4@C core-shell nanostructures through a simple glucose hydrothermal and subsequent carbonization approach. The as-synthesized Co 2SnO 4@C core-shell nanostructures have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure Co 2SnO 4 nanocrystals. The carbon matrix has good volume buffering effect and high electronic conductivity, which may be responsible for the improved cyclic performance.
Shameli, Kamyar; Ahmad, Mansor Bin; Jazayeri, Seyed Davoud; Sedaghat, Sajjad; Shabanzadeh, Parvaneh; Jahangirian, Hossein; Mahdavi, Mahnaz; Abdollahi, Yadollah
2012-01-01
The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work.
Synthesis and Structural Characterization of CdFe2O4 Nanostructures
NASA Astrophysics Data System (ADS)
Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.
The synthesis of CdFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from the inorganic precursor, [CdFe2(cin)3(N2H4)3], which was obtained by a simple precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. On appropriate annealing, [CdFe2(cin)3(N2H4)3] yielded CdFe2O4 nanoparticles. The XRD studies showed that the crystallite size of the particles was 13nm. The results of HRTEM studies also agreed well with those of XRD. SAED pattern of the sample established the polycrystalline nature of the nanoparticles. SEM images displayed a random distribution of grains in the sample.
Synthesis, physical properties and self-assembly behavior of azole-fused pyrene derivatives
NASA Astrophysics Data System (ADS)
Xiao, Jinchong; Xiao, Xuyu; Zhao, Yanlei; Wu, Bo; Liu, Zhenying; Zhang, Xuemin; Wang, Sujuan; Zhao, Xiaohui; Liu, Lei; Jiang, Li
2013-05-01
A novel selenadiazole-fused pyrene derivative PySe was successfully synthesized and characterized. Its single structure is almost planar and adopts a sandwich-herringbone packing model. The self-assembly behaviors based on compound PySe and its analogue thiadiazole-fused pyrene derivative PyS were studied in detail and the as-formed nanostructures were fully characterized by means of UV-vis absorption, emission spectra, X-ray diffraction, field emission SEM and TEM. We attribute the bathochromic shift absorption and emission spectra of PyS and PySe in aqueous solution to the formation of J-type aggregation. In addition, our investigation demonstrated that the shape and size of the as-prepared nanostructures could be tuned by different chalcogen analogues and the volume ratio of water to organic solvent.A novel selenadiazole-fused pyrene derivative PySe was successfully synthesized and characterized. Its single structure is almost planar and adopts a sandwich-herringbone packing model. The self-assembly behaviors based on compound PySe and its analogue thiadiazole-fused pyrene derivative PyS were studied in detail and the as-formed nanostructures were fully characterized by means of UV-vis absorption, emission spectra, X-ray diffraction, field emission SEM and TEM. We attribute the bathochromic shift absorption and emission spectra of PyS and PySe in aqueous solution to the formation of J-type aggregation. In addition, our investigation demonstrated that the shape and size of the as-prepared nanostructures could be tuned by different chalcogen analogues and the volume ratio of water to organic solvent. Electronic supplementary information (ESI) available: TGA analysis, spectra characterization data for compound 1, 2, 3 and X-ray crystallographic data for compound PySe (2, CIF). CCDC 917821. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr00523b
Xing, Yanlong; Sun, Guoguang; Speiser, Eugen; Esser, Norbert; Dittrich, Petra S
2017-05-24
In this work, the microfluidic-assisted synthesis of copper-tetracyanoquinodimethane (Cu-TCNQ) nanostructures in an ambient environment is reported for the first time. A two-layer microfluidic device comprising parallel actuated microchambers was used for the synthesis and enabled excellent fluid handling for the continuous and multiple chemical reactions in confined ultrasmall chambers. Different precautions were applied to ensure the reduction state of copper (Cu) for the synthesis of Cu-TCNQ charge-transfer compounds. The localized synthesis of Cu and in situ transformation to Cu-TCNQ complexes in solution were achieved by applying different gas pressures in the control layer. Additionally, various diameters of the Cu-TCNQ nano/microstructures were obtained by adjusting the concentration of the precursors and reaction time. After the synthesis, platinum (Pt) microelectrode arrays, which were aligned at the microchambers, could enable the in situ measurements of the electronic properties of the synthesized nanostructures without further manipulation. The as-prepared Cu-TCNQ wire bundles showed good conductivity and a reversible hysteretic switching effect, which proved the possibility in using them to build advanced nanoelectronics.
NASA Astrophysics Data System (ADS)
Kim, Yu-jin; Ma, Rory; Reddy, D. Amaranatha; Kim, Tae Kyu
2015-12-01
Graphitized carbon-encapsulated palladium (Pd) core-shell nanospheres were produced via pulsed laser ablation of a solid Pd foil target submerged in acetonitrile. The microstructural features and optical properties of these nanospheres were characterized via high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Microstructural analysis indicated that the core-shell nanostructures consisted of single-crystalline cubic metallic Pd spheres that serve as the core material, over which graphitized carbon was anchored as a heterogeneous shell. The absorbance spectrum of the synthesized nanostructures exhibited a broad (absorption) band at ∼264 nm; this band corresponded to the typical inter-band transition of a metallic system and resulted possibly from the absorbance of the ionic Pd2+. The catalytic properties of the Pd and Pd@C core-shell nanostructures were investigated using the reduction of nitrobenzene to aniline by an excess amount of NaBH4 in an aqueous solution at room temperature, as a model reaction. Owing to the graphitized carbon-layered structure and the high specific surface area, the resulting Pd@C nanostructures exhibited higher conversion efficiencies than their bare Pd counterparts. In fact, the layered structure provided access to the surface of the Pd nanostructures for the hydrogenation reaction, owing to the synergistic effect between graphitized carbon and the nanostructures. Their unique structure and excellent catalytic performance render Pd@C core-shell nanostructures highly promising candidates for catalysis applications.
NASA Astrophysics Data System (ADS)
Mishra, Sukhada
The field of nanomaterials has continued to attract researchers to understand the fundamentals and to investigate potential applications in the fields of semiconductor physics, microfabrication, nanomedicine, surface sciences etc. One of the most critical aspects of the nanomaterials research is to establish synthetic protocols, which can address the underlying product requirements of reproducibility, homogenous morphology and controlled elemental composition. We have focused our research in exploring synthetic routes for the synthesis of superconducting and semiconducting nanomaterials and analyze their structure---property relationship through detailed characterizations. The first part of dissertation is focused on the synthesis of superconducting FeSe nanostructures using catalyst assisted chemical vapor deposition (CVD) technique. The effect of catalyst---FeSe interphase on the d spacing of the FeSe nanostructures has been analyzed, and the internal pressure effect on the Tc has been investigated further through in depth characterizations. The emphasis of second part is on the development of a simple yet versatile protocol for the synthesis of vertically aligned nanorod arrays on conducting substrate by combining electron beam lithography technique with electrochemical deposition. The technique has been utilized to fabricate photovoltaic CdTe nanorod arrays on conducting substrate and further extended to devise CdS---CdTe nanorod arrays to create radial and lateral p---n junction assembly. Using photo---electrochemical analysis, it was observed that, the nanorod arrays yielded higher photo---electrochemical current compared to the thin film counterpart. The third part of dissertation describes the CVD protocol to synthesize multifunctional, dumbbell shaped Au---CoSe nanoparticles, which possess potential applications in ' theronostic' biological examinations.
One-Step Synthesis of Au-Ag Nanowires through Microorganism-Mediated, CTAB-Directed Approach.
Xu, Luhang; Huang, Dengpo; Chen, Huimei; Jing, Xiaoling; Huang, Jiale; Odoom-Wubah, Tareque; Li, Qingbiao
2018-05-28
Synthesis and applications of one dimensional (1D) metal nanostructures have attracted much attention. However, one-step synthesis of bimetallic nanowires (NWs) has remained challenging. In this work, we developed a microorganism-mediated, hexadecyltrimethylammonium bromide (CTAB)-directed (MCD) approach to synthesize closely packed and long Au-Ag NWs with the assistance of a continuous injection pump. Characterization results confirmed that the branched Au-Ag alloy NWs was polycrystalline. And the Au-Ag NWs exhibited a strong absorbance at around 1950 nm in the near-infrared (NIR) region, which can find potential application in NIR absorption. In addition, the Au-Ag NWs showed excellent surface-enhanced Raman scattering (SERS) enhancement when 4-mercaptobenzoic acid (MBA) and rhodamine 6G (R6G) were used as probe molecules.
Solar Cell Nanotechnology Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Biswajit
2014-05-07
The objective of this project is to develop a low cost nonlithographic nanofabrication technology for the fabrication of thin film porous templates as well as uniform arrays of semiconductor nanostructures for the implementation of high efficiency solar cells. Solar cells based on semiconductor nanostructures are expected to have very high energy conversion efficiencies due to the increased absorption coefficients of semiconductor nanostructures. In addition, the thin film porous template can be used for optimum surface texturing of solar cells leading to additional enhancement in energy conversion efficiency. An important requirement for these applications is the ability to synthesize nanostructure arraysmore » of different dimensions with good size control. This project employed nanoporous alumina templates created by the anodization of aluminum thin films deposited on glass substrates for the fabrication of the nanostructures and optimized the process parameters to obtain uniform pore diameters. An additional requirement is uniformity or regularity of the nanostructure arrays. While constant current anodization was observed to provide controlled pore diameters, constant voltage anodization was needed for regularity of the nanostructure arrays. Thus a two-step anodization process was investigated and developed in this project for improving the pore size distribution and pore periodicity of the nanoporous alumina templates. CdTe was selected to be the active material for the nanowires, and the process for the successful synthesis of CdTe nanowires was developed in this project. Two different synthesis approaches were investigated in this project, electrochemical and electrophoretic deposition. While electrochemical synthesis was successfully employed for the synthesis of nanowires inside the pores of the alumina templates, the technique was determined to be non-optimum due to the need of elevated temperature that is detrimental to the structural integrity of the nanoporous alumina templates. In order to eliminate this problem, electrophoretic deposition was selected as the more appropriate technique, which involves the guided deposition of semiconductor nanoparticles in the presence of ultrasonic energy to form the crystalline nanowires. Extensive experimental research was carried out to optimize the process parameters for formation of crystalline nanowires. It was observed that the environmental bath temperature plays a critical role in determining the structural integrity of the nanowires and hence their lengths. Investigation was carried out for the formation of semitransparent ohmic contacts on the nanowires to facilitate photocurrent spectroscopy measurements as well as for solar cell implementation. Formation of such ohmic contacts was found to be challenging and a process involving mechanical and electrochemical polishing was developed to facilitate such contacts. The use of nanoporous alumina templates for the surface texturing of mono- and multi-crystalline solar cells was extensively investigated by electrochemical etching of the silicon through the pores of the nanoporous templates. The processes for template formation as well as etching were optimized and the alumina/silicon interface was investigated using capacitance-voltage characterization. The process developed was found to be viable for improving solar cell performance.« less
NASA Astrophysics Data System (ADS)
Sivayoganathan, Mugunthan; Tan, Bo; Venkatakrishnan, Krishnan
2012-11-01
We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide.
Sivayoganathan, Mugunthan; Tan, Bo; Venkatakrishnan, Krishnan
2012-11-09
We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide.
2012-01-01
We report a single step technique of synthesizing particle-agglomerated, amorphous 3-D nanostructures of Al and Si oxides on powder-fused aluminosilicate ceramic plates and a simple novel method of wafer-foil ablation to fabricate crystalline nanostructures of Al and Si oxides at ambient conditions. We also propose a particle size prediction mechanism to regulate the size of vapor-condensed agglomerated nanoparticles in these structures. Size characterization studies performed on the agglomerated nanoparticles of fabricated 3-D structures showed that the size distributions vary with the fluence-to-threshold ratio. The variation in laser parameters leads to varying plume temperature, pressure, amount of supersaturation, nucleation rate, and the growth rate of particles in the plume. The novel wafer-foil ablation technique could promote the possibilities of fabricating oxide nanostructures with varying Al/Si ratio, and the crystallinity of these structures enhances possible applications. The fabricated nanostructures of Al and Si oxides could have great potentials to be used in the fabrication of low power-consuming complementary metal-oxide-semiconductor circuits and in Mn catalysts to enhance the efficiency of oxidation on ethylbenzene to acetophenone in the super-critical carbon dioxide. PMID:23140103
ZnO synthesized in air by fs laser irradiation on metallic Zn thin films
NASA Astrophysics Data System (ADS)
Esqueda-Barrón, Y.; Herrera, M.; Camacho-López, S.
2018-05-01
We present results on rapid femtosecond laser synthesis of nanostructured ZnO. We used metallic Zn thin films to laser scan along straight tracks, until forming nanostructured ZnO. The synthesis dependence on laser irradiation parameters such as the per pulse fluence, integrated fluence, laser scan speed, and number of scans were explored carefully. SEM characterization showed that the morphology of the obtained ZnO is dictated by the integrated fluence and the laser scan speed; micro Raman and XRD results allowed to identify optimal laser processing conditions for getting good quality ZnO; and cathodoluminescence measurements demonstrated that a single laser scan at high per pulse laser fluence, but a medium integrated laser fluence and a medium laser scan speed favors a low density of point-defects in the lattice. Electrical measurements showed a correlation between resistivity of the laser produced ZnO and point-defects created during the synthesis. Transmittance measurements showed that, the synthesized ZnO can reach down to the supporting fused silica substrate under the right laser irradiation conditions. The physical mechanism for the formation of ZnO, under ultrashort pulse laser irradiation, is discussed in view of the distinct times scales given by the laser pulse duration and the laser pulse repetition rate.
Solution synthesis of metal oxides for electrochemical energy storage applications.
Xia, Xinhui; Zhang, Yongqi; Chao, Dongliang; Guan, Cao; Zhang, Yijun; Li, Lu; Ge, Xiang; Bacho, Ignacio Mínguez; Tu, Jiangping; Fan, Hong Jin
2014-05-21
This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis methods and some important considerations are discussed in association with their electrochemical performance. We also propose the basic guideline for designing advanced nanostructure electrode materials, and the future research trend in the development of high power and energy density electrochemical energy storage devices.
NASA Astrophysics Data System (ADS)
Li, Xiyan; Lei, Yongqian; Li, Xiaona; Song, Shuyan; Wang, Cheng; Zhang, Hongjie
2011-12-01
α-Fe 2O 3 nanocrystals (NCs) with different morphologies are successfully synthesized via a facile template-free hydrothermal route. By simply changing the volume ratio of ethanol to water, we obtained three different α-Fe 2O 3 nanostructures of rhombohedra, truncated rhombohedra and hexagonal sheet. The morphologies and structures of the as-obtained products have been confirmed by varieties of characterizations such as X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The influences of the experimental conditions, such as the amount of NaOH and reaction temperature on the morphologies of the as-prepared α-Fe 2O 3 NCs, have been well investigated. Additionally, magnetic investigations show that the as-obtained α-Fe 2O 3 nanostructures show structure-dependent magnetic properties. Furthermore, the electrochemical experiments indicate that the as-prepared α-Fe 2O 3 hexagonal sheets exhibit strong electrocatalytic reduction activity for H 2O 2.
Peng, Lele; Zhu, Yue; Li, Hongsen; Yu, Guihua
2016-12-01
State-of-the-art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene-based hybrid two-dimensional nanostructures. Here, the chemically integrated inorganic-graphene hybrid two-dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic-graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic-graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene-based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shao, Liangzhi; Nie, Shibin; Shao, Xiankun; Zhang, LinLin; Li, Benxia
2018-03-01
One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.
Chemical synthesis and structural characterization of small AuZn nanoparticles
NASA Astrophysics Data System (ADS)
Juárez-Ruiz, E.; Pal, U.; Lombardero-Chartuni, J. A.; Medina, A.; Ascencio, J. A.
2007-03-01
In this paper, we report the aqueous synthesis of bimetallic Au-Zn nanoparticles of different compositions by the simultaneous reduction technique. The stability and atomic configuration of the particles are studied through high-resolution transmission electron microscopy (HRTEM) and UV-Vis optical absorption techniques. Depending on the composition, small bimetallic nanoparticles of 1 15 nm in size were obtained. The average size and size distribution of the bimetallic nanoparticles are seen to be critically dependent on the atomic ratio of the constituting elements Au and Zn. While a 1:1 atomic proportion of Au and Zn produced most stable nanoparticles of smallest average size, nanoparticles produced with higher content of either of the component elements are unstable, inducing agglomeration and coalescence to form elongated structures with uneven morphologies. Au3Zn1 nanoparticles followed a directional growth pattern, producing bimetallic nanorods with multiple crystalline domains. Interestingly, in these rod-like nanostructures, the domains are in well array of solid solution-like bimetallic and pure mono-metallic regions alternatively. Such nanostructures with uneven morphology and compositions might show distinct catalytic selectivity in chemical reactions.
CTAB-assisted hydrothermal synthesis of YVO 4:Eu 3+ powders in a wide pH range
NASA Astrophysics Data System (ADS)
Wang, Juan; Hojamberdiev, Mirabbos; Xu, Yunhua
2012-01-01
Rhombus-, rod-, soya bean- and aggregated soya bean-like YVO 4:Eu 3+ micro- and nanostructures were synthesized by a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method at 180 °C for 24 h in a wide pH range. The as-synthesized powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). The XRD results confirmed the formation of phase-pure YVO 4:Eu 3+ powders with tetragonal structure under hydrothermal process in a wide pH range. Electron microscopic observations evidenced the morphological transformation of YVO 4:Eu 3+ powders from rhombus-like microstructure to rod-, soya bean, and aggregated soya bean-like nanostructures with an increase in the pH of the synthesis solution. The results from the PL measurements revealed that the intensities of PL emission peaks were significantly affected by the morphologies and crystallinity of samples due to the absence of an inversion symmetry at the Eu 3+ lattice site, and the highest luminescence intensity was observed for rod-like YVO 4:Eu 3+ powders.
Ha, Enna; Lee, Lawrence Yoon Suk; Man, Ho-Wing; Tsang, Shik Chi Edman; Wong, Kwok-Yin
2015-05-06
Copper-based chalcogenides of earth-abundant elements have recently arisen as an alternate material for solar energy conversion. Cu2FeSnS4 (CITS), a quaternary chalcogenide that has received relatively little attention, has the potential to be developed into a low-cost and environmentlly friendly material for photovoltaics and photocatalysis. Herein, we report, for the first time, the synthesis, characterization, and growth mechanism of novel Au/CITS core-shell nanostructures with controllable morphology. Precise manipulations in the core-shell dimensions are demonstrated to yield two distinct heterostructures with spherical and multipod gold nanoparticle (NP) cores (Au(sp)/CITS and Au(mp)/CITS). In photocatalytic hydrogen generation with as-synthesized Au/CITS NPs, the presence of Au cores inside the CITS shell resulted in higher hydrogen generation rates, which can be attributed to the surface plasmon resonance (SPR) effect. The Au(sp)/CITS and Au(mp)/CITS core-shell NPs enhanced the photocatalytic hydrogen generation by about 125% and 240%, respectively, compared to bare CITS NPs.
NASA Astrophysics Data System (ADS)
Marappa, B.; Rudresha, M. S.; Nagabhsuhana, H.; Basavaraj, R. B.; Prasad, B. Daruka
2017-05-01
The facile ultrasound synthesis of Y2O3:Dy3+ nanostructures by using bio-surfactant mimosa pudica leaves extract. The concentration of bio-surfactant was the key factor in controlling the morphology of Y2O3 nanostructures. The formation of different morphologies of Y2O3: Dy3+ was characterized by SEM, TEM and HRTEM. The PXRD data and Rietveld analysis evident the formation of single phase Y2O3 with cubic crystal structure. The influence of Dy3+ concentration on the structure morphology, UV absorption, and PL emission of Y2O3: Dy3+ nanostructures were investigated systematically. Y2O3: Dy3+ exhibits intense warm white emission with CIE chromaticity coordinates (0.32, 0.33) and CCT value is 5525 K which corresponds to vertical day light. SEM micrographs showed superstructure morphology influenced by both sonication time as well as surfactant concentration. Pl emission spectra shows three intense peaks observed at 480, 574 and 666 nm attributed to the Dy3+ transitions. The photometric properties were studied by evaluating the CIE, CCT diagrams and the results were very fruitful in making the white light emitting diodes. This method has been considered to be the cost effective and eco-friendly to synthesize nanomaterials with superior morphology suitable for display device applications.
Quesada-Cabrera, Raul; Weng, Xiaole; Hyett, Geoff; Clark, Robin J H; Wang, Xue Z; Darr, Jawwad A
2013-09-09
High-throughput continuous hydrothermal flow synthesis was used to manufacture 66 unique nanostructured oxide samples in the Ce-Zr-Y-O system. This synthesis approach resulted in a significant increase in throughput compared to that of conventional batch or continuous hydrothermal synthesis methods. The as-prepared library samples were placed into a wellplate for both automated high-throughput powder X-ray diffraction and Raman spectroscopy data collection, which allowed comprehensive structural characterization and phase mapping. The data suggested that a continuous cubic-like phase field connects all three Ce-Zr-O, Ce-Y-O, and Y-Zr-O binary systems together with a smooth and steady transition between the structures of neighboring compositions. The continuous hydrothermal process led to as-prepared crystallite sizes in the range of 2-7 nm (as determined by using the Scherrer equation).
Mathurin, Leanne E.; Tao, Jing; Xin, Huolin; ...
2017-11-03
The composition and structure of multimetallic nanostructures can be tailored to enhance electrocatalytic properties. This work reports a seed-mediated synthesis of novel multimetallic dendritic core-frame and frame nanostructures with a rhombic dodecahedral shape for enhanced methanol oxidation reaction (MOR). The synthesis involves in situ formation of Cu seeds and the subsequent selective deposition of Pt and Ru on the edges and vertices of the Cu seeds to generate CuPt and CuPtRu dendritic core-frame nanostructures. The core-frame nanostructures undergo a post acetic acid etching process to form the frame nanostructures. While transmission electron microscopy reveals the morphology and elemental distribution ofmore » the nanostructures, X-ray diffraction patterns confirm the alloy compositions of dendritic frames for both the core-frame and frame nanostructures. Compared to the bimetallic CuPt nanostructures, the trimetallic CuPtRu nanostructures lower the onset potential and completely suppress the peak current in the reverse scan for MOR. The CuPtRu alloyed frame nanostructures are the best to prevent Ru leaching compared to the CuPtRu core-frame nanostructures and PtRu catalysts. X-ray photoelectron spectroscopy reveals that all three elements become more electron rich in the frame nanostructures. Thus, further refining the composition ratio of the CuPtRu alloyed dendritic frame nanostructures can lead to more efficient catalysts at a lower cost for MOR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathurin, Leanne E.; Tao, Jing; Xin, Huolin
The composition and structure of multimetallic nanostructures can be tailored to enhance electrocatalytic properties. This work reports a seed-mediated synthesis of novel multimetallic dendritic core-frame and frame nanostructures with a rhombic dodecahedral shape for enhanced methanol oxidation reaction (MOR). The synthesis involves in situ formation of Cu seeds and the subsequent selective deposition of Pt and Ru on the edges and vertices of the Cu seeds to generate CuPt and CuPtRu dendritic core-frame nanostructures. The core-frame nanostructures undergo a post acetic acid etching process to form the frame nanostructures. While transmission electron microscopy reveals the morphology and elemental distribution ofmore » the nanostructures, X-ray diffraction patterns confirm the alloy compositions of dendritic frames for both the core-frame and frame nanostructures. Compared to the bimetallic CuPt nanostructures, the trimetallic CuPtRu nanostructures lower the onset potential and completely suppress the peak current in the reverse scan for MOR. The CuPtRu alloyed frame nanostructures are the best to prevent Ru leaching compared to the CuPtRu core-frame nanostructures and PtRu catalysts. X-ray photoelectron spectroscopy reveals that all three elements become more electron rich in the frame nanostructures. Thus, further refining the composition ratio of the CuPtRu alloyed dendritic frame nanostructures can lead to more efficient catalysts at a lower cost for MOR.« less
NASA Astrophysics Data System (ADS)
Masoudpanah, S. M.; Seyyed Ebrahimi, S. A.
2012-07-01
Nanostructured single phase strontium hexaferrite, SrFe12O19, thin films have been synthesized on the (100) silicon substrate using a spin coating sol-gel process. The thin films with various Fe/Sr molar ratios of 8-12 were calcined at different temperatures from 500 to 900 °C. The composition, microstructure and magnetic properties of the SrFe12O19 thin films were characterized using Fourier transform infrared spectroscopy, differential thermal analysis, thermogravimetry, X-ray diffraction, electron microscopy and vibrating sample magnetometer. The results showed that the optimum molar ratio for Fe/Sr was 10 at which the lowest calcination temperature to obtain the single phase strontium hexaferrite thin film was 800 °C. The magnetic measurements revealed that the sample with Fe/Sr molar ratio of 10, exhibited higher saturation magnetization (267.5 emu/cm3) and coercivity (4290 Oe) in comparison with those synthesized under other Fe/Sr molar ratios.
Deep eutectic-solvothermal synthesis of nanostructured ceria
Hammond, Oliver S.; Edler, Karen J.; Bowron, Daniel T.; Torrente-Murciano, Laura
2017-01-01
Ceria is a technologically important material with applications in catalysis, emissions control and solid-oxide fuel cells. Nanostructured ceria becomes profoundly more active due to its enhanced surface area to volume ratio, reactive surface oxygen vacancy concentration and superior oxygen storage capacity. Here we report the synthesis of nanostructured ceria using the green Deep Eutectic Solvent reline, which allows morphology and porosity control in one of the less energy-intensive routes reported to date. Using wide Q-range liquid-phase neutron diffraction, we elucidate the mechanism of reaction at a molecular scale at considerably milder conditions than the conventional hydrothermal synthetic routes. The reline solvent plays the role of a latent supramolecular catalyst where the increase in reaction rate from solvent-driven pre-organization of the reactants is most significant. This fundamental understanding of deep eutectic-solvothermal methodology will enable future developments in low-temperature synthesis of nanostructured ceria, facilitating its large-scale manufacturing using green, economic, non-toxic solvents. PMID:28120829
A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation
Yang, Yuan; Wang, Kai; Liang, Hai-Wei; Liu, Guo-Qiang; Feng, Mei; Xu, Liang; Liu, Jian-Wei; Wang, Jin-Long; Yu, Shu-Hong
2015-01-01
One-dimensional metal chalcogenide nanostructures are important candidates for many technological applications such as photovoltaic and thermoelectric devices. However, the design and synthesis of one-dimensional metal chalcogenide nanostructured materials with controllable components and properties remain a challenge. We report a general chemical transformation process for the synthesis of more than 45 kinds of one-dimensional alloyed/hybrid metal chalcogenide nanostructures inherited from mother template TexSey@Se core-shell nanowires with tunable compositions. As many as nine types of monometal chalcogenide alloy nanowires (including AgSeTe, HgSeTe, CuSeTe, BiSeTe, PbSeTe, CdSeTe, SbSeTe, NiSeTe, and CoSeTe) can be synthesized. Alloyed and hybrid nanowires integrated with two or more alloyed metal chalcogenide phases can also be prepared. The compositions of all of these metal chalcogenide nanowires are tunable within a wide range. This protocol provides a new general route for the controllable synthesis of a new generation of one-dimensional metal chalcogenide nanostructures. PMID:26601137
A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation.
Yang, Yuan; Wang, Kai; Liang, Hai-Wei; Liu, Guo-Qiang; Feng, Mei; Xu, Liang; Liu, Jian-Wei; Wang, Jin-Long; Yu, Shu-Hong
2015-11-01
One-dimensional metal chalcogenide nanostructures are important candidates for many technological applications such as photovoltaic and thermoelectric devices. However, the design and synthesis of one-dimensional metal chalcogenide nanostructured materials with controllable components and properties remain a challenge. We report a general chemical transformation process for the synthesis of more than 45 kinds of one-dimensional alloyed/hybrid metal chalcogenide nanostructures inherited from mother template Te x Se y @Se core-shell nanowires with tunable compositions. As many as nine types of monometal chalcogenide alloy nanowires (including AgSeTe, HgSeTe, CuSeTe, BiSeTe, PbSeTe, CdSeTe, SbSeTe, NiSeTe, and CoSeTe) can be synthesized. Alloyed and hybrid nanowires integrated with two or more alloyed metal chalcogenide phases can also be prepared. The compositions of all of these metal chalcogenide nanowires are tunable within a wide range. This protocol provides a new general route for the controllable synthesis of a new generation of one-dimensional metal chalcogenide nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Y.-C.; Lin, H.-C.; Chen, C.-H.
A nonaqueous seeded-grown synthesis of three-dimensional TiO{sub 2} nanostructures in the benzyl alcohol reaction system was reported. The synthesis was simple, high-yield, and requires no structural directing or capping agents. It could be largely accelerated by applying microwave heating. The TiO{sub 2} nanostructures had a unique flower-like morphology and high surface area. Furthermore, the structural analyses suggested that the nanostructures had a non-uniform distribution of crystalline phases, with the inner part rich in anatase and the outer part rich in rutile. After heat treatments, the mixed-phase TiO{sub 2} nanostructures exhibited high photocatalytic activities for the photodegradation of methylene blue asmore » compared to Degussa P25. The high photoactivities may be associated with the high surface area and the synergistic effect resulting from the anisotropic mixed-phase nanostructures. The results demonstrate the uniqueness of the nonaqueous seeded growth and the potential of the TiO{sub 2} nanostructures for practical applications. - Graphical abstract: Flower-like TiO{sub 2} nanostructures synthesized by a nonaqueous seeded growth without using any structural directing or capping agents.« less
Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures
Wang, Li; Sun, Yujing; Li, Zhuang; Wu, Aiguo; Wei, Gang
2016-01-01
The combination of nanotechnology, biology, and bioengineering greatly improved the developments of nanomaterials with unique functions and properties. Biomolecules as the nanoscale building blocks play very important roles for the final formation of functional nanostructures. Many kinds of novel nanostructures have been created by using the bioinspired self-assembly and subsequent binding with various nanoparticles. In this review, we summarized the studies on the fabrications and sensor applications of biomimetic nanostructures. The strategies for creating different bottom-up nanostructures by using biomolecules like DNA, protein, peptide, and virus, as well as microorganisms like bacteria and plant leaf are introduced. In addition, the potential applications of the synthesized biomimetic nanostructures for colorimetry, fluorescence, surface plasmon resonance, surface-enhanced Raman scattering, electrical resistance, electrochemistry, and quartz crystal microbalance sensors are presented. This review will promote the understanding of relationships between biomolecules/microorganisms and functional nanomaterials in one way, and in another way it will guide the design and synthesis of biomimetic nanomaterials with unique properties in the future. PMID:28787853
NASA Astrophysics Data System (ADS)
Bera, Debasis
2005-11-01
During the last decade, carbon nanotubes (CNTs) have been envisioned for a host of different new applications. One of the objectives of the present research is to develop a simplified synthesis method for the production of large-scale, low-cost carbon nanotubes with functionality. Herein, a unique, simple, inexpensive and one-step synthesis route of CNTs and CNTs decorated with nanoparticles is reported. The method is simple arc-discharge in solution (ADS). For this new method, a full-fledged optoelectronically controlled instrument is reported here to achieve high efficiency and continuous bulk production of CNTs. In this system, a constant gap between the two electrodes is maintained using a photosensor which allows a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analogue electronic unit, as controller. This computerized feed system was also used in single process step to produce in situ-decorated CNTs with a variety of industrially important nanoparticles. To name a few, we have successfully synthesized CNTs decorated with 3--4 nm ceria, silica and palladium nanoparticles for many industrially relevant applications. This process can be extended to synthesize decorated CNTs with other oxide and metallic nanoparticles. Sixty experimental runs were carried out for parametric analysis varying process parameters including voltage, current and precursors. The amount of yield with time, rate of erosion of the anode, and rate of deposition of carbonaceous materials on the cathode electrode were investigated. Normalized kinetic parameters were evaluated for different amperes from the sets of runs. The production rate of pristine CNT at 75 A is as high as 5.89 +/- 0.28 g.min-1. In this study, major emphasis was given on the characterizations of CNTs with and without nanoparticles using various techniques for surface and bulk analysis of the nanostructures. The nanostructures were characterized using transmission electron microscopy, high resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy and scanning electron microscopy, x-ray photo electron spectroscopy, x-ray diffraction studies, and surface area analysis. Electron microscopy investigations show that the CNTs, collected from the water and solutions, are highly pure except for the presence of some amorphous carbon. (Abstract shortened by UMI.)
A review of nanostructured lithium ion battery materials via low temperature synthesis.
Chen, Jiajun
2013-01-01
Nanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet- chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed.
Single chain technology: Toward the controlled synthesis of polymer nanostructures
NASA Astrophysics Data System (ADS)
Lyon, Christopher
A technique for fabricating advanced polymer nanostructures enjoying recent popularity is the collapse or folding of single polymer chains in highly dilute solution mediated by intramolecular cross-linking. We term the resultant structures single-chain nanoparticles (SCNP). This technique has proven particularly valuable in the synthesis of nanomaterials on the order of 5 -- 20 nm. Many different types of covalent and non-covalent chemistries have been used to this end. This dissertation investigates the use of so-called single-chain technology to synthesize nanoparticles using modular techniques that allow for easy incorporation of functionality or special structural or characteristic features. Specifically, the synthesis of linear polymers functionalized with pendant monomer units and the subsequent intramolecular polymerization of these monomer units is discussed. In chapter 2, the synthesis of SCNP using alternating radical polymerization is described. Polymers functionalized with pendant styrene and stilbene groups are synthesized via a modular post-polymerization Wittig reaction. These polymers were exposed to radical initiators in the presence (and absence) of maleic anhydride and other electron deficient monomers in order to form intramolecular cross-links. Chapter 3 discusses templated acyclic diene metathesis (ADMET) polymerization using single-chain technology, starting with the controlled ring-opening polymerization of a glycidyl ether functionalized with an ADMET monomer. This polymer was then exposed to Grubbs' catalyst to polymerize the ADMET monomer units. The ADMET polymer was hydrolytically cleaved from the template and separated. Upon characterization, it was found that the daughter ADMET polymer had a similar degree of polymerization, but did not retain the low dispersity of the template. Chapter 4 details the synthesis of aldehyde- and diol-functionalized polymers toward the synthesis of SCNP containing dynamic, acid-degradable acetal cross-links. SCNP fabrication with these materials is beyond the scope of this dissertation.
Synthesis and photocatalytic properties of TiO{sub 2} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, X.H.; Liang, Y.; Wang, Z.
2008-08-04
TiO{sub 2} particles, rods, flowers and sheets were prepared by hydrothermal method via adjusting the temperature, the pressure and the concentration of TiCl{sub 4}. The as-prepared TiO{sub 2} powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra and N{sub 2} adsorption-desorption measurements. It was found that pressure is the most important factor influencing the morphology of TiO{sub 2}. The photocatalytic activity of the products was evaluated by the photodegradation of aqueous brilliant red X-3B solution under UV light. Among the as-prepared nanostructures, the flower-like TiO{sub 2}more » exhibited the highest photocatalytic activity.« less
NASA Astrophysics Data System (ADS)
Li, Fei; Li, Gang; Chen, Hao; Jia, Jia Qi; Dong, Fan; Hu, Yao Bo; Shang, Zheng Guo; Zhang, Yu Xin
2015-11-01
We demonstrate a novel preparative strategy for the well-controlled MnCo2O4.5@MnO2 hierarchical nanostructures. Both δ-MnO2 nanosheets and α-MnO2 nanorods can uniformly decorate the surface of MnCo2O4.5 nanowires to form core-shell heterostructures. Detailed electrochemical characterization reveals that MnCo2O4.5@δ-MnO2 pattern exhibits not only high specific capacitance of 357.5 F g-1 at a scan rate of 0.5 A g-1, but also good cycle stability (97% capacitance retention after 1000 cycles at a scan rate of 5 A g-1), which make it have a promising application as a supercapacitor electrode material.
Tartaj, Pedro; Amarilla, Jose M
2014-02-28
Porous inorganic nanostructures with colloidal dimensions can be considered as ideal components of electrochemical devices that operate on renewable energy sources. They combine nanoscale properties with good accessibility, a high number of active sites, short diffusion distances and good processability. Herein, we review some of the liquid-phase routes that lead to the controlled synthesis of these nanostructures in the form of non-hollow, hollow or yolk-shell configurations. From solar and fuel cells to batteries and supercapacitors, we put special emphasis on showing how these sophisticated structures can enhance the efficiency of electrochemical energy devices.
NASA Astrophysics Data System (ADS)
Aghazadeh, Mustafa; Shiri, Hamid Mohammad; Barmi, Abbas-Ali Malek
2013-05-01
Uniform nanostructures of cobalt hydroxide were successfully prepared by a low-temperature electrochemical method via galvanostatically deposition from a 0.005 M Co(NO3)3 bath at 10 °C. The XRD and FT-IR analyses showed that the prepared sample has a single crystalline hexagonal phase of the brucite-like Co(OH)2. Morphological characterization by SEM and TEM revealed that the prepared β-Co(OH)2 was composed of uniform compact disc-like nanostructures with diameters of 40-50 nm. The electrochemical performance of the prepared β-Co(OH)2 was evaluated using cyclic voltammetry and charge-discharge tests. A maximum specific capacitance of 736.5 F g-1 was obtained in aqueous 1 M KOH with the potential range of -0.2-0.5 V (vs. Ag/AgCl) at the scan rate of 10 mV s-1, suggesting the potential application of the prepared nanostructures as an electrode material in electrochemical supercapacitors. The results of this work showed that the low-temperature cathodic electrodeposition method can be recognized as a new and facile route for the synthesis of cobalt hydroxide nanodiscs as a promising candidate for the electrochemical supercapacitors.
Singh, Ajay Vikram; Vyas, Varun; Salve, Tushar S; Cortelli, Daniele; Dellasega, David; Podestà, Alessandro; Milani, Paolo; Gade, W N
2012-06-01
The contamination of implant devices as a result of biofilm formation through bacterial infection has instigated major research in this area, particularly to understand the mechanism of bacterial cell/implant surface interactions and their preventions. In this paper, we demonstrate a controlled method of nanostructured titanium oxide surface synthesis using supersonic cluster beam depositions. The nanoscale surface characterization using atomic force microscopy and a profilometer display a regulated evolution in nanomorphology and physical properties. X-ray photoelectron spectroscopy analyses display a stoichiometric nanostructured TiO(2) film. Measurement of the water contact angle shows a nominal increase in the hydrophilic nature of ns-TiO(2) films, whereas the surface energy increases with decreasing contact angle. Bacterial species Staphylococcus aureus and Escherichia coli interaction with nanostructured surfaces shows an increase in adhesion and biofilm formation with increasing nanoscale morphological properties. Conversely, limiting ns-TiO(2) film distribution to micro/nanopatterned designed substrates integrated with bovine serum albumin functionalization leads to a reduction in biofilm formations due to a globally decreased bacterial cell-surface interaction area. The results have potential implications in inhibiting bacterial colonization and promoting mammalian cell-implant interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Hui; He Xiaoyan; Cao Minhua
2009-03-05
Novel rose-like three-dimensional Sn(HPO{sub 4}){sub 2}.H{sub 2}O nanostructures self-assembled by tightly stacked nanopetals were successfully synthesized by a simple cetyltrimethylammonium bromide (CTAB)/water/cyclohexane/n-pentanol microemulsion system under solvothermal conditions for the first time. A series of compared experiments were carried out to investigate the factors that influence the morphology and size of the products. It was found that the molar ratio of water to CTAB and the concentration of SnCl{sub 4} aqueous solution play important roles in the formation of the rose-like nanostructures. A possible formation mechanism of rose-like nanostructures was proposed, which may be related to the crystal structure of Sn(HPO{submore » 4}){sub 2}.H{sub 2}O and the spherical micelles formed by the microemulsion. The electrochemical properties of Sn(HPO{sub 4}){sub 2}.H{sub 2}O were investigated through cyclic voltammetry (CV) measurements. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and field-emission scanning electron microscope (FE-SEM) were used to characterize the products.« less
NASA Astrophysics Data System (ADS)
Zima, Tatyana.; Bataev, Ivan
2016-11-01
A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO2 powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO2-SnO2/Sn3O4-Sn3O4-SnO phase transformations. A single-phase Sn3O4 in the form of the well-separated hexagonal nanoplates and mixed SnO2/Sn3O4 phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed.
Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong
2016-11-08
Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.
NASA Astrophysics Data System (ADS)
Shokrvash, Hussein; Rad, Rahim Yazdani; Massoudi, Abouzar
2018-04-01
Design and synthesis of a prototype Cu-Nb nanocomposite are presented. Oxygen-free Cu-Nb nanocomposites were prepared using an electrolysis facility with special emphasis on the cathodic deoxidation of Cu and nanometric Nb2O5 blends in a molten NaCl-CaCl2 electrolyte. The as-prepared nanocomposites were characterized by X-ray diffraction and energy-dispersive X-ray spectroscopy. The elemental analysis of the Cu matrix and Nb phase revealed the high solubility of Nb in the Cu structure (0.85 at. pct) and Cu in the Nb structure (10.59 at. pct) over short synthesis times (4-5 hours). Furthermore, precise analysis using field emission scanning electron microscopy and transmission electron microscopy confirmed the unique structure and nanocomposite morphology of the Cu-Nb nanocomposite. The successful synthesis of Cu-Nb nanocomposites offers a new conceptual and empirical outlook on the generation of bulk nanostructures of immiscible bimetals using electro-synthesis.
One step synthesis of porous graphene by laser ablation: A new and facile approach
NASA Astrophysics Data System (ADS)
Kazemizadeh, Fatemeh; Malekfar, Rasoul
2018-02-01
Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.
Li, Xiaona; Liang, Jianwen; Hou, Zhiguo; Zhu, Yongchun; Wang, Yan; Qian, Yitai
2014-11-21
A new (NH4)3H(Ge7O16)(H2O)2.72 precursor-pyrolyzation approach was designed and developed for the facile synthesis of nanostructured GeO2, avoiding the use of any hazardous or expensive germanium compounds. The products show promising anode application in lithium ion batteries with high capacity and excellent cycling stability.
Robust parameter design for automatically controlled systems and nanostructure synthesis
NASA Astrophysics Data System (ADS)
Dasgupta, Tirthankar
2007-12-01
This research focuses on developing comprehensive frameworks for developing robust parameter design methodology for dynamic systems with automatic control and for synthesis of nanostructures. In many automatically controlled dynamic processes, the optimal feedback control law depends on the parameter design solution and vice versa and therefore an integrated approach is necessary. A parameter design methodology in the presence of feedback control is developed for processes of long duration under the assumption that experimental noise factors are uncorrelated over time. Systems that follow a pure-gain dynamic model are considered and the best proportional-integral and minimum mean squared error control strategies are developed by using robust parameter design. The proposed method is illustrated using a simulated example and a case study in a urea packing plant. This idea is also extended to cases with on-line noise factors. The possibility of integrating feedforward control with a minimum mean squared error feedback control scheme is explored. To meet the needs of large scale synthesis of nanostructures, it is critical to systematically find experimental conditions under which the desired nanostructures are synthesized reproducibly, at large quantity and with controlled morphology. The first part of the research in this area focuses on modeling and optimization of existing experimental data. Through a rigorous statistical analysis of experimental data, models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for fitting a Multinomial GLM is proposed and used. The optimum process conditions, which maximize the above probabilities and make the synthesis process less sensitive to variations of process variables around set values, are derived from the fitted models using Monte-Carlo simulations. The second part of the research deals with development of an experimental design methodology, tailor-made to address the unique phenomena associated with nanostructure synthesis. A sequential space filling design called Sequential Minimum Energy Design (SMED) for exploring best process conditions for synthesis of nanowires. The SMED is a novel approach to generate sequential designs that are model independent, can quickly "carve out" regions with no observable nanostructure morphology, and allow for the exploration of complex response surfaces.
NASA Astrophysics Data System (ADS)
Desai, Prachi
This dissertation study focuses on developing new protocols for synthesis of nanostructured transition-metal pnictides including superconducting LiFeAs and studying their structure- property relationship. Nanostructured materials are known to differ in properties compared to their bulk counterparts owing to enhanced surface area and increased packing efficiency in devices. Synthetic chemistry skills and nanofabrication techniques like wet chemistry, electrodeposition, solvothermal, hydrothermal and lithography, are extremely useful for creating nanostructures of these functional materials. This is a challenging task simply because maintaining the phase composition same as that of the bulk material along with achieving nanostructures (nanoparticles, nanowires, nanopillars etc.) simultaneously is not easy. Papers I and II showcase novel synthesis methods for E based pnictides [EPn where E = 1st row transition elements and Pn = P, As etc.]. The superparamagnetism of transition-metal pnictides (e.g. FeAs, CoAs) nanomaterials obtained by this method have interesting magnetic features like high blocking temperatures and inter-particle magnetic exchange. Paper III, shows the concept of generalized protocol of EAs synthesis and discusses the principles behind this method. This protocol has been tested for applicability to not only FeAs, but also MnAs, CoAs and CrAs systems. Generalization of this method along with the discovery of superparamagnetic behavior in FeAs is one of the key findings of this research work. Alongside, paper IV shows the formation of Co3O4 nanowires through solid-solid conversion route aided by sacrificial templates.
Controlled synthesis of silver nanostructures stabilized by fluorescent polyarylene ether nitrile
NASA Astrophysics Data System (ADS)
Jia, Kun; Shou, Hongguo; Wang, Pan; Zhou, Xuefei; Liu, Xiaobo
2016-07-01
In this work, the intrinsically fluorescent polyarylene ether nitrile (PEN) was explored to realize the controlled synthesis of fluorescent silver nanostructures with different morphology for the first time. Specifically, it was found that silver nitrate (AgNO3) can be effectively reduced to silver nanoparticles using PEN as both reducing and surface capping agents in N, N-dimethylformamide (DMF). More interestingly, the morphology of obtained fluorescent silver nanostructures can be tuned from nanospheres to nanorods by simple variation of reaction time at 130 °C using a relative PEN:AgNO3 molar concentration ratio of 1:8. Meanwhile, the obtained Ag nanostructures exhibited both localized surface plasmon resonance (LSPR) band and fluorescent emission around 420 nm, which would find potential applications in biochemical sensing and optical devices fields.
Effects of heating time on the growth and behavior of amorphous carbon nanostructures from ferrocene
NASA Astrophysics Data System (ADS)
Rafiqul Islam, Md; Rashid, A. K. M. B.; Ferdous, Md; Shafiul Azam, Md
2017-05-01
Heating time is one of the crucial factors in various methods employed for the synthesis of carbon nanostructures (CNSs) from ferrocene. However, the effects of heating time on the growth and morphology of the nanostructured materials has not been well explored yet, particularly for amorphous carbon. Herein, we investigate how the variation of heating time impacts the growth of CNSs by carrying out the reaction between ferrocene and ammonium chloride in a solvent free condition at 250 °C. Several different forms of carbon nanostructures yielded from this reaction at 25 min (CNS-25), 30 min (CNS-30), 35 min (CNS-35) and 40 min (CNS-40) were analyzed by means of field emission scanning electron microscopy (FESEM) coupled with energy-dispersive x-ray (EDX), Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopy. The final product CNS-40 was washed several times with concentrated hydrochloric acid solution to remove the impurities and then characterized by the means of similar techniques. FTIR spectra of all the nanostructures confirmed the presence of several functional groups such as C = C, C-O and -OH etc, which are common in carbonaceous nanostructures. However, the FESEM images obtained are significantly different and suggest a gradual growth of the carbon nanostructures ending up with long carbon nanotubes after 40 min. No absorption peak in the visible region of the UV-Vis spectra of the final product confirms the amorphous nature, which is also supported by XRD of the synthesized nanotube. Moreover, a noteworthy redshift in the UV-Vis peaks reflecting a huge increase in length and diameter of the nanostructures indicates the maximum longitudinal growth of the carbon nanotubes occurs during 35 min to 40 min.
A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashtari, Khadijeh; Fasihi, Javad; Mollania, Nasrin
Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during themore » coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.« less
Beshkar, Farshad; Khojasteh, Hossein; Salavati-Niasari, Masoud
2017-01-01
In this work we have demonstrated a facile formation of CuO nanostructures on copper substrates by the oxidation of copper foil in ethylene glycol (EG) at 80 °C. On immersing a prepared CuO film into a solution containing 0.1 g Zn(acac)2 in 20 mL EG for 8 h, ZnO flower-like microstructures composed of hierarchical three-dimensional (3D) aggregated nanoparticles and spherical architectures were spontaneously formed at 100 °C. The as-synthesized thin films and 3D microstructures were characterized using XRD, SEM, and EDS techniques. The effects of sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB), and polyethylene glycol (PEG) 6000 as surfactants and stabilizers on the morphology of the CuO and ZnO structures were discussed. Possible growth mechanisms for the controlled organization of primary building units into CuO nanostructures and 3D flower-like ZnO architectures were proposed. The hydrophobic property of the products was characterized by means of water contact angle measurement. After simple surface modification with stearic acid and PDMS, the resulting films showed hydrophobic and even superhydrophobic characteristics due to their special surface energy and nano-microstructure morphology. Importantly, stable superhydrophobicity with a contact angle of 153.5° was successfully observed for CuO-ZnO microflowers after modification with PDMS. The electrochemical impedance measurements proved that the anticorrosion efficiency for the CuO/ZnO/PDMS sample was about 99%. PMID:28773056
Beshkar, Farshad; Khojasteh, Hossein; Salavati-Niasari, Masoud
2017-06-25
In this work we have demonstrated a facile formation of CuO nanostructures on copper substrates by the oxidation of copper foil in ethylene glycol (EG) at 80 °C. On immersing a prepared CuO film into a solution containing 0.1 g Zn(acac)₂ in 20 mL EG for 8 h, ZnO flower-like microstructures composed of hierarchical three-dimensional (3D) aggregated nanoparticles and spherical architectures were spontaneously formed at 100 °C. The as-synthesized thin films and 3D microstructures were characterized using XRD, SEM, and EDS techniques. The effects of sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB), and polyethylene glycol (PEG) 6000 as surfactants and stabilizers on the morphology of the CuO and ZnO structures were discussed. Possible growth mechanisms for the controlled organization of primary building units into CuO nanostructures and 3D flower-like ZnO architectures were proposed. The hydrophobic property of the products was characterized by means of water contact angle measurement. After simple surface modification with stearic acid and PDMS, the resulting films showed hydrophobic and even superhydrophobic characteristics due to their special surface energy and nano-microstructure morphology. Importantly, stable superhydrophobicity with a contact angle of 153.5° was successfully observed for CuO-ZnO microflowers after modification with PDMS. The electrochemical impedance measurements proved that the anticorrosion efficiency for the CuO/ZnO/PDMS sample was about 99%.
Structural and spectroscopic study of mechanically synthesized SnO2 nanostructures
NASA Astrophysics Data System (ADS)
Vij, Ankush; Kumar, Ravi
2016-05-01
We report the single step synthesis of SnO2 nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO2 nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A1g Raman mode towards lower wave number, which is correlated with the nanostructure formation.
NASA Astrophysics Data System (ADS)
Gacutan, E. M.; Climaco, M. I.; Telan, G. J.; Malijan, F.; Hsu, H. Y.; Garcia, J.; Fulo, H.; Tongol, B. J.
2012-12-01
The need to lower the construction cost of fuel cells calls for the development of non-Pt based electrocatalysts. Among others, Pd has emerged as a promising alternative to Pt for fuel cell catalysis. This research aims to investigate the synthesis and characterization of nanostructured Pd-based catalysts dispersed on carbon support as anode materials in direct ethanol fuel cells. For the preparation of the first Pd-based electrocatalyst, palladium nanoparticles (NPs) were synthesized via oleylamine (OAm)-mediated synthesis and precursor method with a mean particle size of 3.63 ± 0.59 nm as revealed by transmission electron microscopy (TEM). Carbon black was used as a supporting matrix for the OAm-capped Pd NPs. Thermal annealing and acetic acid washing were used to remove the OAm capping agent. To evaluate the electrocatalytic activity of the prepared electrocatalyst towards ethanol oxidation, cyclic voltammetry (CV) studies were performed using 1.0 M ethanol in basic medium. The CV data revealed the highest peak current density of 11.05 mA cm-2 for the acetic acid-washed Pd/C electrocatalyst. Meanwhile, the fabrication of the second Pd-based electrocatalyst was done by functionalization of the carbon black support using 3:1 (v/v) H2SO4:HNO3. The metal oxide, NiO, was deposited using precipitation method while polyol method was used for the deposition of Pd NPs. X-ray diffraction (XRD) analysis revealed that the estimated particle size of the synthesized catalysts was at around 9.0-15.0 nm. CV results demonstrated a 36.7% increase in the catalytic activity of Pd-NiO/C (functionalized) catalyst towards ethanol oxidation compared to the non-functionalized catalyst.
Various synthetic routes for the preparation of nanoparticles
NASA Astrophysics Data System (ADS)
Gulati, Shivani; Sachdeva, M.; Bhasin, K. K.
2018-05-01
During the last few decades, controlled synthesis of nanoparticles has attracted the interest of researchers to generate nanostructured materials with tailored morphologies, since such shape-controlled nanomaterials find wide potential applications in electronic, magnetic, optoelectronic, sensory devices, catalysis, controlled drug delivery, lightweight fillers, low-dielectric-constant thin films and medical diagnostics etc. This article summarizes the recent advances on the various synthetic techniques of nanostructured material highlighting greener nano-synthesis techniques.
Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures.
Chuan Tan, Ying; Chun Zeng, Hua
2016-10-04
An aqueous one-pot self-templating synthesis method to prepare highly uniform ZIF-67 hollow spheres (ZIF-67-HS) and their transition metal-doped derivatives (M/ZIF-67-HS, M = Cu and/or Zn) was developed. Extension of this approach to another important class of MOFs (metal carboxylates; e.g., HKUST-1) and facile design of derived nanostructures with complex architectures were also achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glushkov, G. I.; Tuchin, A. V.; Popov, S. V.
Theoretical investigations of the electronic structure, synthesis, and all-optical magnetization switching of transition-metal silicide nanostructures are reported. The magnetic moment of the nanostructures is studied as a function of the silicide cluster size and configuration. The experimentally demonstrated magnetization switching of nanostructured nickel silicide by circularly polarized light makes it possible to create high-speed storage devices with high density data recording.
Towards of Vanadium Pentoxide Nanotubes and Thiols using Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Lavayen, V.; Gonzalez, G.; Cardenas, G.; Sotomayor Torres, C. M.
2005-09-01
The template-directed synthesis is a promising route to realise 1-D nanostructures, an example of which is the formation of vanadium pentoxide nanotubes. In this work we report the interchange of long alkyl amines with alkyl thiols, this reaction was followed using gold nanoparticles prepared by the Chemical Liquid Deposition (CLD) method. The diameter of the gold clusters was 9 Å with a stability of about 85 days. SEM, TEM, EDAX and electron diffraction was the techniques used for the characterization of the reactions.
Template synthesis of indium nanowires using anodic aluminum oxide membranes.
Chen, Feng; Kitai, Adrian H
2008-09-01
Indium nanowires with diameters approximately 300 nm have been synthesized by a hydraulic pressure technique using anodic aluminum oxide (AAO) templates. The indium melt is injected into the AAO template and solidified to form nanostructures. The nanowires are dense, continuous and uniformly run through the entire approximately 60 microm thickness of the AAO template. X-ray diffraction (XRD) reveals that the nanowires are polycrystalline with a preferred orientation. SEM is performed to characterize the morphology of the nanowires.
Patra, Astam K; Banerjee, Biplab; Bhaumik, Asim
2018-01-01
Semiconduction nanoparticles are intensively studied due to their huge potential in optoelctronic applications. Here we report an efficient chemical route for hydrothermal synthesis of aggregated mesoporous cadmium sulfide (CdS) nanoparticles using supramolecular-assembly of ionic and water soluble sodium salicylate as the capping agent. The nanostructure, mesophase, optical property and photoconductivity of these mesoporous CdS materials have been characterized by using small and wide angle powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2-sorption, Raman analysis, Fourier transformed infrared (FT-IR), UV-Visible DSR spectroscopy, and photoconductivity measurement. Wide angle XRD pattern and high resolution TEM image analysis suggested that the particle size of the materials is within 10 nm and the nanoparticles are in well-crystallized cubic phase. Mesoporous CdS nanoparticles showed drastically enhanced photoelectrochemical response under visible light irradiation on entrapping a photosensitizer (dye) molecule in the interparticle spaces. Efficient synthesis strategy and the enhanced photo response in the mesoporous CdS material could facilitate the designing of other porous semiconductor oxide/sulfide and their applications in photon-to-electron conversion processes.
Pokhrel, Ankit; Samad, Leith; Meng, Fei; Jin, Song
2015-11-07
In order to utilize nanostructured materials for potential solar and other energy-harvesting applications, scalable synthetic techniques for these materials must be developed. Herein we use a vapor phase conversion approach to synthesize nanowire (NW) arrays of semiconducting barium silicide (BaSi2) in high yield for the first time for potential solar applications. Dense arrays of silicon NWs obtained by metal-assisted chemical etching were converted to single-crystalline BaSi2 NW arrays by reacting with Ba vapor at about 930 °C. Structural characterization by X-ray diffraction and high-resolution transmission electron microscopy confirm that the converted NWs are single-crystalline BaSi2. The optimal conversion reaction conditions allow the phase-pure synthesis of BaSi2 NWs that maintain the original NW morphology, and tuning the reaction parameters led to a controllable synthesis of BaSi2 films on silicon substrates. The optical bandgap and electrochemical measurements of these BaSi2 NWs reveal a bandgap and carrier concentrations comparable to previously reported values for BaSi2 thin films.
Antibacterial Carbon Nanotubes by Impregnation with Copper Nanostructures
NASA Astrophysics Data System (ADS)
Palza, Humberto; Saldias, Natalia; Arriagada, Paulo; Palma, Patricia; Sanchez, Jorge
2017-08-01
The addition of metal-based nanoparticles on carbon nanotubes (CNT) is a relevant method producing multifunctional materials. In this context, CNT were dispersed in an ethanol/water solution containing copper acetate for their impregnation with different copper nanostructures by either a non-thermal or a thermal post-synthesis treatment. Our simple method is based on pure CNT in an air atmosphere without any other reagents. Particles without thermal treatment were present as a well-dispersed layered copper hydroxide acetate nanostructures on CNT, as confirmed by scanning and transmission (TEM) electron microscopies, and showing a characteristic x-ray diffraction peak at 6.6°. On the other hand, by thermal post-synthesis treatment at 300°C, these layered nanostructures became Cu2O nanoparticles of around 20 nm supported on CNT, as confirmed by TEM images and x-ray diffraction peaks. These copper nanostructures present on the CNT surface rendered antibacterial behavior to the resulting hybrid materials against both Staphylococcus aureus and Escherichia coli. These findings present for the first time a simple method for producing antibacterial CNT by direct impregnation of copper nanostructures.
Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications
Wang, Xiaoliang; Ahmad, Mashkoor
2017-01-01
Zinc oxide (ZnO) nanostructures have been studied extensively in the past 20 years due to their novel electronic, photonic, mechanical and electrochemical properties. Recently, more attention has been paid to assemble nanoscale building blocks into three-dimensional (3D) complex hierarchical structures, which not only inherit the excellent properties of the single building blocks but also provide potential applications in the bottom-up fabrication of functional devices. This review article focuses on 3D ZnO hierarchical nanostructures, and summarizes major advances in the solution phase synthesis, applications in environment, and electrical/electrochemical devices. We present the principles and growth mechanisms of ZnO nanostructures via different solution methods, with an emphasis on rational control of the morphology and assembly. We then discuss the applications of 3D ZnO hierarchical nanostructures in photocatalysis, field emission, electrochemical sensor, and lithium ion batteries. Throughout the discussion, the relationship between the device performance and the microstructures of 3D ZnO hierarchical nanostructures will be highlighted. This review concludes with a personal perspective on the current challenges and future research. PMID:29137195
Al-Shabib, Nasser A.; Husain, Fohad Mabood; Ahmed, Faheem; Khan, Rais Ahmad; Ahmad, Iqbal; Alsharaeh, Edreese; Khan, Mohd Shahnawaz; Hussain, Afzal; Rehman, Md Tabish; Yusuf, Mohammad; Hassan, Iftekhar; Khan, Javed Masood; Ashraf, Ghulam Md; Alsalme, Ali Mohammed; Al-Ajmi, Mohamed F.; Tarasov, Vadim V.; Aliev, Gjumrakch
2016-01-01
Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative. PMID:27917856
NASA Astrophysics Data System (ADS)
Ansari, Fatemeh; Sobhani, Azam; Salavati-Niasari, Masoud
2016-03-01
Copper hexaferrite (CuFe12O19) nanostructures were prepared by a simple route utilizing maltose-assisted sol-gel process. The morphology, phase structure, composition and purity of nanostructures can be controlled by type of surfactant and also adjusting the Cu:surfactant, Cu:Fe and Cu:reductant ratios. The bean-shape structures are formed in the absence of the surfactant when the molar ratio of Cu:Fe and Cu:reductant are 1:12 and 1:26, respectively. The agglomerated spherical nanoparticles with diameters ranging from 7 to 20 nm are obtained in the presence of triplex, when ratio of Cu:reductant is 1:26. In the absence of surfactant and also in the presence of triplex, the samples are found to be CuFe12O19. When polymer is used, there are still the peaks of CuFe12O19 and also some boad peaks in XRD patterns, because of the small size and encapsulation of nanostructures with polymer. Magnetic measurments show superparamagnetic behavior for the all samples. The Ms for the samples obtained in the presence of polymer shows that the coating of magnetic nanostructures does not always increase Ms. FT-IR frequency bands in the range 463-626, 607 and 542 cm-1 correspond to the formation of metal oxides in ferrites.
Al-Shabib, Nasser A; Husain, Fohad Mabood; Ahmed, Faheem; Khan, Rais Ahmad; Ahmad, Iqbal; Alsharaeh, Edreese; Khan, Mohd Shahnawaz; Hussain, Afzal; Rehman, Md Tabish; Yusuf, Mohammad; Hassan, Iftekhar; Khan, Javed Masood; Ashraf, Ghulam Md; Alsalme, Ali Mohammed; Al-Ajmi, Mohamed F; Tarasov, Vadim V; Aliev, Gjumrakch
2016-12-05
Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hua Kun, E-mail: hua@uow.edu.au
2013-12-15
Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithiummore » ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.« less
NASA Astrophysics Data System (ADS)
Xu, Hesheng Victor; Zheng, Xin Ting; Mok, Beverly Yin Leng; Ibrahim, Salwa Ali; Yu, Yong; Tan, Yen Nee
2016-08-01
Biomolecules are the nanoscale building blocks of cells, which play multifaceted roles in the critical biological processes such as biomineralization in a living organism. In these processes, the biological molecules such as protein and nucleic acids use their exclusive biorecognition properties enabled from their unique chemical composition, shape and function to initiate a cascade of cellular events. The exceptional features of these biomolecules, coupled with the recent advancement in nanotechnology, have led to the emergence of a new research field that focuses on the molecular design of bioinspired nanostructures that inherit the extraordinary function of natural biomaterials. These “bioinspired” nanostructures could be formulated by biomimetic approaches through either self-assembling of biomolecules or acting as a biomolecular template/precursor to direct the synthesis of nanocomposite. In either situation, the resulting nanomaterials exhibit phenomenal biocompatibility, superb aqueous solubility and excellent colloidal stability, branding them exceptionally desirable for both in vitro and in vivo biomedical applications. In this review, we will present the recent developments in the preparation of “bioinspired” nanostructures through biomimetic self-assembly and biotemplating synthesis, as well as highlight their functional properties and potential applications in biomedical diagnostics and therapeutic delivery. Lastly, we will conclude this topic with some personal perspective on the challenges and future outlooks of the “bioinspired” nanostructures for nanomedicine.
NASA Astrophysics Data System (ADS)
Han, Wei; MacEwan, Sarah R.; Chilkoti, Ashutosh; López, Gabriel P.
2015-07-01
The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well.The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01407g
Band gap and composition engineering on a nanocrystal (BCEN) in solution.
Peng, Xiaogang
2010-11-16
Colloidal nanocrystals with "artificial" composition and electron band structure promise to expand the fields of nanomaterials and inorganic chemistry. Despite their promise as functional materials, the fundamental science associated with the synthesis, characterization, and properties of colloidal nanocrystals is still in its infancy and deserves systematic study. Furthermore, such studies are important for our basic understanding of crystallization, surface science, and solid state chemistry. "Band gap and composition engineering on a nanocrystal" (BCEN) refers to the synthesis of a colloidal nanocrystal with composition and/or electron energy band structure that are not found in natural bulk crystals. The BCEN nanostructure shown in the Figure includes a magnetic domain for the separation and recycling of the complex nanostructure, a photoactivated catalytic center, and an additional chemical catalytic center. A thin but porous film (such as a silicate) might be coated onto the nanocrystal, both to provide chemical stability and to isolate the reaction processes from the bulk solution. This example is a catalytic complex analogous to an enzyme that facilitates two sequential reactions in a microenvironment different from bulk solution. The synthesis of colloidal nanocrystals has advanced by a quantum leap in the past two decades. The field now seems ready to extend colloidal nanocrystal synthesis into the BCEN regime. Although BCEN is a very new branch of synthetic chemistry, this Account describes advances in related synthetic and characterization techniques that can serve as a useful starting point for this new area of investigation. To put these ideas into context, this Account compares this new field with organic synthesis, the most developed branch in synthetic chemistry. The structural and functional diversity of organic compounds results from extending design and synthesis beyond the construction of natural organic compounds. If this idea also holds true for inorganic nanocrystals, "artificial" BCEN nanocrystals will most likely outperform the inorganic nanocrystals with naturally occurring structure and composition. If the importance of artificial molecules is a positive lesson from organic synthesis, the practical disadvantage of organic chemistry is that purification can prove much more time consuming than the reaction itself. To get around this problem, colloidal nanocrystal chemists can attempt to avoid these potential purification challenges in the early stages of synthetic method development.
NASA Astrophysics Data System (ADS)
Nandiyanto, Asep Bayu Dani
2016-02-01
When synthesizing particles using a liquid-phase synthesis method, reactant components show interaction with the reaction system itself. However, current reports described successful synthesis of material with only partial information on the component-component interaction and possible self-assembly mechanism occurring during the material synthesis process. Here, self-assembly concepts in the formation of nanostructured particles are presented. Influences of self-assembly parameters (i.e., surface charge, size, and concentration of components involving the reaction) on self-organized material fabrication are described. Because understanding the interaction of the component provides significant information in regard to practical uses, this report can be relevant to further material development and fabrication.
NASA Astrophysics Data System (ADS)
Christie, Dane; Register, Richard; Priestley, Rodney
Interfaces play a determinant role in the size dependence of the glass transition temperature (Tg) of polymers confined to nanometric length scales. Interfaces are intrinsic in diblock copolymers, which, depending on their molecular weight and composition, are periodically nanostructured in the bulk. As a result diblock copolymers are model systems for characterizing the effect of interfaces on Tg in bulk nanostructured materials. Investigating the effect of intrinsic interfaces on Tg in diblock copolymers has remained unexplored due to their small periodic length scale. By selectively incorporating trace amounts of a fluorescent probe into a diblock copolymer, Tg can be characterized relative to the diblock copolymer's intrinsic interface using fluorescence spectroscopy. Here, pyrene is selectively incorporated into the poly(methyl methacrylate) (PMMA) block of lamellar forming diblock copolymers of poly(butyl- b-methyl methacrylate) (PBMA-PMMA). Preliminary results show a correlation of Tg as measured by fluorescence with the onset of Tg as measured by calorimetry in labeled homopolymers of PMMA. This result is consistent with previous characterizations of Tg using fluorescence spectroscopy. In selectively labeled diblock copolymers Tg is found to vary systematically depending on the distance of the probe from the PBMA-PMMA interface. We acknowledge funding from the Princeton Center for Complex Materials, a MRSEC supported by NSF Grant DMR 1420541.
NASA Astrophysics Data System (ADS)
Choa, Yong-Ho; Nakayama, Tatachika; Sekino, Tohru; Niihara, Koichi
1999-04-01
Nanocrystalline iron-oxide powder was fabricated with an inert gas condensation (IGC) method combined with evaporation, and in-situ oxidation techniques. The particle size of iron-oxide powder was controlled by varying the helium gas pressure between 0.1 and 10 Torr, with the smallest one =10 nm at 0.1 Torr. The nanostructure was characterized by TEM. Nanocrystalline iron-oxide powder was sintered with the pulse electric current sintering (PECS) method to obtain densified γ-Fe2O3 materials, and suitably densified nano-grained γ-Fe2O3 materials (≈ 40 nm) of great hardness were obtained. The correlation between the nanostructure and magnetic properties of nanocrystalline powder and densified γ-Fe2O3 materials was also investigated.
NASA Astrophysics Data System (ADS)
Narayana Swamy, Ashvin Kumar
The reaction of aluminum (Al) powder with water has the potential for on demand hydrogen generation. Conventional Al powders, however, react with water slowly due to a highly protective oxide layer on the particle surface. Current methods for Al activation involve harmful and expensive materials. The nano-scale Al powders also remain very expensive and have problems such as a large amount of oxide on the surface. The use of aluminum in an energy generation cycle is also hindered by the fact that, although Al is the most abundant metal in the Earth's crust, its recovery from ore consumes a lot of energy. Recycling aluminum hydroxide, formed as a result of Al reaction with water, would also require large amounts of energy. The energy consumption for production of Al powder and hence its cost could be significantly reduced by using recycled aluminum scrap and waste where aluminum is contained in metallic, non-oxidized form. The research work presented here investigates the preparation of an activated aluminum powder from aluminum foil that is widely available as scrap and waste. The obtained results demonstrate that a highly reactive, fine powder can be obtained from Al foil by high-energy ball milling with sodium chloride (NaCl). The obtained powder readily reacts with hot water, releasing hydrogen. Note that NaCl is an environment-friendly additive that can easily be removed after milling and recycled. After washing NaCl out, the powders retain a high reactivity with respect to hot water. As compared to previously studied activation of commercial Al powders, a major advantage of the investigated process is the feasibility of using secondary aluminum. Another area of research presented here is the synthesis of gallium oxide (Ga2O3) nanostructures for their use as high-temperature sensors. Quasi one-dimensional nanomaterials are of great interest due to increased focus on their importance in physics research and also their applications in the nanodevices industry. Since the mid 1950's, considerable research has been reported on the synthesis of filamentary crystals from alloys and metals. Since the discovery of carbon nanotubes (CNTs), there has been a tremendous surge in research activities for development and characterization of one-dimensional nanostructures. Most of the research is targeted towards the development of semiconductors such ZnO, Si, SnO2, and GaAs. Gallium oxide nanostructures have the ability to withstand high temperatures and also act as high-temperature sensors. In particular, they can be used as oxygen sensors at temperatures over 900 °C. These properties make gallium oxide nanostructures attractive for use in exhaust systems of the combustion chambers in power plants. beta-Ga2O3 nano-rods and nano-sheets were successfully synthesized by a simple method based on heating GaN in inert gas environment with traces of oxygen. Characterization of the obtained products showed nano-belts in the size range from 10 nm to 15 nm. Several other unique nano-structures were also synthesized. The results show a vapor-solid mechanism to be the prevailing growth route for the synthesis of nano-structures.
NASA Astrophysics Data System (ADS)
Schmidt, B.
Ion beam techniques, including conventional broad beam ion implantation, ion beam synthesis and ion irradiation of thin layers, as well as local ion implantation with fine-focused ion beams have been applied in different fields of micro- and nanotechnology. The ion beam synthesis of nanoparticles in high-dose ion-implanted solids is explained as phase separation of nanostructures from a super-saturated solid state through precipitation and Ostwald ripening during subsequent thermal treatment of the ion-implanted samples. A special topic will be addressed to self-organization processes of nanoparticles during ion irradiation of flat and curved solid-state interfaces. As an example of silicon nanocrystal application, the fabrication of silicon nanocrystal non-volatile memories will be described. Finally, the fabrication possibilities of nanostructures, such as nanowires and chains of nanoparticles (e.g. CoSi2), by ion beam synthesis using a focused Co+ ion beam will be demonstrated and possible applications will be mentioned.
Kaneko, Yoshiro; Kadokawa, Jun-Ichi
2006-01-01
In the first part of this review, we describe the synthesis of nanostructured hybrid materials composed of polysaccharides and synthetic polymers. Amylose-synthetic polymer inclusion complexes were synthesized by amylose-forming polymerization using phosphorylase enzyme in the presence of synthetic polymers such as polyethers and polyesters. Alginate-polymethacrylate hybrid materials were prepared by free-radical polymerization of cationic methacrylate in the presence of sodium alginate. These methods allow the simultaneous control of the nanostructure with polymerization, giving well-defined hybrid materials. In the second part of this review, we describe the synthesis of novel glycopolymers with rigid structures. Polyaniline-based glycopolymers were synthesized by means of oxidative polymerization of N-glycosylaniline. Polysiloxane-based glycopolymers were prepared by means of introduction of sugar-lactone to the rodlike polysiloxane. These glycopolymers had regular higher-ordered structures due to their rigid polymer backbones, resulting in control of the three-dimensional array of sugar-residues.
Localized synthesis, assembly and integration of silicon nanowires
NASA Astrophysics Data System (ADS)
Englander, Ongi
Localized synthesis, assembly and integration of one-dimensional silicon nanowires with MEMS structures is demonstrated and characterized in terms of local synthesis processes, electric-field assisted self-assembly, and a proof-of-concept nanoelectromechanical system (HEMS) demonstration. Emphasis is placed on the ease of integration, process control strategies, characterization techniques and the pursuit of integrated devices. A top-down followed by a bottom-up integration approach is utilized. Simple MEMS heater structures are utilized as the microscale platforms for the localized, bottom-up synthesis of one-dimensional nanostructures. Localized heating confines the high temperature region permitting only localized nanostructure synthesis and allowing the surroundings to remain at room temperature thus enabling CMOS compatible post-processing. The vapor-liquid-solid (VLS) process in the presence of a catalytic nanoparticle, a vapor phase reactant, and a specific temperature environment is successfully employed locally. Experimentally, a 5nm thick gold-palladium layer is used as the catalyst while silane is the vapor phase reactant. The current-voltage behavior of the MEMS structures can be correlated to the approximate temperature range required for the VLS reaction to take place. Silicon nanowires averaging 45nm in diameter and up to 29mum in length synthesized at growth rates of up to 1.5mum/min result. By placing two MEMS structures in close proximity, 4--10mum apart, localized silicon nanowire growth can be used to link together MEMS structures to yield a two-terminal, self-assembled micro-to-nano system. Here, one MEMS structure is designated as the hot growth structure while a nearby structure is designated as the cold secondary structure, whose role is to provide a natural stopping point for the VLS reaction. The application of a localized electric-field, 5 to 13V/mum in strength, during the synthesis process, has been shown to improve nanowire organization, alignment, and assembly. The integrated nanoelectrormechanical system was found to be mechanically resilient as it proved to successfully withstand a wide variety of post-processing steps, including manipulations and examinations under scanning and transmission electron microscopes and aqueous processing, although a super critical drying step is necessary to preserve the integrated system during the drying process. Electrical characterization of the system proved challenging due to low carrier concentration and possible transport issues at the nano-micro interface. Nonetheless, in a proof-of-concept demonstration, the system was functionalized and tested for a hydrogen sensing application.
The microwave-assisted ionic-liquid method: a promising methodology in nanomaterials.
Ma, Ming-Guo; Zhu, Jie-Fang; Zhu, Ying-Jie; Sun, Run-Cang
2014-09-01
In recent years, the microwave-assisted ionic-liquid method has been accepted as a promising methodology for the preparation of nanomaterials and cellulose-based nanocomposites. Applications of this method in the preparation of cellulose-based nanocomposites comply with the major principles of green chemistry, that is, they use an environmentally friendly method in environmentally preferable solvents to make use of renewable materials. This minireview focuses on the recent development of the synthesis of nanomaterials and cellulose-based nanocomposites by means of the microwave-assisted ionic-liquid method. We first discuss the preparation of nanomaterials including noble metals, metal oxides, complex metal oxides, metal sulfides, and other nanomaterials by means of this method. Then we provide an overview of the synthesis of cellulose-based nanocomposites by using this method. The emphasis is on the synthesis, microstructure, and properties of nanostructured materials obtained through this methodology. Our recent research on nanomaterials and cellulose-based nanocomposites by this rapid method is summarized. In addition, the formation mechanisms involved in the microwave-assisted ionic-liquid synthesis of nanostructured materials are discussed briefly. Finally, the future perspectives of this methodology in the synthesis of nanostructured materials are proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng
2018-04-01
Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.
A simple large-scale synthesis of mesoporous In2O3 for gas sensing applications
NASA Astrophysics Data System (ADS)
Zhang, Su; Song, Peng; Yan, Huihui; Yang, Zhongxi; Wang, Qi
2016-08-01
In this paper, large-scale mesoporous In2O3 nanostructures were synthesized by a facile Lewis acid catalytic the furfural alcohol resin (FAR) template route for the high-yield. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG) and the Brunauer-Emmett-Teller (BET) approach. The as-obtained mesoporous In2O3 nanostructures possess excellent mesoporous and network structure, which increases the contact area with the gases, it is conducive for adsorption-desorption of gas on the surface of In2O3. The In2O3 particles and pores were both about 15 nm and very uniform. In gas-sensing measurements with target gases, the gas sensor based on mesoporous In2O3 nanostructures showed a good response, short response-recovery time, good selectivity and stability to ethanol. These properties are due to the large specific surface area of mesoporous structure. This synthetic method could use as a new design concept for functional mesoporous nanomaterials and for mass production.
Structural and optical studies of hydrothermally synthesized MoS{sub 2} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacko, Levna; Swetha, A. K.; Aneesh, P. M., E-mail: aneeshpm@cukerala.ac.in
2016-05-06
Transition-metal dichalcogenides like molybdenum disulphide have intrigued intensive interest as two-dimensional (2D) materials beyond extensively studied graphene due to their unique electronic and optical properties. Here we report the hydrothermal synthesis of MoS{sub 2} nanostructures without the addition of any surfactants. The structural and optical properties of the synthesized samples were characterized by various techniques, including X-ray diffraction (XRD), UV-Vis absorption, photoluminescence (PL), and Raman analysis. XRD and Raman spectroscopic studies confirm the formation of hexagonal phase and well ordered stacking of S-Mo-S layers. The increased lattice parameters of MoS{sub 2} samples are due to the stress or strain inducedmore » bending and folding of the layers. The synthesized MoS{sub 2} nanostructures shows a large optical absorption in 300-700 nm region and strong luminescence at 640 nm. In addition, the optical results demonstrates the quantum confinement in layered d-electron material MoS{sub 2} that can lead to engineer its various properties for electronic and optoelectronic applications.« less
Zhou, Qu; Chen, Weigen; Xu, Lingna; Peng, Shudi
2013-01-01
Hierarchical flower-like ZnO nanorods, net-like ZnO nanofibers and ZnO nanobulks have been successfully synthesized via a surfactant assisted hydrothemal method. The synthesized products were characterized by X-ray powder diffraction and field emission scanning electron microscopy, respectively. A possible growth mechanism of the various hierarchical ZnO nanostructures is discussed in detail. Gas sensors based on the as-prepared ZnO nanostructures were fabricated by screen-printing on a flat ceramic substrate. Furthermore, their gas sensing characteristics towards methane were systematically investigated. Methane is an important characteristic hydrocarbon contaminant found dissolved in power transformer oil as a result of faults. We find that the hierarchical flower-like ZnO nanorods and net-like ZnO nanofibers samples show higher gas response and lower operating temperature with rapid response-recovery time compared to those of sensors based on ZnO nanobulks. These results present a feasible way of exploring high performance sensing materials for on-site detection of characteristic fault gases dissolved in transformer oil. PMID:23666136
Facet-controlled facilitation of PbS nanoarchitectures by understanding nanocrystal growth.
Loc, Welley Siu; Quan, Zewei; Lin, Cuikun; Pan, Jinfong; Wang, Yuxuan; Yang, Kaikun; Jian, Wen-Bin; Zhao, Bo; Wang, Howard; Fang, Jiye
2015-12-07
Nanostructured lead sulphide is a significant component in a number of energy-related sustainable applications such as photovoltaic cells and thermoelectric components. In many micro-packaging processes, dimensionality-controlled nano-architectures as building blocks with unique properties are required. This study investigates different facet-merging growth behaviors through a wet-chemical synthetic strategy to produce high-quality controlled nanostructures of lead sulphide in various dimensionalities. It was found that 1D nanowires or 2D nanosheets can be obtained by the merging of reactive {111}- or {110}-facets, respectively, while promoting {100} facets in the early stages after nucleation leads to the growth of 0D nanocubes. The influence of temperature, capping ligands and co-solvent in facilitating the crystal facet growth of each intermediate seed is also demonstrated. The novelty of this work is characterized by the delicate manipulation of various PbS nanoarchitectures based on the comprehension of the facet-merging evolution. The synthesis of facet-controlled PbS nanostructures could provide novel building blocks with desired properties for use in many applications.
Shamaeli, Ehsan; Alizadeh, Naader
2012-01-01
A nanostructure fiber based on conducting polypyrrole synthesized by an electrochemical method has been developed, and used for electrochemically switching solid-phase microextraction (ES-SPME). The ES-SPME was prepared by the doping of eriochrome blue in polypyrrole (PPy-ECB) and used for selectively extracting the Ni(II) cation in the presence of some transition and heavy metal ions. The cation-exchange behavior of electrochemically prepared polypyrrole on stainless-steel with and without eriochrome blue (ECB) dye was characterized using ICP-OES analysis. The effects of the scan rate for electrochemical synthesis, uptake and the release potential on the extraction behavior of the PPy-ECB conductive fiber were studied. Uptake and release time profiles show that the process of electrically switched cation exchange could be completed within 250 s. The results of the present study point concerning the possibility of developing a selective extraction process for Ni(II) from waste water was explored using such a nanostructured PPy-ECB film through an electrically switched cation exchange. 2012 © The Japan Society for Analytical Chemistry
Novel opportunities and challenges offered by nanobiomaterials in tissue engineering
Gelain, Fabrizio
2008-01-01
Over the last decades, tissue engineering has demonstrated an unquestionable potential to regenerate damaged tissues and organs. Some tissue-engineered solutions recently entered the clinics (eg, artificial bladder, corneal epithelium, engineered skin), but most of the pathologies of interest are still far from being solved. The advent of stem cells opened the door to large-scale production of “raw living matter” for cell replacement and boosted the overall sector in the last decade. Still reliable synthetic scaffolds fairly resembling the nanostructure of extracellular matrices, showing mechanical properties comparable to those of the tissues to be regenerated and capable of being modularly functionalized with biological active motifs, became feasible only in the last years thanks to newly introduced nanotechnology techniques of material design, synthesis, and characterization. Nanostructured synthetic matrices look to be the next generation scaffolds, opening new powerful pathways for tissue regeneration and introducing new challenges at the same time. We here present a detailed overview of the advantages, applications, and limitations of nanostructured matrices with a focus on both electrospun and self-assembling scaffolds. PMID:19337410
NASA Astrophysics Data System (ADS)
Hanedar, Yesim; Demir, Umit; Oznuluer, Tuba
2016-10-01
Grass-like nanostructured α-Fe2O3 photoelectrodes were prepared for the first time through a simple cathodic electrodeposition method from an oxygenated aqueous solution of Fe3+ at room temperature without using surfactant, capping agents or any other additives. The α-Fe2O3 electrodeposits were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-vis absorption and photoelectrochemical (PEC) techniques. The SEM and XRD results indicated that the as-deposited α-Fe2O3 are composed of single crystalline nanoleaves. The formation mechanisms of α-Fe2O3 have also been proposed based on a series of cyclic voltammetric and XPS studies. This new electrochemical method is expected to be a useful technique for the fabrication of single crystalline and photoactive α-Fe2O3 nanostructures directly onto the electrode surface, which is required in most applications, such as energy conversion and storage and sensors.
Samal, Rashmirekha; Dash, Barsha; Sarangi, Chinmaya Kumar; Sanjay, Kali; Subbaiah, Tondepu; Senanayake, Gamini; Minakshi, Manickam
2017-10-31
A facile hydrothermal route to control the crystal growth on the synthesis of Co₃O₄ nanostructures with cube-like morphologies has been reported and tested its suitability for supercapacitor applications. The chemical composition and morphologies of the as-prepared Co₃O₄ nanoparticles were extensively characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Varying the temperature caused considerable changes in the morphology, the electrochemical performance increased with rising temperature, and the redox reactions become more reversible. The results showed that the Co₃O₄ synthesized at a higher temperature (180 °C) demonstrated a high specific capacitance of 833 F/g. This is attributed to the optimal temperature and the controlled growth of nanocubes.
Structural and spectroscopic study of mechanically synthesized SnO{sub 2} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vij, Ankush, E-mail: vij-anx@yahoo.com; Kumar, Ravi; Presently at Beant College of Engineering and Technology, Gurdaspur-143521
2016-05-23
We report the single step synthesis of SnO{sub 2} nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO{sub 2} nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A{sub 1g} Raman mode towards lower wave number, which is correlated with the nanostructure formation.
NASA Astrophysics Data System (ADS)
Dimesso, L.; Spanheimer, C.; Nguyen, T. T. D.; Hausbrand, R.; Jaegermann, W.
2012-10-01
Nanostructured materials are considered to be strong candidates for fundamental advances in efficient storage and/or conversion. In nanostructured materials transport kinetics and surface processes play determining roles. This work describes recent developments in the synthesis and characterization of composites which consist of lithium metal phosphates (LiMPO4, M = Fe, Mn, Co, Ni) coated on nanostructured carbon supports (unordered nanofibers, foams). The composites have been prepared by coating the carbon structures in aqueous (or polyols) solutions containing lithium, metal ions and phosphates. After drying out, the composites have been thermally treated at different temperatures (between 600-780°C) for 5-12 hours under nitrogen. The formation of the olivine structured phase was confirmed by the X-ray diffraction analysis on powders prepared under very similar conditions. The surface investigation revealed the formation of an homogeneous coating of the olivine phase on the carbon structures. The electrochemical performance on the composites showed a dramatic improvement of the discharge specific capacity (measured at a discharge rate of C/25 and room temperature) compared to the prepared powders. The delivered values were 105 mAhg-1 for M = Fe, 100 mAhg-1 for M = Co, 70 mAhg-1 for M = Mn and 30 mAhg-1 for M = Ni respectively.
NASA Astrophysics Data System (ADS)
Kong, Junhan; Zhang, Wei; Zhang, Yubo; Xia, Minghao; Wu, Xiuling; Wang, Yongqian
2018-02-01
Several semiconductor nanomaterial devices are increasingly being applied in a variety of fields, especially in the treating of environmental pollutants. We have fabricated (MnO@TNTAs):Mn2+ with sandwich-like nanostructures composed of TiO2 nanotube arrays (TNTAs), Mn-doped TNTAs and MnO. The experimental procedure was a two-step synthesis: first, using anodic oxidation methods and then hydrothermal methods. We carried out many characterizations of the "sandwiches" in the nanoscale. From the field emission scanning electron microscopy images we found nanofibers lying on the highly-ordered nanotube arrays. The diameter of the nanotubes was about 50 nm but the size of the nanofibers varied. Energy dispersive spectroscopy demonstrated that the nanofibers contained a manganese element and x-ray diffraction patterns showed the peak of the manganosite phase. From ultraviolet-visible light spectra, it was found that the nanostructures had strong absorption activities under both ultraviolet and visible light radiation, while pure TNTAs had absorption only under ultraviolet light. The photodegradation experiments proved that the sandwich-like nanostructures had an excellent photocatalytic activity (92.5% after 240 min), which was a great improvement compared with pure TNTAs. In this way, the structures as a device at the nanoscale have a huge potential in controlling environmental pollution.
Inzunza, Débora; Covarrubias, Cristian; Von Marttens, Alfredo; Leighton, Yerko; Carvajal, Juan Carlos; Valenzuela, Francisco; Díaz-Dosque, Mario; Méndez, Nicolás; Martínez, Constanza; Pino, Ana María; Rodríguez, Juan Pablo; Cáceres, Mónica; Smith, Patricio
2014-01-01
Nanostructured porous silica coatings were synthesized on titanium by the combined sol-gel and evaporation-induced self-assembly process. The silica-coating structures were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and nitrogen sorptometry. The effect of the nanoporous surface on apatite formation in simulated body fluid, protein adsorption, osteoblast cell adhesion behavior, and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) is reported. Silica coatings with highly ordered sub-10 nm porosity accelerate early osteoblast adhesive response, a favorable cell response that is attributed to an indirect effect due to the high protein adsorption observed on the large-specific surface area of the nanoporous coating but is also probably due to direct mechanical stimulus from the nanostructured topography. The nanoporous silica coatings, particularly those doped with calcium and phosphate, also promote the osteogenic differentiation of hBMSCs with spontaneous mineral nodule formation in basal conditions. The bioactive surface properties exhibited by the nanostructured porous silica coatings make these materials a promising alternative to improve the osseointegration properties of titanium dental implants and could have future impact on the nanoscale design of implant surfaces. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
NASA Astrophysics Data System (ADS)
Giang, Lam Thi Kieu; Marciniak, Lukasz; Huy, Tran Quang; Vu, Nguyen; Le, Ngo Thi Hong; Binh, Nguyen Thanh; Lam, Tran Dai; Minh, Le Quoc
2017-10-01
This paper describes a facile synthesis of NaYF4:Er3+,Yb3+ nanoparticles embraced in metal-organic frameworks (MOFs), known as NaYF4:Er3+, Yb3+@MOFs core/shell nanostructures, by using iron(III) carboxylate (MIL-100) and zeolitic imidazolate frameworks (ZIF-8). Morphological, structural and optical characterization of these nanostructures were investigated by field emission-scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray diffraction, and up-conversion luminescence measurements. Results showed that spherical-shaped NaYF4:Er3+,Yb3+@MIL-100 nanocomposites with diameters of 150-250 nm, and rod-shaped NaYF4:Er3+,Yb3+@ZIF-8 nanocomposites with lengths of 300-550 nm, were successfully synthesized. Under a 980-nm laser excitation at room temperature, the NaYF4:Er3+,Yb3+@MOFs nanocomposites exhibited strong up-conversion luminescence with two emission bands in the green part of spectrum at 520 nm and 540 nm corresponding to the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions of Er3+ ions, respectively, and a red emission band at 655 nm corresponding to the 4F9/2 → 4I15/2 transition of Er3+ ions. The above properties of NaYF4:Er3+,Yb3+@MOFs make them promising candidates for applications in biotechnology.
NASA Astrophysics Data System (ADS)
Dong, Youming; Wang, Kaili; Tan, Yi; Wang, Qingchun; Li, Jianzhang; Mark, Hughes; Zhang, Shifeng
2018-04-01
The inherent sophisticated structure of wood inspires researchers to use it as a natural template for synthesizing functional nanoparticles. In this study, pure copper nanoparticles were synthesized using poplar wood as a natural inexpensive and renewable template. The crystal structure and morphologies of the copper nanoparticles were characterized by X-ray diffraction and field emission scanning electron microscopy. The optical properties, antibacterial properties, and stability of the hybrid wood materials were also tested. Due to the hierarchical and anisotropic structure and electron-rich components of wood, pure copper nanoparticles with high stability were synthesized with fcc structure and uniform sizes and then assembled into corncob-like copper deposits along the wood cell lumina. The products of nanoparticles depended strongly on the initial OH- concentration. With an increase in OH- concentration, Cu2O gradually decreased and Cu remained. Due to the restrictions inherent in wood structure, the derived Cu nanoparticles showed similar grain size in spite of increased Cu2+ concentration. This combination of Cu nanostructures and wood exhibited remarkable optical and antibacterial properties.
Nanostructured tin oxide films: Physical synthesis, characterization, and gas sensing properties.
Ingole, S M; Navale, S T; Navale, Y H; Bandgar, D K; Stadler, F J; Mane, R S; Ramgir, N S; Gupta, S K; Aswal, D K; Patil, V B
2017-05-01
Nanostructured tin oxide (SnO 2 ) films are synthesized using physical method i.e. thermal evaporation and are further characterized with X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurement techniques for confirming its structure and morphology. The chemiresistive properties of SnO 2 films are studied towards different oxidizing and reducing gases where these films have demonstrated considerable selectivity towards oxidizing nitrogen dioxide (NO 2 ) gas with a maximum response of 403% to 100ppm @200°C, and fast response and recovery times of 4s and 210s, respectively, than other test gases. In addition, SnO 2 films are enabling to detect as low as 1ppm NO 2 gas concentration @200°C with 23% response enhancement. Chemiresistive performances of SnO 2 films are carried out in the range of 1-100ppm and reported. Finally, plausible adsorption and desorption reaction mechanism of NO 2 gas molecules with SnO 2 film surface has been thoroughly discussed by means of an impedance spectroscopy analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages
Plascencia-Villa, Germán; Bahena, Daniel; Rodríguez, Annette R.; Ponce, Arturo; José-Yacamán, Miguel
2013-01-01
Metallic nanoparticles have diverse applications in biomedicine, as diagnostics, image contrast agents, nanosensors and drug delivery systems. Anisotropic metallic nanoparticles possess potential applications in cell imaging and therapy+diagnostics (theranostics), but controlled synthesis and growth of these anisotropic or branched nanostructures has been challenging and usually require use of high concentrations of surfactants. Star-shaped gold nanoparticles were synthesized in high yield through a seed mediated route using HEPES as a precise shape-directing capping agent. Characterization was performed using advanced electron microscopy techniques including atomic resolution TEM, obtaining a detailed characterization of nanostructure and atomic arrangement. Spectroscopy techniques showed that particles have narrow size distribution, monodispersity and high colloidal stability, with absorbance into NIR region and high efficiency for SERS applications. Gold nanostars showed to be biocompatible and efficiently adsorbed and internalized by macrophages, as revealed by advanced FE-SEM and backscattered electron imaging techniques of complete unstained uncoated cells. Additionally, low voltage STEM and X-ray microanalysis revealed the ultra-structural location and confirmed stability of nanoparticles after endocytosis with high spatial resolution. PMID:23443314
NASA Astrophysics Data System (ADS)
Calestani, Davide; Alabi, Aderemi Babatunde; Coppedè, Nicola; Villani, Marco; Lazzarini, Laura; Fabbri, Filippo; Salviati, Giancarlo; Zappettini, Andrea
2017-01-01
In recent years, a large interest has been reported on low-dimensional β-Ga2O3 structures, like nanowires, nanobelts, nanorods or nanosheets, because of their peculiar and sometimes superior properties. These properties, however, can be strongly affected by the growth procedure, especially if metal growth catalysts are used. In this work we report the successful synthesis of β-Ga2O3 nanowires/nanobelts using a simple combination of thermal evaporation of a metallic Ga source and controlled oxidation. The same growth procedure has been used to grow nanostructures on different kind of substrates (silicon and alumina), without catalyst as well as with Au or Pt deposited on the substrates, in order to promote the nucleation of nanowires. The morphological, structural and optical properties of the obtained nanostructures have been characterized and compared. Different growth distributions on the substrates and possible growth mechanisms have been highlighted, while a strong increase in luminescence intensity has been observed on samples grown with Au and Pt catalysts.
Ribeiro, Viviane Gomes Pereira; Marcelo, Ana Maria Pereira; da Silva, Kássia Teixeira; da Silva, Fernando Luiz Firmino; Mota, João Paulo Ferreira; do Nascimento, João Paulo Costa; Sombra, Antonio Sérgio Bezerra; Clemente, Claudenilson da Silva; Mazzetto, Selma Elaine
2017-01-01
This work describes the synthesis, characterization, and photocatalytic activity of new composite nanomaterials based on ZnO nanostructures impregnated by lipophlilic porphyrins derived from cashew nut shell liquid (CNSL). The obtained nanomaterials were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and steady-state photoluminescence spectra (PL). The results confirm nanostructures showing average diameter of 55 nm and an improved absorption in the visible region. Further, the FTIR analysis proved the existence of non-covalent interactions between the porphyrin molecules and ZnO. The photocatalytic activity of prepared photocatalysts was investigated by degradation of rhodamine B (RhB) in aqueous solution under visible light irradiation and natural sunlight. It was demonstrated that the photocatalytic activity increases in the presence of the porphyrins and, also, depends on the irradiation source. The development of composite photocatalysts based on porphyrins derived from CNSL provides an alternative approach to eliminate efficiently toxic wastes from water under ambient conditions. PMID:28934117
Ma, Ming-Guo
2012-01-01
Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of hierarchically nanosized HA with flower-like structure assembled from nanosheets consisting of nanorod building blocks. The HA with the hierarchical nanostructure was formed via a soft-template assisted self-assembly mechanism. The hierarchically nanostructured HA has a good biocompatibility and essentially no in-vitro cytotoxicity. PMID:22619527
Force fields for describing the solution-phase synthesis of shape-selective metal nanoparticles
NASA Astrophysics Data System (ADS)
Zhou, Ya; Al-Saidi, Wissam; Fichthorn, Kristen
2013-03-01
Polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) are structure-directing agents that exhibit different performance in the polyol synthesis of Ag nanostructures. The success of these structure-directing agents in selective nanostructure synthesis is often attributed to their selective binding to Ag(100) facets. We use first-principles, density-functional theory (DFT) calculations in a vacuum environment to show that PVP has a stronger preference to bind to Ag(100) than to Ag(111), whereas PEO exhibits much weaker selectivity. To understand the role of solvent in the surface-sensitive binding, we develop classical force fields to describe the interactions of the structure-directing (PVP and PEO) and solvent (ethylene glycol) molecules with various Ag substrates. We parameterize the force fields through force-and-energy matching to DFT results using simulated annealing. We validate the force fields by comparisons to DFT and experimental binding energies. Our force fields reproduce the surface-sensitive binding predicted by DFT calculations. Molecular dynamics simulations based on these force fields can be used to reveal the role of solvent, polymer chain length, and polymer concentration in the selective synthesis of Ag nanostructures.
Synthesis and enhanced acetone gas-sensing performance of ZnSnO3/SnO2 hollow urchin nanostructures
NASA Astrophysics Data System (ADS)
Lian, Dandan; Shi, Bing; Dai, Rongrong; Jia, Xiaohua; Wu, Xiangyang
2017-12-01
A kind of novel ZnSnO3/SnO2 hollow urchin nanostructure was synthesized by a facile, eco-friendly two-step liquid-phase process. The structure, morphology, and composition of samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption techniques. The results revealed that many tiny needle-like SnO2 nanowires with the average diameter of 5 nm uniformly grew on the surface of the ZnSnO3 hollow microspheres and the ZnSnO3/SnO2 hollow urchin nanostructures with different SnO2 content also were successfully prepared. In order to comprehend the evolution process of the ZnSnO3/SnO2 hollow urchin nanostructures, the possible growth mechanism of samples was illustrated via several experiments in different reaction conditions. Moreover, the gas-sensing performance of as-prepared samples was investigated. The results showed that ZnSnO3/SnO2 hollow urchin nanostructures with high response to various concentration levels of acetone enhanced selectivity, satisfying repeatability, and good long-term stability for acetone detection. Specially, the 10 wt% ZnSnO3/SnO2 hollow urchin nanostructure exhibited the best gas sensitivity (17.03 for 50 ppm acetone) may be a reliable biomarker for the diabetes patients, which could be ascribed to its large specific surface area, complete pore permeability, and increase of chemisorbed oxygen due to the doping of SnO2.
Han, Longtao; Irle, Stephan; Nakai, Hiromi
2018-01-01
We performed nanosecond timescale computer simulations of clusterization and agglomeration processes of boron nitride (BN) nanostructures in hot, high pressure gas, starting from eleven different atomic and molecular precursor systems containing boron, nitrogen and hydrogen at various temperatures from 1500 to 6000 K. The synthesized BN nanostructures self-assemble in the form of cages, flakes, and tubes as well as amorphous structures. The simulations facilitate the analysis of chemical dynamics and we are able to predict the optimal conditions concerning temperature and chemical precursor composition for controlling the synthesis process in a high temperature gas volume, at high pressure. We identify the optimal precursor/temperature choices that lead to the nanostructures of highest quality with the highest rate of synthesis, using a novel parameter of the quality of the synthesis (PQS). Two distinct mechanisms of BN nanotube growth were found, neither of them based on the root-growth process. The simulations were performed using quantum-classical molecular dynamics (QCMD) based on the density-functional tight-binding (DFTB) quantum mechanics in conjunction with a divide-and-conquer (DC) linear scaling algorithm, as implemented in the DC-DFTB-K code, enabling the study of systems as large as 1300 atoms in canonical NVT ensembles for 1 ns time. PMID:29780513
Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El
2014-04-11
The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saeednia, S., E-mail: sami_saeednia@yahoo.com; Iranmanesh, P.; Ardakani, M. Hatefi
Highlights: • A novel nano-scale Zn(II) complex was synthesized by solvothermal method. • Chemical structure of the nanostructures was characterized as well as bulk complex. • The photoluminescence property of the complex was investigated at room temperature. • The thermogravimetry and differential thermal analysis were carried out. • Thermal decomposition of the nanostructures was prepared zinc oxide nanoparticles. - Abstract: Nanoparticles of a novel Zn(II) Schiff base complex, [Zn(HL)NO{sub 3}]{sub 2} (1), (H{sub 2}L = 2-[(2-hydroxy-propylimino) methyl] phenol), was synthesized by using solvothermal method. Shape, morphology and chemical structure of the synthesized nanoparticles were characterized by scanning electron microscopy (SEM),more » X-ray powder diffraction (XRD), Fourier Transform Infrared Spectoscopy (FT-IR) and UV–vis spectroscopy. Structural determination of compound 1 was determined by single-crystal X-ray diffraction. The results were revealed that the zinc complex is a centrosymmetric dimer in which deprotonated phenolates bridge the two five-coordinate metal atoms and link the two halves of the dimer. The thermal stability of compound 1 was analyzed by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of the initial substrates concentration and reaction time on size and morphology of compound 1 nanostructure was investigated as well. Furthermore, the luminescent properties of the complex 1 were examined. ZnO nanoparticles with diameter between 15 and 20 nm were simply synthesized by solid-state transformation of compound 1 at 700 °C.« less
Sustainable Synthesis of Nanomaterials Using Microwave irradiation
The presentation summarizes our recent activity in MW-assisted synthesis of nanomaterials under benign conditions. Shape-controlled aqueous synthesis of noble nanostructures via MW-assisted spontaneous reduction of noble metal salts using -D-glucose, sucrose, and maltose will be...
Review on the progress in synthesis and application of magnetic carbon nanocomposites.
Zhu, Maiyong; Diao, Guowang
2011-07-01
This review focuses on the synthesis and application of nanostructured composites containing magnetic nanostructures and carbon-based materials. Great progress in fabrication of magnetic carbon nanocomposites has been made by developing methods including filling process, template-based synthesis, chemical vapor deposition, hydrothermal/solvothermal method, pyrolysis procedure, sol-gel process, detonation induced reaction, self-assembly method, etc. The applications of magnetic carbon nanocomposites expanded to a wide range of fields such as environmental treatment, microwave absorption, magnetic recording media, electrochemical sensor, catalysis, separation/recognization of biomolecules and drug delivery are discussed. Finally, some future trends and perspectives in this research area are outlined.
Review on the progress in synthesis and application of magnetic carbon nanocomposites
NASA Astrophysics Data System (ADS)
Zhu, Maiyong; Diao, Guowang
2011-07-01
This review focuses on the synthesis and application of nanostructured composites containing magnetic nanostructures and carbon-based materials. Great progress in fabrication of magnetic carbon nanocomposites has been made by developing methods including filling process, template-based synthesis, chemical vapor deposition, hydrothermal/solvothermal method, pyrolysis procedure, sol-gel process, detonation induced reaction, self-assembly method, etc. The applications of magnetic carbon nanocomposites expanded to a wide range of fields such as environmental treatment, microwave absorption, magnetic recording media, electrochemical sensor, catalysis, separation/recognization of biomolecules and drug delivery are discussed. Finally, some future trends and perspectives in this research area are outlined.
Pillewan, Pradnya; Mukherjee, Shrabanti; Bansiwal, Amit; Rayalu, Sadhana
2014-07-01
Adsorption of arsenic on bimetallic Mn and Fe mixed oxide was carried out using both field as well as simulated water. The material was synthesized using hydrothermal method and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Langmuir and Freundlich adsorption isotherms were computed using batch adsorption studies to determine the adsorption capacity of Mn-Fe binary mixed oxide for arsenic. Adsorption capacity for MFBMO obtained from Freundlich model was found to be 2.048 mg/g for simulated water and 1.084 mg/g for field water. Mn-Fe binary mixed oxide was found to be effective adsorbent for removal of arsenic from water.
NASA Astrophysics Data System (ADS)
Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng; Zhao, Junfeng; Zhang, Yao; Sun, Yue; Chen, JianHua; Wang, XuHong
2014-09-01
Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH- in the HAP lattice were gradually substituted with the increase of F- and Cl- content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.
NASA Astrophysics Data System (ADS)
Koizumi, Ryota
This thesis addresses various types of synthetic methods for novel three dimensional nanomaterials and nanostructures based on interconnected carbon nanomaterials using solution chemistry and chemical vapor deposition (CVD) methods. Carbon nanotube (CNT) spheres with porous and scaffold structures consisting of interconnected CNTs were synthesized by solution chemistry followed by freeze-drying, which have high elasticity under nano-indentation tests. This allows the CNT spheres to be potentially applied to mechanical dampers. CNTs were also grown on two dimensional materials--such as reduced graphene oxide (rGO) and hexagonal boron nitride (h-BN)--by CVD methods, which are chemically interconnected. CNTs on rGO and h-BN interconnected structures performed well as electrodes for supercapacitors. Furthermore, unique interconnected flake structures of alpha-phase molybdenum carbide were developed by a CVD method. The molybdenum carbide can be used for a catalyst of hydrogen evolution reaction activity as well as an electrode for supercapacitors.
Tannic acid assisted synthesis of flake-like hydroxyapatite nanostructures at room temperature
NASA Astrophysics Data System (ADS)
Vázquez, Maricela Santana; Estevez, O.; Ascencio-Aguirre, F.; Mendoza-Cruz, R.; Bazán-Díaz, L.; Zorrila, C.; Herrera-Becerra, R.
2016-09-01
A simple and non-expensive procedure was performed to synthesize hydroxyapatite (HAp) flake-like nanostructures, by using a co-precipitation method with tannic acid as stabilizing agent at room temperature and freeze drying. Samples were synthesized with two different salts, Ca(NO3)2 and CaCl2. X-ray diffraction analysis, Raman spectroscopy, scanning and transmission electron microscopy characterizations reveal Ca10(PO4)6(OH)2 HAp particles with hexagonal structure and P63/m space group in both cases. In addition, the particle size was smaller than 20 nm. The advantage of this method over the works reported to date lies in the ease for obtaining HAp particles with a single morphology (flakes), in high yield. This opens the possibility of expanding the view to the designing of new composite materials based on the HAp synthesized at room temperature.
Chakraborty, Rajesh; Bhattacharaya, Koustava; Chattopadhyay, Pabitra
2014-02-01
Nanostructured zirconium phosphates (ZPs) of different sizes were synthesized using Tritron X-100 (polyethylene glycol-p-isooctylphenyl ether) surfactant. The materials were characterized by FTIR and powdered X-ray diffraction (XRD). The structural and morphological details of the material were established by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM study was followed by energy dispersive spectroscopic analysis (EDS) for elemental analysis of the sample. The particle sizes were determined by dynamic light scattering (DLS) method. Ion exchange capacity of these nanomaterials towards different metal ions was measured and size-dependent ion exchange property of the materials was investigated thoroughly. The nanomaterial of the smallest size (ca. 21.04nm) was employed to separate carrier-free (137m)Ba from (137)Cs in column chromatographic technique using 1.0M HNO3 as eluting agent at pH=5. © 2013 Elsevier Ltd. All rights reserved.
Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water
NASA Astrophysics Data System (ADS)
Spadaro, Salvatore; Bonsignore, Martina; Fazio, Enza; Cimino, Francesco; Speciale, Antonio; Trombetta, Domenico; Barreca, Francesco; Saija, Antonina; Neri, Fortunato
2018-01-01
he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm) are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay
Enhancement of room temperature ferromagnetism in tin oxide nanocrystal using organic solvents
NASA Astrophysics Data System (ADS)
Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.
2017-10-01
The effect of organic solvents (ethanol & ethylene glycol) on the room temperature ferromagnetism in nanocrystalline tin oxide has been studied. The samples were synthesized using sol-gel method with the mixture of water & organic liquid as solvent. It is found that pristine SnO2 nanocrystal contain two different types of paramagnetic centres over their surface:(i) surface chemisorbed oxygen species and (ii) Sn interstitial & oxygen vacancy defect pair. The magnetic moment induced in the as-prepared samples is mainly contributed by the alignment of local spin moments resulting from these defects. These surface defect states are highly activated by the usage of ethylene glycol solvent rather than ethylene in tin oxide nanostructure synthesis. Powder X-ray diffraction, transmission electron microscope imaging, energy dispersive spectrometry, Fourier transformed infrared spectroscopy, UV-vis absorption spectroscopy, photoluminescence spectroscopy, vibrating sample magnetometer measurement and electron spin resonance spectroscopy were employed to characterize the nanostructured tin oxide materials.
Thermoelectric properties of CuS/Ag{sub 2}S nanocomposites synthesed by modified polyol method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarachand,, E-mail: tarachand@csr.res.in; Sharma, Vikash; Ganesan, V.
This is the report on successful synthesis of Ag doped CuS nanostructures by modified polyol method. The resulting samples were characterized by powder X-ray diffraction (XRD), energy dispersive X-ray (EDX), atomic force microscopy (AFM) and dynamic light scattering (DLS). Particle size of pure CuS nanoparticles (NPs) was 17 nm, 38 nm and 97 nm as determined from Scherrer formula, AFM and DLS, respectively. Introduction of Ag led to formation of CuS/Ag{sub 2}S composites. A transition at 55 K in thermopower is ascribed to structural transformation from hexagonal to orthorhombic structure. Further, their thermoelectric properties exhibit remarkable change owing to Agmore » doping in CuS nanostructures. The power factor improves with increasing Ag content. They reveal that CuS/Ag{sub 2}S nanocomposites are some of the potential candidates for generation of thermoelectricity in future.« less
Electro-synthesis of novel nanostructured PEDOT films and their application as catalyst support
2011-01-01
Poly(3,4-ethylenedioxythiophene) (PEDOT) films doped with nitric and chlorine ions have been electrochemically deposited simply by a one-step electrochemical method in an aqueous media in the absence of any surfactant. The fabricated PEDOT films were characterized by scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The results indicate that the hierarchical structured PEDOT film doped with nitric ions displays a 'lunar craters' porous morphology consisting of PEDOT nano-sheets with a thickness of less than 2 nm. The effect of counter ions on the electro-polymerization, the electrochemistry, and the morphology of the polymer film was studied. Compared with PEDOT film doped with nitric acid, PEDOT film deposited in the presence of chlorine ions shows irregular morphology and less electrochemical activity. The specific nanostructure of the polymer was further studied as catalyst support for platinum nanoparticles to methanol electro-oxidation. PMID:21711871
NASA Astrophysics Data System (ADS)
Sinha, Tanur; Ahmaruzzaman, M.
2015-05-01
Herein, we describe a simple, green and template free method for the production of rice shaped gold nanostructures using an aqueous extract of the egg shells of Anas platyrhynchos. The synthesized nanoparticles were characterized by UV-visible, transmission electron microscopy (TEM), selected area electron diffraction pattern (SAED) and FT-IR studies. The UV-visible spectrum of the synthesized gold nanostructures showed a transverse mode surface plasmon resonance peaks (SPR) at around 540 nm and a longitudinal mode at 880 nm. The TEM and SAED pattern confirmed the morphology, size and crystallographic structure of the synthesized gold nanorice. The synthesized gold nanorice was utilized for the removal of a toxic Eosin Y dye by photodegradation. It was observed that the dye was degraded completely within 1 h and the percentage efficiency was found to be 96.1%.
Molten Salt Synthesis and High Rate Performance of the ‘‘Desert-Rose’’ form of LiCoO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
H Chen; C Grey
2011-12-31
The synthesis of a novel nanostructure of LiCoO{sub 2}, and its performance as a cathode for a high-rate lithium ion battery, is described. The LiCoO{sub 2} nanostructure resembles the morphology of a known natural mineral: 'desert rose' gypsum. A range of measurement techniques are used to investigate the growth mechanism of this structure and the origin of its high rate charge/discharge properties.
Sustainable Synthesis of Organics and Nanomaterials Using Microwave Irradiation
MW-assisted synthesis of heterocyclic compounds and nanomaterials under benign conditions is summarized. Shape-controlled aqueous synthesis of noble nanostructures via MW spontaneous reduction of metal salts using -D-glucose, sucrose, and maltose will be presented. A general met...
Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho
2018-05-27
A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tao, Kai; Wang, Jiqian; Li, Yanpeng; Xia, Daohong; Shan, Honghong; Xu, Hai; Lu, Jian R.
2013-01-01
Although one dimensional (1D) Pt nanostructures with well-defined sizes and shapes have fascinating physiochemical properties, their preparation remains a great challenge. Here we report an easy and novel synthesis of 1D Pt nanostructures with controllable morphologies, through the combination of designer self-assembling I3K and phage-displayed P7A peptides. The nanofibrils formed via I3K self-assembly acted as template. Pt precursors ((PtCl4)2− and (PtCl6)2−) were immobilized by electrostatic interaction on the positively charged template surface and subsequent reduction led to the formation of 1D Pt nanostructures. P7A was applied to tune the continuity of the Pt nanostructures. Here, the electrostatic repulsion between the deprotonated C-terminal carboxyl groups of P7A molecules was demonstrated to play a key role. We finally showed that continuous and ordered 1D Pt morphology had a significantly improved electrochemical performance for the hydrogen and methanol electro-oxidation in comparison with either 1D discrete Pt nanoparticle assemblies or isolated Pt nanoparticles. PMID:23995118
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tejabhiram, Y., E-mail: tejabhiram@gmail.com; Pradeep, R.; Helen, A.T.
2014-12-15
Highlights: • Novel low temperature synthesis of nickel ferrite nanoparticles. • Comparison with two conventional synthesis techniques including hydrothermal method. • XRD results confirm the formation of crystalline nickel ferrites at 110 °C. • Superparamagnetic particles with applications in drug delivery and hyperthermia. • Magnetic properties superior to conventional methods found in new process. - Abstract: We report a simple, low temperature and surfactant free co-precipitation method for the preparation of nickel ferrite nanostructures using ferrous sulfate as the iron precursor. The products obtained from this method were compared for their physical properties with nickel ferrites produced through conventional co-precipitationmore » and hydrothermal methods which used ferric nitrate as the iron precursor. X-ray diffraction analysis confirmed the synthesis of single phase inverse spinel nanocrystalline nickel ferrites at temperature as low as 110 °C in the low temperature method. Electron microscopy analysis on the samples revealed the formation of nearly spherical nanostructures in the size range of 20–30 nm which are comparable to other conventional methods. Vibrating sample magnetometer measurements showed the formation of superparamagnetic particles with high magnetic saturation 41.3 emu/g which corresponds well with conventional synthesis methods. The spontaneous synthesis of the nickel ferrite nanoparticles by the low temperature synthesis method was attributed to the presence of 0.808 kJ mol{sup −1} of excess Gibbs free energy due to ferrous sulfate precursor.« less
2009-01-01
measured magnetizations of Ba-doped bulk BiFeO3 samples65, 68 The coercivity, or resistance of the sample to 72 demagnetization , is about 6000 Oe on...methods for sample analysis are briefly discussed. Investigation of BaFeO3 and its structural and magnetic properties, which differ from that of the bulk ...at the atomic level. The interfaces comprised of a magnetic and ferroelectric material layered on one another has great advantage over bulk
NASA Astrophysics Data System (ADS)
Tasviri, Mahboubeh; Rafiee-Pour, Hossain-Ali; Ghourchian, Hedayatollah; Gholami, Mohammad Reza
2011-12-01
The synthesis of amine functionalized TiO2-coated multiwalled carbon nanotubes (NH2-TiO2-CNTs) using sol-gel method was investigated. The synthesized nanocomposite was characterized with XRD, FTIR spectroscopy, BET test and SEM imaging. The results demonstrated a unique nanostructure with no destruction of the CNTs' shape. In addition, the presence of amine groups on the composite surface was confirmed by FTIR. This nanocomposite was used for one-step immobilization of glucose oxidase (GOx) to sense glucose. The result of cyclic voltammetry showed a pair of well-defined and quasi-reversible peaks for direct electron transfer of GOx in the absence of glucose. Also, the result of electrochemical impedance spectroscopy indicated that GOx was successfully immobilized on the surface of NH2-TiO2-CNTs. Furthermore, good amperometric response showed that immobilized GOx on the NH2-TiO2-CNTs exhibits exceptional bioelectrocatalytic activity toward glucose oxidation.
Synthesis and characterization of SBA-3, SBA-15, and SBA-1 nanostructured catalytic materials.
Anunziata, Oscar A; Beltramone, Andrea R; Martínez, Maria L; Belon, Lizandra López
2007-11-01
A highly ordered large pore mesoporous silica molecular sieve SBA-3, SBA-15, Al-SBA-15, and SBA-1, were developed and characterized by XRD, BET, FTIR, SEM, and NMR-MAS. The catalytic materials were synthesized using different raw materials and operation conditions. These materials contain a regular arrangement of uniform channels with diameters between 1.8 and 10 nm, high specific surface area and high specific pore volume. The designed methods were effective for the synthesis, presenting each mesostructured materials, patterns of XRD and other characteristics corresponding to the reported ones in literature. The new route employed to synthesize Al-SBA-15, generates a catalyst with only aluminum in tetrahedral form, according to the data of (27)Al NMR-MAS. However, several reports indicated that the coordination of the Al atoms changes below the Si/Al ratio of 45, presenting peaks corresponding to penta and hexa-coordinated aluminum, which are absent in our samples (Si/Al = 50 and 33).
NASA Astrophysics Data System (ADS)
Behera, M.; Ram, S.
2013-02-01
In this article, we report a facile one-step chemical synthesis of gold (Au) nanoparticles (GNPs) from a new precursor salt i.e., gold hydroxide in the presence of poly(vinyl pyrrolidone) (PVP) polymer. The non-aqueous dispersion of GNPs was comprehensively characterized by UV-Visible, FTIR, zeta potential, and transmission electron microscope (TEM). A strong surface plasmon resonance band at 529 nm in the UV-Visible spectrum confirms the formation of GNPs in the Au colloid. The FTIR spectroscopic results showed that PVP molecules get chemisorbed onto the surface of GNP via O-atom of carbonyl group. A negative zeta potential of (-)16 mV reveals accumulation of nonbonding electrons of O-atom of carbonyl group of PVP molecules on the nanosurface of GNP. TEM images demonstrate a core-shell nanostructure with an Au-crystalline core covered by a thin amorphous PVP-shell. PVP-capped GNPs could be a potential candidate for bio-sensing, catalysis, and other applications.
GREENER PRODUCTION OF NOBLE METAL NANOSTRUCTURES AND NANOCOMPOSITES: RISK REDUCTION AND APPLICATIONS
The synthesis of nanometal/nano metal oxide/nanostructured polymer and their stabilization (through dispersant, biodegradable polymer) involves the use of natural renewable resources such plant material extract, biodegradable polymers, sugars, vitamins and finally efficient and s...
Large-Scale Surfactant-Free Synthesis of p-Type SnTe Nanoparticles for Thermoelectric Applications
Han, Guang; Zhang, Ruizhi; Popuri, Srinivas R.; Greer, Heather F.; Reece, Michael J.; Bos, Jan-Willem G.; Zhou, Wuzong; Knox, Andrew R.; Gregory, Duncan H.
2017-01-01
A facile one-pot aqueous solution method has been developed for the fast and straightforward synthesis of SnTe nanoparticles in more than ten gram quantities per batch. The synthesis involves boiling an alkaline Na2SnO2 solution and a NaHTe solution for short time scales, in which the NaOH concentration and reaction duration play vital roles in controlling the phase purity and particle size, respectively. Spark plasma sintering of the SnTe nanoparticles produces nanostructured compacts that have a comparable thermoelectric performance to bulk counterparts synthesised by more time- and energy-intensive methods. This approach, combining an energy-efficient, surfactant-free solution synthesis with spark plasma sintering, provides a simple, rapid, and inexpensive route to p-type SnTe nanostructured materials. PMID:28772593
Synthesis and Optical Properties of Silver Bicrystalline Nanowires
NASA Astrophysics Data System (ADS)
Sun, Yugang; Xia, Younan
2002-11-01
This paper describes a solution-phase route to the large-scale synthesis of silver nanowires with diameters in the range of 30-40 nm, and lengths up to ~50 μm. The initial step of this synthesis involved the formation of Pt nanoparticles by reducing PtCl2 with ethylene glycol (EG) refluxed at ~160 °C. These Pt nanoparticles could serve as seeds for the growth of silver (formed by reducing AgNO3 with EG) through heterogeneous nucleation process because their crystal structures and lattice constants matched closely. In the presence of poly(vinyl pyrrolidone) (PVP), the growth of silver could be led to a highly anisotropic mode with formation of uniform nanowires. UV-visible spectroscopy was used to track the growth process of silver nanowires because different silver nanostructures exhibited distinctive surface plasmon resonance peaks at different frequencies. SEM, TEM, XRD, and electron diffraction were used to characterize these silver nanowires, indicating the formation of a highly pure face-centered cubic phase, as well as uniform diameter and bicrystalline structure. The morphology of these silver nanostructures could be varied from particles and rods to long wires by tuning the reaction conditions, including reaction temperature, and the ratio of PVP to silver nitrate. These silver nanowires could be used as sacrificial templates to synthesize gold nanotubes via a template-engaged replacement reaction. The dispersion of gold nanotubes exhibited a strong extinction peak in the red regime, which was around 760 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zima, Tatyana, E-mail: zima@solid.nsc.ru; Novosibirsk State Technical University, 20 K. Marx Prospect, Novosibirsk 630092; Bataev, Ivan
A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO{sub 2} powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO{sub 2}–SnO{sub 2}/Sn{sub 3}O{sub 4}–Sn{sub 3}O{sub 4}–SnO phase transformations.more » A single-phase Sn{sub 3}O{sub 4} in the form of the well-separated hexagonal nanoplates and mixed SnO{sub 2}/Sn{sub 3}O{sub 4} phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed. - Graphical abstract: The controlled addition of aminoterephthalic or oxalic acid leads not only to a change in the morphology of the nanostructures, but also to SnO{sub 2}–SnO{sub 2}/Sn{sub 3}O{sub 4}–Sn{sub 3}O{sub 4}–SnO phase transformations. - Highlights: • A new approach to the synthesis of non-stoichiometric tin oxide structures is studied. • Tin oxide structures are synthesized via hydrothermal method with dicarboxylic acids. • Morphology and phase composition are changed with redox activity and dosage of acid. • The redox activity of acid has an effect on ratio of SnO and SnO{sub 2} in crystal structure. • A pure phase Sn{sub 3}O{sub 4} nanoplates and SnO{sub 2}/Sn{sub 3}O{sub 4} hierarchical structures are formed.« less
Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon
2016-01-01
The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260
NASA Astrophysics Data System (ADS)
Qureshi, Nilam; Arbuj, Sudhir; Shinde, Manish; Rane, Sunit; Kulkarni, Milind; Amalnerkar, Dinesh; Lee, Haiwon
2017-09-01
Herein, we report the synthesis of metallic molybdenum microspheres and hierarchical MoS2 nanostructures by facile template-free solvothermal and hydrothermal approach, respectively. The morphological transition of the Mo microspheres to hierarchical MoS2 nanoflower architectures is observed to be accomplished with change in solvent from ethylenediamine to water. The resultant marigold flower-like MoS2 nanostructures are few layers thick with poor crystallinity while spherical ball-like molybdenum microspheres exhibit better crystalline nature. This is the first report pertaining to the synthesis of Mo microspheres and MoS2 nanoflowers without using any surfactant, template or substrate in hydro/solvothermal regime. It is opined that such nanoarchitectures of MoS2 are useful candidates for energy related applications such as hydrogen evolution reaction, Li ion battery and pseudocapacitors. Inquisitively, metallic Mo can potentially act as catalyst as well as fairly economical Surface Enhanced Raman Spectroscopy (SERS) substrate in biosensor applications.
Microwave-assisted synthesis of porous carbon-titania and highly crystalline titania nanostructures.
Parker, Alison; Marszewski, Michal; Jaroniec, Mietek
2013-03-01
Porous carbon-titania and highly crystalline titania nanostructured materials were obtained through a microwave-assisted one-pot synthesis. Resorcinol and formaldehyde were used as carbon precursors, triblock copolymer Pluronic F127 as a stabilizing agent, and titanium isopropoxide as a titania precursor. This microwave-assisted one-pot synthesis involved formation of carbon spheres according to the recently modified Stöber method followed by hydrolysis and condensation of titania precursor. This method afforded carbon-titania composite materials containing anatase phase with specific surface areas as high as 390 m(2) g(-1). The pure nanostructured titania, obtained after removal of carbon through calcination of the composite material in air, was shown to be the anatase phase with considerably higher degree of crystallinity and the specific surface area as high as 130 m(2) g(-1). The resulting titania, because of its high surface area, well-developed porosity, and high crystallinity, is of great interest for catalysis, water treatment, lithium batteries, and other energy-related applications.
Synthesis of belt-like BiOBr hierarchical nanostructure with high photocatalytic performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haiping; Liu, Jingyi; Hu, Tingxia
2016-05-15
Highlights: • BiOBr hierarchical nanobelts (NBs) were solvothermally prepared. • NBs show higher specific surface area and photoabsorption than BiOBr nanosheets. • NBs exhibit higher photoactivity than the nanosheets. - Abstract: One-dimensional (1D) bismuth oxyhalide (BiOX) hierarchical nanostructures are always difficult to prepare. Herein, we report, for the first time, a simple synthesis of BiOBr nanobelts (NBs) via a facile solvothermal route, using bismuth subsalicylate as the template and bismuth source. The BiOBr nanobelts are composed of irregular single crystal nanoparticles with highly exposed (0 1 0) facets. Compared with the BiOBr nanosheets (NSs) with dominant exposed (0 0 1)more » facets, they exhibit higher photocatalytic activity toward degradation of Rhodamine B and Methylene Blue under visible light irradiation. The higher photocatalytic performance of BiOBr NBs arises from their larger specific surface area and higher photoabsorption capability. This study provides a simple route for synthesis of belt-like Bi-based hierarchical nanostructures.« less
Han, Joong Tark; Jang, Jeong In; Cho, Joon Young; Hwang, Jun Yeon; Woo, Jong Seok; Jeong, Hee Jin; Jeong, Seung Yol; Seo, Seon Hee; Lee, Geon-Woong
2017-07-10
Most synthetic processes of metallic nanostructures were assisted by organic/inorganic or polymeric materials to control their shapes to one-dimension or two-dimension. However, these additives have to be removed after synthesis of metal nanostructures for applications. Here we report a straightforward method for the low-temperature and additive-free synthesis of nanobelt-like silver nanostructures templated by nanocarbon (NC) materials via bio-inspired shape control by introducing supramolecular 2-ureido-4[1H]pyrimidinone (UPy) groups into the NC surface. The growth of the Ag nanobelt structure was found to be induced by these UPy groups through observation of the selective formation of Ag nanobelts on UPy-modified carbon nanotubes and graphene surfaces. The synthesized NC/Ag nanobelt hybrid materials were subsequently used to fabricate the highly conductive fibres (>1000S/cm) that can function as a conformable electrode and highly tolerant strain sensor, as well as a highly conductive and robust paper (>10000S/cm after thermal treatment).
NASA Astrophysics Data System (ADS)
Pourjavadi, Ali; Soleyman, Rouhollah
2011-10-01
In the current study, a facile green synthesis of silver-gelatin core-shell nanostructures (spherical, spherical/cubic hybrid, and cubic, DLS diameter: 4.1-6.9 nm) is reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent cause mild reduction of silver ions into the silver nanoparticles (Ag-NPs). Gelatin protein, as an effective capping/shaping agent, was used in the reaction to self-assemble silver nanostructures. The formation of silver nanostructures and their self-assembly pattern was confirmed by SEM, AFM, and TEM techniques. Further investigations were carried out using zeta-potential, UV-Vis, FTIR, GPC, and TGA/DTG/DTA data. The prepared Ag-NPs showed proper and acceptable antimicrobial activity against three classes of microorganisms ( Escherichia coli Gram-negative bacteria, Staphylococcus aureus Gram-positive bacteria, and Candida albicans fungus). The antibacterial and antifungal Ag-NPs exhibit good stability in solution and can be considered as promising candidates for a wide range of biomedical applications.
NASA Astrophysics Data System (ADS)
Bastos-Arrieta, Julio; Muñoz, Jose; Stenbock-Fermor, Anja; Muñoz, Maria; Muraviev, Dmitri N.; Céspedes, Francisco; Tsarkova, Larisa A.; Baeza, Mireia
2016-04-01
Intermatrix Synthesis (IMS) technique has proven to be a valid methodology for the in situ incorporation of quantum dots (QDs) in a wide range of nanostructured surfaces for the preparation of advanced hybrid-nanomaterials. In this sense, this communication reports the recent advances in the application of IMS for the synthesis of CdS-QDs with favourable distribution on sulfonated polyetherether ketone (SPEEK) membrane thin films (TFs), multiwall carbon nanotubes (MWCNTs) and nanodiamonds (NDs). The synthetic route takes advantage of the ion exchange functionality of the reactive surfaces for the loading of the QDs precursor and consequent QDs appearance by precipitation. The benefits of such modified nanomaterials were studied using CdS-QDs@MWCNTs hybrid-nanomaterials. CdS-QDs@MWCNTs has been used as conducting filler for the preparation of electrochemical nanocomposite sensors, which present electrocatalytic properties. Finally, the optical properties of the QDs contained on MWCNTs could allow a new procedure for the analytical detection of nanostructured carbon allotropes in water.
Samal, Rashmirekha; Dash, Barsha; Sarangi, Chinmaya Kumar; Subbaiah, Tondepu; Senanayake, Gamini; Minakshi, Manickam
2017-01-01
A facile hydrothermal route to control the crystal growth on the synthesis of Co3O4 nanostructures with cube-like morphologies has been reported and tested its suitability for supercapacitor applications. The chemical composition and morphologies of the as-prepared Co3O4 nanoparticles were extensively characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Varying the temperature caused considerable changes in the morphology, the electrochemical performance increased with rising temperature, and the redox reactions become more reversible. The results showed that the Co3O4 synthesized at a higher temperature (180 °C) demonstrated a high specific capacitance of 833 F/g. This is attributed to the optimal temperature and the controlled growth of nanocubes. PMID:29088061
Synthesis of poly(3-hydroxybutyrate) nanospheres and deposition thereof into porous thin film
NASA Astrophysics Data System (ADS)
Abid, S.; Raza, Z. A.; Rehman, A.
2016-10-01
Polymeric nanostructures have gained importance in medical science as drug delivery carriers due to their biocompatibility and biodegradability. Polyhydroxybutyrate (PHB) is one of the natural biodegradable polymers used to deliver drugs in the form of nano/microcapsules. In this study, solvent evaporation method has been used for the synthesis of PHB nanospheres using poly(vinyl) alcohol (PVA) both as emulsifier and stabilizer. The produced PHB nanospheres were analyzed using dynamic light scattering and scanning electron microscopy. The size of nanospheres decreased whereas the zeta potential increased on increasing the concentration of emulsifier. The PHB nanospheres were then deposited into porous thin film on a glass surface and characterized against bulk PHB film by using atomic force microscopy, contact angle measurement and x-ray diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong Yuping, E-mail: huabeitong@yahoo.cn; Wang Yanping
2009-11-15
Nanocrystalline Nd{sub 2}(Zr{sub 1-x}Sn{sub x}){sub 2}O{sub 7} series solid solutions were prepared by a convenient salt-assisted combustion process using glycine as fuel. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The results showed the Zr ion can be partially replaced by Sn ion. The partial substituted products were still single-phase solid solutions and the crystal form remained unchanged. TEM images reveal that the products are composed of well-dispersed square-shaped nanocrystals. The method provides a convenient and low-cost route for the synthesis of nanostructures of oxide materials.
Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam.
Alaie, Seyedhamidreza; Goettler, Drew F; Jiang, Ying-Bing; Abbas, Khawar; Baboly, Mohammadhosein Ghasemi; Anjum, D H; Chaieb, S; Leseman, Zayd C
2015-02-27
Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m(-1) K(-1) versus 71.6 W m(-1) K(-1) at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.
NASA Astrophysics Data System (ADS)
Biazar, Nooshin; Poursalehi, Reza; Delavari, Hamid
2018-01-01
Synthesis and development of visible active catalysts is an important issue in photocatalytic applications of nanomaterials. TiO2 nanostructures coupled with carbon dots demonstrate a considerable photocatalytic activity in visible wavelengths. Extending optical absorption of a wide band gap semiconductor such as TiO2 with carbon dots is the origin of the visible activity of carbon dots modified semiconductor nanostructures. In addition, carbon dots exhibit high photostability, appropriate electron transport and chemical stability without considerable toxicity or environmental footprints. In this study, optical and structural properties of carbon dots/TiO2 nanostructures prepared via (direct current) DC arc discharge in liquid were investigated. Crystal structure, morphology and optical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy respectively. SEM images show formation of spherical nanoparticles with an average size of 27 nm. In comparison with pristine TiO2, optical transmission spectrum of carbon dots/TiO2 nanostructures demonstrates an absorption edge at longer wavelengths as well a high optical absorption in visible wavelengths which is significant for visible activity of nanostructures as a photocatalyst. Finally, these results can provide a flexible and versatile pathway for synthesis of carbon dots/oxide semiconductor nanostructures with an appropriate activity under visible light.
Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El
2014-01-01
The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches. PMID:28788602
Synthesis of Co3O4 Cotton-Like Nanostructures for Cholesterol Biosensor
Elhag, Sami; Ibupoto, Zafar Hussain; Nour, Omer; Willander, Magnus
2014-01-01
The use of templates to assist and possess a control over the synthesis of nanomaterials has been an attractive option to achieve this goal. Here we have used sodium dodecyl sulfate (SDS) to act as a template for the low temperature synthesis of cobalt oxide (Co3O4) nanostructures. The use of SDS has led to tune the morphology, and the product was in the form of “cotton-like” nanostructures instead of connected nanowires. Moreover, the variation of the amount of the SDS used was found to affect the charge transfer process in the Co3O4. Using Co3O4 synthesized using the SDS for sensing of cholesterol was investigated. The use of the Co3O4 synthesized using the SDS was found to yield an improved cholesterol biosensor compared to Co3O4 synthesized without the SDS. The improvement of the cholesterol sensing properties upon using the SDS as a template was manifested in increasing the sensitivity and the dynamic range of detection. The results achieved in this study indicate the potential of using template assisted synthesis of nanomaterials in improving some properties, e.g., cholesterol sensing. PMID:28787929
Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures.
Zan, Guangtao; Wu, Qingsheng
2016-03-16
In recent years, due to its unparalleled advantages, the biomimetic and bioinspired synthesis of nanomaterials/nanostructures has drawn increasing interest and attention. Generally, biomimetic synthesis can be conducted either by mimicking the functions of natural materials/structures or by mimicking the biological processes that organisms employ to produce substances or materials. Biomimetic synthesis is therefore divided here into "functional biomimetic synthesis" and "process biomimetic synthesis". Process biomimetic synthesis is the focus of this review. First, the above two terms are defined and their relationship is discussed. Next different levels of biological processes that can be used for process biomimetic synthesis are compiled. Then the current progress of process biomimetic synthesis is systematically summarized and reviewed from the following five perspectives: i) elementary biomimetic system via biomass templates, ii) high-level biomimetic system via soft/hard-combined films, iii) intelligent biomimetic systems via liquid membranes, iv) living-organism biomimetic systems, and v) macromolecular bioinspired systems. Moreover, for these five biomimetic systems, the synthesis procedures, basic principles, and relationships are discussed, and the challenges that are encountered and directions for further development are considered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin
2013-04-22
Hierarchically nanostructured porous hollow microspheres of hydroxyapatite (HAP) are a promising biomaterial, owing to their excellent biocompatibility and porous hollow structure. Traditionally, synthetic hydroxyapatite is prepared by using an inorganic phosphorus source. Herein, we report a new strategy for the rapid, sustainable synthesis of HAP hierarchically nanostructured porous hollow microspheres by using creatine phosphate disodium salt as an organic phosphorus source in aqueous solution through a microwave-assisted hydrothermal method. The as-obtained products are characterized by powder X-ray diffraction (XRD), Fourier-transform IR (FTIR) spectroscopy, SEM, TEM, Brunauer-Emmett-Teller (BET) nitrogen sorptometry, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). SEM and TEM micrographs show that HAP hierarchically nanostructured porous hollow microspheres consist of HAP nanosheets or nanorods as the building blocks and DLS measurements show that the diameters of HAP hollow microspheres are within the range 0.8-1.5 μm. The specific surface area and average pore size of the HAP porous hollow microspheres are 87.3 m(2) g(-1) and 20.6 nm, respectively. The important role of creatine phosphate disodium salt and the influence of the experimental conditions on the products were systematically investigated. This method is facile, rapid, surfactant-free and environmentally friendly. The as-prepared HAP porous hollow microspheres show a relatively high drug-loading capacity and protein-adsorption ability, as well as sustained drug and protein release, by using ibuprofen as a model drug and hemoglobin (Hb) as a model protein, respectively. These experiments indicate that the as-prepared HAP porous hollow microspheres are promising for applications in biomedical fields, such as drug delivery and protein adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kannan, Palanisamy; Dolinska, Joanna; Maiyalagan, Thandavarayan; Opallo, Marcin
2014-09-01
Numerous properties from metal nanostructures can be tuned by controlling both their size and shape. In particular, the latter is extremely important because the type of crystalline surface affects the surface electronic density. This paper describes a simple approach to the synthesis of highly-structured, anisotropic palladium nanostructured dendrites. They were obtained using an eco-friendly biomolecule 5-hydroxytryptophan, which acts as both a reducing and stabilizing agent. The growth mechanism is proposed for the evolution of dendrites morphology. It was found that the concentration of 5-hydroxytryptophan played a vital role on the morphology of the nanostructured Pd dendrites. This nanomaterial shows enhanced electrocatalytic performance towards the oxidation of formic acid, and it exhibits surface-enhanced Raman scattering properties towards the prostate specific antigen. These properties may be explored in fuel cells and biosensors, respectively.Numerous properties from metal nanostructures can be tuned by controlling both their size and shape. In particular, the latter is extremely important because the type of crystalline surface affects the surface electronic density. This paper describes a simple approach to the synthesis of highly-structured, anisotropic palladium nanostructured dendrites. They were obtained using an eco-friendly biomolecule 5-hydroxytryptophan, which acts as both a reducing and stabilizing agent. The growth mechanism is proposed for the evolution of dendrites morphology. It was found that the concentration of 5-hydroxytryptophan played a vital role on the morphology of the nanostructured Pd dendrites. This nanomaterial shows enhanced electrocatalytic performance towards the oxidation of formic acid, and it exhibits surface-enhanced Raman scattering properties towards the prostate specific antigen. These properties may be explored in fuel cells and biosensors, respectively. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02896a
Materials Science and Physics at Micro/Nano-Scales. FINAL REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Judy Z.
2009-09-07
The scope of this project is to study nanostructures of semiconductors and superconductors, which have been regarded as promising building blocks for nanoelectronic and nanoelectric devices. The emphasis of this project is on developing novel synthesis approaches for fabrication of nanostructures with desired physical properties. The ultimate goal is to achieve a full control of the nanostructure growth at microscopic scales. The major experimental achievements obtained are summarized
Jang, Youngjin; Lee, Nohyun; Kim, Jeong Hyun; Piao, Yuanzhe
2018-01-01
Tuning the optical properties of Au nanostructures is of paramount importance for scientific interest and has a wide variety of applications. Since the surface plasmon resonance properties of Au nanostructures can be readily adjusted by changing their shape, many approaches for preparing Au nanostructures with various shapes have been reported to date. However, complicated steps or the addition of several reagents would be required to achieve shape control of Au nanostructures. The present work describes a facile and effective shape-controlled synthesis of Au nanostructures and their photothermal therapy applications. The preparation procedure involved the reaction of HAuCl4 and ethylenediaminetetraacetic acid (EDTA) tetrasodium salt, which acted as a reducing agent and ligand, at room temperature without the need for any toxic reagent or additives. The morphology control from spheres to branched forms and nanowire networks was easily achieved by varying the EDTA concentration. Detailed investigations revealed that the four carboxylic groups of the EDTA tetrasodium salt are essential for effective growth and stabilization. The produced Au nanowire networks exhibited a broad absorption band in the near-infrared (NIR) region, thereby showing efficient cancer therapeutic performance by inducing the selective photothermal destruction of cancerous glioblastoma cells (U87MG) under NIR irradiation. PMID:29670020
Nanostructured manganese oxide thin films as electrode material for supercapacitors
NASA Astrophysics Data System (ADS)
Xia, Hui; Lai, Man On; Lu, Li
2011-01-01
Electrochemical capacitors, also called supercapacitors, are alternative energy storage devices, particularly for applications requiring high power densities. Recently, manganese oxides have been extensively evaluated as electrode materials for supercapacitors due to their low cost, environmental benignity, and promising supercapacitive performance. In order to maximize the utilization of manganese oxides as the electrode material for the supercapacitors and improve their supercapacitive performance, the nanostructured manganese oxides have therefore been developed. This paper reviews the synthesis of the nanostructured manganese oxide thin films by different methods and the supercapacitive performance of different nanostructures.
NASA Astrophysics Data System (ADS)
Qiu, T.; Wu, X. L.; Mei, Y. F.; Chu, P. K.; Siu, G. G.
2005-09-01
Unique silver dendritic nanostructures, with stems, branches, and leaves, were synthesized with self-organization via a simple electroless metal deposition method in a conventional autoclave containing aqueous HF and AgNO3 solution. Their growth mechanisms are discussed in detail on the basis of a self-assembled localized microscopic electrochemical cell model. A process of diffusion-limited aggregation is suggested for the formation of the silver dendritic nanostructures. This nanostructured material is of great potential to be building blocks for assembling mini-functional devices of the next generation.
Min, Yuho; Seo, Ho Jun; Choi, Jong-Jin; Hahn, Byung-Dong; Moon, Geon Dae
2018-08-24
As part of the oxygen family, chalcogen (Se, Te) nanostructures have been considered important elements for various practical fields and further exploited to constitute metal chalcogenides for each targeted application. Here, we report a controlled synthesis of well-defined one-dimensional chalcogen nanostructures such as nanowries, nanorods, and nanotubes by controlling reduction reaction rate to fine-tune the dimension and composition of the products. Tunable optical properties (localized surface plasmon resonances) of these chalcogen nanostructures are observed depending on their morphological, dimensional, and compositional variation.
Controlled synthesis of different metal oxide nanostructures by direct current arc discharge.
Su, Yanjie; Zhang, Jing; Zhang, Liling; Zhang, Yafei
2013-02-01
Direct current (DC) arc discharge method gives high temperature in a short time, which has been widely used to prepare carbon nanotubes. We use this simple approach to synthesize metal oxide nanostructures (MgO, SnO2) without any catalyst. Different morphologies (nanowires, nanobelts, nanocubes, and nanodisks) of metal oxide nanostructures can be controllably synthesized by changing the content of air in buffer gas. The growth mechanisms for these nanostructures are discussed in detail. Oxygen partial pressure is supposed to be one of the most important key factors. The methodology might be used to synthesize similar nanostructures of other functional oxide materials and non-oxide materials.
Metallic nanoshells on porphyrin-stabilized emulsions
Wang, Haorong; Song, Yujiang; Shelnutt, John A; Medforth, Craig J
2013-10-29
Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less
Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; ...
2017-03-16
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearlymore » establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. As a result, this nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.« less
Silver nanostructures synthesis via optically induced electrochemical deposition
NASA Astrophysics Data System (ADS)
Li, Pan; Liu, Na; Yu, Haibo; Wang, Feifei; Liu, Lianqing; Lee, Gwo-Bin; Wang, Yuechao; Li, Wen Jung
2016-06-01
We present a new digitally controlled, optically induced electrochemical deposition (OED) method for fabricating silver nanostructures. Projected light patterns were used to induce an electrochemical reaction in a specialized sandwich-like microfluidic device composed of one indium tin oxide (ITO) glass electrode and an optically sensitive-layer-covered ITO electrode. Silver polyhedral nanoparticles, triangular and hexagonal nanoplates, and nanobelts were controllably synthesized in specific positions at which projected light was illuminated. The silver nanobelts had rectangular cross-sections with an average width of 300 nm and an average thickness of 100 nm. By controlling the applied voltage, frequency, and time, different silver nanostructure morphologies were obtained. Based on the classic electric double-layer theory, a dynamic process of reduction and crystallization can be described in terms of three phases. Because it is template- and surfactant-free, the digitally controlled OED method facilitates the easy, low cost, efficient, and flexible synthesis of functional silver nanostructures, especially quasi-one-dimensional nanobelts.
NASA Astrophysics Data System (ADS)
Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou
2017-03-01
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.
Li, Binsong; Bian, Kaifu; Lane, J Matthew D; Salerno, K Michael; Grest, Gary S; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou
2017-03-16
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.
Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou
2017-01-01
Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales. PMID:28300067
NASA Astrophysics Data System (ADS)
Sriplai, Nipaporn; Mongkolthanaruk, Wiyada; Pinitsoontorn, Supree
2017-09-01
The magnetic nanocomposites based on bacterial cellulose (BC) matrix and ferrite (MFe2O4, M = Mn, Co, Ni and Cu) nanoparticles (NPs) were fabricated. The never-dried and freeze-dried BC nanofibrils were used as templates and a co-precipitation method was applied for NPs synthesis. The nanocomposites were either freeze-dried or annealed before subjected to characterization. The x-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that only MnFe2O4 and CoFe2O4 NPs could be successfully incorporated in the BC nanostructures. The results also indicated that the BC template should be freeze-dried prior to the co-precipitation process. The magnetic measurement by a vibrating sample magnetometer (VSM) showed that the strongest ferromagnetic signal was found for BC-CoFe2O4 nanocomposites. The morphological investigation by a scanning electron microscope (SEM) showed the largest volume fraction of NPs in the BC-CoFe2O4 sample which was complimentary to the magnetic property measurement. Annealing resulted in the collapse of the opened nanostructure of the BC composites. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.
Niu, Lengyuan; Li, Zhangpeng; Xu, Ye; Sun, Jinfeng; Hong, Wei; Liu, Xiaohong; Wang, Jinqing; Yang, Shengrong
2013-08-28
This study reports a simple synthesis of amorphous nickel tungstate (NiWO4) nanostructure and its application as a novel cathode material for supercapacitors. The effect of reaction temperature on the electrochemical properties of the NiWO4 electrode was studied, and results demonstrate that the material synthesized at 70 °C (NiW-70) has shown the highest specific capacitance of 586.2 F g(-1) at 0.5 A g(-1) in a three-electrode system. To achieve a high energy density, a NiW-70//activated carbon asymmetric supercapacitor is successfully assembled by use of NiW-70 and activated carbon as the cathode and anode, respectively, and then, its electrochemical performance is characterized by cyclic voltammetry and galvanostatic charge-discharge measurements. The results show that the assembled asymmetric supercapacitor can be cycled reversibly between 0 and 1.6 V with a high specific capacitance of 71.1 F g(-1) at 0.25 A g(-1), which can deliver a maximum energy density of 25.3 Wh kg(-1) at a power density of 200 W kg(-1). Furthermore, this asymmetric supercapacitor also presented an excellent, long cycle life along with 91.4% specific capacitance being retained after 5000 consecutive times of cycling.
Controlled Photocatalytic Synthesis of Core–Shell SiC/Polyaniline Hybrid Nanostructures
Kormányos, Attila; Endrődi, Balázs; Ondok, Róbert; Sápi, András; Janáky, Csaba
2016-01-01
Hybrid materials of electrically conducting polymers and inorganic semiconductors form an exciting class of functional materials. To fully exploit the potential synergies of the hybrid formation, however, sophisticated synthetic methods are required that allow for the fine-tuning of the nanoscale structure of the organic/inorganic interface. Here we present the photocatalytic deposition of a conducting polymer (polyaniline) on the surface of silicon carbide (SiC) nanoparticles. The polymerization is facilitated on the SiC surface, via the oxidation of the monomer molecules by ultraviolet-visible (UV-vis) light irradiation through the photogenerated holes. The synthesized core–shell nanostructures were characterized by UV-vis, Raman, and Fourier Transformed Infrared (FT-IR) Spectroscopy, thermogravimetric analysis, transmission and scanning electron microscopy, and electrochemical methods. It was found that the composition of the hybrids can be varied by simply changing the irradiation time. In addition, we proved the crucial importance of the irradiation wavelength in forming conductive polyaniline, instead of its overoxidized, insulating counterpart. Overall, we conclude that photocatalytic deposition is a promising and versatile approach for the synthesis of conducting polymers with controlled properties on semiconductor surfaces. The presented findings may trigger further studies using photocatalysis as a synthetic strategy to obtain nanoscale hybrid architectures of different semiconductors. PMID:28773325
Aerosol Synthesis of N and N-S Doped and Crumpled Graphene Nanostructures.
Carraro, Francesco; Cattelan, Mattia; Favaro, Marco; Calvillo, Laura
2018-06-06
Chemically modified graphene⁻based materials (CMG) are currently attracting a vast interest in their application in different fields. In particular, heteroatom-doped graphenes have revealed great potentialities in the field of electrocatalysis as substitutes of fuel cell noble metal⁻based catalysts. In this work, we investigate an innovative process for doping graphene nanostructures. We optimize a novel synthetic route based on aerosol preparation, which allows the simultaneous doping, crumpling, and reduction of graphene oxide (GO). Starting from aqueous solutions containing GO and the dopant precursors, we synthesize N- and N,S-dual-doped 3D graphene nanostructures (N-cGO and N,S-cGO). In the aerosol process, every aerosol droplet can be considered as a microreactor where dopant precursors undergo thermal decomposition and react with the GO flakes. Simultaneously, thanks to the relatively high temperature, GO undergoes crumpling and partial reduction. Using a combination of spectroscopic and microscopic characterization techniques, we investigate the morphology of the obtained materials and the chemical nature of the dopants within the crumpled graphene sheets. This study highlights the versatility of the aerosol process for the design of new CMG materials with tailored electrocatalytic properties.
Effect of annealing on the sub-bandgap, defects and trapping states of ZnO nanostructures
NASA Astrophysics Data System (ADS)
Wahyuono, Ruri Agung; Hermann-Westendorf, Felix; Dellith, Andrea; Schmidt, Christa; Dellith, Jan; Plentz, Jonathan; Schulz, Martin; Presselt, Martin; Seyring, Martin; Rettenmeyer, Markus; Dietzek, Benjamin
2017-02-01
Annealing treatment was applied to different mesoporous ZnO nanostructures prepared by wet chemical synthesis, i.e. nanoflowers (NFs), spherical aggregates (SPs), and nanorods (NRs). The sub-bandgap, defect properties as well as the trapping state characteristics after annealing were characterized spectroscopically, including ultrasensitive photothermal deflection spectroscopy (PDS), photoluminescence and photo-electrochemical methods. The comprehensive experimental analysis reveals that annealing alters both the bandgap and the sub-bandgap. The defect concentration and the density of surface traps in the ZnO nanostructures are suppressed upon annealing as deduced from photoluminescence and open-circuit voltage decay analysis. The photo-electrochemical investigations reveal that the surface traps dominate the near conduction band edge of ZnO and, hence, lead to high recombination rates when used in DSSCs. The density of bulk traps in ZnO SPs is higher than that in ZnO NFs and ZnO NRs and promote lower recombination loss between photoinjected electrons with the electrolyte-oxidized species on the surface. The highest power conversion efficiency of ZnO NFs-, ZnO SPs-, and ZnO NRs-based DSSC obtained in our system is 2.0, 4.5, and 1.8%, respectively.
Kandasamy, N; Venugopal, T; Kannan, K
2018-06-01
A flower like cobalt oxide nanostructured thin film (Co2O3) on Nickel (Ni) plate as have been successfully developed via alcoholic Seed Layer assisted chemical bath Deposition (SLD) process. Through the controlled alkaline electrolytes, the flower and paddles like Co2O3 nanoarchitectures were formed. The prepared thin film was characterized by X-ray diffraction (XRD), scanning electron microscope with energy dispersive X-ray (SEM and EDX), Atomic Force Microscope (AFM), Raman spectroscopy techniques. Electron micrograph reveals the flower and paddles like nanostructured Co2O3 thin film deposited on Ni plates. The electrochemical characteristics were investigated using cyclic voltammetry (CV), charge-discharge and AC impedance spectroscopy in different aqueous electrolytes such as NaOH, KOH, and LiOH. The maximum specific capacitance of 856 Fg-1 was attained with 2 M KOH electrolyte with 2 mVs-1 of the Co2O3 thin film coated Ni plate at 80 °C using SLD method. The capacitance values obtained with various electrolytes are in the order of KOH > NaOH > LiOH. The results indicate that the present method is economical and the material is ecofriendly with enhanced capacitance property.
Quantum dots conjugated zinc oxide nanosheets: Impeder of microbial growth and biofilm
NASA Astrophysics Data System (ADS)
Patil, Rajendra; Gholap, Haribhau; Warule, Sambhaji; Banpurkar, Arun; Kulkarni, Gauri; Gade, Wasudeo
2015-01-01
The grieving problem of the 21st century has been the antimicrobial resistance in pathogenic microorganisms to conventional antibiotics. Therefore, developments of novel antibacterial materials which effectively inhibit or kill such resistant microorganisms have become the need of the hour. In the present study, we communicate the synthesis of quantum dots conjugated zinc oxide nanostructures (ZnO/CdTe) as an impeder of microbial growth and biofilm. The as-synthesized nanostructures were characterized by X-ray diffraction, ultraviolet-visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy. The growth impedance property of ZnO and ZnO/CdTe on Gram positive organism, Bacillus subtilis NCIM 2063 and Gram negative, Escherichia coli NCIM 2931 and biofilm impedance activity in Pseudomonas aeruginosa O1 was found to occur due to photocatalytical action on the cell biofilm surfaces. The impedance in microbial growth and biofilm formation was further supported by ruptured appearances of cells and dettrered biofilm under field emission scanning electron and confocal laser scanning microscope. The ZnO/CdTe nanostructures array synthesized by hydrothermal method has an advantage of low growth temperature, and opportunity to fabricate inexpensive material for nano-biotechnological applications.
NASA Astrophysics Data System (ADS)
Bhaskar, Ankam; Pai, Yi-Hsuan; Liu, Chia-Jyi
2017-11-01
Low-temperature electronic and thermal transport measurements are carried out on nanostructured Zn1-x Al x Te (0 ⩽ x ⩽ 0.15) fabricated using hydrothermal synthesis followed by evacuated-and-encapsulated sintering. A single parabolic band with acoustic phonon scattering is used to analyze thermoelectric transport data. It is found that reduced Fermi energy gets closer to the valence band edge and density of states effective mass, effective density of states, and Hall factor decrease with increasing x in doped samples. The chemical carrier concentration, carrier density independent mobility, β, and theoretical zT values increase with increasing x in doped samples. The nanostructured Zn1-x Al x Te exhibits significant reduction of thermal conductivity at 300 K (1.82-3.71 W m-1 K-1) as compared to bulk ZnTe (18 W m-1 K-1). The point-defect scattering and phonon-grain scattering play an important role in reducing the lattice thermal conductivity. In addition, partial substitution of Al3+ for Zn2+ significantly improves both the power factor and zT values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sargazi, Ghasem, E-mail: g.sargazi@gmail.com; Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran; Afzali, Daryoush, E-mail: daryoush_afzali@yahoo.com
2017-06-15
This work presents a fast route for the preparation of a new Ta(V) metal-organic framework nanostructure with high surface area, significant porosity, and small size distribution. X-ray diffraction (XRD), scanning electron microscopy (SEM), Transition electron microscopy (TEM), energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyser, and Brunauer-Emmett-Teller (BET) surface area analysis were applied to characterize the synthesized product. Moreover, the influences of ultrasonic irradiation including temperature, time, and power on different features of the final products were systematically studied using 2{sup k-1} factorial design experiments, and the response surfacemore » optimization was used for determining the best welding parameter combination. The results obtained from analyses of variances showed that ultrasonic parameters affected the size distribution, thermal behaviour, and surface area of Ta-MOF samples. Based on response surface methodology, Ta-MOF could be obtained with mean diameter of 55 nm, thermal stability of 228 °C, and high surface area of 2100 m{sup 2}/g. The results revealed that the synthesized products could be utilized in various applications such as a novel candidate for CO{sub 2} adsorption. - Graphical abstract: A facile route was used for fabrication of a new metal -organic framework based on tantalum nanostructures that have high surface area, considerable porosity, homogenous morphology, and small size distribution.« less
NASA Astrophysics Data System (ADS)
Wang, Xia; Li, Zongbao; Jia, Lichao; Xing, Xiaobo
2018-05-01
A simple strategy to greatly increase the photocatalytic ability of nanocrystalline anatase has been put forward to fabricate efficient TiO2-based photocatalysts under visible irradiation. By surface modification with V ion, samples with different ratios were synthesized by using an incipient wetness impregnation method. The as-prepared specimens were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy. The photocatalytic activities were evaluated by using methylene blue degradations. Meanwhile, the optimized loading structure and electronic structures were calculated by using the density function theory (DFT). This work should provide a practical route to reasonably design and synthesize high-performance TiO2-based nanostructured photocatalysts.
A facile thermal decomposition route to synthesise CoFe2O4 nanostructures
NASA Astrophysics Data System (ADS)
Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.
2014-01-01
The synthesis of CoFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from an inorganic precursor, cobalt ferrous cinnamate hydrazinate (CoFe2(cin)3(N2H4)3) which was obtained by a novel precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. Under appropriate annealing, CoFe2(cin)3(N2H4)3 yielded CoFe2O4 nanoparticles, which were characterized for their size and structure using X-Ray diffraction (XRD), high resolution transmission electron microscopic (HRTEM), selected area electron diffraction (SAED) and scanning electron microscopic (SEM) techniques.
NASA Astrophysics Data System (ADS)
Gastaldo, Daniele; Conta, Gianluca; Coïsson, Marco; Amato, Giampiero; Tiberto, Paola; Allia, Paolo
2018-05-01
A method for the synthesis of room-temperature ferromagnetic dilute semiconductor Ge1-xMnx (5 % < x < 8 %) quantum dots by molecular beam epitaxy by selective growth on hydrogen terminated silicon (100) surface is presented. The functionalized substrates, as well as the nanostructures, were characterized in situ by reflection high-energy electron diffraction. The quantum dots density and equivalent radius were extracted from field emission scanning electron microscope pictures, obtained ex-situ. Magnetic characterizations were performed by superconducting quantum interference device vibrating sample magnetometry revealing that ferromagnetic order is maintained up to room temperature: two different ferromagnetic phases were identified by the analysis of the field cooled - zero field cooled measurements.
Nanostructured metal (Fe, Co, Mn, Cr, Mo) oxides were fabricated under microwave irradiation conditions in pure water without using any reducing or capping reagent. The metal oxides self-assembled into octahedron, spheres, triangular rods, pine, and hexagonal snowflake-like thre...
Bacterium Escherichia coli- and phage P22-templated synthesis of semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Shen, Liming
The properties of inorganic materials in the nanoscale are found to be size- and shape-dependent due to quantum confinement effects, and thereby nanomaterials possess properties very different from those of single molecules as well as those of bulk materials. Assembling monodispersed nanoparticles into highly ordered hierarchical architectures is expected to generate novel collective properties for potential applications in catalysis, energy, biomedicine, etc. The major challenge in the assembly of nanoparticles lies in the development of controllable synthetic strategies that enable the growth and assembly of nanoparticles with high selectivity and good controllability. Biological matter possesses robust and precisely ordered structures that exist in a large variety of shapes and sizes, providing an ideal platform for synthesizing high-performance nanostructures. The primary goal of this thesis work has been to develop rational synthetic strategies for high-performance nanostructured materials using biological templates, which are difficult to achieve through traditional chemical synthetic methods. These approaches can serve as general bio-inspired approaches for synthesizing nanoparticle assemblies with desired components and architectures. CdS- and TiO2-binding peptides have been identified using phage display biopanning technique and the mechanism behind the specific affinity between the selected peptides and inorganic substrates are analyzed. The ZnS- and CdS-binding peptides, identified by the phage display biopanning, are utilized for the selective nucleation and growth of sulfides over self-assembled genetically engineered P22 coat proteins, resulting in ordered nanostructures of sulfide nanocrystal assemblies. The synthetic strategy can be extended to the fabrication of a variety of other nanostructures. A simple sonochemical route for the synthesis and assembly of CdS nanostructures with high yield under ambient conditions has been developed by exploiting the chemical characteristics and structure of permeabilized E. coli bacteria. The crystal phase, morphology, micro/nanostructure, optical absorption, and photocatalytic properties of the CdS nanostructures are tailored over a wide range by merely changing the synthetic conditions. Photoanodes fabricated using the nanoporous hollow CdS microrods exhibit excellent performance for the photocatalytic hydrogen production. This facile approach has been extended to the synthesis and assembly of other semiconducting sulfides, including PbS, ZnS, and HgS.
Nanocrystalline sp{sup 2} and sp{sup 3} carbons: CVD synthesis and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terranova, M. L.; Rossi, M.; Tamburri, E., E-mail: emanuela.tamburri@uniroma2.it
The design and production of innovative materials based on nanocrystalline sp{sup 2}- and sp{sup 3}-coordinated carbons is presently a focus of the scientific community. We present a review of the nanostructures obtained in our labs using a series of synthetic routes, which make use of chemical vapor deposition (CVD) techniques for the selective production of non-planar graphitic nanostructures, nanocrystalline diamonds, and hybrid two-phase nanostructures.
Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy
Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay
2016-01-01
Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT. PMID:27759052
Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy
NASA Astrophysics Data System (ADS)
Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay
2016-10-01
Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT.
NASA Astrophysics Data System (ADS)
Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.
2017-12-01
Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.
NASA Astrophysics Data System (ADS)
Mikhailov, Ivan; Levina, Vera; Leybo, Denis; Masov, Vsevolod; Tagirov, Marat; Kuznetsov, Denis
Nanostructured zero-valent iron (NSZVI) particles were synthesized by the method of ferric ion reduction with sodium borohydride with subsequent drying and passivation at room temperature in technical grade nitrogen. The obtained sample was characterized by means of X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and dynamic light scattering studies. The prepared NSZVI particles represent 100-200nm aggregates, which consist of 20-30nm iron nanoparticles in zero-valent oxidation state covered by thin oxide shell. The reactivity of the NSZVI sample, as the removal efficiency of refractory azo dyes, was investigated in this study. Two azo dye compounds, namely, orange G and methyl orange, are commonly detected in waste water of textile production. Experimental variables such as NSZVI dosage, initial dye concentration and solution pH were investigated. The kinetic rates of degradation of both dyes by NSZVI increased with the decrease of solution pH from 10 to 3 and with the increase of NSZVI dosage, but decreased with the increase of initial dye concentration. The removal efficiencies achieved for both orange G and methyl orange were higher than 90% after 80min of treatment.
Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak
2018-04-01
Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.
Hanifehpour, Younes; Morsali, Ali; Mirtamizdoust, Babak; Joo, Sang Woo; Soltani, Behzad
2017-07-01
Nano-structures of a new supramolecular coordination compound of divalent nickel with the pyrazol (pzH) containing the terminal azide anions, [Ni(pzH) 2 (N 3 ) 2 ] (1), with discrete molecular architecture (DMA) in solid state was synthesized via sonochemical method. The new nanostructure was characterized by scanning electron microscopy, X-ray powder diffraction, IR, and elemental analysis. Compound 1 was structurally characterized by single crystal X-ray diffraction and the single-crystal X-ray data shows that the coordination number of Ni (II) ions is six, (NiN 6 ), with four N-donor atoms from neutral "pzH" ligands and two N-donors from two terminal azide anions. The supramolecular features in these complexes are guided and controlled by weak directional intermolecular interactions. The structure of the title complex was optimized by density functional theory calculations. Calculated structural parameters and IR spectra for the title complex are consistent with the crystal structure. The NiO nanoparticles were obtained by thermolysis of 1 at 180°C with oleic acid as a surfactant. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Melechko, A. V.; Merkulov, V. I.; McKnight, T. E.; Guillorn, M. A.; Klein, K. L.; Lowndes, D. H.; Simpson, M. L.
2005-02-01
The controlled synthesis of materials by methods that permit their assembly into functional nanoscale structures lies at the crux of the emerging field of nanotechnology. Although only one of several materials families is of interest, carbon-based nanostructured materials continue to attract a disproportionate share of research effort, in part because of their wide-ranging properties. Additionally, developments of the past decade in the controlled synthesis of carbon nanotubes and nanofibers have opened additional possibilities for their use as functional elements in numerous applications. Vertically aligned carbon nanofibers (VACNFs) are a subclass of carbon nanostructured materials that can be produced with a high degree of control using catalytic plasma-enhanced chemical-vapor deposition (C-PECVD). Using C-PECVD the location, diameter, length, shape, chemical composition, and orientation can be controlled during VACNF synthesis. Here we review the CVD and PECVD systems, growth control mechanisms, catalyst preparation, resultant carbon nanostructures, and VACNF properties. This is followed by a review of many of the application areas for carbon nanotubes and nanofibers including electron field-emission sources, electrochemical probes, functionalized sensor elements, scanning probe microscopy tips, nanoelectromechanical systems (NEMS), hydrogen and charge storage, and catalyst support. We end by noting gaps in the understanding of VACNF growth mechanisms and the challenges remaining in the development of methods for an even more comprehensive control of the carbon nanofiber synthesis process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Chang-Yong; Stein, Aaron
Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less
Nam, Chang-Yong; Stein, Aaron
2017-11-15
Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less
3D magnetic nanostructures grown by focused electron and ion beam induced deposition
NASA Astrophysics Data System (ADS)
Fernandez-Pacheco, Amalio
Three-dimensional nanomagnetism is an emerging research area, where magnetic nanostructures extend along the whole space, presenting novel functionalities not limited to the substrate plane. The development of this field could have a revolutionary impact in fields such as electronics, the Internet of Things or bio-applications. In this contribution, I will show our recent work on 3D magnetic nanostructures grown by focused electron and ion beam induced deposition. This 3D nano-printing techniques, based on the local chemical vapor deposition of a gas via the interaction with electrons and ions, makes the fabrication of complex 3D magnetic nanostructures possible. First, I will show how by exploiting different growth regimes, suspended Cobalt nanowires with modulated diameter can be patterned, with potential as domain wall devices. Afterwards, I will show recent results where the synthesis of Iron-Gallium alloys can be exploited in the field of artificial multiferroics. Moreover, we are developing novel methodologies combining physical vapor deposition and 3D nano-printing, creating Permalloy 3D nanostrips with controllable widths and lengths up to a few microns. This approach has been extended to more complex geometries by exploiting advanced simulation growth techniques combining Monte Carlo and continuum model methods. Throughout the talk, I will show the methodology we are following to characterize 3D magnetic nanostructures, by combining magneto-optical Kerr effect, scanning probe microscopy and electron and X-R magnetic imaging, and I will highlight some of the challenges and opportunities when studying these structures. I acknowledge funding from EPSRC and the Winton Foundation.
Ultrafast Formation of ZnO Nanorods via Seed-Mediated Microwave Assisted Hydrolysis Process
NASA Astrophysics Data System (ADS)
Tan, S. T.; Umar, A. A.; Yahaya, M.; Yap, C. C.; Salleh, M. M.
2013-04-01
One dimensional (1D) zinc oxide, ZnO nanostructures have shown promising results for usage in photodiode and optoelectronic device due to their high surface area. Faster and conventional method for synthesis ZnO nanorods has become an attention for researcher today. In this paper, ZnO nanorods have been successfully synthesized via two-step process, namely alcothermal seeding and seed-mediated microwave hydrolysis process. In typical process, the ZnO nanoseeds were grown in the growth solution that contained equimolar (0.04 M) of zinc nitrate hexahydrate, Zn (NO3).6H2O and hexamethylenetetramine, HMT. The growth process was carried inside the inverted microwave within 5- 20 s. The effect of growth parameters (i.e. concentration, microwave power, time reaction) upon the modification of ZnO morphology was studied. ZnO nanostructures were characterized by Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). The densities of nanorods were evaluated by the Image J analysis. It was found that the morphology (e.g. shape and size) of nanostructures has changed drastically with the increment of growth solution concentration. The density of ZnO nanorods was proven to increase with the increasing of reaction time and microwave power. We hypothesize that the microwave power might enhance the rate of nucleation and promote the faster nanostructure growth as compared with the normal heating condition due to the superheating phenomenon. This method might promote a new and faster alternative way in nanostructure growth which can be applied in currently existing application.
Li, Xiao-Yun; Chen, Li-Hua; Rooke, Joanna Claire; Deng, Zhao; Hu, Zhi-Yi; Wang, Shao-Zhuan; Wang, Li; Li, Yu; Krief, Alain; Su, Bao-Lian
2013-03-15
Mesoporous TiO(2) with a hierarchically 3D dendrimeric nanostructure comprised of nanoribbon building units has been synthesized via a spontaneous self-formation process from various titanium alkoxides. These hierarchically 3D dendrimeric architectures can be obtained by a very facile, template-free method, by simply dropping a titanium butoxide precursor into methanol solution. The novel configuration of the mesoporous TiO(2) nanostructure in nanoribbon building units yields a high surface area. The calcined samples show significantly enhanced photocatalytic activity and degradation rates owing to the mesoporosity and their improved crystallinity after calcination. Furthermore, the 3D dendrimeric architectures can be preserved after phase transformation from amorphous TiO(2) to anatase or rutile, which occurs during calcination. In addition, the spontaneous self-formation process of mesoporous TiO(2) with hierarchically 3D dendrimeric architectures from the hydrolysis and condensation reaction of titanium butoxide in methanol has been followed by in situ optical microscopy (OM), revealing the secret on the formation of hierarchically 3D dendrimeric nanostructures. Moreover, mesoporous TiO(2) nanostructures with similar hierarchically 3D dendrimeric architectures can also be obtained using other titanium alkoxides. The porosities and nanostructures of the resultant products were characterized by SEM, TEM, XRD, and N(2) adsorption-desorption measurements. The present work provides a facile and reproducible method for the synthesis of novel mesoporous TiO(2) nanoarchitectures, which in turn could herald the fabrication of more efficient photocatalysts. Copyright © 2012 Elsevier Inc. All rights reserved.
Patel, Jayesh D; Mighri, Frej; Ajji, Abdellah; Chaudhuri, Tapas K
2015-04-01
The present work deals with two different CdS nanostructures produced via hydrothermal and solvothermal decompositions of aminocaproic acid (ACA)-mixed Cd-thiourea complex precursor at 175 °C. Both nanostructures were extensively characterized for their structural, morphological and optical properties. The powder X-ray diffraction characterization showed that the two CdS nanostructures present a wurtzite morphology. Scanning electron microscopy and energy-dispersive X-ray characterizations revealed that the hydrothermal decomposition produced well-shaped CdS flowers composed of six dendritic petals, and the solvothermal decomposition produced CdS microspheres with close stoichiometric chemical composition. The UV-vis absorption and photoluminescence spectra of CdS dendritic flowers and microsphere nanostructures showed that both nanostructures present a broad absorption between 200 and 700 nm and exhibit strong green emissions at 576 and 520 nm upon excitations at 290 nm and 260 nm, respectively. The transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) characterizations confirmed that CdS microspheres were mesoporous and were composed of small nanocrystals. A possible growth mechanism in the formation of the CdS nanostructures was proposed based on morphology evolution as a function of the reaction time. Furthermore, the as-synthesized CdS nanostructures were found to exhibit highly efficient photocatalytic activities for the degradation of methyl orange (MeO) and rhodamine B (RhB) dyes.
Popescu, L M; Piticescu, R M; Antonelli, A; Rusti, C F; Carboni, E; Sfara, C; Magnani, M; Badilita, V; Vasile, E; Trusca, R; Buruiana, T
2013-11-01
The development of engineered biomaterials that mimic bone tissues is a promising research area that benefits from a growing interest. Polymers and polymer-ceramic composites are the principle materials investigated for the development of synthetic bone scaffolds thanks to their proven biocompatibility and biostability. Several polymers have been combined with calcium phosphates (mainly hydroxyapatite) to prepare nanocomposites with improved biocompatible and mechanical properties. Here, we report the hydrothermal synthesis in high pressure conditions of nanostructured composites based on hydroxyapatite and polyurethane functionalized with carboxyl and thiol groups. Cell-material interactions were investigated for potential applications of these new types of composites as coating for orthopedic implants. Physical-chemical and morphological characteristics of hydroxyapatite/polyurethane composites were evaluated for different compositions, showing their dependence on synthesis parameters (pressure, temperature). In vitro experiments, performed to verify if these composites are biocompatible cell culture substrates, showed that they are not toxic and do not affect cell viability.
Azizi, Susan; Namvar, Farideh; Mahdavi, Mahnaz; Ahmad, Mansor Bin; Mohamad, Rosfarizan
2013-12-18
Biological synthesis of nanoparticles is a relatively new emerging field of nanotechnology which has economic and eco-friendly benefits over chemical and physical processes of synthesis. In the present work, for the first time, the brown marine algae Sargassum muticum ( S. muticum ) aqueous extract was used as a reducing agent for the synthesis of nanostructure silver particles (Ag-NPs). Structural, morphological and optical properties of the synthesized nanoparticles have been characterized systematically by using FTIR, XRD, TEM and UV-Vis spectroscopy. The formation of Ag-NPs was confirmed through the presence of an intense absorption peak at 420 nm using a UV-visible spectrophotometer. A TEM image showed that the particles are spherical in shape with size ranging from 5 to 15 nm. The nanoparticles were crystalline in nature. This was confirmed by the XRD pattern. From the FTIR results, it can be seen that the reduction has mostly been carried out by sulphated polysaccharides present in S. muticum .
Biosynthesis of Silver Nanoparticles Using Brown Marine Macroalga, Sargassum Muticum Aqueous Extract
Azizi, Susan; Namvar, Farideh; Mahdavi, Mahnaz; Ahmad, Mansor Bin; Mohamad, Rosfarizan
2013-01-01
Biological synthesis of nanoparticles is a relatively new emerging field of nanotechnology which has economic and eco-friendly benefits over chemical and physical processes of synthesis. In the present work, for the first time, the brown marine algae Sargassum muticum (S. muticum) aqueous extract was used as a reducing agent for the synthesis of nanostructure silver particles (Ag-NPs). Structural, morphological and optical properties of the synthesized nanoparticles have been characterized systematically by using FTIR, XRD, TEM and UV–Vis spectroscopy. The formation of Ag-NPs was confirmed through the presence of an intense absorption peak at 420 nm using a UV–visible spectrophotometer. A TEM image showed that the particles are spherical in shape with size ranging from 5 to 15 nm. The nanoparticles were crystalline in nature. This was confirmed by the XRD pattern. From the FTIR results, it can be seen that the reduction has mostly been carried out by sulphated polysaccharides present in S. muticum. PMID:28788431
Lou, Shuaifeng; Ma, Yulin; Cheng, Xinqun; Gao, Jinlong; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping
2015-12-18
One-dimensional nanostructured TiNb2O7 was prepared by a simple solution-based process and subsequent thermal annealing. The obtained anode materials exhibited excellent electrochemical performance with superior reversible capacity, rate capability and cyclic stability.
Biomimetic synthesis of noble metal nanocrystals
NASA Astrophysics Data System (ADS)
Chiu, Chin-Yi
At the nanometer scale, the physical and chemical properties of materials heavily depend on their sizes and shapes. This fact has triggered considerable efforts in developing controllable nanomaterial synthesis. The controlled growth of colloidal nanocrystal is a kinetic process, in which high-energy facets grow faster and then vanish, leading to a nanocrystal enclosed by low-energy facets. Identifying a surfactant that can selectively bind to a particular crystal facet and thus lower its surface energy, is critical and challenging in shape controlled synthesis of nanocrystals. Biomolecules exhibiting exquisite molecular recognition properties can be exploited to precisely engineer nanostructured materials. In the first part of my thesis, we employed the phage display technique to select a specific multifunctional peptide sequence which can bind on Pd surface and mediate Pd crystal nucleation and growth, achieving size controlled synthesis of Pd nanocrystals in aqueous solution. We further demonstrated a rational biomimetic approach to the predictable synthesis of nanocrystals enclosed by a particular facet in the case of Pt. Specifically, Pt {100} and Pt {111} facet-specific peptides were identified and used to synthesize Pt nanocubes and Pt nano-tetrahedrons, respectively. The mechanistic studies of Pt {111} facet-specific peptide had led us to study the facet-selective adsorption of aromatic molecules on noble metal surfaces. The discoveries had achieved the development of design strategies to select facet-selective molecules which can synthesize nanocrystals with expected shapes in both Pt and Pd system. At last, we exploited Pt facet-specific peptides and controlled the molecular interaction to produce one- and three- dimensional nanostructures composed of anisotropic nanoparticles in synthetic conditions without supramolecular pre-organization, demonstrating the full potential of biomolecules in mediating material formation process. My research on biomimetic synthesis of nanocrystals with shape control and nanostructures with control over the anisotropy are unprecedented, representing a step forward in achieving the goal of producing complex nanostructures with required properties. The fundamental studies on the biomolecule-inorganic interfaces have contributed to advancing the synthesis tool of colloidal nanomaterials and enriching understating of organic-inorganic interface, impacting many applications.
Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.
Wang, Zhen-Gang; Zhan, Pengfei; Ding, Baoquan
2013-02-26
Templated synthesis has been considered as an efficient approach to produce polyaniline (PANI) nanostructures. The features of DNA molecules enable a DNA template to be an intriguing template for fabrication of emeraldine PANI. In this work, we assembled HRP-mimicking DNAzyme with different artificial DNA nanostructures, aiming to manipulate the molecular structures and morphologies of PANI nanostructures through the controlled DNA self-assembly. UV-vis absorption spectra were used to investigate the molecular structures of PANI and monitor kinetic growth of PANI. It was found that PANI was well-doped at neutral pH and the redox behaviors of the resultant PANI were dependent on the charge density of the template, which was controlled by the template configurations. CD spectra indicated that the PANI threaded tightly around the helical DNA backbone, resulting in the right handedness of PANI. These reveal the formation of the emeraldine form of PANI that was doped by the DNA. The morphologies of the resultant PANI were studied by AFM and SEM. It was concluded from the imaging and spectroscopic kinetic results that PANI grew preferably from the DNAzyme sites and then expanded over the template to form 1D PANI nanostructures. The strategy of the DNAzyme-DNA template assembly brings several advantages in the synthesis of para-coupling PANI, including the region-selective growth of PANI, facilitating the formation of a para-coupling structure and facile regulation. We believe this study contributes significantly to the fabrication of doped PANI nanopatterns with controlled complexity, and the development of DNA nanotechnology.
A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles
NASA Astrophysics Data System (ADS)
Sukanya, D.; Sagayaraj, P.
2015-06-01
II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM).
Improving the Kinetics and Thermodynamics of Mg(BH 4) 2 for Hydrogen Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Brandon; Klebanoff, Lennie; Stavila, Vitalie
The objective of this project is to (1) combine theory, synthesis, and characterization across multiple scales to understand the intrinsic kinetic and thermodynamic limitations in MgB 2/Mg(BH 4) 2; (2) construct and apply a flexible, validated, multiscale theoretical framework for modeling (de)hydrogenation kinetics of the Mg-B-H system and related metal hydrides; and (3) devise strategies for improving kinetics and thermodynamics, particularly through nanostructuring and doping. The project has an emphasis on understanding and improving rehydrogenation of MgB 2, which has generally been less explored and is key to enabling practical use.
Hierarchical structures of ZnO spherical particles synthesized solvothermally
NASA Astrophysics Data System (ADS)
Saito, Noriko; Haneda, Hajime
2011-12-01
We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.
Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors
NASA Astrophysics Data System (ADS)
Choi, Seon-Jin; Kim, Il-Doo
2018-03-01
Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.
Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors
NASA Astrophysics Data System (ADS)
Choi, Seon-Jin; Kim, Il-Doo
2018-05-01
Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.
Self-organised synthesis of Rh nanostructures with tunable chemical reactivity
2007-01-01
Nonequilibrium periodic nanostructures such as nanoscale ripples, mounds and rhomboidal pyramids formed on Rh(110) are particularly interesting as candidate model systems with enhanced catalytic reactivity, since they are endowed with steep facets running along nonequilibrium low-symmetry directions, exposing a high density of undercoordinated atoms. In this review we report on the formation of these novel nanostructured surfaces, a kinetic process which can be controlled by changing parameters such as temperature, sputtering ion flux and energy. The role of surface morphology with respect to chemical reactivity is investigated by analysing the carbon monoxide dissociation probability on the different nanostructured surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Shaofang; Zhu, Chengzhou; Song, Junhua
2016-12-28
Rational design and construction of Pt-based porous nanostructures with large mesopores have triggered significant considerations because of their high surface area and more efficient mass transport. Hydrochloric acid-induced kinetic reduction of metal precursors in the presence of soft template F-127 and hard template tellurium nanowires has been successfully demonstrated to construct one-dimensional hierarchical porous PtCu alloy nanostructures with large mesopores. Moreover, the electrochemical experiments demonstrated that the resultant PtCu hierarchically porous nanostructures with optimized composition exhibit enhanced electrocatalytic performance for oxygen reduction reaction.
Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Das, Rupali; Soni, R. K.
2018-05-01
Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate exogenous contrast agent for efficient Raman spectroscopy from molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Shili, E-mail: slzheng@ipe.ac.cn; Wang, Xinran; Yan, Hong
2016-09-15
Highlights: • Nanostructured Na{sub 1.08}V{sub 6}O{sub 15} was synthesized through additive-free sol-gel process. • Prepared Na{sub 1.08}V{sub 6}O{sub 15} demonstrated high capacity and sufficient cycling stability. • The reaction temperature was optimized to allow scalable Na{sub 1.08}V{sub 6}O{sub 15} fabrication. - Abstract: Developing high-capacity cathode material with feasibility and scalability is still challenging for lithium-ion batteries (LIBs). In this study, a high-capacity ternary sodium vanadate compound, nanostructured NaV{sub 6}O{sub 15}, was template-free synthesized through sol-gel process with high producing efficiency. The as-prepared sample was systematically post-treated at different temperature and the post-annealing temperature was found to determine the cycling stabilitymore » and capacity of NaV{sub 6}O{sub 15}. The well-crystallized one exhibited good electrochemical performance with a high specific capacity of 302 mAh g{sup −1} when cycled at current density of 0.03 mA g{sup −1}. Its relatively long-term cycling stability was characterized by the cell performance under the current density of 1 A g{sup −1}, delivering a reversible capacity of 118 mAh g{sup −1} after 300 cycles with 79% capacity retention and nearly 100% coulombic efficiency: all demonstrating its significant promise of proposed strategy for large-scale synthesis of NaV{sub 6}O{sub 15} as cathode with high-capacity and high energy density for LIBs.« less
Benzyl Alcohol-Mediated Versatile Method to Fabricate Nonstoichiometric Metal Oxide Nanostructures.
Qamar, Mohammad; Adam, Alaaldin; Azad, Abdul-Majeed; Kim, Yong-Wah
2017-11-22
Nanostructured metal oxides with cationic or anionic deficiency find applications in a wide range of technological areas including the energy sector and environment. However, a facile route to prepare such materials in bulk with acceptable reproducibility is still lacking; many synthesis techniques are still only bench-top and cannot be easily scaled-up. Here, we report that the benzyl alcohol (BA)-mediated method is capable of producing a host of nanostructured metal oxides (MO x , where M = Ti, Zn, Ce, Sn, In, Ga, or Fe) with inherent nonstoichiometry. It employs multifunctional BA as a solvent, a reducing agent, and a structure-directing agent. Depending on the oxidation states of metal, elemental or nonstoichiometric oxide forms are obtained. Augmented photoelectrochemical oxidation of water under visible light by some of these nonstoichiometric oxides highlights the versatility of the BA-mediated synthesis protocol.
Tuning and synthesis of metallic nanostructures by mechanical compression
Fan, Hongyou; Li, Binsong
2015-11-17
The present invention provides a pressure-induced phase transformation process to engineer metal nanoparticle architectures and to fabricate new nanostructured materials. The reversible changes of the nanoparticle unit cell dimension under pressure allow precise control over interparticle separation in 2D or 3D nanoparticle assemblies, offering unique robustness for interrogation of both quantum and classic coupling interactions. Irreversible changes above a threshold pressure of about 8 GPa enables new nanostructures, such as nanorods, nanowires, or nanosheets.
Yuan, Jian-Jun; Kimitsuka, Nobuo; Jin, Ren-Hua
2013-04-24
The synthesis of polysilsesquioxanes coating with controllable one-dimensional nanostructure on substrates remains a major long-term challenge by conventional solution-phase method. The hydrolytic polycondensation of organosilanes in solution normally produces a mixture of incomplete cages, ladderlike, and network structures, resulting in the poor control of the formation of specific nanostructure. This paper describes a simple aqueous process to synthesize nanofilament-based coatings of polysilsesquioxanes possessing various organo-functional groups (for example, thiol, methyl, phenyl, vinyl, and epoxy). We utilized a self-assembled nanostructured polyamine layer as a biomimetically catalytic scaffold/template to direct the formation of one-dimensional nanofilament of polysilsesquioxanes by temporally and spatially controlled hydrolytic polycondensation of organosilane. The surface nanostructure and morphology of polysilsesquioxane coating could be modulated by changing hydrolysis and condensation reaction conditions, and the orientation of nanofilaments of polysilsesquioxanes on substrates could be controlled by simply adjusting the self-assembly conditions of polyamine layer. The nanostructure and polyamine@polysilsesquioxane hybrid composition of nanofilament-based coatings were examined by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The template role of nanostructured polyamine layer for the formation of polysilsesquioxane nanofilament was confirmed by combining thin film X-ray diffraction (XRD) and XPS measurements. Moreover, these nanotextured coatings with various organo-functional groups could be changed into superhydrophobic surfaces after surface modification with fluorocarbon molecule.
Nanostructured Membranes for Enzyme Catalysis and Green Synthesis of Nanoparticles
Macroporous membranes functionalized with ionizable macromolecules provide promising applications in toxic metal capture at high capacity, nanoparticle synthesis, and catalysis. Our low-pressure membrane approach is marked by reaction and separation selectivity and their tunabil...
Nanostructured Membranes for Green Synthesis of Nanoparticles and Enzyme Catalysis
Macroporous membranes functionalized with ionizable macromolecules provide promising applications in toxic metal capture at high capacity, nanoparticle synthesis, and catalysis. Our low‐pressure membrane approach is marked by reaction and separation selectivity and their tunabili...
Marigold-like nanocrystals: controllable synthesis, field emission, and photocatalytic properties
NASA Astrophysics Data System (ADS)
Song, Changqing; Yu, Ke; Yin, Haihong; Zhang, Yuanyuan; Li, Shouchuan; Wang, Yang; Zhu, Ziqiang
2014-06-01
Cubic marigold-like Cu2S nanostructures were synthesized from a facile hydrothermal process without using any additives or surfactants. After thermal annealed at different condition, monoclinic Cu2S and tetragonal Cu1.81S nanostructures were obtained for the first time, maintaining the marigold-like morphology undestroyed. Field emission (FE) properties of these three types of nanostructures were investigated for the first time. The results indicated that the tetragonal Cu1.81S nanostructures had excellent field emission performance with turn-on field of and threshold field of . Moreover, their photocatalytic properties of the three nanostructures were also investigated by photodegradating methylene blue (MB). The results showed that the tetragonal Cu1.81S nanostructures may be a competitive material in both field emission and photocatalytic applications.
Study of Growth Kinetics in One Dimensional and Two Dimensional ZnO Nanostructures
NASA Astrophysics Data System (ADS)
Yin, Xin
Because of the merits arising from the unique geometry, nanostructure materials have been an essential class of materials, which have shown great potentials in the fields of electronics, photonics, and biology. With various nanostructures being intensively investigated and successfully complemented into device applications, there has been one increasing demand to the investigation of the growth mechanism devoted to the controlled nanostructure synthesis. Motivated by this situation, this thesis is focused on the fundamental understanding of the nanostructure growth. Specifically, by taking zinc oxide as an example material, through controlling the basic driving force, that is, the supersaturation, I have rationally designed and synthesized various of nanostructures, and further applied the classical layer-by-layer growth mechanism to the understanding on the formation of these nanostructures, they are, the convex-plate-capped nanowires, the concave-plate-capped nanowires, the facet evolution at the tip of the nanowires, and the ultrathin 2D nanosheets.
NASA Astrophysics Data System (ADS)
Bhattacharya, S.; Gupta, K.; Ghosh, U. C.
2017-04-01
Arsenic contamination in the ground water has serious health consequences in many parts of the world. The surface sorption method for arsenic mitigation has been widely investigated due to its simple method, inexpensive operation, highly efficient and low content of by-products. In the present study, nanostructured hydrated cerium aluminum oxide (NHCAO) was synthesized and characterized and its arsenic (III) sorption behavior from the aqueous solution was studied. The material was characterized in SEM, FE-SEM, TEM, AFM, XRD, and FT-IR. Batch method was used for the kinetics of As (III) sorption on nanoparticles at 303 (± 1.6) K and at pH 7.0 (± 0.2). The experiments on isotherm subject were performed individually at 288K, 303K, 318K temperatures at pH 7.0 (± 0.2) using the batch sorption method. In the kinetics study of arsenic (III) sorption, the sorption percentage was observed to remain nearly unchanged up to pH 9.0, thereafter only slight reduction in sorption percentage. The equilibrium sorption results were tested using the models of Langmuir and the Freundlich isotherm. The Langmuir model is the most fitted model for the sorption reaction. NHCAO was highly efficient in As(III) removal out of the water in the extensive range of pH and could be used for arsenic removal from contaminated water.
NASA Astrophysics Data System (ADS)
Basu, P.; Jian, P. F.; Seong, K. Y.; Seng, G. S.; Masrom, A. K.; Hussain, Z.; Aziz, A.
2010-03-01
Carbides of Ti and V have been synthesized directly from their oxides and ferroalloys through mechanical milling and heat treatment. The powder mixtures are milled in a planetary ball mill from 15-80 hours and subsequently heat treated at 1000-1300° C for TiO2-C mixtures, at 500-550° C for V2O5-C mixtures and at 600-1000° C for (Fe-V)-C mixtures. The milled and heat treated powders are characterized by SEM, EDAX, XRD, and BET techniques. Nanostructured TiC has been successfully synthesized under suitable processing conditions. However, carbides of vanadium is unidentified even though possibilities of V2O5-C reaction are indicated with an extent of induced amorphism in the powder mixture. Density, specific surface area and particle size of the milled and heat treated mixtures are correlated with heat treatment temperatures. Similar attempts are also made to synthesize vanadium carbides from industrial grade Fe-V.
Optically enhanced SnO{sub 2}/CdSe core/shell nanostructures grown by sol-gel spin coating method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vijay, E-mail: vijaynadda83@gmail.com; Goswami, Y. C.; Rajaram, P.
2015-08-28
Synthesis of SnO{sub 2}/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO{sub 2}. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope showsmore » the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.« less
Masjedi-Arani, Maryam; Salavati-Niasari, Masoud
2018-05-01
For the first time, a simple and rapid sonochemical technique for preparing of pure Cd 2 SiO 4 nanostructures has been developed in presence of various surfactants of SDS, CTAB and PVP. Uniform and fine Cd 2 SiO 4 nanoparticle was synthesized using of polymeric PVP surfactant and ultrasonic irradiation. The optimized cadmium silicate nanostructures added to graphene sheets and Cd 2 SiO 4 /Graphene nanocomposite synthesized through pre-graphenization. Hydrogen storage capacity performances of Cd 2 SiO 4 nanoparticle and Cd 2 SiO 4 /Graphene nanocomposite were compared. Obtained results represent that Cd 2 SiO 4 /Graphene nanocomposites have higher hydrogen storage capacity than Cd 2 SiO 4 nanoparticles. Cd 2 SiO 4 /Graphene nanocomposites and Cd 2 SiO 4 nanoparticles show hydrogen storage capacity of 3300 and 1300 mAh/g, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Latifi, Fatemeh; Talebi, Zahra; Khalili, Haleh; Zarrebini, Mohammad
2018-05-01
This work investigates the influence of processing parameters and aerogel pore structure on the physical properties and hydrophobicity of aerogel blankets. Aerogel blankets were produced by in situ synthesis of nanostructured silica aerogel on a polyester nonwoven substrate. Nitrogen adsorption-desorption analysis, contact angle test and FE-SEM images were used to characterize both the aerogel particles and the blankets. The results showed that the weight and thickness of the blanket were reduced when the low amount of catalyst was used. A decrease in the aerogel pore size from 22 to 11 nm increased the weight and thickness of the blankets. The xerogel particles with high density and pore size of 5 nm reduced the blanket weight. Also, the blanket weight and thickness were increased due to increasing the sol volume. It was found that the hydrophobicity of aerogel blankets is not influenced by sol volume and pore structure of silica aerogel.
Synthesis and gas sensing properties of α-Fe(2)O(3)@ZnO core-shell nanospindles.
Zhang, Jun; Liu, Xianghong; Wang, Liwei; Yang, Taili; Guo, Xianzhi; Wu, Shihua; Wang, Shurong; Zhang, Shoumin
2011-05-06
α-Fe(2)O(3)@ZnO core-shell nanospindles were synthesized via a two-step hydrothermal approach, and characterized by means of SEM/TEM/XRD/XPS. The ZnO shell coated on the nanospindles has a thickness of 10-15 nm. Considering that both α-Fe(2)O(3) and ZnO are good sensing materials, we have investigated the gas sensing performances of the core-shell nanocomposite using ethanol as the main probe gas. It is interesting to find that the gas sensor properties of the core-shell nanospindles are significantly enhanced compared with pristine α-Fe(2)O(3). The enhanced sensor properties are attributed to the unique core-shell nanostructure. The detailed sensing mechanism is discussed with respect to the energy band structure and the electron depletion theory. The core-shell nanostructure reported in this work provides a new path to fabricate highly sensitive materials for gas sensing applications.
Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate
2013-01-01
Background A green approach to synthesize nanomaterials using biotemplates has been subjected to intense research due to several advantages. Palm olein as a biotemplate offers the benefits of eco-friendliness, low-cost and scale-up for large scale production. Therefore, the effect of palm olein on morphology and surface properties of ZnO nanostructures were investigated. Results The results indicate that palm olein as a biotemplate can be used to modify the shape and size of ZnO particles synthesized by hydrothermal method. Different morphology including flake-, flower- and three dimensional star-like structures were obtained. FTIR study indicated the reaction between carboxyl group of palm olein and zinc species had taken place. Specific surface area enhanced while no considerable change were observed in optical properties. Conclusion Phase-pure ZnO particles were successfully synthesized using palm olein as soft biotemplating agent by hydrothermal method. The physico-chemical properties of the resulting ZnO particles can be tuned using the ratio of palm olein to Zn cation. PMID:23601826
NASA Astrophysics Data System (ADS)
Podestà, Alessandro; Borghi, Francesca; Indrieri, Marco; Bovio, Simone; Piazzoni, Claudio; Milani, Paolo
2015-12-01
Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it, E-mail: pmilani@mi.infn.it; Borghi, Francesca; Indrieri, Marco
Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO{sub 2}) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevantmore » interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.« less
Lin, Yuan-Chung; Liu, Shou-Heng; Syu, Han-Ren; Ho, Tsung-Han
2012-09-01
A facile synthesis route is reported for preparation of mesoporous TiO(2) nanoparticles (MT-x) through evaporation induced self-assembly by using Pluronic F127, titanium isopropoxide, and various amounts of ethanol as templating agents, titanium sources and solvents, respectively. A variety of different spectroscopic and analytical techniques, such as small- and large-angle powder X-ray diffraction (XRD), N(2) adsorption-desorption isotherms, transmission electron microscopy (TEM), Raman and Fourier transform infrared (FTIR) spectroscopies were used to characterize the physicochemical properties of various MT-x catalysts. Among the catalysts, MT-20 was found to have better mesostructures formed by the arrangement of anatase TiO(2) nanoparticles of ca. 17.3 nm with broad interparticle pore size distribution. Hydrogen generation from water splitting on MT-20 using visible light was enhanced by at least 8.7 times if compared with the conventional TiO(2) photocatalyst. The superior photocatalytic performances observed for the synthesized MT-20 may be attributed to the presence of unique nanostructures in the TiO(2) photocatalysts. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin
2002-01-01
Supra-molecular or nano-structured electro-active polymers are potentially useful for developing variety inexpensive and flexible shaped opto-electronic devices. In the case of organic photovoltaic materials or devices, for instance, photo induced electrons and holes need to be separated and transported in organic acceptor (A) and donor (D) phases respectively. In this paper, preliminary results of synthesis and characterizations of a coupled block copolymers containing a conjugated donor block RO-PPV and a conjugated acceptor block SF-PPV and some of their electronic/optical properties are presented. While the donor block film has a strong PL emission at around 570 nm, and acceptor block film has a strong PL emission at around 590 nm, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99%. Experimental results demonstrated an effective photo induced electron transfer and charge separation due to the interfaces of donor and acceptor blocks. The system is very promising for variety light harvesting applications, including "plastic" photovoltaic devices.
NASA Astrophysics Data System (ADS)
Ebrahimi-Kahrizsangi, Reza; Nasiri-Tabrizi, Bahman; Chami, Akbar
2010-09-01
In this paper, synthesis of bionanocomposite of fluorapatite-titania (FAp-TiO 2) was studied by using one step mechanochemical process. Characterization of the products was accomplished by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Based on XRD patterns and FT-IR spectroscopy, correlation between the structural features of the nanostructured FAp-TiO 2 and the process conditions was discussed. Variations in crystallite size, lattice strain, and volume fraction of grain boundary were investigated during milling and the following heat treatment. Crystallization of the nanocomposite occurred after thermal treatment at 650 °C. Morphological features of powders were influenced by the milling time. The resulting FAp-20 wt.%TiO 2 nanocomposite powder exhibited an average particle size of 15 nm after 20 h of milling. The results show that the one step mechanosynthesis technique is an effective route to prepare FAp-based nanocomposites with excellent morphological and structural features.
Wang, Michael C P; Gates, Byron D
2012-09-04
Selenium nanostructures, which are otherwise susceptible to oxidative damage, were encapsulated with a thin layer of polystyrene. The thin layer of polystyrene was grafted onto the surfaces of selenium by a surface initiated atom transfer radical polymerization reaction. These encapsulated nanostructures demonstrate an enhanced resistance towards corrosion.
NASA Astrophysics Data System (ADS)
Postnov, V. N.; Rodinkov, O. V.; Moskvin, L. N.; Novikov, A. G.; Bugaichenko, A. S.; Krokhina, O. A.
2016-02-01
Information on carbon nanostructures (fullerenes, nanotubes, graphene, nanodiamond and nanodispersed active carbon) used to develop high-performance sorbents of organics and heavy metal ions from aqueous solutions is collected and analyzed. The advantages in the synthesis of hybrid carbon nanostructures and the possibilities of surface modification of these systems in order to carry out fast sorption pre-concentration are considered. Prospects for application of these materials in sorption technologies and analytical chemistry are discussed. The bibliography includes 364 references.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghamohammadi, Sogand; Reactor and Catalysis Research Center; Haghighi, Mohammad, E-mail: haghighi@sut.ac.ir
2014-02-01
Graphical abstract: In this research nanostructured CeAPSO-34 was synthesized to explore the effect of TEAOH and morpholine on its physiochemical properties and MTO performance. Prepared catalysts were characterized with XRD, FESEM, BET, FTIR and NH3-TPD techniques. The results indicated that the nature of the template determines the physiochemical properties of CeAPSO-34 due to different rate of crystal growth. The catalyst obtained by using morpholine showed longer life time as well as sustaining light olefins selectivity at higher values. Furthermore, a comprehensive thermodynamic analysis of overall reactions network was carried out to address the major channels of methanol to olefins conversion.more » - Highlights: • Introduction of Ce into SAPO-34 framework. • Comparison of CeAPSO-34 synthesized using morpholine and TEAOH. • The nature of the template determines the physiochemical properties of CeAPSO-34. • Morpholine enhances catalyst lifetime in MTO process. • Presenting a complete reaction network for MTO process. - Abstract: TEAOH and morpholine were employed in synthesis of nanostructured CeAPSO-34 molecular sieve and used in methanol to olefins conversion. Prepared samples were characterized by XRD, FESEM, EDX, BET, FTIR and NH{sub 3}-TPD techniques. XRD patterns reflected the higher crystallinity of the catalyst synthesized with morpholine. The FESEM results indicated that the nature of the template determines the morphology of nanostructured CeAPSO-34 due to different rate of crystal growth. There was a meaningful difference in the strength of both strong and weak acid sites for CeAPSO-34 catalysts synthesized with TEAOH and morpholine templates. The catalyst synthesized with morpholine showed higher desorption temperature of both weak and strong acid sites evidenced by NH{sub 3}-TPD characterization. The catalyst obtained using morpholine template had the longer lifetime and sustained desired light olefins at higher values. A comprehensive thermodynamic analysis of overall reactions network was carried out to address the major channels of methanol to olefins conversion.« less
Peptide nanostructures in biomedical technology.
Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik
2016-09-01
Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Dy3+ doped cubic zirconia nanostructures prepared via ultrasound route for display applications
NASA Astrophysics Data System (ADS)
Yadav, H. J. Amith; Eraiah, B.; Nagabhushana, H.; Basavaraj, R. B.; Deepthi, N. H.
2017-05-01
White light emitting dysprosium (Dy) doped Zirconia (ZrO2) nanostructures were prepared first time via ultrasound assisted sonochemical synthesis route using cetyltrimethylammonium bromide (CTAB) surfactant. The obtained product was well characterized. The powder X-ray diffraction (PXRD) profiles confirmed that the product was highly crystalline in nature with cubic phase. Various reaction parameters such as, effect of sonication time, concentration of the surfactant was studied in detail. Diffuse reflectance spectroscopy (DRS) was studied to evaluate the band gap energy of the products and the values were found in the range of 4.13 - 4.53 eV. The particle size was estimated by transmission electron microscope (TEM) and it was found in the range of 10-20 nm. Photoluminescence (PL) properties were studied in detail by recording emission spectra of all the Dy doped Zirconia nanostructures at an excitation wavelength of 350 nm. The emission peaks were observed at 480, 574 and 666 nm which corresponds to Dy3+ ion transitions. The 3 mol% Dy3+ doped ZrO2 nanostructures showed maximum intensity. Further photometric measurements were done by evaluating, Commission International De I-Eclairage (CIE) and correlated color temperature (CCT). From CIE it was observed that the color coordinates lies in white region. The color purity and quantum efficiency were also estimated and the results indicate that the nanophosphor obtained in this route can be used in preparing solid state lighting application.
Development of β Type Ti23Mo-45S5 Bioglass Nanocomposites for Dental Applications
Jurczyk, Karolina; Miklaszewski, Andrzej; Jurczyk, Mieczyslawa U.; Jurczyk, Mieczyslaw
2015-01-01
Titanium β-type alloys attract attention as biomaterials for dental applications. The aim of this work was the synthesis of nanostructured β type Ti23Mo-x wt % 45S5 Bioglass (x = 0, 3 and 10) composites by mechanical alloying and powder metallurgy methods and their characterization. The crystallization of the amorphous material upon annealing led to the formation of a nanostructured β type Ti23Mo alloy with a grain size of approximately 40 nm. With the increase of the 45S5 Bioglass contents in Ti23Mo, nanocomposite increase of the α-phase is noticeable. The electrochemical treatment in phosphoric acid electrolyte resulted in a porous surface, followed by bioactive ceramic Ca-P deposition. Corrosion resistance potentiodynamic testing in Ringer solution at 37 °C showed a positive effect of porosity and Ca-P deposition on nanostructured Ti23Mo 3 wt % 45S5 Bioglass nanocomposite. The contact angles of glycerol on the nanostructured Ti23Mo alloy were determined and show visible decrease for bulk Ti23Mo 3 wt % 45S5 Bioglass and etched Ti23Mo 3 wt % 45S5 Bioglass nanocomposites. In vitro tests culture of normal human osteoblast cells showed very good cell proliferation, colonization, and multilayering. The present study demonstrated that porous Ti23Mo 3 wt % 45S5 Bioglass nanocomposite is a promising biomaterial for bone tissue engineering. PMID:28793695
Synthesis of silver-titanium dioxide nanocomposites for antimicrobial applications
NASA Astrophysics Data System (ADS)
Yang, X. H.; Fu, H. T.; Wang, X. C.; Yang, J. L.; Jiang, X. C.; Yu, A. B.
2014-08-01
Silver-titanium dioxide (Ag-TiO2) nanostructures have attracted increasing attention because of unique functional properties and potential applications in many areas such as photocatalysis, antibacterial, and self-cleaning coatings. In this study, Ag@TiO2 core-shell nanostructures and Ag-decorated TiO2 particles (TiO2@Ag) (the size of these two nanoparticles is ranging from 200-300 nm) have been synthesized by a developed facile but efficient method. These two types of hybrid nanostructures, characterized by various advanced techniques (TEM, XRD, BET and others), exhibit unique functional properties particularly in antibacterial toward Gram negative Escherichia coli, as a case study. Specifically: (i) the TiO2@Ag nanoparticles are superior in bacterial growth inhibition in standard culture conditions (37 °C incubator) to the Ag@TiO2 core-shell ones, in which silver may dominate the antibacterial performance; (ii) while after UV irradiation treatment, the Ag@TiO2 core-shell nanoparticles exhibit better performance in killing grown bacteria than the TiO2@Ag ones, probably because of the Ag cores facilitating charge separation for TiO2, and thus produce more hydroxyl radicals on the surface of the TiO2 particles; and (iii) without UV irradiation, both TiO2@Ag and Ag@TiO2 nanostructures show poor capabilities in killing mature bacteria. These findings would be useful for designing hybrid metal oxide nanocomposites with desirable functionalities in bioapplications in terms of sterilization, deodorization, and water purification.
Zemtsova, Elena
2014-01-01
We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology. PMID:24695459
Zemtsova, Elena; Yurchuk, Denis; Smirnov, Vladimir
2014-01-01
We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1-50 nm. This material can be represented as the material type "frame in the frame" that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology.
NASA Astrophysics Data System (ADS)
Kang, Ning
Nanomaterials have shown increasing applications in the design and fabrication of functional devices such as energy storage devices and sensor devices. A key challenge is the ability to harness the nanostructures in terms of size, shape, composition and structure so that the unique nanoscale functional properties can be exploited. This dissertation describes our findings in design, synthesis, and characterization of nanoparticles towards applications in two important fronts. The first involves the investigation of nanoalloy catalysts and functional nanoparticles for energy storage devices, including Li-air and Li-ion batteries, aiming at increasing the capacity and cycle performance. Part of this effort focuses on design of bifunctional nanocatalysts through alloying noble metal with non-noble transition metal to improve the ORR and OER activity of Li-air batteries. By manipulating the composition and alloying structure of the catalysts, synergetic effect has been demonstrated, which is substantiated by both experimental results and theoretical calculation for the charge/discharge process. The other part of the effort focuses on modification of Si nanoparticles towards high-capacity anode materials. The modification involved dopant elements, carbon coating, and graphene composite formation to manipulate the ability of the nanoparticles in accommodating the volume expansion. The second part focuses on the design, preparation and characterization of metal nanoparticles and nanocomposite materials for the application in flexible sensing devices. The investigation focuses on fabrication of a novel class of nanoparticle-nanofibrous membranes consisting of gold nanoparticles embedded in a multi-layered fibrous membrane as a tunable interfacial scaffold for flexible sweat sensors. Sensing responses to different ionic species in aqueous solutions and relative humidity changes in the environment were demonstrated, showing promising potential as flexible sensing devices for applications in wearable sweat sensors. Moreover, printing technique was also applied in the fabrication of conductive patterns as the sensing electrodes. The results shed new lights on the understanding of the structural tuning of the nanomaterials for the ultimate applications in advanced energy storage devices and chemical sensor devices.
Current Advances in Lanthanide‐Doped Upconversion Nanostructures for Detection and Bioapplication
Chen, Cailing
2016-01-01
Along with the development of science and technology, lanthanide‐doped upconversion nanostructures as a new type of materials have taken their place in the field of nanomaterials. Upconversion luminescence is a nonlinear optical phenomenon, which absorbs two or more photons and emits one photon. Compared with traditional luminescence materials, upconversion nanostructures have many advantages, such as weak background interference, long lifetime, low excitation energy, and strong tissue penetration. These interesting nanostructures can be applied in anticounterfeit, solar cell, detection, bioimaging, therapy, and so on. This review is focused on the current advances in lanthanide‐doped upconversion nanostructures, covering not only basic luminescence mechanism, synthesis, and modification methods but also the design and fabrication of upconversion nanostructures, like core–shell nanoparticles or nanocomposites. At last, this review emphasizes the application of upconversion nanostructure in detection and bioimaging and therapy. Learning more about the advances of upconversion nanostructures can help us better exploit their excellent performance and use them in practice. PMID:27840794
Large-scale synthesis of a novel tri(8-hydroxyquioline) aluminum nanostructure.
Tian, Xike; Fei, Jinbo; Pi, Zhenbang; Yang, Chao; Xiao, Zhidong; Zhang, Lide
2006-08-01
A novel tri(8-hydroxyquioline) aluminum (AlQ3) nanostructure was prepared on large scale at low cost by low-temperature physical vapor deposition (PVD). The morphologies, the chemical bondings, and photoluminescence of the AlQ3 nanostructure were investigated by environmental scanning electronic microscopy (ESEM), Fourier transform infrared spectrum (FT-IR), and photoluminescence (PL) spectra, respectively. The AlQ3 nanostructure was composed of micro-sphere with nanowire-cluster growing on the surface. The diameter of micro-sphere and nanowire were about 5 microm and 80 nm, respectively. FT-IR results indicated that the AlQ3 molecule had a strong thermal stability under research conditions. The growth mechanism of the novel nanostructure was discussed. The novel organic nanostructure would be believed to attractive building field-emission devices and other optical devices.
Facile synthesis of nanostructured transition metal oxides as electrodes for Li-ion batteries
NASA Astrophysics Data System (ADS)
Opra, Denis P.; Gnedenkov, Sergey V.; Sokolov, Alexander A.; Minaev, Alexander N.; Kuryavyi, Valery G.; Sinebryukhov, Sergey L.
2017-09-01
At all times, energy storage is one of the greatest scientific challenge. Recently, Li-ion batteries are under special attention due to high working voltage, long cycle life, low self-discharge, reliability, no-memory effect. However, commercial LIBs usage in medium- and large-scale energy storage are limited by the capacity of lithiated metal oxide cathode and unsafety of graphite anode at high-rate charge. In this way, new electrode materials with higher electrochemical performance should be designed to satisfy a requirement in both energy and power. As it known, nanostructured transition metal oxides are promising electrode materials because of their elevated specific capacity and high potential vs. Li/Li+. In this work, the perspective of an original facile technique of pulsed high-voltage plasma discharge in synthesis of nanostructured transition metal oxides as electrodes for lithium-ion batteries has been demonstrated.
Surfactant-free Synthesis of CuO with Controllable Morphologies and Enhanced Photocatalytic Property
NASA Astrophysics Data System (ADS)
Wang, Xing; Yang, Jiao; Shi, Liuxue; Gao, Meizhen
2016-03-01
A green synthesis for nanoleave, nanosheet, spindle-like, rugby-like, dandelion-like and flower-like CuO nanostructures (from 2D to 3D) is successfully achieved through simply hydrothermal synthetic method without the assistance of surfactant. The morphology of CuO nanostructures can be easily tailored by adjusting the amount of ammonia and the source of copper. By designing a time varying experiment, it is verified that the flower- and dandelion-like CuO structures are synthesized by the self-assembly and Ostwald ripening mechanism. Structural and morphological evolutions are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectra. Additionally, the CuO nanostructures with different morphologies could serve as a potential photocatalyst on the photodecomposition of rhodamine B (RhB) aqueous solutions in the presence of H2O2 under visible light irradiation.
Montasser, Imed; Shahgaldian, Patrick; Perret, Florent; Coleman, Anthony W.
2013-01-01
Solid lipid nanoparticles (SLNs) have attracted increasing attention during recent years. This paper presents an overview about the use of calix[n]arenes and calix-resorcinarenes in the formulation of SLNs. Because of their specific inclusion capability both in the intraparticle spaces and in the host cavities as well as their capacity for functionalization, these colloidal nanostructures represent excellent tools for the encapsulation of different active pharmaceutical ingredients (APIs) in the area of drug targeting, cosmetic additives, contrast agents, etc. Various synthetic routes to the supramolecular structures will be given. These various routes lead to the formulation of the corresponding SLNs. Characterization, properties, toxicological considerations as well as numerous corresponding experimental studies and analytical methods will be also exposed and discussed. PMID:24196356
Duan, Xiaochuan; Kim, Tongil; Li, Di; Ma, Jianmin; Zheng, Wenjun
2013-05-03
Well-dispersed ammonium aluminum carbonate hydroxide (NH4-Dw) and γ-AlOOH nanostructures with controlled morphologies have been synthesized by employing an ionic-liquid-assisted hydrothermal process. The basic strategies that were used in this work were: 1) A controllable phase transition from NH4-Dw to γ-AlOOH could be realized by increasing the reaction temperature and 2) the morphological evolution of NH4-Dw and γ-AlOOH nanostructures could be influenced by the concentration of the ionic liquid. Based on these experimental results, the main objective of this work was to clarify the effect models of the ionic liquids on the synthesis of NH4-Dw and γ-AlOOH nanostructures, which could be divided into cationic- or anionic-dominant effect models, as determined by the different surface structures of the targets. Specifically, under the cationic-dominant regime, the ionic liquids mainly showed dispersion effects for the NH4-Dw nanostructures, whereas the anionic-dominant model could induce the self-assembly of the γ-AlOOH particles to form hierarchical structures. Under the guidance of the proposed models, the effect of the ionic liquids would be optimized by an appropriate choice of cations or anions, as well as by considering the different effect models with the substrate surface. We expect that such effect models between ionic liquids and the target products will be helpful for understanding and designing rational ionic liquids that contain specific functional groups, thus open up new opportunities for the synthesis of inorganic nanomaterials with new morphologies and improved properties. In addition, these as-prepared NH4-Dw and γ-AlOOH nanostructures were converted into porous γ-Al2O3 nanostructures by thermal decomposition, whilst preserving the same morphology. By using HRTEM and nitrogen-adsorption analysis, the obtained γ-Al2O3 samples were found to have excellent porous properties and, hence, may have applications in catalysis and adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Suchitra, S. M.; Udayashankar, N. K.
2017-12-01
In the present study, we describe an effective method for the synthesis of Graphitic carbon nitride (GCN) nanostructures using porous anodic alumina (AAO) membrane as template by simple thermal condensation of cyanamide. Synthesized nanostructure was fully analysed by various techniques to detect its crystalline nature, morphology, luminescent properties followed by the evaluation of its photocatalytic activity in the degradation of Methylene blue dye. Structural analysis of synthesized GCNNF was systematically carried out using x-ray powder diffraction (XRD) and scanning electron microscope (SEM), and. The results confirmed the growth of GCN inside the nanochannels of anodic alumina templates. Luminescent properties of GCNNF were studied using photoluminescence (PL) spectroscopy. PL analysis showed the presence of a strong emission peak in the wavelength range of 350-600 nm in blue region. GCNNF displays higher photocatalytic performance in the photodegradation of methylene blue compare to the bulk GCN. Highlights 1. In the present paper, we report the synthesis of graphitic carbon nitride nanofibers (GCNNF) using porous anodic aluminium oxide membranes as templates through thermal condensation of cyanamide at 500 °C. 2. The synthesis of Graphitic carbon nitride nanofibers using porous andic alumina template is the efficient approach for increasing crystallinity and surface area. 3. The high surface area of graphitic carbon nitride nanofibers has a good impact on novel optical and photocatalytic properties of the bulkGCN. 4. AAO templating of GCN is one of the versatile method to produce tailorable GCN nanostructures with higher surface area and less number of structural defects. 5. Towards photocatalytic degradation of dyes, the tuning of physical properties is very essential thing hence we are succeeded in achieving better catalytic performance of GCN nanostructures by making use of AAO templates.
Transparent conductive nano-composites
Geohegan, David Bruce; Ivanov, Ilia N; Puretzky, Alexander A; Jesse, Stephen; Hu, Bin; Garrett, Matthew; Zhao, Bin
2013-09-24
The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.
Transparent conductive nano-composites
Geohegan, David Bruce [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN; Jesse, Stephen [Knoxville, TN; Hu, Bin [Knoxville, TN; Garrett, Matthew [Knoxville, TN; Zhao, Bin [Easley, SC
2011-04-12
The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.
Investigations of inorganic and hybrid inorganic-organic nanostructures
NASA Astrophysics Data System (ADS)
Kam, Kinson Chihang
This thesis focuses on the exploratory synthesis and characterization of inorganic and hybrid inorganic-organic nanomaterials. In particular, nanostructures of semiconducting nitrides and oxides, and hybrid systems of nanowire-polymer composites and framework materials, are investigated. These materials are characterized by a variety of techniques for structure, composition, morphology, surface area, optical properties, and electrical properties. In the study of inorganic nanomaterials, gallium nitride (GaN), indium oxide (In2O3), and vanadium dioxide (VO2) nanostructures were synthesized using different strategies and their physical properties were examined. GaN nanostructures were obtained from various synthetic routes. Solid-state ammonolysis of metastable gamma-Ga2O 3 nanoparticles was found to be particularly successful; they achieved high surface areas and photoluminescent study showed a blue shift in emission as a result of surface and size defects. Similarly, In2O3 nanostructures were obtained by carbon-assisted solid-state syntheses. The sub-oxidic species, which are generated via a self-catalyzed vapor-liquid-solid mechanism, resulted in 1D nanostructures including nanowires, nanotrees, and nanobouquets upon oxidation. On the other hand, hydrothermal methods were used to obtain VO2 nanorods. After post-thermal treatment, infrared spectroscopy demonstrated that these nanorods exhibit a thermochromic transition with temperature that is higher by ˜10°C compared to the parent material. The thermochromic behavior indicated a semiconductor-to-metal transition associated with a structural transformation from monoclinic to rutile. The hybrid systems, on the other hand, enabled their properties to be tunable. In nanowire-polymer composites, zinc oxide (ZnO) and silver (Ag) nanowires were synthesized and incorporated into polyaniline (PANI) and polypyrrole (PPy) via in-situ and ex-situ polymerization method. The electrical properties of these composites are significantly influenced by the nanowire-polymer ratios and chemical functionalization of the respective nanowires, up to an order of magnitude. In hybrid framework materials, nine novel phases of magnesium tartrate coordination polymers were synthesized by exploiting different analogs of tartaric acid, resulting in chiral and achiral frameworks. These phases exhibited a diverse range of structures as a result of connectivity, density, composition differences as a function of temperature. The chirality of some of these frameworks was also verified using circular dichroism.
Nanostructured nonprecious metal catalysts for oxygen reduction reaction.
Wu, Gang; Zelenay, Piotr
2013-08-20
Platinum-based catalysts represent a state of the art in the electrocatalysis of oxygen reduction reaction (ORR) from the point of view of their activity and durability in harnessing the chemical energy via direct electrochemical conversion. However, because platinum is both expensive and scarce, its widespread implementation in such clean energy applications is limited. Recent breakthroughs in the synthesis of high-performance nonprecious metal catalysts (NPMCs) make replacement of Pt in ORR electrocatalysts with earth-abundant elements, such as Fe, Co, N, and C, a realistic possibility. In this Account, we discuss how we can obtain highly promising M-N-C (M: Fe and/or Co) catalysts by simultaneously heat-treating precursors of nitrogen, carbon, and transition metals at 800-1000 °C. The activity and durability of resulting catalysts depend greatly on the selection of precursors and synthesis chemistry. In addition, they correlate quite well with the catalyst nanostructure. While chemists have presented no conclusive description of the active catalytic site for this class of NPMCs, they have developed a designed approach to making active and durable materials, focusing on the catalyst nanostructure. The approach consists of nitrogen doping, in situ carbon graphitization, and the usage of graphitic structures (possibly graphene and graphene oxides) as carbon precursors. Various forms of nitrogen, particularly pyridinic and quaternary, can act as n-type carbon dopants in the M-N-C catalysts, assisting in the formation of disordered carbon nanostructures and donating electrons to the carbon. The CNx structures are likely a crucial part of the ORR active site(s). Noteworthy, the ORR activity is not necessarily governed by the amount of nitrogen, but by how the nitrogen is incorporated into the nanostructures. Apart from the possibility of a direct participation in the active site, the transition metal often plays an important role in the in situ formation of various carbon nanostructures by catalyzing the decomposition of the nitrogen/carbon precursor. We can control the formation of different nanostructures during the synthesis of M-N-C catalysts. For example, in situ formed nitrogen-doped graphene-sheets can only be derived from polyaniline (PANI), probably due to structural similarities between the aromatic structures of PANI and graphene. Highly-graphitized carbon nanostructures may serve as a matrix for the formation of ORR-active groups with improved catalytic activity and durability, containing nitrogen and most probably also metal atoms. In the future, we will likely focus NPMC synthesis approaches on precise control of interactions between precursors of the metal and carbon/nitrogen during the heat treatment. The main purposes will be to maximize the number of active sites, optimize nitrogen doping levels, and generate morphologies capable of hosting active and stable ORR sites.
Synthesis of branched metal nanostructures with controlled architecture and composition
NASA Astrophysics Data System (ADS)
Ortiz, Nancy
On account of their small size, metal nanoparticles are proven to be outstanding catalysts for numerous chemical transformations and represent promising platforms for applications in the fields of electronics, chemical sensing, medicine, and beyond. Many properties of metal nanoparticles are size-dependent and can be further manipulated through their shape and architecture (e.g., spherical vs. branched). Achieving morphology control of nanoparticles through solution-based techniques has proven challenging due to limited knowledge of morphology development in nanosyntheses. To overcome these complications, a systematic examination of the local ligand environment of metal precursors on nanostructure formation was undertaken to evaluate its contribution to nanoparticle nucleation rate and subsequent growth processes. Specifically, this thesis will provide evidence from ex situ studies---Transmission Electron Microscopy (TEM) and UV-visible spectroscopy (UV-Vis)---that support the hypothesis that strongly coordinated ligands delay burst-like nucleation to generate spherical metal nanoparticles and ligands with intermediate binding affinity regulate the gradual reduction of metal precursors to promote aggregated assembly of nanodendrites. These ex situ studies were coupled with a new in situ perspective, providing detailed understanding of metal precursor transformation, its direct relation to nanoparticle morphology development, and the ligand influence towards the formation of structurally complex metal nanostructures, using in situ synchrotron X-ray Diffraction (XRD) and Ultra Small-Angle X-ray Scattering (USAXS). The principles extracted from the study of monometallic nanostructure formation were also found to be generally applicable to the synthesis of bimetallic nanostructures, e.g., Pd-Pt architectures, with either core-shell or alloyed structures that were readily achieved by ligand selection. These outcomes provide a direct connection between fundamental principles of coordination chemistry and nanoparticle formation, with a stronger foundation for the predictive synthesis of future nanomaterials with controllable structural features.
Chen, Feng; Zhu, Ying-Jie
2016-12-27
Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing.
Crossing Over: Nanostructures that Move Electrons and Ions Across Cellular Membranes
Ajo-Franklin, C. M.; Noy, A.
2015-04-27
Critical biological processes such as energy generation and signal transduction are driven by the flow of electrons and ions across the membranes of living cells. As a result, there is substantial interest in creating nanostructured materials that control transport of these charged species across biomembranes. The recent advances in the synthesis of de novo and protein nanostructures for transmembrane ion and electron transport and the mechanistic understanding underlying this transport are described. Moreover, this body of work highlights the promise such nanostructures hold for directing transmembrane transport of charged species as well as challenges that must be overcome to realizemore » that potential.« less
Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H; Xia, Haibing; Du, Dan; Lin, Yuehe
2016-12-28
Rational design and construction of Pt-based porous nanostructures with large mesopores have triggered significant considerations because of their high surface area and more efficient mass transport. Hydrochloric acid-induced kinetically controlled reduction of metal precursors in the presence of soft template F-127 and hard template tellurium nanowires has been successfully demonstrated to construct one-dimensional hierarchical porous PtCu alloy nanostructures with large mesopores. Moreover, the electrochemical experiments demonstrated that the PtCu hierarchically porous nanostructures synthesized under optimized conditions exhibit enhanced electrocatalytic performance for oxygen reduction reaction in acid media.
Plasma Spray Synthesis Of Nanostructured V2O5 Films For Electrical Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanda, Jagjit
We demonstrate for the first time, the synthesis of nanostructured vanadium pentoxide (V2O5) films and coatings using plasma spray technique. V2O5 has been used in several applications such as catalysts, super-capacitors and also as an electrode material in lithium ion batteries. In the present studies, V2O5 films were synthesized using liquid precursors (vanadium oxychloride and ammonium metavanadate) and powder suspension. In our approach, the precursors were atomized and injected radially into the plasma gun for deposition on the substrates. During the flight towards the substrate, the high temperature of the plasma plume pyrolyzes the precursor particles resulting into the desiredmore » film coatings. These coatings were then characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Differential Scanning Calorimetry (DSC). Among the precursors, vanadium oxychloride gave the best results in terms of nanocrystalline and monophasic films. Spraying of commercial powder suspension yielded multi-phasic mixture in the films. Our approach enables deposition of large area coatings of high quality nanocrystalline films of V2O5 with controllable particle morphology. This has been optimized by means of control over precursor composition and plasma spray conditions. Initial electrochemical studies of V2O5 film electrodes show potential for energy storage studies.« less
Biomolecular Assembly of Gold Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micheel, Christine Marya
2005-05-20
Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused inmore » three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.« less
Biofluid lubrication for artificial joints
NASA Astrophysics Data System (ADS)
Pendleton, Alice Mae
This research investigated biofluid lubrication related to artificial joints using tribological and rheological approaches. Biofluids studied here represent two categories of fluids, base fluids and nanostructured biofluids. Base fluids were studied through comparison of synthetic fluids (simulated body fluid and hyaluronic acid) as well as natural biofluids (from dogs, horses, and humans) in terms of viscosity and fluid shear stress. The nano-structured biofluids were formed using molecules having well-defined shapes. Understanding nano-structured biofluids leads to new ways of design and synthesis of biofluids that are beneficial for artificial joint performance. Experimental approaches were utilized in the present research. This includes basic analysis of biofluids' property, such as viscosity, fluid shear stress, and shear rate using rheological experiments. Tribological investigation and surface characterization were conducted in order to understand effects of molecular and nanostructures on fluid lubrication. Workpiece surface structure and wear mechanisms were investigated using a scanning electron microscope and a transmission electron microscope. The surface topography was examined using a profilometer. The results demonstrated that with the adding of solid additives, such as crown ether or fullerene acted as rough as the other solids in the 3-body wear systems. In addition, the fullerene supplied low friction and low wear, which designates the lubrication purpose of this particular particle system. This dissertation is constructed of six chapters. The first chapter is an introduction to body fluids, as mentioned earlier. After Chapter II, it examines the motivation and approach of the present research, Chapter III discusses the experimental approaches, including materials, experimental setup, and conditions. In Chapter IV, lubrication properties of various fluids are discussed. The tribological properties and performance nanostructured biofluids are discussed in Chapter V, followed by summary and conclusions in Chapter VI.
Gupta, Saurabh; Bector, Shruti
2013-05-01
Green chemistry is a boon for the development of safe, stable and ecofriendly nanostructures using biological tools. The present study was carried out to explore the potential of selected fungal strains for biosynthesis of intra- and extracellular gold nanostructures. Out of the seven cultures, two fungal strains (SBS-3 and SBS-7) were selected on the basis of development of dark pink colour in cell free supernatant and fungal beads, respectively indicative of extra- and intracellular gold nanoparticles production. Both biomass associated and cell free gold nanoparticles were characterized using X-ray diffractogram (XRD) analysis and transmission electron microscopy (TEM). XRD analysis confirmed crystalline, face-centered cubic lattice of metallic gold nanoparticles along with average crystallite size. A marginal difference in average crystallite size of extracellular (17.76 nm) and intracellular (26 and 22 nm) Au-nanostructures was observed using Scherrer equation. In TEM, a variety of shapes (triangles, spherical, hexagonal) were observed in both extra- and intracellular nanoparticles. 18S rRNA gene sequence analysis by multiple sequence alignment (BLAST) indicated 99 % homology of SBS-3 to Aspergillus fumigatus with 99 % alignment coverage and 98 % homology of SBS-7 to Aspergillus flavus with 98 % alignment coverage respectively. Native-PAGE and activity staining further confirmed enzyme linked synthesis of gold nanoparticles.
Cavitational synthesis of nanostructured inorganic materials for enhanced heterogeneous catalysis
NASA Astrophysics Data System (ADS)
Krausz, Ivo Michael
The synthesis of nanostructured inorganic materials by hydrodynamic cavitation processing was investigated. The goal of this work was to develop a general synthesis technique for nanostructured materials with a control over crystallite size in the 1--20 nm range. Materials with crystallite sizes in this range have shown enhanced catalytic activity compared to materials with larger crystallite sizes. Several supported and unsupported inorganic materials were studied to understand the effects of cavitation on crystallite size. Cavitation processing of calcium fluoride resulted in more spherical particles, attached to one another by melted necks. This work produced the first evidence of shock wave heating of nanostructured materials by hydrodynamic cavitation processing. Hydrodynamic cavitation synthesis of various catalytic support materials indicated that their phase composition and purity could be controlled by adjustment of the processing parameters. Zirconia/alumina supports synthesized using hydro-dynamic cavitation and calcined to 1368 K retained a high purity cubic zirconia phase, whereas classically prepared samples showed a phase transformation to monoclinic zirconia. Similarly, the synthesis of alumina resulted in materials with varying Bohmite and Bayerite contents as a function of the process parameters. High temperature calcination resulted in stable alumina supports with varying amounts of delta-, and theta-alumina. Synthesis studies of palladium and silver showed modest variations in crystallite size as a function of cavitation process parameters. Calcination resulted in larger grain materials, indicating a disappearance of intergrain boundaries. Based on these results, a new synthesis method was studied involving controlled agglomeration of small silver crystallites by hydrodynamic cavitation processing, followed by deposition on alumina. The optimal pH, concentration, and processing time for controlling the silver crystallite size in the cavitation equipment were determined using a statistical design of experiments approach. Three series of alumina supported silver catalysts were prepared, with silver weight loadings of 1%, 2%, and 5%. Variation of cavitation processing time between 1--64 min allowed the systematic control of silver crystallite size in the range of 3--19 nm. The preferred oxidation of CO in hydrogen (PROX) was chosen as a catalytic test reaction, because of its increasing importance for fuel cell applications. It was found that the catalytic activity was significantly increased for silver crystallite sizes below 5 nm. This work is the first experimental evidence of independent crystallite size control by hydrodynamic cavitation for alumina supported silver catalysts. The synthesis method involving controlled agglomeration and calcination is a general synthesis procedure that can be used to synthesize a wide range of novel catalysts and advanced materials.
Ullmann-like reactions for the synthesis of complex two-dimensional materials
NASA Astrophysics Data System (ADS)
Quardokus, Rebecca C.; Tewary, V. K.; DelRio, Frank W.
2016-11-01
Engineering two-dimensional materials through surface-confined synthetic techniques is a promising avenue for designing new materials with tailored properties. Developing and understanding reaction mechanisms for surface-confined synthesis of two-dimensional materials requires atomic-level characterization and chemical analysis. Beggan et al (2015 Nanotechnology 26 365602) used scanning tunneling microscopy and x-ray photoelectron spectroscopy to elucidate the formation mechanism of surface-confined Ullmann-like coupling of thiophene substituted porphyrins on Ag(111). Upon surface deposition, bromine is dissociated and the porphyrins couple with surface adatoms to create linear strands and hexagonally packed molecules. Annealing the sample results in covalently-bonded networks of thienylporphyrin derivatives. A deeper understanding of surface-confined Ullmann-like coupling has the potential to lead to precision-engineered nano-structures through synthetic techniques. Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States of America.
Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications.
Gigot, Arnaud; Fontana, Marco; Pirri, Candido Fabrizio; Rivolo, Paola
2017-12-30
Ruthenium active species containing Ruthenium Sulphide (RuS₂) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS₂ on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s -1 is 238 F g -1 . This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications.
NASA Astrophysics Data System (ADS)
Yousefi, Taher; Torab-Mostaedi, Meisam; Mobtaker, Hossein Ghasemi; Keshtkar, Ali Reza
2016-10-01
The strategy developed in this study, offers significant advantages (simplicity and cleanness of method and also a product purity and new morphology of the product) over the conventional routes for the synthesis of ThO2 nanostructure. The effect of current density on morphology was studied. The synthesized powder was characterized by means of Powder X-ray Diffraction (PXRD), Transmission Electron Microscopy (TEM, Phillips EM 2085) Brunauer-Emmett-Teller (BET) and Fourier Transform Infrared (FT-IR) spectroscopy. The results show that the current density has a great effect on the morphology of the samples. The average size of the particles decreases as the applied current density increases and the average size of the samples decreases from 50 to 15 nm when the current density increases from 2 to 5 mA cm-2.
Tuning and synthesis of semiconductor nanostructures by mechanical compression
Fan, Hongyou; Li, Binsong
2015-11-17
A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.
Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials
2016-06-15
IPCMS has synthesized corona shaped magnetite nanostructures that acquire collective assembly during synthesis. These nanostructures displaying a...Moldovan, Ovidiu Ersen, Dominique Begin, Jean-Marc Grenèche, Sebastien Lemonnier, Elodie Barraud, Sylvie Begin-Colin. Two types of corona magnetite...1 MHz- 1 GHz). The permeability values achieved by composites made from collectively assembled corona magnetite nanoparticles are significantly
Synthesis of gold nanostructures using fruit extract of Garcinia Indica
NASA Astrophysics Data System (ADS)
Krishnaprabha, M.; Pattabi, Manjunatha
2016-05-01
Gold nanoparticles having different shapes are synthesized using extract of fresh fruit rinds of Garcinia Indica. The onset of growth and formation of gold nanostructures is confirmed from UV-Vis spectroscopy. Morphological studies are done using FESEM. Size dependent catalytic activity is evaluated with the model reduction reaction of 4-nitrophenol to 4-aminophenol.
NASA Astrophysics Data System (ADS)
Abd Rashid, Amirul; Hayati Saad, Nor; Bien Chia Sheng, Daniel; Yee, Lee Wai
2014-06-01
PH value is one of the important variables for tungsten trioxide (WO3) nanostructure hydrothermal synthesis process. The morphology of the synthesized nanostructure can be properly controlled by measuring and controlling the pH value of the solution used in this facile synthesis route. Therefore, it is very crucial to ensure the gauge used for pH measurement is reliable in order to achieve the expected result. In this study, gauge repeatability and reproducibility (GR&R) method was used to assess the repeatability and reproducibility of the pH tester. Based on ANOVA method, the design of experimental metrics as well as the result of the experiment was analyzed using Minitab software. It was found that the initial GR&R value for the tester was at 17.55 % which considered as acceptable. To further improve the GR&R level, a new pH measuring procedure was introduced. With the new procedure, the GR&R value was able to be reduced to 2.05%, which means the tester is statistically very ideal to measure the pH of the solution prepared for WO3 hydrothermal synthesis process.
Haque, Farzin; Guo, Peixuan
2015-01-01
RNA nanotechnology encompasses the use of RNA as a construction material to build homogeneous nanostructures by bottom-up self-assembly with defined size, structure, and stoichiometry; this pioneering concept demonstrated in 1998 (Guo et al., Molecular Cell 2:149-155, 1998; featured in Cell) has emerged as a new field that also involves materials engineering and synthetic structural biology (Guo, Nature Nanotechnology 5:833-842, 2010). The field of RNA nanotechnology has skyrocketed over the last few years, as evidenced by the burst of publications in prominent journals on RNA nanostructures and their applications in nanomedicine and nanotechnology. Rapid advances in RNA chemistry, RNA biophysics, and RNA biology have created new opportunities for translating basic science into clinical practice. RNA nanotechnology holds considerable promise in this regard. Increased evidence also suggests that substantial part of the 98.5 % of human genome (Lander et al. Nature 409:860-921, 2001) that used to be called "junk DNA" actually codes for noncoding RNA. As we understand more on how RNA structures are related to function, we can fabricate synthetic RNA nanoparticles for the diagnosis and treatment of diseases. This chapter provides a brief overview of the field regarding the design, construction, purification, and characterization of RNA nanoparticles for diverse applications in nanotechnology and nanomedicince.
NASA Astrophysics Data System (ADS)
Sargazi, Ghasem; Afzali, Daryoush; Mostafavi, Ali; Ebrahimipour, S. Yousef
2017-06-01
This work presents a fast route for the preparation of a new Ta(V) metal-organic framework nanostructure with high surface area, significant porosity, and small size distribution. X-ray diffraction (XRD), scanning electron microscopy (SEM), Transition electron microscopy (TEM), energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyser, and Brunauer-Emmett-Teller (BET) surface area analysis were applied to characterize the synthesized product. Moreover, the influences of ultrasonic irradiation including temperature, time, and power on different features of the final products were systematically studied using 2k-1 factorial design experiments, and the response surface optimization was used for determining the best welding parameter combination. The results obtained from analyses of variances showed that ultrasonic parameters affected the size distribution, thermal behaviour, and surface area of Ta-MOF samples. Based on response surface methodology, Ta-MOF could be obtained with mean diameter of 55 nm, thermal stability of 228 °C, and high surface area of 2100 m2/g. The results revealed that the synthesized products could be utilized in various applications such as a novel candidate for CO2 adsorption.
Molecular and Nanoscale Engineering of High Efficiency Excitonic Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenekhe, Samson A.; Ginger, David S.; Cao, Guozhong
We combined the synthesis of new polymers and organic-inorganic hybrid materials with new experimental characterization tools to investigate bulk heterojunction (BHJ) polymer solar cells and hybrid organic-inorganic solar cells during the 2007-2010 period (phase I) of this project. We showed that the bulk morphology of polymer/fullerene blend solar cells could be controlled by using either self-assembled polymer semiconductor nanowires or diblock poly(3-alkylthiophenes) as the light-absorbing and hole transport component. We developed new characterization tools in-house, including photoinduced absorption (PIA) spectroscopy, time-resolved electrostatic force microscopy (TR-EFM) and conductive and photoconductive atomic force microscopy (c-AFM and pc-AFM), and used them to investigatemore » charge transfer and recombination dynamics in polymer/fullerene BHJ solar cells, hybrid polymer-nanocrystal (PbSe) devices, and dye-sensitized solar cells (DSSCs); we thus showed in detail how the bulk photovoltaic properties are connected to the nanoscale structure of the BHJ polymer solar cells. We created various oxide semiconductor (ZnO, TiO 2) nanostructures by solution processing routes, including hierarchical aggregates and nanorods/nanotubes, and showed that the nanostructured photoanodes resulted in substantially enhanced light-harvesting and charge transport, leading to enhanced power conversion efficiency of dye-sensitized solar cells.« less
Hierarchically nanostructured materials for sustainable environmental applications
Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian
2013-01-01
This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946
Hierarchically Nanostructured Materials for Sustainable Environmental Applications
NASA Astrophysics Data System (ADS)
Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian
2013-11-01
This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.
Synthesis of Novel Double-Layer Nanostructures of SiC–WOxby a Two Step Thermal Evaporation Process
2009-01-01
A novel double-layer nanostructure of silicon carbide and tungsten oxide is synthesized by a two-step thermal evaporation process using NiO as the catalyst. First, SiC nanowires are grown on Si substrate and then high density W18O49nanorods are grown on these SiC nanowires to form a double-layer nanostructure. XRD and TEM analysis revealed that the synthesized nanostructures are well crystalline. The growth of W18O49nanorods on SiC nanowires is explained on the basis of vapor–solid (VS) mechanism. The reasonably better turn-on field (5.4 V/μm) measured from the field emission measurements suggest that the synthesized nanostructures could be used as potential field emitters. PMID:20596292
Rapid growth and photoluminescence properties of doped ZnS one-dimensional nanostructures
NASA Astrophysics Data System (ADS)
Zhuo, R. F.; Feng, H. T.; Yan, D.; Chen, J. T.; Feng, J. J.; Liu, J. Z.; Yan, P. X.
2008-06-01
In this paper we report the synthesis of doped ZnS one-dimensional (1D) nanostructures by well-established technique of chemical vapor deposition using Zn and S powder as precursors. The ZnS 1D nanostructures were grown on the surface of Au particle-filled anodic aluminum oxide templates, catalyst-free graphite sheets and silicon substrates. ZnS 1D nanostructures with Mn, Cu and Fe as dopants were prepared via a rapid process of 15-20 min. The morphologies of ZnS nanostructures synthesized on different substrates and at different growth temperatures have distinct dissimilarities. The size of ZnS nanowires originated from the Au catalysts could be varied by altering the size of membrane nanopores as well as the embedded Au particles. Room-temperature photoluminescence measurements reveal strong blue, green and yellow-orange light emissions from the doped ZnS 1D nanostructures.
Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials.
Rozes, Laurence; Sanchez, Clément
2011-02-01
Titanium oxo-clusters, well-defined monodispersed nano-objects, are appropriate nano-building blocks for the preparation of organic-inorganic materials by a bottom up approach. This critical review proposes to present the different structures of titanium oxo-clusters referenced in the literature and the different strategies followed to build up hybrid materials with these versatile building units. In particular, this critical review cites and reports on the most important papers in the literature, concentrating on recent developments in the field of synthesis, characterization, and the use of titanium oxo-clusters for the construction of advanced hybrid materials (137 references).
Growth of ZnO nanorods on glass substrate deposited using dip coating method
NASA Astrophysics Data System (ADS)
Rani, Rozina Abdul; Ghafar, Safiah Ab; Zoolfakar, Ahmad Sabirin; Rusop, M.
2018-05-01
ZnO unique properties make it attractive for electronics and optoelectronics application. There are varieties synthesis of ZnO nanostructure but one of the best ways is by using dip coating method due to its simplicity, low cost and reliability. This research investigated the effect of precursor concentration on the morphology of ZnO nanorods using dip coating technique. ZnO nanorods is synthesized by using zinc nitrate as precursor and glass slide as substrate. The morphology of ZnO is characterized using Field Emission Scanning Electron Microscope (FESEM). By using different concentration of precursor, each outcome demonstrated diverse morphologies.
Enhanced field emission from hexagonal rhodium nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathe, Bhaskar R.; Kakade, Bhalchandra A.; Mulla, Imtiaz S.
2008-06-23
Shape selective synthesis of nanostructured Rh hexagons has been demonstrated with the help of a modified chemical vapor deposition using rhodium acetate. An ultralow threshold field of 0.72 V/{mu}m is observed to generate a field emission current density of 4x10{sup -3} {mu}A/cm{sup 2}. The high enhancement factor (9325) indicates that the origin of electron emission is from nanostructured features. The smaller size of emitting area, excellent current density, and stability over a period of more than 3 h are promising characteristics for the development of electron sources.
Hydrothermal Synthesis of Nanostructured Vanadium Oxides
Livage, Jacques
2010-01-01
A wide range of vanadium oxides have been obtained via the hydrothermal treatment of aqueous V(V) solutions. They exhibit a large variety of nanostructures ranging from molecular clusters to 1D and 2D layered compounds. Nanotubes are obtained via a self-rolling process while amazing morphologies such as nano-spheres, nano-flowers and even nano-urchins are formed via the self-assembling of nano-particles. This paper provides some correlation between the molecular structure of precursors in the solution and the nanostructure of the solid phases obtained by hydrothermal treatment. PMID:28883325
In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs.
Li, Mo; Zheng, Mengxi; Wu, Siyu; Tian, Cheng; Liu, Di; Weizmann, Yossi; Jiang, Wen; Wang, Guansong; Mao, Chengde
2018-06-06
Programmed self-assembly of nucleic acids is a powerful approach for nano-constructions. The assembled nanostructures have been explored for various applications. However, nucleic acid assembly often requires chemical or in vitro enzymatical synthesis of DNA or RNA, which is not a cost-effective production method on a large scale. In addition, the difficulty of cellular delivery limits the in vivo applications. Herein we report a strategy that mimics protein production. Gene-encoded DNA duplexes are transcribed into single-stranded RNAs, which self-fold into well-defined RNA nanostructures in the same way as polypeptide chains fold into proteins. The resulting nanostructure contains only one component RNA molecule. This approach allows both in vitro and in vivo production of RNA nanostructures. In vivo synthesized RNA strands can fold into designed nanostructures inside cells. This work not only suggests a way to synthesize RNA nanostructures on a large scale and at a low cost but also facilitates the in vivo applications.
Hierarchial Junction Solar Cells Based on Hyper-Branched Semiconductor Nanocrystals
2009-06-30
Hyper-Branched Semiconductor Nanocrystals 4 2. Cu2S- CdS all-inorganic nanocrystal solar cells. We demonstrated the rational synthesis of... Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals. We demonstrated a single-source molecular precursor that can be used for the synthesis ... CdS Semiconductor Nanostructures,” Advanced Materials, (2008), 20(22), 4306. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A. P. Alivisatos, “ Synthesis of
El-Toni, Ahmed Mohamed; Habila, Mohamed A; Labis, Joselito Puzon; ALOthman, Zeid A; Alhoshan, Mansour; Elzatahry, Ahmed A; Zhang, Fan
2016-02-07
With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in catalysis, energy storage, sensing, and biomedicine are presented.
Prathap, M U Anu; Kaur, Balwinder; Srivastava, Rajendra
2012-03-15
In this paper, we report on the amino acids-/citric acid-/tartaric acid-assisted morphologically controlled hydrothermal synthesis of micro-/nanostructured crystalline copper oxides (CuO). These oxides were characterized by means of X-ray diffraction, nitrogen sorption, scanning electron microscopy, Fourier transform infrared, and UV-visible spectroscopy. The surface area of metal oxides depends on the amino acid used in the synthesis. The formation mechanisms were proposed based on the experimental results, which show that amino acid/citric acid/tartaric acid and hydrothermal time play an important role in tuning the morphology and structure of CuO. The catalytic activity of as-synthesized CuO was demonstrated by catalytic oxidation of methylene blue in the presence of hydrogen peroxide (H(2)O(2)). CuO synthesized using tyrosine was found to be the best catalyst compared to a variety of CuO synthesized in this study. CuO (synthesized in this study)-modified electrodes were used for the construction of non-enzymatic sensors, which displayed excellent electrocatalytic response for the detection of H(2)O(2) and glucose compared to conventional CuO. The high electrocatalytic response observed for the CuO synthesized using tyrosine can be correlated with the large surface area, which enhances the accessibility of H(2)O(2)/glucose molecule to the active site that results in high observed current. The methodology adopted in the present study provides a new platform for the fabrication of CuO-based high-performance glucose and other biosensors. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhelev, Doncho V., E-mail: dontcho.jelev@nih.gov; Zheleva, Tsvetanka S.
2014-01-28
Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we reportmore » template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.« less
Crossing Over: Nanostructures that Move Electrons and Ions across Cellular Membranes.
Ajo-Franklin, Caroline M; Noy, Aleksandr
2015-10-14
Critical biological processes such as energy generation and signal transduction are driven by the flow of electrons and ions across the membranes of living cells. As a result, there is substantial interest in creating nanostructured materials that control transport of these charged species across biomembranes. Recent advances in the synthesis of de novo and protein nanostructures for transmembrane ion and electron transport and the mechanistic understanding underlying this transport are described. This body of work highlights the promise such nanostructures hold for directing transmembrane transport of charged species as well as challenges that must be overcome to realize that potential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications
NASA Astrophysics Data System (ADS)
Kaur, Navjot; Chudasama, Bhupendra
2015-05-01
Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe3O4) nanoparticles and their coating with SiO2 is reported. Fe3O4 nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identical to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.
2000-01-01
function of the Electrodeposited Layer Thickness", B.Sc Thesis , Queen’s University, Kingston, Ontario, Canada 34) Merchant, H. K., (1995) in "Defect...The following component part numbers comprise the compilation report: ADPO11800 thru ADP011832 UNCLASSIFIED ELECTRODEPOSITED NANOSTRUCTURED FILMS AND...thermomechanical processing, ball milling, rapid solidification, electrodeposition ), unique material performance characteristics in bulk materials as well as
NASA Astrophysics Data System (ADS)
Wang, Yang; Roller, Justin; Maric, Radenka
2018-02-01
Nanostructured electrodes have significant potential for enhancing the kinetics of lithium storage in secondary batteries. A simple and economical manufacturing approach of these electrodes is crucial to the development and application of the next generation lithium ion (Li-ion) batteries. In this study, nanostructured α-Fe2O3 electrode is fabricated by a novel one-step flame combustion synthesis method, namely Reactive Spray Deposition Technology (RSDT). This process possesses the merits of simplicity and low cost. The structure and morphology of the electrode are investigated with X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical performance of the nanostructured α-Fe2O3 electrodes as the anodes for Li-ion batteries is evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy in coin-type half-cells. The as-prepared electrodes demonstrate superior cyclic performance at high current rate, which delivers a high reversible capacity of 1239.2 mAh g-1 at 1 C after 500 cycles. In addition, a discharge capacity of 513.3 mAh g-1 can be achieved at 10 C.
Wang, Dewei; Wang, Qihua; Wang, Tingmei
2011-07-18
In this work, one-dimensional and layered parallel folding of cobalt oxalate nanostructures have been selectively prepared by a one-step, template-free, water-controlled precipitation approach by simply altering the solvents used at ambient temperature and pressure. Encouragingly, the feeding order of solutions played an extraordinary role in the synthesis of nanorods and nanowires. After calcination in air, the as-prepared cobalt oxalate nanostructures were converted to mesoporous Co(3)O(4) nanostructures while their original frame structures were well maintained. The phase composition, morphology, and structure of the as-obtained products were studied in detail. Electrochemical properties of the Co(3)O(4) electrodes were carried out using cyclic voltammetry (CV) and galvanostatic charge-discharge measurements by a three-electrode system. The electrochemical experiments revealed that the layered parallel folding structure of mesoporous Co(3)O(4) exhibited higher capacitance compared to that of the nanorods and nanowires. A maximum specific capacitance of 202.5 F g (-1) has been obtained in 2 M KOH aqueous electrolyte at a current density of 1 A g(-1) with a voltage window from 0 to 0.40 V. Furthermore, the specific capacitance decay after 1000 continuous charge-discharge cycles was negligible, revealing the excellent stability of the electrode. These characteristics indicate that the mesoporous Co(3)O(4) nanostructures are promising electrode materials for supercapacitors.
Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Xiangmei; Long, Qing; Jiang, Chunhui; Zhan, Beibei; Li, Chen; Liu, Shujuan; Zhao, Qiang; Huang, Wei; Dong, Xiaochen
2013-06-01
Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer.Nanostructured Co3O4 materials attracted significant attention due to their exceptional electrochemical (pseudo-capacitive) properties. However, rigorous preparation conditions are needed to control the size (especially nanosize), morphology and size distribution of the products obtained by conventional methods. Herein, we describe a novel one step shape-controlled synthesis of uniform Co3O4 nanocubes with a size of 50 nm with the existence of mesoporous carbon nanorods (meso-CNRs). In this synthesis process, meso-CNRs not only act as a heat receiver to directly obtain Co3O4 eliminating the high-temperature post-calcination, but also control the morphology of the resulting Co3O4 to form nanocubes with uniform distribution. More strikingly, mesoporous Co3O4 nanocubes are obtained by further thermal treatment. The structure and morphology of the samples were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A possible formation mechanism of mesoporous Co3O4 nanocubes is proposed here. Electrochemical tests have revealed that the prepared mesoporous Co3O4 nanocubes demonstrate a remarkable performance in supercapacitor applications due to the porous structure, which endows fast ion and electron transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00495c
Microwave-assisted (MW) synthesis of noble metals such as Au, Pt and Pd is reported using biodegradable polymer carboxymethyl cellulose (CMC) at 100°C within few seconds. The possible reduction entails the coupling of polar hydroxyl units in beta-glucopyranose units with micr...
NASA Astrophysics Data System (ADS)
Thanh Ngo, Vo Ke; Phat Huynh, Trong; Giang Nguyen, Dang; Phuong Uyen Nguyen, Hoang; Lam, Quang Vinh; Dat Huynh, Thanh
2015-12-01
Gold nanobipyramids (NBPs) have attracted much attention because they have potential for applications in smart sensing devices, such as medical diagnostic equippments. This is due to the fact that they show more advantageous plasmonic properties than other gold nanostructures. We describe a chemical reduction method for synthesizing NBPs using conventional heating with ascorbic acid reduction and cetyltrimethylamonium bromide (CTAB) + AgNO3 as capping agents. The product was characterized by ultraviolet-visible spectroscopy (UV-vis), Fourier transmission infrared spectroscopy (FTIR), transmission electron microscopy (TEM), x-ray powder diffraction (XRD). The results showed that gold nanoparticles were formed with bipyramid shape (tip-to-tip distance of 88.4 ± 9.4 nm and base length of 29.9 ± 3.2 nm) and face-centered-cubic crystalline structure. Optimum parameters for preparation of NBPs are also found.
Gandhi, Ashish C; Li, Tai-Yue; Chan, Ting Shan; Wu, Sheng Yun
2018-05-09
With the evolution of synthesis and the critical characterization of core-shell nanostructures, short-range magnetic correlation is of prime interest in employing their properties to develop novel devices and widespread applications. In this regard, a novel approach of the magnetic core-shell saturated magnetization (CSSM) cylinder model solely based on the contribution of saturated magnetization in one-dimensional CrO₂/Cr₂O₃ core-shell nanorods (NRs) has been developed and applied for the determination of core-diameter and shell-thickness. The nanosized effect leads to a short-range magnetic correlation of ferromagnetic core-CrO₂ extracted from CSSM, which can be explained using finite size scaling method. The outcome of this study is important in terms of utilizing magnetic properties for the critical characterization of core-shell nanomagnetic materials.
Adkar, Dattatraya; Adhyapak, Parag; Mulik, Uttamrao; Jadkar, Sandesh; Vutova, Katia; Amalnerkar, Dinesh
2018-05-01
SnS nanostructured materials have attracted enormous interest due to their important properties and potential application in low cost solar energy conversion systems and optical devices. From the perspective of SnS based device fabrication, we offer single-stroke in-situ technique for the generation of Sn based sulphide and oxide nanostructures inside the polymer network via polymer-inorganic solid state reaction route. In this method, polyphenylene sulphide (PPS)-an engineering thermoplastic-acts as chalcogen source as well as stabilizing matrix for the resultant nano products. Typical solid state reaction was accomplished by simply heating the physical admixtures of the tin salts (viz. tin acetate/tin chloride) with PPS at the crystalline melting temperature (285 °C) of PPS in inert atmosphere. The synthesized products were characterized by using various physicochemical characterization techniques. The prima facie observations suggest the concurrent formation of nanocrystalline SnS with extraneous oxide phase. The TEM analysis revealed formation of nanosized particles of assorted morphological features with polydispersity confined to 5 to 50 nm. However, agglomerated particles of nano to submicron size were also observed. The humidity sensing characterization of these nanocomposites was also performed. The resistivity response with the level of humidity (20 to 85% RH) was compared for these nanocomposites. The linear response was obtained for both the products. Nevertheless, the nanocomposite product obtained from acetate precursor showed higher sensitivity towards the humidity than that of one prepared from chloride precursor.
2012-01-01
Background The discharge of wastewater that contains high concentrations of reactive dyes is a well-known problem associated with dyestuff activities. In recent years, semiconductor photocatalysis has become more and more attractive and important since it has a great potential to contribute to such environmental problems. One of the most important aspects of environmental photocatalysis is in the selection of semiconductor materials like ZnO and TiO2, which are close to being two of the ideal photocatalysts in several respects. For example, they are relatively inexpensive, and they provide photo-generated holes with high oxidizing power due to their wide band gap energy. In this work, nanostructural ZnO film on the Zn foil of the Alkaline-Manganese Dioxide-Zinc Cell was fabricated to degrade EV dye. The major innovation of this paper is to obtain the degradation mechanism of ethyl violet dyes resulting from the HPLC-PDA-ESI-MS analyses. Results The fabrication of ZnO nanostructures on zinc foils with a simple solution-based corrosion strategy and the synthesis, characterization, application, and implication of Zn would be reported in this study. Other objectives of this research are to identify the reaction intermediates and to understand the detailed degradation mechanism of EV dye, as model compound of triphenylmethane dye, with active Zn metal, by HPLC-ESI-MS and GC-MS. Conclusions ZnO nanostructure/Zn-foils had an excellent potential for future applications on the photocatalytic degradation of the organic dye in the environmental remediation. The intermediates of the degradation process were separated and characterized by the HPLC-PDA-ESI-MS and GC-MS, and twenty-six intermediates were characterized in this study. Based on the variation of the amount of intermediates, possible degradation pathways for the decolorization of dyes are also proposed and discussed. PMID:22748361
Gas Sensing Properties of ZnO-SnO2 Nanostructures.
Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen
2015-02-01
One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.
NASA Astrophysics Data System (ADS)
Setti, Grazielle O.; de Jesus, Dosil P.; Joanni, Ednan
2016-10-01
In this work a new strategy for growth of nanostructured indium tin oxide (ITO) by RF sputtering is presented. ITO is deposited in the presence of a carbon plasma which reacts with the free oxygen atoms during the deposition, forming species like CO x . These species are removed from the chamber by the pumping system, and one-dimensional ITO nanostructures are formed without the need for a seed layer. Different values of substrate temperature and power applied to the gun containing the carbon target were investigated, resulting in different nanostructure morphologies. The samples containing a higher density of nanowires were covered with gold and evaluated as surface-enhanced Raman scattering substrates for detection of dye solutions. The concept might be applied to other oxides, providing a simple method for unidimensional nanostructural synthesis.
Subwavelength core/shell cylindrical nanostructures for novel plasmonic and metamaterial devices
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Ho; No, You-Shin
2017-12-01
In this review, we introduce novel plasmonic and metamaterial devices based on one-dimensional subwavelength nanostructures with cylindrical symmetry. Individual single devices with semiconductor/metal core/shell or dielectric/metal core/multi-shell structures experience strong light-matter interaction and yield unique optical properties with a variety of functions, e.g., invisibility cloaking, super-scattering/super-absorption, enhanced luminescence and nonlinear optical activities, and deep subwavelength-scale optical waveguiding. We describe the rational design of core/shell cylindrical nanostructures and the proper choice of appropriate constituent materials, which allow the efficient manipulation of electromagnetic waves and help to overcome the limitations of conventional homogeneous nanostructures. The recent developments of bottom-up synthesis combined with the top-down fabrication technologies for the practical applications and the experimental realizations of 1D subwavelength core/shell nanostructure devices are briefly discussed.
GREENER SYNTHESIS OF ALIGNED PALLADIUM NANOBELTS AND NANOPLATES IN AQUEOUS MEDIUM USING VITAMIN B1
Palladium (Pd) plays an important role in many industrial and technological applications such as reduction of automobile pollutants, and Suzuki, Heck, and Stille coupling reactions. Consequently, a great deal of effort has been devoted to the synthesis of Pd nanostructures. Her...
Bulk and shape-controlled synthesis of gold (Au) nanostructures with various shapes such as prisms, cubes and hexagons is described that occurs via microwave-assisted spontaneous reduction of noble metal salts using an aqueous solution of α-D-glucose, sucrose and maltose. The exp...
2005-04-01
Facultad de Quimica , Universidad Autonoma de Queretaro, Queretaro, Mexico, May 7, 2002. (Invited Seminar) "* Recent Advances in the Synthesis and...A. Munir, 14o Congresso Brasileiro de Engenharia e Ciencias dos Materiais (14th Brazilian Congress on Materials Science and Engineering), Sao Pedro
Wang, Alan X.; Kong, Xianming
2015-01-01
Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene. PMID:26900428
Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires
NASA Astrophysics Data System (ADS)
Lu, Qipeng; Wang, An-Liang; Gong, Yue; Hao, Wei; Cheng, Hongfei; Chen, Junze; Li, Bing; Yang, Nailiang; Niu, Wenxin; Wang, Jie; Yu, Yifu; Zhang, Xiao; Chen, Ye; Fan, Zhanxi; Wu, Xue-Jun; Chen, Jinping; Luo, Jun; Li, Shuzhou; Gu, Lin; Zhang, Hua
2018-03-01
Crystal-phase engineering offers opportunities for the rational design and synthesis of noble metal nanomaterials with unusual crystal phases that normally do not exist in bulk materials. However, it remains a challenge to use these materials as seeds to construct heterometallic nanostructures with desired crystal phases and morphologies for promising applications such as catalysis. Here, we report a strategy for the synthesis of binary and ternary hybrid noble metal nanostructures. Our synthesized crystal-phase heterostructured 4H/fcc Au nanowires enable the epitaxial growth of Ru nanorods on the 4H phase and fcc-twin boundary in Au nanowires, resulting in hybrid Au-Ru nanowires. Moreover, the method can be extended to the epitaxial growth of Rh, Ru-Rh and Ru-Pt nanorods on the 4H/fcc Au nanowires to form unique hybrid nanowires. Importantly, the Au-Ru hybrid nanowires with tunable compositions exhibit excellent electrocatalytic performance towards the hydrogen evolution reaction in alkaline media.
Wang, Alan X; Kong, Xianming
2015-06-01
Surface-enhanced Raman scattering (SERS) has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs) enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs). Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.
Sonochemical Synthesis of Zinc Oxide Nanostructures for Sensing and Energy Harvesting
NASA Astrophysics Data System (ADS)
Vabbina, Phani Kiran
Semiconductor nanostructures have attracted considerable research interest due to their unique physical and chemical properties at nanoscale which open new frontiers for applications in electronics and sensing. Zinc oxide nanostructures with a wide range of applications, especially in optoelectronic devices and bio sensing, have been the focus of research over the past few decades. However ZnO nanostructures have failed to penetrate the market as they were expected to, a few years ago. The two main reasons widely recognized as bottleneck for ZnO nanostructures are (1) Synthesis technique which is fast, economical, and environmentally benign which would allow the growth on arbitrary substrates and (2) Difficulty in producing stable p-type doping. The main objective of this research work is to address these two bottlenecks and find a solution that is inexpensive, environmentally benign and CMOS compatible. To achieve this, we developed a Sonochemical method to synthesize 1D ZnO Nanorods, core-shell nanorods, 2D nanowalls and nanoflakes on arbitrary substrates which is a rapid, inexpensive, CMOS compatible and environmentally benign method and allows us to grow ZnO nanostructures on any arbitrary substrate at ambient conditions while most other popular methods used are either very slow or involve extreme conditions such as high temperatures and low pressure. A stable, reproducible p-type doping in ZnO is one of the most sought out application in the field of optoelectronics. Here in this project, we doped ZnO nanostructures using sonochemical method to achieve a stable and reproducible doping in ZnO. We have fabricated a homogeneous ZnO radial p-n junction by growing a p-type shell around an n-type core in a controlled way using the sonochemical synthesis method to realize ZnO homogeneous core-shell radial p-n junction for UV detection. ZnO has a wide range of applications from sensing to energy harvesting. In this work, we demonstrate the successful fabrication of an electrochemical immunosensor using ZnO nanoflakes to detect Cortisol and compare their performance with that of ZnO nanorods. We have explored the use of ZnO nanorods in energy harvesting in the form of Dye Sensitized Solar Cells (DSSC) and Perovskite Solar Cells.
2010-03-18
quantum dots composed of a photopolymerizable outer corona constituting methacrylate and an inner siloxane layer, with a view making them photo...nanostructures. The inherent properties of photopolymerizable QDs such as their stability, PL, and ease of solution processability, make them suitable...Thiophenes are important compounds that are used as building blocks in many chemical synthesis. The thiophene oligomers and thiophene-based
Microwave-assisted green synthesis of silver nanostructures.
Nadagouda, Mallikarjuna N; Speth, Thomas F; Varma, Rajender S
2011-07-19
Over the past 25 years, microwave (MW) chemistry has moved from a laboratory curiosity to a well-established synthetic technique used in many academic and industrial laboratories around the world. Although the overwhelming number of MW-assisted applications today are still performed on a laboratory (mL) scale, we expect that this enabling technology may be used on a larger, perhaps even production, scale in conjunction with radio frequency or conventional heating. Microwave chemistry is based on two main principles, the dipolar mechanism and the electrical conductor mechanism. The dipolar mechanism occurs when, under a very high frequency electric field, a polar molecule attempts to follow the field in the same alignment. When this happens, the molecules release enough heat to drive the reaction forward. In the second mechanism, the irradiated sample is an electrical conductor and the charge carriers, ions and electrons, move through the material under the influence of the electric field and lead to polarization within the sample. These induced currents and any electrical resistance will heat the sample. This Account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Researchers have successfully demonstrated the application of this method in the preparation of silver (Ag), gold (Au), platinum (Pt), and gold-palladium (Au-Pd) nanostructures. MW heating conditions allow not only for the preparation of spherical nanoparticles within a few minutes but also for the formation of single crystalline polygonal plates, sheets, rods, wires, tubes, and dendrites. The morphologies and sizes of the nanostructures can be controlled by changing various experimental parameters, such as the concentration of metallic salt precursors, the surfactant polymers, the chain length of the surfactant polymers, the solvents, and the operation reaction temperature. In general, nanostructures with smaller sizes, narrower size distributions, and a higher degree of crystallization have been obtained more consistently via MW heating than by heating with a conventional oil-bath. The use of microwaves to heat samples is a viable avenue for the greener synthesis of nanomaterials and provides several desirable features such as shorter reaction times, reduced energy consumption, and better product yields.
NASA Astrophysics Data System (ADS)
Taurino, Irene; Sanzó, Gabriella; Mazzei, Franco; Favero, Gabriele; de Micheli, Giovanni; Carrara, Sandro
2015-10-01
Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism.
Generic approach for synthesizing asymmetric nanoparticles and nanoassemblies
Sun, Yugang; Hu, Yongxing
2015-05-26
A generic route for synthesis of asymmetric nanostructures. This approach utilizes submicron magnetic particles (Fe.sub.3O.sub.4--SiO.sub.2) as recyclable solid substrates for the assembly of asymmetric nanostructures and purification of the final product. Importantly, an additional SiO.sub.2 layer is employed as a mediation layer to allow for selective modification of target nanoparticles. The partially patched nanoparticles are used as building blocks for different kinds of complex asymmetric nanostructures that cannot be fabricated by conventional approaches. The potential applications such as ultra-sensitive substrates for surface enhanced Raman scattering (SERS) have been included.
Synthesis of nanostructured materials in inverse miniemulsions and their applications.
Cao, Zhihai; Ziener, Ulrich
2013-11-07
Polymeric nanogels, inorganic nanoparticles, and organic-inorganic hybrid nanoparticles can be prepared via the inverse miniemulsion technique. Hydrophilic functional cargos, such as proteins, DNA, and macromolecular fluoresceins, may be conveniently encapsulated in these nanostructured materials. In this review, the progress of inverse miniemulsions since 2000 is summarized on the basis of the types of reactions carried out in inverse miniemulsions, including conventional free radical polymerization, controlled/living radical polymerization, polycondensation, polyaddition, anionic polymerization, catalytic oxidation reaction, sol-gel process, and precipitation reaction of inorganic precursors. In addition, the applications of the nanostructured materials synthesized in inverse miniemulsions are also reviewed.
Electrochemical properties of monolithic nickel sulfide electrodes for use in sodium batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Go, Dae-Yeon; Park, Jinsoo, E-mail: jsp@ikw.ac.kr; Noh, Pan-Jin
2014-10-15
Highlights: • We succeeded in preparing monolithic Ni{sub 3}S{sub 2} integrated electrode through the sulfuration. • The sulfuration is a facile and useful method to synthesize metal sulfides with nanostructure. • As-prepared monolithic Ni{sub 3}S{sub 2} electrodes showed very stable and cycle performance over charge/discharge cycling. - Abstract: Monolithic nickel sulfide electrodes were prepared using a facile synthesis method, sulfuration and annealing. As-prepared Ni{sub 3}S{sub 2} electrodes were characterized by X-ray diffractometry and field emission scanning electron microscopy. Thermal stability was determined by thermal gravimetric analysis and differential scanning calorimetry. Electrochemical properties were measured by galvanostatic charge and discharge cyclingmore » for Na-ion batteries. Three kinds of Ni{sub 3}S{sub 2} electrodes were prepared by varying the sulfuration time (5, 15 and 25 min). The electrochemical results indicated that the capacities increased with an increase in sulfuration time and the cycle performance was stable as a result of monolithic integration of nanostructured Ni{sub 3}S{sub 2} on Ni plates, leading to low interfacial resistance.« less
Nkosi, Steven S; Mwakikunga, Bonex W; Sideras-Haddad, Elias; Forbes, Andrew
2012-01-01
Highly crystalline nanospherical iron–platinum systems were produced by 248 nm laser irradiation of a liquid precursor at different laser fluences, ranging from 100–375 mJ/cm2. The influence of laser intensity on particle size, iron composition, and structure was systematically investigated. Different nanostructures of iron–platinum alloy and chemically disordered iron–platinum L10 phase were obtained without annealing. The prepared precursor solution underwent deep photolysis to polycrystalline iron–platinum nanoalloys through Fe(III) acetylacetonate and Pt(II) acetylacetonate. Fe(II) and Pt(I) acetylacetone decomposed into Fe0 and Pt0 nanoparticles. We found that the (001) diffraction peak shifted linearly to a lower angle, with the last peak shifting in opposition to the others. This caused the face-centered cubic L10 structure to change its composition according to laser fluence. The nanostructures were shown to contain iron and platinum only by energy-dispersive spectroscopy at several spots. The response of these iron–platinum nanoparticles to infrared depends on their stoichiometric composition, which is controlled by laser fluence. PMID:24198494
Controlled Synthesis and Photocatalytic Antifouling Properties of BiVO4 with Tunable Morphologies
NASA Astrophysics Data System (ADS)
Xiang, Zhenbo; Wang, Yi; Ju, Peng; Zhang, Dun
2017-02-01
Monoclinic BiVO4 with different nanostructures were prepared via a facile and rapid route by adding different surfactants. Ethylenediaminetetraacetic acid, polyvinylpyrrolidone, and sodium dodecyl sulfate surfactants were selected as morphology controlling agents. The crystal phase, morphology, and diffuse reflectance spectra of BiVO4 were characterized by x-ray diffraction, scanning electron microscopy, and UV-visible diffuse reflectance spectra techniques, respectively. The photocatalytic activities of BiVO4 were investigated by killing the typical marine fouling bacteria Pseudomonas aeruginosa ( P. aeruginosa) under visible light irradiation. BiVO4 with grape-like nanostructure exhibited the best photocatalytic bactericidal activity. The sterilization rate of P. aeruginosa could reach up to 99.9% in 120 min. The photocatalytic mechanism was studied by captive species trapping experiments. The result revealed that photogenerated hole (h+) is the main reactive specie for killing P. aeruginosa under visible light irradiation. In addition, after five recycles, BiVO4 does not exhibit significant loss of photocatalytic sterilization activity. The results confirm that the synthesized BiVO4 photocatalyst has long-time reusability and good photocatalytic stability.
Engineering plasmonic nanostructured surfaces by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Ghidelli, Matteo; Mascaretti, Luca; Bricchi, Beatrice Roberta; Zapelli, Andrea; Russo, Valeria; Casari, Carlo Spartaco; Li Bassi, Andrea
2018-03-01
The synthesis and the optical response of gold nanoparticles (NPs) and thin nanostructured films grown by pulsed laser deposition (PLD) are here studied. Different PLD process parameters - including background gas pressure and the number of laser shots as well as post-deposition annealing treatments - have been varied to control the growth of Au NPs and films, thus tuning the surface plasmon characteristics. The mechanisms of NPs and film growth have been explored performing a morphological characterization by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), and the correlation with the optical behavior is investigated. We show that the size distribution and the morphology of the as deposited Au NPs depend on growth mechanisms which are controlled by tuning the deposition process, while the optical behavior is strongly affected by the average size and surface density of NPs or by the length of percolated Au domains. Furthermore, nucleation in gas phase has been reported at high (1000 Pa Ar) background pressures, enabling independent control of NP size and coverage, contrary to surface driven NP growth by diffusion and aggregation on substrate.
NASA Astrophysics Data System (ADS)
Abu-Thabit, Nedal Y.; Basheer, Rafil A.
2014-09-01
Electrically conductive composite membranes (ECCMs) composed of cotton fibers, conductive polyaniline and silver nanostructures were prepared and utilized as electrifying filter membranes for water sterilization. Silver metal and polyaniline were formed in situ during the oxidative polymerization of aniline monomers in the presence of silver nitrate as weak oxidizing agent. The reaction was characterized by long induction period and the morphology of the obtained ECCMs contained silver nanoparticles and silver flakes of 500-1000 nm size giving a membrane electrical resistance in the range of 10-30 Ohm sq-1. However, when dimethylformamide (DMF) was employed as an auxiliary reducing agent to trigger and speed up the polymerization reaction, silver nanostructures such as wires, ribbons, plates were formed and were found to be embedded between polyaniline coating and cotton fibers. These ECCMs exhibited a slightly lower resistance in the range of 2-10 Ohm sq.-1 and, therefore, were utilized for the fabrication of a bacteria inactivation device. When water samples containing 107-108 CFU mL-1 E. coli bacteria were passed through the prepared ECCMs by gravity force, with a filtration rate of 0.8 L h-1 and at an electric potential of 20 V, the fabricated device showed 92% bacterial inactivation efficiency. When the treated solution was passed through the membrane for a second time under the same conditions, no E. coli bacteria was detected.
Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications.
Woźniak, Anna; Malankowska, Anna; Nowaczyk, Grzegorz; Grześkowiak, Bartosz F; Tuśnio, Karol; Słomski, Ryszard; Zaleska-Medynska, Adriana; Jurga, Stefan
2017-06-01
Metallic nanoparticles, in particular gold nanoparticles (AuNPs), offer a wide spectrum of applications in biomedicine. A crucial issue is their cytotoxicity, which depends greatly on various factors, including morphology of nanoparticles. Because metallic nanoparticles have an effect on cell membrane integrity, their shape and size may affect the viability of cells, due to their different geometries as well as physical and chemical interactions with cell membranes. Variations in the size and shape of gold nanoparticles may indicate particular nanoparticle morphologies that provide strong cytotoxicity effects. Synthesis of different sized and shaped bare AuNPs was performed with spherical (~ 10 nm), nanoflowers (~ 370 nm), nanorods (~ 41 nm), nanoprisms (~ 160 nm) and nanostars (~ 240 nm) morphologies. These nanostructures were characterized and interacting with cancer (HeLa) and normal (HEK293T) cell lines and cell viability tests were performed by WST-1 tests and fluorescent live/dead cell imaging experiments. It was shown that various shapes and sizes of gold nanostructures may affect the viability of the cells. Gold nanospheres and nanorods proved to be more toxic than star, flower and prism gold nanostructures. This may be attributed to their small size and aggregation process. This is the first report concerning a comparison of cytotoxic profile in vitro with a wide spectrum of bare AuNPs morphology. The findings show their possible use in biomedical applications.
Chowdhury, S; Hillman, Damon A; Catledge, Shane A; Konovalov, Valery V; Vohra, Yogesh K
2006-10-01
Ultrasmooth nanostructured diamond (USND) films were synthesized on Ti-6Al-4V medical grade substrates by adding helium in H(2)/CH(4)/N(2) plasma and changing the N(2)/CH(4) gas flow from 0 to 0.6. We were able to deposit diamond films as smooth as 6 nm (root-mean-square), as measured by an atomic force microscopy (AFM) scan area of 2 μm(2). Grain size was 4-5 nm at 71% He in (H(2) + He) and N(2)/CH(4) gas flow ratio of 0.4 without deteriorating the hardness (~50-60 GPa). The characterization of the films was performed with AFM, scanning electron microscopy, x-ray diffraction (XRD), Raman spectroscopy, and nanoindentation techniques. XRD and Raman results showed the nanocrystalline nature of the diamond films. The plasma species during deposition were monitored by optical emission spectroscopy. With increasing N(2)/CH(4) feedgas ratio (CH(4) was fixed) in He/H(2)/CH(4)/N(2) plasma, a substantial increase of CN radical (normalized by Balmer H(α) line) was observed along with a drop in surface roughness up to a critical N(2)/CH(4) ratio of 0.4. The CN radical concentration in the plasma was thus correlated to the formation of ultrasmooth nanostructured diamond films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahab, Rizwan; Ansari, S.G.; Kim, Y.S.
Synthesis of flower-shaped ZnO nanostructures composed of hexagonal ZnO nanorods was achieved by the solution process using zinc acetate dihydrate and sodium hydroxide at very low temperature of 90 deg. C in 30 min. The individual nanorods are of hexagonal shape with sharp tip, and base diameter of about 300-350 nm. Detailed structural characterizations demonstrate that the synthesized products are single crystalline with the wurtzite hexagonal phase, grown along the [0 0 0 1] direction. The IR spectrum shows the standard peak of zinc oxide at 523 cm{sup -1}. Raman scattering exhibits a sharp and strong E{sub 2} mode atmore » 437 cm{sup -1} which further confirms the good crystallinity and wurtzite hexagonal phase of the grown nanostructures. The photoelectron spectroscopic measurement shows the presence of Zn, O, C, zinc acetate and Na. The binding energy ca. 1021.2 eV (Zn 2p{sub 3/2}) and 1044.3 eV (Zn 2p{sub 1/2}), are found very close to the standard bulk ZnO binding energy values. The O 1s peak is found centered at 531.4 eV with a shoulder at 529.8 eV. Room-temperature photoluminescence (PL) demonstrate a strong and dominated peak at 381 nm with a suppressed and broad green emission at 515 nm, suggests that the flower-shaped ZnO nanostructures have good optical properties with very less structural defects.« less
Morphology-controlled synthesis of Co{sub 3}O{sub 4} by one step template-free hydrothermal method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Keqing; Liu, Jiajia; Wen, Panyue
2015-07-15
Highlights: • Co{sub 3}O{sub 4} crystals had been synthesized by one step template-free hydrothermal method. • The H{sub 2}O{sub 2} plays a crucial role in morphological control of Co{sub 3}O{sub 4} nanostructures. • The morphology has significant effect on the optical property of Co{sub 3}O{sub 4}. - Abstract: We had developed a facile synthetic route of Co{sub 3}O{sub 4} crystals with different morphologies via one step template-free hydrothermal method. The phase and composition of the Co{sub 3}O{sub 4} were investigated by X-ray powder diffraction and Raman spectrum. The morphology and structure of the synthesized samples were characterized by scanning electronmore » microscopy and transmission electron microscopy. The H{sub 2}O{sub 2} played a crucial role in morphological control of Co{sub 3}O{sub 4} nanostructures. It only obtained Co-based precursor in the absence of H{sub 2}O{sub 2}. On the contrary, the Co{sub 3}O{sub 4} with different morphologies including nanoparticles, nano-discs and well-defined octahedral nanostructures were synthesized in the presence of H{sub 2}O{sub 2}. In addition, the optical property of the obtained Co{sub 3}O{sub 4} samples was investigated by UV–vis spectra.« less
NASA Astrophysics Data System (ADS)
Lu, Jennifer Qing
Nanostructures such as carbon nanotubes and semiconducting nanowires offer great technological promise due to their remarkable properties. The lack of a rational synthesis method prevents fabricating these nanostructures with desirable and consistent properties at predefined locations for device applications. In this thesis, employing polymer templates, a variety of highly ordered catalytically active transition metal nanostructures, ranging from single metallic nanoparticles of Fe, Co, Ni, Au and bimetallic nanoparticles of Ni/Fe and Co/Mo to Fe-rich silicon oxide nanodomains with uniform and tunable size and spacing have been successfully synthesized. These nanostructures have been demonstrated to be excellent catalyst systems for the synthesis of carbon nanotube and silicon nanowire. High quality, small diameter carbon nanotubes and nanowires with narrow size distribution have been successfully attained. Because these catalytically active nanostructures are uniformly distributed and do not agglomerate at the growth temperatures, uniform, high density and high quality carbon nanotube mats have been obtained. Since this polymer template approach is fully compatible with conventional top-down photolithography, lithographically selective growth of carbon nanotubes on a surface or suspended carbon nanotubes across trenches have been produced by using existing semiconductor processing. We have also shown the feasibility of producing carbon nanotubes and silicon nanowires at predefined locations on a wafer format and established a wafer-level carbon nanotube based device fabrication process. The ability of the polymer template approach to control catalyst systems at the nano-, micro- and macro-scales paves a pathway for commercialization of these 1D nanostructure-enabled devices. Beside producing well-defined, highly ordered discrete catalytically active metal-containing nanostructures by the polymer template approach, Au and Ag nanotextured surfaces have also been attained by using a self-assembled ferrocenylsilane-based inorganic block copolymer template. These Au and Ag nanotextured surfaces exhibit different surface plasmon behavior than the nanotextured surface. Greatly enhanced and uniform Raman scattering have been observed on Ag nanotextured surfaces. Highly sensitive Au nanotextured surfaces suggest their potential application as sensing surfaces for SPR-based biodetection. This simple fabrication technique of producing inorganic nanostructures with adjustable properties such as size, spacing and composition offers great promise for both fundamental research and technological development.
NASA Astrophysics Data System (ADS)
Rawat, R. S.
2015-03-01
The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of nanostructured materials using DPF device will discussed to establish this device as versatile tool for plasma nanotechnology.
Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties.
Zhang, Liqiu; Jang, Hee-Jeong; Yoo, Sung Jae; Cho, Sanghyun; Won, Ji Hye; Liu, Lichun; Park, Sungho
2018-06-22
Site-selective synthesis of nanostructures is an important topic in the nanoscience community. Normally, the difference between seeds and deposition atoms in terms of crystallinity triggers the deposition atoms to grow initially at the specific site of nucleation. It is more challenging to control the deposition site of atoms that have the same composition as the seeds because the atoms tend to grow epitaxially, covering the whole surface of the seed nanoparticles. Gold (Au) nano-octahedrons used as seeds in this study possess obvious hierarchical surface energies depending on whether they are at vertices, edges, or terraces. Although vertices of Au nano-octahedrons have the highest surface energy, it remains a challenge to selectively deposit Au atoms at the vertices but not at the edges and faces; this selectivity is required to meet the ever-increasing demands of engineered nanomaterial properties. This work demonstrates an easy and robust method to precisely deposit Au nanoparticles at the vertices of Au nano-octahedrons via wet-chemical seed-mediated growth. The successful synthesis of octahedral Au tip-blobbed nanoparticles (Oh Au TBPs) benefited from the cooperative use of thin silver (Ag) layers at the surface of Au nano-octahedron seeds and iodide ions in the Au growth solution. As-synthesized Au nanostructures gave rise to hybrid optical properties, as evidenced from the UV-VIS-NIR extinction spectra, in which a new extinction peak appeared after Au nanoparticles were formed at the vertices of Au nano-octahedrons. A sensitivity evaluation toward dielectric media of a mixture of dimethyl sulfoxide and water suggested that Au TBPs were more optically sensitive compared to the original Au nano-octahedrons. The method demonstrated in this work is promising in the synthesis of advanced Au nanostructures with hybrid optical properties for versatile applications by engineering the surface energy of vertex-bearing Au nanostructures to trigger site-selective overgrowth of congener Au atoms. © 2018 IOP Publishing Ltd.
Synthesis of Graphite Encapsulated Metal Nanoparticles and Metal Catalyzed Nanotubes
NASA Technical Reports Server (NTRS)
vanderWal, R. L.; Dravid, V. P.
1999-01-01
This work focuses on the growth and inception of graphite encapsulated metal nanoparticles and metal catalyzed nanotubes using combustion chemistry. Deciphering the inception and growth mechanism(s) for these unique nanostructures is essential for purposeful synthesis. Detailed knowledge of these mechanism(s) may yield insights into alternative synthesis pathways or provide data on unfavorable conditions. Production of these materials is highly desirable given many promising technological applications.