Sample records for nanosystems absorption bioconjugation

  1. Overview of the main methods used to combine proteins with nanosystems: absorption, bioconjugation, and encapsulation

    PubMed Central

    Di Marco, Mariagrazia; Shamsuddin, Shaharum; Razak, Khairunisak Abdul; Aziz, Azlan Abdul; Devaux, Corinne; Borghi, Elsa; Levy, Laurent; Sadun, Claudia

    2010-01-01

    The latest development of protein engineering allows the production of proteins having desired properties and large potential markets, but the clinical advances of therapeutical proteins are still limited by their fragility. Nanotechnology could provide optimal vectors able to protect from degradation therapeutical biomolecules such as proteins, enzymes or specific polypeptides. On the other hand, some proteins can be also used as active ligands to help nanoparticles loaded with chemotherapeutic or other drugs to reach particular sites in the body. The aim of this review is to provide an overall picture of the general aspects of the most successful approaches used to combine proteins with nanosystems. This combination is mainly achieved by absorption, bioconjugation and encapsulation. Interactions of nanoparticles with biomolecules and caveats related to protein denaturation are also pointed out. A clear understanding of nanoparticle-protein interactions could make possible the design of precise and versatile hybrid nanosystems. This could further allow control of their pharmacokinetics as well as activity, and safety. PMID:20161986

  2. Investigating bioconjugation by atomic force microscopy

    PubMed Central

    2013-01-01

    Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures. PMID:23855448

  3. Investigating bioconjugation by atomic force microscopy.

    PubMed

    Tessmer, Ingrid; Kaur, Parminder; Lin, Jiangguo; Wang, Hong

    2013-07-15

    Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures.

  4. Transferrin-mediated rapid targeting, isolation, and detection of circulating tumor cells by multifunctional magneto-dendritic nanosystem.

    PubMed

    Banerjee, Shashwat S; Jalota-Badhwar, Archana; Satavalekar, Sneha D; Bhansali, Sujit G; Aher, Naval D; Mascarenhas, Russel R; Paul, Debjani; Sharma, Somesh; Khandare, Jayant J

    2013-06-01

    A multicomponent magneto-dendritic nanosystem (MDNS) is designed for rapid tumor cell targeting, isolation, and high-resolution imaging by a facile bioconjugation approach. The highly efficient and rapid-acting MDNS provides a convenient platform for simultaneous isolation and high-resolution imaging of tumor cells, potentially leading towards an early diagnosis of cancer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. pH-sensitive nano-systems for drug delivery in cancer therapy.

    PubMed

    Liu, Juan; Huang, Yuran; Kumar, Anil; Tan, Aaron; Jin, Shubin; Mozhi, Anbu; Liang, Xing-Jie

    2014-01-01

    Nanotechnology has been widely used in the development of new strategies for drug delivery and cancer therapy. Compared to traditional drug delivery systems, nano-based drug delivery system have greater potential in a variety of areas, such as multiple targeting functionalization, in vivo imaging, combined drug delivery, extended circulation time, and systemic control release. Nano-systems incorporating stimulus-responsive materials have remarkable properties which allow them to bypass biological barriers and achieve targeted intracellular drug delivery. As a result of the active metabolism of tumor cells, the tumor microenvironment (TME) is highly acidic compared to normal tissues. pH-Sensitive nano-systems have now been developed in which drug release is specifically triggered by the acidic tumor environment. Studies have demonstrated that novel pH-sensitive drug delivery systems are capable of improving the efficiency of cancer treatment. A number of these have been translated from bench to clinical application and have been approved by the Food and Drug Administration (FDA) for treatment of various cancerous diseases. Herein, this review mainly focuses on pH-sensitive nano-systems, including advances in drug delivery, mechanisms of drug release, and possible improvements in drug absorption, with the emphasis on recent research in this field. With deeper understanding of the difference between normal and tumor tissues, it might be possible to design ever more promising pH-responsive nano-systems for drug delivery and cancer therapy in the near future. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  6. Synthesis of Protein Bioconjugates via Cysteine-maleimide Chemistry.

    PubMed

    Mason, Alexander F; Thordarson, Pall

    2016-07-20

    The chemical linking or bioconjugation of proteins to fluorescent dyes, drugs, polymers and other proteins has a broad range of applications, such as the development of antibody drug conjugates (ADCs) and nanomedicine, fluorescent microscopy and systems chemistry. For many of these applications, specificity of the bioconjugation method used is of prime concern. The Michael addition of maleimides with cysteine(s) on the target proteins is highly selective and proceeds rapidly under mild conditions, making it one of the most popular methods for protein bioconjugation. We demonstrate here the modification of the only surface-accessible cysteine residue on yeast cytochrome c with a ruthenium(II) bisterpyridine maleimide. The protein bioconjugation is verified by gel electrophoresis and purified by aqueous-based fast protein liquid chromatography in 27% yield of isolated protein material. Structural characterization with MALDI-TOF MS and UV-Vis is then used to verify that the bioconjugation is successful. The protocol shown here is easily applicable to other cysteine - maleimide coupling of proteins to other proteins, dyes, drugs or polymers.

  7. Organometallic Palladium Reagents for Cysteine Bioconjugation

    PubMed Central

    Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L.

    2015-01-01

    Transition-metal based reactions have found wide use in organic synthesis and are used frequently to functionalize small molecules.1,2 However, there are very few reports of using transition-metal based reactions to modify complex biomolecules3,4, which is due to the need for stringent reaction conditions (for example, aqueous media, low temperature, and mild pH) and the existence of multiple, reactive functional groups found in biopolymers. Here we report that palladium(II) complexes can be used for efficient and highly selective cysteine conjugation reactions. The bioconjugation reaction is rapid and robust under a range of biocompatible reaction conditions. The straightforward synthesis of the palladium reagents from diverse and easily accessible aryl halide and trifluoromethanesulfonate precursors makes the method highly practical, providing access to a large structural space for protein modification. The resulting aryl bioconjugates are stable towards acids, bases, oxidants, and external thiol nucleophiles. The broad utility of the new bioconjugation platform was further corroborated by the synthesis of new classes of stapled peptides and antibody-drug conjugates. These palladium complexes show potential as a new set of benchtop reagents for diverse bioconjugation applications. PMID:26511579

  8. Nanosystem trends in drug delivery using quality-by-design concept.

    PubMed

    Li, Jing; Qiao, Yanjiang; Wu, Zhisheng

    2017-06-28

    Quality by design (QbD) has become an inevitable trend because of its benefits for product quality and process understanding. Trials have been conducted using QbD in nanosystems' optimization. This paper reviews the application of QbD for processing nanosystems and summarizes the application procedure. It provides prospective guidelines for future investigations that apply QbD to nanosystem manufacturing processes. Employing the QbD concept in this way is a novel area in nanosystem quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics.

    PubMed

    Wang, Lei; Li, Li-li; Fan, Yun-shan; Wang, Hao

    2013-07-26

    Extensive efforts have been devoted to the construction of functional supramolecular nanosystems for applications in catalysis, energy conversion, sensing and biomedicine. The applications of supramolecular nanosystems such as liposomes, micelles, inorganic nanoparticles, carbon materials for cancer diagnostics and therapeutics have been reviewed by other groups. Here, we will focus on the recent momentous advances in the implementation of typical supramolecular hosts (i.e., cyclodextrins, calixarenes, cucurbiturils and metallo-hosts) and their nanosystems in cancer diagnostics and therapeutics. We discuss the evolutive process of supramolecular nanosystems from the structural control and characterization to their diagnostic and therapeutic function exploitation and even the future potentials for clinical translation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Integrated Nanosystems Templated by Self-assembled Virus Capsids

    NASA Astrophysics Data System (ADS)

    Stephanopoulos, Nicholas

    This dissertation presents the synthesis and modeling of multicomponent nanosystems templated by self-assembled virus capsids. The design principles, synthesis, analysis, and future directions for these capsid-based materials are presented. Chapter 1 gives an overview of the literature on the application of virus capsids in constructing nanomaterials. The uses of capsids in three main areas are considered: (1) as templates for inorganic materials or nanoparticles; (2) as vehicles for biological applications like medical imaging and treatment; and (3) as scaffolds for catalytic materials. In light of this introduction, an overview of the material in this dissertation is described. Chapters 2-4 all describe integrated nanosystems templated by bacteriophage MS2, a spherical icosahedral virus capsid. MS2 possesses an interior and exterior surface that can be modified orthogonally using bioconjugation chemistry to create multivalent, multicomponent constructs with precise localization of components attached to the capsid proteins. Chapter 2 describes the use of MS2 to synthesize a photocatalytic construct by modifying the internal surface with sensitizing chromophores and the external surface with a photocatalytic porphyrin. The chromophores absorbed energy that the porphyrin could not, and transferred it to the porphyrin via FRET through the protein shell. The porphyrin was then able to utilize the energy to carry out photocatalysis at new wavelengths. In Chapter 3, porphyrins were installed on the interior surface of MS2 and DNA aptamers specific for Jurkat leukemia T cells on the exterior surface. The dual-modified capsids were able to bind to Jurkat cells, and upon illumination the porphyrins generated singlet oxygen to kill them selectively over non-targeted cells. Chapter 4 explores integrating MS2 with DNA origami in order to arrange the capsids at larger length scales. Capsids modified with fluorescent dyes inside and single-stranded DNA outside were able to

  11. DNA nanostructure-based drug delivery nanosystems in cancer therapy.

    PubMed

    Wu, Dandan; Wang, Lei; Li, Wei; Xu, Xiaowen; Jiang, Wei

    2017-11-25

    DNA as a novel biomaterial can be used to fabricate different kinds of DNA nanostructures based on its principle of GC/AT complementary base pairing. Studies have shown that DNA nanostructure is a nice drug carrier to overcome big obstacles existing in cancer therapy such as systemic toxicity and unsatisfied drug efficacy. Thus, different types of DNA nanostructure-based drug delivery nanosystems have been designed in cancer therapy. To improve treating efficacy, they are also developed into more functional drug delivery nanosystems. In recent years, some important progresses have been made. The objective of this review is to make a retrospect and summary about these different kinds of DNA nanostructure-based drug delivery nanosystems and their latest progresses: (1) active targeting; (2) mutidrug co-delivery; (3) construction of stimuli-responsive/intelligent nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Polysaccharide Nanosystems for Future Progress in Cardiovascular Pathologies

    PubMed Central

    Silva, Amanda Karine Andriola; Letourneur, Didier; Chauvierre, Cédric

    2014-01-01

    Natural polysaccharides have received a lot of attention in the biomedical field. Indeed, sources of polysaccharides, extracted or produced from plants, bacteria, fungi or algae, are diverse and renewable. Moreover, recent progresses in polysaccharide chemistry and nanotechnologies allow elaborating new dedicated nanosystems. Polysaccharide-based nanosystems may be designed for interacting in several biological processes. In particular, the atherothrombotic pathology is highly concerned by polysaccharide-mediated recognition. Atherothrombotic diseases, regardless of the anatomical localization, remain the main causes of morbidity and mortality in the industrialized world. This review intends to provide an overview on polysaccharide-based nanosystems as drug delivery systems and targeted contrast agents for molecular imaging with an emphasis on the treatment and imaging of cardiovascular pathologies. PMID:24723980

  13. Recyclable Thermoresponsive Polymer-Cellulase Bioconjugates for Biomass Depolymerization

    PubMed Central

    Mackenzie, Katherine J.; Francis, Matthew B.

    2013-01-01

    Here we report the construction and characterization of a recoverable, thermoresponsive polymer-endoglucanase bioconjugate that matches the activity of unmodified enzymes on insoluble cellulose substrates. Two copolymers exhibiting a thermoresponsive lower critical solution temperature (LCST) were created through the copolymerization of an aminooxy-bearing methacrylamide with N-isopropylacrylamide (NIPAm) or N-isopropylmethacrylamide (NIPMa). The aminooxy group provided a handle through which the LCST was adjusted through small-molecule quenching. This allowed materials with LCSTs ranging from 20.9 °C to 60.5 °C to be readily obtained after polymerization. The thermostable endoglucanase EGPh from the hypothermophilic Pyrococcus horikoshii was transaminated with pyridoxal-5’-phosphate to produce a ketone-bearing protein, which was then site-selectively modified through oxime linkage with benzylalkoxyamine or 5 kDa-poly(ethylene glycol)-alkoxyamine. These modified proteins showed activity comparable to the controls when assayed on an insoluble cellulosic substrate. Two polymer bioconjugates were then constructed using transaminated EGPh and the aminooxy-bearing copolymers. After twelve hours, both bioconjugates produced an equivalent amount of free reducing sugars as the unmodified control using insoluble cellulose as a substrate. The recycling ability of the NIPAm copolymer-EGPh conjugate was determined through three rounds of activity, maintaining over 60% activity after two cycles of reuse and affording significantly more soluble carbohydrates than unmodified enzyme alone. When assayed on acid-pretreated Miscanthus, this bioconjugate increased the amount of reducing sugars by 2.8-fold over three rounds of activity. The synthetic strategy of this bioconjugate allows the LCST of the material to be changed readily from a common stock of copolymer and the method of attachment is applicable to a variety of proteins, enabling the same approach to be amenable to

  14. Thiourea derivatives as chelating agents for bioconjugation of rhenium and technetium.

    PubMed

    Gomez, J D Castillo; Hagenbach, A; Gerling-Driessen, U I M; Koksch, B; Beindorff, N; Brenner, W; Abram, U

    2017-10-31

    Potential tetradentate thiocarbamoylbenzamidine derivatives H 4 L have been synthesized from the corresponding benzimidoyl chlorides and triglycine. They are suitable chelating agents for the oxidotechnetium(v) and oxidorhenium(v) cores and form stable, neutral [MO(HL)] complexes with an equatorial SN 3 coordination sphere and an additional, uncoordinated carboxylic group, which can be used for bioconjugation. Representatives of the rhenium and 99 Tc products have been isolated and analyzed with spectroscopic methods and X-ray diffraction. Bioconjugates of these complexes with angiotensin-II have been synthesized and structurally characterized. Analogous 99m Tc complexes have been produced and tested in vitro and in vivo. The experiments confirm a considerable stability for the [ 99m Tc(HL)] product as well as for its bioconjugate and recommend this class of compounds for further bioconjugation studies towards clinical applications.

  15. Assessment of nanosystems for space applications

    NASA Astrophysics Data System (ADS)

    Bilhaut, Lise; Duraffourg, Laurent

    2009-11-01

    This paper first gives an overview of the applications of micro-electro-mechanical systems (MEMS) in space. Microsystems are advertised for their extremely low size and mass, along with their low power consumption and in some case their improved performances. Examples of actual flown MEMS and future missions relying on MEMS are given. Microsystems are now enjoying a dynamic and expanding interest in the space community. This paper intends to give an idea about the next step in miniaturization, since the microelectronic industry is already looking at nano-electro-mechanical systems (NEMS) driven by the more-than-Moore philosophy. We show that the impact of nanosystems should not be reduced at a homothecy in size, weight and power consumption. New forces appear at this scale (Casimir force…) which have to be considered in the system design. The example of a nano-mechanical memory is developed. We also show that performances of nanosystems are not systematically better than their microscopic counterparts through the study of the impact of dimension reduction on an accelerometer resolution and sensitivity. We conclude with the idea that nanosystems will find their greatest applications in distributed intelligent networks that will allow new mission concepts for space exploration.

  16. Noncharged and Charged Monodendronised Perylene Bisimides as Highly Fluorescent Labels and their Bioconjugates.

    PubMed

    Huth, Katharina; Heek, Timm; Achazi, Katharina; Kühne, Christian; Urner, Leonhard H; Pagel, Kevin; Dernedde, Jens; Haag, Rainer

    2017-04-06

    A series of water-soluble, hydroxylated and sulphated, polyglycerol (PG) dendronised, monofunctional perylene bisimides (PBIs) were synthesised in three generations. Their photophysical properties were determined by absorption and emission spectroscopy and their suitability as potential biolabels examined by biological in vitro studies after bioconjugation. It could be shown that the photophysical properties of the PBI labels can be improved by increasing the sterical demand and ionic charge of the attached dendron. Thereby, charged labels show superior suppression of aggregation over charge neutral labels owing to electrostatic repulsion forces on the PG-dendron. The ionic charges also enabled a reduction in dendron generation while retaining the labels' outstanding fluorescence quantum yields (FQYs) up to 100 %. These core-unsubstituted perylene derivatives were successfully applied as fluorescent labels upon bioconjugation to the therapeutic antibody cetuximab. The dye-antibody conjugates showed a strongly enhanced aggregation tendency compared to the corresponding free dyes. Biological evaluation by receptor-binding, cellular uptake, and cytotoxicity studies revealed that labelling did not affect the antibody's function, which renders the noncharged and charged dendronised PBIs suitable candidates as fluorescent labels in biological imaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bioresponsive cancer-targeted polysaccharide nanosystem to inhibit angiogenesis.

    PubMed

    Yang, Fang; Fang, Xueyang; Jiang, Wenting; Chen, Tianfeng

    2017-01-01

    With many desirable features, such as being more effective and having multiple effects, antiangiogenesis has become one of the promising cancer treatments. The aim of this study was to design and synthesize a new targeted bioresponsive nanosystem with antiangiogenesis properties. The mUPR@Ru(POP) nanosystem was constructed by the polymerization of Ulva lactuca polysaccharide and N -isopropyl acrylamide, decorated with methoxy polyethylene glycol and Arg-Gly-Asp peptide, and encapsulated with anticancer complex [Ru(phen)2p-MOPIP](PF 6 ) 2 ·2H 2 O. The nanosystem was both pH responsive and targeted. Therefore, the cellular uptake of the drug was greatly improved. Moreover, the mUPR@Ru(POP) had strong suppressive effects against vascular endothelial growth factor (VEGF)-induced angiogenesis through apoptosis. The mUPR@Ru(POP) significantly inhibited VEGF-induced human umbilical vein endothelial cell migration, invasion, and tube formation. These findings have presented new insights into the development of antiangiogenesis drugs.

  18. Construction of a high-performance magnetic enzyme nanosystem for rapid tryptic digestion

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Zheng, Si-Yang

    2014-11-01

    A magnetic enzyme nanosystem have been designed and constructed by a polydopamine (PDA)-modification strategy. The magnetic enzyme nanosystem has well defined core-shell structure and a relatively high saturation magnetization (Ms) value of 48.3 emu g-1. The magnetic enzyme system can realize rapid, efficient and reusable tryptic digestion of proteins by taking advantage of its magnetic core and biofunctional shell. Various standard proteins (e.g. cytochrome C (Cyt-C), myoglobin (MYO) and bovine serum albumin (BSA)) have been used to evaluate the effectiveness of the magnetic enzyme nanosystem. The results show that the magnetic enzyme nanosystem can digest the proteins in 30 minutes, and the results are comparable to conventional 12 hours in-solution digestion. Furthermore, the magnetic enzyme nanosystem is also effective in the digestion of low-concentration proteins, even at as low as 5 ng μL-1 substrate concentration. Importantly, the system can be reused several times, and has excellent stability for storage. Therefore, this work will be highly beneficial for the rapid digestion and identification of proteins in future proteomics.

  19. Synthesis and room temperature photo-induced electron transfer in biologically active bis(terpyridine)ruthenium(II)-cytochrome c bioconjugates and the effect of solvents on the bioconjugation of cytochrome c.

    PubMed

    Peterson, Joshua R; Smith, Trevor A; Thordarson, Pall

    2010-01-07

    Photo-active bis(terpyridine)ruthenium(ii) chromophores were synthesised and attached to the redox enzyme iso-1 cytochrome c in a mixed solvent system to form photo-induced bioconjugates in greater than 40% yield after purification. The effects of up to 20% (v/v) of acetonitrile, tetrahydrofuran, dimethylformamide, or dimethyl sulfoxide at 4, 25 and 35 degrees C on the stability and biological activity of cytochrome c and its reactivity towards the model compound 4,4'-dithiodipyridine (DTDP) was measured. The second-order rate constant for the DTDP reaction was found to range between k = 2.5-4.3 M(-1) s(-1) for reactions with 5% organic solvent added compared to k = 5.6 M(-1) s(-1) in pure water at 25 degrees C. Use of 20% solvent generally results in significant protein oxidation, and 20% acetonitrile and tetrahydrofuran in particular result in significant protein dimerization, which competes with the bioconjugation reaction. Cyclic voltammetry studies indicated that the rate of electron transfer to the heme in solution was reduced in the bis(terpyridine)ruthenium(ii) cytochrome c bioconjugates compared to unmodified cytochrome c. Steady-state fluorescence studies on these bioconjugates showed that energy or electron transfer is taking place between the bis(terpyridine)ruthenium(ii) chromophores and cytochrome c. The bis(terpyridine)ruthenium(ii) cytochrome c bioconjugates demonstrate room temperature photo-activated electron transfer from the bis(terpyridine)ruthenium(ii) donor to the protein acceptor. Two sacrificial donors were used; in 50% glycerol, the bioconjugates were reduced in about 15 min while in 20 mM EDTA the bioconjugates were fully reduced in less than 5 min upon irradiation with a xenon lamp source. Under these conditions, the reduction of the non-covalent mixture of cytochrome c and bis(terpyridine)ruthenium(ii) mixtures took over 30 min. Control experiments showed that the photo-induced reduction of cytochrome c only occurs in the absence of

  20. A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy.

    PubMed

    Zhuang, Xiaoxi; Ma, Xiaowei; Xue, Xiangdong; Jiang, Qiao; Song, Linlin; Dai, Luru; Zhang, Chunqiu; Jin, Shubin; Yang, Keni; Ding, Baoquan; Wang, Paul C; Liang, Xing-Jie

    2016-03-22

    Photodynamic therapy (PDT) offers an alternative for cancer treatment by using ultraviolet or visible light in the presence of a photosensitizer and molecular oxygen, which can produce highly reactive oxygen species that ultimately leading to the ablation of tumor cells by multifactorial mechanisms. However, this technique is limited by the penetration depth of incident light, the hypoxic environment of solid tumors, and the vulnerability of photobleaching reduces the efficiency of many imaging agents. In this work, we reported a cellular level dual-functional imaging and PDT nanosystem BMEPC-loaded DNA origami for photodynamic therapy with high efficiency and stable photoreactive property. The carbazole derivative BMEPC is a one- and two-photon imaging agent and photosensitizer with large two-photon absorption cross section, which can be fully excited by near-infrared light, and is also capable of destroying targets under anaerobic condition by generating reactive intermediates of Type I photodynamic reactions. However, the application of BMEPC was restricted by its poor solubility in aqueous environment and its aggregation caused quenching. We observed BMEPC-loaded DNA origami effectively reduced the photobleaching of BMEPC within cells. Upon binding to DNA origami, the intramolecular rotation of BMEPC became proper restricted, which intensify fluorescence emission and radicals production when being excited. After the BMEPC-loaded DNA origami are taken up by tumor cells, upon irradiation, BMEPC could generate free radicals and be released due to DNA photocleavage as well as the following partially degradation. Apoptosis was then induced by the generation of free radicals. This functional nanosystem provides an insight into the design of photosensitizer-loaded DNA origami for effective intracellular imaging and photodynamic therapy.

  1. Enhanced enzymatic stability and antitumor activity of daunorubicin-GnRH-III bioconjugates modified in position 4.

    PubMed

    Manea, Marilena; Leurs, Ulrike; Orbán, Erika; Baranyai, Zsuzsa; Öhlschläger, Peter; Marquardt, Andreas; Schulcz, Ákos; Tejeda, Miguel; Kapuvári, Bence; Tóvári, József; Mezo, Gábor

    2011-07-20

    Here, we report on the synthesis, enzymatic stability, and antitumor activity of novel bioconjugates containing the chemotherapeutic agent daunorubicin attached through an oxime bond to various gonadotropin-releasing hormone-III (GnRH-III) derivatives. In order to increase the enzymatic stability of the bioconjugates (in particular against chymotrypsin), (4)Ser was replaced by N-Me-Ser or Lys(Ac). A compound in which (4)Lys was not acetylated was also prepared, with the aim of investigating the influence of the free ε-amino group on the biochemical properties. The in vitro cytostatic effect of the bioconjugates was determined on MCF-7 human breast, HT-29 human colon, and LNCaP human prostate cancer cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Their stability/degradation (1) in human serum, (2) in the presence of rat liver lysosomal homogenate, and (3) in the presence of digestive enzymes (trypsin, chymotrypsin, and pepsin) was analyzed by liquid chromatography in combination with mass spectrometry. The results showed that (1) all synthesized bioconjugates had in vitro cytostatic effect, (2) they were stable in human serum at least for 24 h, and (3) they were hydrolyzed in the presence of lysosomal homogenate. All compounds were stable in the presence of (1) pepsin and (2) trypsin (except for the (4)Lys containing bioconjugate). In the presence of chymotrypsin, all bioconjugates were digested; the degradation rate strongly depending on their structure. The bioconjugates in which (4)Ser was replaced by N-Me-Ser or Lys(Ac) had the highest enzymatic stability, making them potential candidates for oral administration. In vivo tumor growth inhibitory effect of two selected bioconjugates was evaluated on orthotopically developed C26 murine colon carcinoma bearing mice. The results indicated that the compound containing Lys(Ac) in position 4 had significantly higher antitumor activity than the parent bioconjugate.

  2. Coumarin-gold nanoparticle bioconjugates: preparation, antioxidant, and cytotoxic effects against MCF-7 breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mahendran, Gokila; Ponnuchamy, Kumar

    2018-05-01

    In recent, the conjugation of gold nanoparticles (AuNPs) with biomolecules has shown great potential especially in disease diagnostics and treatment. Taking this in account, we report the methodology involved in the conjugation of coumarin onto the surface of citrate-capped AuNPs by a simple in situ method. Herein, we systematically performed UV-Vis spectroscopy, transmission electron microscopy, dynamic light scattering, and zeta potential measurements to characterize citrate-capped AuNPs and bioconjugates. Our results demonstrate in-depth surface chemistry of bioconjugates with improved surface plasmon resonance (529 nm), morphology (near spherical shape), hydrodynamic diameter (25.3 nm) as well as surface charge (- 35 mV). Furthermore, the bioconjugates displayed dose-dependent response in scavenging free radicals and exhibited cytotoxicity against MCF-7 breast cancer cell lines. In addition, phase-contrast microscopic analysis revealed that bioconjugates promote apoptosis in cancer cells in a time-dependent manner. Overall, we ascertain the fact that this kind of bioconjugation of AuNPs with coumarin further enhances the efficacy of inorganic nanomaterials and thus make them a better bio-therapeutic candidate.

  3. Versatile Nanosystem-Based Cancer Theranostics: Design Inspiration and Predetermined Routing

    PubMed Central

    Opoku-Damoah, Yaw; Wang, Ruoning; Zhou, Jianping; Ding, Yang

    2016-01-01

    The relevance of personalized medicine, aimed at a more individualized drug therapy, has inspired research into nano-based concerted diagnosis and therapeutics (theranostics). As the intention is to “kill two birds with one stone”, scientists have already described the emerging concept as a treasured tailor for the future of cancer therapy, wherein the main idea is to design “smart” nanosystems to concurrently discharge both therapeutic and diagnostic roles. These nanosystems are expected to offer a relatively clearer view of the ingenious cellular trafficking pathway, in-situ diagnosis, and therapeutic efficacy. We herein present a detailed review of versatile nanosystems, with prominent examples of recently developed intelligent delivery strategies which have gained attention in the field of theranostics. These nanotheranostics include various mechanisms programmed in novel platforms to enable predetermined delivery of cargo to specific sites, as well as techniques to overcome the notable challenges involved in the efficacy of theranostics. PMID:27217832

  4. Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koya, Alemayehu Nana; Ji, Boyu; Hao, Zuoqiang

    2015-09-21

    Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rodmore » gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod, the effect of split gap on the optical responses of the coupled nanosystem is found to be insignificant compared to the parallel polarization. These findings and such geometries suggest that coupling an array of metallic split-ring dimer with long nanorod can resolve the huge radiative loss problem of plasmonic waveguide. In addition, the Fano-like resonances and immense near field enhancements at the split and dimer-rod gaps imply the potentials of the nanosystem for practical applications in localized surface plasmon resonance spectroscopy and sensing.« less

  5. Smart nanosystems: Bio-inspired technologies that interact with the host environment.

    PubMed

    Kwon, Ester J; Lo, Justin H; Bhatia, Sangeeta N

    2015-11-24

    Nanoparticle technologies intended for human administration must be designed to interact with, and ideally leverage, a living host environment. Here, we describe smart nanosystems classified in two categories: (i) those that sense the host environment and respond and (ii) those that first prime the host environment to interact with engineered nanoparticles. Smart nanosystems have the potential to produce personalized diagnostic and therapeutic schema by using the local environment to drive material behavior and ultimately improve human health.

  6. Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation.

    PubMed

    Zambrano-Zaragoza, María L; González-Reza, Ricardo; Mendoza-Muñoz, Néstor; Miranda-Linares, Verónica; Bernal-Couoh, Tania F; Mendoza-Elvira, Susana; Quintanar-Guerrero, David

    2018-03-01

    Currently, nanotechnology represents an important tool and an efficient option for extending the shelf life of foods. Reducing particle size to nanometric scale gives materials distinct and improved properties compared to larger systems. For food applications, this technology allows the incorporation of hydrophilic and lipophilic substances with antimicrobial and antioxidant properties that can be released during storage periods to increase the shelf life of diverse products, including whole and fresh-cut fruits and vegetables, nuts, seeds, and cheese, among others. Edible coatings are usually prepared with natural polymers that are non-toxic, economical, and readily available. Nanosystems, in contrast, may also be prepared with biodegradable synthetic polymers, and liquid and solid lipids at room temperature. In this review, recent developments in the use of such nanosystems as nanoparticles, nanotubes, nanocomposites, and nanoemulsions, are discussed critically. The use of polymers as the support matrix for nanodispersions to form edible coatings for food preservation is also analyzed, but the central purpose of the article is to describe available information on nanosystems and their use in different food substrates to help formulators in their work.

  7. A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma

    NASA Astrophysics Data System (ADS)

    Cen, Yao; Tang, Jun; Kong, Xiang-Juan; Wu, Shuang; Yuan, Jing; Yu, Ru-Qin; Chu, Xia

    2015-08-01

    Ascorbic acid (AA), a potent antioxidant readily scavenging reactive species, is a crucial micronutrient involved in many biochemical processes. Here, we have developed a cobalt oxyhydroxide (CoOOH)-modified upconversion nanosystem for fluorescence sensing of AA activity in human plasma. The nanosystem consists of upconversion nanoparticles (UCNPs) NaYF4:30% Yb,0.5% Tm@NaYF4, which serve as energy donors, and CoOOH nanoflakes formed on the surface of UCNPs, which act as efficient energy acceptors. The fluorescence resonance energy transfer (FRET) process from the UCNPs to the absorbance of the CoOOH nanoflakes occurs in the nanosystem. The AA-mediated specific redox reaction reduces CoOOH into Co2+, leading to the inhibition of FRET, and resulting in the recovery of upconversion emission spectra. On the basis of these features, the nanosystem can be used for sensing AA activity with sensitivity and selectivity. Moreover, due to the minimizing background interference provided by UCNPs, the nanosystem has been applied to monitoring AA levels in human plasma sample with satisfactory results. The proposed approach may potentially provide an analytical platform for research and clinical diagnosis of AA related diseases.Ascorbic acid (AA), a potent antioxidant readily scavenging reactive species, is a crucial micronutrient involved in many biochemical processes. Here, we have developed a cobalt oxyhydroxide (CoOOH)-modified upconversion nanosystem for fluorescence sensing of AA activity in human plasma. The nanosystem consists of upconversion nanoparticles (UCNPs) NaYF4:30% Yb,0.5% Tm@NaYF4, which serve as energy donors, and CoOOH nanoflakes formed on the surface of UCNPs, which act as efficient energy acceptors. The fluorescence resonance energy transfer (FRET) process from the UCNPs to the absorbance of the CoOOH nanoflakes occurs in the nanosystem. The AA-mediated specific redox reaction reduces CoOOH into Co2+, leading to the inhibition of FRET, and resulting in the

  8. Semiconductor nanocrystal-aptamer bioconjugate probes for specific prostate carcinoma cell targeting

    NASA Astrophysics Data System (ADS)

    Shieh, Felice; Lavery, Laura; Chu, Chitai T.; Richards-Kortum, Rebecca; Ellington, Andrew D.; Korgel, Brian A.

    2005-04-01

    Cancer of the prostate affects approximately 1 in 11 men. Current early screening for prostate cancer utilizes digital rectal examinations to detect anomalies in the prostate gland and blood test screenings for upregulated levels of prostate specific antigen (PSA). Many of these tests are invasive and can often be inconclusive as PSA levels may be heightened due to benign factors. Prostate specific membrane antigen (PSMA), a well-characterized integral membrane protein, is expressed in virtually all prostate cancers and often correlates with cancer aggressiveness. Therefore, it may be used as an indicator of cancer growth and metastases. PSMA-specific antibodies have been identified and conjugated to fluorescent markers for cancer cell targeting; however, both the antibodies and markers possess significant limitations in their pharmaceutical and diagnostic value. Here we report the use of semiconductor nanocrystals bioconjugated to PSMA-specific aptamer recognition molecules for prostate carcinoma cell targeting. The nanocrystal/aptamer bioconjugates are small biocompatible probes with the potential for color-tunability for multicolor imaging. Ongoing in vitro and in vivo research seeks to introduce these nanoparticle bioconjugates into medical diagnostics.

  9. Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation

    PubMed Central

    Zambrano-Zaragoza, María L.; González-Reza, Ricardo; Miranda-Linares, Verónica; Bernal-Couoh, Tania F.; Mendoza-Elvira, Susana; Quintanar-Guerrero, David

    2018-01-01

    Currently, nanotechnology represents an important tool and an efficient option for extending the shelf life of foods. Reducing particle size to nanometric scale gives materials distinct and improved properties compared to larger systems. For food applications, this technology allows the incorporation of hydrophilic and lipophilic substances with antimicrobial and antioxidant properties that can be released during storage periods to increase the shelf life of diverse products, including whole and fresh-cut fruits and vegetables, nuts, seeds, and cheese, among others. Edible coatings are usually prepared with natural polymers that are non-toxic, economical, and readily available. Nanosystems, in contrast, may also be prepared with biodegradable synthetic polymers, and liquid and solid lipids at room temperature. In this review, recent developments in the use of such nanosystems as nanoparticles, nanotubes, nanocomposites, and nanoemulsions, are discussed critically. The use of polymers as the support matrix for nanodispersions to form edible coatings for food preservation is also analyzed, but the central purpose of the article is to describe available information on nanosystems and their use in different food substrates to help formulators in their work. PMID:29494548

  10. Nanozeolite bioconjugates labeled with 223Ra for targeted alpha therapy.

    PubMed

    Piotrowska, Agata; Męczyńska-Wielgosz, Sylwia; Majkowska-Pilip, Agnieszka; Koźmiński, Przemysław; Wójciuk, Grzegorz; Cędrowska, Edyta; Bruchertseifer, Frank; Morgenstern, Alfred; Kruszewski, Marcin; Bilewicz, Aleksander

    2017-04-01

    Alpha particle emitting isotopes are of considerable interest for radionuclide therapy because of their high cytotoxicity and short path length. Among the many α emitters, 223 Ra exhibits very attractive nuclear properties for application in radionuclide therapy. The decay of this radioisotope and its daughters is accompanied by the emission of four α-particles, releasing 27.9MeV of cumulative energy. Unfortunately the lack of an appropriate bifunctional ligand for radium has so far been a main obstacle for the application of 223 Ra in receptor targeted therapy. In our studies we investigated the use of nanozeolite-Substance P bioconjugates as vehicles for 223 Ra radionuclides for targeted α therapy. The sodium form of an A-type of nanozeolite (NaA) was synthesized using the template method. Next, the nanozeolite particles were conjugated to the Substance P (5-11) peptide fragment, which targets NK-1 receptors on glioma cells. The obtained bioconjugate was characterized by transmission emission spectroscopy, thermogravimetric analysis and dynamic light scattering analysis. The NaA-silane-PEG-SP(5-11) bioconjugates were labeled with 223 Ra by exchange of the Na + cation and the stability, receptor affinity and cytotoxicity of the obtained radiobioconjugates were tested. The 223 Ra-labeled nanozeolite bioconjugate almost quantitatively retains 223 Ra in vitro after 6days, while the retention of decay products varies from 90 to 95%. The synthesized 223 RaA-silane-PEG-SP(5-11) showed high receptor affinity toward NK-1 receptor expressing glioma cells and exhibited a high cytotoxic effect in vitro. Substance P functionalized nanozeolite-A represents a viable solution for the use of the 223 Ra in vivo generator as a therapeutic construct for targeting glioma cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Salt Effect Accelerates Site-Selective Cysteine Bioconjugation

    PubMed Central

    2016-01-01

    Highly efficient and selective chemical reactions are desired. For small molecule chemistry, the reaction rate can be varied by changing the concentration, temperature, and solvent used. In contrast for large biomolecules, the reaction rate is difficult to modify by adjusting these variables because stringent biocompatible reaction conditions are required. Here we show that adding salts can change the rate constant over 4 orders of magnitude for an arylation bioconjugation reaction between a cysteine residue within a four-residue sequence (π-clamp) and a perfluoroaryl electrophile. Biocompatible ammonium sulfate significantly enhances the reaction rate without influencing the site-specificity of π-clamp mediated arylation, enabling the fast synthesis of two site-specific antibody–drug conjugates that selectively kill HER2-positive breast cancer cells. Computational and structure–reactivity studies indicate that salts may tune the reaction rate through modulating the interactions between the π-clamp hydrophobic side chains and the electrophile. On the basis of this understanding, the salt effect is extended to other bioconjugation chemistry, and a new regioselective alkylation reaction at π-clamp cysteine is developed. PMID:27725962

  12. Mixed, charge and heat noises in thermoelectric nanosystems

    NASA Astrophysics Data System (ADS)

    Crépieux, Adeline; Michelini, Fabienne

    2015-01-01

    Mixed, charge and heat current fluctuations as well as thermoelectric differential conductances are considered for non-interacting nanosystems connected to reservoirs. Using the Landauer-Büttiker formalism, we derive general expressions for these quantities and consider their possible relationships in the entire ranges of temperature, voltage and coupling to the environment or reservoirs. We introduce a dimensionless quantity given by the ratio between the product of mixed noises and the product of charge and heat noises, distinguishing between the auto-ratio defined in the same reservoir and the cross-ratio between distinct reservoirs. From the linear response regime to the high-voltage regime, we further specify the analytical expressions of differential conductances, noises and ratios of noises, and examine their behavior in two concrete nanosystems: a quantum point contact in an ohmic environment and a single energy level quantum dot connected to reservoirs. In the linear response regime, we find that these ratios are equal to each other and are simply related to the figure of merit. They can be expressed in terms of differential conductances with the help of the fluctuation-dissipation theorem. In the non-linear regime, these ratios radically distinguish between themselves as the auto-ratio remains bounded by one, while the cross-ratio exhibits rich and complex behaviors. In the quantum dot nanosystem, we moreover demonstrate that the thermoelectric efficiency can be expressed as a ratio of noises in the non-linear Schottky regime. In the intermediate voltage regime, the cross-ratio changes sign and diverges, which evidences a change of sign in the heat cross-noise.

  13. Mixed, charge and heat noises in thermoelectric nanosystems.

    PubMed

    Crépieux, Adeline; Michelini, Fabienne

    2015-01-14

    Mixed, charge and heat current fluctuations as well as thermoelectric differential conductances are considered for non-interacting nanosystems connected to reservoirs. Using the Landauer-Büttiker formalism, we derive general expressions for these quantities and consider their possible relationships in the entire ranges of temperature, voltage and coupling to the environment or reservoirs. We introduce a dimensionless quantity given by the ratio between the product of mixed noises and the product of charge and heat noises, distinguishing between the auto-ratio defined in the same reservoir and the cross-ratio between distinct reservoirs. From the linear response regime to the high-voltage regime, we further specify the analytical expressions of differential conductances, noises and ratios of noises, and examine their behavior in two concrete nanosystems: a quantum point contact in an ohmic environment and a single energy level quantum dot connected to reservoirs. In the linear response regime, we find that these ratios are equal to each other and are simply related to the figure of merit. They can be expressed in terms of differential conductances with the help of the fluctuation-dissipation theorem. In the non-linear regime, these ratios radically distinguish between themselves as the auto-ratio remains bounded by one, while the cross-ratio exhibits rich and complex behaviors. In the quantum dot nanosystem, we moreover demonstrate that the thermoelectric efficiency can be expressed as a ratio of noises in the non-linear Schottky regime. In the intermediate voltage regime, the cross-ratio changes sign and diverges, which evidences a change of sign in the heat cross-noise.

  14. Cytochrome P450 Bioconjugate as a Nanovehicle for Improved Chemotherapy Treatment.

    PubMed

    Quester, Katrin; Juarez-Moreno, Karla; Secundino, Isamel; Roseinstein, Yvonne; Alejo, Karla P; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2017-05-01

    Cancer is still a growing public health problem, especially breast cancer that is one of the most important cancers in women. Chemotherapy, even though a successful treatment, is accompanied by severe side effects. Moreover, most of the drugs used for chemotherapy are administered as prodrugs and need to be transformed to the active form by cytochromes P450 (CYPs). In addition, increasing numbers of cancer tissues show lower CYP activity than the surrounding healthy tissues in which prodrugs are preferentially activated causing cytotoxicity. Here, the design of a functionalized cytochrome P450 bioconjugate is reported as nanovehicle for the enzyme direct delivery to the tumor tissue in order to improve the local drug activation. MCF-7 breast cancer cells are treated with CYP-polyethylene glycol bioconjugate functionalized folic acid, where it activates the prodrug tamoxifen and significantly reduces the dose of tamoxifen needed to kill the tumor cells. The CYP bioconjugate covered with polyethylene glycol shows no immunogenic activity. The advantages of increasing the site-specific CYP activity in tumor tissues are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Paper-based supercapacitors for self-powered nanosystems.

    PubMed

    Yuan, Longyan; Xiao, Xu; Ding, Tianpeng; Zhong, Junwen; Zhang, Xianghui; Shen, Yue; Hu, Bin; Huang, Yunhui; Zhou, Jun; Wang, Zhong Lin

    2012-05-14

    Energy storage on paper: paper-based, all-solid-state, and flexible supercapacitors were fabricated, which can be charged by a piezoelectric generator or solar cells and then discharged to power a strain sensor or a blue-light-emitting diode, demonstrating its efficient energy management in self-powered nanosystems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties.

    PubMed

    Del Caño, Rafael; Mateus, Lucia; Sánchez-Obrero, Guadalupe; Sevilla, José Manuel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2017-11-01

    The identification of the factors that dictate the formation and physicochemical properties of protein-nanomaterial bioconjugates are important to understand their behavior in biological systems. The present work deals with the formation and characterization of bioconjugates made of the protein hemoglobin (Hb) and gold nanoparticles (AuNP) capped with three different molecular layers (citrate anions (c), 6-mercaptopurine (MP) and ω-mercaptoundecanoic acid (MUA)). The main focus is on the behavior of the bioconjugates in aqueous buffered solutions in a wide pH range. The stability of the bioconjugates have been studied by UV-visible spectroscopy by following the changes in the localized surface resonance plasmon band (LSRP), Dynamic light scattering (DLS) and zeta-potential pH titrations. It has been found that they are stable in neutral and alkaline solutions and, at pH lower than the protein isoelectric point, aggregation takes place. Although the surface chemical properties of the AuNPs confer different properties in respect to colloidal stability, once the bioconjugates are formed their properties are dictated by the Hb protein corona. The protein secondary structure, as analyzed by Attenuated total reflectance infrared (ATR-IR) spectroscopy, seems to be maintained under the conditions of colloidal stability but some small changes in protein conformation take place when the bioconjugates aggregate. These findings highlight the importance to keep the protein structure upon interaction with nanomaterials to drive the stability of the bioconjugates. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Dual-triggered oxygen self-supply black phosphorus nanosystem for enhanced photodynamic therapy.

    PubMed

    Liu, Jintong; Du, Ping; Mao, Hui; Zhang, Lei; Ju, Huangxian; Lei, Jianping

    2018-07-01

    Nonspecific distribution of photosensitizer and the intrinsic hypoxic condition in the tumor microenvironment are two key factors limiting the efficacy of O 2 -dependent photodynamic therapy (PDT). Herein, a dual-triggered oxygen self-supported nanosystem using black phosphorus nanosheet (BPNS) as both photosensitizer and nanocarrier was developed to enhance PDT for tumors within hypoxic microenvironment. The BPNS platform was functionalized with folate and a blocker DNA duplex of 5'-Cy5-aptamer-heme/3'-heme labeled oligonucleotides. The resulting heme dimer could passivate its peroxidase activity. After specific recognition of aptamer-target, the quenched fluorescence is "turned" on by cellular adenosine triphosphate. The passivated nanosystem then activates the catalytic function towards excessive intracellular H 2 O 2 to generate O 2 essential to sustain BPNS-mediated PDT, leading to 8.7-fold and 7.5-fold increase of PDT efficacy in treating the hypoxic cell and tumor, respectively. Therefore, the dual-triggered oxygen self-supply nanosystem not only exerts tumor microenvironment-associated stimulus for enhanced PDT but also surmounts hypoxia-associated therapy resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Amine-selective bioconjugation using arene diazonium salts.

    PubMed

    Diethelm, Stefan; Schafroth, Michael A; Carreira, Erick M

    2014-08-01

    A novel bioconjugation strategy is presented that relies on the coupling of diazonium terephthalates with amines in proteins. The diazonium captures the amine while the vicinal ester locks it through cyclization, ensuring no reversibility. The reaction is highly efficient and proceeds under mild conditions and short reaction times. Densely functionalized, complex natural products were directly coupled to proteins using low concentrations of coupling partners.

  19. A potential targeting gene vector based on biotinylated polyethyleneimine/avidin bioconjugates.

    PubMed

    Zeng, Xuan; Sun, Yun-Xia; Zhang, Xian-Zheng; Cheng, Si-Xue; Zhuo, Ren-Xi

    2009-08-01

    To improve the gene delivery efficiency and safety of non-viral vector in liver cells, avidin, which exhibited good biocompatibility and remarkable accumulation in liver, was bioconjugated with biotinylated polyethylenimine to obtain a novel gene vector. Biotinylated polyethyleneimine/avidin bioconjugate (ABP) was synthesized through grafting biotin to high molecular weight branched polyethylenimine (PEI, 25 kDa) and then bioconjugating with avidin by the biotin-avidin interaction. Physiochemical characteristics of ABP/pDNA complexes were analyzed, and in vitro cytotoxicity and transfection of ABP were also evaluated in HepG2, Hela and 293 T cells by using 25 kDa PEI as the control. It was found that ABP was able to condense pDNA efficiently at N/P ratio of 4. The particle sizes of ABP/pDNA complexes were less than 220 nm, and the average surface charges were around 27 mV at the N/P ratio ranging from 2 to 60. Among three different cell lines, ABP and its DNA complexes demonstrated much lower cytotoxicity and higher transfection efficacy in HepG2 cells as compared with 25 kDa PEI. ABP presented higher transfection efficacy and safety in HepG2 cells due to the biocompatibility of avidin and the specific interactions between avidin and HepG2 cells.

  20. Porphyrin synthesized from cashew nut shell liquid as part of a novel superparamagnetic fluorescence nanosystem

    NASA Astrophysics Data System (ADS)

    Clemente, C. S.; Ribeiro, V. G. P.; Sousa, J. E. A.; Maia, F. J. N.; Barreto, A. C. H.; Andrade, N. F.; Denardin, J. C.; Mele, G.; Carbone, L.; Mazzetto, S. E.; Fechine, P. B. A.

    2013-06-01

    Magnetic Fe3O4 nanoparticles with average size approximately 11 nm were first oleic acid coated to interact with the meso-porphyrin derivative from CNSL. This procedure produced a novel superparamagnetic fluorescent nanosystem (SFN) linked by van der Waals interactions. This system was characterized by transmission electron microscope, infrared spectroscopy, thermogravimetric analysis, magnetic measurements, UV-Vis absorption, and fluorescence emission measurements. These results showed that SFN has good thermal stability, excellent magnetization, and nanosized dimensions ( 13 nm). It exhibited emission peaks at 668 and 725 nm with a maximum emission at 467 nm of excitation wavelength. The type of interaction between porphyrin and magnetic nanoparticles allowed to obtain a material with interesting optical properties which might be used as an imaging agent for contrast in cells as well as heterogeneous photocatalysis.

  1. Interfacial bioconjugation on emulsion droplet for biosensors.

    PubMed

    Zhang, Qifan; Scigliano, Anita; Biver, Tarita; Pucci, Andrea; Swager, Timothy M

    2018-04-13

    Interfacial bioconjugation methods are developed for intact liquid emulsion droplets. Complex emulsion droplets having internal hydrocarbon and fluorocarbon immiscible structured phases maintain a dynamic interface for controlled interfacial reactivity. The internal morphological change after binding to biomolecules is readily visualized and detected by light transmission, which provides a platform for the formation of inexpensive and portable bio-sensing assays for enzymes, antibodies, nucleic acids and carbohydrates. Copyright © 2018. Published by Elsevier Ltd.

  2. Asymmetric flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for the quantification of quantum dots bioconjugation efficiency.

    PubMed

    Menéndez-Miranda, Mario; Encinar, Jorge Ruiz; Costa-Fernández, José M; Sanz-Medel, Alfredo

    2015-11-27

    Hyphenation of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) is proposed as a powerful diagnostic tool for quantum dots bioconjugation studies. In particular, conjugation effectiveness between a "model" monoclonal IgG antibody (Ab) and CdSe/ZnS core-shell Quantum Dots (QDs), surface-coated with an amphiphilic polymer, has been monitored here by such hybrid AF4-ICP-MS technique. Experimental conditions have been optimized searching for a proper separation between the sought bioconjugates from the eventual free reagents excesses employed during the bioconjugation (QDs and antibodies). Composition and pH of the carrier have been found to be critical parameters to ensure an efficient separation while ensuring high species recovery from the AF4 channel. An ICP-MS equipped with a triple quadropole was selected as elemental detector to enable sensitive and reliable simultaneous quantification of the elemental constituents, including sulfur, of the nanoparticulated species and the antibody. The hyphenated technique used provided nanoparticle size-based separation, elemental detection, and composition analysis capabilities that turned out to be instrumental in order to investigate in depth the Ab-QDs bioconjugation process. Moreover, the analytical strategy here proposed allowed us not only to clearly identify the bioconjugation reaction products but also to quantify nanoparticle:antibodies bioconjugation efficiency. This is a key issue in future development of analytical and bioanalytical photoluminescent QDs applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Chitosan-based nanosystems and their exploited antimicrobial activity.

    PubMed

    Perinelli, Diego Romano; Fagioli, Laura; Campana, Raffaella; Lam, Jenny K W; Baffone, Wally; Palmieri, Giovanni Filippo; Casettari, Luca; Bonacucina, Giulia

    2018-05-30

    Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of pharmaceutics, biomedical, chemical, cosmetics, textile and food industry. One of the most interesting characteristics of chitosan is its antibacterial and antifungal activity, and together with its excellent safety profile in human, it has attracted considerable attention in various research disciplines. The antimicrobial activity of chitosan is dependent on a number of factors, including its molecular weight, degree of deacetylation, degree of substitution, physical form, as well as structural properties of the cell wall of the target microorganisms. While the sole use of chitosan may not be sufficient to produce an adequate antimicrobial effect to fulfil different purposes, the incorporation of this biopolymer with other active substances such as drugs, metals and natural compounds in nanosystems is a commonly employed strategy to enhance its antimicrobial potential. In this review, we aim to provide an overview on the different approaches that exploit the antimicrobial activity of chitosan-based nanosystems and their applications, and highlight the latest advances in this field. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A smart bioconjugate of alginate and pectinase with unusual biological activity toward chitosan.

    PubMed

    Sardar, Meryam; Roy, Ipsita; Gupta, Munishwar N

    2003-01-01

    The commercial preparation of pectinase (Pectinex Ultra SP-L) was conjugated to alginate by noncovalent interactions by employing 1% alginate during the conjugation protocol. The optimum "immobilization efficiency" was 0.76. The pH optimum and the thermal stability of the enzyme remained unchanged upon conjugation with alginate. The soluble bioconjugate showed a 3-fold increase in V(max)/K(m) as compared to the free enzyme when the smart biocatalyst was used for chitosan hydrolysis. Time course hydrolysis of chitosan thus showed higher conversion of chitosan into reducing oligosaccharides/sugars. The smart bioconjugate could be reused five times without any detectable loss of chitosanase activity.

  5. Imaging pancreatic cancer using bioconjugated InP quantum dots.

    PubMed

    Yong, Ken-Tye; Ding, Hong; Roy, Indrajit; Law, Wing-Cheung; Bergey, Earl J; Maitra, Anirban; Prasad, Paras N

    2009-03-24

    In this paper, we report the successful use of non-cadmium-based quantum dots (QDs) as highly efficient and nontoxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)-zinc sulfide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in nonaqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjugation with pancreatic cancer specific monoclonal antibodies, such as anticlaudin 4 and antiprostate stem cell antigen (anti-PSCA), to the functionalized InP/ZnS QDs, allowed specific in vitro targeting of pancreatic cancer cell lines (both immortalized and low passage ones). The receptor-mediated delivery of the bioconjugates was further confirmed by the observation of poor in vitro targeting in nonpancreatic cancer based cell lines which are negative for the claudin-4-receptor. These observations suggest the immense potential of InP/ZnS QDs as non-cadmium-based safe and efficient optical imaging nanoprobes in diagnostic imaging, particularly for early detection of cancer.

  6. Defects in regular nanosystems and interference spectra at reemission of electromagnetic field attosecond pulses

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Makarov, D. N.

    2017-01-01

    The effect of defects in nanostructured targets on interference spectra at the reemission of attosecond electromagnetic pulses has been considered. General expressions have been obtained for calculations of spectral distributions for one-, two-, and three-dimensional multiatomic nanosystems consisting of identical complex atoms with defects such as bends, vacancies, and breaks. Changes in interference spectra by a linear chain with several removed atoms (chain with breaks) and by a linear chain with a bend have been calculated as examples allowing a simple analytical representation. Generalization to two- and three-dimensional nanosystems has been developed.

  7. Physical reasons of emission transformation in infrared CdSeTe/ZnS quantum dots at bioconjugation

    NASA Astrophysics Data System (ADS)

    Torchynska, T. V.

    2015-04-01

    The core/shell CdSeTe/ZnS quantum dots (QDs) with emission at 780-800 nm (1.55-1.60 eV) have been studied by means of photoluminescence (PL) and Raman scattering methods in the nonconjugated state and after conjugation to different antibodies (Ab): (i) mouse monoclonal [8C9] human papilloma virus Ab, anti-HPV 16-E7 Ab, (ii) mouse monoclonal [C1P5] human papilloma virus HPV16 E6+HPV18 E6 Ab, and (iii) pseudo rabies virus (PRV) Ab. The transformations of PL and Raman scattering spectra of QDs, stimulated by conjugated antibodies, have been revealed and discussed. The energy band diagram of core/shell CdSeTe/ZnS QDs has been designed that helps to analyze the PL spectra and their transformations at the bioconjugation. It is shown that the core in CdSeTe/ZnS QDs is complex and including the type II quantum well. The last fact permits to explain the nature of infrared (IR) optical transitions (1.55-1.60 eV) and the high energy PL band (1.88-1.94 eV) in the nonconjugated and bioconjugated QDs. A set of physical reasons has been analyzed with the aim to explain the transformation of PL spectra in bioconjugated QDs. Finally it is shown that two factors are responsible for the PL spectrum transformation at bioconjugation to charged antibodies: (i) the change of energy band profile in QDs and (ii) the shift of QD energy levels in the strong quantum confinement case. The effect of PL spectrum transformation is useful for the study of QD bioconjugation to specific antibodies and can be a powerful technique for early medical diagnostics.

  8. Recyclable Cu(i)/melanin dots for cycloaddition, bioconjugation and cell labelling

    DOE PAGES

    Sun, Yao; Hong, Suhyun; Ma, Xiaowei; ...

    2016-05-20

    We successfully transferred melanin into a novel catalytic platform. Ligand-free, water-soluble, recyclable and biocompatible Cu(i)-loaded melanin dots [Cu(i)/M-dots] was easily prepared and demonstrate excellent properties for classic CuAAC, bioconjugation and cell labelling.

  9. Mono-Amine Functionalized Phthalocyanines: Mwave-Assisted Solid-Phase Synthesis and Bioconjugation Strategies

    PubMed Central

    Erdem, S. Sibel; Nesterova, Irina V.; Soper, Steven A.; Hammer, Robert P.

    2009-01-01

    Phthalocyanines (Pcs) are excellent candidates for use as fluors for near-infrared (near-IR) fluorescent tagging of biomolecules for a wide variety of bioanalytical applications. Mono-functionalized Pcs, having two different types of peripheral substitutents; one for covalent conjugation of the Pc to biomolecules and others to improve the solubility of the macrocycle, ideally suit for the desired applications. To date, difficulties faced during the purification of the mono-functionalized Pcs limited their usage in various types of applications. Herein are reported a new synthetic method for rapid synthesis of the target Pcs and bioconjugation techniques for labeling of the oligonucleotides with the near-IR flours. A novel synthetic route was developed utilizing a hydrophilic, polyethylene glycol-based (PEG) support with an acid labile Rink Amide linker. The Pcs were functionalized with an amine group for covalent conjugation purposes and were decorated with short PEG chains, serving as solubilizing groups. Mwave-assisted solid-phase synthetic method was successfully applied to obtain pure asymmetrically-substituted mono-amine functionalized Pcs in a short period of time. Three different bioconjugation techniques, reductive amination, amidation and Huisgen cycloaddition, were employed for covalent conjugation of Pcs to oligonucleotides. The described μwave-assisted bioconjugation methods give an opportunity to synthesize and isolate the Pc-oligonucleotide conjugate in a few hours. PMID:19911767

  10. Smart Self-Assembled Nanosystem Based on Water-Soluble Pillararene and Rare-Earth-Doped Upconversion Nanoparticles for pH-Responsive Drug Delivery.

    PubMed

    Li, Haihong; Wei, Ruoyan; Yan, Gui-Hua; Sun, Ji; Li, Chunju; Wang, Haifang; Shi, Liyi; Capobianco, John A; Sun, Lining

    2018-02-07

    Exploring novel drug delivery systems with good stability and new structure to integrate pillararene and upconversion nanoparticles (UCNPs) into one system continues to be an important challenge. Herein, we report a novel preparation of a supramolecular upconversion nanosystem via the host-guest complexation based on carboxylate-based pillar[5]arene (WP5) and 15-carboxy-N,N,N-trialkylpentadecan-1-ammonium bromide (1)-functionalized UCNPs to produce WP5⊃1-UCNPs that can be loaded with the chemotherapeutic drug doxorubicin (DOX). Importantly, the WP5 on the surface of the drug-loaded nanosystem can be efficiently protonated under acidic conditions, resulting in the collapse of the nanosystem and drug release. Moreover, cellular uptake confirms that the nanosystem can enter human cervical cancer (HeLa) cells, resulting in drug accumulation in the cells. More importantly, cytotoxicity experiments demonstrated the excellent biocompatibility of WP5⊃1-UCNPs without loading DOX and that the nanosystem DOX-WP5⊃1-UCNPs exhibited an ability of killing HeLa cells effectively. We also investigated magnetic resonance imaging and upconversion luminescence imaging, which may be employed as visual imaging agents in cancer diagnosis and treatment. Thus, in the present work, we show a simple yet powerful strategy to combine UCNPs and pillar[5]arene to produce a unified nanosystem for dual-mode bioimaging-guided therapeutic applications.

  11. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    NASA Astrophysics Data System (ADS)

    Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab

    2015-02-01

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets' surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50-100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high surface

  12. Electron-phonon interaction in three-barrier nanosystems as active elements of quantum cascade detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkach, N. V., E-mail: ktf@chnu.edu.ua; Seti, Ju. A.; Grynyshyn, Yu. B.

    2015-04-15

    The theory of electron tunneling through an open nanostructure as an active element of a quantum cascade detector is developed, which takes into account the interaction of electrons with confined and interface phonons. Using the method of finite-temperature Green’s functions and the electron-phonon Hamiltonian in the representation of second quantization over all system variables, the temperature shifts and electron-level widths are calculated and the contributions of different electron-phonon-interaction mechanisms to renormalization of the spectral parameters are analyzed depending on the geometrical configuration of the nanosystem. Due to weak electron-phonon coupling in a GaAs/Al{sub 0.34}Ga{sub 0.66}As-based resonant tunneling nanostructure, the temperaturemore » shift and rf field absorption peak width are not very sensitive to the electron-phonon interaction and result from a decrease in potential barrier heights caused by a difference in the temperature dependences of the well and barrier band gaps.« less

  13. Bioconjugated nano-bactericidal complex for potent activity against human and phytopathogens with concern of global drug resistant crisis.

    PubMed

    Syed, Baker; Nagendra Prasad, M N; Mohan Kumar, K; Satish, S

    2018-10-01

    The present study emphasizes the need for novel antimicrobial agents to combat the global drug resistant crisis. The development of novel nanomaterials is reported to be of the alternative tool to combat drug resistant pathogens. In present investigation, bioconjugated nano-complex was developed from secondary metabolite secreted from endosymbiont. The endosymbiont capable of secreting antimicrobial metabolite was subjected to fermentation and the culture supernatant was assessed for purification of antimicrobial metabolite via bio-assay guided fraction techniques such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and column chromatography. The metabolite was characterized as 2,4-Diacetylphloroglucinol (2,4 DAPG) which was used to develop bioconjugated nano-complex by treating with 1 mM silver nitrate under optimized conditions. The purified metabolite 2,4 DAPG reduced silver nitrate to form bioconjugated nano-complex to form association with silver nanoparticles. The oxidized form of DAPG consists of four hard ligands that can conjugate on to the surface of silver nanoparticles cluster. The bioconjugation was confirmed with UV-visible spectroscopy which displayed the shift and shoulder peak in the absorbance spectra. This biomolecular interaction was further determined by the Fourier-transform spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses which displayed different signals ascertaining the molecular binding of 2,4,DAPG with silver nanoparticles. The transmission electron microscopy (TEM) analysis revealed the cluster formation due to bioconjugation. The XRD analysis revealed the crystalline nature of nano-complex with the characteristic peaks indexed to Bragg's reflection occurring at 2θ angle which indicated the (111), (200), (220) and (311) planes. The activity of bioconjugated nano-complex was tested against 12 significant human and phytopathogens. Among all the test pathogens, Shigella flexneri (MTCC

  14. Enhanced cellular uptake and in vitro antitumor activity of short-chain fatty acid acylated daunorubicin-GnRH-III bioconjugates.

    PubMed

    Hegedüs, Rózsa; Manea, Marilena; Orbán, Erika; Szabó, Ildikó; Kiss, Eva; Sipos, Eva; Halmos, Gábor; Mező, Gábor

    2012-10-01

    Here we report on the synthesis and biochemical characterization (enzymatic stability, cellular uptake, in vitro antitumor activity, membrane interaction and GnRH-receptor binding affinity) of novel short-chain fatty acid (SCFA) acylated daunorubicin-GnRH-III bioconjugates, which may serve as drug delivery systems for targeted cancer chemotherapy. Ser in position 4 of GnRH-III was replaced by Lys, followed by the acylation of its ε-amino group with various fatty acids. SCFAs are potentially chemoprotective agents by suppressing the growth of cancer cells and therefore may enhance the antitumor activity of the bioconjugates. We found that all synthesized bioconjugates had high cytostatic effect in vitro, were stable in cell culture medium for 6 h and degraded in the presence of rat liver lysosomal homogenate leading to the formation of an oxime bond-linked daunorubicin-Lys as the smallest active metabolite. In the presence of α-chymotrypsin, all compounds were digested, the degradation rate strongly depending on the type of fatty acid. The bioconjugate containing Lys(nBu) in position 4 was taken up most efficiently by the cancer cells and exerted higher in vitro cytostatic effect than the previously developed GnRH-III((4)Lys(Ac), (8)Lys(Dau = Aoa)) or the parent GnRH-III(Dau = Aoa) bioconjugate. Our results could be explained by the increased binding affinity of the newly developed compound containing Lys(nBu) to the GnRH receptors. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Imaging Pancreatic Cancer Using Bioconjugated InP Quantum Dots

    PubMed Central

    Yong, Ken-Tye; Ding, Hong; Roy, Indrajit; Law, Wing-Cheung; Bergey, Earl J.; Maitra, Anirban; Prasad, Paras N.

    2009-01-01

    In this paper, we report the successful use of non-cadmium based quantum dots (QDs) as highly efficient and non-toxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)-zinc sulphide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in non-aqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjugation with pancreatic cancer specific monoclonal antibodies, such as anti-claudin 4 and anti-prostate stem cell antigen (anti-PSCA), to the functionalized InP/ZnS QDs, allowed specific in vitro targeting of pancreatic cancer cell lines (both immortalized and low passage ones). The receptor mediated delivery of the bioconjugates was further confirmed by the observation of poor in vitro targeting in non-pancreatic cancer based cell lines which are negative for the claudin-4-receptor. These observations suggest the immense potential of InP/ZnS QDs as non-cadmium based safe and efficient optical imaging nanoprobes in diagnostic imaging, particularly for early detection of cancer. PMID:19243145

  16. Joining and interconnect formation of nanowires and carbon nanotubes for nanoelectronics and nanosystems.

    PubMed

    Cui, Qingzhou; Gao, Fan; Mukherjee, Subhadeep; Gu, Zhiyong

    2009-06-01

    Interconnect formation is critical for the assembly and integration of nanocomponents to enable nanoelectronics- and nanosystems-related applications. Recent progress on joining and interconnect formation of key nanomaterials, especially nanowires and carbon nanotubes, into functional circuits and/or prototype devices is reviewed. The nanosoldering technique through nanoscale lead-free solders is discussed in more detail in this Review. Various strategies of fabricating lead-free nanosolders and the utilization of the nanosoldering technique to form functional solder joints are reviewed, and related challenges facing the nanosoldering technique are discussed. A perspective is given for using lead-free nanosolders and the nanosoldering technique for the construction of complex and/or hybrid nanoelectronics and nanosystems.

  17. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages.

    PubMed

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M; Gao, Feng; Xia, Younan; Wang, Lihong V

    2010-08-24

    Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bioconjugated with [Nle(4),D-Phe(7)]-alpha-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bioconjugated AuNCs enhanced contrast approximately 300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS).

  18. Impact of Antibody Bioconjugation on Emission and Energy Band Profile of CdSeTe/ZnS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Torchynska, T. V.; Gomez, J. A. Jaramillo; Polupan, G.; Macotela, L. G. Vega

    2018-03-01

    The variation of the photoluminescence (PL) and Raman scattering spectra of CdSeTe/ZnS quantum dots (QDs) on conjugation to an antibody has been investigated. Two types of CdSeTe/ZnS QD with different emission wavelength (705 nm and 800 nm) were studied comparatively before and after conjugation to anti-pseudorabies virus antibody (AB). Nonconjugated QDs were characterized by Gaussian-type PL bands. PL shifts to higher energy and asymmetric shape of PL bands was detected in PL spectra of bioconjugated QDs. The surface-enhanced Raman scattering effect was exhibited by the bioconjugated CdSeTe/ZnS QDs, indicating that the excitation light used in the Raman study generated electric dipoles in the AB molecules. The optical bandgap of the CdSeTe core was calculated numerically as a function of its radius based on an effective mass approximation model. The energy band diagrams for non- and bioconjugated CdSeTe/ZnS QDs were obtained, revealing a type II quantum well in the CdSeTe core. The calculations show that AB dipoles, excited in the bioconjugated QDs, stimulate a change in the energy band diagram of the QDs that alters the PL spectrum. These results could be useful for improving the sensitivity of QD biosensors.

  19. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy.

    PubMed

    Biju, Vasudevanpillai

    2014-02-07

    As prepared nanomaterials of metals, semiconductors, polymers and carbon often need surface modifications such as ligand exchange, and chemical and bioconjugate reactions for various biosensor, bioanalytical, bioimaging, drug delivery and therapeutic applications. Such surface modifications help us to control the physico-chemical, toxicological and pharmacological properties of nanomaterials. Furthermore, introduction of various reactive functional groups on the surface of nanomaterials allows us to conjugate a spectrum of contrast agents, antibodies, peptides, ligands, drugs and genes, and construct multifunctional and hybrid nanomaterials for the targeted imaging and treatment of cancers. This tutorial review is intended to provide an introduction to newcomers about how chemical and bioconjugate reactions transform the surface of nanomaterials such as silica nanoparticles, gold nanoparticles, gold quantum clusters, semiconductor quantum dots, carbon nanotubes, fullerene and graphene, and accordingly formulate them for applications such as biosensing, bioimaging, drug and gene delivery, chemotherapy, photodynamic therapy and photothermal therapy. Nonetheless, controversial reports and our growing concerns about toxicity and pharmacokinetics of nanomaterials suggest the need for not only rigorous in vivo experiments in animal models but also novel nanomaterials for practical applications in the clinical settings. Further reading of original and review articles cited herein is necessary to buildup in-depth knowledge about the chemistry, bioconjugate chemistry and biological applications of individual nanomaterials.

  20. Targeted PEG-based bioconjugates enhance the cellular uptake and transport of a HIV-1 TAT nonapeptide.

    PubMed

    Ramanathan, S; Qiu, B; Pooyan, S; Zhang, G; Stein, S; Leibowitz, M J; Sinko, P J

    2001-12-13

    We previously described the enhanced cell uptake and transport of R.I-K(biotin)-Tat9, a large ( approximately 1500 Da) peptidic inhibitor of HIV-1 Tat protein, via SMVT, the intestinal biotin transporter. The aim of the present study was to investigate the feasibility of targeting biotinylated PEG-based conjugates to SMVT in order to enhance cell uptake and transport of Tat9. The 29 kDa peptide-loaded bioconjugate (PEG:(R.I-Cys-K(biotin)-Tat9)8) used in these studies contained eight copies of R.I-K(biotin)-Tat9 appended to PEG by means of a cysteine linkage. The absorptive transport of biotin-PEG-3400 (0.6-100 microM) and the bioconjugate (0.1-30 microM) was studied using Caco-2 cell monolayers. Inhibition of biotin-PEG-3400 by positive controls (biotin, biocytin, and desthiobiotin) was also determined. Uptake of these two compounds was also determined in CHO cells transfected with human SMVT (CHO/hSMVT) and control cells (CHO/pSPORT) over the concentration ranges of 0.05-12.5 microM and 0.003-30 microM, respectively. Nonbiotinylated forms of these two compounds, PEG-3350 and PEG:(R.I-Cys-K-Tat9)8, were used in the control studies. Biotin-PEG-3400 transport was found to be concentration-dependent and saturable in Caco-2 cells (K(m)=6.61 microM) and CHO/hSMVT cells (K(m)=1.26 microM). Transport/uptake was significantly inhibited by positive control substrates of SMVT. PEG:(R.I-Cys-K(biotin)Tat9)8 also showed saturable transport kinetics in Caco-2 cells (K(m)=6.13 microM) and CHO/hSMVT cells (K(m)=8.19 microM). Maximal uptake in molar equivalents of R.I-Cys-K(biotin)Tat9 was 5.7 times greater using the conjugate versus the biotinylated peptide alone. Transport of the nonbiotinylated forms was significantly lower (P<0.001) in all cases. The present results demonstrate that biotin-PEG-3400 and PEG:(R.I-Cys-K(biotin)Tat9)8 interact with human SMVT to enhance the cellular uptake and transport of these larger molecules and that targeted bioconjugates may have potential

  1. Roadmap for Computer-Aided Modeling of Theranostics and Related Nanosystems

    NASA Astrophysics Data System (ADS)

    Ulicny, Jozef; Kozar, Tibor

    2018-02-01

    Detailed understanding of the interactions of novel metal-containing nanoparticles with biological membranes, macromolecules and other molecular targets of the living cell is crucial for the elucidation of the biological actions of such functionalized nanosystems. We present here the construction and modeling of thiolate-protected gold clusters and the prediction of their static and dynamic properties.

  2. A common anchor facilitated GO-DNA nano-system for multiplex microRNA analysis in live cells.

    PubMed

    Yu, Jiantao; He, Sihui; Shao, Chen; Zhao, Haoran; Li, Jing; Tian, Leilei

    2018-04-19

    The design of a nano-system for the detection of intracellular microRNAs is challenging as it must fulfill complex requirements, i.e., it must have a high sensitivity to determine the dynamic expression level, a good reliability for multiplex and simultaneous detection, and a satisfactory biostability to work in biological environments. Instead of employing a commonly used physisorption or a full-conjugation strategy, here, a GO-DNA nano-system was developed under graft/base-pairing construction. The common anchor sequence was chemically grafted to GO to base-pair with various microRNA probes; and the hybridization with miRNAs drives the dyes on the probes to leave away from GO, resulting in "turned-on" fluorescence. This strategy not only simplifies the synthesis but also efficiently balances the loading yields of different probes. Moreover, the conjugation yield of GO with a base-paired hybrid has been improved by more than two-fold compared to that of the conjugation with a single strand. We demonstrated that base-paired DNA probes could be efficiently delivered into cells along with GO and are properly stabilized by the conjugated anchor sequence. The resultant GO-DNA nano-system exhibited high stability in a complex biological environment and good resistance to nucleases, and was able to accurately discriminate various miRNAs without cross-reaction. With all of these positive features, the GO-DNA nano-system can simultaneously detect three miRNAs and monitor their dynamic expression levels.

  3. In vivo molecular photoacoustic tomography of melanomas targeted by bio-conjugated gold nanocages

    PubMed Central

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M.; Gao, Feng; Xia, Younan; Wang, Lihong V.

    2010-01-01

    Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bio-conjugated with [Nle4,D-Phe7]-α-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bio-conjugated AuNCs enhanced contrast ~300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS). PMID:20731439

  4. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials.

    PubMed

    Bloom, Steven; Liu, Chun; Kölmel, Dominik K; Qiao, Jennifer X; Zhang, Yong; Poss, Michael A; Ewing, William R; MacMillan, David W C

    2018-02-01

    The advent of antibody-drug conjugates as pharmaceuticals has fuelled a need for reliable methods of site-selective protein modification that furnish homogeneous adducts. Although bioorthogonal methods that use engineered amino acids often provide an elegant solution to the question of selective functionalization, achieving homogeneity using native amino acids remains a challenge. Here, we explore visible-light-mediated single-electron transfer as a mechanism towards enabling site- and chemoselective bioconjugation. Specifically, we demonstrate the use of photoredox catalysis as a platform to selectivity wherein the discrepancy in oxidation potentials between internal versus C-terminal carboxylates can be exploited towards obtaining C-terminal functionalization exclusively. This oxidation potential-gated technology is amenable to endogenous peptides and has been successfully demonstrated on the protein insulin. As a fundamentally new approach to bioconjugation this methodology provides a blueprint toward the development of photoredox catalysis as a generic platform to target other redox-active side chains for native conjugation.

  5. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials

    NASA Astrophysics Data System (ADS)

    Bloom, Steven; Liu, Chun; Kölmel, Dominik K.; Qiao, Jennifer X.; Zhang, Yong; Poss, Michael A.; Ewing, William R.; MacMillan, David W. C.

    2018-02-01

    The advent of antibody-drug conjugates as pharmaceuticals has fuelled a need for reliable methods of site-selective protein modification that furnish homogeneous adducts. Although bioorthogonal methods that use engineered amino acids often provide an elegant solution to the question of selective functionalization, achieving homogeneity using native amino acids remains a challenge. Here, we explore visible-light-mediated single-electron transfer as a mechanism towards enabling site- and chemoselective bioconjugation. Specifically, we demonstrate the use of photoredox catalysis as a platform to selectivity wherein the discrepancy in oxidation potentials between internal versus C-terminal carboxylates can be exploited towards obtaining C-terminal functionalization exclusively. This oxidation potential-gated technology is amenable to endogenous peptides and has been successfully demonstrated on the protein insulin. As a fundamentally new approach to bioconjugation this methodology provides a blueprint toward the development of photoredox catalysis as a generic platform to target other redox-active side chains for native conjugation.

  6. Biological sensing and control of emission dynamics of quantum dot bioconjugates using arrays of long metallic nanorods.

    PubMed

    Sadeghi, Seyed M; Gutha, Rithvik R; Wing, Waylin J; Sharp, Christina; Capps, Lucas; Mao, Chuanbin

    2017-01-01

    We study biological sensing using plasmonic and photonic-plasmonic resonances of arrays of ultralong metallic nanorods and analyze the impact of these resonances on emission dynamics of quantum dot bioconjugates. We demonstrate that the LSPRs and plasmonic lattice modes of such array can be used to detect a single self-assembled monolayer of alkanethiol at the visible (550 nm) and near infrared (770 nm) range with well resolved shifts. We study adsorption of streptavidin-quantum dot conjugates to this monolayer, demonstrating that formation of nearly two dimensional arrays of quantum dots with limited emission blinking can lead to extra well-defined wavelength shifts in these modes. Using spectrally-resolved lifetime measurements we study the emission dynamics of such quantum dot bioconjugates within their monodispersed size distribution. We show that, despite their close vicinity to the nanorods, the rate of energy transfer from these quantum dots to nanorods is rather weak, while the plasmon field enhancement can be strong. Our results reveal that the nanorods present a strongly wavelength or size-dependent non-radiative decay channel to the quantum dot bioconjugates.

  7. Collisionless absorption of intense laser radiation in nanoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaretsky, D F; Korneev, Philipp A; Popruzhenko, Sergei V

    The rate of linear collisionless absorption of an electromagnetic radiation in a nanoplasma - classical electron gas localised in a heated ionised nanosystem (thin film or cluster) irradiated by an intense femtosecond laser pulse - is calculated. The absorption is caused by the inelastic electron scattering from the self-consistent potential of the system in the presence of a laser field. The effect proves to be appreciable because of a small size of the systems. General expressions are obtained for the absorption rate as a function of the parameters of the single-particle self-consistent potential and electron distribution function in the regimemore » linear in field. For the simplest cases, where the self-consistent field is created by an infinitely deep well or an infinite charged plane, closed analytic expressions are obtained for the absorption rate. Estimates presented in the paper demonstrate that, over a wide range of the parameters of laser pulses and nanostructures, the collisionless mechanism of heating electron subsystem can be dominant. The possibility of experimental observation of the collisionless absorption of intense laser radiation in nanoplasma is also discussed. (interaction of laser radiation with matter)« less

  8. A Nanosystem Capable of Releasing a Photosensitizer Bioprecursor under Two‐Photon Irradiation for Photodynamic Therapy

    PubMed Central

    Wu, Hao; Zeng, Fang; Zhang, Hang; Xu, Jiangsheng

    2015-01-01

    The applications of photodynamic therapy (PDT) are usually limited by photosensitizers' side effects and singlet oxygen's short half‐life. Herein, a mitochondria‐targeted nanosystem is demonstrated to enhance the PDT efficacy by releasing a bio‐precursor of photosensitizer under two‐photon irradiation. A phototriggerable coumarin derivative is first synthesized by linking 5‐aminolevulinic acid (5‐ALA, the bio‐precursor) to coumarin; and the nanosystem (CD‐ALA‐TPP) is then fabricated by covalently incorporating this coumarin derivative and a mitochondria‐targeting compound triphenylphosphonium (TPP) onto carbon dots (CDs). Upon cellular internalization, the nanosystem preferentially accumulates in mitochondria; and under one‐ or two‐photon irradiation, it releases 5‐ALA molecules that are then metabolized into protoporphyrin IX in mitochondria through a series of biosynthesis processes. The subsequent red light irradiation induces this endogenously synthesized photosensitizer to generate singlet oxygen, thereby causing oxidant damage to mitochondria and then the apoptosis of the cells. Analysis via 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyltetrazolium bromide (MTT) assays indicate that the novel PDT system exhibits enhanced cytotoxicity toward cancer cells. This study may offer a new strategy for designing PDT systems with high efficacy and low side effects. PMID:27774388

  9. Functionalization of peptide nucleolipid bioconjugates and their structure anti-cancer activity relationship studies.

    PubMed

    Rana, Niki; Cultrara, Christopher; Phillips, Mariana; Sabatino, David

    2017-09-01

    In the search for more potent peptide-based anti-cancer conjugates the generation of new, functionally diverse nucleolipid derived D-(KLAKLAK) 2 -AK sequences has enabled a structure and anti-cancer activity relationship study. A reductive amination approach was key for the synthesis of alkylamine, diamine and polyamine derived nucleolipids as well as those incorporating heterocyclic functionality. The carboxy-derived nucleolipids were then coupled to the C-terminus of the D-(KLAKLAK) 2 -AK killer peptide sequence and produced with and without the FITC fluorophore for investigating biological activity in cancer cells. The amphiphilic, α-helical peptide-nucleolipid bioconjugates were found to exhibit variable effects on the viability of MM.1S cells, with the histamine derived nucleolipid peptide bioconjugate displaying the most significant anti-cancer effects. Thus, functionally diverse nucleolipids have been developed to fine-tune the structure and anti-cancer properties of killer peptide sequences, such as D-(KLAKLAK) 2 -AK. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Design, Synthesis, and Evaluation of N- and C-Terminal Protein Bioconjugates as G Protein-Coupled Receptor Agonists.

    PubMed

    Healey, Robert D; Wojciechowski, Jonathan P; Monserrat-Martinez, Ana; Tan, Susan L; Marquis, Christopher P; Sierecki, Emma; Gambin, Yann; Finch, Angela M; Thordarson, Pall

    2018-02-21

    A G protein-coupled receptor (GPCR) agonist protein, thaumatin, was site-specifically conjugated at the N- or C-terminus with a fluorophore for visualization of GPCR:agonist interactions. The N-terminus was specifically conjugated using a synthetic 2-pyridinecarboxyaldehyde reagent. The interaction profiles observed for N- and C-terminal conjugates were varied; N-terminal conjugates interacted very weakly with the GPCR of interest, whereas C-terminal conjugates bound to the receptor. These chemical biology tools allow interactions of therapeutic proteins:GPCR to be monitored and visualized. The methodology used for site-specific bioconjugation represents an advance in application of 2-pyridinecarboxyaldehydes for N-terminal specific bioconjugations.

  11. Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    PubMed Central

    Khan, Shadab Ali; Gambhir, Sanjay

    2014-01-01

    Summary As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3) nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS). The Gd2O3–taxol bioconjugate was confirmed by UV–vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC). PMID:24778946

  12. Novel nanosystems for the treatment of ocular inflammation: Current paradigms and future research directions.

    PubMed

    Lalu, Lida; Tambe, Vishakha; Pradhan, Deepak; Nayak, Kritika; Bagchi, Suchandra; Maheshwari, Rahul; Kalia, Kiran; Tekade, Rakesh Kumar

    2017-12-28

    Ocular discomforts involve anterior/posterior-segment diseases, symptomatic distress and associated inflammations and severe retinal disorders. Conventionally, the formulations such as eye drops, eye solutions, eye ointments and lotions, etc. were used as modalities to attain relief from such ocular discomforts. However, eye allows limited access to these traditional formulations due to its unique anatomical structure and dynamic ocular environment and therefore calls for improvement in disease intervention. To address these challenges, development of nanotechnology based nanomedicines and novel nanosystems (liposomes, cubosomes, polymeric and lipidic nanoparticles, nanoemulsions, spanlastics and nano micelles) are currently in progress (some of them are already marketed such as Eye-logic liposomal eye spray@Naturalife, Ireland). Today, it is one of the central concept in designing more accessible formulations for deeper segments of the eyes. These nanosystems has largely enabled the availability of medicaments at required site in a required concentration without inversely affecting the eye tissues; and therefore, attaining the excessive considerations from the formulation scientists and pharmacologists worldwide. The entrapment of drugs, genes, and proteins inside these novel systems is the basis that works at the bio-molecular level bestows greater potential to eradicate disease causatives. In this review, we highlighted the recent attempts of nanotechnology-based systems for treating and managing various ocular ailments. The progress described herein may pave the way to new, highly effective and vital ocular nanosystems. Copyright © 2017. Published by Elsevier B.V.

  13. Molecular characterization of multivalent bioconjugates by size-exclusion chromatography with multiangle laser light scattering.

    PubMed

    Pollock, Jacob F; Ashton, Randolph S; Rode, Nikhil A; Schaffer, David V; Healy, Kevin E

    2012-09-19

    The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product-consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multiangle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and help to better understand multivalent macromolecular interactions in biological systems.

  14. Core-shell chromium silicide-silicon nanopillars: a contact material for future nanosystems.

    PubMed

    Chang, Mu-Tung; Chen, Chih-Yen; Chou, Li-Jen; Chen, Lih-Juann

    2009-11-24

    Chromium silicide nanostructures are fabricated inside silicon nanopillars grown by the vapor-liquid-solid mechanism. The remarkable field-emission behavior of these nanostructures results from extensive improvement of carrier transport due to the reduced energy barrier between the metal and semiconductor layers. The results warrant consideration of chromium silicide as a potentially important contact material in future nanosystems.

  15. Bioconjugation of luminescent Eu-BDC-NH2 MOFs for highly efficient sensing of BSA

    NASA Astrophysics Data System (ADS)

    Kukkar, Preeti; Sammi, Heena; Rawat, Mohit; Singh, Pritpal; Basu, Soumen; Kukkar, Deepak

    2018-05-01

    Luminescent metal organic frameworks (MOFs) have emerged as an exciting prospect for molecular sensing applications owing to their tunable porosity and optical properties. In this study, we have reported the synthesis of luminescent Europium-amino terephthalic acid (Eu-BDC-NH2) MOFs through solvothermal approach subsequently followed by their bioconjugation with anti-Bovine serum albumin (BSA) antibody using standard carbodiimide linkage chemistry. Subsequently nanocomposite of the bioconjugate and Zeolotic Imidazole Frameworks -8(ZIF-8) nanoparticles was prepared by adding varying volumes of ZIF-8 NPs to check the variation in photoluminescence (PL) intensity. Finally, optimized nanocomposites with increased PL intensity were treated with different concentrations of BSA to show a turn on effect on the PL intensity. The prepared nanocomposites were able to screen 0.1 ppm concentration of the BSA thus showing their high efficiency as a molecular sensor. This fluorescent platform would be further utilized for sensitive detection of pesticides in solution.

  16. Nanocarriers as phototherapeutic drug delivery system: Appraisal of three different nanosystems in an in vivo and in vitro exploratory study.

    PubMed

    Ricci-Junior, Eduardo; de Oliveira de Siqueira, Luciana Betzler; Rodrigues, Raphaela Aparecida Schuenck; Sancenón, Félix; Martínez-Máñez, Ramón; de Moraes, João Alfredo; Santos-Oliveira, Ralph

    2018-03-01

    The use of nanosystems as diagnosing and therapy systems is increasing each year. There are several nanosystems available and the most prominent ones are: mesoporous silica, nanoemulsion and polymeric nanoparticles. With characteristics like low toxicology, and easy-producing process they have advantages when compared with the traditional system used, as they show specific targeting, controlled release, and higher penetration. In this study we tested three different nanocarriers (polymeric nanoparticles, nanoemulsion and mesoporous silica) containing phthalocyanineas possible PDT drugs (nanodrugs). They were tested in vitro and in vivo: cells and healthy mice, respectively, in order to understand the biological behavior and reach the initial conclusions. The results in cells showed that a dose response was observed with different concentrations of the three nanocarriers. The results in animal showed that all nanosystems have potential for application in PDT, since they were able to produce a visible effect in healthy animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Molecular imaging with bioconjugates in mouse models of cancer.

    PubMed

    Mather, Stephen

    2009-04-01

    The definition of molecular imaging provided by the Society of Nuclear Medicine is "the visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems". This review gives an overview of the technologies available for and the potential benefits from molecular imaging at the preclinical stage. It focuses on the use of imaging probes based on bioconjugates and for reasons of brevity confines itself to discussion of applications in the field of oncology, although molecular imaging can be equally useful in many fields including cardiovascular medicine, neurosciences, infection, and others.

  18. Multicomponent Reactions in Ligation and Bioconjugation Chemistry.

    PubMed

    Reguera, Leslie; Méndez, Yanira; Humpierre, Ana R; Valdés, Oscar; Rivera, Daniel G

    2018-05-25

    Multicomponent reactions (MCRs) encompass an exciting class of chemical transformations that have proven success in almost all fields of synthetic organic chemistry. These convergent procedures incorporate three or more reactants into a final product in one pot, thus combining high levels of complexity and diversity generation with low synthetic cost. Striking applications of these processes are found in heterocycle, peptidomimetic, and natural product syntheses. However, their potential in the preparation of large macro- and biomolecular constructs has been realized just recently. This Account describes the most relevant results of our group in the utilization of MCRs for ligation/conjugation of biomolecules along with significant contributions from other laboratories that validate the utility of this special class of bioconjugation process. Thus, MCRs have proven to be efficient in the ligation of lipids to peptides and oligosaccharides as well as the ligation of steroids, carbohydrates, and fluorescent and affinity tags to peptides and proteins. In the field of glycolipids, we highlight the power of isocyanide-based MCRs with the one-pot double lipidation of glycan fragments functionalized as either the carboxylic acid or amine. In peptide chemistry, the versatility of the multicomponent ligation strategy is demonstrated in both solution-phase lipidation protocols and solid-phase procedures enabling the simultaneous lipidation and biotinylation of peptides. In addition, we show that MCRs are powerful methods for synchronized lipidation/labeling and macrocyclization of peptides, thus accomplishing in one step what usually requires long sequences. In the realm of protein bioconjugation, MCRs have also proven to be effective in labeling, site-selective modification, immobilization, and glycoconjugation processes. For example, we illustrate a successful application of multicomponent polysaccharide-protein conjugation with the preparation of multivalent

  19. Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem

    NASA Astrophysics Data System (ADS)

    Fu, Jingke; Shao, Yiran; Wang, Liyao; Zhu, Yingchun

    2015-04-01

    Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests promising applications in cancer treatments.Excess reactive oxygen species (ROS) have been proved to damage cancer cells efficiently. ROS overproduction is thus greatly desirable for cancer therapy. To date, ROS production is generally uncontrollable and outside cells, which always bring severe side-effects in the vasculature. Since most ROS share a very short half-life and primarily react close to their site of formation, it would be more efficient if excess ROS are controllably produced inside cancer cells. Herein, we report an efficient lysosome-controlled ROS overproduction via a pH-responsive catalytic nanosystem (FeOx-MSNs), which catalyze the decomposition of H2O2 to produce considerable ROS selectively inside the acidic lysosomes (pH 5.0) of cancer cells. After a further incorporation of ROS-sensitive TMB into the nanosystem (FeOx-MSNs-TMB), both a distinct cell labeling and an efficient death of breast carcinoma cells are obtained. This lysosome-controlled efficient ROS overproduction suggests

  20. Application of bioconjugation chemistry on biosensor fabrication for detection of TAR-DNA binding protein 43.

    PubMed

    Dai, Yifan; Wang, Chunlai; Chiu, Liang-Yuan; Abbasi, Kevin; Tolbert, Blanton S; Sauvé, Geneviève; Yen, Yun; Liu, Chung-Chiun

    2018-06-01

    A simple-prepare, single-use and cost-effective, in vitro biosensor for the detection of TAR DNA-binding protein 43 (TDP-43), a biomarker of neuro-degenerative disorders, was designed, manufactured and tested. This study reports the first biosensor application for the detection of TDP-43 using a novel biosensor fabrication methodology. Bioconjugation mechanism was applied by conjugating anti-TDP 43 with N-succinimidyl S-acetylthioacetate (SATA) producing a thiol-linked anti-TDP 43, which was used to directly link with gold electrode surface, minimizing the preparation steps for biosensor fabrication and simplifying the biosensor surface. The effectiveness of this bioconjugation mechanism was evaluated and confirmed by FqRRM12 protein, using nuclear magnetic resonance (NMR). The surface coverage of the electrode was analyzed by Time-of-Flight-Secondary Ion Mass Spectrometry (TOF-SIMS). Differential pulse voltammetry (DPV) was acted as the detection transduction mechanism with the use of [Fe(CN) 6 ] 3-/4- redox probe. Human TDP-43 peptide of 0.0005 µg/mL to 2 µg/mL in undiluted human serum was analyzed using this TDP-43 biosensor. Interference study of the TDP-43 biosensor using β-amyloid 42 protein and T-tau protein confirmed the specificity of this TDP-43 biosensor. This bioconjugation chemistry based approach for biosensor fabrication circumvents tedious gold surface modification and functionalization while enabling specific detection of TDP-43 in less than 1 h with a low fabrication cost of a single biosensor less than $3. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate.

    PubMed

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-12-06

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  2. Patterning poly(maleic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane) copolymer bioconjugates for controlled release of drugs.

    PubMed

    Nita, Loredana E; Chiriac, Aurica P; Mititelu-Tartau, Liliana; Stoleru, Elena; Doroftei, Florica; Diaconu, Alina

    2015-09-30

    Owing to the special characteristics and abilities polymeric networks have received special interest for a range of biomedical applications especially for drug delivery systems. This study was devoted to preparation of new polymeric compounds based on maleic anhydride and 3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane copolymer (poly maleic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane) (PMAU) patterned as a network for bioconjugation and tested as drug carrier systems. The PMAU copolymer was improved in its functionality by opening the maleic anhydride ring with different amounts of erythritol, which is free of side effects in regular use and a multifunctional compound, and also confers antioxidant character for the new compounds. The new polymeric matrices were loaded with acetaminophen, codeine and their fixed dose combinations. The investigation demonstrated the capability of the new structures to be used as polymer networks for linking bioactive compounds and to perform controlled delivery. The physico-chemical investigations--Fourier transform infrared spectroscopy (FTIR) spectra, contact angle, zeta potential (ZP - z, PMAU and its derivatives samples loaded with medicines present decreased values of zeta potential attesting the bioconjugate formation and as well their stability), and hydrodynamic radius, near infrared chemical imaging evaluation (new specific bands being registered for bio-conjugate with acetaminophen around of 1150-1200 nm and 1700 nm, and also between 1150 and 1200 nm in case of the codeine bio-conjugate), scanning electron microscopy (SEM) studies, X-ray diffraction analysis--evidenced the formation of the bioconjugates in relation to the chemical composition of the polymer matrices, while in vitro release study and in vivo tests confirm the capacity for drug delivery of the prepared bioactive systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. In vitro degradation and antitumor activity of oxime bond-linked daunorubicin-GnRH-III bioconjugates and DNA-binding properties of daunorubicin-amino acid metabolites.

    PubMed

    Orbán, Erika; Mezo, Gábor; Schlage, Pascal; Csík, Gabriella; Kulić, Zarko; Ansorge, Philipp; Fellinger, Erzsébet; Möller, Heiko Michael; Manea, Marilena

    2011-07-01

    Bioconjugates with receptor-mediated tumor-targeting functions and carrying cytotoxic agents should enable the specific delivery of chemotherapeutics to malignant tissues, thus increasing their local efficacy while limiting the peripheral toxicity. In the present study, gonadotropin-releasing hormone III (GnRH-III; Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH(2)) was employed as a targeting moiety to which daunorubicin was attached via oxime bond, either directly or by insertion of a GFLG or YRRL tetrapeptide spacer. The in vitro antitumor activity of the bioconjugates was determined on MCF-7 human breast and HT-29 human colon cancer cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Their degradation/stability (1) in human serum, (2) in the presence of cathepsin B and (3) in rat liver lysosomal homogenate was analyzed by liquid chromatography in combination with mass spectrometry. The results show that (1) all synthesized bioconjugates have in vitro antitumor effect, (2) they are stable in human serum at least for 24 h, except for the compound containing an YRRL spacer and (3) they are hydrolyzed by cathepsin B and in the lysosomal homogenate. To investigate the relationship between the in vitro antitumor activity and the structure of the bioconjugates, the smallest metabolites produced in the lysosomal homogenate were synthesized and their binding to DNA was assessed by fluorescence spectroscopy. Our data indicate that the incorporation of a peptide spacer in the structure of oxime bond-linked daunorubicin-GnRH-III bioconjugates is not required for their antitumor activity. Moreover, the antitumor activity is influenced by the structure of the metabolites (daunorubicin-amino acid derivatives) and their DNA-binding properties.

  4. "Click" on PLGA-PEG and hyaluronic acid: Gaining access to anti-leishmanial pentamidine bioconjugates.

    PubMed

    Scala, Angela; Piperno, Anna; Micale, Nicola; Mineo, Placido G; Abbadessa, Antonio; Risoluti, Roberta; Castelli, Germano; Bruno, Federica; Vitale, Fabrizio; Cascio, Antonio; Grassi, Giovanni

    2017-12-08

    Pentamidine (Pent), an antiparasitic drug used for the treatment of visceral leishmaniasis, has been modified with terminal azide groups and conjugated to two different polymer backbones (PLGA-PEG [PP] copolymer and hyaluronic acid [HA]) armed with alkyne end-groups. The conjugation has been performed by Copper Catalyzed Azido Alkyne Cycloaddition (CuAAC) using CuSO 4 /sodium ascorbate as metal source. The novel PP-Pent and HA-Pent bioconjugates are proposed, respectively, as non-targeted and targeted drug delivery systems against Leishmania infections. Moreover, Pent has been encapsulated into PP nanoparticles by the oil-in-water emulsion method, with the aim to compare the biological activity of the bioconjugates with that of the classical drug-loaded delivery system that physically entraps the therapeutic agent. Biological assays against Leishmania infantum amastigote-infected macrophages and primary macrophages revealed that Pent, either covalently conjugated with polymers or loaded into polymeric nanoparticles, turned out to be more potent and less toxic than the free Pent. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  5. Efficient Bioconjugation of Protein Capture Agents to Biosensor Surfaces Using Aniline-Catalyzed Hydrazone Ligation

    PubMed Central

    Byeon, Ji-Yeon; Limpoco, F. T.; Bailey, Ryan C.

    2010-01-01

    Aniline-catalyzed hydrazone ligation between surface immobilized hydrazines and aldehyde-modified antibodies is shown to be an efficient method for attaching protein capture agents to model oxide-coated biosensor substrates. Silicon photonic microring resonators are used to directly evaluate the efficiency of this surface bioconjugate reaction at various pHs and in the presence or absence of aniline as a nucleophilic catalyst. It is found that aniline significantly increases the net antibody loading for surfaces functionalized over a pH range from 4.5 to 7.4, allowing derivatization of substrates with reduced incubation time and sample consumption. This increase in antibody loading directly results in more sensitive antigen detection when functionalized microrings are employed in a label-free immunoassay. Furthermore, these experiments also reveal an interesting pH dependent non-covalent binding trend that plays an important role in dictating the amount of antibody attached onto the substrate, highlighting the competing contributions of the bioconjugate reaction rate and the dynamic interactions that control opportunities for a solution-phase biomolecule to react with a substrate-bound reagent. PMID:20809595

  6. Biotin-Containing Reduced Graphene Oxide-Based Nanosystem as a Multieffect Anticancer Agent: Combining Hyperthermia with Targeted Chemotherapy.

    PubMed

    Mauro, Nicolò; Scialabba, Cinzia; Cavallaro, Gennara; Licciardi, Mariano; Giammona, Gaetano

    2015-09-14

    Among the relevant properties of graphene derivatives, their ability of acting as an energy-converting device so as to produce heat (i.e., thermoablation and hyperthermia) was more recently taken into account for the treatment of solid tumors. In this pioneering study, for the first time, the in vitro RGO-induced hyperthermia was assessed and combined with the stimuli-sensitive anticancer effect of a biotinylated inulin-doxorubicin conjugate (CJ-PEGBT), hence, getting to a nanosystem endowed with synergic anticancer effects and high specificity. CJ-PEGBT was synthesized by linking pentynoic acid and citraconic acid to inulin. The citraconylamide pendants, used as pH reversible spacer, were exploited to further conjugate doxorubicin, whereas the alkyne moiety was orthogonally functionalized with an azido PEG-biotin derivative by copper(II) catalyzed 1,3-dipolar cycloaddition. DSC measures, AFM, and UV spectrophotometry were employed to systematically investigate adsorption of CJ-PEGBT onto RGO and its physicochemical stability in aqueous media, demonstrating that a stable π-staked nanosystem can be obtained. In vitro tests using cancer breast cells (MCF-7) showed the ability of the RGO/CJ-PEGBT of efficiently killing cancer cells both via a selective laser beam thermoablation and hyperthermia-triggered chemotherapy. If compared with the nonbiotinylated nanosystem, including virgin RGO and the free conjugate, RGO/CJ-PEGBT is endowed with a smart combination of properties which warrant potential as an anticancer nanomedicine.

  7. Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate

    PubMed Central

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-01-01

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10−3 M to 8.28 × 10−5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days. PMID:24322561

  8. Quasiperiodic oscillation and possible Second Law violation in a nanosystem

    NASA Astrophysics Data System (ADS)

    Quick, R.; Singharoy, A.; Ortoleva, P.

    2013-05-01

    Simulation of a virus-like particle reveals persistent oscillation about a free-energy minimizing structure. For an icosahedral structure of 12 human papillomavirus (HPV) L1 protein pentamers, the period is about 70 picoseconds and has amplitude of about 4 Å at 300 K and pH 7. The pentamers move radially and out-of-phase with their neighbors. As temperature increases the amplitude and period decrease. Since the dynamics are shown to be friction-dominated and free-energy driven, the oscillations are noninertial. These anomalous oscillations are an apparent violation of the Second Law mediated by fluctuations accompanying nanosystem behavior.

  9. Probing into hybrid organic-molecule and InAs quantum-dots nanosystem with multistacked dots-in-a-well units

    NASA Astrophysics Data System (ADS)

    Chen, Miaoxiang; Kobashi, Kazufumi

    2012-09-01

    Hybridizing air-stable organic-molecules with advanced III-V semiconductor quantum-dots (QDs) structures can be utilized to create a new generation of biochemical sensing devices. In order to enhance their optical performances, the active regions in these QDs structures commonly consist of multistacked dots-in-a-well (DWELL) units. The effects of grafted molecules on the performances of the QDs structures with multistacked DWELLs, however, still remain unclear. Here, we show the significant improvements in the optical properties of InAs QDs in a hybrid nanosystem obtained by grafting biocompatible diazonium salt compound (amine donor) atop InAs QDs structure. Since its interface between the QDs structure and molecular monolayer retains an uncontaminated and non-oxidized condition, the nanosystem is an ideal platform to study the intrinsic properties of charge-carrier transport inside the system. Because of the complexity of the energy-levels in the QDs structure due to the existing surface QDs and DWELLs, selective excitation wavelengths (400, 633, and 885 nm, respectively) with different photo-energies are used to exactly analyze the complete charging mechanism in these QDs. A clear view of charge-carrier transfer inside the nanosystem is revealed by employing photoluminescence technique under selective-wavelength excitations. The present work provides new quantitative evidences for exploiting inorganic QDs applications in complex biological systems.

  10. ortho-Methoxyphenols as Convenient Oxidative Bioconjugation Reagents with Application to Site-Selective Heterobifunctional Cross-Linkers.

    PubMed

    ElSohly, Adel M; MacDonald, James I; Hentzen, Nina B; Aanei, Ioana L; El Muslemany, Kareem M; Francis, Matthew B

    2017-03-15

    The synthesis of complex protein-based bioconjugates has been facilitated greatly by recent developments in chemoselective methods for biomolecular modification. The oxidative coupling of o-aminophenols or catechols with aniline functional groups is chemoselective, mild, and rapid; however, the oxidatively sensitive nature of the electron-rich aromatics and the paucity of commercial sources pose some obstacles to the general use of these reactive strategies. Herein, we identify o-methoxyphenols as air-stable, commercially available derivatives that undergo efficient oxidative couplings with anilines in the presence of periodate as oxidant. Mechanistic considerations informed the development of a preoxidation protocol that can greatly reduce the amount of periodate necessary for effective coupling. The stability and versatility of these reagents was demonstrated through the synthesis of complex protein-protein bioconjugates using a site-selective heterobifunctional cross-linker comprising both o-methoxyphenol and 2-pyridinecarboxaldehyde moieties. This compound was used to link epidermal growth factor to genome-free MS2 viral capsids, affording nanoscale delivery vectors that can target a variety of cancer cell types.

  11. Molecular characterization of multivalent bioconjugates by size-exclusion chromatography (SEC) with multi-angle laser light scattering (MALS)

    PubMed Central

    Pollock, Jacob F.; Ashton, Randolph S.; Rode, Nikhil A.; Schaffer, David V.; Healy, Kevin E.

    2013-01-01

    The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product- consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multi-angle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and better understand multivalent macromolecular interactions in biological systems. PMID:22794081

  12. Use of 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates having poly(ethylene glycol) spacers in kinase-catalyzed phosphorylations.

    PubMed

    Martić, Sanela; Rains, Meghan K; Freeman, Daniel; Kraatz, Heinz-Bernhard

    2011-08-17

    The 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates (3 and 4), containing the poly(ethylene glycol) spacers, were synthesized and compared to a hydrophobic analogue as co-substrates for the following protein kinases: sarcoma related kinase (Src), cyclin-dependent kinase (CDK), casein kinase II (CK2α), and protein kinase A (PKA). Electrochemical kinase assays indicate that the hydrophobic Fc-ATP analogue was an optimal co-substrate for which K(M) values were determined to be in the 30-200 μM range, depending on the particular protein kinase. The luminescence kinase assay demonstrated the kinase utility for all Fc-ATP conjugates, which is in line with the electrochemical data. Moreover, Fc-ATP bioconjugates exhibit competitive behavior with respect to ATP. Relatively poor performance of the polar Fc-ATP bioconjugates as co-substrates for protein kinases was presumably due to the additional H-bonding and electrostatic interactions of the poly(ethylene glycol) linkers of Fc-ATP with the kinase catalytic site and the target peptides. Phosphorylation of the full-length protein, His-tagged pro-caspase-3, was demonstrated through Fc-phosphoamide transfer to the Ser residues of the surface-bound protein by electrochemical means. These results suggest that electrochemical detection of the peptide and protein Fc-phosphorylation via tailored Fc-ATP co-substrates may be useful for probing protein-protein interactions.

  13. Direct electrochemistry and electrocatalysis of a glucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin.

    PubMed

    Bai, Lijuan; Yuan, Ruo; Chai, Yaqin; Yuan, Yali; Wang, Yan; Xie, Shunbi

    2012-11-18

    For the first time, a glucose oxidase-functionalized bioconjugate was prepared and served as a new trace label through its direct electrochemistry and electrocatalysis in a sandwich-type electrochemical aptasensor for ultrasensitive detection of thrombin.

  14. Bioconjugated iron oxide nanocubes: synthesis, functionalization, and vectorization.

    PubMed

    Wortmann, Laura; Ilyas, Shaista; Niznansky, Daniel; Valldor, Martin; Arroub, Karim; Berger, Nadja; Rahme, Kamil; Holmes, Justin; Mathur, Sanjay

    2014-10-08

    A facile bottom-up approach for the synthesis of inorganic/organic bioconjugated nanoprobes based on iron oxide nanocubes as the core with a nanometric silica shell is demonstrated. Surface coating and functionalization protocols developed in this work offered good control over the shell thickness (8-40 nm) and enabled biovectorization of SiO2@Fe3O4 core-shell structures by covalent attachment of folic acid (FA) as a targeting unit for cellular uptake. The successful immobilization of folic acid was investigated both quantitatively (TGA, EA, XPS) and qualitatively (AT-IR, UV-vis, ζ-potential). Additionally, the magnetic behavior of the nanocomposites was monitored after each functionalization step. Cell viability studies confirmed low cytotoxicity of FA@SiO2@Fe3O4 conjugates, which makes them promising nanoprobes for targeted internalization by cells and their imaging.

  15. Polymersomes prepared from thermoresponsive fluorescent protein-polymer bioconjugates: capture of and report on drug and protein payloads.

    PubMed

    Wong, Chin Ken; Laos, Alistair J; Soeriyadi, Alexander H; Wiedenmann, Jörg; Curmi, Paul M G; Gooding, J Justin; Marquis, Christopher P; Stenzel, Martina H; Thordarson, Pall

    2015-04-27

    Polymersomes provide a good platform for targeted drug delivery and the creation of complex (bio)catalytically active systems for research in synthetic biology. To realize these applications requires both spatial control over the encapsulation components in these polymersomes and a means to report where the components are in the polymersomes. To address these twin challenges, we synthesized the protein-polymer bioconjugate PNIPAM-b-amilFP497 composed of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and a green-fluorescent protein variant (amilFP497). Above 37 °C, this bioconjugate forms polymersomes that can (co-)encapsulate the fluorescent drug doxorubicin and the fluorescent light-harvesting protein phycoerythrin 545 (PE545). Using fluorescence lifetime imaging microscopy and Förster resonance energy transfer (FLIM-FRET), we can distinguish the co-encapsulated PE545 protein inside the polymersome membrane while doxorubicin is found both in the polymersome core and membrane. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Amine-Reactive Fluorene Probes: Synthesis, Optical Characterization, Bioconjugation, and Two-Photon Fluorescence Imaging

    PubMed Central

    2008-01-01

    With the increasing demand for confocal and two-photon fluorescence imaging, the availability of reactive probes that possess high two-photon absorptivity, high fluorescence quantum yield, and high photostability is of paramount importance. To address the demand for better-performing probes, we prepared two-photon absorbing amine-reactive fluorenyl-based probes 2-(9,9-bis(2-(2-methoxyethoxy)ethyl)-2-isothiocyanato-9H-fluoren-7-yl)benzothiazole (1) and 2-(4-(2-(9,9-bis(2-(2-ethoxyethoxy)ethyl)-2-isothiocyanato-9H-fluoren-7-yl)vinyl)phenyl)benzothiazole (2), incorporating the isothiocyanate as a reactive linker. Probe design was augmented by integrating high optical nonlinearities, increased hydrophilicity, and coupling with reactive functional groups for specific targeting of biomolecules, assuring a better impact on two-photon fluorescence microscopy (2PFM) imaging. The isothiocyanate (NCS) derivatives were conjugated with cyclic peptide RGDfK and Reelin protein. The study of the chemical and photophysical properties of the new labeling reagents, as well as the conjugates, is described. The conjugates displayed high chemical stability and photostability. The NCS derivatives had low fluorescence quantum yields, while their bioconjugates exhibited high fluorescence quantum yields, essentially “lighting up” after conjugation. Conventional and 2PFM imaging and fluorescence lifetime imaging (FLIM) of HeLa, NT2, and H1299 cells, incubated with two-photon absorbing amine-reactive probe (1), RGDfK-dye conjugate (7), and Reelin-dye conjugate (6), was demonstrated. PMID:19090700

  17. Bioconjugation of neutral protease on silk fibroin nanoparticles and application in the controllable hydrolysis of sericin.

    PubMed

    Zhu, Lin; Hu, Ren-Ping; Wang, Hai-Yan; Wang, Yuan-Jing; Zhang, Yu-Qing

    2011-09-28

    Bombyx mori silk fibroin is a protein-based macromolecular biopolymer with remarkable biocompatibility. Silk fiber was degummed and subjected to a series of treatments, including dissolution and dialysis, to yield an aqueous solution of silk fibroin, which was introduced rapidly into excess acetone to produce crystalline silk fibroin nanoparticles (SFNs). The SFNs were conjugated covalently with a neutral protease (NP) using glutaraldehyde as the cross-linking reagent. The objective of this study was to determine the optimal conditions for biosynthesis of the SFN-NP bioconjugates. First, SFN-NP was obtained by covalent cross-linking of SFN and NP at an SFN/NP ratio of 5-8 mg:1 IU with 0.75% glutaraldehyde for 6 h at 25 °C. When adding 50 IU of the enzyme, the residual activity of biological conjugates was increased to 31.45%. Studies on the enzyme activity of SFN-NP and its kinetics showed that the stability of SFN-NP bioconjugates was greater than that of the free enzyme, the optimum reactive temperature range was increased by 5-10 °C, and the optimum pH value range was increased to 6.5-8.0. Furthermore, the thermal stability was improved to some extent. A controlled hydrolysis test using the poorly water-soluble protein sericin as a substrate and SFN-NP as the enzyme showed that the longer the reaction time (within 1 h), the smaller the molecular mass (<30 kDa) is of the sericin peptide produced. The SFN-NP bioconjugate is easily recovered by centrifugation and can be used repeatedly. The highly efficient processing technology and the use of SFN as a novel vector for a protease has great potential for research and the development of food processing.

  18. Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach.

    PubMed

    Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio; Lebedev, Oleg I; Turner, Stuart; Van Tendeloo, Gustaaf; Sada, Cinzia; Stangar, Urska Lavrencic

    2009-12-21

    The present work is devoted to the preparation of Ag/TiO(2) nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the system's chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 degrees C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.

  19. Improved in vivo antitumor effect of a daunorubicin - GnRH-III bioconjugate modified by apoptosis inducing agent butyric acid on colorectal carcinoma bearing mice.

    PubMed

    Kapuvári, Bence; Hegedüs, Rózsa; Schulcz, Ákos; Manea, Marilena; Tóvári, József; Gacs, Alexandra; Vincze, Borbála; Mező, Gábor

    2016-08-01

    Compared to classical chemotherapy, peptide-based drug targeting is a promising therapeutic approach for cancer, which can provide increased selectivity and decreased side effects to anticancer drugs. Among various homing devices, gonadotropin-releasing hormone-III (GnRH-III) peptide represents a suitable targeting moiety, in particular in the treatment of hormone independent tumors that highly express GnRH receptors (e.g. colon carcinoma). We have previously shown that GnRH-III[(4)Lys(Ac),(8)Lys(Dau = Aoa)] bioconjugate, in which daunorubicin was attached via oxime linkage to the (8)Lys of a GnRH-III derivative, exerted significant in vivo antitumor effect on subcutaneously developed HT-29 colon tumor. In contrast, results of the study reported here indicated that this compound was not active on an orthotopically developed tumor. However, if Lys in position 4 was acylated with butyric acid instead of acetic acid, the resulting bioconjugate GnRH-III[(4)Lys(Bu),(8)Lys(Dau = Aoa)] had significant tumor growth inhibitory effect. Furthermore, it prevented tumor neovascularization, without detectable side effects. Nevertheless, the development of metastases could not be inhibited by the bioconjugate; therefore, its application in combination with a metastasis preventive agent might be necessary in order to achieve complete tumor remission. In spite of this result, the treatment with GnRH-III[(4)Lys(Bu),(8)Lys(Dau = Aoa)] bioconjugate proved to have significant benefits over the administration of free daunorubicin, which was used at the maximum tolerated dose.

  20. Maize rayado fino virus-like particles expressed in tobacco plants: a new platform for cysteine selective bioconjugation peptide display

    USDA-ARS?s Scientific Manuscript database

    The ability of plant virus coat proteins to self-assemble into virus-like particles (VLPs), coupled with unique properties including three-dimensional structures, orthogonal reactivities, suitability for genetic manipulation and chemical bio-conjugation, provide potential utility in nanotechnology a...

  1. Surface Functionalization Methods to Enhance Bioconjugation in Metal-Labeled Polystyrene Particles

    PubMed Central

    Abdelrahman, Ahmed I.; Thickett, Stuart C.; Liang, Yi; Ornatsky, Olga; Baranov, Vladimir; Winnik, Mitchell A.

    2011-01-01

    Lanthanide-encoded polystyrene particles synthesized by dispersion polymerization are excellent candidates for mass cytometry based immunoassays, however they have previously lacked the ability to conjugate biomolecules to the particle surface. We present here three approaches to post-functionalize these particles, enabling the covalent attachment of proteins. Our first approach used partially hydrolyzed poly(N-vinylpyrrolidone) as a dispersion polymerization stabilizer to synthesize particles with high concentration of -COOH groups on the particle surface. In an alternative strategy to provide -COOH functionality to the lanthanide-encoded particles, we employed seeded emulsion polymerization to graft poly(methacrylic acid) (PMAA) chains onto the surface of these particles. However, these two approaches gave little to no improvement in the extent of bioconjugation. In our third approach, seeded emulsion polymerization was subsequently used as a method to grow a functional polymer shell (in this case, poly(glycidyl methacrylate) (PGMA)) onto the surface of these particles, which proved highly successful. The epoxide-rich PGMA shell permitted extensive surface bioconjugation of NeutrAvidin, as probed by an Lu-labeled biotin reporter (ca. 7 × 105 binding events per particle with a very low amount of non-specific binding) and analyzed by mass cytometry. It was shown that coupling agents such as EDC were not needed, such was the reactivity of the particle surface. These particles were stable and the addition of a polymeric shell was shown did not affect the narrow lanthanide ion distribution within the particle interior as analyzed by mass cytometry. These particles represent the most promising candidates for the development of a highly multiplexed bioassay based on lanthanide-labeled particles to date. PMID:21799543

  2. Composition-property relationships in multifunctional hollow mesoporous carbon nanosystems for PH-responsive magnetic resonance imaging and on-demand drug release

    NASA Astrophysics Data System (ADS)

    Zhang, Shengjian; Qian, Xiaoqing; Zhang, Linlin; Peng, Weijun; Chen, Yu

    2015-04-01

    The construction of intelligent stimuli-responsive nanosystems can substantially improve the sensitivity/resolution/specificity of diagnostic imaging and enhance the therapeutic efficiency of chemotherapy for cancer treatment. This work reports on a generic construction strategy to achieve a multiple stimuli-responsive theranostic system for cancer simply by optimizing the chemical compositions of inorganic nanoplatforms to avoid the tedious and complicated synthetic procedure for traditional organic or organic/inorganic nanosystems. Based on the ``breaking up'' nature of manganese oxides and specific features of the carbonaceous framework to interact with aromatic drug molecules, manganese oxide nanoparticles were elaborately integrated into hollow mesoporous carbon nanocapsules by a simple in situ framework redox strategy to realize concurrent pH-sensitive T1-weighted magnetic resonance imaging (MRI) and pH-/HIFU-responsive on-demand drug release. The ultrasensitive disease-triggered MRI performance has been successfully demonstrated by a 52.5-fold increase of longitudinal relaxivity (r1 = 10.5 mM-1 s-1) and on nude mice 4T1 xenograft. The pH- and HIFU-triggered doxorubicin release and enhanced therapeutic outcome against multidrug resistance of cancer cells were systematically confirmed. In particular, the fabricated inorganic composite nanocapsules were found to feature unique biological behaviours, such as antimetastasis effect, extremely low hemolysis against red blood cells and high in vivo histocompatibility. This report on the successful construction of a pure inorganic nanosystem with multiple stimuli-responsivenesses may pave the way to new methods for the development of intelligent nanofamilies for cancer therapy.The construction of intelligent stimuli-responsive nanosystems can substantially improve the sensitivity/resolution/specificity of diagnostic imaging and enhance the therapeutic efficiency of chemotherapy for cancer treatment. This work reports

  3. Correlated ion and neutral time of flight technique combined with velocity map imaging: Quantitative measurements for dissociation processes in excited molecular nano-systems

    NASA Astrophysics Data System (ADS)

    Berthias, F.; Feketeová, L.; Della Negra, R.; Dupasquier, T.; Fillol, R.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Märk, T. D.

    2018-01-01

    The combination of the Dispositif d'Irradiation d'Agrégats Moléculaire with the correlated ion and neutral time of flight-velocity map imaging technique provides a new way to explore processes occurring subsequent to the excitation of charged nano-systems. The present contribution describes in detail the methods developed for the quantitative measurement of branching ratios and cross sections for collision-induced dissociation processes of water cluster nano-systems. These methods are based on measurements of the detection efficiency of neutral fragments produced in these dissociation reactions. Moreover, measured detection efficiencies are used here to extract the number of neutral fragments produced for a given charged fragment.

  4. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    NASA Astrophysics Data System (ADS)

    Ding, Hong; Yong, Ken-Tye; Roy, Indrajit; Hu, Rui; Wu, Fang; Zhao, Lingling; Law, Wing-Cheung; Zhao, Weiwei; Ji, Wei; Liu, Liwei; Bergey, Earl J.; Prasad, Paras N.

    2011-04-01

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l - 1. Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the αvβ3 integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  5. Quantum dot bioconjugates: uptake into cells and induction of changes in normal cellular transport

    NASA Astrophysics Data System (ADS)

    Iversen, Tore-Geir; Frerker, Nadine; Sandvig, Kirsten

    2009-02-01

    Can quantum dots (QDs) act as relevant intracellular probes to investigate routing of ligands in live cells? To answer this question we studied intracellular trafficking of QDs that were coupled to the plant toxin ricin, Shiga toxin or the ligand transferrin (Tf) by confocal fluorescence microscopy in three different cell lines. The Tf:QDs were internalized but instead of being recycled they accumulated within endosomes in all cell lines. However, for the HEp-2 and SW480 cells a higher fraction colocalized with a lysosomal marker as compared with HeLa cells. The Shiga:QD bioconjugate was internalized slowly and with poor efficiency in the HEp-2 and SW480 cells as compared with HeLa cells, and was not routed to the Golgi apparatus in any of the cell lines. The internalized ricin:QD bioconjugates localized to the same endosomes as ricin itself, but could in contrast to ricin not be visualized in the Golgi apparatus. Importantly, we find that the endosomal accumulation of either ricin:QDs or transferrin:QDs affects endosome-to-Golgi transport of both ricin and Shiga toxin: Transport of ricin was reduced whereas transport of Shiga toxin was increased. In conclusion, the data from different cells reveal that in general these ligand-coupled QD nanoparticles are arrested within endosomes, and somehow perturb the normal endosomal sorting in cells.

  6. FAST TRACK COMMUNICATION A DFT + DMFT approach for nanosystems

    NASA Astrophysics Data System (ADS)

    Turkowski, Volodymyr; Kabir, Alamgir; Nayyar, Neha; Rahman, Talat S.

    2010-11-01

    We propose a combined density-functional-theory-dynamical-mean-field-theory (DFT + DMFT) approach for reliable inclusion of electron-electron correlation effects in nanosystems. Compared with the widely used DFT + U approach, this method has several advantages, the most important of which is that it takes into account dynamical correlation effects. The formalism is illustrated through different calculations of the magnetic properties of a set of small iron clusters (number of atoms 2 <= N <= 5). It is shown that the inclusion of dynamical effects leads to a reduction in the cluster magnetization (as compared to results from DFT + U) and that, even for such small clusters, the magnetization values agree well with experimental estimations. These results justify confidence in the ability of the method to accurately describe the magnetic properties of clusters of interest to nanoscience.

  7. Synthesis and use of 2-[ 18F]fluoromalondialdehyde, an accessible synthon for bioconjugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooker, Jacob M.

    We proposed methods for the synthesis and purification of 2-[ 18F]fluoromalondialdehyde, which will be a readily accessible synthon for bioconjugation. Our achievements in these areas will specifically address a stated goal of the DOE providing a transformational technology for macromolecule radiolabeling. Accomplishment of our aims will serve both DOE mission-related research as well as nuclear medicine research supported by the NIH and industry. At the heart of our proposal is the aim to “improve synthetic methodology for rapidly and efficiently incorporating radionuclides into a wide range of organic compounds.”

  8. A Smart Responsive Dual Aptamers-Targeted Bubble-Generating Nanosystem for Cancer Triplex Therapy and Ultrasound Imaging.

    PubMed

    Zhao, Feifei; Zhou, Jie; Su, Xiangjie; Wang, Yuhui; Yan, Xiaosa; Jia, Shaona; Du, Bin

    2017-05-01

    The absence of targeted, single treatment methods produces low therapeutic value for treating cancers. To increase the accumulation of drugs in tumors and improve the treatment effectiveness, near-infrared 808 nm photothermal responsive dual aptamers-targeted docetaxel (DTX)-containing nanoparticles is proposed. In this system, DTX and NH 4 HCO 3 are loaded in thermosensitive liposomes. The surface of liposomes is coated with gold nanoshells and connected with sulfydryl (SH) modified AS1411 and S2.2 aptamers. The nanosystem has good biocompatibility and uniform size (diameter about 200 nm). The drug is rapidly released, reaching a maximum amount (84%) at 4 h under 808 nm laser irradiation. The experiments conducted in vitro and in vivo demonstrate the nanosystem can synergistically inhibit tumor growth by combination of chemotherapy, photothermal therapy, and biological therapy. Dual ligand functionalization significantly increases cellular uptake on breast cancer cell line (MCF-7) cells and achieves ultrasound imaging (USI) at tumor site. The results indicate that this drug delivery system is a promising theranostic agent involving light-thermal response at tumor sites, dual ligand targeted triplex therapy, and USI. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat.

    PubMed

    Amadio, Marialaura; Pascale, Alessia; Cupri, Sarha; Pignatello, Rosario; Osera, Cecilia; D Agata, Velia; D Amico, Agata Grazia; Leggio, Gian Marco; Ruozi, Barbara; Govoni, Stefano; Drago, Filippo; Bucolo, Claudio

    2016-09-01

    We evaluated whether specifically and directly targeting human antigen R (HuR), a member of embryonic lethal abnormal vision (ELAV) proteins family, may represent a new potential therapeutic strategy to manage diabetic retinopathy. Nanosystems loaded with siRNA silencing HuR expression (lipoplexes), consisting of solid lipid nanoparticles (SLN) and liposomes (SUV) were prepared. Photon correlation spectroscopy analysis, Zeta potential measurement and atomic force microscopy (AFM) studies were carried out to characterize the complexation of siRNA with the lipid nanocarriers. Nanosystems were evaluated by using AFM and scanning electron microscopy. The lipoplexes were injected into the eye of streptozotocin (STZ)-induced diabetic rats. Retinal HuR and VEGF levels were detected by Western blot and ELISA, respectively. Retinal histology was also carried out. The results demonstrated that retinal HuR and VEGF are significantly increased in STZ-rats and are blunted by HuR siRNA treatment. Lipoplexes with a weak positive surface charge and with a 4:1 N/P (cationic lipid nitrogen to siRNA phosphate) ratio exert a better transfection efficiency, significantly dumping retinal HuR and VEGF levels. In conclusion, we demonstrated that siRNA can be efficiently delivered into the rat retina using lipid-based nanocarriers, and some of the lipoplexes loaded with siRNA silencing HuR expression are potential candidates to manage retinal diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The influence of bio-conjugation on photoluminescence of CdSe/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Torchynska, Tetyana V.; Vorobiev, Yuri V.; Makhniy, Victor P.; Horley, Paul P.

    2014-11-01

    We report a considerable blue shift in the luminescence spectra of CdSe/ZnS quantum dots conjugated to anti-interleukin-10 antibodies. This phenomenon can be explained theoretically by accounting for bio-conjugation as a process causing electrostatic interaction between a quantum dot and an antibody, which reduces effective volume of the dot core. To solve the Schrödinger equation for an exciton confined in the quantum dot, we use mirror boundary conditions that were successfully tested for different geometries of quantum wells.

  11. Application of quantum-dots for analysis of nanosystems by either utilizing or preventing FRET

    NASA Astrophysics Data System (ADS)

    Kim, Joong H.; Chaudhary, Sumit; Stephens, Jared P.; Singh, Krishna V.; Ozkan, Mihrimah

    2005-04-01

    We have developed conjugates with quantum-dots (QDs) for the purpose of analysis of nanosystems that are organic or inorganic in nature such as DNA and carbon nanotubes. First, by employing Florescence Resonant Energy Transfer (FRET) principles, a hybrid molecular beacon conjugates are synthesized. For water- solubilization of QDs, we modified the surface of CdSe-ZnS core-shell QD by using mercaptoacetic acid ligand. This modification does not affect the size of QDs from that of unmodified QDs. After linking molecular beacons to the carboxyl groups of the modified QDs using 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, hybrid molecular beacons are prepared as a DNA probe. After hybridization with specific target DNA and non-specific target DNA, the hybrid conjugates show high specificity to the target DNA with 5-fold increase in the intensity of fluorescence. By developing atomic model of the conjugates, we calculated with 8 numbers of molecular beacons on a single quantum dots, we could increase the efficiency of FRET up to 90%. In other hands, for application of quantum dots to the carbon nanotubes, FRET is a barrier. Thus, after employing 1 % sodium-dodecyl-sulfonate (SDS), single-walled carbon nanotubes are decorated with QDs at their outer surface. This enables fluorescent microscopy imaging of single-walled carbon nanotubes which is a more common technique than electron microscopy. In summary, QDs can be used for analysis or detection of both organic and inorganic based nanosystems.

  12. Approach to determine measurement uncertainty in complex nanosystems with multiparametric dependencies and multivariate output quantities

    NASA Astrophysics Data System (ADS)

    Hampel, B.; Liu, B.; Nording, F.; Ostermann, J.; Struszewski, P.; Langfahl-Klabes, J.; Bieler, M.; Bosse, H.; Güttler, B.; Lemmens, P.; Schilling, M.; Tutsch, R.

    2018-03-01

    In many cases, the determination of the measurement uncertainty of complex nanosystems provides unexpected challenges. This is in particular true for complex systems with many degrees of freedom, i.e. nanosystems with multiparametric dependencies and multivariate output quantities. The aim of this paper is to address specific questions arising during the uncertainty calculation of such systems. This includes the division of the measurement system into subsystems and the distinction between systematic and statistical influences. We demonstrate that, even if the physical systems under investigation are very different, the corresponding uncertainty calculation can always be realized in a similar manner. This is exemplarily shown in detail for two experiments, namely magnetic nanosensors and ultrafast electro-optical sampling of complex time-domain signals. For these examples the approach for uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) is explained, in which correlations between multivariate output quantities are captured. To illustate the versatility of the proposed approach, its application to other experiments, namely nanometrological instruments for terahertz microscopy, dimensional scanning probe microscopy, and measurement of concentration of molecules using surface enhanced Raman scattering, is shortly discussed in the appendix. We believe that the proposed approach provides a simple but comprehensive orientation for uncertainty calculation in the discussed measurement scenarios and can also be applied to similar or related situations.

  13. Growing Applications of “Click Chemistry” for Bioconjugation in Contemporary Biomedical Research

    PubMed Central

    Nwe, Kido

    2009-01-01

    Summation This update summarizes the growing application of “click” chemistry in diverse areas such as bioconjugation, drug discovery, materials science, and radiochemistry. This update also discusses click chemistry reactions that proceed rapidly with high selectivity, specificity, and yield. Two important characteristics make click chemistry so attractive for assembling compounds, reagents, and biomolecules for preclinical and clinical applications. First, click reactions are bio-orthogonal; neither the reactants nor their product's functional groups interact with functionalized biomolecules. Second, the reactions proceed with ease under mild nontoxic conditions, such as at room temperature and, usually, in water. The copper-catalyzed Huisgen cycloaddition, azide-alkyne [3 + 2] dipolar cycloaddition, Staudinger ligation, and azide-phosphine ligation each possess these unique qualities. These reactions can be used to modify one cellular component while leaving others unharmed or untouched. Click chemistry has found increasing applications in all aspects of drug discovery in medicinal chemistry, such as for generating lead compounds through combinatorial methods. Bioconjugation via click chemistry is rigorously employed in proteomics and nucleic research. In radiochemistry, selective radiolabeling of biomolecules in cells and living organisms for imaging and therapy has been realized by this technology. Bifunctional chelating agents for several radionuclides useful for positron emission tomography and single-photon emission computed tomography imaging have also been prepared by using click chemistry. This review concludes that click chemistry is not the perfect conjugation and assembly technology for all applications, but provides a powerful, attractive alternative to conventional chemistry. This chemistry has proven itself to be superior in satisfying many criteria (e.g., biocompatibility, selectivity, yield, stereospecificity, and so forth); thus, one can

  14. Morphological and Spectral Characteristics of Hybrid Nanosystems Based on Mono- and Bimetallic Platinum Nanoparticles and Silver

    NASA Astrophysics Data System (ADS)

    Valueva, S. V.; Vylegzhanina, M. E.; Sukhanova, T. E.

    2018-02-01

    Morphological and spectral characteristics of hybrid nanosystems (NSes) based on mono- and bimetallic silver and platinum nanoparticles (NPs) stabilized by a cationic polyelectrolyte (CP), poly- N,N,N,N-trimethylmethacryloyloxyethylammonium methylsulfate, are determined via static/dynamic light scattering, UV spectroscopy, and atomic force microscopy. The formation of dense spherical polymolecular nanostructures is established. The possibility of controlling the morphological and spectral characteristics of the NS is shown by varying the nature and composition of NPs.

  15. Use of monoclonal antibody-IRDye800CW bioconjugates in the resection of breast cancer

    PubMed Central

    Korb, Melissa L.; Hartman, Yolanda E.; Kovar, Joy; Zinn, Kurt R.; Bland, Kirby I.; Rosenthal, Eben L.

    2015-01-01

    Background Complete surgical resection of breast cancer is a powerful determinant of patient outcome, and failure to achieve negative margins results in reoperation in between 30% and 60% of patients. We hypothesize that repurposing Food and Drug Administration approved antibodies as tumor-targeting diagnostic molecules can function as optical contrast agents to identify the boundaries of malignant tissue intraoperatively. Materials and methods The monoclonal antibodies bevacizumab, cetuximab, panitumumab, trastuzumab, and tocilizumab were covalently linked to a near-infrared fluorescence probe (IRDye800CW) and in vitro binding assays were performed to confirm ligand-specific binding. Nude mice bearing human breast cancer flank tumors were intravenously injected with the antibody-IRDye800 bioconjugates and imaged over time. Tumor resections were performed using the SPY and Pearl Impulse systems, and the presence or absence of tumor was confirmed by conventional and fluorescence histology. Results Tumor was distinguishable from normal tissue using both SPY and Pearl systems, with both platforms being able to detect tumor as small as 0.5 mg. Serial surgical resections demonstrated that real-time fluorescence can differentiate subclinical segments of disease. Pathologic examination of samples by conventional and optical histology using the Odyssey scanner confirmed that the bioconjugates were specific for tumor cells and allowed accurate differentiation of malignant areas from normal tissue. Conclusions Human breast cancer tumors can be imaged in vivo with multiple optical imaging platforms using near-infrared fluorescently labeled antibodies. These data support additional preclinical investigations for improving the surgical resection of malignancies with the goal of eventual clinical translation. PMID:24360117

  16. RNA interference-based nanosystems for inflammatory bowel disease therapy

    PubMed Central

    Guo, Jian; Jiang, Xiaojing; Gui, Shuangying

    2016-01-01

    Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn’s disease, is a chronic, recrudescent disease that invades the gastrointestinal tract, and it requires surgery or lifelong medicinal therapy. The conventional medicinal therapies for IBD, such as anti-inflammatories, glucocorticoids, and immunosuppressants, are limited because of their systemic adverse effects and toxicity during long-term treatment. RNA interference (RNAi) precisely regulates susceptibility genes to decrease the expression of proinflammatory cytokines related to IBD, which effectively alleviates IBD progression and promotes intestinal mucosa recovery. RNAi molecules generally include short interfering RNA (siRNA) and microRNA (miRNA). However, naked RNA tends to degrade in vivo as a consequence of endogenous ribonucleases and pH variations. Furthermore, RNAi treatment may cause unintended off-target effects and immunostimulation. Therefore, nanovectors of siRNA and miRNA were introduced to circumvent these obstacles. Herein, we introduce non-viral nanosystems of RNAi molecules and discuss these systems in detail. Additionally, the delivery barriers and challenges associated with RNAi molecules will be discussed from the perspectives of developing efficient delivery systems and potential clinical use. PMID:27789943

  17. PRINT: A Protein Bioconjugation Method with Exquisite N-terminal Specificity

    PubMed Central

    Sur, Surojit; Qiao, Yuan; Fries, Anja; O’Meally, Robert N.; Cole, Robert N.; Kinzler, Kenneth W.; Vogelstein, Bert; Zhou, Shibin

    2015-01-01

    Chemical conjugation is commonly used to enhance the pharmacokinetics, biodistribution, and potency of protein therapeutics, but often leads to non-specific modification or loss of bioactivity. Here, we present a simple, versatile and widely applicable method that allows exquisite N-terminal specific modification of proteins. Combining reversible side-chain blocking and protease mediated cleavage of a commonly used HIS tag appended to a protein, we generate with high yield and purity exquisitely site specific and selective bio-conjugates of TNF-α by using amine reactive NHS ester chemistry. We confirm the N terminal selectivity and specificity using mass spectral analyses and show near complete retention of the biological activity of our model protein both in vitro and in vivo murine models. We believe that this methodology would be applicable to a variety of potentially therapeutic proteins and the specificity afforded by this technique would allow for rapid generation of novel biologics. PMID:26678960

  18. BIOCONJUGATION OF OLIGONUCLEOTIDES FOR TREATING LIVER FIBROSIS

    PubMed Central

    Ye, Zhaoyang; Hajj Houssein, Houssam S.; Mahato, Ram I.

    2009-01-01

    Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is in urgent need to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remains the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of α1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed. PMID:18154454

  19. Absorption into fluorescence. A method to sense biologically relevant gas molecules

    NASA Astrophysics Data System (ADS)

    Strianese, Maria; Varriale, Antonio; Staiano, Maria; Pellecchia, Claudio; D'Auria, Sabato

    2011-01-01

    In this work we present an innovative optical sensing methodology based on the use of biomolecules as molecular gating nano-systems. Here, as an example, we report on the detection ofanalytes related to climate change. In particular, we focused our attention on the detection ofnitric oxide (NO) and oxygen (O2). Our methodology builds on the possibility of modulating the excitation intensity of a fluorescent probe used as a transducer and a sensor molecule whose absorption is strongly affected by the binding of an analyte of interest used as a filter. The two simple conditions that have to be fulfilled for the method to work are: (a) the absorption spectrum of the sensor placed inside the cuvette, and acting as the recognition element for the analyte of interest, should strongly change upon the binding of the analyte and (b) the fluorescence dye transducer should exhibit an excitation band which overlaps with one or more absorption bands of the sensor. The absorption band of the sensor affected by the binding of the specific analyte should overlap with the excitation band of the transducer. The high sensitivity of fluorescence detection combined with the use of proteins as highly selective sensors makes this method a powerful basis for the development of a new generation of analytical assays. Proof-of-principle results showing that cytochrome c peroxidase (CcP) for NO detection and myoglobin (Mb) for O2 detection can be successfully used by exploiting our new methodology are reported. The proposed technology can be easily expanded to the determination of different target analytes.

  20. Plasmon-induced absorption of blind chlorophylls in photosynthetic proteins assembled on silver nanowires.

    PubMed

    Szalkowski, Marcin; Janna Olmos, Julian David; Buczyńska, Dorota; Maćkowski, Sebastian; Kowalska, Dorota; Kargul, Joanna

    2017-07-27

    We demonstrate that controlled assembly of eukaryotic photosystem I with its associated light harvesting antenna complex (PSI-LHCI) on plasmonically active silver nanowires (AgNWs) substantially improves the optical functionality of such a novel biohybrid nanostructure. By comparing fluorescence intensities measured for PSI-LHCI complex randomly oriented on AgNWs and the results obtained for the PSI-LHCI/cytochrome c 553 (cyt c 553 ) bioconjugate with AgNWs we conclude that the specific binding of photosynthetic complexes with defined uniform orientation yields selective excitation of a pool of chlorophyll (Chl) molecules that are otherwise almost non-absorbing. This is remarkable, as this study shows for the first time that plasmonic excitations in metallic nanostructures can not only be used to enhance native absorption of photosynthetic pigments, but also - by employing cyt c 553 as the conjugation cofactor - to activate the specific Chl pools as the absorbing sites only when the uniform and well-defined orientation of PSI-LHCI with respect to plasmonic nanostructures is achieved. As absorption of PSI alone is comparatively low, our approach lends itself as an innovative approach to outperform the reported-to-date biohybrid devices with respect to solar energy conversion.

  1. Optimising the synthesis, polymer membrane encapsulation and photoreduction performance of Ru(II)- and Ir(III)-bis(terpyridine) cytochrome c bioconjugates.

    PubMed

    Hvasanov, David; Mason, Alexander F; Goldstein, Daniel C; Bhadbhade, Mohan; Thordarson, Pall

    2013-07-28

    Ruthenium(II) and iridium(III) bis(terpyridine) complexes were prepared with maleimide functionalities in order to site-specifically modify yeast iso-1 cytochrome c possessing a single cysteine residue available for modification (CYS102). Single X-ray crystal structures were solved for aniline and maleimide Ru(II) 3 and Ru(II) 4, respectively, providing detailed structural detail of the complexes. Light-activated bioconjugates prepared from Ru(II) 4 in the presence of tris(2-carboxyethyl)-phosphine (TCEP) significantly improved yields from 6% to 27%. Photoinduced electron transfer studies of Ru(II)-cyt c in bulk solution and polymer membrane encapsulated specimens were performed using EDTA as a sacrificial electron donor. It was found that membrane encapsulation of Ru(II)-cyt c in PS140-b-PAA48 resulted in a quantum efficiency of 1.1 ± 0.3 × 10(-3), which was a two-fold increase relative to the bulk. Moreover, Ir(III)-cyt c bioconjugates showed a quantum efficiency of 3.8 ± 1.9 × 10(-1), equivalent to a ∼640-fold increase relative to bulk Ru(II)-cyt c.

  2. Photo-thermal nanosystems for diseased cell treatment

    NASA Astrophysics Data System (ADS)

    Raeesi, Vahid

    The prevalence of cancer and infectious disease demands for development of more effective treatment technologies. Current standard chemo- and radiotherapy for cancer offer only relative therapeutic efficacy at the cost of significant side-effects. On the other hand, resistance of microbes to current antibiotics has raised serious concern in public health sectors such as hospitals. Thermal therapy is an alternative technique that employs high temperatures to treat diseased cells via direct and indirect heat effects. Owing to its nature, this technique can offer enhanced therapeutic efficacy in local diseased regions via either mono- or combinatorial platforms and very minimal side-effects. However, existing bulk heating systems are limited in providing selective and controlled temperature rise in the desired region at tissue/cellular scales. This compromises the therapeutic efficacy of the treatment and increases the risk of off-target heating in healthy tissues. In this thesis, we propose the use of heat-generating nanoparticles to precisely target heat into small regions and study how they can be applied in cancer and bacteria treatment. Our model nanoparticle system generates heat by light stimulation. Different nanosystems based on this particle are developed and their thermal effects on therapeutic distribution are explored at tumor tissue and cellular scales. In addition, the thermal effect of these nanoparticles is utilized to overcome microbial resistance. By mechanistic understanding of nanoparticle thermal effects at different length scales, this research helps to rationalize proper design and development of heat- generating nanomedicine for cancer and microbial treatments.

  3. Assessment of the systemic distribution of a bioconjugated anti-Her2 magnetic nanoparticle in a breast cancer model by means of magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Huerta-Núñez, L. F. E.; Villanueva-Lopez, G. Cleva; Morales-Guadarrama, A.; Soto, S.; López, J.; Silva, J. G.; Perez-Vielma, N.; Sacristán, E.; Gudiño-Zayas, Marco E.; González, C. A.

    2016-09-01

    The aim of this study was to determine the systemic distribution of magnetic nanoparticles of 100 nm diameter (MNPs) coupled to a specific monoclonal antibody anti-Her2 in an experimental breast cancer (BC) model. The study was performed in two groups of Sprague-Dawley rats: control ( n = 6) and BC chemically induced ( n = 3). Bioconjugated "anti-Her2-MNPs" were intravenously administered, and magnetic resonance imaging (MRI) monitored its systemic distribution at seven times after administration. Non-heme iron presence associated with the location of the bioconjugated anti-Her2-MNPs in splenic, hepatic, cardiac and tumor tissues was detected by Perl's Prussian blue (PPB) stain. Optical density measurements were used to semiquantitatively determine the iron presence in tissues on the basis of a grayscale values integration of T1 and T2 MRI sequence images. The results indicated a delayed systemic distribution of MNPs in cancer compared to healthy conditions with a maximum concentration of MNPs in cancer tissue at 24 h post-infusion.

  4. All-Atom Multiscale Molecular Dynamics Theory and Simulation of Self-Assembly, Energy Transfer and Structural Transition in Nanosystems

    NASA Astrophysics Data System (ADS)

    Espinosa Duran, John Michael

    The study of nanosystems and their emergent properties requires the development of multiscale computational models, theories and methods that preserve atomic and femtosecond resolution, to reveal details that cannot be resolved experimentally today. Considering this, three long time scale phenomena were studied using molecular dynamics and multiscale methods: self-assembly of organic molecules on graphite, energy transfer in nanosystems, and structural transition in vault nanoparticles. Molecular dynamics simulations of the self-assembly of alkoxybenzonitriles with different tail lengths on graphite were performed to learn about intermolecular interactions and phases exhibited by self-organized materials. This is important for the design of ordered self-assembled organic photovoltaic materials with greater efficiency than the disordered blends. Simulations revealed surface dynamical behaviors that cannot be resolved experimentally today due to the lack of spatiotemporal resolution. Atom-resolved structures predicted by simulations agreed with scanning tunneling microscopy images and unit cell measurements. Then, a multiscale theory based on the energy density as a field variable is developed to study energy transfer in nanoscale systems. For applications like photothermal microscopy or cancer phototherapy is required to understand how the energy is transferred to/from nanosystems. This multiscale theory could be applied in this context and here is tested for cubic nanoparticles immersed in water for energy being transferred to/from the nanoparticle. The theory predicts the energy transfer dynamics and reveals phenomena that cannot be described by current phenomenological theories. Finally, temperature-triggered structural transitions were revealed for vault nanoparticles using molecular dynamics and multiscale simulations. Vault is a football-shaped supramolecular assembly very distinct from the commonly observed icosahedral viruses. It has very promising

  5. Controlled levels of protein modification through a chromatography-mediated bioconjugation

    DOE PAGES

    Kwant, Richard L.; Jaffe, Jake; Palmere, Peter J.; ...

    2015-02-27

    Synthetically modified proteins are increasingly finding applications as well-defined scaffolds for materials. In practice it remains difficult to construct bioconjugates with precise levels of modification because of the limited number of repeated functional groups on proteins. This article describes a method to control the level of protein modification in cases where there exist multiple potential modification sites. A protein is first tagged with a handle using any of a variety of modification chemistries. This handle is used to isolate proteins with a particular number of modifications via affinity chromatography, and then the handle is elaborated with a desired moiety usingmore » an oxidative coupling reaction. This method results in a sample of protein with a well-defined number of modifications, and we find it particularly applicable to systems like protein homomultimers in which there is no way to discern between chemically identical subunits. We demonstrate the use of this method in the construction of a protein-templated light-harvesting mimic, a type of system which has historically been difficult to make in a well-defined manner.« less

  6. Rapid Chemoselective Bioconjugation Through the Oxidative Coupling of Anilines and Aminophenols

    PubMed Central

    Behrens, Christopher R.; Hooker, Jacob M.; Obermeyer, Allie C.; Romanini, Dante W.; Katz, Elan M.; Francis, Matthew B.

    2012-01-01

    A highly efficient protein bioconjugation method is described involving the addition of anilines to o-aminophenols in the presence of sodium periodate. The reaction takes place in aqueous buffer at pH 6.5 and can reach high levels of completion in 2–5 min. The product of the reaction has been characterized using X-ray crystallography, which revealed that an unprecedented oxidative ring contraction occurs after the coupling step. The compatibility of the reaction with protein substrates has been demonstrated through the attachment of small molecules, polymer chains, and peptides to p-aminophenylalanine residues introduced into viral capsids through amber stop codon suppression. The coupling of anilines to o-aminophenol groups derived from tyrosine residues is also described. The compatibility of this method with thiol modification chemistry is shown through the attachment of a near-IR fluorescent chromophore to cysteine residues inside the viral capsid shells, followed by the attachment of integrin-targeting RGD peptides to anilines on the exterior surface. PMID:21919497

  7. Characterization of new drug delivery nanosystems using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Spyratou, Ellas; Mourelatou, Elena A.; Demetzos, C.; Makropoulou, Mersini; Serafetinides, A. A.

    2015-01-01

    Liposomes are the most attractive lipid vesicles for targeted drug delivery in nanomedicine, behaving also as cell models in biophotonics research. The characterization of the micro-mechanical properties of drug carriers is an important issue and many analytical techniques are employed, as, for example, optical tweezers and atomic force microscopy. In this work, polyol hyperbranched polymers (HBPs) have been employed along with liposomes for the preparation of new chimeric advanced drug delivery nanosystems (Chi-aDDnSs). Aliphatic polyester HBPs with three different pseudogenerations G2, G3 and G4 with 16, 32, and 64 peripheral hydroxyl groups, respectively, have been incorporated in liposomal formulation. The atomic force microscopy (AFM) technique was used for the comparative study of the morphology and the mechanical properties of Chi-aDDnSs and conventional DDnS. The effects of both the HBPs architecture and the polyesters pseudogeneration number in the stability and the stiffness of chi-aDDnSs were examined. From the force-distance curves of AFM spectroscopy, the Young's modulus was calculated.

  8. Biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy.

    PubMed

    Spyratou, E; Makropoulou, M; Mourelatou, E A; Demetzos, C

    2012-12-31

    Reactive oxygen species (ROS) are usually involved in two opposite procedures related to cancer: initiation, progression and metastasis of cancer, as well as in all non-surgical therapeutic approaches for cancer, including chemotherapy, radiotherapy and photodynamic therapy. This review is concentrated in new therapeutic strategies that take advantage of increased ROS in cancer cells to enhance therapeutic activity and selectivity. Novel biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy are discussed, including optical tweezers and atomic force microscopy. This review highlights how these techniques are playing a critical role in recent and future cancer fighting applications. We can conclude that Biophotonics and nanomedicine are the future for cancer biology and disease management, possessing unique potential for early detection, accurate diagnosis, dosimetry and personalized treatment of biomedical applications targeting cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. The Small-Angle Neutron Scattering Data Analysis of the Phospholipid Transport Nanosystem Structure

    NASA Astrophysics Data System (ADS)

    Zemlyanaya, E. V.; Kiselev, M. A.; Zhabitskaya, E. I.; Aksenov, V. L.; Ipatova, O. M.; Ivankov, O. I.

    2018-05-01

    The small-angle neutron scattering technique (SANS) is employed for investigation of structure of the phospholipid transport nanosystem (PTNS) elaborated in the V.N.Orekhovich Institute of Biomedical Chemistry (Moscow, Russia). The SANS spectra have been measured at the YuMO small-angle spectrometer of IBR-2 reactor (Joint Institute of Nuclear Research, Dubna, Russia). Basic characteristics of polydispersed population of PTNS unilamellar vesicles (average radius of vesicles, polydispersity, thickness of membrane, etc.) have been determined in three cases of the PTNS concentrations in D2O: 5%, 10%, and 25%. Numerical analysis is based on the separated form factors method (SFF). The results are discussed in comparison with the results of analysis of the small-angle X-ray scattering spectra collected at the Kurchatov Synchrotron Radiation Source of the National Research Center “Kurchatov Institute” (Moscow, Russia).

  10. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting

    PubMed Central

    De Paula, Daniel; Bentley, M. Vitória L.B.; Mahato, Ram I.

    2007-01-01

    RNA interference (RNAi) is an evolutionarily conserved process by which double-stranded small interfering RNA (siRNA) induces sequence-specific, post-transcriptional gene silencing. Unlike other mRNA targeting strategies, RNAi takes advantage of the physiological gene silencing machinery. The potential use of siRNA as therapeutic agents has attracted great attention as a novel approach for treating severe and chronic diseases. RNAi can be achieved by either delivery of chemically synthesized siRNAs or endogenous expression of small hairpin RNA, siRNA, and microRNA (miRNA). However, the relatively high dose of siRNA required for gene silencing limits its therapeutic applications. This review discusses several strategies to improve therapeutic efficacy as well as to abrogate off-target effects and immunostimulation caused by siRNAs. There is an in-depth discussion on various issues related to the (1) mechanisms of RNAi, (2) methods of siRNA production, (3) barriers to RNAi-based therapies, (4) biodistribution, (5) design of siRNA molecules, (6) chemical modification and bioconjugation, (7) complex formation with lipids and polymers, (8) encapsulation into lipid particles, and (9) target specificity for enhanced therapeutic effectiveness. PMID:17329355

  11. Hierarchical quantum master equation approach to electronic-vibrational coupling in nonequilibrium transport through nanosystems

    NASA Astrophysics Data System (ADS)

    Schinabeck, C.; Erpenbeck, A.; Härtle, R.; Thoss, M.

    2016-11-01

    Within the hierarchical quantum master equation (HQME) framework, an approach is presented, which allows a numerically exact description of nonequilibrium charge transport in nanosystems with strong electronic-vibrational coupling. The method is applied to a generic model of vibrationally coupled transport considering a broad spectrum of parameters ranging from the nonadiabatic to the adiabatic regime and including both resonant and off-resonant transport. We show that nonequilibrium effects are important in all these regimes. In particular, in the off-resonant transport regime, the inelastic cotunneling signal is analyzed for a vibrational mode in full nonequilibrium, revealing a complex interplay of different transport processes and deviations from the commonly used G0/2 rule of thumb. In addition, the HQME approach is used to benchmark approximate master equation and nonequilibrium Green's function methods.

  12. Biomedical applications of glyconanoparticles based on quantum dots.

    PubMed

    Cunha, C R A; Oliveira, A D P R; Firmino, T V C; Tenório, D P L A; Pereira, G; Carvalho, L B; Santos, B S; Correia, M T S; Fontes, A

    2018-03-01

    Quantum dots (QDs) are outstanding nanomaterials of great interest to life sciences. Their conjugation versatility added to unique optical properties, highlight these nanocrystals as very promising fluorescent probes. Among uncountable new nanosystems, in the last years, QDs conjugated to glycans or lectins have aroused a growing attention and their application as a tool to study biological and functional properties has increased. This review describes the strategies, reported in the literature, to conjugate QDs to lectins or carbohydrates, providing valuable information for the elaboration, improvement, and application of these nanoconjugates. It also presents the main applications of these nanosystems in glycobiology, such as their potential to study microorganisms, the development of diseases such as cancer, as well as to develop biosensors. The development of glyconanoparticles based on QDs emerged in the last decade. Many works reporting the conjugation of QDs with carbohydrates and lectins have been published, using different strategies and reagents. These bioconjugates enabled studies that are very sensitive and specific, with potential to detect and elucidate the glycocode expressed in various normal or pathologic conditions. Produce a quick reference source over the main advances reached in the glyconanotechnology using QDs as fluorescent probes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Enhanced Stability and Bioconjugation of Photo-cross-linked Polystyrene-Shell, Au-Core Nanoparticles

    PubMed Central

    Chen, Ying; Cho, Juhee; Young, Alexi; Taton, T. Andrew

    2008-01-01

    Encapsulating Au nanoparticles within a shell of photo-cross-linked block copolymer surfactant dramatically improves the physical and chemical stability of the nanoparticles, particularly when they are applied as bioconjugates. Photo-cross-linkable block copolymer amphiphiles [polystyrene-co-poly(4-vinyl benzophenone)]-block-poly(acrylic acid) [(PS-co-PVBP)-b-PAA] and [poly(styrene)-co-poly(4-vinyl benzophenone)]-block-poly(ethylene oxide) [(PS-co-PVBP)-b-PEO] were assembled around Au nanoparticles ranging from 12 nm to 108 nm in diameter. UV irradiation cross-linked the PVBP groups on the polymer to yield particles that withstood extremes of temperature, ionic strength, and chemical etching. Streptavidin was attached to [PS-co-PVBP]-b-PAA coated particles using the same noncovalent and covalent conjugation protocols used to bind biomolecules to divinylbenzene-crosslinked polystyrene microspheres. We expect that these particles will be useful as plasmonic, highly light-scattering and light-absorbing analogs to fluorescently labeled polystyrene nanospheres. PMID:17530871

  14. Nanosystems Based on Magnetic Nanoparticles and Thermo- or pH-Responsive Polymers: An Update and Future Perspectives.

    PubMed

    Mai, Binh T; Fernandes, Soraia; Balakrishnan, Preethi B; Pellegrino, Teresa

    2018-05-15

    Combining hard matter, like inorganic nanocrystals, and soft materials, like polymers, can generate multipurpose materials with a broader range of applications with respect to the individual building blocks. Given their unique properties at the nanoscale, magnetic nanoparticles (MNPs) have drawn a great deal of interest due to their potential use in the biomedical field, targeting several applications such as heat hubs in magnetic hyperthermia (MHT, a heat-damage based therapy), contrast agents in magnetic resonance imaging (MRI), and nanocarriers for targeted drug delivery. At the same time, polymers, with their versatile macromolecular structure, can serve as flexible platforms with regard to constructing advanced functional materials. Advances in the development of novel polymerization techniques has enabled the preparation of a large portfolio of polymers that have intriguing physicochemical properties; in particular, those polymers that can undergo conformational and structural changes in response to their surrounding environmental stimuli. Therefore, merging the unique features of MNPs with polymer responsive properties, such as pH and thermal stimuli activation, enables smart control of polymer properties operated by the MNPs and vice versa at an unprecedented level of sophistication. These magnetic-stimuli-responsive nanosystems will impact the cancer field by combining magnetic hyperthermia with stimuli-dependent controlled drug delivery toward multimodal therapies. In this approach, a malignant tumor may be destroyed by a combination of the synergic effects of thermal energy generated by MNPs and the controlled release of antitumoral agents, activated by means of either heat or pH changes, finally leading to a much more effective cancer treatment than those available today. Also, taking advantage of such a triggered chemotherapy will overcome the notorious drawbacks of classic chemotherapy. Nevertheless, tracking the changes in the magnetic properties of

  15. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro

    PubMed Central

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Gargasz, Krzysztof; Wołowiec, Stanisław; Wałajtys-Rode, Elżbieta

    2015-01-01

    The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM) dendrimer and its biotin–pyridoxal (BC-PAMAM) bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ) and squamous epithelial carcinoma (SCC-15) cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold) tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander’s coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%–35% of the total nuclei area at all investigated concentrations, with lower level (15%–25%) observed for BC-PAMAM. In fibroblasts, the dendrimer nuclear signal amounted to 15% at nontoxic and up to 70% at toxic concentrations, whereas BC-PAMAM remained at a lower concentration-dependent level (0.3%–20%). Mitochondrial localization of PAMAM and BC-PAMAM revealed similar patterns in both cell lines, depending on the extracellular dendrimer concentration, and presented significantly lower signals from BC-PAMAM, which correlated well with the cytotoxicity. PMID:26379435

  16. In Situ Generation and Consumption of H2O2 by Bienzyme-Quantum Dots Bioconjugates for Improved Chemiluminescence Resonance Energy Transfer.

    PubMed

    Xu, Shuxia; Li, Xianming; Li, Chaobi; Li, Jialin; Zhang, Xinfeng; Wu, Peng; Hou, Xiandeng

    2016-06-21

    Exploration of quantum dots (QDs) as energy acceptors revolutionizes the current chemiluminescence resonance energy transfer (CRET), since QDs possess large Stokes shifts and high luminescence efficiency. However, the strong and high concentration of oxidant (typically H2O2) needed for luminol chemiluminescence (CL) reaction could cause oxidative quenching to QDs, thereby decreasing the CRET performance. Here we proposed the use of bienzyme-QDs bioconjugate as the energy acceptor for improved CRET sensing. Two enzymes, one for H2O2 generation (oxidase) and another for H2O2 consumption (horseradish peroxidase, HRP), were bioconjugated onto the surface of QDs. The bienzyme allowed fast in situ cascaded H2O2 generation and consumption, thus alleviating fluorescence quenching of QDs. The nanosized QDs accommodate the two enzymes in a nanometric range, and the CL reaction was confined on the surface of QDs accordingly, thereby amplifying the CL reaction rate and improving CRET efficiency. As a result, CRET efficiency of 30-38% was obtained; the highest CRET efficiency by far was obtained using QDs as the energy acceptor. The proposed CRET system could be explored for ultrasensitive sensing of various oxidase substrates (here exemplified with cholesterol, glucose, and benzylamine), allowing for quantitative measurement of a spectrum of metabolites with high sensitivity and specificity. Limits of detection (LOD, 3σ) for cholesterol, glucose, and benzylamine were found to be 0.8, 3.4, and 10 nM, respectively. Furthermore, multiparametric blood analysis (glucose and cholesterol) is demonstrated.

  17. Nanosystem self-assembly pathways discovered via all-atom multiscale analysis.

    PubMed

    Pankavich, Stephen D; Ortoleva, Peter J

    2012-07-26

    We consider the self-assembly of composite structures from a group of nanocomponents, each consisting of particles within an N-atom system. Self-assembly pathways and rates for nanocomposites are derived via a multiscale analysis of the classical Liouville equation. From a reduced statistical framework, rigorous stochastic equations for population levels of beginning, intermediate, and final aggregates are also derived. It is shown that the definition of an assembly type is a self-consistency criterion that must strike a balance between precision and the need for population levels to be slowly varying relative to the time scale of atomic motion. The deductive multiscale approach is complemented by a qualitative notion of multicomponent association and the ensemble of exact atomic-level configurations consistent with them. In processes such as viral self-assembly from proteins and RNA or DNA, there are many possible intermediates, so that it is usually difficult to predict the most efficient assembly pathway. However, in the current study, rates of assembly of each possible intermediate can be predicted. This avoids the need, as in a phenomenological approach, for recalibration with each new application. The method accounts for the feedback across scales in space and time that is fundamental to nanosystem self-assembly. The theory has applications to bionanostructures, geomaterials, engineered composites, and nanocapsule therapeutic delivery systems.

  18. Bioconjugation of zirconium uridine monophosphate: application to myoglobin direct electrochemistry.

    PubMed

    Qiao, Yuanbiao; Jian, Fangfang; Bai, Qian

    2008-03-14

    Porous nano-granule of zirconium uridine monophosphate, Zr(UMP)2.H2O is, for the first time, synthesized under mild experimental conditions and applied to the bioconjugation of myoglobin (Mb) to realize its direct electron transfer. UV-vis and resonance Raman spectroscopies prove that Mb in the Zr(UMP)2.H2O film maintains its secondary structure similar to the native state. The conjugation film of the Mb-Zr(UMP)2.H2O on the glassy carbon (GC) electrode gives a well-defined and quasi-reversible cyclic voltammogram, which reflects the direct electron transfer of the heme Fe III/Fe II couple of Mb. On the basis of the satisfying bioelectrocatalysis of the nano-conjugation of Mb and genetic substrate, a kind of mediator-free biosensor for H2O2 is developed. The linear range for H2O2 detection is estimated to be 3.92-180.14 microM. The apparent Michaelis-Menten constant (Km) and the detection limit based on the signal-to-noise ratio of 3 are found to be 196.1 microM and 1.52 microM, respectively. Both the apparent Michaelis-Menten constant and the detection limit herein are much lower than currently reported values from other Mb films. This kind of sensor possesses excellent stability, long-term life (more than 20 days) and good reproducibility.

  19. Synthesis of surface-anchored DNA-polymer bioconjugates using reversible addition-fragmentation chain transfer polymerization.

    PubMed

    He, Peng; He, Lin

    2009-07-13

    We report here an approach to grafting DNA-polymer bioconjugates on a planar solid support using reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, a trithiocarbonate compound as the RAFT chain transfer agent (CTA) is attached to the distal point of a surface-immobilized oligonucleotide. Initiation of RAFT polymerization leads to controlled growth of polymers atop DNA molecules on the surface. Growth kinetics of poly(monomethoxy-capped oligo(ethylene glycol) methacrylate) atop DNA molecules is investigated by monitoring the change of polymer film thickness as a function of reaction time. The reaction conditions, including the polymerization temperature, the initiator concentration, the CTA surface density, and the selection of monomers, are varied to examine their impacts on the grafting efficiency of DNA-polymer conjugates. Comparing to polymer growth atop small molecules, the experimental results suggest that DNA molecules significantly accelerate polymer growth, which is speculated as a result of the presence of highly charged DNA backbones and purine/pyrimidine moieties surrounding the reaction sites.

  20. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    PubMed

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Photoactivated bioconjugation between ortho-azidophenols and anilines: a facile approach to biomolecular photopatterning.

    PubMed

    El Muslemany, Kareem M; Twite, Amy A; ElSohly, Adel M; Obermeyer, Allie C; Mathies, Richard A; Francis, Matthew B

    2014-09-10

    Methods for the surface patterning of small molecules and biomolecules can yield useful platforms for drug screening, synthetic biology applications, diagnostics, and the immobilization of live cells. However, new techniques are needed to achieve the ease, feature sizes, reliability, and patterning speed necessary for widespread adoption. Herein, we report an easily accessible and operationally simple photoinitiated reaction that can achieve patterned bioconjugation in a highly chemoselective manner. The reaction involves the photolysis of 2-azidophenols to generate iminoquinone intermediates that couple rapidly to aniline groups. We demonstrate the broad functional group compatibility of this reaction for the modification of proteins, polymers, oligonucleotides, peptides, and small molecules. As a specific application, the reaction was adapted for the photolithographic patterning of azidophenol DNA on aniline glass substrates. The presence of the DNA was confirmed by the ability of the surface to capture living cells bearing the sequence complement on their cell walls or cytoplasmic membranes. Compared to other light-based DNA patterning methods, this reaction offers higher speed and does not require the use of a photoresist or other blocking material.

  2. Bioconjugate functionalization of thermally carbonized porous silicon using a radical coupling reaction†

    PubMed Central

    Sciacca, Beniamino; Alvarez, Sara D.; Geobaldo, Francesco; Sailor, Michael J.

    2011-01-01

    The high stability of Salonen’s thermally carbonized porous silicon (TCPSi) has attracted attention for environmental and biochemical sensing applications, where corrosion-induced zero point drift of porous silicon-based sensor elements has historically been a significant problem. Prepared by the high temperature reaction of porous silicon with acetylene gas, the stability of this silicon carbide-like material also poses a challenge—many sensor applications require a functionalized surface, and the low reactivity of TCPSi has limited the ability to chemically modify its surface. This work presents a simple reaction to modify the surface of TCPSi with an alkyl carboxylate. The method involves radical coupling of a dicarboxylic acid (sebacic acid) to the TCPSi surface using a benzoyl peroxide initiator. The grafted carboxylic acid species provides a route for bioconjugate chemical modification, demonstrated in this work by coupling propylamine to the surface carboxylic acid group through the intermediacy of pentafluorophenol and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC). The stability of the carbonized porous Si surface, both before and after chemical modification, is tested in phosphate buffered saline solution and found to be superior to either hydrosilylated (with undecylenic acid) or thermally oxidized porous Si surfaces. PMID:20967329

  3. Fundamental Studies of Photothermal Properties of a Nanosystem and the Surrounding Medium Using Er3+ Photoluminescence Nanothermometry

    NASA Astrophysics Data System (ADS)

    Baral, Susil

    Unique properties exhibited by metal nanoparticles at nanoscale have attracted a large amount of research attention and application in various aspects of nanoscience and nanotechnology. In addition to several unique optical, electrical and physical properties; metal nanoparticles also exhibit "photothermal property" a special feature that makes them capable of absorbing an electromagnetic radiation and converting light energy into heat energy. As this heat generated by metal nanoparticles can be utilized to drive processes in numerous applications, understanding the heat generation and heat dissipation properties of a nanosystem and/or its surrounding is vital for its efficiency and performance. The research work presented in this dissertation explores the fundamental photothermal properties of optically excited gold nanostructures and the surrounding medium using trivalent erbium ion (Er3+) emission nanothermometry approach. Nanostructures are either fabricated or spin-coated on top of a thermal sensor film with Er3+, optically excited with 532 nm Continuous Wave (CW) laser and the relative photoluminescence intensities of Er3+ emission peaks are utilized for nanoscale temperature measurement and thermal imaging. The first project of this dissertation explores the fundamental aspects of application of photothermal property of plasmonic nanostructures for phase transformation of the surrounding water and hence steam generation. Two totally contrasting nucleation behavior of surrounding water is observed for the optical excitation of single gold nanostructures versus the colloidal solution of gold nanoparticles. The second project examines the effect of ions and ionic strength on surface plasmon extinction properties of single gold nanostructures. Performing nanoscale temperature measurement and single particle absorption and scattering measurements, we demonstrate how non-binding ions, even at the concentrations where they are not expected to bring about changes on

  4. Energy transfer dynamics from individual semiconductor nanoantennae to dye molecules with implication to light-harvesting nanosystems

    NASA Astrophysics Data System (ADS)

    Shan, Guangcun; Hu, Mingjun; Yan, Ze; Li, Xin; Huang, Wei

    2018-03-01

    Semiconductor nanocrystals can be used as nanoscale optical antennae to photoexcite individual dye molecules in an ensemble via energy transfer mechanism. The theoretical framework developed by Förster and others describes how electronic excitation migrates in the photosynthetic apparatus of plants, algae, and bacteria from light absorbing pigments to reaction centers where light energy is utilized for the eventual conversion into chemical energy. Herein we investigate the effect of the average donor-acceptor spacing on the time-resolved fluorescence intensity and dynamics of single donor-acceptor pairs with the dye acceptor concentration decreasing by using quantum Monte-Carlo simulation of FRET dynamics. Our results validated that the spatial disorder controlling the microscopic energy transfer rates accounts for the scatter in donor fluorescence lifetimes and intensities, which provides a new design guideline for artificial light-harvesting nanosystems.

  5. Bioinspired integrated nanosystems based on solid-state nanopores: “iontronic” transduction of biological, chemical and physical stimuli

    PubMed Central

    Pérez-Mitta, Gonzalo; Albesa, Alberto G.; Trautmann, Christina; Toimil-Molares, María Eugenia

    2017-01-01

    The ability of living systems to respond to stimuli and process information has encouraged scientists to develop integrated nanosystems displaying similar functions and capabilities. In this regard, biological pores have been a source of inspiration due to their exquisite control over the transport of ions within cells, a feature that ultimately plays a major role in multiple physiological processes, e.g. transduction of physical stimuli into nervous signals. Developing abiotic nanopores, which respond to certain chemical, biological or physical inputs producing “iontronic” signals, is now a reality thanks to the combination of “soft” surface science with nanofabrication techniques. The interplay between the functional richness of predesigned molecular components and the remarkable physical characteristics of nanopores plays a critical role in the rational integration of molecular functions into nanopore environments, permitting us to envisage nanopore-based biomimetic integrated nanosystems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined “iontronic” response can be amplified by exploiting nanoconfinement and physico-chemical effects such as charge distribution, steric constraints, equilibria displacement, or local changes in ionic concentration, to name but a few examples. While in past decades the focus has been mostly on their fundamental aspects and the in-depth study of their interesting transport properties, for several years now nanopore research has started to shift towards specific practical applications. This work is dedicated to bringing together the latest developments in the use of nanopores as “iontronic” transducing elements. Our aim is to show the wide potential of abiotic nanopores in sensing and signal transduction and also to promote the potential of this technology among doctoral students, postdocs, and

  6. Synthetic methodology for asymmetric ferrocene derived bio-conjugate systems via solid phase resin-based methodology.

    PubMed

    Scarborough, J Hunter; Gonzalez, Paulina; Rodich, Sean; Green, Kayla N

    2015-03-12

    Early detection is a key to successful treatment of most diseases, and is particularly imperative for the diagnosis and treatment of many types of cancer. The most common techniques utilized are imaging modalities such as Magnetic Resonance Imaging (MRI), Positron Emission Topography (PET), and Computed Topography (CT) and are optimal for understanding the physical structure of the disease but can only be performed once every four to six weeks due to the use of imaging agents and overall cost. With this in mind, the development of "point of care" techniques, such as biosensors, which evaluate the stage of disease and/or efficacy of treatment in the clinician's office and do so in a timely manner, would revolutionize treatment protocols.1 As a means to exploring ferrocene based biosensors for the detection of biologically relevant molecules2, methods were developed to produce ferrocene-biotin bio-conjugates described herein. This report will focus on a biotin-ferrocene-cysteine system that can be immobilized on a gold surface.

  7. Nanoparticle bioconjugates as "bottom-up" assemblies of artifical multienzyme complexes

    NASA Astrophysics Data System (ADS)

    Keighron, Jacqueline D.

    2010-11-01

    The sequential enzymes of several metabolic pathways have been shown to exist in close proximity with each other in the living cell. Although not proven in all cases, colocalization may have several implications for the rate of metabolite formation. Proximity between the sequential enzymes of a metabolic pathway has been proposed to have several benefits for the overall rate of metabolite formation. These include reduced diffusion distance for intermediates, sequestering of intermediates from competing pathways and the cytoplasm. Restricted diffusion in the vicinity of an enzyme can also cause the pooling of metabolites, which can alter reaction equilibria to control the rate of reaction through inhibition. Associations of metabolic enzymes are difficult to isolate ex vivo due to the weak interactions believed to colocalize sequential enzymes within the cell. Therefore model systems in which the proximity and diffusion of intermediates within the experiment system are controlled are attractive alternatives to explore the effects of colocalization of sequential enzymes. To this end three model systems for multienzyme complexes have been constructed. Direct adsorption enzyme:gold nanoparticle bioconjugates functionalized with malate dehydrogenase (MDH) and citrate synthase (CS) allow for proximity between to the enzymes to be controlled from the nanometer to micron range. Results show that while the enzymes present in the colocalized and non-colocalized systems compared here behaved differently overall the sequential activity of the pathway was improved by (1) decreasing the diffusion distance between active sites, (2) decreasing the diffusion coefficient of the reaction intermediate to prevent escape into the bulk solution, and (3) decreasing the overall amount of bioconjugate in the solution to prevent the pathway from being inhibited by the buildup of metabolite over time. Layer-by-layer (LBL) assemblies of MDH and CS were used to examine the layering effect of

  8. Examination of biogenic selenium-containing nanosystems based on polyelectrolyte complexes by atomic force, Kelvin probe force and electron microscopy methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukhanova, T. E., E-mail: tat-sukhanova@mail.ru; Vylegzhanina, M. E.; Valueva, S. V.

    The morphology and electrical properties of biogenic selenium-containing nanosystems based on polyelectrolyte complexes (PECs) were examined using AFM, Kelvin Probe Force and electron microscopy methods. It has been found, that prepared nanostructures significantly differed in their morphological types and parameters. In particular, multilayers capsules can be produced via varying synthesis conditions, especially, the selenium–PEC mass ratio ν. At the “special point” (ν = 0.1), filled and hollow nano- and microcapsules are formed in the system. The multilayer character of the capsules walls is visible in the phase images. Kelvin Probe Force images showed the inhomogeneity of potential distribution in capsulesmore » and outside them.« less

  9. Collagen like peptide bioconjugates for targeted drug delivery applications

    NASA Astrophysics Data System (ADS)

    Luo, Tianzhi

    Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP), are short synthetic peptides which mimic the triple helical conformation of native collagens. In the past few decades, collagen like peptides and their conjugated hybrids have become a new class of biomaterials that possesses unique structures and properties. In addition to traditional applications of using CLPs to decipher the role of different amino acid residues and tripeptide motifs in stabilizing the collagen triple helix and mimicking collagen fibril formation, with the introduction of specific interactions including electrostatic interactions, pi-pi stacking interaction and metal-ligand coordination, a variety of artificial collagen-like peptides with well-defined sequences have been designed to create higher order assemblies with specific biological functions. The CLPs have also been widely used as bioactive domains or physical cross-linkers to fabricate hydrogels, which have shown potential to improve cell adhesion, proliferation and ECM macromolecule production. Despite this widespread use, the utilization of CLPs as domains in stimuli responsive bioconjugates represents a relatively new area for the development of functional polymeric materials. In this work, a new class of thermoresponsive diblock conjugates, containing collagen-like peptides and a thermoresponsive polymer, namely poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA), is introduced. The CLP domain maintains its triple helix conformation after conjugation with the polymer. The engineered LCST of these conjugates has enabled temperature-induced assembly under aqueous conditions, at physiologically relevant temperatures, into well-defined vesicles with diameters of approximately 50-200 nm. The formation of nanostructures was driven by

  10. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    PubMed

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    -conjugation strategy, we designed a straightforward scheme to synthesize a suite of dialdehyde reagents. The dialdehyde molecules were used for applications in cell-surface engineering and for tailoring surfaces for material science applications. We anticipate the broad utility of the general dialdehyde click chemistry to primary amines in all areas of chemical research, ranging from polymers and bioconjugation to material science and nanoscience.

  11. Synthesis of aldehyde-linked nucleotides and DNA and their bioconjugations with lysine and peptides through reductive amination.

    PubMed

    Raindlová, Veronika; Pohl, Radek; Hocek, Michal

    2012-03-26

    5-(5-Formylthienyl)-, 5-(4-formylphenyl)- and 5-(2-fluoro-5-formylphenyl)cytosine 2'-deoxyribonucleoside mono- (dC(R)MP) and triphosphates (dC(R)TP) were prepared by aqueous Suzuki-Miyaura cross-coupling of 5-iodocytosine nucleotides with the corresponding formylarylboronic acids. The dC(R)TPs were excellent substrates for DNA polymerases and were incorporated into DNA by primer extension or PCR. Reductive aminations of the model dC(R)MPs with lysine or lysine-containing tripeptide were studied and optimized. In aqueous phosphate buffer (pH 6.7) the yields of the reductive aminations with tripeptide III were up to 25 %. Bioconjugation of an aldehyde-containing DNA with a lysine-containing tripeptide was achieved through reductive amination in yields of up to 90 % in aqueous phosphate buffer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthetic Methodology for Asymmetric Ferrocene Derived Bio-conjugate Systems via Solid Phase Resin-based Methodology

    PubMed Central

    Scarborough, J. Hunter; Gonzalez, Paulina; Rodich, Sean; Green, Kayla N.

    2015-01-01

    Early detection is a key to successful treatment of most diseases, and is particularly imperative for the diagnosis and treatment of many types of cancer. The most common techniques utilized are imaging modalities such as Magnetic Resonance Imaging (MRI), Positron Emission Topography (PET), and Computed Topography (CT) and are optimal for understanding the physical structure of the disease but can only be performed once every four to six weeks due to the use of imaging agents and overall cost. With this in mind, the development of “point of care” techniques, such as biosensors, which evaluate the stage of disease and/or efficacy of treatment in the clinician’s office and do so in a timely manner, would revolutionize treatment protocols.1 As a means to exploring ferrocene based biosensors for the detection of biologically relevant molecules2, methods were developed to produce ferrocene-biotin bio-conjugates described herein. This report will focus on a biotin-ferrocene-cysteine system that can be immobilized on a gold surface. PMID:25866986

  13. Highly efficient drug delivery nanosystem via L-phenylalanine triggering based on supramolecular polymer micelles.

    PubMed

    Dong, Haiqing; Li, Yongyong; Wen, Huiyun; Xu, Meng; Liu, Lijian; Li, Zhuoquan; Guo, Fangfang; Shi, Donglu

    2011-03-16

    An intelligent drug delivery nanosystem has been developed based on biodegradable supramolecular polymer micelles (SMPMs). The drug release can be triggered from SMPMs responsively by a bioactive agent, L-phenylalanine in a controlled fashion. The SMPMs are constructed from ethylcellulose-graft-poly(ε-caprolactone) (EC-g-PCL) and α-cyclodextrin (α-CD) derivate via host-guest and hydrophobic interactions. It has been found that these SMPMs have disassembled rapidly in response to an additional L-phenylalanine, due to great affinity discrepancy to α-CD between L-phenylalanine and PCL. Experiments have been carried out on trigger-controlled in vitro drug release of the SMPMs loaded with a model porphyrin based photosensitizer THPP. The result shows that the SMPMs released over 85% THPP in 6 h, which is two orders magnitudes faster than that of control. Also investigated is the photodynamic therapy (PDT) of THPP-loaded SMPMs with and without L-phenylalanine on MCF-7 carcinoma cell line. An effective trigger-concentration dependent lethal effect has been found showing promise in clinical photodynamic therapy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances

    NASA Astrophysics Data System (ADS)

    Nima, Zeid A.; Mahmood, Meena; Xu, Yang; Mustafa, Thikra; Watanabe, Fumiya; Nedosekin, Dmitry A.; Juratli, Mazen A.; Fahmi, Tariq; Galanzha, Ekaterina I.; Nolan, John P.; Basnakian, Alexei G.; Zharov, Vladimir P.; Biris, Alexandru S.

    2014-05-01

    Nanotechnology has been extensively explored for cancer diagnostics. However, the specificity of current methods to identify simultaneously several cancer biomarkers is limited due to color overlapping of bio-conjugated nanoparticles. Here, we present a technique to increase both the molecular and spectral specificity of cancer diagnosis by using tunable silver-gold nanorods with narrow surface-enhanced Raman scattering (SERS) and high photothermal contrast. The silver-gold nanorods were functionalized with four Raman-active molecules and four antibodies specific to breast cancer markers and with leukocyte-specific CD45 marker. More than two orders of magnitude of SERS signal enhancement was observed from these hybrid nanosystems compared to conventional gold nanorods. Using an antibody rainbow cocktail, we demonstrated highly specific detection of single breast cancer cells in unprocessed human blood. By integrating multiplex targeting, multicolor coding, and multimodal detection, our approach has the potential to improve multispectral imaging of individual tumor cells in complex biological environments.

  15. High-performance piezoelectric nanogenerators for self-powered nanosystems: quantitative standards and figures of merit

    NASA Astrophysics Data System (ADS)

    Wu, Wenzhuo

    2016-03-01

    Harvesting energies from the atmosphere cost-effectively is critical for both addressing worldwide long-term energy needs at the macro-scale, and achieving the sustainable maintenance-free operation of nanodevices at the micro-scale (Wang and Wu 2012 Angew. Chem. Int. Ed. 51 11700-21). Piezoelectric nanogenerator (NG) technology has demonstrated its great application potential in harvesting the ubiquitous and abundant mechanical energy. Despite of the progress made in this rapidly-advancing field, a fundamental understanding and common standard for consistently quantifying and evaluating the performance of the various types of piezoelectric NGs is still lacking. In their recent study Crossley and Kar-Narayan (2015 Nanotechnology 26 344001), systematically investigated dynamical properties of piezoelectric NGs by taking into account the effect of driving mechanism and load frequency on NG performance. They further defined the NGs’ figures of merit as energy harvested normalized by applied strain or stress for NGs under strain-driven or stress-driven conditions, which are commonly seen in the vibrational energy harvesting. This work provides new insight and a feasible approach for consistently evaluating piezoelectric nanomaterials and NG devices, which is important for designing and optimizing nanoscale piezoelectric energy harvesters, as well as promoting their applications in emerging areas e.g. the internet of things, wearable devices, and self-powered nanosystems.

  16. High-performance piezoelectric nanogenerators for self-powered nanosystems: quantitative standards and figures of merit.

    PubMed

    Wu, Wenzhuo

    2016-03-18

    Harvesting energies from the atmosphere cost-effectively is critical for both addressing worldwide long-term energy needs at the macro-scale, and achieving the sustainable maintenance-free operation of nanodevices at the micro-scale (Wang and Wu 2012 Angew. Chem. Int. Ed. 51 11700-21). Piezoelectric nanogenerator (NG) technology has demonstrated its great application potential in harvesting the ubiquitous and abundant mechanical energy. Despite of the progress made in this rapidly-advancing field, a fundamental understanding and common standard for consistently quantifying and evaluating the performance of the various types of piezoelectric NGs is still lacking. In their recent study Crossley and Kar-Narayan (2015 Nanotechnology 26 344001), systematically investigated dynamical properties of piezoelectric NGs by taking into account the effect of driving mechanism and load frequency on NG performance. They further defined the NGs' figures of merit as energy harvested normalized by applied strain or stress for NGs under strain-driven or stress-driven conditions, which are commonly seen in the vibrational energy harvesting. This work provides new insight and a feasible approach for consistently evaluating piezoelectric nanomaterials and NG devices, which is important for designing and optimizing nanoscale piezoelectric energy harvesters, as well as promoting their applications in emerging areas e.g. the internet of things, wearable devices, and self-powered nanosystems.

  17. Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro.

    PubMed

    Yu, Chenchen; Hu, Yan; Duan, Jinhong; Yuan, Wei; Wang, Chen; Xu, Haiyan; Yang, Xian-Da

    2011-01-01

    MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1(+) cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors.

  18. ZnO nanoparticles and their acarbose-capped nanohybrids as inhibitors for human salivary amylase.

    PubMed

    Shaik, Firdoz; Kumar, Anil

    2017-04-01

    The authors report a controlled synthesis of biocompatible ZnO and acarbose-capped nanohybrids, and examined the inhibition activities of these nanosystems with human salivary α -amylase (HSA) activity. XRD measurements reveal ZnO present in wurtzite phase with hexagonal structure. The average size of ZnO particles for the two studied nanosystems was estimated to lie between 10 to 12 nm using Scherrer equation. These particles depict the onset of absorption at about 320 nm and the band-gap emission at about 370 nm, which are fairly blue shifted as compared with the bulk ZnO and have been understood due to the size quantisation effect. The inhibitory action of thioglycerol capped ZnO nanoparticles (SP1) and acarbose drug (used for diabetes type II) capped ZnO (SP2) for HSA was observed to 61 and72%, respectively. The inhibition activity of the SP1 alone was found to be very similar to that of acarbose and the coating of these particles with drug (SP2) demonstrated an enhancement in inhibition activity of the enzyme by about 30%. From the inhibition studies, it is confirmed that these nanosystems showed better inhibition activity at physiological temperature and pH. These nanosystems are projected to have potential applications in diabetes type II control.

  19. Parametric system identification of resonant micro/nanosystems operating in a nonlinear response regime

    NASA Astrophysics Data System (ADS)

    Sabater, A. B.; Rhoads, J. F.

    2017-02-01

    The parametric system identification of macroscale resonators operating in a nonlinear response regime can be a challenging research problem, but at the micro- and nanoscales, experimental constraints add additional complexities. For example, due to the small and noisy signals micro/nanoresonators produce, a lock-in amplifier is commonly used to characterize the amplitude and phase responses of the systems. While the lock-in enables detection, it also prohibits the use of established time-domain, multi-harmonic, and frequency-domain methods, which rely upon time-domain measurements. As such, the only methods that can be used for parametric system identification are those based on fitting experimental data to an approximate solution, typically derived via perturbation methods and/or Galerkin methods, of a reduced-order model. Thus, one could view the parametric system identification of micro/nanosystems operating in a nonlinear response regime as the amalgamation of four coupled sub-problems: nonparametric system identification, or proper experimental design and data acquisition; the generation of physically consistent reduced-order models; the calculation of accurate approximate responses; and the application of nonlinear least-squares parameter estimation. This work is focused on the theoretical foundations that underpin each of these sub-problems, as the methods used to address one sub-problem can strongly influence the results of another. To provide context, an electromagnetically transduced microresonator is used as an example. This example provides a concrete reference for the presented findings and conclusions.

  20. Bioconjugation of Oligodeoxynucleotides Carrying 1,4-Dicarbonyl Groups via Reductive Amination with Lysine Residues.

    PubMed

    Yang, Bo; Jinnouchi, Akiko; Usui, Kazuteru; Katayama, Tsutomu; Fujii, Masayuki; Suemune, Hiroshi; Aso, Mariko

    2015-08-19

    We evaluated the efficacy of bioconjugation of oligodeoxynucleotides (ODNs) containing 1,4-dicarbonyl groups, a C4'-oxidized abasic site (OAS), and a newly designed 2'-methoxy analogue, via reductive amination with lysine residues. Dicarbonyls, aldehyde and ketone at C1- and C4-positions of deoxyribose in the ring-opened form of OAS allowed efficient reaction with amines. Kinetic studies indicated that reductive amination of OAS-containing ODNs with a proximal amine on the complementary strand proceeded 10 times faster than the corresponding reaction of an ODN containing an abasic site with C1-aldehyde. Efficient reductive amination between the DNA-binding domain of Escherichia coli DnaA protein and ODNs carrying OAS in the DnaA-binding sequence proceeded at the lysine residue in proximity to the phosphate group at the 5'-position of the OAS, in contrast to unsuccessful conjugation with abasic site ODNs, even though they have similar aldehydes. Theoretical calculation indicated that the C1-aldehyde of OAS was more accessible to the target lysine than that of the abasic site. These results demonstrate the potential utility of cross-linking strategies that use dicarbonyl-containing ODNs for the study of protein-nucleic acid interactions. Conjugation with a lysine-containing peptide that lacked specific affinity for ODN was also successful, further highlighting the advantages of 1,4-dicarbonyls.

  1. Quantum Coherent Dynamics Enhanced by Synchronization with Nonequilibrium Environments

    NASA Astrophysics Data System (ADS)

    Ishikawa, Akira; Okada, Ryo; Uchiyama, Kazuharu; Hori, Hirokazu; Kobayashi, Kiyoshi

    2018-05-01

    We report the discovery of the anomalous enhancement of quantum coherent dynamics (CD) due to a non-Markovian mechanism originating from not thermal-equilibrium phonon baths but nonequilibrium coherent phonons. CD is an elementary process for quantum phenomena in nanosystems, such as excitation transfer (ET) in semiconductor nanostructures and light-harvesting systems. CD occurs in homogeneous nanosystems because system inhomogeneity typically destroys coherence. In real systems, however, nanosystems behave as open systems surrounded by environments such as phonon systems. Typically, CD in inhomogeneous nanosystems is enhanced by the absorption and emission of thermal-equilibrium phonons, and the enhancement is described by the conventional master equation. On the other hand, CD is also enhanced by synchronization between population dynamics in nanosystems and coherent phonons; namely, coherent phonons, which are self-consistently induced by phase matching with Rabi oscillation, are fed back to enhance CD. This anomalous enhancement of CD essentially originates from the nonequilibrium and dynamical non-Markovian nature of coherent phonon environments, and the enhancement is firstly predicted by applying time-dependent projection operators to nonequilibrium and dynamical environments. Moreover, CD is discussed by considering ET from a donor to an acceptor. It is found that the enhancement of ET by synchronization with coherent phonons depends on the competition between the output time from a system to an acceptor and the formation time of coherent phonons. These findings in this study will stimulate the design and manipulation of CD via structured environments from the viewpoint of application to nano-photoelectronic devices.

  2. Identification of nanoparticles and nanosystems in biological matrices with scanning probe microscopy.

    PubMed

    Angeloni, Livia; Reggente, Melania; Passeri, Daniele; Natali, Marco; Rossi, Marco

    2018-04-17

    Identification of nanoparticles and nanosystems into cells and biological matrices is a hot research topic in nanobiotechnologies. Because of their capability to map physical properties (mechanical, electric, magnetic, chemical, or optical), several scanning probe microscopy based techniques have been proposed for the subsurface detection of nanomaterials in biological systems. In particular, atomic force microscopy (AFM) can be used to reveal stiff nanoparticles in cells and other soft biomaterials by probing the sample mechanical properties through the acquisition of local indentation curves or through the combination of ultrasound-based methods, like contact resonance AFM (CR-AFM) or scanning near field ultrasound holography. Magnetic force microscopy can detect magnetic nanoparticles and other magnetic (bio)materials in nonmagnetic biological samples, while electric force microscopy, conductive AFM, and Kelvin probe force microscopy can reveal buried nanomaterials on the basis of the differences between their electric properties and those of the surrounding matrices. Finally, scanning near field optical microscopy and tip-enhanced Raman spectroscopy can visualize buried nanostructures on the basis of their optical and chemical properties. Despite at a still early stage, these methods are promising for detection of nanomaterials in biological systems as they could be truly noninvasive, would not require destructive and time-consuming specific sample preparation, could be performed in vitro, on alive samples and in water or physiological environment, and by continuously imaging the same sample could be used to dynamically monitor the diffusion paths and interaction mechanisms of nanomaterials into cells and biological systems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.

  3. Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection.

    PubMed

    Maier, Irene; Morgan, Michael R A; Lindner, Wolfgang; Pittner, Fritz

    2008-04-15

    An optical immunochip biosensor has been developed as a rapid method for allergen detection in complex food matrixes, and its application evaluated for the detection of the egg white allergens, ovalbumin and ovomucoid. The optical near-field phenomenon underlying the basic principle of the sensor design is called resonance-enhanced absorption (REA), which utilizes gold nanoparticles (Au NPs) as signal transducers in a highly sensitive interferometric setup. Using this approach, a novel, simple, and rapid colorimetric solid-phase immunoassay on a planar chip substrate was realized in direct and sandwich assay formats, with a detection system that does not require any instrumentation for readout. Semiquantitative immunochemical responses are directly visible to the naked eye of the analyst. The biosensor shows concentration-dependent color development by capturing antibody-functionalized Au NPs on allergen-coated chips and has a detection limit of 1 ng/mL. To establish a rapid method, we took advantage of the physicochemical microenvironment of the Au NP-antibody bioconjugate to be bound directly over an interacting poly(styrene-methyl methacrylate) interlayer by an immobilized antigen. In the direct assay format, a coating time with allergen of only 5 min under "soft" nondenaturing conditions was sufficient for accurate reproducibility and sensitivity. In conclusion, the REA-based immunochip sensor is easy to fabricate, is reproducible and selective in its performance, has minimal technical requirements, and will enable high-throughput screening of affinity binding interactions in technological and medical applications.

  4. Bioconjugation of silk fibroin nanoparticles with enzyme and Peptide and their characterization.

    PubMed

    Wang, Fei; Zhang, Yu-Qing

    2015-01-01

    Bombyx mori silk fibroin is a type of protein-based polymer with unique characteristics that is widely used in the research and development of medical biomaterials. The degummed filament of silk fibroin can be dissolved in a highly concentrated salt solution. After desalination, the regenerated liquid silk fibroin (LSF) solution could be made into various forms of silk biomaterials, such as powder, fiber, film, porous matrix, 3D scaffold, and hydrogel, depending on its application. In this study, we mixed the liquid silk solution with enzymes, including oxidase and hydrolase, and rapidly injected the mixture into an excess of acetone. The enzyme retained most of its enzymatic activity and was also captured in silk fibroin nanoparticles (SFNs), which instantly formed via a configuration transition of the regenerated silk protein from a random coil and α-helix to a β-sheet. The resulting enzyme-captured SFNs displayed a fine crystal structure with a high activity recovery and good thermal stability. Moreover, the affinities of these modified enzymes to their substrate did not evidently suffer from the capture. When only the liquid silk solution was rapidly injected into acetone, the resulting globular SFNs with the same crystallinity were also a good carrier that was covalently conjugated to enzymes and insulin. Thus, silk protein nanoparticles are of potential value as an enzyme or peptide delivery system for the research and development of medical biomaterials. In this report, the bioconjugation of SFNs with glucose oxidase, superoxidase, β-glucosidase, L-asparaginase, neutral protease, and insulin and their characterization are described in detail. © 2015 Elsevier Inc. All rights reserved.

  5. Spectroscopic and photoacoustic characterization of encapsulated iron oxide super-paramagnetic nanoparticles as a new multiplatform contrast agent

    NASA Astrophysics Data System (ADS)

    Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca

    2018-06-01

    Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets.

  6. Sandwich-like nano-system for simultaneous removal of Cr(VI) and Cd(II) from water and soil.

    PubMed

    Wang, Dongfang; Zhang, Guilong; Dai, Zhangyu; Zhou, Linglin; Bian, Po; Zheng, Kang; Wu, Zhengyan; Cai, Dongqing

    2018-05-07

    In this work, a novel nano-system with sandwich-like structure was synthesized via face-to-face combination of two pieces of waste cotton fabrics (CFs) carrying ferrous sulfide (FeS) and carboxyl-functionalized ferroferric oxide (CFFM) respectively, and the obtained nano system was named as FeS/CFFM/CF. Therein, FeS has high reduction and adsorption capabilities for hexavalent chromium (Cr(VI)), CFFM possesses a high adsorption ability on cadmium ion (Cd(II)) through electrostatics attraction and chelation, and CF displays high immobilization ability for FeS and CFFM and adsorption performance on Cd(II). FeS/CFFM/CF could simultaneously remove Cr(VI) and Cd(II) from water, inhibit the uptake of Cr and Cd by fish and water spinach, ensuring the food safety. Besides, this technology could efficiently control migration of Cr(VI) and Cd(II) in sand-soil mixture, which was favorable to prevent their wide diffusion. Importantly, FeS/CFFM/CF possessed a high flexibility and could be conveniently produced with needed scale and shape, and easily separated from water and soil, displaying a promising approach to remediate Cr(VI)/Cd(II)-contaminated water and soil and a huge application potential.

  7. Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus.

    PubMed

    He, Xiaoxiao; Li, Yuhong; He, Dinggen; Wang, Kemin; Shangguan, Jingfang; Shi, Hui

    2014-07-01

    This paper describes a sensitive and specific determination strategy for Staphylococcus aureus (S. aureus) detection using aptamer recognition and fluorescent silica nanoparticles (FSiNPs) label based dual-color flow cytometry assay (Aptamer/FSiNPs-DCFCM). In the protocol, an aptamer, having high affinity to S. aureus, was first covalently immobilized onto chloropropyl functionalized FSiNPs through a click chemistry approach to generate aptamer-nanoparticles bioconjugates (Aptamer/FSiNPs). Next, S. aureus was incubated with Aptamer/FSiNPs, and then stained with SYBR Green I (a special staining material for the duplex DNA). Upon target binding and nucleic acid staining with SYBR Green I, the S. aureus was determined using two-color flow cytometry. The method took advantage of the specificity of aptamer, signal amplification of FSiNPs label and decreased false positives of two-color flow cytometry assay. It was demonstrated that these Aptamer/FSiNPs could efficiently recognize and fluorescently label target S. aureus. Through multiparameter determination with flow cytometry, this assay allowed for detection of as low as 1.5 x 10(2) and 7.6 x 10(2) cells mL(-1) S. aureus in buffer and spiked milk, respectively, with higher sensitivity than the Aptamer/FITC based flow cytometry.

  8. Recent advances in aptamer-armed multimodal theranostic nanosystems for imaging and targeted therapy of cancer.

    PubMed

    Vandghanooni, Somayeh; Eskandani, Morteza; Barar, Jaleh; Omidi, Yadollah

    2018-05-30

    The side effects of chemotherapeutics during the course of cancer treatment limit their clinical outcomes. The most important mission of the modern cancer therapy modalities is the delivery of anticancer drugs specifically to the target cells/tissue in order to avoid/reduce any inadvertent non-specific impacts on the healthy normal cells. Nanocarriers decorated with a designated targeting ligand such as aptamers (Aps) and antibodies (Abs) are able to deliver cargo molecules to the target cells/tissue without affecting other neighboring cells, resulting in an improved treatment of cancer. For targeted therapy of cancer, different ligands (e.g., protein, peptide, Abs, Aps and small molecules) have widely been used in the development of different targeting drug delivery systems (DDSs). Of these homing agents, nucleic acid Aps show unique targeting potential with high binding affinity to a variety of biological targets (e.g., genes, peptides, proteins, and even cells and organs). Aps have widely been used as the targeting agent, in large part due to their unique 3D structure, simplicity in synthesis and functionalization, high chemical flexibility, low immunogenicity and toxicity, and cell/tissue penetration capability in some cases. Here, in this review, we provide important insights on Ap-decorated multimodal nanosystems (NSs) and discuss their applications in targeted therapy and imaging of cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Development of multidisciplinary nanotechnology undergraduate education program at the University of Rochester Integrated Nanosystems Center

    NASA Astrophysics Data System (ADS)

    Lukishova, Svetlana G.; Bigelow, Nicholas P.; D'Alessandris, Paul D.

    2017-08-01

    Supported by the U.S. National Science Foundation educational grant, a coherent educational program at the University of Rochester (UR) in nanoscience and nanoengineering, based on the Institute of Optics and Intergrated Nanosystems Center resources was created. The main achievements of this program are (1) developing curriculum and offering the Certificate for Nanoscience and Nanoengineering program (15 students were awarded the Certificate and approximately 10 other students are working in this direction), (2) creating a reproducible model of collaboration in nanotechnology between a university with state-of-the-art, expensive experimental facilities, and a nearby, two-year community college (CC) with participation of a local Monroe Community College (MCC). 52 MCC students carried out two labs at the UR on the atomic force microscopy and a photolithography at a clean room; (3) developing reproducible hand-on experiments on nanophotonics ("mini-labs"), learning materials and pedagogical methods to educate students with diverse backgrounds, including freshmen and non-STEM-major CC students. These minilabs on nanophotonics were also introduced in some Institute of Optics classes. For the Certificate program UR students must take three courses: Nanometrology Laboratory (a new course) and two other selective courses from the list of several. Students also should carry out a one-semester research or a design project in the field of nanoscience and nanoengineering.

  10. Chemically-defined camelid antibody bioconjugate for the magnetic resonance imaging of Alzheimer's disease.

    PubMed

    Vandesquille, Matthias; Li, Tengfei; Po, Chrystelle; Ganneau, Christelle; Lenormand, Pascal; Dudeffant, Clémence; Czech, Christian; Grueninger, Fiona; Duyckaerts, Charles; Delatour, Benoît; Dhenain, Marc; Lafaye, Pierre; Bay, Sylvie

    Today, molecular imaging of neurodegenerative diseases is mainly based on small molecule probes. Alternatively, antibodies are versatile tools that may be developed as new imaging agents. Indeed, they can be readily obtained to specifically target any antigen of interest and their scaffold can be functionalized. One of the critical issues involved in translating antibody-based probes to the clinic is the design and synthesis of perfectly-defined conjugates. Camelid single-domain antibody-fragments (VHHs) are very small and stable antibodies that are able to diffuse in tissues and potentially cross the blood brain barrier (BBB). Here, we selected a VHH (R3VQ) specifically targeting one of the main lesions of Alzheimer's disease (AD), namely the amyloid-beta (Aß) deposits. It was used as a scaffold for the design of imaging probes for magnetic resonance imaging (MRI) and labeled with the contrastophore gadolinium using either a random or site-specific approach. In contrast to the random strategy, the site-specific conjugation to a single reduced cysteine in the C-terminal part of the R3VQ generates a well-defined bioconjugate in a high yield process. This new imaging probe is able to cross the BBB and label Aß deposits after intravenous injection. Also, it displays improved r1 and r2 relaxivities, up to 30 times higher than a widely used clinical contrast agent, and it allows MRI detection of amyloid deposits in post mortem brain tissue of a mouse model of AD. The ability to produce chemically-defined VHH conjugates that cross the BBB opens the way for future development of tailored imaging probes targeting intracerebral antigens.

  11. Spectroscopic and photoacoustic characterization of encapsulated iron oxide super-paramagnetic nanoparticles as a new multiplatform contrast agent.

    PubMed

    Armanetti, Paolo; Flori, Alessandra; Avigo, Cinzia; Conti, Luca; Valtancoli, Barbara; Petroni, Debora; Doumett, Saer; Cappiello, Laura; Ravagli, Costanza; Baldi, Giovanni; Bencini, Andrea; Menichetti, Luca

    2018-06-15

    Recently, a number of photoacoustic (PA) agents with increased tissue penetration and fine spatial resolution have been developed for molecular imaging and mapping of pathophysiological features at the molecular level. Here, we present bio-conjugated near-infrared light-absorbing magnetic nanoparticles as a new agent for PA imaging. These nanoparticles exhibit suitable absorption in the near-infrared region, with good photoacoustic signal generation efficiency and high photo-stability. Furthermore, these encapsulated iron oxide nanoparticles exhibit strong super-paramagnetic behavior and nuclear relaxivities that make them useful as magnetic resonance imaging (MRI) contrast media as well. Their simple bio-conjugation strategy, optical and chemical stability, and straightforward manipulation could enable the development of a PA probe with magnetic and spectroscopic properties suitable for in vitro and in vivo real-time imaging of relevant biological targets. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Bioconjugates of luminescent CdSe-ZnS quantum dots with an engineered two-domain protein G for use in fluoroimmunoassays

    NASA Astrophysics Data System (ADS)

    Tran, Phan T.; Goldman, Ellen R.; Mattoussi, Hedi M.; Anderson, George P.; Mauro, J. Matthew

    2001-06-01

    Colloidal semiconductor quantum dots (QDs) seem suitable for labeling certain biomolecules for use in fluorescent tagging applications, such as fluoro-immunoassays. Compared to organic dye labels, Qds are resistant to photo-degradation, and these luminescent nanoparticles have size-dependent emission spectra spanning a wide range of wavelengths in the visible and near IR. We previously described an electrostatic self-assembly approach for conjugating highly luminescent colloidal CdSe-ZnS core-shell Qds with engineered two-domain recombinant proteins. Here we describe the application of this approach to prepare QD conjugates with the (Beta) 2 immunoglobin G (IgG) binding domain of streptococcal protein G (PG) appended with a basic lucine zipper attachment domain (PG-zb). We also demonstrate that the QD/PG conjugates retain their ability to bind IgG antibodies, and that a specific antibody coupled to QD via the PG functional domain efficiently binds its antigen. These preliminary results indicate that electrostatically self-assembled QD/PG-zb/IgG bioconjugates can be used in fluoro-immunoassays.

  13. Tumor responsive targeted multifunctional nanosystems for cancer imaging, chemo- and siRNA therapy

    NASA Astrophysics Data System (ADS)

    Savla, Ronak

    Cancer is one of the most insidious diseases. Compromising of over 100 different types and sharing the unifying factors of uncontrolled growth and metastasis, unmet clinical needs in terms of cancer diagnosis and treatment continue to exist. It is widely accepted that most forms of cancer are treatable or even curable if detected before widespread metastasis occurs. Nearly a quarter of deaths in the United States is the result of cancer and it only trails heart disease in terms of annual mortality. Surgery, chemotherapy, and radiation therapy are the primary treatment modalities for cancer. Research in these procedures has resulted in substantial benefits for cancer patients, but there is still room for an improvement. However, a time has been reached at which it appears that the benefits from these modalities have been reached the maximum. Therefore, it is vital to develop new strategies for the diagnosis and treatment of cancer. The field of nanotechnology is concerned with structures in the nanometer size range and holds the potential to drastically impact and improve the lives of patients suffering from cancer. Not only can nanotechnology improve current methods of diagnosis and treatment, it has a possibility of introducing newer and better modalities. The overall purpose of this work is to develop novel nanotechnology-based methodologies for the diagnosis and treatment of various forms of cancers. The first aim of the project is the development of a multifunctional targeted nanosystem for the delivery of siRNA to overcome drug resistance. The second aspect is the synthesis of a quantum dot-based delivery system that releases drug in response to pH changes. The third aim is the development of a targeted, tumor environment responsive magnetic resonance nanoparticle contrast agent coupled with a nanoparticle-based treatment.

  14. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  15. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  16. Impacts of quantum dots in molecular detection and bioimaging of cancer

    PubMed Central

    Mashinchian, Omid; Johari-Ahar, Mohammad; Ghaemi, Behnaz; Rashidi, Mohammad; Barar, Jaleh; Omidi, Yadollah

    2014-01-01

    Introduction: A number of assays have so far been exploited for detection of cancer biomarkers in various malignancies. However, the expression of cancer biomarker(s) appears to be extremely low, therefore accurate detection demands sensitive optical imaging probes. While optical detection using conventional fluorophores often fail due to photobleaching problems, quantum dots (QDs) offer stable optical imaging in vitro and in vivo. Methods: In this review, we briefly overview the impacts of QDs in biology and its applications in bioimaging of malignancies. We will also delineate the existing obstacles for early detection of cancer and the intensifying use of QDs in advancement of diagnostic devices. Results: Of the QDs, unlike the II-VI type QDs (e.g., cadmium (Cd), selenium (Se) or tellurium (Te)) that possess inherent cytotoxicity, the I-III-VI 2 type QDs (e.g., AgInS2, CuInS2, ZnS-AgInS2) appear to be less toxic bioimaging agents with better control of band-gap energies. As highly-sensitive bioimaging probes, advanced hybrid QDs (e.g., QD-QD, fluorochrome-QD conjugates used for sensing through fluorescence resonance energy transfer (FRET), quenching, and barcoding techniques) have also been harnessed for the detection of biomarkers and the monitoring of delivery of drugs/genes to the target sites. Antibody-QD (Ab-QD) and aptamer- QD (Ap-QD) bioconjugates, once target the relevant biomarker, can provide highly stable photoluminescence (PL) at the target sites. In addition to their potential as nanobiosensors, the bioconjugates of QDs with homing devices have successfully been used for the development of smart nanosystems (NSs) providing targeted bioimaging and photodynamic therapy (PDT). Conclusion: Having possessed great deal of photonic characteristics, QDs can be used for development of seamless multifunctional nanomedicines, theranostics and nanobiosensors. PMID:25337468

  17. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    PubMed

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  18. Immunogenicity and safety of a tetravalent E. coli O-antigen bioconjugate vaccine in animal models.

    PubMed

    van den Dobbelsteen, Germie P J M; Faé, Kellen C; Serroyen, Jan; van den Nieuwenhof, Ingrid M; Braun, Martin; Haeuptle, Micha A; Sirena, Dominique; Schneider, Joerg; Alaimo, Cristina; Lipowsky, Gerd; Gambillara-Fonck, Veronica; Wacker, Michael; Poolman, Jan T

    2016-07-29

    Extra-intestinal pathogenic Escherichia coli (ExPEC) are major human pathogens; however, no protective vaccine is currently available. We assessed in animal models the immunogenicity and safety of a 4-valent E. coli conjugate vaccine (ExPEC-4V, serotypes O1, O2, O6 and O25 conjugated to Exotoxin A from Pseudomonas aeruginosa (EPA)) produced using a novel in vivo bioconjugation method. Three doses of ExPEC-4V (with or without aluminum hydroxide) were administered to rabbits (2μg or 20μg per O-antigen, subcutaneously), mice (0.2μg or 2μg per O-antigen, subcutaneously) and rats (0.4μg or 4μg per O-antigen, intramuscularly). Antibody persistence and boostability were evaluated in rats using O6-EPA monovalent conjugate (0.4μg O-antigen/dose, intramuscularly). Toxicity was assessed in rats (16μg total polysaccharide, intramuscularly). Serum IgG and IgM antibodies were measured by ELISA. Robust antigen-specific IgG responses were observed in all animal models, with increased responses in rabbits when administered with adjuvant. O antigen-specific antibody responses persisted up to 168days post-priming. Booster immunization induced a rapid recall response. Toxicity of ExPEC-4V when administered to rats was considered to be at the no observed adverse effect level. ExPEC-4V conjugate vaccine showed good immunogenicity and tolerability in animal models supporting progression to clinical evaluation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Enhanced stability of L-asparaginase by its bioconjugation to poly(styrene-co-maleic acid) and Ecoflex nanoparticles.

    PubMed

    Varshosaz, Jaleh; Anvari, Negin

    2018-06-01

    Acute lymphoblastic leukemia (ALL) is the white blood cell cancer in children. L-asparaginase (L-ASNase) is one of the first drugs used in ALL treatment. Anti-tumor activity of L-ASNase is not specific and indicates limited stability in different biological environments, in addition to its quick clearance from blood. The purpose of the present study was to achieve a new L-ASNase polymer bioconjugate to improve pharmacokinetic, increase half-life and stability of the enzyme. The conjugations were achieved by the cross-linking agent of 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide (EDC) which activates the carboxylic acid groups of polymeric nanoparticles to create amide bond. EDC conjugated the L-ASNase to two biodegradable polymers including; Ecoflex ® and poly (styrene-co-maleic acid) (PSMA) nanoparticles. To achieve optimal L-ASNase nanoparticles the amounts of each polymer and the crosslinker were optimized and the nanoparticles were characterized according to their particle size, zeta potential and percent of conjugation of the enzyme. The results showed that conjugated enzyme had more stability against pH changes and proteolysis. It had lower Km value (indicating more affinity to the substrate) and greater half-life in plasma and phosphate buffered saline, in comparison to native enzyme. Generally, the conjugated enzyme to PSMA nanoparticles showed greater results than Ecoflex ® nanoparticles.

  20. PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Spadaro, Salvatore; Santoro, Marco; Barreca, Francesco; Scala, Angela; Grimato, Simona; Neri, Fortunato; Fazio, Enza

    2018-02-01

    A PEGylated-PLGA random nanofibrous membrane loaded with gold and iron oxide nanoparticles and with silibinin was prepared by electrospinning deposition. The nanofibrous membrane can be remotely controlled and activated by a laser light or magnetic field to release biological agents on demand. The nanosystems were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and thermogravimetric analyses. The drug loading efficiency and drug content percentages were determined by UV-vis optical absorption spectroscopy. The nanofibrous membrane irradiated by a relatively low-intensity laser or stimulated by a magnetic field showed sustained silibinin release for at least 60 h, without the burst effect. The proposed low-cost electrospinning procedure is capable of assembling, via a one-step procedure, a stimuli-responsive drug-loaded nanosystem with metallic nanoparticles to be externally activated for controlled drug delivery.

  1. MULTIMAGNON ABSORPTION IN MNF2-OPTICAL ABSORPTION SPECTRUM.

    DTIC Science & Technology

    The absorption spectrum of MnF2 at 4.2K in the 3900A region was measured in zero external fields and in high fields. Exciton lines with magnon ...sidebands are observed, accompanied by a large number of weak satellite lines. Results on the exciton and magnon absorptions are similar to those of...McClure et al. The satellite lines are interpreted as being multi- magnon absorptions, and it is possible to fit the energy of all the absorptions with

  2. Viability preserved capture of microorganism by plasma functionalized carbon-encapsulated iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Viswan, Anchu; Sugiura, Kuniaki; Nagatsu, Masaaki

    2015-09-01

    Carbon-encapsulated iron nanoparticles (Fe@C NPs) were synthesized by DC arc discharge method. Carbon encapsulation makes the particles hydrophobic, however for most of the biomedical applications they need to be hydrophilic. To attain this, the particles were amino functionalized by RF plasma. Effect of gas mixture ratio (Ar/NH3), pretreatment, post-treatment times and RF power were optimized. By varying the RF plasma conditions, the amino group population on the surface of Fe@C NPs were increased. With conventional chemical method the amino group population on particles, synthesized in different conditions was found to be ranging from 3-7 × 104 per particle. Bioconjugation efficiency of the nanoparticles was examined by biotin-avidin system, which can be simulated for antigen-antibody reactions. Results from the UV absorption and fluorescence spectroscopy shows increment in bioconjugation efficiency, with the increase of amino group population on the nanoparticles. After confirming the bioconjugation efficiency, the amino functionalized Fe@C NPs were modified with antibodies for targeting specific microorganisms. Our aim is to capture the microbes in viable and concentrated form even from less populated samples, with lesser time compared to the presently available methods. This work has been supported in part by Grant-in-Aid for Scientific Research (Nos. 21110010 and 25246029) from the Japan Society for the Promotion of Science (JSPS).

  3. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    NASA Astrophysics Data System (ADS)

    Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van

    2016-03-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.

  4. Advantages of bioconjugated silica-coated nanoparticles as an innovative diagnosis for human toxoplasmosis.

    PubMed

    Aly, Ibrahim; Taher, Eman E; El Nain, Gehan; El Sayed, Hoda; Mohammed, Faten A; Hamad, Rabab S; Bayoumy, Elsayed M

    2018-01-01

    Nanotechnology is a promising arena for generating new applications in Medicine. To successfully functionalised nanoparticles for a given biomedical application, a wide range of chemical, physical and biological factors have to be taken into account. Silica-coated nanoparticles, (SiO2NP) exhibit substantial diagnostic activity owing to their large surface to volume ratios and crystallographic surface structure. This work aimed to evaluate the advantage of bioconjugation of SiO2NP with PAb against Toxoplasma lyzate antigen (TLA) as an innovative diagnostic method for human toxoplasmosis. This cross-sectional study included 120 individuals, divided into Group I: 70 patients suspected for Toxoplasma gondii based on the presence of clinical manifestation. Group II: 30 patients harboring other parasites than T. gondii Group III: 20 apparently healthy individuals free from toxoplasmosis and other parasitic infections served as negative control. Detection of circulating Toxoplasma antigen was performed by Sandwich ELISA and Nano-sandwich ELISA on sera and pooled urine of human samples. Using Sandwich ELISA, 10 out of 70 suspected Toxoplasma-infected human serum samples showed false negative and 8 out of 30 of other parasites groups were false positive giving 85.7% sensitivity and 84.0% specificity, while the sensitivity and specificity were 78.6% and 70% respectively in urine samples. Using Nano-Sandwich ELISA, 7 out of 70 suspected Toxoplasma-infected human samples showed false negative results and the sensitivity of the assay was 90.0%, while 4 out of 30 of other parasites groups were false positive giving 92.0% specificity, while the sensitivity and specificity were 82.6% and 80% respectively in urine samples. In conclusion, our data demonstrated that loading SiO2 nanoparticles with pAb increased the sensitivity and specificity of Nano-sandwich ELISA for detection of T.gondii antigens in serum and urine samples, thus active (early) and light infections could be easily

  5. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  6. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  7. A high precision method for length-based separation of carbon nanotubes using bio-conjugation, SDS-PAGE and silver staining.

    PubMed

    Borzooeian, Zahra; Taslim, Mohammad E; Ghasemi, Omid; Rezvani, Saina; Borzooeian, Giti; Nourbakhsh, Amirhasan

    2018-01-01

    Parametric separation of carbon nanotubes, especially based on their length is a challenge for a number of nano-tech researchers. We demonstrate a method to combine bio-conjugation, SDS-PAGE, and silver staining in order to separate carbon nanotubes on the basis of length. Egg-white lysozyme, conjugated covalently onto the single-walled carbon nanotubes surfaces using carbodiimide method. The proposed conjugation of a biomolecule onto the carbon nanotubes surfaces is a novel idea and a significant step forward for creating an indicator for length-based carbon nanotubes separation. The conjugation step was followed by SDS-PAGE and the nanotube fragments were precisely visualized using silver staining. This high precision, inexpensive, rapid and simple separation method obviates the need for centrifugation, additional chemical analyses, and expensive spectroscopic techniques such as Raman spectroscopy to visualize carbon nanotube bands. In this method, we measured the length of nanotubes using different image analysis techniques which is based on a simplified hydrodynamic model. The method has high precision and resolution and is effective in separating the nanotubes by length which would be a valuable quality control tool for the manufacture of carbon nanotubes of specific lengths in bulk quantities. To this end, we were also able to measure the carbon nanotubes of different length, produced from different sonication time intervals.

  8. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold

    PubMed Central

    Henry, Kevin A.; Arbabi-Ghahroudi, Mehdi; Scott, Jamie K.

    2015-01-01

    For the past 25 years, phage display technology has been an invaluable tool for studies of protein–protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage’s potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage’s large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use. PMID:26300850

  9. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  10. Binding energy of excitons formed from spatially separated electrons and holes in insulating quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokutnyi, S. I., E-mail: pokutnyi-sergey@inbox.ru; Kulchin, Yu. N.; Dzyuba, V. P.

    It is found that the binding energy of the ground state of an exciton formed from an electron and a hole spatially separated from each other (the hole is moving within a quantum dot, and the electron is localized above the spherical (quantum dot)–(insulating matrix) interface) in a nanosystem containing insulating Al{sub 2}O{sub 3} quantum dots is substantially increased (by nearly two orders of magnitude) compared to the exciton binding energy in an Al{sub 2}O{sub 3} single crystal. It is established that, in the band gap of an Al{sub 2}O{sub 3} nanoparticle, a band of exciton states (formed from spatiallymore » separated electrons and holes) appears. It is shown that there exists the possibility of experimentally detecting the ground and excited exciton states in the band gap of Al{sub 2}O{sub 3} nanoparticles at room temperature from the absorption spectrum of the nanosystem.« less

  11. Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption.

    PubMed

    Goncalves, Aurélie; Roi, Stéphanie; Nowicki, Marion; Dhaussy, Amélie; Huertas, Alain; Amiot, Marie-Josèphe; Reboul, Emmanuelle

    2015-04-01

    The interactions occurring at the intestinal level between the fat-soluble vitamins A, D, E and K (FSVs) are poorly documented. We first determined each FSV absorption profile along the duodenal-colonic axis of mouse intestine to clarify their respective absorption sites. We then investigated the interactions between FSVs during their uptake by Caco-2 cells. Our data show that vitamin A was mostly absorbed in the mouse proximal intestine, while vitamin D was absorbed in the median intestine, and vitamin E and K in the distal intestine. Significant competitive interactions for uptake were then elucidated among vitamin D, E and K, supporting the hypothesis of common absorption pathways. Vitamin A also significantly decreased the uptake of the other FSVs but, conversely, its uptake was not impaired by vitamins D and K and even promoted by vitamin E. These results should be taken into account, especially for supplement formulation, to optimise FSV absorption. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Facile and Stabile Linkages through Tyrosine: Bioconjugation Strategies with the Tyrosine-Click Reaction

    PubMed Central

    Ban, Hitoshi; Nagano, Masanobu; Gavrilyuk, Julia; Hakamata, Wataru; Inokuma, Tsubasa; Barbas, Carlos F.

    2013-01-01

    The scope, chemoselectivity, and utility of the click-like tyrosine labeling reaction with 4-phenyl-3H-1,2,4-triazoline-3,5(4H)-diones (PTADs) is reported. To study the utility and chemoselectivity of PTAD derivatives in peptide and protein chemistry, we synthesized PTAD derivatives possessing azide, alkyne, and ketone groups and studied their reactions with amino acid derivatives and peptides of increasing complexity. With proteins we studied the compatibility of the tyrosine click reaction with cysteine and lysine-targeted labeling approaches and demonstrate that chemoselective tri-functionalization of proteins is readily achieved. In particular cases, we noted PTAD decomposition resulted in formation of a putative isocyanate by-product that was promiscuous in labeling. This side reaction product, however, was readily scavenged by the addition of a small amount of 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) to the reaction medium. To study the potential of the tyrosine click reaction to introduce poly(ethylene) glycol chains onto proteins (PEGylation), we demonstrate that this novel reagent provides for the selective PEGylation of chymotrypsinogen whereas traditional succinimide-based PEGylation targeting lysine residues provided a more diverse range of PEGylated products. Finally, we applied the tyrosine click reaction to create a novel antibody drug conjugate. For this purpose, we synthesized a PTAD derivative linked to the HIV entry inhibitor aplaviroc. Labeling of the antibody trastuzumab with this reagent provided a labeled antibody conjugate that demonstrated potent HIV-1 neutralization activity demonstrating the potential of this reaction in creating protein conjugates with small molecules. The tyrosine click linkage demonstrated stability to extremes of pH, temperature and exposure to human blood plasma indicating that this linkage is significantly more robust than maleimide-type linkages that are commonly employed in bioconjugations. These studies

  13. Bioconjugation of laminin peptide YIGSR with poly(styrene co-maleic acid) increases its antimetastatic effect on lung metastasis of B16-BL6 melanoma cells.

    PubMed

    Mu, Y; Kamada, H; Kaneda, Y; Yamamoto, Y; Kodaira, H; Tsunoda, S; Tsutsumi, Y; Maeda, M; Kawasaki, K; Nomizu, M; Yamada, Y; Mayumi, T

    1999-02-05

    A comb-shaped polymeric modifier, SMA [poly(styrene comaleic anhydride)], which binds to plasma albumin in blood was used to modify the synthetic cell-adhesive laminin peptide YIGSR, and its inhibitory effect on experimental lung metastasis of B16-BL6 melanoma cells was examined. YIGSR was chemically conjugated with SMA via formation of an amide bond between the N-terminal amino group of YIGSR and the carboxyl anhydride of SMA. The antimetastatic effect of SMA-conjugated YIGSR was approximately 50-fold greater than that of native YIGSR. When injected intravenously, SMA-YIGSR showed a 10-fold longer plasma half-life than native YIGSR in vivo. In addition, SMA-YIGSR had the same binding affinity to plasma albumin as SMA, while native YIGSR did not bind to albumin. These findings suggested that the enhanced antimetastatic effect of SMA-YIGSR may be due to its prolonged plasma half-life by binding to plasma albumin, and that bioconjugation of in vivo unstable peptides with SMA may facilitate their therapeutic use. Copyright 1999 Academic Press.

  14. Enhancing quality of carbon nanotubes through a real-time controlled CVD process with application to next-generation nanosystems

    NASA Astrophysics Data System (ADS)

    Laxminarayana, Karthik; Jalili, Nader

    2004-07-01

    Nanocrystals and nanostructures will be the building blocks for future materials that will exhibit enhanced or entirely new combinations of properties with tremendous opportunity for novel technologies that can have far-reaching impact on our society. It is, however, realized that a major challenge for the near future is the design, synthesis and integration of nanostructures to develop functional nanosystems. In view of this, this exploratory research seeks to facilitate the development of a controlled and deterministic framework for nanomanufacturing of nanotubes as the most suitable choice among nanostructures for a plethora of potential applications in areas such as nanoelectronic devices, biological probes, fuel cell electrodes, supercapacitors and filed emission devices. Specifically, this paper proposes to control and maintain the most common nanotube growth parameters (i.e., reaction temperature and gas flow rate) through both software and hardware modifications. The influence of such growth parameters in a CVD process on some of the most vital and crucial aspects of nanotubes (e.g., length, diameter, yield, growth rate and structure) can be utilized to arrive at some unique and remarkable properties for the nanotubes. The objective here is, therefore, to control the process parameters to pinpoint accuracy, which would enable us to fabricate nanotubes having the desired properties and thereby maximize their ability to function at its fullest potential. To achieve this and in order to provide for experimental validation of the proposed research program, an experimental test-bed using the nanotube processing test chamber and a mechatronics workstation are being constructed.

  15. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  16. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  17. Bioconjugated graphene oxide hydrogel as an effective adsorbent for cationic dyes removal.

    PubMed

    Soleimani, Khadijeh; Tehrani, Abbas Dadkhah; Adeli, Mohsen

    2018-01-01

    In this study, graphene oxide - cellulose nanowhiskers nanocomposite hydrogel was easily synthesized through covalent functionalization of cellulose nanowhiskers with graphene oxide via a facile approach. The nitrene chemistry applied for covalent functionalization of graphene oxide sheets. The surface morphology and chemical structure of the nanocomposite hydrogel were characterized by FTIR, TGA, Raman, XRD, elemental analysis and SEM. The UV/Visible absorption spectrum revealed that the obtained porous nanocomposite hydrogel can efficiently remove cationic dyes such as methylene blue (MB) and Rhodamine B (RhB) from wastewater with high absorption power. The adsorption process showed that 100% of MB and 90% of RhB have been removed and the equilibrium state has been reached in 15min for low concentration solutions in accordance with the pseudo-second-order model. Moreover, the sample exhibited stable performance after being used several times. High adsorption capacity and easy recovery are the efficient factors making these materials as good adsorbent for water pollutants and wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Development of innovative oil-core self-organized nanovesicles prepared with chitosan and lecithin using a 2(3) full-factorial design.

    PubMed

    Haas, Sandra Elisa; de Andrade, Cristiane; Sansone, Pedro Ernesto da Silva; Guterres, Silvia; Dalla Costa, Teresa

    2014-11-01

    The aim of this study was to develop innovative nanosystems with isopropyl myristate as the oil core of self-assembly nanovesicles constituted of chitosan and lecithin using a 2(3) factorial design. The factors analyzed were chitosan (X1, levels 4 and 8  mg/ml), oil (X2, levels 10 and 20  mg/ml) and lecithin (X3, levels 4 and 8 mg/ml). The responses evaluated were diameter, zeta potential, pH, viscosity, and backscattering analysis. The bioavailability was evaluated after oral administration of clozapine free and nanoencapsulated in rats. The diameter ranged from 0.348 to 1.5 µm for F2 (X1, 4; X2, 10; X3, 8 mg/ml) and F7 (X1, 8; X2, 20; X3, 4  mg/ml), respectively. Laser diffractometry analysis revealed only one diameter population for all batches. Zeta potential was positive, being influenced by X1 and X2/X3 association. Viscosity values were dependent on the X1 and X2 concentrations used. A structure proposed for the nanosystem consists of chitosan forming the hydrophilic shell layer that protects the core comprised of lecithin and the hydrophobic groups of oil. The AUC0-∞ was almost 3 times higher with the clozapine nanoencapsuted in relation to free drug. It was developed a new nanosystem which is able of improving the absorption of drugs.

  19. Fabrication and bioconjugation of BIII and CrIII co-doped ZnGa2O4 persistent luminescent nanoparticles for dual-targeted cancer bioimaging.

    PubMed

    Zhao, Huai-Xin; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-12-07

    Persistent luminescent nanoparticles (PLNPs) show great potential in realizing precision imaging due to the absence of in situ excitation and no background interference. However, the current PLNP-based tumour imaging is usually achieved by single targeting or passive targeting strategies, and thus it lacks high specificity and affinity for efficient persistent luminescence imaging in vivo. Herein we report the bioconjugation of multiple targeting ligands on the surface of PLNPs for dual-targeted bioimaging to improve the specificity and affinity of the PLNP nanoprobe for in vitro and in vivo bioimaging. The PLNPs were prepared by co-doping Cr III and B III into ZnGa 2 O 4 via a hydrothermal-calcination method. While Cr III doped ZnGa 2 O 4 PLNPs possess excellent near-infrared luminescence along with long afterglow and red light renewable near-infrared luminescence, doping of B III into the PLNPs further improves the persistent luminescence. Conjugation of two targeting ligands, hyaluronic acid and folic acid, which have specificity toward the cluster determinant 44 receptor and folic acid receptor in tumour cells, respectively, provides synergistic targeting effects to enhance the specificity and affinity toward tumour cells. This work provides a dual-targeting strategy for fabricating PLNP-based nanoprobes to realize precision tumour-targeted bioimaging.

  20. Optical Absorption in Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Bell, Florian Gene

    An infrared absorption cell has been developed which is suitable for high temperature liquids which have absorptions in the range .1-10('3) cm('-1). The cell is constructed by clamping a gasket between two flat optical windows. This unique design allows the use of any optical windows chemically compatible with the liquid. The long -wavelength limit of the measurements is therefore limited only by the choice of the optical windows. The thickness of the cell can easily be set during assembly, and can be varied from 50 (mu)m to .5 cm. Measurements of the optical absorption edge were performed on the liquid alloy Se(,1-x)Tl(,x) for x = 0, .001, .002, .003, .005, .007, and .009, from the melting point up to 475(DEGREES)C. The absorption was found to be exponential in the photon energy over the experimental range from 0.3 eV to 1.2 eV. The absorption increased linearly with concentration according to the empirical relation (alpha)(,T)(h(nu)) = (alpha)(,1) + (alpha)(,2)x, and the absorption (alpha)(,1) was interpreted as the absorption in the absence of T1. (alpha)(,1) also agreed with the measured absorption in 100% Se at corresponding temperatures and energies. The excess absorption defined by (DELTA)(alpha) = (alpha)(,T)(h(nu))-(alpha)(,1) was interpreted as the absorption associated with Tl and was found to be thermally activated with an activation energy E(,t) = 0.5 eV. The exponential edge is explained as absorption on atoms immersed in strong electric fields surrounding ions. The strong fields give rise to an absorption tail similar to the Franz-Keldysh effect. A simple calculation is performed which is based on the Dow-Redfield theory of absorption in an electric field with excitonic effects included. The excess absorption at low photon energies is proportional to the square of the concentration of ions, which are proposed to exist in the liquid according to the relation C(,i) (PROPORTIONAL) x(' 1/2)(.)e('-E)t('/kT), which is the origin of the thermal activation

  1. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  2. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  3. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    NASA Technical Reports Server (NTRS)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  4. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  5. [The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].

    PubMed

    Pei, Shi-Xin; Gao, Xiao-Ming; Cui, Fen-Ping; Huang, Wei; Shao, Jie; Fan, Hong; Zhang, Wei-Jun

    2005-12-01

    Cavity enhanced absorption spectroscopy (CEAS) is a new spectral technology that is based on the cavity ring down absorption spectroscopy. In the present paper, a DFB encapsulation narrow line width tunable diode laser (TDL) was used as the light source. At the center output, the TDL radiation wavelength was 1.573 microm, and an optical cavity, which consisted of two high reflectivity mirrors (near 1.573 microm, the mirror reflectivity was about 0.994%), was used as a sample cell. A wavemeter was used to record the accurate frequency of the laser radiation. In the experiment, the method of scanning the optical cavity to change the cavity mode was used, when the laser frequency was coincident with one of the cavity mode; the laser radiation was coupled into the optical cavity and the detector could receive the light signals that escaped the optical cavity. As a result, the absorption spectrum of carbon dioxide weak absorption at low pressure was obtained with an absorption intensity of 1.816 x 10(-23) cm(-1) x (molecule x cm(-2)(-1) in a sample cell with a length of only 33.5 cm. An absorption sensitivity of about 3.62 x 10(-7) cm(-1) has been achieved. The experiment result indicated that the cavity enhanced absorption spectroscopy has the advantage of high sensivity, simple experimental setup, and easy operation.

  6. Luminescent Quantum Dot Bioconjugates in Fluorescence Resonance Energy Transfer (FRET) Assays

    NASA Astrophysics Data System (ADS)

    Clapp, Aaron; Medintz, Igor; Goldman, Ellen; Anderson, George; Mauro, J. Matthew; Mattoussi, Hedi

    2003-03-01

    Colloidal semiconductor quantum dots (QDs) such as those made of CdSe-ZnS core-shell nanocrystals offer a promising alternative to organic dyes in a variety of biological tagging applications. They exhibit high resistance to chemical and photo-degradations, are highly luminescent, and show unique size-specific optical and spectroscopic properties. We have previously demonstrated a useful method for attaching proteins to CdSe-ZnS QDs using dihydrolipoic acid (DHLA) surface capping groups and electrostatic self-assembly in aqueous environments. We have used this conjugation strategy to build solution-based QD-conjugate sensors based on fluorescence resonance energy transfer (FRET) between QD donors and dye-labeled protein acceptors. Specific binding between the QD-ligand donor and dye-labeled receptor was achieved. In another example, the dye receptor was grafted directly onto the protein, then immobilized onto the QD surface via an electrostatic self-assembly process. The QD-complexes were optically excited in a region where absorption of the dye is negligible compared to that of the nanocrystals. We observed a continuous decrease of the QD emission accompanied by a steady and pronounced increase of the acceptor emission as the ratio of dye to QD was increased. The results of these experiments suggest efficient resonance energy transfer between the QD donor and the dye acceptor upon ligand-receptor binding. We will present these data and discuss other aspects such as donor-acceptor separation distance, degree of overlap between absorption of the acceptor and emission of the QD, and reverse FRET (upon ligand-receptor release) in a reversible assay.

  7. Metal powder absorptivity: Modeling and experiment

    DOE PAGES

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.; ...

    2016-08-10

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  8. Metal powder absorptivity: Modeling and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boley, C. D.; Mitchell, S. C.; Rubenchik, A. M.

    Here, we present results of numerical modeling and direct calorimetric measurements of the powder absorptivity for a number of metals. The modeling results generally correlate well with experiment. We show that the powder absorptivity is determined, to a great extent, by the absorptivity of a flat surface at normal incidence. Our results allow the prediction of the powder absorptivity from normal flat-surface absorptivity measurements.

  9. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  10. Intestinal Water Absorption Varies with Expected Dietary Water Load among Bats but Does Not Drive Paracellular Nutrient Absorption.

    PubMed

    Price, Edwin R; Brun, Antonio; Gontero-Fourcade, Manuel; Fernández-Marinone, Guido; Cruz-Neto, Ariovaldo P; Karasov, William H; Caviedes-Vidal, Enrique

    2015-01-01

    Rapid absorption and elimination of dietary water should be particularly important to flying species and were predicted to vary with the water content of the natural diet. Additionally, high water absorption capacity was predicted to be associated with high paracellular nutrient absorption due to solvent drag. We compared the water absorption rates of sanguivorous, nectarivorous, frugivorous, and insectivorous bats in intestinal luminal perfusions. High water absorption rates were associated with high expected dietary water load but were not highly correlated with previously measured rates of (paracellular) arabinose clearance. In conjunction with these tests, we measured water absorption and the paracellular absorption of nutrients in the intestine and stomach of vampire bats using luminal perfusions to test the hypothesis that the unique elongated vampire stomach is a critical site of water absorption. Vampire bats' gastric water absorption was high compared to mice but not compared to their intestines. We therefore conclude that (1) dietary water content has influenced the evolution of intestinal water absorption capacity in bats, (2) solvent drag is not the only driver of paracellular nutrient absorption, and (3) the vampire stomach is a capable but not critical location for water absorption.

  11. Cyclic versus Noncyclic Chelating Scaffold for 89Zr-Labeled ZEGFR:2377 Affibody Bioconjugates Targeting Epidermal Growth Factor Receptor Overexpression

    PubMed Central

    2017-01-01

    Zirconium-89 is an emerging radionuclide for positron emission tomography (PET) especially for biomolecules with slow pharmacokinetics as due to its longer half-life, in comparison to fluorine-18 and gallium-68, imaging at late time points is feasible. Desferrioxamine B (DFO), a linear bifunctional chelator (BFC) is mostly used for this radionuclide so far but shows limitations regarding stability. Our group recently reported on fusarinine C (FSC) with similar zirconium-89 complexing properties but potentially higher stability related to its cyclic structure. This study was designed to compare FSC and DFO head-to-head as bifunctional chelators for 89Zr-radiolabeled EGFR-targeting ZEGFR:2377 affibody bioconjugates. FSC-ZEGFR:2377 and DFO-ZEGFR:2377 were evaluated regarding radiolabeling, in vitro stability, specificity, cell uptake, receptor affinity, biodistribution, and microPET-CT imaging. Both conjugates were efficiently labeled with zirconium-89 at room temperature but radiochemical yields increased substantially at elevated temperature, 85 °C. Both 89Zr-FSC-ZEGFR:2377 and 89Zr-DFO-ZEGFR:2377 revealed remarkable specificity, affinity and slow cell-line dependent internalization. Radiolabeling at 85 °C showed comparable results in A431 tumor xenografted mice with minor differences regarding blood clearance, tumor and liver uptake. In comparison 89Zr-DFO-ZEGFR:2377, radiolabeled at room temperature, showed a significant difference regarding tumor-to-organ ratios. MicroPET-CT imaging studies of 89Zr-FSC-ZEGFR:2377 as well as 89Zr-DFO-ZEGFR:2377 confirmed these findings. In summary we were able to show that FSC is a suitable alternative to DFO for radiolabeling of biomolecules with zirconium-89. Furthermore, our findings indicate that 89Zr-radiolabeling of DFO conjugates at higher temperature reduces off-chelate binding leading to significantly improved tumor-to-organ ratios and therefore enhancing image contrast. PMID:29160082

  12. Iron absorption from Southeast Asian diets. II. Role of various factors that might explain low absorption.

    PubMed

    Hallberg, L; Björn-Rasmussen, E; Rossander, L; Suwanik, R

    1977-04-01

    Previously reported levels of iron absorption from common Southeast Asian meals composed of rice, vegetables, and spices were too low to be consistent with the known prevalence of iron deficiency. In the present paper the cause of the low absorption was systematically sought. Variables investigated comprised methodological errors, factors in the diet such as certain foodstuffs, or contaminants inhibiting the absorption and characteristics of the subjects accompanied by malabsorption of dietary iron. The latter was excluded by comparing the absorption from both wheat rolls and a composit rice meal in Thai and Swedish women using the absorption of a small dose of ferrous ascorbate as a common basis of comparison. Two main factors were identified as causing the low absorption in the previous studies: the homogenization of the labeled meals before serving and the use of rice flour instead of rice. Iron absorption from nonhomogenized meals of identical composition as studied previously was many times higher (on an average 0.16 mg) and was consistent with the actual prevalence of iron deficiency in lower socioeconomic groups of Thais mainly consuming the simple meals studied. Recent modifications of the method to measure nonheme iron absorption from composite meals have thus not only made the determination simpler but also more accurate.

  13. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  14. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3

  15. Inducing repetitive action potential firing in neurons via synthesized photoresponsive nanoscale cellular prostheses.

    PubMed

    Lu, Siyuan; Madhukar, Anupam

    2013-02-01

    Recently we reported an analysis that examined the potential of synthesized photovoltaic functional abiotic nanosystems (PVFANs) to modulate membrane potential and activate action potential firing in neurons. Here we extend the analysis to delineate the requirements on the electronic energy levels and the attendant photophysical properties of the PVFANs to induce repetitive action potential under continuous light, a capability essential for the proposed potential application of PVFANs as retinal cellular prostheses to compensate for loss of photoreceptors. We find that repetitive action potential firing demands two basic characteristics in the electronic response of the PVFANs: an exponential dependence of the PVFAN excited state decay rate on the membrane potential and a three-state system such that, following photon absorption, the electron decay from the excited state to the ground state is via intermediate state(s) whose lifetime is comparable to the refractory time following an action potential. In this study, the potential of synthetic photovoltaic functional abiotic nanosystems (PVFANs) is examined under continuous light to modulate membrane potential and activate action potential firing in neurons with the proposed potential application of PVFANs as retinal cellular prostheses. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Absorption fluids data survey

    NASA Astrophysics Data System (ADS)

    Macriss, R. A.; Zawacki, T. S.

    Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.

  17. Can lipid nanoparticles improve intestinal absorption?

    PubMed

    Mendes, M; Soares, H T; Arnaut, L G; Sousa, J J; Pais, A A C C; Vitorino, C

    2016-12-30

    Lipid nanoparticles and their multiple designs have been considered appealing nanocarrier systems. Bringing the benefits of these nanosystems together with conventional coating technology clearly results in product differentiation. This work aimed at developing an innovative solid dosage form for oral administration based on tableting nanostructured lipid carriers (NLC), coated with conventional polymer agents. NLC dispersions co-encapsulating olanzapine and simvastatin (Combo-NLC) were produced by high pressure homogenization, and evaluated in terms of scalability, drying procedure, tableting and performance from in vitro release, cytotoxicity and intestinal permeability stand points. Factorial design indicated that the scaling-up of the NLC production is clearly feasible. Spray-drying was the method selected to obtain dry particles, not only because it consists of a single step procedure, but also because it facilitates the coating process of NLC with different polymers. Modified NLC formulations with the polymers allowed obtaining distinct release mechanisms, comprising immediate, delayed and prolonged release. Sureteric:Combo-NLC provided a low cytotoxicity profile, along with a ca. 12-fold OL/3-fold SV higher intestinal permeability, compared to those obtained with commercial tablets. Such findings can be ascribed to drug protection and control over release promoted by NLC, supporting them as a versatile platform able to be modified according to the intended needs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Tunneling induced absorption with competing Nonlinearities

    PubMed Central

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-01-01

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility. PMID:27958303

  19. Tunneling induced absorption with competing Nonlinearities.

    PubMed

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-12-13

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility.

  20. An inulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans

    USDA-ARS?s Scientific Manuscript database

    Calcium absorption efficiency and bone mineral mass are increased in adolescents who regularly consume inulin-type fructans (ITF). The mechanism of action in increasing absorption is unknown but may be related to increased colonic calcium absorption. We conducted a study in young adults designed to ...

  1. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  2. Differential-optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.

    1977-01-01

    Two-cell spectrophone detects trace amounts of atmospheric pollutants by measuring absorption coefficients of gases with various laser sources. Device measures pressure difference between two tapered cells with differential manometer. Background signal is reduced by balanced window heating and balanced carrier gas absorption in two cells.

  3. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  4. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    PubMed

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.

  5. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Yong, Ken-Tye; Roy, Indrajit; Hu, Rui; Ding, Hong; Zhao, Lingling; Swihart, Mark T.; He, Guang S.; Cui, Yiping; Prasad, Paras N.

    2010-07-01

    Gold nanorods (GNRs) with a longitudinal surface plasmon resonance peak that is tunable from 600 to 1100 nm have been fabricated in a cetyl trimethylammoniumbromide (CTAB) micellar medium using hydrochloric acid and silver nitrate as additives to control their shape and size. By manipulating the concentrations of silver nitrate and hydrochloric acid, the aspect ratio of the GNRs was reliably and reproducibly tuned from 2.5 to 8. The GNRs were first coated with polyelectrolyte multilayers and then bioconjugated to transferrin (Tf) to target pancreatic cancer cells. Two-photon imaging excited from the bioconjugated GNRs demonstrated receptor-mediated uptake of the bioconjugates into Panc-1 cells, overexpressing the transferrin receptor (TfR). The bioconjugated GNR formulation exhibited very low toxicity, suggesting that it is biocompatible and potentially suitable for targeted two-photon bioimaging.

  6. Bioconjugated Quantum Dots for In Vivo Molecular and Cellular Imaging

    PubMed Central

    Smith, Andrew M.; Duan, Hongwei; Mohs, Aaron M.; Nie, Shuming

    2008-01-01

    Semiconductor quantum dots (QDs) are tiny light-emitting particles on the nanometer scale, and are emerging as a new class of fluorescent labels for biology and medicine. In comparison with organic dyes and fluorescent proteins, they have unique optical and electronic properties, with size-tunable light emission, superior signal brightness, resistance to photobleaching, and broad absorption spectra for simultaneous excitation of multiple fluorescence colors. QDs also provide a versatile nanoscale scaffold for designing multifunctional nanoparticles with both imaging and therapeutic functions. When linked with targeting ligands such as antibodies, peptides or small molecules, QDs can be used to target tumor biomarkers as well as tumor vasculatures with high affinity and specificity. Here we discuss the synthesis and development of state-of-the-art QD probes and their use for molecular and cellular imaging. We also examine key issues for in vivo imaging and therapy, such as nanoparticle biodistribution, pharmacokinetics, and toxicology. PMID:18495291

  7. Spectral Absorption Properties of Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.

    2007-01-01

    We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.

  8. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  9. [Shock absorption of mouthguard materials--influence of temperature conditions and shore hardness on shock absorption].

    PubMed

    Tomita, Takashi; Tsukimura, Naoki; Ohno, Shigeru; Umekawa, Yoshitada; Sawano, Muneyuki; Fujimoto, Toshiki; Takamura, Masaaki; Majima, Aiko; Katakura, Yuusuke; Kurata, Akemi; Ohyama, Tetsuo; Ishigami, Tomohiko

    2006-04-01

    To consider changes in the physical properties of mouthguard materials with the change of temperature, shock-absorbing examination and Shore hardness measurement of existing MG materials and other elastic materials were carried out. Both examinations were done under two temperature conditions: at room temperature (25 degrees C) and simulated intraoral temperature (37 degrees C). In addition, a comparative study of the relation between Shore hardness and shock absorption of the materials was made. A self-made drop impact machine was used for the shock-absorbing examination. The thickness of a sample was assumed to be 3 mm. The loading was applied by dropping 3 kinds of steel ball, phi 10 mm (4.0 g), phi 15 mm (13.7 g), and phi 20 mm (32.6 g) from a height of 60 cm. The shock absorption of all materials was compared by the maximum impact force. Shore hardness was measured based on the JIS standard. The shock absorption of each material showed a different tendency depending on the loading condition. Furthermore, the shock absorption of the same material showed different results depending on the temperature condition. Shore hardness measurements tended to show low values with the condition of 37 degrees C for all materials. From the relation between shock absorption and Shore hardness, it was confirmed that there is a correlation between hardness and the maximum impact force in the materials that showed shock absorption by elastic deformation. Some materials showed high shock absorption compared with existing MG materials.

  10. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption

    PubMed Central

    Miller, Leland V.; Krebs, Nancy F.; Hambidge, K. Michael

    2013-01-01

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption. PMID:22617116

  11. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption.

    PubMed

    Miller, Leland V; Krebs, Nancy F; Hambidge, K Michael

    2013-02-28

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption.

  12. Absorption of polycyclic aromatic hydrocarbons by a highly absorptive polymeric medium.

    PubMed

    Francisco, Olga; Idowu, Ifeoluwa; Friesen, Kelsey L; McDougall, Matthew; Choi, Sara Seoin; Bolluch, Patrique; Daramola, Oluwadamilola; Johnson, Wesley; Palace, Vince; Stetefeld, Jörg; Tomy, Gregg T

    2018-06-01

    The efficacy of a lightly cross-linked polymeric bead to absorb polycyclic aromatic hydrocarbons (PAHs) from the surface of fresh- and salt-water in a simulated oil-spill scenario was assessed in this study. A layer of PAHs at the water surface was created by first preparing the PAHs in hexane and then carefully spiking this mixture onto the surface of water. Beads were then applied to the surface of the organic phase and the amount of hydrocarbons absorbed by the beads was examined at prescribed time intervals and at different temperatures. Absorption of PAHs into the beads was exhaustive with ∼86 ± 4% being selectively removed from the organic phase by 120 s. First order reaction rates best described the uptake kinetics and absorption rates ranged from 0.0085 (naphthalene) to 0.0325 s- 1 (dibenzo[a,h]anthracene). Absorption of PAHs into the beads was driven by molecular volume (A 3 ). Uptake rates increased markedly for PAHs with molecular volumes between 130 A 3 and 190 A 3 . Beyond this molecular volume there was no apparent change in the rate of uptake. This study shows that these polymeric beads have a high affinity for PAHs and can be used under various environmental conditions with negligible difference in absorptive efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Bionic Nanosystems

    NASA Astrophysics Data System (ADS)

    Sebastian Mannoor, Manu

    Direct multidimensional integration of functional electronics and mechanical elements with viable biological systems could allow for the creation of bionic systems and devices possessing unique and advanced capabilities. For example, the ability to three dimensionally integrate functional electronic and mechanical components with biological cells and tissue could enable the creation of bionic systems that can have tremendous impact in regenerative medicine, prosthetics, and human-machine interfaces. However, as a consequence of the inherent dichotomy in material properties and limitations of conventional fabrication methods, the attainment of truly seamless integration of electronic and/or mechanical components with biological systems has been challenging. Nanomaterials engineering offers a general route for overcoming these dichotomies, primarily due to the existence of a dimensional compatibility between fundamental biological functional units and abiotic nanomaterial building blocks. One area of compelling interest for bionic systems is in the field of biomedical sensing, where the direct interfacing of nanosensors onto biological tissue or the human body could stimulate exciting opportunities such as on-body health quality monitoring and adaptive threat detection. Further, interfacing of antimicrobial peptide based bioselective probes onto the bionic nanosensors could offer abilities to detect pathogenic bacteria with bio-inspired selectivity. Most compellingly, when paired with additive manufacturing techniques such as 3D printing, these characteristics enable three dimensional integration and merging of a variety of functional materials including electronic, structural and biomaterials with viable biological cells, in the precise anatomic geometries of human organs, to form three dimensionally integrated, multi-functional bionic hybrids and cyborg devices with unique capabilities. In this thesis, we illustrate these approaches using three representative bionic systems: 1) Bionic Nanosensors: featuring bio-integrated graphene nanosensors for ubiquitous sensing, 2) Bionic Organs: featuring 3D printed bionic ears with three dimensionally integrated electronics and 3) Bionic Leaves: describing ongoing work in the direction of the creation of a bionic leaf enabled by the integration of plant derived photosynthetic functional units with electronic materials and components into a leaf-shaped hierarchical structure for harvesting photosynthetic bioelectricity.

  14. Coupling between absorption and scattering in disordered colloids

    NASA Astrophysics Data System (ADS)

    Stephenson, Anna; Hwang, Victoria; Park, Jin-Gyu; Manoharan, Vinothan N.

    We aim to understand how scattering and absorption are coupled in disordered colloidal suspensions containing absorbing molecules (dyes). When the absorption length is shorter than the transport length, absorption dominates, and absorption and scattering can be seen as two additive effects. However, when the transport length is shorter than the absorption length, the scattering and absorption become coupled, as multiple scattering increases the path length of the light in the sample, leading to a higher probability of absorption. To quantify this synergistic effect, we measure the diffuse reflectance spectra of colloidal samples of varying dye concentrations, thicknesses, and particle concentrations, and we calculate the transport length and absorption length from our measurements, using a radiative transfer model. At particle concentrations so high that the particles form disordered packings, we find a minimum in the transport length. We show that selecting a dye where the absorption peak matches the location of the minimum in the transport length allows for enhanced absorption. Kraft-Heinz Corporation, NSF GRFP 2015200426.

  15. Dual-Functional Nanographene Oxide as Cancer-Targeted Drug-Delivery System to Selectively Induce Cancer-Cell Apoptosis.

    PubMed

    Zhou, Binwei; Huang, Yanyu; Yang, Fang; Zheng, Wenjie; Chen, Tianfeng

    2016-04-05

    Construction of bioresponsive drug-delivery nanosystems could enhance the anticancer efficacy of anticancer agents and reduce their toxic side effects. Herein, by using transferrin (Tf) as a surface decorator, we constructed a cancer-targeted nanographene oxide (NGO) nanosystem for use in drug delivery. This nanosystem (Tf-NGO@HPIP) drastically enhanced the cellular uptake, retention, and anticancer efficacy of loaded drugs but showed much lower toxicity to normal cells. The nanosystem was internalized through receptor-mediated endocytosis and triggered pH-dependent drug release in acidic environments and in the presence of cellular enzymes. Moreover, Tf-NGO@HPIP effectively induced cancer-cell apoptosis through activation of superoxide-mediated p53 and MAPK pathways along with inactivation of ERK and AKT. Taken together, this study demonstrates a good strategy for the construction of bioresponsive NGO drug-delivery nanosystems and their use as efficient anticancer drug carriers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Glucose absorption in acute peritoneal dialysis.

    PubMed

    Podel, J; Hodelin-Wetzel, R; Saha, D C; Burns, G

    2000-04-01

    During acute peritoneal dialysis (APD), it is known that glucose found in the dialysate solution contributes to the provision of significant calories. It has been well documented in continuous ambulatory peritoneal dialysis (CAPD) that glucose absorption occurs. In APD, however, it remains unclear how much glucose absorption actually does occur. Therefore, the purpose of this study was to determine whether it is appropriate to use the formula used to calculate glucose absorption in CAPD (Grodstein et al) among patients undergoing APD. Actual measurements of glucose absorption (Method I) were calculated in 9 patients undergoing APD treatment for >24 hours who were admitted to the intensive care unit. Glucose absorption using the Grodstein et al formula (Method II) was also determined and compared with the results of actual measurements. The data was then further analyzed based on the factors that influence glucose absorption, specifically dwell time and concentration. The mean total amount of glucose absorbed was 43% +/- 15%. However, when dwell time and concentration were further examined, significant differences were noted. Method I showed a cumulative increase over time. Method II showed that absorption was fixed. This suggests that with the variation in dwell time commonly seen in the acute care setting, the use of Method II may not be accurate. In each of the 2 methods, a significant difference in glucose absorption was noted when comparing the use of 1.5% and 4.25% dialysate concentrations. The established formula designed for CAPD should not be used for calculating glucose absorption in patients receiving APD because variation in dwell time and concentration should be taken into account. Because of the time constraints and staffing required to calculate each exchange individually, combined with the results of the study, we recommend the use of the percentage estimate of 40% to 50%.

  17. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  18. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  19. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R [Albuquerque, NM; Reed, Scott T [Albuquerque, NM; Ashley, Carol S [Albuquerque, NM; Martinez, F Edward [Horseheads, NY

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  20. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats.

    PubMed

    Lin, Yulian; Fujimori, Takeo; Kawaguchi, Naoko; Tsujimoto, Yuiko; Nishimi, Mariko; Dong, Zhengqi; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2011-01-05

    Effects of polyamidoamine (PAMAM) dendrimers on the intestinal absorption of poorly absorbable drugs were examined by an in situ closed loop method in rats. 5(6)-Carboxyfluorescein (CF), fluorescein isothiocyanate-dextrans (FDs) with various molecular weights, calcitonin and insulin were used as model drugs of poorly absorbable drugs. The absorption of CF, FD4 and calcitonin from the rat small intestine was significantly enhanced in the presence of PAMAM dendrimers. The absorption-enhancing effects of PAMAM dendrimers for improving the small intestinal absorption of CF were concentration and generation dependent and a maximal absorption-enhancing effect was observed in the presence of 0.5% (w/v) G2 PAMAM dendrimer. However, G2 PAMAM dendrimer had almost no absorption-enhancing effect on the small intestinal absorption of macromolecular drugs including FD10 and insulin. Overall, the absorption-enhancing effects of G2 PAMAM dendrimer in the small intestine decreased as the molecular weights of drug increased. However, G2 PAMAM dendrimer did not enhance the intestinal absorption of these drugs with different molecular weights in the large intestine. Furthermore, we evaluated the intestinal membrane damage with or without G2 PAMAM dendrimer. G2 PAMAM dendrimer (0.5% (w/v)) significantly increased the activities of lactate dehydrogenase (LDH) and the amounts of protein released from the intestinal membranes, but the activities and amounts of these toxic markers were less than those in the presence of 3% Triton X-100 used as a positive control. Moreover, G2 PAMAM dendrimer at concentrations of 0.05% (w/v) and 0.1% (w/v) did not increase the activities and amounts of these toxic markers. These findings suggested that PAMAM dendrimers at lower concentrations might be potential and safe absorption enhancers for improving absorption of poorly absorbable drugs from the small intestine. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Food Ingredients That Inhibit Cholesterol Absorption

    PubMed Central

    Jesch, Elliot D.; Carr, Timothy P.

    2017-01-01

    Cholesterol is a vital component of the human body. It stabilizes cell membranes and is the precursor of bile acids, vitamin D and steroid hormones. However, cholesterol accumulation in the bloodstream (hypercholesterolemia) can cause atherosclerotic plaques within artery walls, leading to heart attacks and strokes. The efficiency of cholesterol absorption in the small intestine is of great interest because human and animal studies have linked cholesterol absorption with plasma concentration of total and low density lipoprotein cholesterol. Cholesterol absorption is highly regulated and influenced by particular compounds in the food supply. Therefore, it is desirable to learn more about natural food components that inhibit cholesterol absorption so that food ingredients and dietary supplements can be developed for consumers who wish to manage their plasma cholesterol levels by non-pharmacological means. Food components thus far identified as inhibitors of cholesterol absorption include phytosterols, soluble fibers, phospholipids, and stearic acid. PMID:28702423

  2. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    NASA Astrophysics Data System (ADS)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ˜700 and ˜1400 km s-1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ˜700 km s-1 has a density in the range of 109 to 1010 cm-3 and a distance of ˜1 pc, and the gas with blueshift velocity of ˜1400 km s-1 has a density of 103 cm-3 and a distance of ˜1 kpc.

  3. Superenhancers: novel opportunities for nanowire optoelectronics.

    PubMed

    Khudiyev, Tural; Bayindir, Mehmet

    2014-12-16

    Nanowires play a crucial role in the development of new generation optoelectronic devices ranging from photovoltaics to photodetectors, as these designs capitalize on the low material usage, utilize leaky-mode optical resonances and possess high conversion efficiencies associated with nanowire geometry. However, their current schemes lack sufficient absorption capacity demanded for their practical applicability, and more efficient materials cannot find widespread usage in these designs due to their rarity and cost. Here we suggest a novel and versatile nanoconcentrator scheme utilizing unique optical features of non-resonant Mie (NRM) scattering regime associated with low-index structures. The scattering regime is highly compatible with resonant Mie absorption effect taking place in nanowire absorbers. This technique in its optimized forms can provide up to 1500% total absorption enhancement, 400-fold material save and is suitable for large-area applications with significant area preservation compared to thin-film of same materials. Proposed superenhancer concept with its exceptional features such as broadband absorption enhancement, polarization immunity and material-independent manner paves the way for development of efficient nanowire photosensors or solar thermophotovoltaic devices and presents novel design opportunities for self-powered nanosystems.

  4. Coassembly of Lysozyme and Amphiphilic Biomolecules Driven by Unimer-Aggregate Equilibrium.

    PubMed

    Tao, Yuanyuan; Ma, Xiaoteng; Cai, Yaqian; Liu, Li; Zhao, Hanying

    2018-04-12

    Synthesis and self-assembly of bioconjugates composed of proteins and synthetic molecules have been widely studied because of the potential applications in medicine, biotechnology, and nanotechnology. One of the challenging research studies in this area is to develop organic solvent-free approaches to the synthesis and self-assembly of amphiphilic bioconjugates. In this research, dialysis-assisted approach, a method based on unimer-aggregate equilibrium, was applied in the coassembly of lysozyme and conjugate of cholesterol and glutathione (Ch-GSH). In phosphate buffer solution, amphiphilic Ch-GSH conjugate self-assembles into vesicles, and the vesicle solution is dialyzed against lysozyme solution. Negatively charged Ch-GSH unimers produced in the unimer-vesicle exchange equilibrium, diffuse across the dialysis membrane and have electrostatic interaction with positively charged lysozyme, resulting in the formation of Ch-GSH-lysozyme bioconjugate. Above a critical concentration, the three-component bioconjugate molecules self-assemble into bioactive vesicles.

  5. Laser Atmospheric Absorption Studies.

    DTIC Science & Technology

    1977-05-01

    A. Modification of Commercial C09 Laser 50 B. CW HF/DF Laser System * 53 C. Microcomputer Data Link 55 D . Fourier Transform...improved accuracy are used [5]. c. The absorption coefficient is listed for each absorbing species separately which some codes require. d . A super...series of water vapor absorption measurements was planned. The results of the first four lines studied are presented here in Figures 33a- d . Figure

  6. High-Absorptance Radiative Heat Sink

    NASA Technical Reports Server (NTRS)

    Cafferty, T.

    1983-01-01

    Absorptance of black-painted open-cell aluminum honeycomb improved by cutting honeycomb at angle or bias rather than straight across. This ensures honeycomb cavities escapes. At each reflection radiation attenuated by absorption. Applications include space-background simulators, space radiators, solar absorbers, and passive coolers for terrestrial use.

  7. Absorption Coefficient of Alkaline Earth Halides.

    DTIC Science & Technology

    1980-04-01

    not observed at low energy level , are developed at high power levels . No matter how low the absorption is. the effect is objectionable at high-energy... levels . As a natural consequence, the magnitude of the absorption coefficient is the key parameter in selecting laser window materials. Over the past...Presence of impurities can complicate the exponential tail. particularly at low absorption levels . The impurities may enter 12 the lattice singly or

  8. Water absorption characteristic of interlocking compressed earth brick units

    NASA Astrophysics Data System (ADS)

    Bakar, B. H. Abu; Saari, S.; Surip, N. A.

    2017-10-01

    This study aims to investigate the water absorption characteristic of interlocking compressed earth brick (ICEB) units. Apart from compressive strength, water absorption is an important property in masonry. This property can affect the quality of the brick itself and the bond strength between the brick and mortar in masonry structures and can result in reducing its strength properties. The units were tested for 24 h water absorption and 5 h boiling water absorption. A total of 170 ICEB units from four ICEB types underwent both tests. For the 24 h water absorption, the ICEB units were dried in the oven for 24 h and then cooled before being weighed. Thereafter, each brick was immersed in water for 24 h and weighed. The same specimens used for the 24 h water absorption test were re-used for the 5 h boiling water absorption test. After completing the 24 h water absorption test, the brick was boiled for 5-hours and weighed. The highest water absorption for the ICEBs in the 24-hour water absorption and 5 h boiling water absorption tests are 15.09% and 17.18%, respectively. The half brick has the highest water absorption (15.87%), whereas the beam brick has the lowest (13.20%). The water absorption of an ICEB unit is higher than that of normal bricks, although the water absorption of the former remains below the maximum rate of the brick water absorption (21%).

  9. The saturable absorption and reverse saturable absorption properties of Cu doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Yao, Cheng-Bao; Wen, Xin; Li, Qiang-Hua; Yan, Xiao-Yan; Li, Jin; Zhang, Ke-Xin; Sun, Wen-Jun; Bai, Li-Na; Yang, Shou-Bin

    2017-03-01

    We present the structure and nonlinear absorption (NLA) properties of Cu-doped ZnO (CZO) films prepared by magnetron sputtering. The films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the CZO films can maintain a wurtzite structure. Furthermore, the open-aperture (OA) Z-scan measurements of the film were carried out by nanosecond laser pulse. A transition from saturable absorption (SA) to reverse saturable absorption (RSA) was observed as the excitation intensity increasing. With good excellent nonlinear optical coefficient, the samples were expected to be the potential applications in optical devices.

  10. Absorption Spectra of Gold Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  11. Discovery of Hα Absorption in the Unusual Broad Absorption Line Quasar SDSS J083942.11+380526.3

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Iwata, Ikuru; Ohta, Kouji; Ando, Masataka; Akiyama, Masayuki; Tamura, Naoyuki

    2006-11-01

    We discovered Hα absorption in the broad Hα emission line of an unusual broad absorption line quasar, SDSS J083942.11+380526.3, at z=2.318, through near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru telescope. The presence of nonstellar Hα absorption is known only in the Seyfert galaxy NGC 4151 to date; thus, our discovery is the first case for quasars. The Hα absorption line is blueshifted by 520 km s-1 relative to the Hα emission line, and its redshift almost coincides with those of UV low-ionization metal absorption lines. The width of the Hα absorption (~340 km s-1) is similar to those of the UV low-ionization absorption lines. These facts suggest that the Hα and low-ionization metal absorption lines are produced by the same low-ionization gas, which has a substantial amount of neutral gas. The column density of the neutral hydrogen is estimated to be ~1018 cm-2 by assuming a gas temperature of 10,000 K from the analysis of the curve of growth. The continuum spectrum is reproduced by a reddened [E(B-V)~0.15 mag for the SMC-like reddening law] composite quasar spectrum. Furthermore, the UV spectrum of SDSS J083942.11+380526.3 shows a remarkable similarity to that of NGC 4151 in its low state, suggesting that the physical condition of the absorber in SDSS J083942.11+380526.3 is similar to that of NGC 4151 in the low state. As proposed for NGC 4151, SDSS J083942.11+380526.3 may also be seen through the edge of the obscuring torus. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  12. The effect of volatility on percutaneous absorption.

    PubMed

    Rouse, Nicole C; Maibach, Howard I

    2016-01-01

    Topically applied chemicals may volatilize, or evaporate, from skin leaving behind a chemical residue with new percutaneous absorptive capabilities. Understanding volatilization of topical medications, such as sunscreens, fragrances, insect repellants, cosmetics and other commonly applied topicals may have implications for their safety and efficacy. A systematic review of English language articles from 1979 to 2014 was performed using key search terms. Articles were evaluated to assess the relationship between volatility and percutaneous absorption. A total of 12 articles were selected and reviewed. Key findings were that absorption is enhanced when coupled with a volatile substance, occlusion prevents evaporation and increases absorption, high ventilation increases volatilization and reduces absorption, and pH of skin has an affect on a chemical's volatility. The articles also brought to light that different methods may have an affect on volatility: different body regions; in vivo vs. in vitro; human vs. Data suggest that volatility is crucial for determining safety and efficacy of cutaneous exposures and therapies. Few articles have been documented reporting evaporation in the context of percutaneous absorption, and of those published, great variability exists in methods. Further investigation of volatility is needed to properly evaluate its role in percutaneous absorption.

  13. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s{sup −1} relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do notmore » change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V -band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s{sup −1} has a density in the range of 10{sup 9} to 10{sup 10} cm{sup −3} and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s{sup −1} has a density of 10{sup 3} cm{sup −3} and a distance of ∼1 kpc.« less

  14. On pulsating cosmic /radio/ noise absorption

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1981-01-01

    It has been proposed that some absorption events measured on riometers are actually due to backscatter of cosmic radio noise by E-region plasma waves (D'Angelo, 1976, 1978; D'Angelo and Mehta, 1980). Assuming that DC or nearly DC absorption is a viable process, it is shown that it may also be operative in producing pulsations in cosmic noise absorption on riometers, with periods ranging from a few seconds to several minutes.

  15. Absorption enhancement in non-coplanar silver nanowire networks

    NASA Astrophysics Data System (ADS)

    He, Zhihui; Zhou, Zhiping; Ren, Xincheng; Bai, Shaomin; Li, Hongjian; Cao, Dongmei; Li, Gang; Cao, Guangtao

    2018-07-01

    We propose non-coplanar silver nanowire (AgNW) networks placed on a SiO2 layer. A notable absorption peak is observed in our proposed structure, and compared with the absorption of coplanar periodic AgNW networks and periodic AgNW gratings, the absorption performance of the non-coplanar AgNW networks demonstrates obvious advantages. It could be determined that the absorption ratio in this non-coplanar AgNW networks can reach 95%. In addition, several parameters that have important effects on the absorption of the non-coplanar AgNW networks are discussed in detail. Our research may provide guidance for the fundamental exploration of plasmonic absorption device applications.

  16. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.

    PubMed

    Kume, Atsushi

    2017-05-01

    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (<520 nm), which contains much of the surplus energy that is not used for photosynthesis and is dissipated as heat. The PAR absorptance of a whole leaf shows no substantial difference based on the spectra of direct or diffuse solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density

  17. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  18. Atmospheric absorption of sound - Update

    NASA Technical Reports Server (NTRS)

    Bass, H. E.; Sutherland, L. C.; Zuckerwar, A. J.

    1990-01-01

    Best current expressions for the vibrational relaxation times of oxygen and nitrogen in the atmosphere are used to compute total absorption. The resulting graphs of total absorption as a function of frequency for different humidities should be used in lieu of the graph published earlier by Evans et al (1972).

  19. Dilution cycle control for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    A dilution cycle control system for an absorption refrigeration system is disclosed. The control system includes a time delay relay for sensing shutdown of the absorption refrigeration system and for generating a control signal only after expiration of a preselected time period measured from the sensed shutdown of the absorption refrigeration system, during which the absorption refrigeration system is not restarted. A dilution cycle for the absorption refrigeration system is initiated in response to generation of a control signal by the time delay relay. This control system is particularly suitable for use with an absorption refrigeration system which is frequently cycled on and off since the time delay provided by the control system prevents needless dilution of the absorption refrigeration system when the system is turned off for only a short period of time and then is turned back on.

  20. Dissociative absorption: An empirically unique, clinically relevant, dissociative factor.

    PubMed

    Soffer-Dudek, Nirit; Lassri, Dana; Soffer-Dudek, Nir; Shahar, Golan

    2015-11-01

    Research of dissociative absorption has raised two questions: (a) Is absorption a unique dissociative factor within a three-factor structure, or a part of one general dissociative factor? Even when three factors are found, the specificity of the absorption factor is questionable. (b) Is absorption implicated in psychopathology? Although commonly viewed as "non-clinical" dissociation, absorption was recently hypothesized to be specifically associated with obsessive-compulsive symptoms. To address these questions, we conducted exploratory and confirmatory factor analyses on 679 undergraduates. Analyses supported the three-factor model, and a "purified" absorption scale was extracted from the original inclusive absorption factor. The purified scale predicted several psychopathology scales. As hypothesized, absorption was a stronger predictor of obsessive-compulsive symptoms than of general psychopathology. In addition, absorption was the only dissociative scale that longitudinally predicted obsessive-compulsive symptoms. We conclude that absorption is a unique and clinically relevant dissociative tendency that is particularly meaningful to obsessive-compulsive symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Absorption characteristics of forest fire particulate matter

    Treesearch

    E.M. Patterson; Charles K. McMahon

    1984-01-01

    Abstract. Absorption properties of smokes from laboratory fires that represent prescription hums in the Southern states have been quantified to relate variations in measured absorption parameters to variation in fire conditions and to estimate emission factors for elemental carbon. Results showed significant differences in absorption of the smoke...

  2. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  3. Bicarbonate absorption stimulates active calcium absorption in the rat proximal tubule.

    PubMed Central

    Bomsztyk, K; Calalb, M B

    1988-01-01

    To evaluate the effect of luminal bicarbonate on calcium reabsorption, rat proximal tubules were perfused in vivo. Perfusion solution contained mannitol to reduce water flux to zero. Total Ca concentration was measured by atomic absorption spectrometry, Ca ion concentration in the tubule lumen (CaL2+) and the peritubular capillary (CaP2+), and luminal pH (pHL) with ion-selective microelectrodes and transepithelial voltage (VTE) with conventional microelectrodes. When tubules were perfused with buffer-free Cl-containing solution, net Ca absorption (JCa) averaged 3.33 pmol/min. Even though VTE was 1.64 mV lumen-positive, CaL2+, 1.05 mM, did not fall below the concentration in the capillary blood, 1.07 mM. When 27 mM of Cl was replaced with HCO3, there was luminal fluid acidification. Despite a decrease in VTE and CaL2+, JCa increased to 7.13 pmol/min, indicating that the enhanced JCa could not be accounted for by the reduced electrochemical gradient, delta CCa. When acetazolamide or an analogue of amiloride was added to the HCO3 solution, JCa was not different from the buffer-free solution, suggesting that HCO3-stimulated JCa may be linked to acidification. To further test this hypothesis, we used 27 mM Hepes as the luminal buffer. With Hepes there was luminal fluid acidification and JCa was not different from the buffer-free solution but delta CCa was significantly reduced, indicating enhanced active calcium transport. We conclude from the results of the present study that HCO3 stimulates active Ca absorption, a process that may be linked to acidification-mediated HCO3 absorption. PMID:3366902

  4. A search for intervening HI absorption

    NASA Astrophysics Data System (ADS)

    Reeves, Sarah N.; Sadler, Elaine M.; Allison, James R.; Koribalski, Baerbel S.; Curran, Stephen J.

    2013-03-01

    HI absorption-line studies provide a unique probe of the gas distribution and kinematics in galaxies well beyond the local universe (z ≳ 0.3). HI absorption-line surveys with next-generation radio telescopes will provide the first large-scale studies of HI in a redshift regime which is poorly understood. However, we currently lack the understanding to infer galaxy properties from absorption-line observations alone. To address this issue, we are conducting a search for intervening HI absorption in a sample of 20 nearby galaxies. Our aim is to investigate how the detection rate varies with distance from the galaxy. We target sight-lines to bright continuum sources, which intercept known gas-rich galaxies, selected from the HIPASS Bright Galaxy Catalogue (Koribalski et al. 2004). In our pilot sample, six galaxies with impact parameters < 20 kpc, we do not detect any absorption lines - although all are detected in 21cm emission. This indicates that an absorption non-detection cannot simply be interpreted as an absence of neutral gas - see Fig. 1. Our detection rate is low compared to previous surveys e.g. Gupta et al. (2010). This is, at least partially, due to the high resolution of the observations reducing the flux of the background source, which will also be an issue in future surveys, such as ASKAP-FLASH.

  5. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  6. Variance of transionospheric VLF wave power absorption

    NASA Astrophysics Data System (ADS)

    Tao, X.; Bortnik, J.; Friedrich, M.

    2010-07-01

    To investigate the effects of D-region electron-density variance on wave power absorption, we calculate the power reduction of very low frequency (VLF) waves propagating through the ionosphere with a full wave method using the standard ionospheric model IRI and in situ observational data. We first verify the classic absorption curves of Helliwell's using our full wave code. Then we show that the IRI model gives overall smaller wave absorption compared with Helliwell's. Using D-region electron densities measured by rockets during the past 60 years, we demonstrate that the power absorption of VLF waves is subject to large variance, even though Helliwell's absorption curves are within ±1 standard deviation of absorption values calculated from data. Finally, we use a subset of the rocket data that are more representative of the D region of middle- and low-latitude VLF wave transmitters and show that the average quiet time wave absorption is smaller than that of Helliwell's by up to 100 dB at 20 kHz and 60 dB at 2 kHz, which would make the model-observation discrepancy shown by previous work even larger. This result suggests that additional processes may be needed to explain the discrepancy.

  7. Two-photon absorption in arsenic sulfide glasses

    NASA Astrophysics Data System (ADS)

    Chunaev, D. S.; Snopatin, G. E.; Plotnichenko, V. G.; Karasik, A. Ya.

    2016-10-01

    The two-photon absorption coefficient of 1047-{\\text{nm}} light in {\\text{As}}35{\\text{S}}65 chalcogenide glass has been measured. CW probe radiation has been used to observe the linear absorption in glass induced by two-photon excitation. The induced absorption lifetime was found to be ∼ 2 {\\text{ms}}.

  8. Remote Sensing of Aerosol and Non-Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Dubovik, O.; Holben, B. N.; Remer, L. A.; Tanre, D.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Remote sensing of aerosol from the new satellite instruments (e.g. MODIS from Terra) and ground based radiometers (e.g. the AERONET) provides the opportunity to measure the absorption characteristics of the ambient undisturbed aerosol in the entire atmospheric column. For example Landsat and AERONET data are used to measure spectral absorption of sunlight by dust from West Africa. Both Application of the Landsat and AERONET data demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. This is due to difficulties of measuring dust absorption in situ, and due to the often contamination of dust properties by the presence of air pollution or smoke. We use the remotely sensed aerosol absorption properties described by the spectral sin le scattering albedo, together with statistics of the monthly optical thickness for the fine and coarse aerosol derived from the MODIS data. The result is an estimate of the flux of solar radiation absorbed by the aerosol layer in different regions around the globe where aerosol is prevalent. If this aerosol forcing through absorption is not included in global circulation models, it may be interpreted as anomalous absorption in these regions. In a preliminary exercise we also use the absorption measurements by AERONET, to derive the non-aerosol absorption of the atmosphere in cloud free conditions. The results are obtained for the atmospheric windows: 0.44 microns, 0.66 microns, 0.86 microns and 1.05 microns. In all the locations over the land and ocean that were tested no anomalous absorption in these wavelengths, was found within absorption optical thickness of +/- 0.005.

  9. Selective coherent perfect absorption in metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  10. Vitamin B12 absorption from eggs.

    PubMed

    Doscherholmen, A; McMahon, J; Ripley, D

    1975-09-01

    The assimilation of 57Co B12 from in vivo labeled eggs was much inferior to that of a comparable amount of crystalline 57Co B12. Furthermore, the absorption varied with the form in which the eggs were served. Judged by the urinary excretion test and the plasma absorption of radioactivity the average absorption from boiled and fried eggs was more than twice that from scrambled whole eggs, but less than half that absorbed from crystalline 57Co B12.

  11. Thermodynamic derivatives of infrared absorptance

    NASA Technical Reports Server (NTRS)

    Broersma, S.; Walls, W. L.

    1974-01-01

    Calculation of the concentration, pressure, and temperature dependence of the spectral absorptance of a vibrational absorption band. A smooth thermodynamic dependence was found for wavelength intervals where the average absorptance is less than 0.65. Individual rotational lines, whose parameters are often well known, were used as bases in the calculation of medium resolution spectra. Two modes of calculation were combined: well-separated rotational lines plus interaction terms, or strongly overlapping lines that were represented by a compound line of similar shape plus corrections. The 1.9- and 6.3-micron bands of H2O and the 4.3-micron band of CO2 were examined in detail and compared with experiment.

  12. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  13. Development of a new free radical absorption capacity assay method for antioxidants: aroxyl radical absorption capacity (ARAC).

    PubMed

    Nagaoka, Shin-ichi; Nagai, Kanae; Fujii, Yuko; Ouchi, Aya; Mukai, Kazuo

    2013-10-23

    A new free radical absorption capacity assay method is proposed with use of an aroxyl radical (2,6-di-tert-butyl-4-(4'-methoxyphenyl)phenoxyl radical) and stopped-flow spectroscopy and is named the aroxyl radical absorption capacity (ARAC) assay method. The free radical absorption capacity (ARAC value) of each tocopherol was determined through measurement of the radical-scavenging rate constant in ethanol. The ARAC value could also be evaluated through measurement of the half-life of the aroxyl radical during the scavenging reaction. For the estimation of the free radical absorption capacity, the aroxyl radical was more suitable than the DPPH radical, galvinoxyl, and p-nitrophenyl nitronyl nitroxide. The ARAC value in tocopherols showed the same tendency as the free radical absorption capacities reported previously, and the tendency was independent of an oxygen radical participating in the scavenging reaction and of a medium surrounding the tocopherol and oxygen radical. The ARAC value can be directly connected to the free radical-scavenging rate constant, and the ARAC method has the advantage of treating a stable and isolable radical (aroxyl radical) in a user-friendly organic solvent (ethanol). The ARAC method was also successfully applied to a palm oil extract. Accordingly, the ARAC method would be useful in free radical absorption capacity assay of antioxidative reagents and foods.

  14. EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan

    2015-12-01

    We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsicmore » Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.« less

  15. Synopsis of Mid-latitude Radio Wave Absorption in Europe

    NASA Technical Reports Server (NTRS)

    Torkar, K. M.; Friedrich, M.

    1984-01-01

    Radio wave absorption data covering almost two years from Europe to Central Asia are presented. They are normalized by relating them to a reference absorption. Every day these normalized data are fitted to a mathematical function of geographical location in order to obtain a daily synopsis of radio wave absorption. A film of these absorption charts was made which is intended to reveal movements of absorption or absorption anomaly. In addition, radiance (temperature) data from the lower D-region are also plotted onto these charts.

  16. Models of filter-based particle light absorption measurements

    NASA Astrophysics Data System (ADS)

    Hamasha, Khadeejeh M.

    Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model

  17. Photo-induced intersubband absorption in {Si}/{SiGe} quantum wells

    NASA Astrophysics Data System (ADS)

    Boucaud, P.; Gao, L.; Visocekas, F.; Moussa, Z.; Lourtioz, J.-M.; Julien, F. H.; Sagnes, I.; Campidelli, Y.; Badoz, P.-A.; Vagos, P.

    1995-12-01

    We have investigated photo-induced intersubband absorption in the valence band of {Si}/{SiGe} quantum wells. Carriers are optically generated in the quantum wells using an argon ion laser. The resulting infrared absorption is probed with a step-scan Fourier transform infrared spectrometer. The photo-induced infrared absorption in SiGe quantum wells is dominated by two contributions: the free carrier absorption, which is similar to bulk absorption in a uniformly doped SiGe layer, and the valence subband absorption in the quantum wells. Both p- and s-polarized intersubband absorptions are measured. We have observed that the photo-induced intersubband absorption in doped samples is shifted to lower energy as compared to direct intersubband absorption. This absorption process is attributed to carriers away from the Brillouin zone center. We show that the photo-induced technique is appropriate to study valence band mixing effects and their influence on intersubband absorption.

  18. A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide.

    PubMed

    Chaudhari, Atul A; Ashmore, D'andrea; Nath, Subrata Deb; Kate, Kunal; Dennis, Vida; Singh, Shree R; Owen, Don R; Palazzo, Chris; Arnold, Robert D; Miller, Michael E; Pillai, Shreekumar R

    2016-07-13

    µg/ml) compared to SWCNTs-Ag-M and plain SWCNTs-Ag (both 62.6 µg/ml, IC50: ~31-35 µg/ml), suggesting that the covalent conjugation of TP359 with SWCNTs-Ag was very effective on their counterparts. Additionally, FSWCNTs-Ag are non-toxic to the eukaryotic cells at their MIC concentrations (5-2.5 µg/ml) compared to SWCNTs-Ag (62.5 µg/ml). In conclusion, we demonstrated that covalent functionalization of SWCNTs-Ag and TP359 exhibited an additive antibacterial activity. This study described a novel approach to prepare SWCNT-Ag bio-conjugates without loss of antimicrobial activity and reduced toxicity, and this strategy will aid in the development of novel and biologically important nanomaterials.

  19. Absorption Heat Pump Cycles

    NASA Astrophysics Data System (ADS)

    Kunugi, Yoshifumi; Kashiwagi, Takao

    Various advanced absorption cycles are studied, developed and invented. In this paper, their cycles are classified and arranged using the three categories: effect, stage and loop, then an outline of the cycles are explained on the Duehring diagram. Their cycles include high COP cycles for refrigerations and heat pumps, high temperature lift cycles for heat transformer, absorption-compression hybrid cycles and heat pump transformer cycle. The highest COPi is attained by the seven effect cycle. In addition, the cycles for low temperature are invented and explained. Furthermore the power generation • refrigeration cycles are illustrated.

  20. Optical absorption of carbon-gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping

    2018-01-01

    In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.

  1. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  2. Folate-modified, curcumin and paclitaxel co-loaded PLA-TPGS nanoparticles: preparation, optimization and in vitro cytotoxicity assays

    NASA Astrophysics Data System (ADS)

    Doan Do, Hai; Le Thi, Hao; Huong Le Thi, Thu; Nguyen, Hoai Nam; Khanh Bui, Van; Nhung Hoang Thi, My; Thu Ha, Phuong

    2018-06-01

    Development of chemoresistance is a significant restriction on the success of cancer treatment. Combination chemotherapy and drug delivery nanosystem are two promising strategies to overcome this limitation. Administration of two or more anticancer drugs at the same time can promote synergistic effect and suppress drug resistance through distinct mechanisms of action. Drug delivery nanosystem, on the other hand, improves delivery, efficacy and safety of drugs, and also can escape from some mechanisms of drug resistance. In this study we prepared drug delivery nanosystems from copolymers of lactic acid (PLA) and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). The nanosystems incorporated with folic acid as targeting agent were used to load curcumin (Cur) and paclitaxel (PTX) contemporaneously and denoted as (Cur  +  PTX)-PLA-TPGS-Fol. The results showed that (Cur  +  PTX)-PLA-TPGS-Fol nanoparticles has average size range of 100–200 nm depending on the ratio between PLA and TPGS. Loading efficacy of the two drugs was about 35%–83% with the highest encapsulation efficiency belonged to the system with the highest ratio of PLA. All of the prepared nanosystems with single drug or in combination exhibited strong cytotoxicity to cancer cells, but the combination was more effective in case of A549 cancer cell line. These results showed that our combination of Cur and PTX in our drug delivery nanosystem can be a promising candidate for cancer treatment.

  3. Low absorptance porcelain-on-aluminum coating

    NASA Technical Reports Server (NTRS)

    Leggett, H.

    1979-01-01

    Porcelain thermal-control coating for aluminum sheet and foil has solar absorptance of 0.22. Specially formulated coating absorptance is highly stable, changing only 0.03 after 1,000 hours of exposure to simulated sunlight and can be applied by standard commercial methods.

  4. Nanosystems in ultrafast and superstrong fields: attosecond phenomena (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stockman, Mark I.

    2017-02-01

    We present our latest results for a new class of phenomena in condensed matter nanooptics when a strong optical field ˜1-3 V/Å changes a solid within optical cycle [1-8]. Such a pulse drives ampere-scale currents in dielectrics and adiabatically controls their properties, including optical absorption and reflection, extreme UV absorption, and generation of high harmonics [9] in a non-perturbative manner on a 100-as temporal scale. Applied to a metal, such a pulse causes an instantaneous and, potentially, reversible change from the metallic to semimetallic properties. We will also discuss our latest theoretical results on graphene that in a strong ultrashort pulse field exhibits unique behavior [10-12]. New phenomena are predicted for buckled two-dimensional solids, silicene and germanene [13]. These are fastest phenomena in optics unfolding within half period of light. They offer potential for petahertz-bandwidth signal processing, generation of high harmonics on a nanometer spatial scale, etc. References 1. M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, Metallization of Nanofilms in Strong Adiabatic Electric Fields, Phys. Rev. Lett. 105, 086803-1-4 (2010). 2. M. Durach, A. Rusina, M. F. Kling, and M. I. Stockman, Predicted Ultrafast Dynamic Metallization of Dielectric Nanofilms by Strong Single-Cycle Optical Fields, Phys. Rev. Lett. 107, 086602-1-5 (2011). 3. A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Muhlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, Optical-Field-Induced Current in Dielectrics, Nature 493, 70-74 (2013). 4. M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, Controlling Dielectrics with the Electric Field of Light, Nature 493, 75-78 (2013). 5. V. Apalkov and M. I. Stockman, Metal Nanofilm

  5. Insulin analogues with improved absorption characteristics.

    PubMed

    Brange, J; Hansen, J F; Langkjaer, L; Markussen, J; Ribel, U; Sørensen, A R

    1992-01-01

    The insulin preparations available today are not ideal for therapy as s.c. injection does not provide a physiological insulin profile. With the aim to improve the absorption properties recombinant DNA technology has been utilized to design novel insulin molecules with changed physico-chemical characteristics and hence altered subcutaneous absorption kinetics. Soluble, long-acting human insulin analogues in which the isoelectric point has been increased from 5.4 to approx. 7 are absorbed very slowly, providing a more constant basal insulin delivery with lower day-to-day variation than present protracted preparations. In addition they have better storage stability. Rapid-acting human insulin analogues with largely reduced self-association are absorbed substantially faster from subcutaneous tissue than current regular insulin and thus are better suited for bolus injection. The absorption kinetics of these analogues have been able to explain the mechanism behind the dose effect on insulin absorption rate.

  6. Solar flare induced cosmic noise absorption

    NASA Astrophysics Data System (ADS)

    Ogunmodimu, Olugbenga; Honary, Farideh; Rogers, Neil; Falayi, E. O.; Bolaji, O. S.

    2018-06-01

    Solar flare events are a major observing emphasis for space weather because they affect the ionosphere and can eject high-energy particles that can adversely affect Earth's technologies. In this study we model 38.2 MHz cosmic noise absorption (CNA) by utilising measurements from the Imaging Riometer for Ionospheric Studies (IRIS) at Kilpisjärvi, Finland obtained during solar cycle 23 (1996-2009). We utilised X-ray archive for the same period from the Geostationary Operational Environmental Satellite (GOES) to study solar flare induced cosmic noise absorption. We identified the threshold of flare (M4 class) that could bear significant influence on CNA. Through epoch analysis, we show the magnitude of absorption that each class of flare could produce. Using the parameters of flare and absorption we present a model that could provide the basis for nowcast of CNA induced by M and X-class solar flares.

  7. Absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs including peptide and protein drugs in rats.

    PubMed

    Alama, Tammam; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Yamamoto, Akira

    2016-02-29

    In general, the intestinal absorption of small hydrophilic molecules and macromolecules like peptides, after oral administration is very poor. Absorption enhancers are considered to be one of the most promising agents to enhance the intestinal absorption of drugs. In this research, we focused on a gemini surfactant, a new type of absorption enhancer. The intestinal absorption of drugs, with or without sodium dilauramidoglutamide lysine (SLG-30), a gemini surfactant, was examined by an in situ closed-loop method in rats. The intestinal absorption of 5(6)-carboxyfluorescein (CF) and fluorescein isothiocyanate-dextrans (FDs) was significantly enhanced in the presence of SLG-30, such effect being reversible. Furthermore, the calcium levels in the plasma significantly decreased when calcitonin was co-administered with SLG-30, suggestive of the increased intestinal absorption of calcitonin. In addition, no significant increase in the of lactate dehydrogenase (LDH) activity or in protein release from the intestinal epithelium was observed in the presence of SLG-30, suggestive of the safety of this compound. These findings indicate that SLG-30 is an effective absorption-enhancer for improving the intestinal absorption of poorly absorbed drugs, without causing serious damage to the intestinal epithelium. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Studies on absorption coefficient near edge of multi elements

    NASA Astrophysics Data System (ADS)

    Eisa, M. H.; Shen, H.; Yao, H. Y.; Mi, Y.; Zhou, Z. Y.; Hu, T. D.; Xie, Y. N.

    2005-12-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained.

  9. Do Atoms Really "Emit" Absorption Lines?

    ERIC Educational Resources Information Center

    Brecher, Kenneth

    1991-01-01

    Presents three absorption line sources that enhance student understanding of the phenomena associated with the interaction of light with matter and help dispel the misconception that atoms "emit" absorption lines. Sources include neodymium, food coloring and other common household liquids, and fluorescent materials. (MDH)

  10. Creating semiconductor metafilms with designer absorption spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate thatmore » near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.« less

  11. Aerosol Absorption Measurements from LANDSAT and CIMEL

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Karnieli, A.; Remer, L.; Holben, B.

    1999-01-01

    Spectral remote observations of dust properties from space and from the ground create a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat space-borne measurements at 0.47 to 2.2 micrometer over Senegal with ground-based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater than 0.6 micrometer. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large-scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.

  12. Nonlinear absorption properties of silicene nanosheets.

    PubMed

    Zhang, Fang; Wang, Mengxia; Wang, Zhengping; Han, Kezhen; Liu, Xiaojuan; Xu, Xinguang

    2018-06-01

    As the cousins of graphene, i.e. same group IVA element, the nonlinear absorption (NLA) properties of silicene nanosheets were rarely studied. In this paper, we successfully exfoliated the two-dimensional silicene nanosheets from bulk silicon crystal using liquid phase exfoliation method. The NLA properties of silicene nanosheets were systemically investigated for the first time, as we have known. Silicene performed exciting saturable absorption and two photon absorption (2PA) behavior. The lower saturable intensity and larger 2PA coefficient at 532 nm excitation indicates that silicene has potential application in ultrafast lasers and optical limiting devices, especially in visible waveband.

  13. Nonlinear absorption properties of silicene nanosheets

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Wang, Mengxia; Wang, Zhengping; Han, Kezhen; Liu, Xiaojuan; Xu, Xinguang

    2018-06-01

    As the cousins of graphene, i.e. same group IVA element, the nonlinear absorption (NLA) properties of silicene nanosheets were rarely studied. In this paper, we successfully exfoliated the two-dimensional silicene nanosheets from bulk silicon crystal using liquid phase exfoliation method. The NLA properties of silicene nanosheets were systemically investigated for the first time, as we have known. Silicene performed exciting saturable absorption and two photon absorption (2PA) behavior. The lower saturable intensity and larger 2PA coefficient at 532 nm excitation indicates that silicene has potential application in ultrafast lasers and optical limiting devices, especially in visible waveband.

  14. Sound absorption by a Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Komkin, A. I.; Mironov, M. A.; Bykov, A. I.

    2017-07-01

    Absorption characteristics of a Helmholtz resonator positioned at the end wall of a circular duct are considered. The absorption coefficient of the resonator is experimentally investigated as a function of the diameter and length of the resonator neck and the depth of the resonator cavity. Based on experimental data, the linear analytic model of a Helmholtz resonator is verified, and the results of verification are used to determine the dissipative attached length of the resonator neck so as to provide the agreement between experimental and calculated data. Dependences of sound absorption by a Helmholtz resonator on its geometric parameters are obtained.

  15. Controlling enhanced absorption in graphene metamaterial

    NASA Astrophysics Data System (ADS)

    Zhou, Qihui; Liu, Peiguo; Bian, Li-an; Liu, Hanqing; Liu, Chenxi; Chen, Genghui

    2018-04-01

    In this paper, a controllable terahertz (THz) metamaterial absorber (MA) is designed with the circuit analog method. Taking advantage of the patterned graphene on SiO2/doped Si/polyimide substrates with a gold reflector, the controllable MA achieves perfect absorption at 0.75 THz. The chemical potential of graphene is regulated by controlling the voltage between graphene and doped Si layers. As the chemical potential varies from 0 eV to 0.5 eV, the MA is changed from reflection (<0.37) to absorption (>0.99). The distributions of surface current and electric field are illustrated to analyze the resonant characteristic of patterned graphene. According to the resonant characteristic, we introduce patterned graphene elements with different dimension in a unit cell, which effectively extends the effective absorption bandwidth (absorption > 0 . 9) from 0.67-0.93 THz to 0.52-0.95 THz. Moreover, replacing part of the graphene structure with gold, the switchable MA is turned into a frequency tunable MA. The absorption peak moves from 0.62 THz to 0.92 THz as the chemical potential increases from 0.1 eV to 0.5 eV. These designs overcome limitation of traditional absorbers and exhibit great potentials in many practical applications.

  16. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  17. Absorption of Solar Radiation by Clouds: Observations Versus Models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Minnis, P.; Corsetti, L.; Dutton, E. G.; Forgan, B. W.; Garber, D. P.; Gates, W. L.; Hack, J. J.; Harrison, E. F.; hide

    1995-01-01

    There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 watts per square meter more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmosphere's energy budget.

  18. Generalized Landauer equation: Absorption-controlled diffusion processes

    NASA Astrophysics Data System (ADS)

    Godoy, Salvador; García-Colín, L. S.; Micenmacher, Victor

    1999-05-01

    The exact expression of the one-dimensional Boltzmann multiple-scattering coefficients, for the passage of particles through a slab of a given material, is obtained in terms of the single-scattering cross section of the material, including absorption. The remarkable feature of the result is that for multiple scattering in a metal, free from absorption, one recovers the well-known Landauer result for conduction electrons. In the case of particles, such as neutrons, moving through a weak absorbing media, Landuer's formula is modified due to the absorption cross section. For photons, in a strong absorbing media, one recovers the Lambert-Beer equation. In this latter case one may therefore speak of absorption-controlled diffusive processes.

  19. A Low-Cost Quantitative Absorption Spectrophotometer

    ERIC Educational Resources Information Center

    Albert, Daniel R.; Todt, Michael A.; Davis, H. Floyd

    2012-01-01

    In an effort to make absorption spectrophotometry available to high school chemistry and physics classes, we have designed an inexpensive visible light absorption spectrophotometer. The spectrophotometer was constructed using LEGO blocks, a light emitting diode, optical elements (including a lens), a slide-mounted diffraction grating, and a…

  20. Iron absorption from intrinsically-labeled lentils

    USDA-ARS?s Scientific Manuscript database

    Low iron (Fe) absorption from important staple foods may contribute to Fe deficiency in developing countries. To date, there are few studies examining the Fe bioavailability of pulse crops as commonly prepared and consumed by humans. The objectives of this study were to characterize the Fe absorpt...

  1. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  2. Temperature dependence of the HNO3 UV absorption cross sections

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  3. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  4. Absorption-heat-pump system

    DOEpatents

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  5. In vitro and in vivo percutaneous absorption of retinol from cosmetic formulations: Significance of the skin reservoir and prediction of systemic absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yourick, Jeffrey J.; Jung, Connie T.; Bronaugh, Robert L.

    2008-08-15

    The percutaneous absorption of retinol (Vitamin A) from cosmetic formulations was studied to predict systemic absorption and to understand the significance of the skin reservoir in in vitro absorption studies. Viable skin from fuzzy rat or human subjects was assembled in flow-through diffusion cells for in vitro absorption studies. In vivo absorption studies using fuzzy rats were performed in glass metabolism cages for collection of urine, feces, and body content. Retinol (0.3%) formulations (hydroalcoholic gel and oil-in-water emulsion) containing {sup 3}H-retinol were applied and absorption was measured at 24 or 72 h. All percentages reported are % of applied dose.more » In vitro studies using human skin and the gel and emulsion vehicles found 0.3 and 1.3% retinol, respectively, in receptor fluid at 24 h. Levels of absorption in the receptor fluid increased over 72 h with the gel and emulsion vehicles. Using the gel vehicle, in vitro rat skin studies found 23% in skin and 6% in receptor fluid at 24 h, while 72-h studies found 18% in skin and 13% in receptor fluid. Thus, significant amounts of retinol remained in rat skin at 24 h and decreased over 72 h, with proportional increases in receptor fluid. In vivo rat studies with the gel found 4% systemic absorption of retinol after 24 h and systemic absorption did not increase at 72 h. Retinol remaining in rat skin after in vivo application was 18% and 13% of the applied dermal dose after 24 and 72 h, respectively. Similar observations were made with the oil-in water emulsion vehicle in the rat. Retinol formed a reservoir in rat skin both in vivo and in vitro. Little additional retinol was bioavailable after 24 h. Comparison of these in vitro and in vivo results for absorption through rat skin indicates that the 24-h in vitro receptor fluid value accurately estimated 24-h in vivo systemic absorption. Therefore, the best single estimate of retinol systemic absorption from in vitro human skin studies is the 24-h

  6. Architecture for Absorption Based Heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moghaddam, Saeed; Chugh, Devesh

    An absorption based heater is constructed on a fluid barrier heat exchanging plate such that it requires little space in a structure. The absorption based heater has a desorber, heat exchanger, and absorber sequentially placed on the fluid barrier heat exchanging plate. The vapor exchange faces of the desorber and the absorber are covered by a vapor permeable membrane that is permeable to a refrigerant vapor but impermeable to an absorbent. A process fluid flows on the side of the fluid barrier heat exchanging plate opposite the vapor exchange face through the absorber and subsequently through the heat exchanger. Themore » absorption based heater can include a second plate with a condenser situated parallel to the fluid barrier heat exchanging plate and opposing the desorber for condensation of the refrigerant for additional heating of the process fluid.« less

  7. 14 CFR 25.723 - Shock absorption tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... absorption tests. (a) The analytical representation of the landing gear dynamic characteristics that is used... previous tests conducted on the same basic landing gear system that has similar energy absorption...

  8. Heterogeneous porous structures for the fastest liquid absorption

    NASA Astrophysics Data System (ADS)

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2013-08-01

    Engineered porous materials, which have fast absorption of liquids under global constraints (e.g. volume, surface area, or cost of the materials), are useful in many applications including moisture management fabrics, medical wound dressings, paper-based analytical devices, liquid molding composites, etc.. The absorption in capillary tubes and porous media is driven by the surface tension of liquid, which is inversely proportional to the pore size. On the contrary, the ability of conduction (or permeability) of liquid in porous materials is linear with the square of pore size. Both mechanisms superimpose with each other leading to a possibility of the fastest absorption for a porous structure. In this work, we explore the flow behaviors for the fastest absorption using heterogeneous porous architectures, from two-portion tubes to two-layer porous media. The absorption time for filling up the voids in these porous materials is expressed in terms of pore size, height and porosity. It is shown that under the given height and void volume, these two-component porous structures with a negative gradient of pore size/porosity against the imbibition direction, have a faster absorption rate than controlled samples with uniform pore size/porosity. Particularly, optimal structural parameters including pore size, height and porosity are found for the minimum absorption time. The obtained results will be used as a priori for the design of porous structures with excellent water absorption and moisture management property in various fields.

  9. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  10. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2013-10-22

    Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic mixture, deuteration, nematic phase, birefringence, overtone...absorption compounds for LWIR and SWIR are also investigated. Key words: Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic ...the melting point significantly. We did careful investigation and formed a eutectic mixture consisting of five fluorinated compounds without any

  11. Broadband absorption with gradient metasurfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Hoyeong; Chalabi, Hamidreza; Alù, Andrea

    2018-03-01

    A metasurface with appropriately designed transverse spatial inhomogeneities can provide the desired phase redistribution in response to an incident wave with arbitrary incident angle. This property of gradient metasurfaces has been used to modify light propagation in unusual manners, to transform the impinging optical wavefront with large flexibility. In this work, we show how gradient metasurfaces can be tailored to offer high absorption in thin absorptive layers, and how to design realistic metasurfaces for this purpose using dielectric materials.

  12. Absorption of Orally Administered Hyaluronan.

    PubMed

    Kimura, Mamoru; Maeshima, Takuya; Kubota, Takumi; Kurihara, Hitoshi; Masuda, Yasunobu; Nomura, Yoshihiro

    2016-12-01

    Hyaluronan (HA) has been utilized as a supplement. However, the absorption of orally administrated HA remains controversial. The degradation and absorption of HA in the intestine were investigated in this study. HA excretion into the feces, degradation in the intestinal tract, absorption through the large intestine, and translocation to the blood and skin were examined. HA administered orally was not detected in rat feces. HA was degraded by cecal content, but not by artificial gastric juice and intestinal juice. Oligosaccharide HA passed through excised large intestine sacs. Furthermore, disaccharides, tetrasaccharides, and polysaccharides HA were distributed to the skin of rats following oral administration of high molecular weight HA (300 kDa). The results of the study suggest that orally administered HA is degraded to oligosaccharides by intestinal bacteria, and oligosaccharide HA is absorbed in the large intestine and is subsequently distributed throughout the tissues, including the skin.

  13. Phononic glass: a robust acoustic-absorption material.

    PubMed

    Jiang, Heng; Wang, Yuren

    2012-08-01

    In order to achieve strong wide band acoustic absorption under high hydrostatic pressure, an interpenetrating network structure is introduced into the locally resonant phononic crystal to fabricate a type of phononic composite material called "phononic glass." Underwater acoustic absorption coefficient measurements show that the material owns high underwater sound absorption coefficients over 0.9 in 12-30 kHz. Moreover, the quasi-static compressive behavior shows that the phononic glass has a compressive strength over 5 MPa which is crucial for underwater applications.

  14. Absorption in Sport: A Cross-Validation Study

    PubMed Central

    Koehn, Stefan; Stavrou, Nektarios A. M.; Cogley, Jeremy; Morris, Tony; Mosek, Erez; Watt, Anthony P.

    2017-01-01

    Absorption has been identified as readiness for experiences of deep involvement in the task. Conceptually, absorption is a key psychological construct, incorporating experiential, cognitive, and motivational components. Although, no operationalization of the construct has been provided to facilitate research in this area, the purpose of this research was the development and examination of the psychometric properties of a sport-specific measure of absorption that evolved from the use of the modified Tellegen Absorption Scale (MODTAS; Jamieson, 2005) in mainstream psychology. The study aimed to provide evidence of the psychometric properties, reliability, and validity of the Measure of Absorption in Sport Contexts (MASCs). The psychometric examination included a calibration sample from Scotland and a cross-validation sample from Australia using a cross-sectional design. The item pool was developed based on existing items from the modified Tellegen Absorption Scale (Jamieson, 2005). The MODTAS items were reworded and translated into a sport context. The Scottish sample consisted of 292 participants and the Australian sample of 314 participants. Congeneric model testing and confirmatory factor analysis for both samples and multi-group invariance testing across samples was used. In the cross-validation sample the MASC subscales showed acceptable internal consistency and construct reliability (≥0.70). Excellent fit indices were found for the final 18-item, six-factor measure in the cross-validation sample, χ(120)2 = 197.486, p < 0.001; CFI = 0.957; TLI = 0.945; RMSEA = 0.045; SRMR = 0.044. Multi-group invariance testing revealed no differences in item meaning, except for two items. The MASC and the Dispositional Flow Scale-2 showed moderate-to-strong positive correlations in both samples, r = 0.38, p < 0.001 and r = 0.42, p < 0.001, supporting the external validity of the MASC. This article provides initial evidence in support of the psychometric properties

  15. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (<0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. Samples were collected on quartz fiber filters with high volume impactor samplers. Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples. These continuous spectra have also been used to obtain the

  16. Sound absorption by clamped poroelastic plates.

    PubMed

    Aygun, H; Attenborough, K

    2008-09-01

    Measurements and predictions have been made of the absorption coefficient and the surface acoustic impedance of poroelastic plates clamped in a large impedance tube and separated from the rigid termination by an air gap. The measured and predicted absorption coefficient and surface impedance spectra exhibit low frequency peaks. The peak frequencies observed in the absorption coefficient are close to those predicted and measured in the deflection spectra of the clamped poroelastic plates. The influences of the rigidity of the clamping conditions and the width of the air gap have been investigated. Both influences are found to be important. Increasing the rigidity of clamping reduces the low frequency absorption peaks compared with those measured for simply supported plates or plates in an intermediate clamping condition. Results for a closed cell foam plate and for two open cell foam plates made from recycled materials are presented. For identical clamping conditions and width of air gap, the results for the different materials differ as a consequence mainly of their different elasticity, thickness, and cell structure.

  17. Laser Absorption by Over-Critical Plasmas

    NASA Astrophysics Data System (ADS)

    May, J.; Tonge, J.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.; Mori, W. B.

    2015-11-01

    Absorption of high intensity laser light by matter has important applications to emerging sciences and technology, such as Fast Ignition ICF and ion acceleration. As such, understanding the underlying mechanisms of this absorption is key to developing these technologies. Critical features which distinguish the interaction of high intensity light - defined here as a laser field having a normalized vector potential greater than unity - are that the reaction of the material to the fields results in sharp high-density interfaces; and that the movement of the electrons is in general relativistic, both in a fluid and a thermal sense. The results of these features are that the absorption mechanisms are qualitatively distinct from those at lower intensities. We will review previous work, by our group and others, on the absorption mechanisms, and highlight current research. We will show that the standing wave structure of the reflected laser light is key to particle dynamics for normally incident lasers. The authors acknowledge the support of the Department of Energy under contract DE-NA 0001833 and the National Science Foundation under contract ACI 1339893.

  18. Thermal nanostructure: An order parameter multiscale ensemble approach

    NASA Astrophysics Data System (ADS)

    Cheluvaraja, S.; Ortoleva, P.

    2010-02-01

    Deductive all-atom multiscale techniques imply that many nanosystems can be understood in terms of the slow dynamics of order parameters that coevolve with the quasiequilibrium probability density for rapidly fluctuating atomic configurations. The result of this multiscale analysis is a set of stochastic equations for the order parameters whose dynamics is driven by thermal-average forces. We present an efficient algorithm for sampling atomistic configurations in viruses and other supramillion atom nanosystems. This algorithm allows for sampling of a wide range of configurations without creating an excess of high-energy, improbable ones. It is implemented and used to calculate thermal-average forces. These forces are then used to search the free-energy landscape of a nanosystem for deep minima. The methodology is applied to thermal structures of Cowpea chlorotic mottle virus capsid. The method has wide applicability to other nanosystems whose properties are described by the CHARMM or other interatomic force field. Our implementation, denoted SIMNANOWORLD™, achieves calibration-free nanosystem modeling. Essential atomic-scale detail is preserved via a quasiequilibrium probability density while overall character is provided via predicted values of order parameters. Applications from virology to the computer-aided design of nanocapsules for delivery of therapeutic agents and of vaccines for nonenveloped viruses are envisioned.

  19. Statistical Fine Structure of Inhomogeneously Broadened Absorption Lines.

    DTIC Science & Technology

    1987-07-31

    inhomogeneously broadened optical absorption of pentacene n p-terphenyl at liquid helium temperatures... SFS is the actual frequency- ependent, time...statistical fine structure (SFS) in the inhomogeneously broadened optical absorption of pentacene in p-terphenyl at liquid helium temperatures. SFS is the...quite difficult . -2- We have observed for the first time statistical fine structure in the inhomogeneously broadened optical absorption of pentacene

  20. Absorption coefficients of silicon: A theoretical treatment

    NASA Astrophysics Data System (ADS)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  1. Linear absorptive dielectrics

    NASA Astrophysics Data System (ADS)

    Tip, A.

    1998-06-01

    Starting from Maxwell's equations for a linear, nonconducting, absorptive, and dispersive medium, characterized by the constitutive equations D(x,t)=ɛ1(x)E(x,t)+∫t-∞dsχ(x,t-s)E(x,s) and H(x,t)=B(x,t), a unitary time evolution and canonical formalism is obtained. Given the complex, coordinate, and frequency-dependent, electric permeability ɛ(x,ω), no further assumptions are made. The procedure leads to a proper definition of band gaps in the periodic case and a new continuity equation for energy flow. An S-matrix formalism for scattering from lossy objects is presented in full detail. A quantized version of the formalism is derived and applied to the generation of Čerenkov and transition radiation as well as atomic decay. The last case suggests a useful generalization of the density of states to the absorptive situation.

  2. Balmer Absorption Lines in FeLoBALs

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Iwata, I.; Ohta, K.; Tamura, N.; Ando, M.; Akiyama, M.; Kiuchi, G.; Nakanishi, K.

    2007-10-01

    We discovered non-stellar Balmer absorption lines in two many-narrow-trough FeLoBALs (mntBALs) by the near-infrared spectroscopy with Subaru/CISCO. Presence of the non-stellar Balmer absorption lines is known to date only in the Seyfert galaxy NGC 4151; thus our discovery is the first cases for quasars. Since all known active galactic nuclei with Balmer absorption lines share similar characteristics, it is suggested that there is a population of BAL quasars which have unique structures at their nuclei or unique evolutionary phase.

  3. pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications.

    PubMed

    Vega-Chacón, Jaime; Arbeláez, María Isabel Amaya; Jorge, Janaina Habib; Marques, Rodrigo Fernando C; Jafelicci, Miguel

    2017-08-01

    A novel multifunctional nanosystem formed by magnetite nanoparticles coated with pH-responsive poly(aspartic acid) hydrogel was developed. Magnetite nanoparticles (Fe 3 O 4 ) have been intensively investigated for biomedical applications due to their magnetic properties and dimensions similar to the biostructures. Poly(aspartic acid) is a water-soluble, biodegradable and biocompatible polymer, which features makes it a potential candidate for biomedical applications. The nanoparticles surface modification was carried out by crosslinking polysuccinimide on the magnetite nanoparticles surface and hydrolyzing the succinimide units in mild alkaline medium to obtain the magnetic poly(aspartic acid) hydrogel. The surface modification in each step was confirmed by DRIFTS, TEM and zeta potential measurements. The hydrodynamic diameter of the nanosystems decreases as the pH value decreases. The nanosystems showed high colloidal stability in water and no cytotoxicity was detected, which make these nanosystems suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Absorption of sound by tree bark

    Treesearch

    G. Reethof; L. D. Frank; O. H. McDaniel

    1976-01-01

    Laboratory tests were conducted with a standing wave tube to measure the acoustic absorption of normally incident sound by the bark of six species of trees. Twelve bark samples, 10 cm in diameter, were tested. Sound of seven frequencies between 400 and 1600 Hz was used in the measurements. Absorption was generally about 5 percent; it exceeded 10 percent for only three...

  5. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Hu

    A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate ofmore » carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.« less

  6. RADIOACTIVE IRON ABSORPTION BY GASTRO-INTESTINAL TRACT

    PubMed Central

    Hahn, P. F.; Bale, W. F.; Ross, J. F.; Balfour, W. M.; Whipple, G. H.

    1943-01-01

    Iron absorption is a function of the gastro-intestinal mucosal epithelium. The normal non-anemic dog absorbs little iron but chronic anemia due to blood loss brings about considerable absorption—perhaps 5 to 15 times normal. In general the same differences are observed in man (1). Sudden change from normal to severe anemia within 24 hours does not significantly increase iron absorption. As the days pass new hemoglobin is formed. The body iron stores are depleted and within 7 days iron absorption is active, even when the red cell hematocrit is rising. Anoxemia of 50 per cent normal oxygen concentration for 48 hours does not significantly enhance iron absorption. In this respect it resembles acute anemia. Ordinary doses of iron given 1 to 6 hours before radio-iron will cause some "mucosa block"—that is an intake of radio-iron less than anticipated. Many variables which modify peristalsis come into this reaction. Iron given by vein some days before the dose of radio-iron does not appear to inhibit iron absorption. Plasma radio-iron absorption curves vary greatly. The curves may show sharp peaks in 1 to 2 hours when the iron is given in an empty stomach but after 6 hours when the radio-iron is given with food. Duration time of curves also varies widely, the plasma iron returning to normal in 6 to 12 hours. Gastric, duodenal, or jejunal pouches all show very active absorption of iron. The plasma concentration peak may reach a maximum before the solution of iron is removed from the gastric pouch—another example of "mucosa block." Absorption and distribution of radio-iron in the body of growing pups give very suggestive experimental data. The spleen, heart, upper gastro-intestinal tract, marrow, and pancreas show more radio-iron than was expected. The term "physiological saturation" with iron may be applied to the gastro-intestinal mucosal epithelium and explain one phase of acceptance or refusal of ingested iron. Desaturation is a matter of days not hours, whereas

  7. Calcium absorption from fortified ice cream formulations compared with calcium absorption from milk.

    PubMed

    van der Hee, Regine M; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S M J E; Rietveld, Anton G; Wilkinson, Joy E; Quail, Patricia J; Berry, Mark J; Dainty, Jack R; Teucher, Birgit; Fairweather-Tait, Susan J

    2009-05-01

    Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Effects on calcium absorption were evaluated by analysis of variance. Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%+/-8%, 28%+/-5%, and 31%+/-9%, respectively, and did not differ significantly (P=0.159). Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium.

  8. Calcium Absorption from Fortified Ice Cream Formulations Compared with Calcium Absorption from Milk

    PubMed Central

    van der Hee, Regine M.; Miret, Silvia; Slettenaar, Marieke; Duchateau, Guus S.M.J.E.; Rietveld, Anton G.; Wilkinson, Joy E.; Quail, Patricia J.; Berry, Mark J.; Dainty, Jack R.; Teucher, Birgit; Fairweather-Tait, Susan J.

    2009-01-01

    Objective Optimal bone mass in early adulthood is achieved through appropriate diet and lifestyle, thereby protecting against osteoporosis and risk of bone fracture in later life. Calcium and vitamin D are essential to build adequate bones, but calcium intakes of many population groups do not meet dietary reference values. In addition, changes in dietary patterns are exacerbating the problem, thereby emphasizing the important role of calcium-rich food products. We have designed a calcium-fortified ice cream formulation that is lower in fat than regular ice cream and could provide a useful source of additional dietary calcium. Calcium absorption from two different ice cream formulations was determined in young adults and compared with milk. Subjects/setting Sixteen healthy volunteers (25 to 45 years of age), recruited from the general public of The Netherlands, participated in a randomized, reference-controlled, double-blind cross-over study in which two test products and milk were consumed with a light standard breakfast on three separate occasions: a standard portion of ice cream (60 g) fortified with milk minerals and containing a low level (3%) of butter fat, ice cream (60 g) fortified with milk minerals and containing a typical level (9%) of coconut oil, and reduced-fat milk (1.7% milk fat) (200 mL). Calcium absorption was measured by the dual-label stable isotope technique. Statistical analysis Effects on calcium absorption were evaluated by analysis of variance. Results Fractional absorption of calcium from the 3% butterfat ice cream, 9% coconut oil ice cream, and milk was 26%±8%, 28%±5%, and 31%±9%, respectively, and did not differ significantly (P=0.159). Conclusions Results indicate that calcium bioavailability in the two calcium-fortified ice cream formulations used in this study is as high as milk, indicating that ice cream may be a good vehicle for delivery of calcium. PMID:19394469

  9. Systematic review: Helicobacter pylori infection and impaired drug absorption.

    PubMed

    Lahner, E; Annibale, B; Delle Fave, G

    2009-02-15

    Impaired acid secretion may affect drug absorption and may be consequent to corporal Helicobacter pylori-gastritis, which may affect the absorption of orally administered drugs. To focus on the evidence of impaired drug absorption associated with H. pylori infection. Data sources were the systematic search of MEDLINE/EMBASE/SCOPUS databases (1980-April 2008) for English articles using the keywords: drug malabsorption/absorption, stomach, Helicobacter pylori, gastritis, gastric acid, gastric pH, hypochlorhydria, gastric hypoacidity. Study selection was made from 2099 retrieved articles, five studies were identified. Data were extracted from selected papers, investigated drugs, study type, main features of subjects, study design, intervention type and results were extracted. In all, five studies investigated impaired absorption of l-dopa, thyroxine and delavirdine in H. pylori infection. Eradication treatment led to 21-54% increase in l-dopa in Parkinson's disease. Thyroxine requirement was higher in hypochlorhydric goitre with H. pylori-gastritis and thyrotropin levels decreased by 94% after treatment. In H. pylori- and HIV-positive hypochlorhydric subjects, delavirdine absorption increased by 57% with orange juice administration and by 150% after eradication. A plausible mechanism of impaired drug absorption is decreased acid secretion in H. pylori-gastritis patients. Helicobacter pylori infection and hypochlorhydria should be considered in prescribing drugs the absorption of which is potentially affected by intragastric pH.

  10. Luminescence of polyethylene glycol coated CdSeTe/ZnS and InP/ZnS nanoparticles in the presence of copper cations.

    PubMed

    Beaune, Grégory; Tamang, Sudarsan; Bernardin, Aude; Bayle-Guillemaud, Pascale; Fenel, Daphna; Schoehn, Guy; Vinet, Françoise; Reiss, Peter; Texier, Isabelle

    2011-08-22

    The use of click chemistry for quantum dot (QD) functionalization could be very promising for the development of bioconjugates dedicated to in vivo applications. Alkyne-azide ligation usually requires copper(I) catalysis. The luminescence response of CdSeTe/ZnS nanoparticles coated with polyethylene glycol (PEG) is studied in the presence of copper cations, and compared to that of InP/ZnS QDs coated with mercaptoundecanoic acid (MUA). The quenching mechanisms appear different. Luminescence quenching occurs without any wavelength shift in the absorption and emission spectra for the CdSeTe/ZnS/PEG nanocrystals. In this case, the presence of copper in the ZnS shell is evidenced by energy-filtered transmission electron microscopy (EF-TEM). By contrast, in the case of InP/ZnS/MUA nanocrystals, a redshift of the excitation and emission spectra, accompanied by an increase in absorbance and a decrease in photoluminescence, is observed. For CdSeTe/ZnS/PEG nanocrystals, PL quenching is enhanced for QDs with 1) smaller inorganic-core diameter, 2) thinner PEG shell, and 3) hydroxyl terminal groups. Whereas copper-induced PL quenching can be interesting for the design of sensitive cation sensors, copper-free click reactions should be used for the efficient functionalization of nanocrystals dedicated to bioapplications, in order to achieve highly luminescent QD bioconjugates. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Absorption of Solar Radiation by Clouds: An Overview

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This talk provides an overview of the subject of absorption of solar radiation by clouds in the earth's atmosphere. The paper summarizes the available evidence which points to disagreements between theoretical and observed values of cloud absorption (and reflections). The importance of these discrepancies, particularly to remote sensing of clouds as well as to studies of cloud physics and earth radiation budgets, is emphasized. Existing cloud absorption and reflection measurements are reviewed and the persistent differences that exist between calculated and measured near-infrared cloud albedos are highlighted. Various explanations for these reflection and absorption discrepancies are discussed under two separate paths: a theoretician's approach and an experimentalist's approach. Examples for the former approach include model accuracy tests, large-droplet hypothesis, excess absorbing aerosol, enhanced water vapor continuum absorption, and effects of cloud inhomogeneity. The latter approach focuses on discussions of instrumental device, calibration, operational strategy, and signal/noise separation. A recommendation for future activities on this subject will be given.

  12. Exercise, Insulin Absorption Rates, and Artificial Pancreas Control

    NASA Astrophysics Data System (ADS)

    Frank, Spencer; Hinshaw, Ling; Basu, Rita; Basu, Ananda; Szeri, Andrew J.

    2016-11-01

    Type 1 Diabetes is characterized by an inability of a person to endogenously produce the hormone insulin. Because of this, insulin must be injected - usually subcutaneously. The size of the injected dose and the rate at which the dose reaches the circulatory system have a profound effect on the ability to control glucose excursions, and therefore control of diabetes. However, insulin absorption rates via subcutaneous injection are variable and depend on a number of factors including tissue perfusion, physical activity (vasodilation, increased capillary throughput), and other tissue geometric and physical properties. Exercise may also have a sizeable effect on the rate of insulin absorption, which can potentially lead to dangerous glucose levels. Insulin-dosing algorithms, as implemented in an artificial pancreas controller, should account accurately for absorption rate variability and exercise effects on insulin absorption. The aforementioned factors affecting insulin absorption will be discussed within the context of both fluid mechanics and data driven modeling approaches.

  13. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  14. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE PAGES

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei; ...

    2017-07-07

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  15. Optimal design of porous structures for the fastest liquid absorption.

    PubMed

    Shou, Dahua; Ye, Lin; Fan, Jintu; Fu, Kunkun

    2014-01-14

    Porous materials engineered for rapid liquid absorption are useful in many applications, including oil recovery, spacecraft life-support systems, moisture management fabrics, medical wound dressings, and microfluidic devices. Dynamic absorption in capillary tubes and porous media is driven by the capillary pressure, which is inversely proportional to the pore size. On the other hand, the permeability of porous materials scales with the square of the pore size. The dynamic competition between these two superimposed mechanisms for liquid absorption through a heterogeneous porous structure may lead to an overall minimum absorption time. In this work, we explore liquid absorption in two different heterogeneous porous structures [three-dimensional (3D) circular tubes and porous layers], which are composed of two sections with variations in radius/porosity and height. The absorption time to fill the voids of porous constructs is expressed as a function of radius/porosity and height of local sections, and the absorption process does not follow the classic Washburn's law. Under given height and void volume, these two-section structures with a negative gradient of radius/porosity against the absorption direction are shown to have faster absorption rates than control samples with uniform radius/porosity. In particular, optimal structural parameters, including radius/porosity and height, are found that account for the minimum absorption time. The liquid absorption in the optimized porous structure is up to 38% faster than in a control sample. The results obtained can be used a priori for the design of porous structures with excellent liquid management property in various fields.

  16. Calcium absorption is not increased by caseinophosphopeptides.

    PubMed

    Teucher, Birgit; Majsak-Newman, Gosia; Dainty, Jack R; McDonagh, David; FitzGerald, Richard J; Fairweather-Tait, Susan J

    2006-07-01

    One of the suggested health benefits of caseinophosphopeptides (CPPs) is their ability to enhance calcium absorption. This possibility is based on the assumption that they resist proteolysis in the upper gastrointestinal tract and maintain calcium in a soluble form at alkaline pH in the distal ileum. The effects of CPP-enriched preparations (containing candidate functional food ingredients) on calcium absorption from a calcium lactate drink were tested. A randomized crossover trial was undertaken in 15 adults in whom we measured the absorption of calcium from a calcium lactate drink (drink A: 400 mg Ca as lactate) and 2 preparations enriched with forms of CPP (1.7 g each; drinks B and C). Both drinks B and C contained 400 mg Ca as calcium lactate plus approximately 100 mg CPP-derived calcium). Each volunteer received the 3 drinks in random order. Absorption was measured by the dual-label calcium stable-isotope technique. The quantity of calcium absorbed was significantly lower from drink A (103 mg) than from drink B (117 mg; P = 0.012) or drink C (121 mg; P = 0.002), which indicated a positive effect of the CPPs. However, because the CPP preparations contributed additional calcium besides that found in the calcium lactate (drink A), fractional absorption of calcium from drink B (23%) was slightly but significantly (P = 0.015) lower than that from drink A (26%). The differences in calcium absorption are unlikely to have any biological significance. CPPs are unsuitable as candidate ingredients for functional foods that are designed to deliver improved calcium nutrition.

  17. Absorption of Bile Pigments by the Gall Bladder*

    PubMed Central

    Ostrow, J. Donald

    1967-01-01

    A technique is described for preparation in the guinea pig of an in situ, isolated, vascularized gall bladder that exhibits normal absorptive functions. Absorption of labeled bile pigments from the gall bladder was determined by the subsequent excretion of radioactivity in hepatic bile. Over a wide range of concentrations, unconjugated bilirubin-14C was well absorbed, whereas transfer of conjugated bilirubin proceeded slowly. Mesobilirubinogen-3H was absorbed poorly from whole bile, but was absorbed as rapidly as unconjugated bilirubin from a solution of pure conjugated bile salt. Bilirubin absorption was not impaired by iodoacetamide, 1.5 mM, or dinitrophenol, 1.0 mM, even though water transport was affected. This indicated that absorption of bilirubin was not dependent upon water transport, nor upon energy-dependent processes. The linear relationship between absorption and concentration of pigment at low concentrations in bile salt solutions suggested that pigment was transferred by passive diffusion. At higher pigment concentrations or in whole bile, this simple relationship was modified by interactions of pigment with bile salts and other constituents of bile. These interactions did not necessarily involve binding of bilirubin in micelles. The slow absorption of the more polar conjugates and photo-oxidative derivatives of bilirubin suggested that bilirubin was absorbed principally by nonionic, and partially, by ionic diffusion. Concentrations of pure conjugated bile salts above 3.5 mM were found to be injurious to the gall bladder mucosa. This mucosal injury did not affect the kinetics of bilirubin absorption. During in vitro incubation of bile at 37°C, decay of bilirubin and hydrolysis of the conjugate proceeded as first-order reactions. The effects of these processes on the kinetics of bilirubin absorption, and their possible role in the formation of “white bile” and in the demonstrated appearance of unconjugated bilirubin in hepatic bile, are discussed

  18. Bilayered Hybrid Perovskite Ferroelectric with Giant Two-Photon Absorption.

    PubMed

    Li, Lina; Shang, Xiaoying; Wang, Sasa; Dong, Ningning; Ji, Chengmin; Chen, Xueyuan; Zhao, Sangen; Wang, Jun; Sun, Zhihua; Hong, Maochun; Luo, Junhua

    2018-06-06

    Perovskite ferroelectrics with prominent nonlinear optical absorption have attracted great attention in the field of photonics. However, they are traditionally dominated by inorganic oxides and exhibit relatively small nonlinear optical absorption coefficients, which hinder their further applications. Herein, we report a new organic-inorganic hybrid bilayered perovskite ferroelectric, (C 4 H 9 NH 3 ) 2 (NH 2 CHNH 2 )Pb 2 Br 7 (1), showing an above-room-temperature Curie temperature (∼322 K) and notable spontaneous polarization (∼3.8 μC cm -2 ). Significantly, the unique quantum-well structure of 1 results in intriguing two-photon absorption properties with a giant nonlinear optical absorption coefficient as high as 5.76 × 10 3 cm GW -1 , which is almost two-orders of magnitude larger than those of mostly traditional all-inorganic perovskite ferroelectrics. To our best knowledge, 1 is the first example of hybrid ferroelectrics with giant two-photon absorption coefficient. The mechanisms for ferroelectric and two-photon absorption are revealed. This work will shed light on the design of new ferroelectrics with two-photon absorption and promote their potentials in the photonic application.

  19. Studies on Inhibition of Intestinal Absorption of Radioactive Strontium

    PubMed Central

    Skoryna, Stanley C.; Paul, T. M.; Edward, Deirdre Waldron

    1964-01-01

    A method is reported which permits selective suppression of absorption of radioactive strontium from ingested food material, permitting the calcium to be available to the body. Studies were carried out in vivo by injection of Sr89 and Ca45 in the presence of inert carrier into ligated intestinal segments in rats, and the amount of absorption was measured by standard monitoring techniques. The pattern of absorption of both ions is very similar but the rate of absorption is different. It was found that the polyelectrolyte, sodium alginate, obtained from brown algae (Phaeophyceae), injected simultaneously with radiostrontium effectively reduces the absortion of Sr89 from all segments of the intestine by as much as 50-80% of the control values. No significant reduction in absorption of Ca45 was observed in equivalent concentrations. The reduction in blood levels of Sr89 and in bone uptake corresponded to the absorption pattern. The difference in the effect on strontium and calcium absorption may be due to differences in the binding capacity of sodium alginate from the two metal ions under the conditions present in vivo. PMID:14180534

  20. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  1. Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens.

    PubMed

    Vinayaka, A C; Thakur, M S

    2010-06-01

    Water-soluble quantum dots (QDs) are fluorescent semiconductor nanoparticles with narrow, very specific, stable emission spectra. Therefore, the bioconjugation of these QDs for biological fluorescent labeling may be of interest due to their unique physical and optical properties as compared to organic fluorescent dyes. These intrinsic properties of QDs have been used for the sensitive detection of target analytes. From the viewpoint of ensuring food safety, there is a need to develop rapid, sensitive and specific detection techniques to monitor food toxicants in food and environmental samples. Even trace levels of these toxicants can inadvertently enter the food chain, creating severe health hazards. The present review emphasizes the application of water-soluble bioconjugated QDs for the detection of food contaminants such as pesticides, pathogenic bacterial toxins such as botulinum toxin, enterotoxins produced by Staphylococcus aureus, Escherichia coli, and for the development of oligonucleotide-based microarrays. This review also emphasizes the application of a possible resonance energy transfer phenomenon resulting from nanobiomolecular interactions obtained through the bioconjugation of QDs with biomolecules. Furthermore, the utilization of significant changes in the spectral behavior of QDs (attributed to resonance energy transfer in the bioconjugate) in future nanobiosensor development is also emphasized.

  2. Preparation and functionalization of graphene nanocomposites for biomedical applications

    PubMed Central

    Yang, Kai; Feng, Liangzhu; Hong, Hao; Cai, Weibo; Liu, Zhuang

    2013-01-01

    Functionalized nano-graphene– and graphene-based nanocomposites have gained tremendous attention in the area of biomedicine in recent years owing to their biocompatibility, the ease with which they can be functionalized and their properties such as thermal and electrical conductivity. potential applications for functionalized nanoparticles range from drug delivery and multimodal imaging to exploitation of the electrical properties of graphene toward the preparation of biosensing devices. this protocol covers the preparation, functionalization and bioconjugation of various graphene derivatives and nanocomposites. starting from graphite, the preparations of graphene oxide (GO), reduced GO (RGO) and magnetic GO–based nanocomposite, as well as how to functionalize them with biocompatible polymers such as polyethylene glycol (PEG), are described in detail. We also provide procedures for 125I radiolabeling of PEGylated GO and the preparation of GO-based gene carriers; other bioconjugation approaches including drug loading, antibody conjugation and fluorescent labeling are similar to those described previously and used for bioconjugation of PEGylated carbon nanotubes. We hope this article will help researchers in this field to fabricate graphene-based bioconjugates with high reproducibility for various applications in biomedicine. the sample preparation procedures take various times ranging from 1 to 2 d. PMID:24202553

  3. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  4. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...

  5. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...

  6. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...

  7. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  8. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...

  9. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as follows...

  10. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  11. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  12. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  13. Photoelectric absorption cross sections with variable abundances

    NASA Technical Reports Server (NTRS)

    Balucinska-Church, Monika; Mccammon, Dan

    1992-01-01

    Polynomial fit coefficients have been obtained for the energy dependences of the photoelectric absorption cross sections of 17 astrophysically important elements. These results allow the calculation of X-ray absorption in the energy range 0.03-10 keV in material with noncosmic abundances.

  14. Psychological absorption. Affect investment in marijuana intoxication.

    PubMed

    Fabian, W D; Fishkin, S M

    1991-01-01

    Absorption (a trait capacity for total attentional involvement) was reported to increase during episodes of marijuana intoxication. Several subsets of the absorption scale items specifically characterized marijuana intoxication, and groups of users and nonusers showed differential affective involvement with these experiences. Additionally, within the drug-using group, a positive correlation between frequency of marijuana use and affective ratings of these experiences was found. The findings support the hypothesis that a specific type of alteration in consciousness that enhances capacity for total attentional involvement (absorption) characterizes marijuana intoxication, and that this enhancement may act as a reinforcer, possibly influencing future use.

  15. The effect of tea on iron absorption.

    PubMed Central

    Disler, P B; Lynch, S R; Charlton, R W; Torrance, J D; Bothwell, T H; Walker, R B; Mayet, F

    1975-01-01

    The effect of tea on iron absorption was studied in human volunteers. Absorption from solutions of FeCl3 and FeSO4, bread, a meal of rice with potato and onion soup, and uncooked haemoglobin was inhibited whether ascorbic acid was present or not. No inhibition was noted if the haemoglobin was cooked. The effect on the absorption of non-haem iron was ascribed to the formation of insoluble iron tannate complexes. Drinking tannin-containing beverages such as tea with meals may contribute to the pathogenesis of iron deficiency if the diet consists largely of vegetable foodstuffs. PMID:1168162

  16. Phytosterol glycosides reduce cholesterol absorption in humans

    PubMed Central

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% (P < 0.0001) and phytosterol esters 30.6 ± 3.9% (P = 0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content. PMID:19246636

  17. Identifying the perfect absorption of metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  18. A Study of the Skin Absorption of Ethylbenzene in Man

    PubMed Central

    Dutkiewicz, Tadeusz; Tyras, Halina

    1967-01-01

    The absorption of ethylbenzene through the skin of the hand and the forearm in men was investigated experimentally. Both the absorption of liquid ethylbenzene and the absorption from aqueous solutions were studied. The rate of absorption of liquid ethylbenzene was 22 to 33 mg./cm.2/hr, and the rates from aqueous solutions were 118 and 215 μg./cm.2/hr from mean concentrations of 112 and 156 mg./litre. The mandelic acid excreted in urine was equivalent to about 4·6% of the absorbed dose—much less than after lung absorption. Urinary mandelic acid does not provide a reliable index of absorption when there is simultaneous skin and lung exposure. PMID:6073092

  19. Dynamically tunable extraordinary light absorption in monolayer graphene

    NASA Astrophysics Data System (ADS)

    Safaei, Alireza; Chandra, Sayan; Vázquez-Guardado, Abraham; Calderon, Jean; Franklin, Daniel; Tetard, Laurene; Zhai, Lei; Leuenberger, Michael N.; Chanda, Debashis

    2017-10-01

    The high carrier mobility of graphene makes it an attractive material for electronics, however, graphene's application for optoelectronic systems is limited due to its low optical absorption. We present a cavity-coupled nanopatterned graphene absorber designed to sustain temporal and spatial overlap between localized surface plasmon resonance and cavity modes, thereby resulting in enhanced absorption up to an unprecedented value of theoretically (60 %) and experimentally measured (45 %) monolayer graphene in the technologically relevant 8-12-μm atmospheric transparent infrared imaging band. We demonstrate a wide electrostatic tunability of the absorption band (˜2 μ m ) by modifying the Fermi energy. The proposed device design allows enhanced absorption and dynamic tunability of chemical vapor deposition grown low carrier mobility graphene which provides a significant advantage over previous strategies where absorption enhancement was limited to exfoliated high carrier mobility graphene. We developed an analytical model that incorporates the coupling of the graphene electron and substrate phonons, providing valuable and instructive insights into the modified plasmon-phonon dispersion relation necessary to interpret the experimental observations. Such gate voltage and cavity tunable enhanced absorption in chemical vapor deposited large area monolayer graphene paves the path towards the scalable development of ultrasensitive infrared photodetectors, modulators, and other optoelectronic devices.

  20. Absorption dynamics and delay time in complex potentials

    NASA Astrophysics Data System (ADS)

    Villavicencio, Jorge; Romo, Roberto; Hernández-Maldonado, Alberto

    2018-05-01

    The dynamics of absorption is analyzed by using an exactly solvable model that deals with an analytical solution to Schrödinger’s equation for cutoff initial plane waves incident on a complex absorbing potential. A dynamical absorption coefficient which allows us to explore the dynamical loss of particles from the transient to the stationary regime is derived. We find that the absorption process is characterized by the emission of a series of damped periodic pulses in time domain, associated with damped Rabi-type oscillations with a characteristic frequency, ω = (E + ε)/ℏ, where E is the energy of the incident waves and ‑ε is energy of the quasidiscrete state of the system induced by the absorptive part of the Hamiltonian; the width γ of this resonance governs the amplitude of the pulses. The resemblance of the time-dependent absorption coefficient with a real decay process is discussed, in particular the transition from exponential to nonexponential regimes, a well-known feature of quantum decay. We have also analyzed the effect of the absorptive part of the potential on the dynamical delay time, which behaves differently from the one observed in attractive real delta potentials, exhibiting two regimes: time advance and time delay.

  1. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells.

    PubMed

    Chen, Jingyi; Wang, Danling; Xi, Jiefeng; Au, Leslie; Siekkinen, Andy; Warsen, Addie; Li, Zhi-Yuan; Zhang, Hui; Xia, Younan; Li, Xingde

    2007-05-01

    Gold nanocages with a relatively small size (e.g., approximately 45 nm in edge length) have been developed, and the structure of these nanocages was tailored to achieve strong absorption in the near-infrared (NIR) region for photothermal cancer treatment. Numerical calculations show that the nanocage has a large absorption cross section of 3.48 x 10(-14) m(2), facilitating conversion of NIR irradiation into heat. The gold nanocages were conjugated with monoclonal antibodies (anti-HER2) to target epidermal growth factor receptors (EGFR) that are overexpressed on the surface of breast cancer cells (SK-BR-3). Our preliminary photothermal results show that the nanocages strongly absorb light in the NIR region with an intensity threshold of 1.5 W/cm(2) to induce thermal destruction to the cancer cells. In the intensity range of 1.5-4.7 W/cm(2), the circular area of damaged cells increased linearly with the irradiation power density. These results suggest that this new class of bioconjugated gold nanostructures, immuno gold nanocages, can potentially serve as an effective photothermal therapeutic agent for cancer treatment.

  2. Microwave absorption in substances that form hydration layers with water

    NASA Astrophysics Data System (ADS)

    Garner, H. R.; Ohkawa, T.; Tuason, O.; Lee, R. L.

    1990-12-01

    The microwave absorption of certain water soluble polymers (polyethylene glycol, polyvinyl pyrrolidone, proteins, and DNA) in solution is composed of three parts: absorption in the free water, absorption in the substance, and absorption in the hydration layer. Ethanol, sucrose, glycerol, and sodium acetate, which form weak hydrogen bonds or have an ionic nature in aqueous solutions, also have microwave absorption signatures similar to polymers that form hydration layers. The frequency-dependent absorption of the free water and of the hydration layer water is described by a simple Debye relaxation model. The absorption per unit sample volume attributable to the hydration layer is solute concentration dependent, and a simple model is used to describe the dependence. The hydration-layer relaxation time was found to vary from substance to substance and with solute concentration. The relaxation time was also found to be independent of solute length.

  3. On the nature of absorption features toward nearby stars

    NASA Astrophysics Data System (ADS)

    Kohl, S.; Czesla, S.; Schmitt, J. H. M. M.

    2016-06-01

    Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo. Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB. Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles. Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high. Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and

  4. Nonlinear Absorption and Heating of Dense Plasmas.

    DTIC Science & Technology

    plasma focus both illuminated by a high intensity CO2 laser. Results indicate the previously noted increases in absorption due to the inclusion of the nonlinear saturation mechanism. The previously obtained increases in absorption with increasing density scale height and decreasing temperatures are also recovered. The

  5. Detection of bacterial growth by gas absorption.

    PubMed

    Waters, J R

    1992-05-01

    When 24 different aerobic organisms were grown in a shaken culture, all were found to first absorb gas from the headspace. In a rudimentary medium, such as tryptic soy broth, 16 of the 24 organisms did not produce gas following the initial gas absorption. We have developed a simple, noninvasive method for detecting both gas absorption and production in multiple culture vials. The time to positivity was compared with that obtained by the BACTEC 460 blood culture system. For nearly all of these organisms, there was no difference. For some of those organisms that did not produce gas, e.g. Staphylococcus epidermidis, Moraxella osloensis, and Neisseria meningitidis, detection by gas absorption was a few hours faster. Gas absorption appears to be a promising technique for a new automated blood culture system because of its simplicity and because medium without special additives can be used to detect organisms that do not produce gas.

  6. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  7. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  8. Absorption of light dark matter in semiconductors

    DOE PAGES

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2017-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multiphonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We derivemore » the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in germanium and silicon, and show that existing direct detection results already probe new parameter space. Finally, with only a moderate exposure, low-threshold semiconductor target experiments can exceed current astrophysical and terrestrial constraints on sub-keV bosonic dark matter.« less

  9. Alkali absorption and citrate excretion in calcium nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  10. Food, gastrointestinal pH, and models of oral drug absorption.

    PubMed

    Abuhelwa, Ahmad Y; Williams, Desmond B; Upton, Richard N; Foster, David J R

    2017-03-01

    This article reviews the major physiological and physicochemical principles of the effect of food and gastrointestinal (GI) pH on the absorption and bioavailability of oral drugs, and the various absorption models that are used to describe/predict oral drug absorption. The rate and extent of oral drug absorption is determined by a complex interaction between a drug's physicochemical properties, GI physiologic factors, and the nature of the formulation administered. GI pH is an important factor that can markedly affect oral drug absorption and bioavailability as it may have significant influence on drug dissolution & solubility, drug release, drug stability, and intestinal permeability. Different regions of the GI tract have different drug absorptive properties. Thus, the transit time in each GI region and its variability between subjects may contribute to the variability in the rate and/or extent of drug absorption. Food-drug interactions can result in delayed, decreased, increased, and sometimes un-altered drug absorption. Food effects on oral absorption can be achieved by direct and indirect mechanisms. Various models have been proposed to describe oral absorption ranging from empirical models to the more sophisticated "mechanism-based" models. Through understanding of the physicochemical and physiological rate-limiting factors affecting oral absorption, modellers can implement simplified population-based modelling approaches that are less complex than whole-body physiologically-based models but still capture the essential elements in a physiological way and hence will be more suited for population modelling of large clinical data sets. It will also help formulation scientists to better predict formulation performance and to develop formulations that maximize oral bioavailability. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Nonlinear intestinal absorption kinetics of cefuroxime axetil in rats.

    PubMed Central

    Ruiz-Balaguer, N; Nacher, A; Casabo, V G; Merino, M

    1997-01-01

    Cefuroxime is commercially available for parenteral administration as a sodium salt and for oral administration as cefuroxime axetil, the 1-(acetoxy)ethyl ester of the drug. Cefuroxime axetil is a prodrug of cefuroxime and has little, if any, antibacterial activity until hydrolyzed in vivo to cefuroxime. In this study, the absorption of cefuroxime axetil in the small intestines of anesthetized rats was investigated in situ, by perfusion at four concentrations (11.8, 5, 118 and 200 microM). Oral absorption of cefuroxime axetil can apparently be described as a specialized transport mechanism which obeys Michaelis-Menten kinetics. Parameters characterizing absorption of prodrug in free solution were obtained: maximum rate of absorption (Vmax) = 289.08 +/- 46.26 microM h-1, and Km = 162.77 +/- 31.17 microM. Cefuroxime axetil transport was significantly reduced in the presence of the enzymatic inhibitor sodium azide. On the other hand, the prodrug was metabolized in the gut wall through contact with membrane-bound enzymes in the brush border membrane before absorption occurred. This process reduces the prodrug fraction directly available for absorption. From a bioavailability point of view, therefore, the effects mentioned above can explain the variable and poor bioavailability following oral administration of cefuroxime axetil. Thus, future strategies in oral cefuroxime axetil absorption should focus on increasing the stability of the prodrug in the intestine by modifying the prodrug structure and/or targeting the compound to the absorption site. PMID:9021205

  12. Site-Specific Biomolecule Labeling with Gold Clusters

    PubMed Central

    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.

    2013-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (His)-tagged proteins. PMID:20887859

  13. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.

    PubMed

    Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H

    2016-04-01

    In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.

  14. Efficacy, safety and mechanism of HP-β-CD-PEI polymers as absorption enhancers on the intestinal absorption of poorly absorbable drugs in rats.

    PubMed

    Zhang, Hailong; Huang, Xiaoyan; Zhang, Yongjing; Gao, Yang

    2017-03-01

    Oral bioavailability of some hydrophilic therapeutic macromolecules was very poor, thus leading to their limited application in clinic. To investigate the efficacy, safety and mechanism of HP-β-CD-PEI polymers on the intestinal absorption of some poorly absorbable drugs in rats. Effects of HP-β-CD-PEI polymers on the intestinal absorptions of drugs were investigated by an in situ closed loop method in rats. The safety of HP-β-CD-PEI polymer was evaluated by measurement of lactate dehydrogenase (LDH) activity and amount of protein released from rat intestinal perfusate. The absorption enhancing mechanisms were explored by the measurement of zeta potential, transepithelial electrical resistance (TEER) and in vitro transport of FD4 (a paracellular marker) across rat intestinal membranes, respectively. HP-β-CD-PEI polymers, especially HP-β-CD-PEI 1800 , demonstrated excellent absorption enhancing effects on drug absorption in a concentration-dependent manner and the enhancing effect was more efficient in the small intestine than that in the large intestine. Five percent (w/v) HP-β-CD-PEI 1800 obviously decreased the TEER, accompanied with increase in the intestinal transport of FD4, indicating that absorption enhancing actions of HP-β-CD-PEI polymers were possibly performed by loosening tight junctions of intestinal epithelium cells, thereby increasing drug permeation via a paracellular pathway. A good liner relationship between absorption enhancing effects of HP-β-CD-PEI polymers and their zeta potentials suggested the contribution of positive charge on the surface of these polymers to their absorption enhancing effects. HP-β-CD-PEI polymers might be potential and safe absorption enhancers for improving oral delivery of poorly absorbable macromolecules including peptides and proteins.

  15. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip.

    PubMed

    Shulaker, Max M; Hills, Gage; Park, Rebecca S; Howe, Roger T; Saraswat, Krishna; Wong, H-S Philip; Mitra, Subhasish

    2017-07-05

    The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors-promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage-fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce 'highly processed' information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.

  16. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip

    NASA Astrophysics Data System (ADS)

    Shulaker, Max M.; Hills, Gage; Park, Rebecca S.; Howe, Roger T.; Saraswat, Krishna; Wong, H.-S. Philip; Mitra, Subhasish

    2017-07-01

    The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors—promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage—fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce ‘highly processed’ information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.

  17. Factors Affecting Gastrointestinal Absorption of Levothyroxine: A Review.

    PubMed

    Skelin, Marko; Lucijanić, Tomo; Amidžić Klarić, Daniela; Rešić, Arnes; Bakula, Miro; Liberati-Čizmek, Ana-Marija; Gharib, Hossein; Rahelić, Dario

    2017-02-01

    Levothyroxine (LT4) is a drug with a narrow therapeutic index, applied in small amounts (micrograms), which makes interactions in the absorption phase clinically significant. The main aim of this article was to review and present the latest information on factors that affect the gastrointestinal absorption of this drug. Relevant data were collected by using the MEDLINE, PubMed, EMBASE, Web of Science, Science Direct, and Scopus databases with the key words levothyroxine and absorption. Searches were not limited to specific publication types, study designs, dates, or languages. The reports were highly variable in the amount of information provided regarding study design and methods. Because of the heterogeneity of studies, no statistical analysis was performed. Many gastrointestinal disorders, such as celiac disease, atrophic gastritis, lactose intolerance, and Helicobacter pylori infection, may impede the absorption of levothyroxine. During treatment of these disorders, it is necessary to monitor serum thyroid-stimulating hormone and free T4 values to reduce the risk of developing iatrogenic hyperthyroidism. Soybeans and coffee have the greatest impact on the reduction of absorption, whereas vitamin C has the ability to increase it. Conversely, the effect of dietary fiber on the absorption of LT4 is not yet fully understood; further research is needed on this topic. A decrease in the absorption of LT4 is established and clinically significant when administered concomitantly with cholestyramine, colesevelam, lanthanum, calcium carbonate, calcium citrate, calcium acetate, iron sulfate, ciprofloxacin, aluminum hydroxide, sevelamer, or proton pump inhibitors. This effect should be taken into consideration when prescribing these drugs concomitantly with LT4. The effects of Giardia lamblia infection and the influence of orlistat, polystyrene sulfonate, raloxifene, and simethicone on absorption of LT4 have been poorly documented. For bariatric surgery, sucralfate and H 2

  18. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Koo, Sung I. (Inventor); Noh, Sang K. (Inventor); Hua, Duy H. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  19. Intestinal absorption of copper: influence of carbohydrates.

    PubMed

    Wapnir, R A; Balkman, C

    1992-02-01

    Macronutrients can modulate the intestinal absorption of trace elements by binding the metal or altering mucosal function. We investigated whether certain simple and complex carbohydrates modify copper (Cu) absorption, using an in vivo perfusion technique in the rat. Corn syrup solids, which contain a mixture of glucose polymers of diverse length, added at either 20 or 50 mosm/kg enhanced Cu absorption from a 31.5 microM (2 mg/liter) Cu solution (128 +/- 11 and 130 +/- 11 pmol/min x cm, respectively, vs 101 +/- 4 pmol/min x cm, P less than 0.05, in the absence of carbohydrate). This was concomitant with a stimulation of net water absorption (1.05 +/- 0.08 and 0.84 +/- 0.08 microliter/min x cm, respectively, vs 0.63 +/- 0.02 microliter/min x cm with no carbohydrate, P less than 0.05). Glucose, fructose, lactose, or sucrose had no influence on Cu absorption, although they altered water exchanges, an effect attributable to a reduction of the outflow component of fluid recirculation. Low concentrations of lactose resulted in a greater accumulation of Cu in the intestinal mucosa (8.75 +/- 0.71 micrograms/g vs 5.77 +/- 0.68 micrograms/g for controls, P less than 0.05). Hence, solutes that moderately stimulate mucosa-to-serosa fluid influx in a progressive manner, such as glucose polymers, may contribute to functionally increase Cu absorption. Conversely, conditions which tend to reduce water inflow or increase water outflow across the small intestinal mucosa, as may occur with high lactose diets or in cases of chronic diarrhea, may have negative effects.

  20. Percutaneous absorption

    PubMed Central

    Brisson, Paul

    1974-01-01

    Clinical effectiveness of topically applied medications depends on the ability of the active ingredient to leave its vehicle and penetrate into the epidermis. The stratum corneum is that layer of the epidermis which functionally is the most important in limiting percutaneous absorption, showing the characteristics of a composite semipermeable membrane. A mathematical expression of transepidermal diffusion may be derived from Fick's Law of mass transport; factors altering the rate of diffusion are discussed. PMID:4597976

  1. Atmospheric absorption of terahertz radiation and water vapor continuum effects

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Slingerland, Elizabeth J.; Giles, Robert H.; Goyette, Thomas M.

    2013-09-01

    The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The transmission of broadband terahertz radiation from 0.300 to 1.500 THz was recorded for multiple path lengths and relative humidity levels. The absorption coefficient as a function of frequency was determined and compared with theoretical predictions and available water vapor absorption data. The prediction code is able to separately model the different parts of atmospheric absorption for a range of experimental conditions. A variety of conditions were accurately modeled using this code including both self and foreign gas broadening for low and high water vapor pressures for many different measurement techniques. The intensity and location of the observed absorption lines were also in good agreement with spectral databases. However, there was a discrepancy between the resonant line spectrum simulation and the observed absorption spectrum in the atmospheric transmission windows caused by the continuum absorption. A small discrepancy remained even after using the best available data from the literature to account for the continuum absorption. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.

  2. Broad Balmer-Line Absorption in SDSS J172341.10+555340.5

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro

    2010-10-01

    We present the discovery of Balmer-line absorption from Hα to H9 in an iron low-ionizaton broad absorption line (FeLoBAL) quasar, SDSS J172341.10+555340.5, by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) attached to the Subaru Telescope. The redshift of the Balmer-line absorption troughs is 2.0530±0.0003, and it is blueshifted by 5370 km s-1 from the Balmer emission lines. It is more than 4000 km s-1 blueshifted from the previously known UV absorption lines. We detected relatively strong (EWrest = 20 Å) [OIII] emission lines that are similar to those found in other broad absorption line quasars with Balmer-line absorption. We also derived the column density of neutral hydrogen of 5.2 × 1017 cm-2 by using the curve of growth and taking account of Lyα trapping. We searched for UV absorption lines that had the same redshift with Balmer-line absorption, and found Ali III and Fe III absorption lines at z = 2.053 that correspond to previously unidentified absorption lines, and the presence of other blended troughs that were difficult to identify.

  3. Realistic absorption coefficient of ultrathin films

    NASA Astrophysics Data System (ADS)

    Cesaria, M.; Caricato, A. P.; Martino, M.

    2012-10-01

    Both a theoretical algorithm and an experimental procedure are discussed of a new route to determine the absorption/scattering properties of thin films deposited on transparent substrates. Notably, the non-measurable contribution of the film-substrate interface is inherently accounted for. While the experimental procedure exploits only measurable spectra combined according to a very simple algorithm, the theoretical derivation does not require numerical handling of the acquired spectra or any assumption on the film homogeneity and substrate thickness. The film absorption response is estimated by subtracting the measured absorption spectrum of the bare substrate from that of the film on the substrate structure but in a non-straightforward way. In fact, an assumption about the absorption profile of the overall structure is introduced and a corrective factor accounting for the relative film-to-substrate thickness. The method is tested on films of a well known material (ITO) as a function of the film structural quality and influence of the film-substrate interface, both deliberately changed by thickness tuning and doping. Results are found fully consistent with information obtained by standard optical analysis and band gap values reported in the literature. Additionally, comparison with a conventional method demonstrates that our route is generally more accurate even if particularly suited for very thin films.

  4. Iodine absorption cells quality evaluation methods

    NASA Astrophysics Data System (ADS)

    Hrabina, Jan; Zucco, Massimo; Holá, Miroslava; Šarbort, Martin; Acef, Ouali; Du-Burck, Frédéric; Lazar, Josef; Číp, Ondřej

    2016-12-01

    The absorption cells represent an unique tool for the laser frequency stabilization. They serve as irreplaceable optical frequency references in realization of high-stable laser standards and laser sources for different brands of optical measurements, including the most precise frequency and dimensional measurement systems. One of the most often used absorption media covering visible and near IR spectral range is molecular iodine. It offers rich atlas of very strong and narrow spectral transitions which allow realization of laser systems with ultimate frequency stabilities in or below 10-14 order level. One of the most often disccussed disadvantage of the iodine cells is iodine's corrosivity and sensitivity to presence of foreign substances. The impurities react with absorption media and cause spectral shifts of absorption spectra, spectral broadening of the transitions and decrease achievable signal-to-noise ratio of the detected spectra. All of these unwanted effects directly influence frequency stability of the realized laser standard and due to this fact, the quality of iodine cells must be precisely controlled. We present a comparison of traditionally used method of laser induced fluorescence (LIF) with novel technique based on hyperfine transitions linewidths measurement. The results summarize advantages and drawbacks of these techniques and give a recommendation for their practical usage.

  5. Absorption from iron tablets given with different types of meals.

    PubMed

    Hallberg, L; Björn-Rasmussen, E; Ekenved, G; Garby, L; Rossander, L; Pleehachinda, R; Suwanik, R; Arvidsson, B

    1978-09-01

    The absorption of iron from tablets given with 5 types of meals was studied in 153 subjects. The meals were: a hamburger meal with beans and potatoes, a simple breakfast meal, a Latin American meal composed of black beans, rice and maize and two Southeast Asian meals composed of rice, vegetables and spices served with and without fish. The groups were directly compared by relating the absorption from the iron tablets to the absorption from a standardized reference dose of iron given on an empty stomach. The composition of meals with respect to content of meat or fish or the presence of large amounts of phytates seemed to have no influence on the absorption of iron from tablets. The absorption from iron tablets was about 40% higher when they were given with rice meals than when they were given with the other meals studied. The average decrease in absorption by meals was about 50-60% based on a comparison when tablets were given on an empty stomach. When tablets from which the iron was released more slowly were used, the absorption increased by about 30% except when they were given with rice meals, where the absorption was unchanged. The differences among the meals in their effect on the absorption of iron from tablets thus disappeared when the slow-release tablets were given.

  6. Comparison of water absorption methods: testing the water absorption of recently quarried and weathered porous limestone on site and under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Rozgonyi-Boissinot, Nikoletta; Agárdi, Tamás; Karolina Cebula, Ágnes; Török, Ákos

    2017-04-01

    The water absorption of weathering sensitive stones is a critical parameter that influences durability. The current paper compares different methods of water absorption tests by using on site and laboratory tests. The aims of the tests were to assess the water absorption of un-weathered quarry stones and various weathering forms occurring on porous limestone monuments. For the tests a Miocene porous limestone was used that occurs in Central and Western Hungary and especially near and in Budapest. Besides the Hungarian occurrences the same or very similar porous limestones are found in Austria, Slovakia and in the Czech Republic. Several quarries were operating in these countries. Due to the high workability the stone have been intensively used as construction material from the Roman period onward. The most prominent monuments made of this stone were built in Vienna and in Budapest during the 18th -19th century and in the early 20th century. The high porosity and the micro-fabric of the stone make it prone to frost- and salt weathering. Three different limestone types were tested representing coarse-, medium- and fine grained lithologies. The test methods included Rilem tube (Karsten tube) tests and capillary water absorption tests. The latter methodology has been described in detail in EN 1925:2000. The test results of on-site tests of weathered porous limestone clearly show that the water absorption of dissolved limestone surfaces and crumbling or micro-cracked limestone is similar. The water absorption curves have similar inclinations marking high amount of absorbed water. To the contrary, the white weathering crusts covered stone blocks and black crusts have significantly lower water absorptions and many of these crusts are considered as very tight almost impermeable surfaces. Capillary water absorption tests in the laboratory allowed the determination of maximum water absorption of quarried porous limestone. Specimens were placed in 3 mm of water column and the

  7. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  8. Plasmon absorption modulator systems and methods

    DOEpatents

    Kekatpure, Rohan Deodatta; Davids, Paul

    2014-07-15

    Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.

  9. Outskirts of Distant Galaxies in Absorption

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen

    QSO absorption spectroscopy provides a sensitive probe of both the neutral medium and diffuse ionized gas in the distant Universe. It extends 21 cm maps of gaseous structures around low-redshift galaxies both to lower gas column densities and to higher redshifts. Combining galaxy surveys with absorption-line observations of gas around galaxies enables comprehensive studies of baryon cycles in galaxy outskirts over cosmic time. This chapter presents a review of the empirical understanding of the cosmic neutral gas reservoir from studies of damped Lyα absorbers (DLAs). It describes the constraints on the star formation relation and chemical enrichment history in the outskirts of distant galaxies from DLA studies. A brief discussion of available constraints on the ionized circumgalactic gas from studies of lower column density Lyα absorbers and associated ionic absorption transitions is presented at the end.

  10. Vehicle effects on human stratum corneum absorption and skin penetration.

    PubMed

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  11. An Inexpensive Optical Absorption Experiment

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2006-09-01

    This optical absorption experiment can be put together in only a few minutes with materials found in most secondary or undergraduate stockrooms. The absorption material is the partly transparent flexible anti-static plastic material used to package solid-state devices. The detector is a hand-held photographic exposure meter of the type that was in common use before the advent of point-and-shoot cameras. A graph of the intensity of the transmitted light as a function of the number of sheets of the material is a decreasing exponential. The emphasis of the experiment is on the mathematical form.

  12. Bicarbonate absorption by rabbit cortical collecting tubules in vitro.

    PubMed

    McKinney, T D; Burg, M B

    1978-02-01

    The rate of transport of bicarbonate was studied in isolated perfused rabbit cortical collecting tubules that were absorbing bicarbonate in vitro. Acetazolamide completely inhibited bicarbonate absorption, as was previously observed with isolated proximal tubules. Therefore, carbonic anhydrase probably is important for bicarbonate absorption in both the proximal tubules and collecting tubules. Inhibition of sodium transport by ouabain or elimination of its transport by completely removing the sodium did not cause a decrease in bicarbonate absorption by the collecting tubules. We previously found that inhibition of sodium transport caused a great decrease in bicarbonate absorption by proximal tubules. Therefore, absorption of bicarbonate is not directly related to sodium transport in collecting tubules, but it probably is related to sodium transport in isolated perfused rabbit proximal tubules. Amiloride inhibited bicarbonate absorption by the collecting tubules consistent with previous observations that the drug inhibits urinary acidification. Although amiloride also inhibits sodium transport and reduces the transepithelial voltage across the collecting tubules, the effect of the drug on bicarbonate transport apparently is independent of the other effects.

  13. Calcium absorption response to cholecalciferol supplementation in hemodialysis.

    PubMed

    Armas, Laura A G; Zena, Mohsen; Lund, Richard; Heaney, Robert P

    2013-06-01

    Recent understanding of extrarenal production of calcitriol has led to the use of more vitamin D supplementation in CKD populations. This paper reports the effect of cholecalciferol supplementation on calcium absorption. Paired calcium absorption tests were done before and after 12-13 weeks of 20,000 IU weekly cholecalciferol supplementation in 30 participants with stage 5 CKD on hemodialysis. The study was conducted from April to December of 2011. Calcium absorption was tested with a standardized meal containing 300 mg calcium carbonate intrinsically labeled with (45)Ca; 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D were measured. 25-Hydroxyvitamin D rose from 14.2 ng/ml (11.5-18.5) at baseline to 49.3 ng/ml (42.3-58.1) at the end of the study (P<0.001). 1,25-Dihydroxyvitamin D rose from 15.1 (10.5-18.8) pg/ml at baseline to 20.5 (17.0-24.7) pg/ml at the end of the study (P<0.001). The median baseline calcium absorption was 12% (7%-17%) and 12% (7%-16%) at the end of study. Patients with stage 5 CKD on hemodialysis had very low calcium absorption values at baseline, and cholecalciferol supplementation that raised 25(OH)D levels to 50 ng/ml had no effect on calcium absorption.

  14. Quasi-static energy absorption of hollow microlattice structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, YL; Schaedler, TA; Jacobsen, AJ

    2014-12-01

    We present a comprehensive modeling and numerical study focusing on the energy quasi-static crushing behavior and energy absorption characteristics of hollow tube microlattice structures. The peak stress and effective plateau stress of the hollow microlattice structures are deduced for different geometrical parameters which gives volume and mass densities of energy absorption, D-v and D-m, scale with the relative density, (rho) over bar, as D-v similar to (rho) over bar (1) (5) and D-m similar to (rho) over bar (0 5), respectively, fitting very well to the experimental results of both 60 degrees inclined and 90 degrees predominately microlattices. Then themore » strategies for energy absorption enhancement are proposed for the engineering design of microlattice structures. By introducing a gradient in the thickness or radius of the lattice members, the buckle propagation can be modulated resulting in an increase in energy absorption density that can exceed 40%. Liquid filler is another approach to improve energy absorption by strengthening the microtruss via circumference expansion, and the gain may be over 100% in terms of volume density. Insight into the correlations between microlattice architecture and energy absorption performance combined with the high degree of architecture control paves the way for designing high performance microlattice structures for a range of impact and impulse mitigation applications for vehicles and structures. (C) 2014 Elsevier Ltd. All rights reserved.« less

  15. Optical absorption in recycled waste plastic polyethylene

    NASA Astrophysics Data System (ADS)

    Aji, M. P.; Rahmawati, I.; Priyanto, A.; Karunawan, J.; Wati, A. L.; Aryani, N. P.; Susanto; Wibowo, E.; Sulhadi

    2018-03-01

    We investigated the optical properties of UV spectrum absorption in recycled waste plastic from polyethylene polymer type. Waste plastic polyethylene showed an optical spectrum absorption after it’s recycling process. Spectrum absorption is determined using spectrophotometer UV-Nir Ocean Optics type USB 4000. Recycling method has been processed using heating treatment around the melting point temperature of the polyethylene polymer that are 200°C, 220°C, 240°C, 260°C, and 280°C. In addition, the recycling process was carried out with time variations as well, which are 1h, 1.5h, 2h, and 2.5h. The result of this experiment shows that recycled waste plastic polyethylene has a spectrum absorption in the ∼ 340-550 nm wavelength range. The absorbance spectrum obtained from UV light which is absorbed in the orbital n → π* and the orbital π → π*. This process indicates the existence of electron transition phenomena. This mechanism is affected by the temperature and the heating time where the intensity of absorption increases and widens with the increase of temperature and heating time. Furthermore this study resulted that the higher temperature affected the enhancement of the band gap energy of waste plastic polyethylene. These results show that recycled waste plastic polyethylene has a huge potential to be absorber materials for solar cell.

  16. Dynamics of water absorption through superabsorbent polymer

    NASA Astrophysics Data System (ADS)

    Chang, Sooyoung; Kim, Wonjung

    2017-11-01

    Superabsorbent polymers (SAPs) consist of hydrophilic cross-linked polymer networks that can absorb and retain a great amount of water relative to their own mass, so that they are widely used for disposable diapers and holding soil moisture in agriculture. SAPs are typically available in the form of submillimeter-sized particles, and the water absorption is driven by capillary flows between particles as well as diffusion that entail swelling. Although the control of water absorption of SAPs is important in engineering applications, but the dynamics of water absorption in SAP particles has not been fully understood. We examine the dynamics of the water absorption of sodium polyacrylate, one of the most common SAP. We experimentally measured the water absorption of sodium polyacrylate particles in one-dimensional confined channel. The water flows through the particles were analyzed by capillarity dominant at the early stage and by diffusion involving volume expansion critical at a later stage. The results provide a quantitative basis of the hydrodynamic analysis of the water flow through SAP particles from a macroscopic point of view, facilitating the prediction of water uptake of SAPs in hygienic and agricultural applications. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No.2015R1A2A2A04006181).

  17. Geometrical dependence of spin current absorption into a ferromagnetic nanodot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi, E-mail: t-kimu@phys.kyushu-u.ac.jp

    We have investigated the absorption property of the diffusive pure spin current due to a ferromagnetic nanodot in a laterally configured ferromagnetic/nonmagnetic hybrid nanostructure. The spin absorption in a nano-pillar-based lateral-spin-valve structure was confirmed to increase with increasing the lateral dimension of the ferromagnetic dot. However, the absorption efficiency was smaller than that in a conventional lateral spin valve based on nanowire junctions because the large effective cross section of the two dimensional nonmagnetic film reduces the spin absorption selectivity. We also found that the absorption efficiency of the spin current is significantly enhanced by using a thick ferromagnetic nanodot.more » This can be understood by taking into account the spin absorption through the side surface of the ferromagnetic dot quantitatively.« less

  18. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  19. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...

  20. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...

  1. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...

  2. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...

  3. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be less...

  4. Neutron absorption constraints on the composition of 4 Vesta

    USGS Publications Warehouse

    Prettyman, Thomas H.; Mittlefehldt, David W.; Yamashita, Naoyuki; Beck, Andrew W.; Feldman, William C.; Hendricks, John S.; Lawrence, David J.; McCoy, Timothy J.; McSween, Harry Y.; Paplowski, Patrick N.; Reedy, Robert C.; Toplis, Michael J.; Le Corre, Lucille; Mizzon, Hugau; Reddy, Vishnu; Titus, Timothy N.; Raymond, Carol A.; Russell, Christopher T.

    2013-01-01

    Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock-forming elements. From a circular, polar low-altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole-rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg-rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine-rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's “dark” hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.

  5. Neutron absorption constraints on the composition of 4 Vesta

    NASA Astrophysics Data System (ADS)

    Prettyman, Thomas H.; Mittlefehldt, David W.; Yamashita, Naoyuki; Beck, Andrew W.; Feldman, William C.; Hendricks, John S.; Lawrence, David J.; McCoy, Timothy J.; McSween, Harry Y.; Peplowski, Patrick N.; Reedy, Robert C.; Toplis, Michael J.; Corre, Lucille; Mizzon, Hugau; Reddy, Vishnu; Titus, Timothy N.; Raymond, Carol A.; Russell, Christopher T.

    2013-11-01

    Global maps of the macroscopic thermal neutron absorption cross section of Vesta's regolith by the Gamma Ray and Neutron Detector (GRaND) on board the NASA Dawn spacecraft provide constraints on the abundance and distribution of Fe, Ca, Al, Mg, and other rock-forming elements. From a circular, polar low-altitude mapping orbit, GRaND sampled the regolith to decimeter depths with a spatial resolution of about 300 km. At this spatial scale, the variation in neutron absorption is about seven times lower than that of the Moon. The observed variation is consistent with the range of absorption for howardite whole-rock compositions, which further supports the connection between Vesta and the howardite, eucrite, and diogenite meteorites. We find a strong correlation between neutron absorption and the percentage of eucritic materials in howardites and polymict breccias, which enables petrologic mapping of Vesta's surface. The distribution of basaltic eucrite and diogenite determined from neutron absorption measurements is qualitatively similar to that indicated by visible and near infrared spectroscopy. The Rheasilvia basin and ejecta blanket has relatively low absorption, consistent with Mg-rich orthopyroxene. Based on a combination of Fe and neutron absorption measurements, olivine-rich lithologies are not detected on the spatial scales sampled by GRaND. The sensitivity of GRaND to the presence of mantle material is described and implications for the absence of an olivine signature are discussed. High absorption values found in Vesta's "dark" hemisphere, where exogenic hydrogen has accumulated, indicate that this region is richer in basaltic eucrite, representative of Vesta's ancient upper crust.

  6. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.

    PubMed

    Sjögren, Erik; Westergren, Jan; Grant, Iain; Hanisch, Gunilla; Lindfors, Lennart; Lennernäs, Hans; Abrahamsson, Bertil; Tannergren, Christer

    2013-07-16

    Oral drug delivery is the predominant administration route for a major part of the pharmaceutical products used worldwide. Further understanding and improvement of gastrointestinal drug absorption predictions is currently a highly prioritized area of research within the pharmaceutical industry. The fraction absorbed (fabs) of an oral dose after administration of a solid dosage form is a key parameter in the estimation of the in vivo performance of an orally administrated drug formulation. This study discloses an evaluation of the predictive performance of the mechanistic physiologically based absorption model GI-Sim. GI-Sim deploys a compartmental gastrointestinal absorption and transit model as well as algorithms describing permeability, dissolution rate, salt effects, partitioning into micelles, particle and micelle drifting in the aqueous boundary layer, particle growth and amorphous or crystalline precipitation. Twelve APIs with reported or expected absorption limitations in humans, due to permeability, dissolution and/or solubility, were investigated. Predictions of the intestinal absorption for different doses and formulations were performed based on physicochemical and biopharmaceutical properties, such as solubility in buffer and simulated intestinal fluid, molecular weight, pK(a), diffusivity and molecule density, measured or estimated human effective permeability and particle size distribution. The performance of GI-Sim was evaluated by comparing predicted plasma concentration-time profiles along with oral pharmacokinetic parameters originating from clinical studies in healthy individuals. The capability of GI-Sim to correctly predict impact of dose and particle size as well as the in vivo performance of nanoformulations was also investigated. The overall predictive performance of GI-Sim was good as >95% of the predicted pharmacokinetic parameters (C(max) and AUC) were within a 2-fold deviation from the clinical observations and the predicted plasma AUC

  7. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    PubMed

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  8. Measurement of HCl absorption coefficients with a DF laser

    NASA Technical Reports Server (NTRS)

    Bair, C. H.; Allario, F.

    1977-01-01

    Absorption coefficients in the fundamental P-branch of HCl at several DF laser transitions from 2439.02/cm to 2862.87/cm have been measured experimentally. The 2-1 P(3) DF laser transition has been shown to overlap the P(6) HCl-37 absorption line within the halfwidth of an atmospherically broadened line. The absorption coefficient k was measured to be 5.64 plus or minus 0.28/(atm-cm) for a 0.27% mixture of HCl in N2 at a total pressure of 760 torr. A theoretical and experimental comparison of the pressure dependence of k showed that the 2-1 P(3) DF transition lies 1.32 plus or minus 0.15 GHz from the center of the P(6) HCl absorption line. Applications of these results to differential absorption lidar and to heterodyne detection are discussed.

  9. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    PubMed

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  10. Correction to the Beer-Lambert-Bouguer law for optical absorption.

    PubMed

    Abitan, Haim; Bohr, Henrik; Buchhave, Preben

    2008-10-10

    The Beer-Lambert-Bouguer absorption law, known as Beer's law for absorption in an optical medium, is precise only at power densities lower than a few kW. At higher power densities this law fails because it neglects the processes of stimulated emission and spontaneous emission. In previous models that considered those processes, an analytical expression for the absorption law could not be obtained. We show here that by utilizing the Lambert W-function, the two-level energy rate equation model is solved analytically, and this leads into a general absorption law that is exact because it accounts for absorption as well as stimulated and spontaneous emission. The general absorption law reduces to Beer's law at low power densities. A criterion for its application is given along with experimental examples. (c) 2008 Optical Society of America

  11. Sound absorption characteristics of tree bark and forest floor

    Treesearch

    G. Reethof; O. H. McDaniel; G. M. Heisler

    1977-01-01

    Results of basic research on absorption of sound by tree bark and forest floors are presented. Amount of sound absorption by tree bark was determined by laboratory experiments with bark samples in a standing-wave tube. A modified portable standing-wave tube was used to measure absorption of sound by forest floors with different moisture contents, with and without leaf...

  12. Resonant indirect optical absorption in germanium

    NASA Astrophysics Data System (ADS)

    Menéndez, José; Noël, Mario; Zwinkels, Joanne C.; Lockwood, David J.

    2017-09-01

    The optical absorption coefficient of pure Ge has been determined from high-accuracy, high-precision optical measurements at photon energies covering the spectral range between the indirect and direct gaps. The results are compared with a theoretical model that fully accounts for the resonant nature of the energy denominators that appear in perturbation-theory expansions of the absorption coefficient. The model generalizes the classic Elliott approach to indirect excitons, and leads to a predicted optical absorption that is in excellent agreement with the experimental values using just a single adjustable parameter: the average deformation potential DΓ L coupling electrons at the bottom of the direct and indirect valleys in the conduction band. Remarkably, the fitted value, DΓ L=4.3 ×108eV /cm , is in nearly perfect agreement with independent measurements and ab initio predictions of this parameter, confirming the validity of the proposed theory, which has general applicability.

  13. Tunable electromagnetically induced absorption based on graphene

    NASA Astrophysics Data System (ADS)

    Cao, Maoyong; Wang, Tongling; Zhang, Huiyun; Zhang, Yuping

    2018-04-01

    In this paper, an electronically induced absorption (EIA) structure based on graphene at the infrared frequency is proposed. A pair of nanorods is coupled to a ring resonator, resulting in electronically induced transparency (EIT), and then, Babinet's principle is applied to transform the EIT structure into an EIA structure. Based on the bright and dark modes of the coupling schemes, the adjustment of the coupling strength between the dark and bright modes can be achieved by changing the asymmetry degree. In addition, the transparency window and the absorption peak can be tuned by changing the Fermi energy of graphene. This graphene-based EIA structure can develop the path in narrow-band filtering and, absorptive switching in the future.

  14. Absorption Cross-Sections of Sodium Diatomic Molecules

    NASA Technical Reports Server (NTRS)

    Fong, Zeng-Shevan

    1985-01-01

    The absorption cross sections of sodium dimers were studied using a heat pipe over operating in the non-heat-pipe mode. Three wavelength regions were observed. They are in the red, the green-blue, and the near ultraviolet regions. The absorption cross section depends on the wavelength of the incident light. Representative peak values for the v"=0 progression in the red and green-blue regions are 2.59 A sup 2 (average value) and 11.77 A sup 2 (T sub ave=624 K). The value for the C greater than X transitions is several tenths A sup 2. The cross sections were measured from absorption spectra taken as a function of temperature.

  15. A Review: Characteristics of Noise Absorption Material

    NASA Astrophysics Data System (ADS)

    Amares, S.; Sujatmika, E.; Hong, T. W.; Durairaj, R.; Hamid, H. S. H. B.

    2017-10-01

    Noise is always treated as a nuisance to human and even noise pollution appears in the environmental causing discomfort. This also concerns the engineering design that tends to cultivate this noise propagation. Solution such as using material to absorb the sound have been widely used. The fundamental of the sound absorbing propagation, sound absorbing characteristics and its factors are minimally debated. Furthermore, the method in order to pertain sound absorbing related to the sound absorption coefficient is also limited, as many studies only contributes in result basis and very little in literature aspect. This paper revolves in providing better insight on the importance of sound absorption and the materials factors in obtaining the sound absorption coefficient.

  16. Measurement of Absorption Coefficient of Paraformaldehyde and Metaldehyde with Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Xia, T.; Chen, Q.; Sun, Q.; Deng, Y.; Wang, C.

    2018-03-01

    The characteristic absorption spectra of paraformaldehyde and metaldehyde in the terahertz frequency region are obtained by terahertz time-domain spectroscopy (THz-TDS). In order to reduce the absorption of terahertz (THz) wave by water vapor in the air and the background noise, the measurement system was filled with dry air and the measurements were conducted at the temperature of 24°C. Meanwhile, the humidity was controlled within 10% RH. The THz frequency domain spectra of samples and their references from 0 to 2.5 THz were analyzed via Fourier transform. The refractive index and absorption coefficients of the two aldehydes were calculated by the model formulas. From 0.1 to 2.5 THz, there appear two weak absorption peaks at 1.20 and 1.66 THz in the absorption spectra of paraformaldehyde. Only one distinct absorption peak emerges at 1.83 THz for metaldehyde. There are significant differences between the terahertz absorption coefficients of paraformaldehyde and metaldehyde, which can be used as "fingerprints" to identify these substances. Furthermore, the relationship between the average absorption coefficients and mass concentrations was investigated and the average absorption coefficient-mass concentration diagrams of paraformaldehyde and metaldehyde were shown. For paraformaldehyde, there is a linear relationship between the average absorption coefficient and the natural logarithm of mass concentration. For metaldehyde, there exists a simpler linear relationship between the average absorption coefficient and the mass concentration. Because of the characteristics of THz absorption of paraformaldehyde and metaldehyde, the THz-TDS can be applied to the qualitative and quantitative detection of the two aldehydes to reduce the unpredictable hazards due to these substances.

  17. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  18. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  19. Molecular hydrogen absorption systems in Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Klimenko, V. V.; Ivanchik, A. V.; Varshalovich, D. A.; Petitjean, P.; Noterdaeme, P.

    2014-05-01

    We present a systematic search for molecular hydrogen absorption systems at high redshift in quasar spectra from the Sloan Digital Sky Survey (SDSS)-II Data Release 7 and SDSS-III Data Release 9. We have selected candidates using a modified profile fitting technique taking into account that the Lyα forest can effectively mimic H2 absorption systems at the resolution of SDSS data. To estimate the confidence level of the detections, we use two methods: a Monte Carlo sampling and an analysis of control samples. The analysis of control samples allows us to define regions of the spectral quality parameter space where H2 absorption systems can be confidently identified. We find that H2 absorption systems with column densities log NH2 > 19 can be detected in only less than 3 per cent of SDSS quasar spectra. We estimate the upper limit on the detection rate of saturated H2 absorption systems (NH2 > 19) in damped Lyα (DLA) systems to be about 7 per cent. We provide a sample of 23 confident H2 absorption system candidates that would be interesting to follow up with high-resolution spectrographs. There is a 1σ r - i colour excess and non-significant AV extinction excess in quasar spectra with an H2 candidate compared to standard DLA-bearing quasar spectra. The equivalent widths of C II, Si II and Al III (but not Fe II) absorptions associated with H2 candidate DLAs are larger compared to standard DLAs. This is probably related to a larger spread in velocity of the absorption lines in the H2-bearing sample.

  20. Vitamin B12 absorption capacity in healthy children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hjelt, K.; Krasilnikoff, P.A.

    1986-03-01

    B12 absorption was investigated in 47 healthy children aged 7 months to 15.8 years (median 4.9 years). The patients had either recovered from giardiasis, the post-gastroenteritis syndrome, or had celiac disease in remission (treated with a gluten-free diet). The B12 absorption was measured by a double-isotope technique using /sup 57/CoB12 and /sup 51/CrCl/sub 3/, the latter being the inabsorbable marker. The radiation dose was minimal. The results were presented as fractional absorption of B12 (FAB12). Within the different age groups, the absorption test was performed by means of the following oral amounts of B12: 0- less than 1 year, 0.5more » microgram; 1-3 years: 1.7 micrograms, 4-6 years, 2.5 micrograms; 7-10 years; 3.3 micrograms; and 11-15 years, 4.5 micrograms. When using these oral amounts of B12, the medians (and ranges) of FAB12 were found to be: 1-3 years (n = 18), 37% (16-80%); 4-6 years (n = 10), 27% (19-40%); 7-10 years (n = 9), 32% (21-44%); and 11-15 years (n = 8), 27% (19-59%). The FAB12 in two children aged 7 and 11 months was 31% and 32%, respectively. These results may be interpretated as reference values for B12 absorption in children. Further absorption tests were performed in seven children representing the four age groups from 1 to 15 years. When a high oral amount of B12 was given (i.e., three times the saturation dose), the FAB12 ranged from 0 to 20% (median 9%), whereas a low amount (i.e., one-ninth of the saturation dose) produced fractional absorptions from 65 to 82% (median 74%).« less

  1. Calcium Absorption Response to Cholecalciferol Supplementation in Hemodialysis

    PubMed Central

    Zena, Mohsen; Lund, Richard; Heaney, Robert P.

    2013-01-01

    Summary Background and objectives Recent understanding of extrarenal production of calcitriol has led to the use of more vitamin D supplementation in CKD populations. This paper reports the effect of cholecalciferol supplementation on calcium absorption. Design, setting, participants, & measurements Paired calcium absorption tests were done before and after 12–13 weeks of 20,000 IU weekly cholecalciferol supplementation in 30 participants with stage 5 CKD on hemodialysis. The study was conducted from April to December of 2011. Calcium absorption was tested with a standardized meal containing 300 mg calcium carbonate intrinsically labeled with 45Ca; 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D were measured. Results 25-Hydroxyvitamin D rose from 14.2 ng/ml (11.5–18.5) at baseline to 49.3 ng/ml (42.3–58.1) at the end of the study (P<0.001). 1,25-Dihydroxyvitamin D rose from 15.1 (10.5–18.8) pg/ml at baseline to 20.5 (17.0–24.7) pg/ml at the end of the study (P<0.001). The median baseline calcium absorption was 12% (7%–17%) and 12% (7%–16%) at the end of study. Conclusions Patients with stage 5 CKD on hemodialysis had very low calcium absorption values at baseline, and cholecalciferol supplementation that raised 25(OH)D levels to 50 ng/ml had no effect on calcium absorption. PMID:23411428

  2. Compressive Behaviour and Energy Absorption of Aluminium Foam Sandwich

    NASA Astrophysics Data System (ADS)

    Endut, N. A.; Hazza, M. H. F. Al; Sidek, A. A.; Adesta, E. T. Y.; Ibrahim, N. A.

    2018-01-01

    Development of materials in automotive industries plays an important role in order to retain the safety, performance and cost. Metal foams are one of the idea to evolve new material in automotive industries since it can absorb energy when it deformed and good for crash management. Recently, new technology had been introduced to replace metallic foam by using aluminium foam sandwich (AFS) due to lightweight and high energy absorption behaviour. Therefore, this paper provides reliable data that can be used to analyze the energy absorption behaviour of aluminium foam sandwich by conducting experimental work which is compression test. Six experiments of the compression test were carried out to analyze the stress-strain relationship in terms of energy absorption behavior. The effects of input variables include varying the thickness of aluminium foam core and aluminium sheets on energy absorption behavior were evaluated comprehensively. Stress-strain relationship curves was used for energy absorption of aluminium foam sandwich calculation. The result highlights that the energy absorption of aluminium foam sandwich increases from 12.74 J to 64.42 J respectively with increasing the foam and skin thickness.

  3. Some aspects of coupling-induced sound absorption in enclosures.

    PubMed

    Sum, K S; Pan, J

    2003-08-01

    It is known that the coupling between a modally reactive boundary structure of an enclosure and the enclosed sound field induces absorption in the sound field. However, the effect of this absorption on the sound-field response can vary significantly, even when material properties of the structure and dimensions of the coupled system are not changed. Although there have been numerous investigations of coupling between a structure and an enclosed sound field, little work has been done in the area of sound absorption induced by the coupling. Therefore, characteristics of the absorption are not well understood and the extent of its influence on the behavior of the sound-field response is not clearly known. In this paper, the coupling of a boundary structure and an enclosed sound field in frequency bands above the low-frequency range is considered. Three aspects of the coupling-induced sound absorption are studied namely, the effects of exciting either the structure or the sound field directly, damping in the uncoupled sound field and damping in the uncoupled structure. The results provide an understanding of some features of the coupling-induced absorption and its significance to the sound-field response.

  4. Credibility judgments of narratives: language, plausibility, and absorption.

    PubMed

    Nahari, Galit; Glicksohn, Joseph; Nachson, Israel

    2010-01-01

    Two experiments were conducted in order to find out whether textual features of narratives differentially affect credibility judgments made by judges having different levels of absorption (a disposition associated with rich visual imagination). Participants in both experiments were exposed to a textual narrative and requested to judge whether the narrator actually experienced the event he described in his story. In Experiment 1, the narrative varied in terms of language (literal, figurative) and plausibility (ordinary, anomalous). In Experiment 2, the narrative varied in terms of language only. The participants' perceptions of the plausibility of the story described and the extent to which they were absorbed in reading were measured. The data from both experiments together suggest that the groups applied entirely different criteria in credibility judgments. For high-absorption individuals, their credibility judgment depends on the degree to which the text can be assimilated into their own vivid imagination, whereas for low-absorption individuals it depends mainly on plausibility. That is, high-absorption individuals applied an experiential mental set while judging the credibility of the narrator, whereas low-absorption individuals applied an instrumental mental set. Possible cognitive mechanisms and implications for credibility judgments are discussed.

  5. Exciton absorption of entangled photons in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team

    2013-03-01

    The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes

  6. Terahertz absorption of lysozyme in solution

    NASA Astrophysics Data System (ADS)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2017-08-01

    Absorption of radiation by solution is described by its frequency-dependent dielectric function and can be viewed as a specific application of the dielectric theory of solutions. For ideal solutions, the dielectric boundary-value problem separates the polar response into the polarization of the void in the liquid, created by the solute, and the response of the solute dipole. In the case of a protein as a solute, protein nuclear dynamics do not project on significant fluctuations of the dipole moment in the terahertz domain of frequencies and the protein dipole can be viewed as dynamically frozen. Absorption of radiation then reflects the interfacial polarization. Here we apply an analytical theory and computer simulations to absorption of radiation by an ideal solution of lysozyme. Comparison with the experiment shows that Maxwell electrostatics fails to describe the polarization of the protein-water interface and the "Lorentz void," which does not anticipate polarization of the interface by the external field (no surface charges), better represents the data. An analytical theory for the slope of the solution absorption against the volume fraction of the solute is formulated in terms of the cavity field response function. It is calculated from molecular dynamics simulations in good agreement with the experiment. The protein hydration shell emerges as a separate sub-ensemble, which, collectively, is not described by the standard electrostatics of dielectrics.

  7. Narrow absorption lines complex I: one form of broad absorption line

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Jian; Lin, Ying-Ru

    2018-03-01

    We discover that some of the broad absorption lines (BALs) are actually a complex of narrow absorption lines (NALs). As a pilot study of this type of BAL, we show this discovery through a typical example in this paper. Utilizing the two-epoch observations of J002710.06-094435.3 (hereafter J0027-0944) from the Sloan Digital Sky Survey (SDSS), we find that each of the C IV and Si IV BAL troughs contains at least four NAL doublets. By resolving the Si IV BAL into multiple NALs, we present the following main results and conclusions. First, all these NALs show coordinated variations between the two-epoch SDSS observations, suggesting that they all originate in the quasar outflow, and that their variations are due to global changes in the ionization condition of the absorbing gas. Secondly, a BAL consisting of a number of NAL components indicates that this type of BAL is basically the same as the intrinsic NAL, which tends to support the inclination model rather than the evolution model. Thirdly, although both the C IV and Si IV BALs originate from the same clumpy substructures of the outflow, they show different profile shapes: multiple absorption troughs for the Si IV BAL in a wider velocity range, while P-Cygni for the C IV BAL in a narrower velocity range. This can be interpreted by the substantial differences in fine structure and oscillator strength between the Si IVλλ1393, 1402 and C IVλλ1548, 1551 doublets. Based on the above conclusions, we consider that the decomposition of a BAL into NALs can serve as a way to resolve the clumpy structure for outflows, and it can be used to learn more about characteristics of the clumpy structure and to test the outflow model, when utilizing high-resolution spectra and photoionization model.

  8. Enhanced light absorption of solar cells and photodetectors by diffraction

    DOEpatents

    Zaidi, Saleem H.; Gee, James M.

    2005-02-22

    Enhanced light absorption of solar cells and photodetectors by diffraction is described. Triangular, rectangular, and blazed subwavelength periodic structures are shown to improve performance of solar cells. Surface reflection can be tailored for either broadband, or narrow-band spectral absorption. Enhanced absorption is achieved by efficient optical coupling into obliquely propagating transmitted diffraction orders. Subwavelength one-dimensional structures are designed for polarization-dependent, wavelength-selective absorption in solar cells and photodetectors, while two-dimensional structures are designed for polarization-independent, wavelength-selective absorption therein. Suitable one and two-dimensional subwavelength periodic structures can also be designed for broadband spectral absorption in solar cells and photodetectors. If reactive ion etching (RIE) processes are used to form the grating, RIE-induced surface damage in subwavelength structures can be repaired by forming junctions using ion implantation methods. RIE-induced surface damage can also be removed by post RIE wet-chemical etching treatments.

  9. Intrinsic defect oriented visible region absorption in zinc oxide films

    NASA Astrophysics Data System (ADS)

    Rakhesh, V.; Shankar, Balakrishnan

    2018-05-01

    Zinc Oxide films were deposited on the glass substrate using vacuum arc sputtering technology. Films were prepared in oxygen ambience for 10mA and 15 mA deposition current separately. The UV-Visible spectroscopy of the samples showed that both samples possess sharp absorption near 3.5eV which is the characteristic band gap absorption energy of ZnO films. The absorption coefficient were calculated for the samples and the (αℎϑ)2 vs energy plot is drawn. The plot suggested that in addition to the sharp band edge absorption, the sample prepared at 10mA deposition current showed sharp absorption edge near 1.51eV and that at 15 mA showed absorption edge near 1.47eV. This refers to the presence of an intrinsic defect level which is likely to be deep in the band gap.

  10. Grafting of 4-aminomethylbenzensulfonamide-lipoic acid conjugate on gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Stiti, M.; Bouzit, H.; Abdaoui, M.; Winum, J. Y.

    2012-02-01

    In this paper, we describe the synthesis of goldnanoparticles bearing aminomethylbenzensulfonamide via a lipoyl moiety. The resulting stable nanoparticles with an average size of 4.0 nm have been achieved by a facile and high-yielding one phase method, by the action of 4-aminomethylbenzensulfonamide-lipoic acid bioconjugate on chloroauric acide, using dimethylsulfoxide (DMSO) as the solvent and sodium tetrahydridoborate (NaBH4) as the reducing agent. UV-vis absorption, transmission electron microscopy (TEM) and X-ray diffraction were used to analyse the morphology and the structure of the obtained nanoparticles. Preliminary study shows that these new nanoparticles are endowed with highly and specific inhibitory activity for the isoform (IX) of carbonic anhydrase over expressed in many cancers, and are therefore attractive candidate to be used both in diagnosis and in treatment of tumours.

  11. A Two Micron Coherent Differential Absorption Lidar Development

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo C.; Koch, Grady J.; Beyon, Jeffrey Y.; VanValkenburg, Randal L.; Kavaya, Michael J.; hide

    2010-01-01

    A pulsed, 2-micron coherent Differential Absorption Lidar (DIAL)/Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument measures atmospheric CO2 profiles (by DIAL) from a ground platform. It allows the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop. Keywords: Differential Absorption Lidar, Near Infrared Laser,

  12. Pavement sound absorption measurements in the U.S.

    DOT National Transportation Integrated Search

    2012-08-19

    In the U.S., the topic of pavement sound absorption in regard to tire-pavement noise has shown increased interest and research over the last several years. Four types of pavement sound absorption measurements with various applications are discussed: ...

  13. Computer-Graphics Emulation of Chemical Instrumentation: Absorption Spectrophotometers.

    ERIC Educational Resources Information Center

    Gilbert, D. D.; And Others

    1982-01-01

    Describes interactive, computer-graphics program emulating behavior of high resolution, ultraviolet-visible analog recording spectrophotometer. Graphics terminal behaves as recording absorption spectrophotometer. Objective of the emulation is study of optimization of the instrument to yield accurate absorption spectra, including…

  14. Photothermal measurement of optical surface absorption using strain transducers

    NASA Astrophysics Data System (ADS)

    Leslie, D. H.; Trusty, G. L.

    1981-09-01

    We discuss the measurement of small optical surface absorption coefficients. A demonstration experiment was performed using a metallurgical strain gauge to measure 488 nm absorption on the surface of a glass plate. A strain of 10 to the minus 8th power resulted from absorption of 0.3 watts. The results are interpreted and the sensitivity of a proposed fiber optic strain gauge is discussed.

  15. BASIC STUDIES IN PERCUTANEOUS ABSORPTION.

    DTIC Science & Technology

    FATTY ACIDS, *SKIN(ANATOMY), ABSORPTION, ALKYL RADICALS, AMIDES, DIFFUSION, ELECTRON MICROSCOPY, HUMIDITY, LABORATORY ANIMALS, LIPIDS, ORGANIC SOLVENTS, PENETRATION, PRIVATION, PROTEINS, RATS, TEMPERATURE, WATER

  16. Efficient reverse saturable absorption of sol-gel hybrid plasmonic glasses

    NASA Astrophysics Data System (ADS)

    Lundén, H.; Lopes, C.; Lindgren, M.; Liotta, A.; Chateau, D.; Lerouge, F.; Chaput, F.; Désert, A.; Parola, S.

    2017-07-01

    Monolithic silica sol-gel glasses doped with platinum(II) acetylide complexes possessing respectively four or six phenylacetylene units (PE2-CH2OH and PE3-CH2OH) in combination with various concentrations of spherical and bipyramidal gold nanoparticles (AuNPs) known to enhance non-linear optical absorption, were prepared and polished to high optical quality. The non-linear absorption of the glasses was measured and compared to glasses doped solely with AuNPs, a platinum(II) acetylide with shorter delocalized structure, or combinations of both. At 532 nm excitation wavelength the chromophore inhibited the non-linear scattering previously found for glasses only doped with AuNPs. The measured non-linear absorption was attributed to reverse saturable absorption from the chromophore, as previously reported for PE2-CH2OH/AuNP glasses. At 600 nm strong nonlinear absorption was observed for the PE3-CH2OH/AuNPs glasses, also attributed to reverse saturable absorption. But contrary to previous findings for PE2-CH2OH/AuNPs, no distinct enhancement of the non-linear absorption for PE3-CH2OH/AuNPs was observed. A numerical population model for PE3-CH2OH was used to give a qualitative explanation of this difference. A stronger linear absorption in PE3-CH2OH would cause the highly absorbing triplet state to populate quicker during the leading edge of the laser pulse and this would in turn reduce the influence from two-photon absorption enhancement from AuNPs.

  17. Oxalate and Sucralose Absorption in Idiopathic Calcium Oxalate Stone Formers

    PubMed Central

    Knight, John; Jiang, Juquan; Wood, Kyle D.; Holmes, Ross P.; Assimos, Dean G.

    2011-01-01

    Objectives Oxalate has been hypothesized to undergo absorption in the large and small intestine by both paracellular and transepithelial transport. Sucralose is a chlorinated sugar that is absorbed by paracellular mechanisms. This study's objective was to better understand intestinal oxalate transport by correlating oxalate and sucralose absorption in idiopathic calcium oxalate stone formers. Methods Idiopathic calcium oxalate stone formers were recruited to provide urine specimens on both a self-selected diet and following a meal containing 90 mg of 13C2-oxalate and 5 grams of sucralose, and a stool sample for determination of Oxalobacter formigenes colonization. The 24 hour urine collections were fractionated into the first 6 hours and the subsequent 18 hours. Sucralose and oxalate excretion were measured during these periods and used to estimate absorption. Results A total of 38 subjects were evaluated. The majority of both the 13C2-oxalate and sucralose absorption occurred within the 0-6 hour collection. The 13C2-oxalate and sucralose absorptions were significantly correlated at the 0-6 hour, the 6-24 hour, and the total 24 hour time periods (p<0.04). All five oxalate hyperabsorbers(> 15% absorption) also absorbed significantly more sucralose during the 0-6 hour and whole 24 hour time points (p<0.04). Oxalobacter formigenes colonization did not significantly alter oxalate absorption. Conclusion The results suggest that the majority of oxalate is absorbed in the proximal portion of the gastrointestinal tract and that paracelluar transport is involved. Augmented paracellular transport, as evidenced by increased sucralose absorption, may also influence oxalate absorption. PMID:21676449

  18. Absorption by Spinning Dust: A Contaminant for High-redshift 21 cm Observations

    NASA Astrophysics Data System (ADS)

    Draine, B. T.; Miralda-Escudé, Jordi

    2018-05-01

    Spinning dust grains in front of the bright Galactic synchrotron background can produce a weak absorption signal that could affect measurements of high-redshift 21 cm absorption. At frequencies near 80 MHz where the Experiment to Detect the Global EoR Signature (EDGES) has reported 21 cm absorption at z≈ 17, absorption could be produced by interstellar nanoparticles with radii a≈ 50 \\mathringA in the cold interstellar medium (ISM), with rotational temperature T ≈ 50 K. Atmospheric aerosols could contribute additional absorption. The strength of the absorption depends on the abundance of such grains and on their dipole moments, which are uncertain. The breadth of the absorption spectrum of spinning dust limits its possible impact on measurement of a relatively narrow 21 cm absorption feature.

  19. 21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and measure...

  20. 21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and measure...

  1. 21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and measure...

  2. 21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and measure...

  3. Absorption sites of orally administered drugs in the small intestine.

    PubMed

    Murakami, Teruo

    2017-12-01

    In pharmacotherapy, drugs are mostly taken orally to be absorbed systemically from the small intestine, and some drugs are known to have preferential absorption sites in the small intestine. It would therefore be valuable to know the absorption sites of orally administered drugs and the influencing factors. Areas covered:In this review, the author summarizes the reported absorption sites of orally administered drugs, as well as, influencing factors and experimental techniques. Information on the main absorption sites and influencing factors can help to develop ideal drug delivery systems and more effective pharmacotherapies. Expert opinion: Various factors including: the solubility, lipophilicity, luminal concentration, pKa value, transporter substrate specificity, transporter expression, luminal fluid pH, gastrointestinal transit time, and intestinal metabolism determine the site-dependent intestinal absorption. However, most of the dissolved fraction of orally administered drugs including substrates for ABC and SLC transporters, except for some weakly basic drugs with higher pKa values, are considered to be absorbed sequentially from the proximal small intestine. Securing the solubility and stability of drugs prior to reaching to the main absorption sites and appropriate delivery rates of drugs at absorption sites are important goals for achieving effective pharmacotherapy.

  4. Bicarbonate secretion and solute absorption in forestomach of the llama.

    PubMed

    Rübsamen, K; Engelhardt, W V

    1978-07-01

    Bicarbonate appearance in the lumen and its relationship to solute absorption were studied in a Pavlov pouch in the cardiac region of the first compartment of the llama forestomach. HCO3- appearance showed no diurnal variation. HCO3- accumulation was highly dependent on the pH of the solution used. The HCO3- ion probably is formed from CO2 diffusing into the lumen from the serosal side, as a result of cell metabolism and of OH- ions. HCO3- accumulation was closely related to volatile fatty acid (VFA) absorption. The ratio of HCO3- appearance to VFA absorption depended on the pH of the solution. At a pH of 6.6, about 0.1 mol HCO3- and, at a pH of 7.8, 0.9 mol HCO3- appeared per mole absorbed VFA, indicating that at slightly alkaline pH nearly all H+ ions required for the nonionic absorption of VFA appeared to be delivered from the dissociation of H2CO3. Bicarbonate gain and VFA absorption were increased when animals were not fed for 48 h. Sodium absorption was related to VFA as well as water absorption.

  5. During air cool process aerosol absorption detection with photothermal interferometry

    NASA Astrophysics Data System (ADS)

    Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang

    2014-11-01

    This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.

  6. Nanofibrous membrane-based absorption refrigeration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Sampath, K; Moghaddam, S

    2013-12-01

    This paper presents a study on the efficacy of highly porous nanofibrous membranes for application in membrane-based absorbers and desorbers. Permeability studies showed that membranes with a pore size greater than about one micron have a sufficient permeability for application in the absorber heat exchanger. Membranes with smaller pores were found to be adequate for the desorber heat exchanger. The membranes were implemented in experimental membrane-based absorber and desorber modules and successfully tested. Parametric studies were conducted on both absorber and desorber processes. Studies on the absorption process were focused on the effects of water vapor pressure, cooling water temperature,more » and the solution velocity on the absorption rate. Desorption studies were conducted on the effects of wall temperature, vapor and solution pressures, and the solution velocity on the desorption rate. Significantly higher absorption and desorption rates than in the falling film absorbers and desorbers were achieved. Published by Elsevier Ltd.« less

  7. The economics of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    Analytic procedure evaluates cost of combining absorption-cycle chiller with solar-energy system in residential or commercial application. Procedure assumes that solar-energy system already exists to heat building and that cooling system must be added. Decision is whether to cool building with conventional vapor-compression-cycle chiller or to use solar-energy system to provide heat input to absorption chiller.

  8. Development of Efficient Chemistry to Generate Site-Specific Disulfide-Linked Protein- and Peptide-Payload Conjugates: Application to THIOMAB Antibody-Drug Conjugates.

    PubMed

    Sadowsky, Jack D; Pillow, Thomas H; Chen, Jinhua; Fan, Fang; He, Changrong; Wang, Yanli; Yan, Gang; Yao, Hui; Xu, Zijin; Martin, Shanique; Zhang, Donglu; Chu, Phillip; Dela Cruz-Chuh, Josefa; O'Donohue, Aimee; Li, Guangmin; Del Rosario, Geoffrey; He, Jintang; Liu, Luna; Ng, Carl; Su, Dian; Lewis Phillips, Gail D; Kozak, Katherine R; Yu, Shang-Fan; Xu, Keyang; Leipold, Douglas; Wai, John

    2017-08-16

    Conjugation of small molecule payloads to cysteine residues on proteins via a disulfide bond represents an attractive strategy to generate redox-sensitive bioconjugates, which have value as potential diagnostic reagents or therapeutics. Advancement of such "direct-disulfide" bioconjugates to the clinic necessitates chemical methods to form disulfide connections efficiently, without byproducts. The disulfide connection must also be resistant to premature cleavage by thiols prior to arrival at the targeted tissue. We show here that commonly employed methods to generate direct disulfide-linked bioconjugates are inadequate for addressing these challenges. We describe our efforts to optimize direct-disulfide conjugation chemistry, focusing on the generation of conjugates between cytotoxic payloads and cysteine-engineered antibodies (i.e., THIOMAB antibody-drug conjugates, or TDCs). This work culminates in the development of novel, high-yielding conjugation chemistry for creating direct payload disulfide connections to any of several Cys mutation sites in THIOMAB antibodies or to Cys sites in other biomolecules (e.g., human serum albumin and cell-penetrating peptides). We conclude by demonstrating that hindered direct disulfide TDCs with two methyl groups adjacent to the disulfide, which have heretofore not been described for any bioconjugate, are more stable and more efficacious in mouse tumor xenograft studies than less hindered analogs.

  9. Improvement of intestinal absorption of forsythoside A in weeping forsythia extract by various absorption enhancers based on tight junctions.

    PubMed

    Zhou, Wei; Qin, Kun Ming; Shan, Jin Jun; Ju, Wen Zheng; Liu, Shi Jia; Cai, Bao Chang; Di, Liu Qing

    2012-12-15

    Forsythoside A (FTA), one of the main active ingredients in weeping forsythia extract, possesses strong antibacterial, antioxidant and antiviral effects, and its content was about 8% of totally, higher largely than that of other ingredients, but the absolute bioavailability orally was approximately 0.5%, which is significant low influencing clinical efficacies of its oral preparations. In the present study, in vitro Caco-2 cell, in situ single-pass intestinal perfusion and in vivo pharmacokinetics study were performed to investigate the effects of absorption enhancers based on tight junctions: sodium caprate and water-soluble chitosan on the intestinal absorption of FTA, and the eventual mucosal epithelial damage resulted from absorption enhancers was evaluated by MTT test, measurement of total amount of protein and the activity of LDH and morphology observation, respectively. The pharmacological effects such as antioxidant activity improvement by absorption enhancers were verified by PC12 cell damage inhibition rate after H₂O₂ insults. The observations from in vitro Caco-2 cell showed that the absorption of FTA in weeping forsythia extract could be improved by absorption enhancers. Meanwhile, the absorption enhancing effect of water-soluble chitosan may be almost saturable up to 0.0032% (w/v), and sodium caprate at concentrations up to 0.64 mg/ml was safe for the Caco-2 cells, but water-soluble chitosan at different concentrations was all safe for these cells. The observations from single-pass intestinal perfusion in situ model showed that duodenum, jejunum, ileum and colon showed significantly concentration-dependent increase in P(eff)-value, and that P(eff)-value in the ileum and colon groups, where sodium caprate was added, was higher than that of duodenum and jejunum groups, but P(eff)-value in the jejunum group was higher than that of duodenum, ileum and colon groups where water-soluble chitosan was added. Intestinal mucosal toxicity studies showed no

  10. Intestinal fluid absorption in spontaneously hypertensive rats.

    PubMed Central

    Dorey, P G; King, J; Munday, K A; Parsons, B J; Poat, J A

    1983-01-01

    A comparison has been made of intestinal fluid absorption between male Okamoto spontaneously hypertensive rats (s.h.r.) and normotensive male Wistar controls. S.h.r. show enhanced fluid absorption both in hypertensive adults and in young s.h.r. before hypertension has developed. Several potential causes for increased fluid transport in s.h.r. were tested using pharmacological antagonists. It is unlikely that enhanced fluid absorption is due to high sympathetic nervous activity, the renin-angiotensin system or is secondary to hypertension. Intestine from s.h.r. have a high short-circuit current indicating a change in ion pump activity. These results are discussed in relation to the possible causes of increased fluid (ion) transport by the intestine of s.h.r. PMID:6361232

  11. Light Absorption of Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Holanda, B. A.; Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Andreae, M. O.; Saturno, J.; Pöhlker, C.; Holben, B. N.; Schafer, J.

    2014-12-01

    Aerosol absorption is a key issue in proper calculation of aerosol radiative forcing. Especially in the tropics with the dominance of natural biogenic aerosol and brown carbon, the so called anomalous absorption is of particular interest. A special experiment was designed to study the wavelength dependence of aerosol absorption for PM2.5 as well as for PM10 particles in the wet season in Central Amazonia. Aerosol analysis occurred from May to August 2014, in the ZF2 ecological reservation, situated at about 55 km North of Manaus in very pristine conditions Two 7 wavelengths AE33 Aethalometers were deployed measuring in parallel, but with a PM2.5 and PM10 inlets. Two MAAP (Multiangle Aerosol Absorption Photometer) were operated in parallel with the AE33 exactly at the same PM2.5 and PM10 inlets. Organic and elemental carbon was analyzed using collection with quartz filters and analysis using a Sunset OC/EC analyzer. Aerosol light scattering for 3 wavelengths was measured using Air Photon and TSI Nephelometers. Aerosol size distribution was measured with one TSI SMPS and a GRIMM OPC to have the size range from 10 nm to 10 micrometers. Particles were measured under dry conditions using diffusion dryers. Aerosol optical depth and absorption was also measured with an AERONET sunphotometer operated close to the site. As the experiment was run in the wet season, very low equivalent black carbon (EBC) were measured, with average concentrations around 50 ng/m³ during May, increasing to 130 ng/m³ in June and July. The measurements adjusted for similar wavelengths shows excellent agreement between the MAAP and AE33 for both inlets (PM2.5 and PM10). It was not possible statistically infer absorption from the coarse mode biogenic particles, since the absorption was completely dominated by fine mode particles. AERONET measurements shows very low values of AOD, at 0.17 at 500 nm and 0.13 at 870 nm, with very low absorption AOD values at 0.00086 at 676 nm and 0.0068 at 872 nm

  12. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption

    PubMed Central

    Li, Yanan; Jiang, Han; Huang, Guangrong

    2017-01-01

    Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements. PMID:28617327

  13. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-10-01

    The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  14. DISCOVERY OF THE TRANSITION OF A MINI-BROAD ABSORPTION LINE INTO A BROAD ABSORPTION LINE IN THE SDSS QUASAR J115122.14+020426.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane

    We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broadmore » absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.« less

  15. [Purification of complicated industrial organic waste gas by complex absorption].

    PubMed

    Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang

    2011-12-01

    Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises.

  16. Vanishing absorption and blueshifted emission in FeLoBAL quasars

    NASA Astrophysics Data System (ADS)

    Rafiee, Alireza; Pirkola, Patrik; Hall, Patrick B.; Galati, Natalee; Rogerson, Jesse; Ameri, Abtin

    2016-07-01

    We study the dramatic decrease in iron absorption strength in the iron low-ionization broad absorption line quasar SDSS J084133.15+200525.8. We report on the continued weakening of absorption in the prototype of this class of variable broad absorption line quasar, FBQS J140806.2+305448. We also report a third example of this class, SDSS J123103.70+392903.6; unlike the other two examples, it has undergone an increase in observed continuum brightness (at 3000 Å rest frame) as well as a decrease in iron absorption strength. These changes could be caused by absorber transverse motion or by ionization variability. We note that the Mg II and UV Fe II lines in several FeLoBAL quasars are blueshifted by thousands of km s-1 relative to the H β emission line peak. We suggest that such emission arises in the outflowing winds normally seen only in absorption.

  17. Molecule-specific darkfield and multiphoton imaging using gold nanocages

    NASA Astrophysics Data System (ADS)

    Powless, Amy J.; Jenkins, Samir V.; McKay, Mary Lee; Chen, Jingyi; Muldoon, Timothy J.

    2015-03-01

    Due to their robust optical properties, biological inertness, and readily adjustable surface chemistry, gold nanostructures have been demonstrated as contrast agents in a variety of biomedical imaging applications. One application is dynamic imaging of live cells using bioconjugated gold nanoparticles to monitor molecule trafficking mechanisms within cells; for instance, the regulatory pathway of epidermal growth factor receptor (EGFR) undergoing endocytosis. In this paper, we have demonstrated a method to track endocytosis of EGFR in MDA-MB-468 breast adenocarcinoma cells using bioconjugated gold nanocages (AuNCs) and multiphoton microscopy. Dynamic imaging was performed using a time series capture of 4 images every minute for one hour. Specific binding and internalization of the bioconjugated AuNCs was observed while the two control groups showed non-specific binding at fewer surface sites, leading to fewer bound AuNCs and no internalization.

  18. Study on moisture absorption and sweat discharge of honeycomb polyester fiber

    NASA Astrophysics Data System (ADS)

    Feng, Aifen; Zhang, Yongjiu

    2015-07-01

    The moisture absorption and liberation properties of honeycomb polyester fiber were studied in order to understand its moisture absorption and sweat discharge. Through testing moisture absorption and liberation regains of honeycomb polyester fiber and normal polyester fiber in standard atmospheric conditions, their moisture absorption and liberation curves were depicted, and the regression equations of moisture regains to time during their reaching the balance of moisture absorption and moisture liberation were obtained according to the curves. Their moisture absorption and liberation rate curves were analyzed and the regression equations of the rates to time were obtained. The results shows that the moisture regain of honeycomb polyester fiber is much bigger than the normal polyester fiber's, and the initial moisture absorption and moisture liberation rates of the former are much higher than the latter's, so that the moisture absorbance and sweat discharge of honeycomb polyester fiber are excellent.

  19. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    PubMed

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  20. Absorption and emission spectra of Li atoms trapped in rare gas matrices

    NASA Astrophysics Data System (ADS)

    Wright, J. J.; Balling, L. C.

    1980-10-01

    Pulsed-dye-laser excitation has been used to investigate the optical absorption and emission spectra of Li atoms trapped in Ar, Kr, and Xe matrices at 10 °K. Attempts to stabilize Li atoms in a Ne matrix at 2 °K were unsuccessful. Results for all three rare gases were qualitatively the same. White light absorption scans showed a single absorption with three peaks centered near the free-atom 2s→2p transition wavelength. The intensity of fluorescence produced by dye-laser excitation within this absorption band was measured as a function of emission wavelength. Excitation of the longest- and shortest-wavelength absorption peaks produced identical emission profiles, but no distinct fluorescence signal was detected when the laser was tuned to the central absorption peaks, indicating that the apparent absorption triplet is actually the superposition of a singlet and a doublet absorption originating from two different trapping sites. No additional absorption bands were detected.

  1. Methods for the In Vitro Characterization of Nanomedicines—Biological Component Interaction

    PubMed Central

    Fornaguera, Cristina; Solans, Conxita

    2017-01-01

    The design of colloidal nanosystems intended for biomedical applications, specifically in the field of personalized medicine, has increased notably in the last years. Consequently, a variety of characterization techniques devoted to studying nanomedicine interactions with proteins and cells have been developed, since a deep characterization of nanosystems is required before starting preclinical and clinical studies. In this context, this review aims to summarize the main techniques used to assess the interaction of nanomedicines with biological systems, highlighting their advantages and disadvantages. Testing designed nanomaterials with these techniques is required in order to have more information about their behavior on a physiological environment. Moreover, techniques used to study the interaction of nanomedicines with proteins, such as albumin and fibrinogen, are summarized. These interactions are not desired, since they usually are the first signal to the body for the activation of the immune system, which leads to the clearance of the exogenous components. On the other hand, techniques for studying the cell toxicity of nanosystems are also summarized, since this information is required before starting preclinical steps. The translation of knowledge from novel designed nanosystems at a research laboratory scale to real human therapies is usually a limiting or even a final point due to the lack of systematic studies regarding these two aspects: nanoparticle interaction with biological components and nanoparticle cytotoxicity. In conclusion, this review will be a useful support for those scientists aiming to develop nanosystems for nanomedicine purposes. PMID:28134833

  2. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  3. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2017-03-06

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  4. Dietary Phospholipids and Intestinal Cholesterol Absorption

    PubMed Central

    Cohn, Jeffrey S.; Kamili, Alvin; Wat, Elaine; Chung, Rosanna W. S.; Tandy, Sally

    2010-01-01

    Experiments carried out with cultured cells and in experimental animals have consistently shown that phospholipids (PLs) can inhibit intestinal cholesterol absorption. Limited evidence from clinical studies suggests that dietary PL supplementation has a similar effect in man. A number of biological mechanisms have been proposed in order to explain how PL in the gut lumen is able to affect cholesterol uptake by the gut mucosa. Further research is however required to establish whether the ability of PLs to inhibit cholesterol absorption is of therapeutic benefit. PMID:22254012

  5. Universal Parameterization of Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.

    1999-01-01

    Our prior nuclear absorption cross sections model is extended for light systems (A less than or equal to 4) where either both projectile and target are light particles or one is a light particle and the other is a medium or heavy nucleus. The agreement with experiment is excellent for these cases as well. Present work in combination with our original model provides a comprehensive picture of absorption cross sections for light, medium, and heavy systems, a very valuable input for radiation protection studies.

  6. The effects of three absorption-modifying critical excipients on the in vivo intestinal absorption of six model compounds in rats and dogs.

    PubMed

    David, Dahlgren; Carl, Roos; Pernilla, Johansson; Christer, Tannergren; Anders, Lundqvist; Peter, Langguth; Markus, Sjöblom; Erik, Sjögren; Hans, Lennernäs

    2018-05-11

    Pharmaceutical excipients that may affect gastrointestinal (GI) drug absorption are called critical pharmaceutical excipients (CPEs), or absorption-modifying excipients (AMEs) if they act by altering the integrity of the intestinal epithelial cell membrane. Some of these excipients increase intestinal permeability, and subsequently the absorption and bioavailability of the drug. This could have implications for both the assessment of bioequivalence and the efficacy of the absorption-enhancing drug delivery system. The absorption-enhancing effects of AMEs/CPEs with different mechanisms (chitosan, sodium caprate, sodium dodecyl sulfate (SDS)) have previously been evaluated in the rat single-pass intestinal perfusion (SPIP) model. However, it remains unclear whether these SPIP data are predictive in a more in vivo like model. The same excipients were in this study evaluated in rat and dog intraintestinal bolus models. SDS and chitosan did exert an absorption-enhancing effect in both bolus models, but the effect was substantially lower than those observed in the rat SPIP model. This illustrates the complexity of the AME/CPE effects, and indicates that additional GI physiological factors need to be considered in their evaluation. We therefore recommend that AME/CPE evaluations obtained in transit-independent, preclinical permeability models (e.g. Ussing, SPIP) should be verified in animal models better able to predict in vivo relevant GI effects, at multiple excipient concentrations. Copyright © 2018. Published by Elsevier B.V.

  7. Properties of low-redshift QSO absorption systems - QSO-galaxy pairs

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.

    1993-01-01

    The chance proximity of QSOs and galaxies provides unique opportunities to probe the extent and content of gas in the foreground galaxies through evaluation of the incidence and strength of absorption lines in the spectra of the background QSOs. Recent results on the observed properties of these low-redshift, heavy-element absorption systems are summarized. These results are discussed in the context of the galaxy morphologies and environments and are briefly compared with Galactic absorption and with the inferred properties of higher-redshift QSO absorption systems.

  8. [INVITED] Coherent perfect absorption of electromagnetic wave in subwavelength structures

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Pu, Mingbo; Luo, Jun; Huang, Yijia; Li, Xiong; Ma, Xiaoliang; Luo, Xiangang

    2018-05-01

    Electromagnetic (EM) absorption is a common process by which the EM energy is transformed into other kinds of energy in the absorber, for example heat. Perfect absorption of EM with structures at subwavelength scale is important for many practical applications, such as stealth technology, thermal control and sensing. Coherent perfect absorption arises from the interplay of interference and absorption, which can be interpreted as a time-reversed process of lasing or EM emitting. It provides a promising way for complete absorption in both nanophotonics and electromagnetics. In this review, we discuss basic principles and properties of a coherent perfect absorber (CPA). Various subwavelength structures including thin films, metamaterials and waveguide-based structures to realize CPAs are compared. We also discuss the potential applications of CPAs.

  9. A plant canopy light absorption model with application to wheat

    NASA Technical Reports Server (NTRS)

    Chance, J. E.; Lemaster, E. W.

    1977-01-01

    From the light absorption model the absorption of light in the photosynthetically active region of the spectrum was calculated for a Penjamo wheat crop for several situations including: (1) the percent absorption of the incident radiation by a canopy having a four layer structure; (2) the percent absorption of light by the individual layers within a four layer canopy and by the underlying soil; (3) the percent absorption of light by each vegetative canopy layer for variable sun angle; and (4) the cumulative solar energy absorbed by the developing wheat canopy as it progresses from a single layer through its growth stages to a three layer canopy. This calculation was also presented as a function of the leaf area index.

  10. Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L

    NASA Astrophysics Data System (ADS)

    Mendonca, C. R.; Correa, D. S.; Baldacchini, T.; Tayalia, P.; Mazur, E.

    2008-03-01

    Two-photon absorption induced polymerization provides a powerful method for the fabrication of intricate three-dimensional microstructures. Recently, Lucirin TPO-L was shown to be a photoinitiator with several advantageous properties for two-photon induced polymerization. Here we measure the two-photon absorption cross-section spectrum of Lucirin TPO-L, which presents a maximum of 1.2 GM at 610 nm. Despite its small two-photon absorption cross-section, it is possible to fabricate excellent microstructures by two-photon polymerization due to the high polymerization quantum yield of Lucirin TPO-L. These results indicate that optimization of the two-photon absorption cross-section is not the only material parameter to be considered when searching for new photoinitiators for microfabrication via two-photon absorption.

  11. Absorption of zinc from lupin (Lupinus angustifolius)-based foods.

    PubMed

    Petterson, D S; Sandström, B; Cederblad, A

    1994-12-01

    The absorption of Zn from a lupin (Lupinus angustifolius) milk fortified with Ca, a bread containing lupin flour (230 g/kg), a sauce containing lupin flour and a sauce containing a lupin-protein isolate was determined in humans by measuring the whole-body retention of radioisotope from meals labelled with 0.02 MBq 65Zn, allowing for endogenous excretion of Zn, after 14 d. The absorption of Zn from the Ca-enriched milk (16.2%) and the bread made with lupin flour (27.0%) was similar to literature figures for comparable soya-bean products. The absorption from composite meals made with lupin flour (28.2%) and protein isolate (32.7%) was significantly higher than that reported for comparable soya-bean products. In a second experiment the absorption of Zn from a lupin-milk base and a soya-bean-milk base was compared with that from Ca-supplemented bases. The absorption of Zn from the lupin-milk base (26.3%) was significantly higher than from the soya-bean-milk base (17.6%), and neither was significantly altered by the addition of Ca. Overall the absorption of Zn from lupin-protein foods was found to be higher than from comparable soya-bean products. Lupin milk could be an attractive alternative to soya-bean milk for infant formulas.

  12. Two-Photon Absorption of Soft X-Ray Free Electron Laser Radiation by Graphite Near the Carbon K-Absorption Edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Steven T; Lam, Royce K.; Raj, Sumana L.

    We have examined the transmission of soft X-ray pulses from the FERMI free electron laser through carbon films of varying thickness, quantifying nonlinear effects of pulses above and below the carbon K-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption at photon energies above and below the K-edge, ~308 and ~260 eV, respectively; whereas two-photon absorption becomes significant slightly below the K-edge, ~284.2 eV. The measured two-photon absorption cross section at 284.18 eV (~6 x 10-48 cm4 s) is 7 orders of magnitude above what is expected from a simple theory based on hydrogen-like atomsmore » - a result of resonance effects.« less

  13. Two-photon absorption of soft X-ray free electron laser radiation by graphite near the carbon K-absorption edge

    NASA Astrophysics Data System (ADS)

    Lam, Royce K.; Raj, Sumana L.; Pascal, Tod A.; Pemmaraju, C. D.; Foglia, Laura; Simoncig, Alberto; Fabris, Nicola; Miotti, Paolo; Hull, Christopher J.; Rizzuto, Anthony M.; Smith, Jacob W.; Mincigrucci, Riccardo; Masciovecchio, Claudio; Gessini, Alessandro; De Ninno, Giovanni; Diviacco, Bruno; Roussel, Eleonore; Spampinati, Simone; Penco, Giuseppe; Di Mitri, Simone; Trovò, Mauro; Danailov, Miltcho B.; Christensen, Steven T.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Coreno, Marcello; Poletto, Luca; Drisdell, Walter S.; Prendergast, David; Giannessi, Luca; Principi, Emiliano; Nordlund, Dennis; Saykally, Richard J.; Schwartz, Craig P.

    2018-07-01

    We have examined the transmission of soft X-ray pulses from the FERMI free electron laser through carbon films of varying thickness, quantifying nonlinear effects of pulses above and below the carbon K-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption at photon energies above and below the K-edge, ∼308 and ∼260 eV, respectively; whereas two-photon absorption becomes significant slightly below the K-edge, ∼284.2 eV. The measured two-photon absorption cross section at 284.18 eV (∼6 × 10-48 cm4 s) is 7 orders of magnitude above what is expected from a simple theory based on hydrogen-like atoms - a result of resonance effects.

  14. Site-specific biomolecule labeling with gold clusters.

    PubMed

    Ackerson, Christopher J; Powell, Richard D; Hainfeld, James F

    2010-01-01

    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: linker-mediated bioconjugation, direct gold-biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (His)-tagged proteins. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Hydrolysis Batteries: Generating Electrical Energy during Hydrogen Absorption.

    PubMed

    Xiao, Rui; Chen, Jun; Fu, Kai; Zheng, Xinyao; Wang, Teng; Zheng, Jie; Li, Xingguo

    2018-02-19

    The hydrolysis reaction of aluminum can be decoupled into a battery by pairing an Al foil with a Pd-capped yttrium dihydride (YH 2 -Pd) electrode. This hydrolysis battery generates a voltage around 0.45 V and leads to hydrogen absorption into the YH 2 layer. This represents a new hydrogen absorption mechanism featuring electrical energy generation during hydrogen absorption. The hydrolysis battery converts 8-15 % of the thermal energy of the hydrolysis reaction into usable electrical energy, leading to much higher energy efficiency compared to that of direct hydrolysis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Extraordinary absorption of sound in porous lamella-crystals.

    PubMed

    Christensen, J; Romero-García, V; Picó, R; Cebrecos, A; de Abajo, F J García; Mortensen, N A; Willatzen, M; Sánchez-Morcillo, V J

    2014-04-14

    We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making the system more absorptive with less material.

  17. Extraordinary absorption of sound in porous lamella-crystals

    PubMed Central

    Christensen, J.; Romero-García, V.; Picó, R.; Cebrecos, A.; de Abajo, F. J. García; Mortensen, N. A.; Willatzen, M.; Sánchez-Morcillo, V. J.

    2014-01-01

    We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making the system more absorptive with less material. PMID:24728322

  18. Christiansen effect in disperse systems with resonant absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D A; Isaeva, Elmira A; Isaeva, A A

    We discuss the results of experimental studies of competition of absorption and scattering of laser radiation propagating in dispersive media with resonant absorption. As media under study, use is made of a suspension of polystyrene particles in solutions of rhodamine 6G in ethylene glycol probed by laser light with a wavelength of 532 nm. It is found that an increase in the dye concentration leads to an increase in optical transmittance of suspensions and an increase in speckle modulation of the forward-scattered radiation. We interpret these features as a manifestation of Christiansen effect in disperse systems with resonance absorption.

  19. Improved determination of particulate absorption from combined filter pad and PSICAM measurements.

    PubMed

    Lefering, Ina; Röttgers, Rüdiger; Weeks, Rebecca; Connor, Derek; Utschig, Christian; Heymann, Kerstin; McKee, David

    2016-10-31

    Filter pad light absorption measurements are subject to two major sources of experimental uncertainty: the so-called pathlength amplification factor, β, and scattering offsets, o, for which previous null-correction approaches are limited by recent observations of non-zero absorption in the near infrared (NIR). A new filter pad absorption correction method is presented here which uses linear regression against point-source integrating cavity absorption meter (PSICAM) absorption data to simultaneously resolve both β and the scattering offset. The PSICAM has previously been shown to provide accurate absorption data, even in highly scattering waters. Comparisons of PSICAM and filter pad particulate absorption data reveal linear relationships that vary on a sample by sample basis. This regression approach provides significantly improved agreement with PSICAM data (3.2% RMS%E) than previously published filter pad absorption corrections. Results show that direct transmittance (T-method) filter pad absorption measurements perform effectively at the same level as more complex geometrical configurations based on integrating cavity measurements (IS-method and QFT-ICAM) because the linear regression correction compensates for the sensitivity to scattering errors in the T-method. This approach produces accurate filter pad particulate absorption data for wavelengths in the blue/UV and in the NIR where sensitivity issues with PSICAM measurements limit performance. The combination of the filter pad absorption and PSICAM is therefore recommended for generating full spectral, best quality particulate absorption data as it enables correction of multiple errors sources across both measurements.

  20. Training and business performance: the mediating role of absorptive capacities.

    PubMed

    Hernández-Perlines, Felipe; Moreno-García, Juan; Yáñez-Araque, Benito

    2016-01-01

    Training has been the focus of considerable conceptual and empirical attention but is considered a relevant factor for competitive edge in companies because it has a positive impact on business performance. This study is justified by the need for deeper analysis of the process involving the transfer of training into performance. This paper's originality lies in the implementation of the absorptive capacities approach as an appropriate conceptual framework for designing a model that reflects the connection between training and business performance through absorptive capacities. Based on the above conceptual framework and using the dual methodological implementation, a new method of analyzing the relationship between training and performance was obtained: efforts in training will not lead to performance without the mediation of absorptive. Training turns into performance if absorptive capacities are involved in this process. The suggested model becomes an appropriate framework for explaining the process of transformation of training into organizational performance, in which absorptive capacities play a key role. The findings obtained can go further owing to fs/QCA: of the different absorptive capacities, that of exploitation is a necessary condition to achieve better organizational performance. Therefore, training based on absorptive capacity will guide and facilitate the design of appropriate human resource strategies so that training results in improved performance. This conclusion is relevant for the development of a new facet of absorptive capacities by relating it to training and resulting in first-level implications for human resource management.

  1. Dual-wavelength optical-resolution photoacoustic microscopy for cells with gold nanoparticle bioconjugates in three-dimensional cultures

    NASA Astrophysics Data System (ADS)

    Lee, Po-Yi; Liu, Wei-Wen; Chen, Shu-Ching; Li, Pai-Chi

    2016-03-01

    Three-dimensional (3D) in vitro models bridge the gap between typical two-dimensional cultures and in vivo conditions. However, conventional optical imaging methods such as confocal microscopy and two-photon microscopy cannot accurately depict cellular processing in 3D models due to limited penetration of photons. We developed a dualwavelength optical-resolution photoacoustic microscopy (OR-PAM), which provides sufficient penetration depth and spatial resolution, for studying CD8+ cytotoxic T lymphocytes (CTLs) trafficking in an in vitro 3D tumor microenvironment. CTLs play a cardinal role in host defense against tumor. Efficient trafficking of CTLs to the tumor microenvironment is a critical step for cancer immunotherapy. For the proposed system, gold nanospheres and indocyanine green (ICG) have been remarkable choices for contrast agents for photoacoustic signals due to their excellent biocompatibility and high optical absorption. With distinct absorption spectrums, targeted cells with gold nanospheres and ICG respectively can be identified by switching 523-nm and 800-nm laser irradiation. Moreover, we use an x-y galvanometer scanner to obtain high scanning rate. In the developed system, lateral and axial resolutions were designed at 1.6 μm and 5 μm, respectively. We successfully showed that dual-spectral OR-PAM can map either the distribution of CTLs with gold nanospheres at a visible wavelength of 523 nm or the 3D structure of tumor spheres with ICG in an in vitro 3D microenvironment. Our OR-PAM can provide better biological relevant information in cellular interaction and is potential for preclinical screening of anti-cancer drugs.

  2. Omnidirectional polarization insensitive tunable absorption in graphene metamaterial of nanodisk structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Bao, Jie; Jiao, Zheng; Xu, Yuan

    2015-11-01

    Tunable absorption based on graphene metamaterial with nanodisk structure at near-infrared frequency was investigated using the finite difference time domain method. The absorption of the nanodisk structure which consisting of Au-MgF2-graphene-Au-polyimide (from bottom to top) can be tuned by the chemical potential of graphene at certain diameter of nanodisk. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. It is shown that the increased value of the chemical potential of graphene can lead to blue-shifted of the absorption peaks and the values decreased. Moreover, dual-band and triple-band absorption can be achieved for resonance frequencies at normal incidence. Compared with diameter of nanodisks, the multilayer structure shows multi-band absorber, and an omnidirectional absorption at 195.25 THz is insensitive to TE/TM polarization. This omnidirectional polarization insensitive absorption may be applied by optical communications such as optical absorber, near infrared stealth, and filter.

  3. The gas-phase absorption spectrum of a neutral GFP model chromophore.

    PubMed

    Lammich, L; Petersen, M Axman; Nielsen, M Brøndsted; Andersen, L H

    2007-01-01

    We have studied the gas-phase absorption properties of the green fluorescent protein (GFP) chromophore in its neutral (protonated) charge state in a heavy-ion storage ring. To accomplish this we synthesized a new molecular chromophore with a charged NH(3) group attached to a neutral model chromophore of GFP. The gas-phase absorption cross section of this chromophore molecule as a function of the wavelength is compared to the well-known absorption profile of GFP. The chromophore has a maximum absorption at 415 +/- 5 nm. When corrected for the presence of the charged group attached to the GFP model chromophore, the unperturbed neutral chromophore is predicted to have an absorption maximum at 399 nm in vacuum. This is very close to the corresponding absorption peak of the protein at 397 nm. Together with previous data obtained with an anionic GFP model chromophore, the present data show that the absorption of GFP is primarily determined by intrinsic chromophore properties. In other words, there is strong experimental evidence that, in terms of absorption, the conditions in the hydrophobic interior of this protein are very close to those in vacuum.

  4. IN VITRO DERMAL ABSORPTION OF FLAME RETARDANT CHEMICALS

    EPA Science Inventory

    ABSTRACT
    The use of flame retardant chemicals in furniture fabric could pose a potential health risk to consumers from dermal absorption of these compounds. The objective of this study was to examine the in vitro dermal absorption of two flame retardant chemicals, [14C]-d...

  5. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  6. Enhanced broadband absorption in nanowire arrays with integrated Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Aghaeipour, Mahtab; Pettersson, Håkan

    2018-05-01

    A near-unity unselective absorption spectrum is desirable for high-performance photovoltaics. Nanowire (NW) arrays are promising candidates for efficient solar cells due to nanophotonic absorption resonances in the solar spectrum. The absorption spectra, however, display undesired dips between the resonance peaks. To achieve improved unselective broadband absorption, we propose to enclose distributed Bragg reflectors (DBRs) in the bottom and top parts of indium phosphide (InP) NWs, respectively. We theoretically show that by enclosing only two periods of In0.56Ga0.44As/InP DBRs, an unselective 78% absorption efficiency (72% for NWs without DBRs) is obtained at normal incidence in the spectral range from 300 nm to 920 nm. Under oblique light incidence, the absorption efficiency is enhanced up to about 85% at an incidence angle of 50°. By increasing the number of DBR periods from two to five, the absorption efficiency is further enhanced up to 95% at normal incidence. In this work, we calculated optical spectra for InP NWs, but the results are expected to be valid for other direct band gap III-V semiconductor materials. We believe that our proposed idea of integrating DBRs in NWs offers great potential for high-performance photovoltaic applications.

  7. Significance of Ca-soap formation for calcium absorption in the rat.

    PubMed Central

    Gacs, G; Barltrop, D

    1977-01-01

    The significance of calcium soap formation in the inhibition of calcium absorption has been studied in rats. 47Ca labelled soaps of fatty acids were introduced into the duodenum and the absorption of calcium measured after four hours in a whole body counter. The absorption of calcium was inversely correlated with the chain length of the fatty acid varying from 1% for Ca-stearate to 60% for Ca-hexanoate. Increasing the degree of unsaturation of the fatty acid was accompanied by increased calcium absorption. The availability of calcium for absorption from the soaps was correlated with their solubility in 1% aqueous Na-tauroglycocholate. The percentages of calcium as soap in the small intestine and the faeces after intragastric administration of calcium and fats were similar, which suggests that the faecal content of calcium soaps is an index of intestinal soap formation. Soap formation was negligible when CaCl2 was given with tristearate, triolaeate, or tridecanoate and no depression of calcium absorption was observed. Calcium absorption was markedly impaired by the addition of phosphates at a Ca/P ratio of 1:1 irrespective of the presence of neutral fats. Stearic acid resulted in significant soap formation and reduced calcium absorption. The degree of Ca-soap formation and the inhibition of calcium absorption were well correlated. The results suggest that, although calcium soap formation may markedly depress calcium absorption in the rat, no significant soap formation takes place when fats are given in the form of triglycerides. PMID:838405

  8. Scramjet Performance Assessment Using Water Absorption Diagnostics (U)

    NASA Technical Reports Server (NTRS)

    Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George

    1995-01-01

    Simultaneous multiple path measurements of temperature and H2O concentration will be presented for the AIMHYE test entries in the NASA Ames 16-Inch Shock Tunnel. Monitoring the progress of high temperature chemical reactions that define scramjet combustor efficiencies is a task uniquely suited to nonintrusive optical diagnostics. One application strategy to overcome the many challenges and limitations of nonintrusive measurements is to use laser absorption spectroscopy coupled with optical fibers. Absorption spectroscopic techniques with rapidly tunable lasers are capable of making simultaneous measurements of mole fraction, temperature, pressure, and velocity. The scramjet water absorption diagnostic was used to measure combustor efficiency and was compared to thrust measurements using a nozzle force balance and integrated nozzle pressures to develop a direct technique for evaluating integrated scramjet performance. Tests were initially performed with a diode laser tuning over a water absorption feature at 1391.7 nm. A second diode laser later became available at a wavelength near 1343.3 nm covering an additional water absorption feature and was incorporated in the system for a two-wavelength technique. Both temperature and mole fraction can be inferred from the lineshape analysis using this approach. Additional high temperature spectroscopy research was conducted to reduce uncertainties in the scramjet application. The lasers are optical fiber coupled to ports at the combustor exit and in the nozzle region. The output from the two diode lasers were combined in a single fiber, and the resultant two-wavelength beam was subsequently split into four legs. Each leg was directed through 60 meters of optical fiber to four combustor exit locations for measurement of beam intensity after absorption by the water within the flow. Absorption results will be compared to 1D combustor analysis using RJPA and nozzle CFD computations as well as to data from a nozzle metric

  9. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans.

    PubMed

    Kang, S; Brange, J; Burch, A; Vølund, A; Owens, D R

    1991-11-01

    To study the influence of molecular aggregation on rates of subcutaneous insulin absorption and to attempt to elucidate the mechanism of absorption of conventional soluble human insulin in humans. Seven healthy male volunteers aged 22-43 yr and not receiving any drugs comprised the study. This study consisted of a single-blind randomized comparison of equimolar dosages of 125I-labeled forms of soluble hexameric 2 Zn2+ human insulin and human insulin analogues with differing association states at pharmaceutical concentrations (AspB10, dimeric; AspB28, mixture of monomers and dimers; AspB9, GluB27, monomeric). After an overnight fast and a basal period of 1 h, 0.6 nmol/kg of either 125I-labeled human soluble insulin (Actrapid HM U-100) or 125I-labeled analogue was injected subcutaneously on 4 separate days 1 wk apart. Absorption was assessed by measurement of residual radioactivity at the injection site by external gamma-counting. The mean +/- SE initial fractional disappearance rates for the four preparations were 20.7 +/- 1.9 (hexameric soluble human insulin), 44.4 +/- 2.5 (dimeric analogue AspB10), 50.6 +/- 3.9 (analogue AspB28), and 67.4 +/- 7.4%/h (monomeric analogue AspB9, GluB27). Absorption of the dimeric analogue was significantly faster than that of hexameric human insulin (P less than 0.001); absorption of monomeric insulin analogue AspB9, GluB27 was significantly faster than that of dimeric analogue AspB10 (P less than 0.01). There was an inverse linear correlation between association state and the initial fractional disappearance rates (r = -0.98, P less than 0.02). Analysis of the disappearance data on a log linear scale showed that only the monomeric analogue had a monoexponential course throughout. Two phases in the rates of absorption were identified for the dimer and three for hexameric human insulin. The fractional disappearance rates (%/h) calculated by log linear regression analysis were monomer 73.3 +/- 6.8; dimer 44.4 +/- 2.5 from 0 to 2 h and

  10. Sound absorption and morphology characteristic of porous concrete paving blocks

    NASA Astrophysics Data System (ADS)

    Halim, N. H. Abd; Nor, H. Md; Ramadhansyah, P. J.; Mohamed, A.; Hassan, N. Abdul; Ibrahim, M. H. Wan; Ramli, N. I.; Nazri, F. Mohamed

    2017-11-01

    In this study, sound absorption and morphology characteristic of Porous Concrete Paving Blocks (PCPB) at different sizes of coarse aggregate were presented. Three different sizes of coarse aggregate were used; passing 10 mm retained 5 mm (as Control), passing 8 mm retained 5 mm (8 - 5) and passing 10 mm retained 8 mm (10 - 8). The sound absorption test was conducted through the impedance tube at different frequency. It was found that the size of coarse aggregate affects the level of absorption of the specimens. It also shows that PCPB 10 - 8 resulted in high sound absorption compared to the other blocks. On the other hand, microstructure morphology of PCPB shows a clearer version of existing micro-cracks and voids inside the specimens which affecting the results of sound absorption.

  11. Radiant energy absorption studies for laser propulsion. [gas dynamics

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.; Wu, P. K. S.; Pirri, A. N.

    1975-01-01

    A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas.

  12. Solvatochromic Effects on the Absorption Spectrum of 2-Thiocytosine

    PubMed Central

    2017-01-01

    The solvatochromic effects of six different solvents on the UV absorption spectrum of 2-thiocytosine have been studied by a combination of experimental and theoretical techniques. The steady-state absorption spectra show significant shifts of the absorption bands, where in more polar solvents the first absorption maximum shifts to higher transition energies and the second maximum to lower energies. The observed solvatochromic shifts have been rationalized using three popular solvatochromic scales and with high-level multireference quantum chemistry calculations including implicit and explicit solvent effects. It has been found that the dipole moments of the excited states account for some general shifts in the excitation energies, whereas the explicit solvent interactions explain the differences in the spectra recorded in the different solvents. PMID:28452483

  13. Phonon-Assisted Optical Absorption in Silicon from First Principles

    NASA Astrophysics Data System (ADS)

    Noffsinger, Jesse; Kioupakis, Emmanouil; Van de Walle, Chris G.; Louie, Steven G.; Cohen, Marvin L.

    2012-04-01

    The phonon-assisted interband optical absorption spectrum of silicon is calculated at the quasiparticle level entirely from first principles. We make use of the Wannier interpolation formalism to determine the quasiparticle energies, as well as the optical transition and electron-phonon coupling matrix elements, on fine grids in the Brillouin zone. The calculated spectrum near the onset of indirect absorption is in very good agreement with experimental measurements for a range of temperatures. Moreover, our method can accurately determine the optical absorption spectrum of silicon in the visible range, an important process for optoelectronic and photovoltaic applications that cannot be addressed with simple models. The computational formalism is quite general and can be used to understand the phonon-assisted absorption processes in general.

  14. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.

    PubMed

    Moriuchi, Toshiyuki; Hirao, Toshikazu

    2010-07-20

    The highly ordered molecular assemblies in proteins can have a variety of functions, as observed in enzymes, receptors, and the like. Synthetic scientists are constructing bioinspired systems by harnessing the self-assembling properties of short peptides. Secondary structures such as alpha-helices, beta-sheets, and beta-turns are important in protein folding, which is mostly directed and stabilized by hydrogen bonding and the hydrophobic interactions of side chains. The design of secondary structure mimics that are composed of short peptides has attracted much attention, both for gaining fundamental insight into the factors affecting protein folding and for developing pharmacologically useful compounds, artificial receptors, asymmetric catalysts, and new materials. Ferrocenes are an organometallic scaffold with a central reverse-turn unit based on the inter-ring spacing of about 3.3 A, which is a suitable distance for hydrogen bonding between attached peptide strands. The conjugation of organometallic compounds with biomolecules such as amino acids, peptides, and DNA should provide novel systems that reflect properties of both the ferrocene and the biologically derived moieties. In this Account, we focus on recent advances in the design of ferrocene-peptide bioconjugates, which help illustrate the peptidomimetic basis for protein folding and the means of constructing highly ordered molecular assemblies. Ferrocene-peptide bioconjugates are constructed to form chirality-organized structures in both solid and solution states. The ferrocene serves as a reliable organometallic scaffold for the construction of protein secondary structures via intramolecular hydrogen bonding: the attached dipeptide strands are constrained within the appropriate dimensions. The introduction of the chiral dipeptide chains into the ferrocene scaffold induces the conformational enantiomerization of the ferrocenyl moiety; the chirality-organized structure results from intramolecular hydrogen

  15. Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng

    2014-01-01

    The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

  16. Single-shot measurement of nonlinear absorption and nonlinear refraction.

    PubMed

    Jayabalan, J; Singh, Asha; Oak, Shrikant M

    2006-06-01

    A single-shot method for measurement of nonlinear optical absorption and refraction is described and analyzed. A spatial intensity variation of an elliptical Gaussian beam in conjugation with an array detector is the key element of this method. The advantages of this single-shot technique were demonstrated by measuring the two-photon absorption and free-carrier absorption in GaAs as well as the nonlinear refractive index of CS2 using a modified optical Kerr setup.

  17. Sound absorption of low-temperature reusable surface insulation candidate materials

    NASA Technical Reports Server (NTRS)

    Johnston, J. D.

    1974-01-01

    Sound absorption data from tests of four candidate low-temperature reusable surface insulation materials are presented. Limitations on the use of the data are discussed, conclusions concerning the effective absorption of the materials are drawn, and the relative significance to Vibration and Acoustic Test Facility test planning of the absorption of each material is assessed.

  18. Toward high performance nanoscale optoelectronic devices: super solar energy harvesting in single standing core-shell nanowire.

    PubMed

    Zhou, Jian; Wu, Yonggang; Xia, Zihuan; Qin, Xuefei; Zhang, Zongyi

    2017-11-27

    Single nanowire solar cells show great promise for next-generation photovoltaics and for powering nanoscale devices. Here, we present a detailed study of light absorption in a single standing semiconductor-dielectric core-shell nanowire (CSNW). We find that the CSNW structure can not only concentrate the incident light into the structure, but also confine most of the concentrated light to the semiconductor core region, which boosts remarkably the light absorption cross-section of the semiconductor core. The CSNW can support multiple higher-order HE modes, as well as Fabry-Pérot (F-P) resonance, compared to the bare nanowire (BNW). Overlapping of the adjacent higher-order HE modes results in broadband light absorption enhancement in the solar radiation spectrum. Results based on detailed balance analysis demonstrate that the super light concentration of the single CSNW gives rise to higher short-circuit current and open-circuit voltage, and thus higher apparent power conversion efficiency (3644.2%), which goes far beyond that of the BNW and the Shockley-Queisser limit that restricts the performance of a planar counterparts. Our study shows that the single CSNW can be a promising platform for construction of high performance nanoscale photodetectors, nanoelectronic power sources, super miniature cells, and diverse integrated nanosystems.

  19. Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohu; Fu, Ceji

    2018-04-01

    The wavevector of electromagnetic wave propagation in a hexagonal boron nitride (hBN) slab can be controlled by tilting its optical axis. This property can be used to manipulate the absorption in a hBN slab. By carefully analyzing the dependence of the absorptivity of a thin hBN slab on the tilted angle of its optical axis, we propose a structure that can realize great absorptivity enhancement in a band by stacking hBN slabs of different tilted angles. Our numerical results show that the absorptivity of a structure made of 91 stacked hBN slabs can be achieved higher than 0.94 in the wavenumber range from 1367 to 1580 cm-1 when the tilted angles of the slabs are properly arranged. The strong absorption is attributed to the combination of impedance matching at the slab interfaces and enlarged wavevectors in the slabs. This work reveals a novel way to realize strong absorption with anisotropic materials for applications in areas such as thermal radiative energy harvesting and conversion.

  20. Multiband coherent perfect absorption in a water-based metasurface.

    PubMed

    Zhu, Weiren; Rukhlenko, Ivan D; Xiao, Fajun; He, Chong; Geng, Junping; Liang, Xianling; Premaratne, Malin; Jin, Ronghong

    2017-07-10

    We design an ultrathin water-based metasurface capable of coherent perfect absorption (CPA) at radio frequencies. It is demonstrated that such a metasurface can almost completely absorb two symmetrically incident waves within four frequency bands, each having its own modulation depth of metasurface absorptivity. Specifically, the absorptivity at 557.2 MHz can be changed between 0.59% and 99.99% via the adjustment of the phase difference between the waves. The high angular tolerance of our metasurface is shown to enable strong CPA at oblique incidence, with the CPA frequency almost independent of the incident angle for TE waves and varying from 557.2 up to 584.2 MHz for TM waves. One can also reduce this frequency from 712.0 to 493.3 MHz while retaining strong coherent absorption by varying the water layer thickness. It is also show that the coherent absorption performance can be flexibly controlled by adjusting the temperature of water. The proposed metasurface is low-cost, biocompatible, and useful for electromagnetic modulation and switching.