Sample records for nanothin peg coating

  1. Epoxy resin reinforced with nanothin polydopamine-coated carbon nanotubes: a study of the interfacial polymer layer thickness

    DOE PAGES

    Ling, Yang; Li, Weizhen; Wang, Baoyu; ...

    2016-03-29

    Carbon nanotubes (CNTs) functionalized by a nanothin poly(dopamine) (PDA) layer were produced by a one-pot, nondestructive approach, with direct polymerization of dopamine on the CNT surface. The thickness of the PDA layer can be well-controlled by the reaction time and the proportion of dopamine, and this thickness is found to be the key factor in controlling the dispersion of CNTs and the extent of the interfacial interactions between the CNT@PDA and epoxy resin. SEM results indicated that the dispersion of CNTs in epoxy was improved significantly by coating a nanothin PDA layer onto the CNT surface. In agreeme nt withmore » this finding, the CNTs functionalized with the thinnest PDA layer provided the best mechanical and thermal properties. This result confirmed that a thinner PDA layer could provide optimized interfacial interactions between the CNT@PDA and epoxy matrix and weaken the self-agglomeration of CNTs, which led to an improved effective stress and heat transfer between the CNTs and the polymer matrix.« less

  2. Ultralow protein adsorbing coatings from clickable PEG nanogel solutions: Benefits of attachment under salt-induced phase separation conditions and comparison with PEG/albumin nanogel coatings

    PubMed Central

    Donahoe, Casey D.; Cohen, Thomas L.; Li, Wenlu; Nguyen, Peter K.; Fortner, John D.; Mitra, Robi D.; Elbert, Donald L.

    2013-01-01

    Clickable nanogel solutions were synthesized by using the copper catalyzed azide/alkyne cycloaddition (CuAAC) to partially polymerize solutions of azide and alkyne functionalized poly(ethylene glycol) (PEG) monomers. Coatings were fabricated using a second click reaction: a UV thiol-yne attachment of the nanogel solutions to mercaptosilanated glass. Because the CuAAC reaction was effectively halted by the addition of a copper-chelator, we were able to prevent bulk gelation and limit the coating thickness to a single monolayer of nanogels in the absence of the solution reaction. This enabled the inclusion of kosmotropic salts, which caused the PEG to phase-separate and nearly double the nanogel packing density, as confirmed by Quartz Crystal Microbalance with Dissipation (QCM-D). Protein adsorption was analyzed by single molecule counting with total internal reflection fluorescence (TIRF) microscopy and cell adhesion assays. Coatings formed from the phase-separated clickable nanogel solutions attached with salt adsorbed significantly less fibrinogen than other 100% PEG coatings tested, as well as poly-L-lysine-g-PEG (PLL-g-PEG) coatings. However, PEG/albumin nanogel coatings still outperformed the best 100% PEG clickable nanogel coatings. Additional surface crosslinking of the clickable nanogel coating in the presence of copper further reduced levels of fibrinogen adsorption closer to those of PEG/albumin nanogel coatings. However, this step negatively impacted long-term resistance to cell adhesion and dramatically altered the morphology of the coating by atomic force microscopy (AFM). The main benefit of the click strategy is that the partially polymerized solutions are stable almost indefinitely, allowing attachment in the phase-separated state without danger of bulk gelation, and thus, producing the best performing 100% PEG coating that we have studied to date. PMID:23441808

  3. A method to optimize PEG-coating of red blood cells.

    PubMed

    Hashemi-Najafabadi, Sameereh; Vasheghani-Farahani, Ebrahim; Shojaosadati, Seyed Abbas; Rasaee, Mohammad Javad; Armstrong, Jonathan K; Moin, Mostafa; Pourpak, Zahra

    2006-01-01

    Alloimmunization to donor blood group antigens remains a significant problem in transfusion medicine. A proposed method to overcome donor-recipient blood group incompatibility is to mask the blood group antigens by the covalent attachment of poly(ethylene glycol) (PEG) to the red blood cell (RBC) membrane. Despite much work in the development of PEG-coating of RBCs, there is a paucity of data on the optimization of the PEG-coating technique; it is the aim of this study to determine the optimum conditions for PEG coating using a cyanuric chloride reactive derivative of methoxy-PEG as a model polymer. Activated PEG of molecular mass 5 kDa was covalently attached to human RBCs under various reaction conditions. Inhibition of binding of a blood-type specific antiserum (anti-D) was employed to evaluate the effect of the PEG-coating, quantified by hemocytometry and flow-cytometry. RBC morphology was examined by light and scanning electron microscopy. Statistical analysis of experimental design together with microscopy results showed that the optimum PEGylation conditions are pH = 8.7, temperature = 14 degrees C, and reaction time = 30 min. An optimum concentration of reactive PEG could not be determined. At high polymer concentrations (>25 mg/mL) a predominance of type III echinocytes was observed, and as a result, a concentration of 15 mg/mL is the highest recommended concentration for a linear PEG of molecular mass 5 kDa.

  4. Drop Printing of Pharmaceuticals: Effect of Molecular Weight on PEG Coated-Naproxen/PEG3350 Solid Dispersions

    PubMed Central

    Hsu, Hsin-Yun; Toth, Scott; Simpson, Garth J.; Harris, Michael T.

    2016-01-01

    Solid dispersions have been used to enhance the bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). However, the solid state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the Drop Printing (DP) technique can provide precise dosages and predictable compositional uniformity of APIs in two/three dimensional structures. In this study, DP was used to prepare naproxen (NAP)/polyethylene glycol 3350 (PEG3350) solid dispersions with PEG coatings of different molecular weights (MW). A comparison of moisture-accelerated crystallization inhibition by different PEG coatings was assessed. Scanning electron microscopy (SEM), second harmonic generation (SHG) microscopy, and differential scanning calorimetry (DSC) analysis were performed to characterize the morphology and quantify the apparent crystallinity of NAP within the solid dispersions. Thermogravimetric analysis (TGA) was employed to measure the water content within each sample. The results suggest that the moisture-accelerated crystallization inhibition capability of the PEG coatings increased with increasing MW of the PEG coating. Besides, to demonstrate the flexibility of DP technology on manufacturing formulation, multilayer tablets with different PEG serving as barrier layers were also constructed, and their dissolution behavior was examined. By applying DP and appropriate materials, it is possible to design various carrier devices used to control the release dynamics of the API. PMID:27041744

  5. Drop Printing of Pharmaceuticals: Effect of Molecular Weight on PEG Coated-Naproxen/PEG3350 Solid Dispersions.

    PubMed

    Hsu, Hsin-Yun; Toth, Scott; Simpson, Garth J; Harris, Michael T

    2015-12-01

    Solid dispersions have been used to enhance the bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). However, the solid state phase, compositional uniformity, and scale-up problems are issues that need to be addressed. To allow for highly controllable products, the Drop Printing (DP) technique can provide precise dosages and predictable compositional uniformity of APIs in two/three dimensional structures. In this study, DP was used to prepare naproxen (NAP)/polyethylene glycol 3350 (PEG3350) solid dispersions with PEG coatings of different molecular weights (MW). A comparison of moisture-accelerated crystallization inhibition by different PEG coatings was assessed. Scanning electron microscopy (SEM), second harmonic generation (SHG) microscopy, and differential scanning calorimetry (DSC) analysis were performed to characterize the morphology and quantify the apparent crystallinity of NAP within the solid dispersions. Thermogravimetric analysis (TGA) was employed to measure the water content within each sample. The results suggest that the moisture-accelerated crystallization inhibition capability of the PEG coatings increased with increasing MW of the PEG coating. Besides, to demonstrate the flexibility of DP technology on manufacturing formulation, multilayer tablets with different PEG serving as barrier layers were also constructed, and their dissolution behavior was examined. By applying DP and appropriate materials, it is possible to design various carrier devices used to control the release dynamics of the API.

  6. PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration

    NASA Astrophysics Data System (ADS)

    Kashanian, Soheila; Rostami, Elham

    2014-03-01

    In this study, poly ethylene glycol 100 stearate (PEG 100-S) was used to prepare coated solid lipid nanoparticles with loading levothyroxine sodium (levo-loaded PEG 100-S-coated SLNs) by microemulsification technique. Evaluation of the release kinetic of prepared colloidal carriers was conducted. The particle size and zeta potential of levo-loaded PEG 100-S-coated SLNs have been measured to be 187.5 nm and -23.0 mV, respectively, using photon correlation spectroscopy (PCS). Drug entrapment efficiency (EE) was calculated to be 99 %. Differential scanning calorimetry indicated that the majority of drug loaded in PEG 100-S-coated SLNs were in amorphous state which could be considered desirable for drug delivery. The purpose of this study was to develop a new nanoparticle system, consisting lipid nanoparticles coated with PEG 100-S. The modification procedure led to a reduction in the zeta potential values, varying from -40.0 to -23.0 mV for the uncoated and PEG-coated SLNs, respectively. Stability results of the nanoparticles in gastric and intestinal media show that the low pH of the gastric medium is responsible for the critical aggregation and degradation of the uncoated lipid nanoparticles. PEG 100-S-coated SLNs were more stable due to their polymer coating layer which prevented aggregation of SLNs. Consequently, it is possible that the PEG surrounds the particles reducing the attachment of enzymes and further degradation of the triglyceride cores. Shape and surface morphology of particles were determined by transition electron microscopy and scanning electron microscopy that revealed spherical shape of nanoparticles. In vitro drug release of PEG 100-S-coated SLNs was characterized using diffusion cell which showed a controlled release for drug.

  7. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Wan-Seob; Cho, Minjung; Jeong, Jinyoung

    2009-04-01

    In general, gold nanoparticles are recognized as being as nontoxic. Still, there have been some reports on their toxicity, which has been shown to depend on the physical dimension, surface chemistry, and shape of the nanoparticles. In this study, we carry out an in vivo toxicity study using 13 nm-sized gold nanoparticles coated with PEG (MW 5000). In our findings the 13 nm sized PEG-coated gold nanoparticles were seen to induce acute inflammation and apoptosis in the liver. These nanoparticles were found to accumulate in the liver and spleen for up to 7 days after injection and to have longmore » blood circulation times. In addition, transmission electron microscopy showed that numerous cytoplasmic vesicles and lysosomes of liver Kupffer cells and spleen macrophages contained the PEG-coated gold nanoparticles. These findings of toxicity and kinetics of PEG-coated gold nanoparticles may have important clinical implications regarding the safety issue as PEG-coated gold nanoparticles are widely used in biomedical applications.« less

  8. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings.

    PubMed

    Xing, Cheng-Mei; Meng, Fan-Ning; Quan, Miao; Ding, Kai; Dang, Yuan; Gong, Yong-Kuan

    2017-09-01

    A versatile fabrication and performance optimization strategy of PEG and zwitterionic polymer coatings is developed on the sensor chip of surface plasma resonance (SPR) instrument. A random copolymer bearing phosphorylcholine zwitterion and active ester side chains (PMEN) and carboxylic PEG coatings with comparable thicknesses were deposited on SPR sensor chips via amidation coupling on the precoated polydopamine (PDA) intermediate layer. The PMEN coating showed much stronger resistance to bovine serum albumin (BSA) adsorption than PEG coating at very thin thickness (∼1nm). However, the BSA resistant efficacy of PEG coating could exceed that of PMEN due to stronger steric repelling effect when the thickness increased to 1.5∼3.3nm. Interestingly, both the PEG and PMEN thick coatings (≈3.6nm) showed ultralow fouling by BSA and bovine plasma fibrinogen (Fg). Moreover, changes in the PEG end group from -OH to -COOH, protein adsorption amount could increase by 10-fold. Importantly, the optimized PMEN and PEG-OH coatings were easily duplicated on other substrates due to universal adhesion of the PDA layer, showed excellent resistance to platelet, bacteria and proteins, and no significant difference in the antifouling performances was observed. These detailed results can explain the reported discrepancy in performances between PEG and zwitterionic polymer coatings by thickness. This facile and substrate-independent coating strategy may benefit the design and manufacture of advanced antifouling biomedical devices and long circulating nanocarriers. Prevention of biofouling is one of the biggest challenges for all biomedical applications. However, it is very difficult to fabricate a highly hydrophilic antifouling coating on inert materials or large devices. In this study, PEG and zwitterion polymers, the most widely investigated polymers with best antifouling performance, are conveniently immobilized on different kinds of substrates from their aqueous solutions by

  9. Characterization and tribology of PEG-like coatings on UHMWPE for total hip replacements.

    PubMed

    Kane, Sheryl R; Ashby, Paul D; Pruitt, Lisa A

    2010-03-15

    A crosslinked hydrogel coating similar to poly(ethylene glycol) (PEG) was covalently bonded to the surface of ultrahigh molecular weight polyethylene (UHMWPE) to improve the lubricity and wear resistance of the UHWMPE for use in total joint replacements. The chemistry, hydrophilicity, and protein adsorption resistance of the coatings were determined, and the wear behavior of the PEG-like coating was examined by two methods: pin-on-disk tribometry to evaluate macroscale behavior, and atomic force microscopy (AFM) to simulate asperity wear. As expected, the coating was found to be highly PEG-like, with approximately 83% ether content by x-ray photoelectron spectroscopy and more hydrophilic and resistant to protein adsorption than uncoated UHMWPE. Pin-on-disk testing showed that the PEG-like coating could survive 3 MPa of contact pressure, comparable to that experienced by total hip replacements. AFM nanoscratching experiments uncovered three damage mechanisms for the coatings: adhesion/microfracture, pure adhesion, and delamination. The latter two mechanisms appear to correlate well with wear patterns induced by pin-on-disk testing and evaluated by attenuated total reflection Fourier transform infrared spectroscopy mapping. Understanding the mechanisms by which the PEG-like coatings wear is critical for improving the behavior of subsequent generations of wear-resistant hydrogel coatings. (c) 2009 Wiley Periodicals, Inc.

  10. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice.

    PubMed

    Oyewumi, Moses O; Yokel, Robert A; Jay, Michael; Coakley, Tricia; Mumper, Russell J

    2004-03-24

    The purpose of these studies was to compare the cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium (Gd) nanoparticles. Gd is a potential agent for neutron capture therapy (NCT) of tumors. Gd nanoparticles were engineered from oil-in-water microemulsion templates. To obtain folate-coated nanoparticles, a folate ligand [folic acid chemically linked to distearoylphosphatidylethanolamine (DSPE) via a PEG spacer MW 3350] was included in nanoparticle preparations. Similarly, control nanoparticles were coated with DSPE-PEG-MW 3350 (PEG-coated). Nanoparticles were characterized based on size, size distribution, morphology, biocompatibility and tumor cell uptake. In vivo studies were carried out in KB (human nasopharyngeal carcinoma) tumor-bearing athymic mice. Biodistribution and tumor retention studies were carried out at pre-determined time intervals after injection of nanoparticles (10 mg/kg). Gd nanoparticles did not aggregate platelets or activate neutrophils. The retention of nanoparticles in the blood 8, 16 and 24 h post-injection was 60%, 13% and 11% of the injected dose (ID), respectively. A maximum Gd tumor localization of 33+/-7 microg Gd/g was achieved. Both folate-coated and PEG-coated nanoparticles had comparable tumor accumulation. However, the cell uptake and tumor retention of folate-coated nanoparticles was significantly enhanced over PEG-coated nanoparticles. Thus, the benefits of folate ligand coating were to facilitate tumor cell internalization and retention of Gd-nanoparticles in the tumor tissue. The engineered nanoparticles may have potential in tumor-targeted delivery of Gd thereby enhancing the therapeutic success of NCT.

  11. Exosome purification based on PEG-coated Fe3O4 nanoparticles.

    PubMed

    Chang, Ming; Chang, Yaw-Jen; Chao, Pei Yu; Yu, Qing

    2018-01-01

    Cancer cells secrete many exosomes, which facilitate metastasis and the later growth of cancer. For early cancer diagnosis, the detection of exosomes is a crucial step. Exosomes exist in biological fluid, such as blood, which contains various proteins. It is necessary to remove the proteins in the biological fluid to avoid test interference. This paper presented a novel method for exosome isolation using Fe3O4 magnetic nanoparticles (MNPs), which were synthesized using the chemical co-precipitation method and then coated with polyethylene glycol (PEG). The experimental results showed that the diameter of the PEG-coated Fe3O4 nanoparticles was about 20 nm, while an agglomerate of MNPs reached hundreds of nanometers in size. In the protein removal experiments, fetal bovine serum (FBS) was adopted as the analyte for bioassays of exosome purification. PEG-coated Fe3O4 MNPs reduced the protein concentration in FBS to 39.89% of the original solution. By observing a particle size distribution of 30~200 nm (the size range of various exosomes), the exosome concentrations were kept the same before and after purification. In the gel electrophoresis experiments, the bands of CD63 (~53 kDa) and CD9 (~22 kDa) revealed that exosomes existed in FBS as well as in the purified solution. However, the bands of the serum albumins (~66 kDa) and the various immunoglobulins (around 160 ~ 188 kDa) in the purified solution's lane explained that most proteins in FBS were removed by PEG-coated Fe3O4 MNPs. When purifying exosomes from serum, protein removal is critical for further exosome investigation. The proposed technique provides a simple and effective method to remove proteins in the serum using the PEG-coated Fe3O4 MNPs.

  12. Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats.

    PubMed

    Alalaiwe, Ahmed; Roberts, Georgia; Carpinone, Paul; Munson, John; Roberts, Stephen

    2017-11-01

    Metallic nanoparticles can be produced in a variety of shapes, sizes, and surface chemistries, making them promising potential tools for drug delivery. Most studies to date have evaluated uptake of metallic nanoparticles from the GI tract with methods that are at best semi-quantitative. This study used the classical method of comparing blood concentration area under the curve (AUC) following intravenous and oral doses to determine the oral bioavailability of 1, 2 and 5 kDa PEG-coated 5 nm gold nanoparticles (AuNPs). Male rats were given a single intravenous dose (0.8 mg/kg) or oral (gavage) dose (8 mg/kg) of a PEG-coated AuNP, and the concentration of gold was measured in blood over time and in tissues (liver, spleen and kidney) at sacrifice. Blood concentrations following oral administration were inversely related to PEG size, and the AUC in blood was significantly greater for the 1 kDa PEG-coated AuNPs than particles coated with 2 or 5 kDa PEG. However, bioavailabilities of all of the particles were very low (< 0.1%). Concentrations in liver, spleen and kidney were similar after the intravenous doses, but kidney showed the highest concentrations after an oral dose. In addition to providing information on the bioavailability of AuNPs coated with PEG in the 1-5 kDa range, this study demonstrates the utility of applying the blood AUC approach to assess the quantitative oral bioavailability of metallic nanoparticles.

  13. Foreign Body Response to Intracortical Microelectrodes Is Not Altered with Dip-Coating of Polyethylene Glycol (PEG)

    PubMed Central

    Lee, Heui C.; Gaire, Janak; Currlin, Seth W.; McDermott, Matthew D.; Park, Kinam; Otto, Kevin J.

    2017-01-01

    Poly(ethylene glycol) (PEG) is a frequently used polymer for neural implants due to its biocompatible property. As a follow-up to our recent study that used PEG for stiffening flexible neural probes, we have evaluated the biological implications of using devices dip-coated with PEG for chronic neural implants. Mice (wild-type and CX3CR1-GFP) received bilateral implants within the sensorimotor cortex, one hemisphere with a PEG-coated probe and the other with a non-coated probe for 4 weeks. Quantitative analyses were performed using biomarkers for activated microglia/macrophages, astrocytes, blood-brain barrier leakage, and neuronal nuclei to determine the degree of foreign body response (FBR) resulting from the implanted microelectrodes. Despite its well-known acute anti-biofouling property, we observed that PEG-coated devices caused no significantly different FBR compared to non-coated controls at 4 weeks. A repetition using CX3CR1-GFP mice cohort showed similar results. Our histological findings suggest that there is no significant impact of acute delivery of PEG on the FBR in the long-term, and that temporary increase in the device footprint due to the coating of PEG also does not have a significant impact. Large variability seen within the same treatment group also implies that avoiding large superficial vasculature during implantation is not sufficient to minimize inter-animal variability. PMID:28959183

  14. Amphiphilic polymer based on fluoroalkyl and PEG side chains for fouling release coating

    NASA Astrophysics Data System (ADS)

    Cong, W. W.; Wang, K.; Yu, X. Y.; Zhang, H. Q.; Lv, Z.; Gui, T. J.

    2017-12-01

    Under static conditions, fouling release coating could not express good release property to marine organisms. Amphiphilic polymer with mixture of fluorinated monomer and short side group of polyethylene glycol (PEG) was synthesized. And also we studied the ability of amphiphilic polymer to influence the surface properties and how it controlled the adhesion of marine organisms to coated surfaces. By incorporating fluorinated monomer and PEG side chain into the polymer, the effect of incorporating both polar and non-polar groups on fouling-release coating could be studied. The dry surface was characterized by three-dimensional digital microscopy and scanning electron microscopy (SEM), and the morphology of the amphiphilic fouling release coating showed just like flaky petal. The amphiphilic polymer in fouling release coating tended to reconstruct in water, and the ability was examined by static contact angle, which was smaller than the PDMS (polydimethylsiloxane) fouling release coating. Also surface energy was calculated by three solvents, and surface energy of amphiphilic fouling release coating was higher than that of the PDMS fouling release coating. To understand more about its fouling release property, seawater exposure method was adopted in gulf of Qingdao port. Fewer diatoms Navicula were found in biofilm after using amphiphilic fouling release coating. In general, coating containing both PEG and fluorinated side chain possessed certain fouling release property.

  15. Influence of PEG coating on optical and thermal response of gold nanoshperes and nanorods

    NASA Astrophysics Data System (ADS)

    Chen, Qin; Ren, Yatao; Qi, Hong; Ruan, Liming

    2018-06-01

    PEGylation is widely applied as a surface modification method for nanoparticles in biomedical applications to improve their biological properties, including biocompatibility and immunogenicity. In most of its biomedical applications, nanoparticles are served as optical or thermal contrast agents. Therefore, the impact of poly (ethylene glycol) (PEG) coating thickness on the optical and thermal properties of nanoparticles needs to be further investigated. In the present work, we studied two kinds of commonly used nanoparticles, including nanosphere and nanorod. The temperature and electric fields are obtained for nanoparticles with different PEG coating thicknesses. It is found that the change of PEG coating thickness on gold nanospheres only has impact on the absolute value of maximum absorption and scattering efficiencies, which barely influences the LSPR wavelength λmax and other optical and thermal characteristics. In contrast, for nanorod, the maximum efficiencies are barely influenced by the variation of PEG coating thickness. On the other hand, the localized surface plasmon resonance wavelength has an evident red shift with the increasing of PEG coating thickness. The maximum absorption efficiency is a way to evaluate the energy dissipation rate, which decides the scale of the heat source induced by nanoparticles. These findings are crucial for the accurate prediction of optical and thermal properties of nanoparticles in biomedical application. The present work also presents a possible way to manipulate the optical and thermal behaviors of nanoparticles in the application of biomedicine without changing the morphology of nanoparticles.

  16. Characterization of PEG-Like Macromolecular Coatings on Plasma Modified NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Gao, Jiacheng; Chang, Peng; Wang, Jianhua

    2008-04-01

    A poly (ethylene glycol) (PEG-like) coating was developed to improve the biocompatibility of Nickel-Titanium (NiTi) alloy implants. The PEG-like macromolecular coatings were deposited on NiTi substrates at a room temperature of 298 K through a ECR (electron-cyclotron resonance) cold-plasma enhanced chemical vapor deposition method using tetraglyme (CH3-O-(CH2-CH2-O)4-CH3) as a precursor. A power supply with a frequency of 2.45 GHz was applied to ignite the plasma with Ar(argon) used as the carrier gas. Based on the atomic force microscopy (AFM) studies, a thin smooth coating on NiTi substrates with highly amorphous functional groups on the modified NiTi surfaces were mainly the same accumulated stoichiometric ratio of C and O with PEG. The vitro studies showed that platelet-rich plasma (PRP) adsorption on the modified NiTi alloy surface was significantly reduced. This study indicated that plasma surface modification changes the surface components of NiTi alloy and subsequently improves its biocompatibility.

  17. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles

    PubMed Central

    Zhang, Xiao-Dong; Wu, Di; Shen, Xiu; Liu, Pei-Xun; Yang, Na; Zhao, Bin; Zhang, Hao; Sun, Yuan-Ming; Zhang, Liang-An; Fan, Fei-Yue

    2011-01-01

    Background Gold nanoparticle toxicity research is currently leading towards the in vivo experiment. Most toxicology data show that the surface chemistry and physical dimensions of gold nanoparticles play an important role in toxicity. Here, we present the in vivo toxicity of 5, 10, 30, and 60 nm PEG-coated gold nanoparticles in mice. Methods Animal survival, weight, hematology, morphology, organ index, and biochemistry were characterized at a concentration of 4000 μg/kg over 28 days. Results The PEG-coated gold particles did not cause an obvious decrease in body weight or appreciable toxicity even after their breakdown in vivo. Biodistribution results show that 5 nm and 10 nm particles accumulated in the liver and that 30 nm particles accumulated in the spleen, while the 60 nm particles did not accumulate to an appreciable extent in either organ. Transmission electron microscopic observations showed that the 5, 10, 30, and 60 nm particles located in the blood and bone marrow cells, and that the 5 and 60 nm particles aggregated preferentially in the blood cells. The increase in spleen index and thymus index shows that the immune system can be affected by these small nanoparticles. The 10 nm gold particles induced an increase in white blood cells, while the 5 nm and 30 nm particles induced a decrease in white blood cells and red blood cells. The biochemistry results show that the 10 nm and 60 nm PEG-coated gold nanoparticles caused a significant increase in alanine transaminase and aspartate transaminase levels, indicating slight damage to the liver. Conclusion The toxicity of PEG-coated gold particles is complex, and it cannot be concluded that the smaller particles have greater toxicity. The toxicity of the 10 nm and 60 nm particles was obviously higher than that of the 5 nm and 30 nm particles. The metabolism of these particles and protection of the liver will be more important issues for medical applications of gold-based nanomaterials in future. PMID:21976982

  18. Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: cell uptake and biocompatibility evaluation.

    PubMed

    Silva, Adny H; Lima, Enio; Mansilla, Marcelo Vasquez; Zysler, Roberto D; Troiani, Horacio; Pisciotti, Mary Luz Mojica; Locatelli, Claudriana; Benech, Juan C; Oddone, Natalia; Zoldan, Vinícius C; Winter, Evelyn; Pasa, André A; Creczynski-Pasa, Tânia B

    2016-05-01

    Superparamagnetic iron oxide nanoparticles (SPIONS) were synthesized by thermal decomposition of an organometallic precursor at high temperature and coated with a bi-layer composed of oleic acid and methoxy-polyethylene glycol-phospholipid. The formulations were named SPION-PEG350 and SPION-PEG2000. Transmission electron microscopy, X-ray diffraction and magnetic measurements show that the SPIONs are near-spherical, well-crystalline, and have high saturation magnetization and susceptibility. FTIR spectroscopy identifies the presence of oleic acid and of the conjugates mPEG for each sample. In vitro biocompatibility of SPIONS was investigated using three cell lines; up to 100μg/ml SPION-PEG350 showed non-toxicity, while SPION-PEG2000 showed no signal of toxicity even up to 200μg/ml. The uptake of SPIONS was detected using magnetization measurement, confocal and atomic force microscopy. SPION-PEG2000 presented the highest internalization capacity, which should be correlated with the mPEG chain size. The in vivo results suggested that SPION-PEG2000 administration in mice triggered liver and kidney injury. The potential use of superparamagnetic iron oxide nanoparticles (SPIONS) in the clinical setting have been studied by many researchers. The authors synthesized two types of SPIONS here and investigated the physical properties and biological compatibility. The findings should provide more data on the design of SPIONS for clinical application in the future. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Thermosensitive multilayer hydrogels of poly(N-vinylcaprolactam) as nanothin films and shaped capsules.

    PubMed

    Liang, Xing; Kozlovskaya, Veronika; Chen, Yi; Zavgorodnya, Oleksandra; Kharlampieva, Eugenia

    2012-08-09

    We report on nanothin multilayer hydrogels of cross-linked poly(N-vinylcaprolactam) (PVCL) that exhibit distinctive and reversible thermoresponsive behavior. The single-component PVCL hydrogels were produced by selective cross-linking of PVCL in layer-by-layer films of PVCL-NH(2) copolymers assembled with poly(methacrylic acid) (PMAA) via hydrogen bonding. The degree of the PVCL hydrogel film shrinkage, defined as the ratio of wet thicknesses at 25°C to 50°C, was demonstrated to be 1.9±0.1 and 1.3±0.1 for the films made from PVCL-NH(2)-7 and PVCL-NH(2)-14 copolymers, respectively. No temperature-responsive behavior was observed for non-cross-linked two-component films due to the presence of PMAA. We also demonstrated that temperature-sensitive PVCL capsules of cubical and spherical shapes could be fabricated as hollow hydrogel replicas of inorganic templates. The cubical (PVCL)(7) capsules retained their cubical shape when temperature was elevated from 25°C to 50°C exhibiting 21±1% decrease in the capsule size. Spherical hydrogel capsules demonstrated similar shrinkage of 23±1%. The temperature-triggered capsule size changes were completely reversible. Our work opens new prospects for developing biocompatible and nanothin hydrogel-based coatings and containers for temperate-regulating drug delivery, cellular uptake, sensing, and transport behavior in microfluidic devices.

  20. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    PubMed

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  1. The Experimental Study of the Performance of Nano-Thin Polyelectrolyte Shell for Dental Pulp Stem Cells Immobilization.

    PubMed

    Grzeczkowicz, A; Granicka, L H; Maciejewska, I; Strawski, M; Szklarczyk, M; Borkowska, M

    2015-12-01

    Carious is the most frequent disease of mineralized dental tissues which might result in dental pulp inflammation and mortality. In such cases an endodontic treatment is the only option to prolong tooth functioning in the oral cavity; however, in the cases of severe pulpitis, especially when complicated with periodontal tissue inflammation, the endodontic treatment might not be enough to protect against tooth loss. Thus, keeping the dental pulp viable and/or possibility of the reconstruction of a viable dental pulp complex, appears to become a critical factor for carious and/or pulp inflammation treatment. The nowadays technologies, which allow handling dental pulp stem cells (DPSC), seem to bring us closer to the usage of dental stem cells for tooth tissues reconstruction. Thus, DPSC immobilized within nano-thin polymeric shells, allowing for a diffusion of produced factors and separation from bacteria, may be considered as a cover system supporting technology of dental pulp reconstruction. The DPSC were immobilized using a layer-by-layer technique within nano-thin polymeric shells constructed and modified by nanostructure involvement to ensure the layers stability and integrity as well as separation from bacterial cells. The cytotoxity of the material used for membrane production was assessed on the model of adherent cells. The performance of DPSC nano-coating was assessed in vitro. Membrane coatings showed no cytotoxicity on the immobilized cells. The presence of coating shell was confirmed with flow cytometry, atomic force microscopy and visualized with fluorescent microscopy. The transfer of immobilized DPSC within the membrane system ensuring cells integrity, viability and protection from bacteria should be considered as an alternative method for dental tissues transportation and regeneration.

  2. A trifunctional multi-walled carbon nanotubes/polyethylene glycol (MWCNT/PEG)-coated separator through a layer-by-layer coating strategy for high-energy Li–S batteries

    DOE PAGES

    Luo, Liu; Chung, Sheng-Heng; Manthiram, Arumugam

    2016-10-11

    In this study, a trifunctional separator fabricated by using a light-weight layer-by-layer multi-walled carbon nanotubes/polyethylene glycol (MWCNT/PEG) coating has been explored in lithium–sulfur (Li–S) batteries. The conductive MWCNT/PEG coating serves as (i) an upper current collector for accelerating the electron transport and benefiting the electrochemical reaction kinetics of the cell, (ii) a net-like filter for blocking and intercepting the migrating polysulfides through a synergistic effect including physical and chemical interactions, and (iii) a layered barrier for inhibiting the continuous diffusion and alleviating the volume change of the trapped active material by introducing a “buffer zone” in between the coated layers.more » The multi-layered MWCNT/PEG coating allows the use of the conventional pure sulfur cathode with a high sulfur content (78 wt%) and high sulfur loading (up to 6.5 mg cm -2) to achieve a high initial discharge capacity of 1206 mA h g -1 at C/5 rate, retaining a superior capacity of 630 mA h g -1 after 300 cycles. Lastly, the MWCNT/PEG-coated separator optimized by the facile layer-by-layer coating method provides a promising and feasible option for advanced Li–S batteries with high energy density.« less

  3. Optimization Properties of Environmentally Friendly Paper Coating Based Starch-Polyethylene glycol (PEG) Mixture

    NASA Astrophysics Data System (ADS)

    Galih Saputri, Diani; Khairuddin; Dwi Nurhayati, Nanik; Pham, Trinh

    2017-11-01

    The use of starch as biodegradable base material for packaging application was of great interest as an environmentally friendly alternative to the present use of polyethylene and polyvinyl chloride. However, starch tended to be brittle and had a lack of stability due to exposure to water. Several aproaches have been done to improve shellac properties including through chemical modification, mixing with polymers, clays, and plasticizers. The present study related to optimization of starch properties when mixing with polyethylene glycol (PEG) coated on the paper. The aim was to obtain the temperature and mixing time between starch and PEG so produced composites with optimal barrier properties. The composites of PEG/starch 10 % w/w were prepared using solvent casting and coated on paper surface, and dried in the oven for 12 hours at 40°C. Water Vapour Transmitter Rate (WVTR) (Payne cup method) showed that 70°C was the optimum temperature when mixing time was 30 minutes. Moreover, it showed that the optimum mixing time was 30 minutes when mixing temperature was 80 and 70 °C. Fourier Transform Infra Red (FTIR) showed a strong interaction between PEG400 and starch.

  4. Physicochemical characterization of 3,6-diHydroxyflavone binding BSA immobilized on PEG-coated silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Voicescu, Mariana; Ionescu, Sorana; Calderon-Moreno, Jose M.; Nistor, Cristina L.

    2017-02-01

    Studies based on silver nanoparticles (SNPs) and polyethylene glycols (PEGs) are mainly in the pharmaceutical field, with PEG as good "vehicle" to transport protein-based drugs. In this work, physicochemical characteristics of 3,6-diHydroxyflavone (3,6-diHF) binding bovine serum albumin (BSA) on PEG (Tween20, L64, and Myrj52)-coated SNPs have been investigated by steady-state and time-resolved fluorescence spectroscopy. These interactions give rise to the formation of intermolecular and intramolecular H bonds. As a subject of interest, the effect of temperature (30-60 °C) on the H bonds was studied by steady-state fluorescence. The size distribution and zeta potential of SNPs were determined by dynamic light scattering (DLS). Scanning electron microscopy (SEM) analysis revealed the spherical nature of particles with average diameter 40-80 nm. The structure, stability, dynamics, and conformational changes in adsorbed BSA protein on the PEG-coated SNPs surface have been also investigated by steady-state/lifetime fluorescence and circular dichroism spectroscopy. The results have relevance in the oxidative stress and drug delivery processes.

  5. Toxicity of PEG-Coated CoFe2O4 Nanoparticles with Treatment Effect of Curcumin

    NASA Astrophysics Data System (ADS)

    Akhtar, Shahnaz; An, Wenzhen; Niu, Xiaoying; Li, Kang; Anwar, Shahzad; Maaz, Khan; Maqbool, Muhammad; Gao, Lan

    2018-02-01

    In this work, CoFe2O4 nanoparticles coated with polyethylene glycol (PEG) were successfully synthesized via a hydrothermal technique. Morphological studies of the samples confirmed the formation of polycrystalline pure-phase PEG-CoFe2O4 nanoparticles with sizes of about 24 nm. Toxicity induced by CoFe2O4 nanoparticles was investigated, and biological assays were performed to check the toxicity effects of CoFe2O4 nanoparticles. Moreover, the healing effect of toxicity induced in living organisms was studied using curcumin and it was found that biochemical indexes detoxified and improved to reach its normal level after curcumin administration. Thus, PEG-coated CoFe2O4 synthesized through a hydrothermal method can be utilized in biomedical applications and curcumin, which is a natural chemical with no side effects, can be used for the treatment of toxicity induced by the nanoparticles in living organisms.

  6. Enhanced cellular uptake of LHRH-conjugated PEG-coated magnetite nanoparticles for specific targeting of triple negative breast cancer cells.

    PubMed

    Hu, J; Obayemi, J D; Malatesta, K; Košmrlj, A; Soboyejo, W O

    2018-07-01

    Targeted therapy is an emerging technique in cancer detection and treatment. This paper presents the results of a combined experimental and theoretical study of the specific targeting and entry of luteinizing hormone releasing hormone (LHRH)-conjugated PEG-coated magnetite nanoparticles into triple negative breast cancer (TNBC) cells and normal breast cells. The conjugated nanoparticles structures, cellular uptake of PEG-coated magnetite nanoparticles (MNPs) and LHRH-conjugated PEG-coated magnetite nanoparticles (LHRH-MNPs) into breast cancer cells and normal breast cells were investigated using a combination of transmission electron microscope, optical and confocal fluorescence microscopy techniques. The results show that the presence of LHRH enhances the uptake of LHRH-MNPs into TNBC cells. Nanoparticle entry into breast cancer cells is also studied using a combination of thermodynamics and kinetics models. The trends in the predicted nanoparticle entry times (into TNBC cells) and the size ranges of the engulfed nanoparticles (within the TNBC cells) are shown to be consistent with experimental observations. The implications of the results are then discussed for the specific targeting of TNBCs with LHRH-conjugated PEG-coated magnetite nanoparticles for the early detection and treatment of TNBC. Copyright © 2018. Published by Elsevier B.V.

  7. Antitumoral activity and toxicity of PEG-coated and PEG-folate-coated pH-sensitive liposomes containing ¹⁵⁹Gd-DTPA-BMA in Ehrlich tumor bearing mice.

    PubMed

    Soares, Daniel Crístian Ferreira; Cardoso, Valbert Nascimento; de Barros, André Luís Branco; de Souza, Cristina Maria; Cassali, Geovanni Dantas; de Oliveira, Mônica Cristina; Ramaldes, Gilson Andrade

    2012-01-23

    In the present study, PEG-coated pH-sensitive and PEG-folate-coated pH-sensitive liposomes containing the ¹⁵⁹Gd-DTPA-BMA were prepared and radiolabeled through neutron activation technique, aiming to study the in vivo antitumoral activity and toxicity on mice bearing a previously-developed solid Ehrlich tumor. The treatment efficacy was verified through tumoral volume increase and histomorphometry studies. The toxicity of formulations was investigated through animal weight variations, as well as hematological and biochemical tests. The results showed that after 31 days of treatment, animals treated with radioactive formulations had a lower increase in tumor volume and a significantly higher percentage of necrosis compared with controls revealed by histomorphometry studies. Furthermore, mice treated with radioactive formulations exhibited lower weight gain without significant hematological or biochemical changes, except for toxicity to hepatocytes which requires more detailed studies. From the results obtained to date, we believe that the radioactive formulations can be considered potential therapeutic agents for cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Smart pH- and reduction-dual-responsive folate-PEG-coated polymeric lipid vesicles for tumor-triggered targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Wang, Hanjie; Liu, Zhongyun; Wang, Liangliang; Wang, Xiaomin; Su, Lin; Chang, Jin

    2014-06-01

    To improve their therapeutic index, designed nanocarriers should preferentially accumulate in tumor tissues and then rapidly enter tumor cells to release the encapsulated drugs in a triggered manner. In this article, a new kind of a smart pH- and reduction-dual-responsive drug delivery system based on folate-PEG-coated polymeric lipid vesicles (FPPLVs) formed from amphiphilic dextran derivatives was designed and prepared successfully. PEG chains with pH-sensitive hydrazone bonds, stearyl alcohol (SA) chains with reduction-sensitive disulfide bonds and folate were connected to a dextran main chain. The newly developed FPPLVs had a nano-sized structure (~50 nm) with a PEG coating. The in vitro DOX release profiles showed that the FPPLVs achieved a triggered drug release in response to acidic pH and reducing environments due to the cleavage of hydrazone bonds and disulfide bonds. It has also been demonstrated by an in vitro cellular uptake study that the FPPLVs lose their PEG coating as well as expose the folate in acidic conditions, which allows them to efficiently enter tumor cells through ligand-receptor interactions. In vitro cytotoxicity measurements also confirmed that FPPLVs exhibited pronounced antitumor activity against HeLa cells. These results suggest that FPPLVs are promising carriers for smart antitumor drug delivery applications.To improve their therapeutic index, designed nanocarriers should preferentially accumulate in tumor tissues and then rapidly enter tumor cells to release the encapsulated drugs in a triggered manner. In this article, a new kind of a smart pH- and reduction-dual-responsive drug delivery system based on folate-PEG-coated polymeric lipid vesicles (FPPLVs) formed from amphiphilic dextran derivatives was designed and prepared successfully. PEG chains with pH-sensitive hydrazone bonds, stearyl alcohol (SA) chains with reduction-sensitive disulfide bonds and folate were connected to a dextran main chain. The newly developed FPPLVs had a

  9. Multifunctional PEG-carboxylate copolymer coated superparamagnetic iron oxide nanoparticles for biomedical application

    NASA Astrophysics Data System (ADS)

    Illés, Erzsébet; Szekeres, Márta; Tóth, Ildikó Y.; Szabó, Ákos; Iván, Béla; Turcu, Rodica; Vékás, Ladislau; Zupkó, István; Jaics, György; Tombácz, Etelka

    2018-04-01

    Biocompatible magnetite nanoparticles (MNPs) were prepared by post-coating the magnetic nanocores with a synthetic polymer designed specifically to shield the particles from non-specific interaction with cells. Poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomers and acrylic acid (AA) small molecular monomers were chemically coupled by quasi-living atom transfer radical polymerization (ATRP) to a comb-like copolymer, P(PEGMA-co-AA) designated here as P(PEGMA-AA). The polymer contains pendant carboxylate moieties near the backbone and PEG side chains. It is able to bind spontaneously to MNPs; stabilize the particles electrostatically via the carboxylate moieties and sterically via the PEG moieties; provide high protein repellency via the structured PEG layer; and anchor bioactive proteins via peptide bond formation with the free carboxylate groups. The presence of the P(PEGMA-AA) coating was verified in XPS experiments. The electrosteric (i.e., combined electrostatic and steric) stabilization is efficient down to pH 4 (at 10 mM ionic strength). Static magnetization and AC susceptibility measurements showed that the P(PEGMA-AA)@MNPs are superparamagnetic with a saturation magnetization value of 55 emu/g and that both single core nanoparticles and multicore structures are present in the samples. The multicore components make our product well suited for magnetic hyperthermia applications (SAR values up to 17.44 W/g). In vitro biocompatibility, cell internalization, and magnetic hyperthermia studies demonstrate the excellent theranostic potential of our product.

  10. Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Yamini, D.; Devanand Venkatasubbu, G.; Kumar, J.; Ramakrishnan, V.

    2014-01-01

    The pure hydroxyapatite (HAP) nanoparticles (NPs) have been synthesized by wet chemical precipitation method. Raman spectral measurements have been made for pure HAP, pure Polyethylene glycol (PEG) 6000 and PEG coated HAP in different mass ratios (sample 1, sample 2 and sample 3). The peaks observed in Raman spectrum of pure HAP and the XRD pattern have confirmed the formation of HAP NPs. Vibrational modes have been assigned for pure HAP and pure PEG 6000. The observed variation in peak position of Raman active vibrational modes of PEG in PEG coated HAP has been elucidated in this work, in terms of intermolecular interactions between PEG and HAP. Further these results suggest that the functionalization of nanoparticles may be independent of PEG mass.

  11. Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles.

    PubMed

    Yamini, D; Devanand Venkatasubbu, G; Kumar, J; Ramakrishnan, V

    2014-01-03

    The pure hydroxyapatite (HAP) nanoparticles (NPs) have been synthesized by wet chemical precipitation method. Raman spectral measurements have been made for pure HAP, pure Polyethylene glycol (PEG) 6000 and PEG coated HAP in different mass ratios (sample 1, sample 2 and sample 3). The peaks observed in Raman spectrum of pure HAP and the XRD pattern have confirmed the formation of HAP NPs. Vibrational modes have been assigned for pure HAP and pure PEG 6000. The observed variation in peak position of Raman active vibrational modes of PEG in PEG coated HAP has been elucidated in this work, in terms of intermolecular interactions between PEG and HAP. Further these results suggest that the functionalization of nanoparticles may be independent of PEG mass. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Synthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment

    PubMed Central

    Massadeh, Salam; Alaamery, Manal; Al-Qatanani, Shatha; Alarifi, Saqer; Bawazeer, Shahad; Alyafee, Yusra

    2016-01-01

    Background PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the drug (hydrophilic or hydrophobic). In this study, methotrexate (MTX)-loaded nanoparticles were prepared by the double emulsion method. Method Biodegradable polymer polyethylene glycol-polylactide acid tri-block was used with poly(vinyl alcohol) as emulsifier. The resulting methotrexate polymer nanoparticles were coated with bovine serum albumin in order to improve their biocompatibility. This study focused on particle size distribution, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release at various concentrations of PVA (0.5%, 1%, 2%, and 3%). Results Reduced particle size of methotrexate-loaded nanoparticles was obtained using lower PVA concentrations. Enhanced encapsulation efficiency and loading capacity was obtained using 1% PVA. FT-IR characterization was conducted for the void polymer nanoparticles and for drug-loaded nanoparticles with methotrexate, and the protein-coated nanoparticles in solid state showed the structure of the plain PEG-PLA and the drug-loaded nanoparticles with methotrexate. The methotrexate-loaded PLA-PEG-PLA nanoparticles have been studied in vitro; the drug release, drug loading, and yield are reported. Conclusion The drug release profile was monitored over a period of 168 hours, and was free of burst effect before the protein coating. The results obtained from this work are promising; this work can be taken further to develop MTX based therapies.

  13. Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles.

    PubMed

    Borden, Mark A; Pu, Gang; Runner, Gabriel J; Longo, Marjorie L

    2004-06-01

    Langmuir trough methods and fluorescence microscopy were combined to investigate the phase behavior and microstructure of monolayer shells coating micron-scale bubbles (microbubbles) typically used in biomedical applications. The monolayer shell consisted of a homologous series of saturated acyl chain phospholipids and an emulsifier containing a single hydrophobic stearate chain and polyethylene glycol (PEG) head group. PEG-emulsifier was fully miscible with expanded phase lipids and phase separated from condensed phase lipids. Phase coexistence was observed in the form of dark condensed phase lipid domains surrounded by a sea of bright, emulsifier-rich expanded phase. A rich assortment of condensed phase area fractions and domain morphologies, including networks and other novel structures, were observed in each batch of microbubbles. Network domains were reproduced in Langmuir monolayers under conditions of heating-cooling followed by compression-expansion, as well as in microbubble shells that underwent surface flow with slight compression. Domain size decreased with increased cooling rate through the phase transition temperature, and domain branching increased with lipid acyl chain length at high cooling rates. Squeeze-out of the emulsifier at a surface pressure near 35 mN/m was indicated by a plateau in Langmuir isotherms and directly visualized with fluorescence microscopy, although collapse of the solid lipid domains occurred at much higher surface pressures. Compression of the monolayer past the PEG-emulsifier squeeze-out surface pressure resulted in a dark shell composed entirely of lipid. Under certain conditions, the PEG-emulsifier was reincorporated upon subsequent expansion. Factors that affect shell formation and evolution, as well as implications for the rational design of microbubbles in medical applications, are discussed.

  14. Nonfouling NTA-PEG-Based TEM Grid Coatings for Selective Capture of Histidine-Tagged Protein Targets from Cell Lysates.

    PubMed

    Benjamin, Christopher J; Wright, Kyle J; Hyun, Seok-Hee; Krynski, Kyle; Yu, Guimei; Bajaj, Ruchika; Guo, Fei; Stauffacher, Cynthia V; Jiang, Wen; Thompson, David H

    2016-01-19

    We report the preparation and performance of TEM grids bearing stabilized nonfouling lipid monolayer coatings. These films contain NTA capture ligands of controllable areal density at the distal end of a flexible poly(ethylene glycol) 2000 (PEG2000) spacer to avoid preferred orientation of surface-bound histidine-tagged (His-tag) protein targets. Langmuir-Schaefer deposition at 30 mN/m of mixed monolayers containing two novel synthetic lipids-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[(5-amido-1-carboxypentyl)iminodiacetic acid]polyethylene glycolamide 2000) (NTA-PEG2000-DSPE) and 1,2-(tricosa-10',12'-diynoyl)-sn-glycero-3-phosphoethanolamine-N-(methoxypolyethylene glycolamide 350) (mPEG350-DTPE)-in 1:99 and 5:95 molar ratios prior to treatment with a 5 min, 254 nm light exposure was used for grid fabrication. These conditions were designed to limit nonspecific protein adsorption onto the stabilized lipid coating by favoring the formation of a mPEG350 brush layer below a flexible, mushroom conformation of NTA-PEG2000 at low surface density to enable specific immobilization and random orientation of the protein target on the EM grid. These grids were then used to capture His6-T7 bacteriophage and RplL from cell lysates, as well as purified His8-green fluorescent protein (GFP) and nanodisc solubilized maltose transporter, His6-MalFGK2. Our findings indicate that TEM grid supported, polymerized NTA lipid monolayers are capable of capturing His-tag protein targets in a manner that controls their areal densities, while efficiently blocking nonspecific adsorption and limiting film degradation, even upon prolonged detergent exposure.

  15. Stability of Uncemented Cups - Long-Term Effect of Screws, Pegs and HA Coating: A 14-Year RSA Follow-Up of Total Hip Arthroplasty.

    PubMed

    Otten, Volker T C; Crnalic, Sead; Röhrl, Stephan M; Nivbrant, Bo; Nilsson, Kjell G

    2016-01-01

    Screws, pegs and hydroxyapatite-coating are used to enhance the primary stability of uncemented cups. We present a 14-year follow-up of 48 hips randomized to four groups: press-fit only, press-fit plus screws, press-fit plus pegs and hydroxyapatite-coated cups. Radiostereometric migration measurements showed equally good stability regardless cup augmentation. The mean wear rate was high, 0.21 mm/year, with no differences between the groups. Seven hips had radiographical osteolysis but only in hips with augmented cups. Cups without screw-holes compared with cups with screw-holes resulted in better clinical outcome at the 14-year follow-up. Thus, augmentation of uncemented cups with screws, pegs, or hydroxyapatite did not appear to improve the long-term stability compared with press-fit only. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes

    PubMed Central

    Gutowski, Stacie M.; Shoemaker, James T.; Templeman, Kellie L.; Wei, Yang; Latour, Robert A.; Bellamkonda, Ravi V.; LaPlaca, Michelle C.; García, Andrés J.

    2015-01-01

    Neural electrodes are an important part of brain-machine interface devices that can restore functionality to patients with sensory and movement disorders. Chronically implanted neural electrodes induce an unfavorable tissue response which includes inflammation, scar formation, and neuronal cell death, eventually causing loss of electrode function. We developed a poly(ethylene glycol) hydrogel coating for neural electrodes with non-fouling characteristics, incorporated an anti-inflammatory agent, and engineered a stimulus-responsive degradable portion for on-demand release of the anti-inflammatory agent in response to inflammatory stimuli. This coating reduces in vitro glial cell adhesion, cell spreading, and cytokine release compared to uncoated controls. We also analyzed the in vivo tissue response using immunohistochemistry and microarray qRT-PCR. Although no differences were observed among coated and uncoated electrodes for inflammatory cell markers, lower IgG penetration into the tissue around PEG+IL-1Ra coated electrodes indicates an improvement in blood-brain barrier integrity. Gene expression analysis showed higher expression of IL-6 and MMP-2 around PEG+IL-1Ra samples, as well as an increase in CNTF expression, an important marker for neuronal survival. Importantly, increased neuronal survival around coated electrodes compared to uncoated controls was observed. Collectively, these results indicate promising findings for an engineered coating to increase neuronal survival and improve tissue response around implanted neural electrodes. PMID:25617126

  17. Steric and electrostatic surface forces on sulfonated PEG graft surfaces with selective albumin adsorption.

    PubMed

    Bremmell, Kristen E; Britcher, Leanne; Griesser, Hans J

    2013-06-01

    Addition of ionized terminal groups to PEG graft layers may cause additional interfacial forces to modulate the net interfacial interactions between PEG graft layers and proteins. In this study we investigated the effect of terminal sulfonate groups, characterizing PEG-aldehyde (PEG-CHO) and sulfonated PEG (PEG-SO3) graft layers by XPS and colloid probe AFM interaction force measurements as a function of ionic strength, in order to determine surface forces relevant to protein resistance and models of bio-interfacial interaction of such graft coatings. On the PEG-CHO surface the measured interaction force does not alter with ionic strength, typical of a repulsive steric barrier coating. An analogous repulsive interaction force of steric origin was also observed on the PEG-SO3 graft coating; however, the net interaction force changed with ionic strength. Interaction forces were modelled by steric and electrical double layer interaction theories, with fitting to a scaling theory model enabling determination of the spacing and stretching of the grafted chains. Albumin, fibrinogen, and lysozyme did not adsorb on the PEG-CHO coating, whereas the PEG graft with terminal sulfonate groups showed substantial adsorption of albumin but not fibrinogen or lysozyme from 0.15 M salt solutions. Under lower ionic strength conditions albumin adsorption was again minimized as a result of the increased electrical double-layer interaction observed with the PEG-SO3 modified surface. This unique and unexpected adsorption behaviour of albumin provides an alternative explanation to the "negative cilia" model used by others to rationalize observed thromboresistance on PEG-sulfonate coatings. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Effect of PEG and water-soluble chitosan coating on moxifloxacin-loaded PLGA long-circulating nanoparticles.

    PubMed

    Mustafa, Sanaul; Devi, V Kusum; Pai, Roopa S

    2017-02-01

    Moxifloxacin (MOX) is a Mycobacterium tuberculosis DNA gyrase inhibitor. Due to its intense hydrophilicity, MOX is cleared from the body within 24 h and required for repetitive doses which may then result in hepatotoxicity and acquisition of MOX resistant-TB, related with its use. To overcome the aforementioned limitations, the current study aimed to develop PLGA nanoparticles (PLGA NPs), to act as an efficient carrier for controlled delivery of MOX. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to MOX-PLGA NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was rose for surface modification of NPs. Surface modified NPs (MOX-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetic and in vivo biodistribution following oral administration were investigated. NP surface charge was closed to neutral +4.76 mV and significantly affected by the WSC coating. MOX-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long-drawn-out the blood circulation half-life with resultant reduced liver sequestration vis-à-vis MOX-PLGA NPs. The studies, therefore, indicate the successful formulation development of MOX-PEG-WSC NPs that showed sustained release behavior from nanoparticles which indicates low frequency of dosing.

  19. Simultaneous monitoring of humidity and chemical changes using quartz crystal microbalance sensors modified with nano-thin films.

    PubMed

    Selyanchyn, Roman; Korposh, Serhiy; Wakamatsu, Shunichi; Lee, Seung-Woo

    2011-01-01

    Quartz crystal microbalance (QCM) electrodes modified with nano-thin films were used to develop a system for measuring significant environment changes (smoke, humidity, hazardous material release). A layer-by-layer approach was used for the deposition of sensitive coatings with a nanometer thickness on the electrode surface. The QCM electrode was modified with self-assembled alternate layers of tetrakis-(4-sulfophenyl) porphine (TSPP) (or its manganese derivative, MnTSPP) and poly(diallyldimethylammonium chloride) (PDDA). The QCM sensors, which had been reported previously for humidity sensing purposes, revealing a high possibility to recognize significant environmental changes. Identifying of the origin of environmental change is possible via differential signal analysis of the obtained data. The sensors showed different responses to humidity changes, hazardous gas (ammonia) or cigarette smoke exposure. Even qualitative analysis is not yet available; it has been shown that ventilation triggers or alarms for monitoring smoke or hazardous material release can be built using the obtained result.

  20. Simulated food effects on drug release from ethylcellulose: PVA-PEG graft copolymer-coated pellets.

    PubMed

    Muschert, Susanne; Siepmann, Florence; Leclercq, Bruno; Carlin, Brian; Siepmann, Juergen

    2010-02-01

    Food effects might substantially alter drug release from oral controlled release dosage forms in vivo. The robustness of a novel type of controlled release film coating was investigated using various types of release media and two types of release apparatii. Importantly, none of the investigated conditions had a noteworthy impact on the release of freely water-soluble diltiazem HCl or slightly water-soluble theophylline from pellets coated with ethylcellulose containing small amounts of PVA-PEG graft copolymer. In particular, the presence of significant amounts of fats, carbohydrates, surfactants, bile salts, and calcium ions in the release medium did not alter drug release. Furthermore, changes in the pH and differences in the mechanical stress the dosage forms were exposed to did not affect drug release from the pellets. The investigated film coatings allowing for oral controlled drug delivery are highly robust in vitro and likely to be poorly sensitive to classical food effects in vivo.

  1. Design of Aerosol Coating Reactors: Precursor Injection

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Particles are coated with thin shells to facilitate their processing and incorporation into liquid or solid matrixes without altering core particle properties (coloristic, magnetic, etc.). Here, computational fluid and particle dynamics are combined to investigate the geometry of an aerosol reactor for continuous coating of freshly-made titanium dioxide core nanoparticles with nanothin silica shells by injection of hexamethyldisiloxane (HMDSO) vapor downstream of TiO2 particle formation. The focus is on the influence of HMDSO vapor jet number and direction in terms of azimuth and inclination jet angles on process temperature and coated particle characteristics (shell thickness and fraction of uncoated particles). Rapid and homogeneous mixing of core particle aerosol and coating precursor vapor facilitates synthesis of core-shell nanoparticles with uniform shell thickness and high coating efficiency (minimal uncoated core and free coating particles). PMID:23658471

  2. Poly(D, L-lactide-co-glycolide) nanoparticles as delivery agents for photodynamic therapy: enhancing singlet oxygen release and photototoxicity by surface PEG coating

    NASA Astrophysics Data System (ADS)

    Boix-Garriga, Ester; Acedo, Pilar; Casadó, Ana; Villanueva, Angeles; Stockert, Juan Carlos; Cañete, Magdalena; Mora, Margarita; Lluïsa Sagristá, Maria; Nonell, Santi

    2015-09-01

    Poly(D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) are being considered as nanodelivery systems for photodynamic therapy. The physico-chemical and biological aspects of their use remain largely unknown. Herein we report the results of a study of PLGA NPs for the delivery of the model hydrophobic photosensitizer ZnTPP to HeLa cells. ZnTPP was encapsulated in PLGA with high efficiency and the NPs showed negative zeta potentials and diameters close to 110 nm. Poly(ethylene glycol) (PEG) coating, introduced to prevent opsonization and clearance by macrophages, decreased the size and zeta potential of the NPs by roughly a factor of two and improved their stability in the presence of serum proteins. Photophysical studies revealed two and three populations of ZnTPP and singlet oxygen in uncoated and PEGylated NPs, respectively. Singlet oxygen is confined within the NPs in bare PLGA while it is more easily released into the external medium after PEG coating, which contributes to a higher photocytotoxicity towards HeLa cells in vitro. PLGA NPs are internalized by endocytosis, deliver their cargo to lysosomes and induce cell death by apoptosis upon exposure to light. In conclusion, PLGA NPs coated with PEG show high potential as delivery systems for photodynamic applications.

  3. Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture

    PubMed Central

    Yu, Miao; Huang, Shaohui; Yu, Kevin Jun; Clyne, Alisa Morss

    2012-01-01

    Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles. PMID:22754315

  4. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids

    NASA Astrophysics Data System (ADS)

    Durán-Lobato, Matilde; Martín-Banderas, Lucía; Gonçalves, Lídia M. D.; Fernández-Arévalo, Mercedes; Almeida, Antonio J.

    2015-02-01

    The cannabinoid derivative 1-naphthalenyl[4-(pentyloxy)-1-naphthalenyl]methanone (CB13) has an important therapeutic potential as analgesic in chronic pain states that respond poorly to conventional drugs. However, the incidence of its mild-to-moderate and dose-dependent adverse effects, as well as its pharmacokinetic profile, actually holds back its use in humans. Thus, the use of a suitable carrier system for oral delivery of CB13 becomes an attractive strategy to develop a valuable therapy. Polymeric poly(lactic-co-glycolic) acid (PLGA) and lipid nanoparticles (LNPs) are widely studied delivery vehicles that improve the bioavailability of lipophilic compounds and present special interest in oral delivery. Their surface can be modified to improve the adhesion of particles to the oral mucosa and increase their circulation time in blood with additives such as chitosan (CS) and polyethylene glycol (PEG), which can be feasibly incorporated onto these particles in a post-production step. In this work, CS- and PEG-modified polymeric PLGA and LNPs were successfully obtained and comparatively evaluated under the same experimental conditions as oral carriers for CB13. All the formulations presented adequate blood compatibility and absence of cytotoxicity in Caco-2 cells. Coating with CS led to a higher interaction with Caco-2 cells and a limited uptake in THP1 cells, while coating with PEG led to a limited uptake in Caco-2 cells and strongly prevented THP1 cells uptake. The performance of each formulation is discussed as a comparison of the potential of these carriers as oral delivery systems of CB13.

  5. PEG-coated gold nanoparticles attenuate β-adrenergic receptor-mediated cardiac hypertrophy.

    PubMed

    Qiao, Yuhui; Zhu, Baoling; Tian, Aiju; Li, Zijian

    2017-01-01

    Gold nanoparticles (AuNPs) are widely used as a drug delivery vehicle, which can accumulate in the heart through blood circulation. Therefore, it is very important to understand the effect of AuNPs on the heart, especially under pathological conditions. In this study, we found that PEG-coated AuNPs attenuate β-adrenergic receptor (β-AR)-mediated acute cardiac hypertrophy and inflammation. However, both isoproterenol, a non-selective β-AR agonist, and AuNPs did not induce cardiac function change or cardiac fibrosis. AuNPs exerted an anti-cardiac hypertrophy effect by decreasing β 1 -AR expression and its downstream ERK1/2 hypertrophic pathway. Our results indicated that AuNPs might be safe and have the potential to be used as multi-functional materials (drug carrier systems and anti-cardiac hypertrophy agents).

  6. MAPLE deposition of PLGA:PEG films for controlled drug delivery: Influence of PEG molecular weight

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Staicu, Angela; Dinescu, Maria

    2012-09-01

    Implantable devices consisting of indomethacin (INC) cores coated with poly(lactide-co-glycolide):polyethylene glycol films (i.e. PLGA:PEG films) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) were produced. To predict their behavior after implantation inside the body, the implants were studied in vitro, in media similar with those encountered inside the body (phosphate buffered saline (PBS) pH 7.4 and blood). The influence of the molecular weight of PEG (i.e. low (1450 Da) versus high (10 kDa) molecular weights) on the characteristics of the implants was investigated, in terms of morphology, blood compatibility and kinetics of the drug release. The use of PEG of high molecular weight resulted in larger pores on the implants surfaces, enhanced blood compatibility of the implants and higher drug delivery rates. For both molecular weights PEGs, sustained release of INC was maintained over a three weeks interval. Theoretical fitting of the drug release data with Higuchi's model indicated that the INC was released mainly by diffusion, most probably through the pores formed in PLGA:PEG films during PBS immersion.

  7. Preparation and evaluation of APTES-PEG coated iron oxide nanoparticles conjugated to rhenium-188 labeled rituximab.

    PubMed

    Azadbakht, Bakhtiar; Afarideh, Hossein; Ghannadi-Maragheh, Mohammad; Bahrami-Samani, Ali; Asgari, Mehdi

    2017-05-01

    Radioimmuno-conjugated (Rhenium-188 labeled Rituximab), 3-aminopropyltriethoxysilane (APTES)-polyethylene glycol (PEG) coated iron oxide nanoparticles were synthesized and then characterized. Therapeutic effect and targeting efficacy of complex were evaluated in CD20 express B cell lines and tumor bearing Balb/c mice respectively. To reach these purposes, superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized using coprecipitation method and then their surface was treated with APTES for increasing retention time of SPIONs in blood circulation and amine group creation. In the next step, N-hydroxysuccinimide (NHS) ester of polyethylene glycol maleimide (NHS-PEG-Mal) was conjugated to the APTES-treated SPIONs. After radiolabeling of Rituximab antibody with Rhenium-188 (T 1/2 =16.9h) using synthesized N 2 S 4 chelator, it was attached to the APTES-PEG-MAL-SPIONs surface through thiol-maleimide coupling reaction. In vitro evaluation of the 188 ReN 2 S 4 -Rituximab-SPION-complex thus obtained revealed that at 24 and 48h post-treatment effective cancer cell killing had been achieved. Bio-distribution study in tumor bearing mice showed capability of this complex for targeted cancer therapy. Active and passive tumor targeting strategies were applied through incorporated anti-CD20 (Rituximab) antibody and also enhanced permeability and retention (EPR) effect of solid tumors for nanoparticles respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Modeling of nanoparticle coatings for medical applications

    NASA Astrophysics Data System (ADS)

    Haume, Kaspar; Mason, Nigel J.; Solov'yov, Andrey V.

    2016-09-01

    Gold nanoparticles (AuNPs) have been shown to possess properties beneficial for the treatment of cancerous tumors by acting as radiosensitizers for both photon and ion radiation. Blood circulation time is usually increased by coating the AuNPs with poly(ethylene glycol) (PEG) ligands. The effectiveness of the PEG coating, however, depends on both the ligand surface density and length of the PEG molecules, making it important to understand the structure of the coating. In this paper the thickness, ligand surface density, and density of the PEG coating is studied with classical molecular dynamics using the software package MBN Explorer. AuNPs consisting of 135 atoms (approximately 1.4 nm diameter) in a water medium have been studied with the number of PEG ligands varying between 32 and 60. We find that the thickness of the coating is only weakly dependent on the surface ligand density and that the degree of water penetration is increased when there is a smaller number of attached ligands.

  9. High capacity Li-ion battery anodes: Impact of crystallite size, surface chemistry and PEG-coating

    DOE PAGES

    Minnici, Krysten; Kwon, Yo Han; Huie, Matthew M.; ...

    2017-12-06

    Battery electrodes are complex mesoscale systems comprised of an active material, conductive agent, current collector, and polymeric binder. Previous work showed that introduction of poly [3-(potassium-4-butanoate) thiophene] (PPBT) as a binder component coupled with a polyethylene glycol (PEG) surface coating on magnetite (Fe 3O 4) nanoparticles enhanced electron and ion transport in the high capacity anode system. Here, the impact of Fe 3O 4 crystallite size (10 nm vs. 20 nm) and surface chemistry were explored to evaluate their effects on interfacial interactions within the composite PEG/PPBT based electrodes and resultant battery performance. The Fe 3O 4 synthesis methods inevitablymore » lead to differences in surface chemistry. For instance, the Fe 3O 4 particles synthesized using ammonium hydroxide appeared more dispersed, and afforded improved rate capability performance. Notably, chemical interactions between the active nanoparticles and PPBT binder were only seen with particles synthesized using triethylamine. Capacity retention and cycling performance were unaffected. Thus, this study provides fundamental insights into the significant impact of active material synthesis on the design and fabrication of composite battery electrodes.« less

  10. High capacity Li-ion battery anodes: Impact of crystallite size, surface chemistry and PEG-coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minnici, Krysten; Kwon, Yo Han; Huie, Matthew M.

    Battery electrodes are complex mesoscale systems comprised of an active material, conductive agent, current collector, and polymeric binder. Previous work showed that introduction of poly [3-(potassium-4-butanoate) thiophene] (PPBT) as a binder component coupled with a polyethylene glycol (PEG) surface coating on magnetite (Fe 3O 4) nanoparticles enhanced electron and ion transport in the high capacity anode system. Here, the impact of Fe 3O 4 crystallite size (10 nm vs. 20 nm) and surface chemistry were explored to evaluate their effects on interfacial interactions within the composite PEG/PPBT based electrodes and resultant battery performance. The Fe 3O 4 synthesis methods inevitablymore » lead to differences in surface chemistry. For instance, the Fe 3O 4 particles synthesized using ammonium hydroxide appeared more dispersed, and afforded improved rate capability performance. Notably, chemical interactions between the active nanoparticles and PPBT binder were only seen with particles synthesized using triethylamine. Capacity retention and cycling performance were unaffected. Thus, this study provides fundamental insights into the significant impact of active material synthesis on the design and fabrication of composite battery electrodes.« less

  11. In Vitro Sustained Release Study of Gallic Acid Coated with Magnetite-PEG and Magnetite-PVA for Drug Delivery System

    PubMed Central

    Kura, Aminu Umar; Hussein-Al-Ali, Samer Hasan; Bin Hussein, Mohd Zobir; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2014-01-01

    The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG. PMID:24737969

  12. The influence of PEG-4000 and silica on crystal structure and magnetic properties of magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puspitarum, Deska Lismawenning; Hermawan, Agung; Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id

    2016-04-19

    In this paper, reports the influence of polyethylene glycol (PEG-4000) and silica on crystal structure and magnetic properties of MgFe{sub 2}O{sub 4} nanoparticles which is synthesized by the co-precipitation method. The particle size of before coated MgFe{sub 2}O{sub 4} was around 10.5 nm, and became 5.2 nm after PEG-4000 coating and 18.8 nm after silica coating. After coating, there were appeared new phases, α-Fe{sub 2}O{sub 3} (antiferromagnetic), SiO{sub 2} and γ-FeO(OH) which are paramagnetics. The second phase sample decreased responses to the external field. Transmission Electron Microscopy (TEM) morphology analysis on nanoparticles which was coated with PEG 4000 showed that the particles becomemore » more spherical, more dispersive, and less aglomerated. The magnetic hysteresis loops which was investigated with Vibrating Sample Magnetometer (VSM) indicated that coercivity of MgFe{sub 2}O{sub 4} was 120.7 Oe, and then decreased to 40.9 Oe after coating and 34.7 Oe for coating with PEG-4000 and silica, respectively. At 15 kOe, the magnetization value decreased from 2.69 emu/g to 0.96 emu/g after coating with PEG-4000 and increased 2.82 emu/g after silica coating. The result revealed the coating with both PEG-4000 and silica influence the magnetic properties of MgFe{sub 2}O{sub 4} nanoparticles.« less

  13. Kanamycin Sulphate Loaded PLGA-Vitamin-E-TPGS Long Circulating Nanoparticles Using Combined Coating of PEG and Water-Soluble Chitosan

    PubMed Central

    Mustafa, Sanaul

    2017-01-01

    Kanamycin sulphate (KS) is a Mycobacterium tuberculosis protein synthesis inhibitor. Due to its intense hydrophilicity, KS is cleared from the body within 8 h. KS has a very short plasma half-life (2.5 h). KS is used in high concentrations to reach the therapeutic levels in plasma, which results in serious nephrotoxicity/ototoxicity. To overcome aforementioned limitations, the current study aimed to develop KS loaded PLGA-Vitamin-E-TPGS nanoparticles (KS-PLGA-TPGS NPs), to act as an efficient carrier for controlled delivery of KS. To achieve a substantial extension in blood circulation, a combined design, affixation of polyethylene glycol (PEG) to KS-PLGA-TPGS NPs and adsorption of water-soluble chitosan (WSC) (cationic deacetylated chitin) to particle surface, was raised for surface modification of NPs. Surface modified NPs (KS-PEG-WSC NPs) were prepared to provide controlled delivery and circulate in the bloodstream for an extended period of time, thus minimizing dosing frequency. In vivo pharmacokinetics and in vivo biodistribution following intramuscular administration were investigated. NPs surface charge was close to neutral +3.61 mV and significantly affected by the WSC coating. KS-PEG-WSC NPs presented striking prolongation in blood circulation, reduced protein binding, and long drew-out the blood circulation half-life with resultant reduced kidney sequestration vis-à-vis KS-PLGA-TPGS NPs. The studies, therefore, indicate the successful formulation development of KS-PEG-WSC NPs with reduced frequency of dosing of KS indicating low incidence of nephrotoxicity/ototoxicity. PMID:28352475

  14. No overt structural or functional changes associated with PEG-coated gold nanoparticles accumulation with acute exposure in the mouse heart.

    PubMed

    Yang, Chengzhi; Yang, Hui; Wu, Jimin; Meng, Zenghui; Xing, Rui; Tian, Aiju; Tian, Xin; Guo, Lijun; Zhang, Youyi; Nie, Guangjun; Li, Zijian

    2013-10-24

    In this study, we investigated the cardiac biodistribution of polyethylene glycol (PEG)-coated AuNPs and their effects on cardiac function, structure and inflammation in both normal and cardiac remodeling mice. The model of cardiac remodeling was induced by subcutaneously injection of isoproterenol (ISO), a non-selective beta-adrenergic agonist, for 7 days. After AuNPs were injected intravenously in mice for 7 consecutive days, Au content in different organs was determined quantitatively by inductively coupled plasma mass spectrometry (ICP-MS), cardiac function and structure were measured by echocardiography, cardiac fibrosis was examined with picrosirius red staining, the morphology of cardiomyocytes was observed with hematoxylin and eosin (H & E) staining. The accumulation of AuNPs in hearts did not affect cardiac function or induce cardiac hypertrophy, cardiac fibrosis and cardiac inflammation under normal physiological condition. Cardiac AuNPs content was 6-fold higher in the cardiac remodeling mouse than normal mice. However, the increased accumulation of AuNPs in the heart did not aggravate ISO-induced cardiac hypertrophy, cardiac fibrosis or cardiac inflammation. These observations suggest that PEG-coated AuNPs possess excellent biocompatibility under both physiological and pathological conditions. Thus, AuNPs may be safe for cardiac patients and hold great promise for further development for various biomedical applications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Size-dependent tissue kinetics of PEG-coated gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Wan-Seob; Department of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, Seoul 122-704; Cho, Minjung

    2010-05-15

    Gold nanoparticles (AuNPs) can be used in various biomedical applications, however, very little is known about their size-dependent in vivo kinetics. Here, we performed a kinetic study in mice with different sizes of PEG-coated AuNPs. Small AuNPs (4 or 13 nm) showed high levels in blood for 24 h and were cleared by 7 days, whereas large (100 nm) AuNPs were completely cleared by 24 h. All AuNPs in blood re-increased at 3 months, which correlated with organ levels. Levels of small AuNPs were peaked at 7 days in the liver and spleen and at 1 month in the mesentericmore » lymph node, and remained high until 6 months, with slow elimination. In contrast, large AuNPs were taken up rapidly (approx 30 min) into the liver, spleen, and mesenteric lymph nodes with less elimination phase. TEM showed that AuNPs were entrapped in cytoplasmic vesicles and lysosomes of Kupffer cells and macrophages of spleen and mesenteric lymph node. Small AuNPs transiently activated CYP1A1 and 2B, phase I metabolic enzymes, in liver tissues from 24 h to 7 days, which mirrored with elevated gold levels in the liver. Large AuNPs did not affect the metabolic enzymes. Thus, propensity to accumulate in the reticuloendothelial organs and activation of phase I metabolic enzymes, suggest that extensive further studies are needed for practical in vivo applications.« less

  16. Solution Coating of Pharmaceutical Nanothin Films and Multilayer Nanocomposites with Controlled Morphology and Polymorphism.

    PubMed

    Horstman, Elizabeth M; Kafle, Prapti; Zhang, Fengjiao; Zhang, Yifu; Kenis, Paul J A; Diao, Ying

    2018-03-28

    Nanosizing is rapidly emerging as an alternative approach to enhance solubility and thus the bioavailability of poorly aqueous soluble active pharmaceutical ingredients (APIs). Although numerous techniques have been developed to perform nanosizing of API crystals, precise control and modulation of their size in an energy and material efficient manner remains challenging. In this study, we present meniscus-guided solution coating as a new technique to produce pharmaceutical thin films of nanoscale thickness with controlled morphology. We demonstrate control of aspirin film thickness over more than 2 orders of magnitude, from 30 nm to 1.5 μm. By varying simple process parameters such as the coating speed and the solution concentration, the aspirin film morphology can also be modulated by accessing different coating regimes, namely the evaporation regime and the Landau-Levich regime. Using ellipticine-a poorly water-soluble anticancer drug-as another model compound, we discovered a new polymorph kinetically trapped during solution coating. Furthermore, the polymorphic outcome can be controlled by varying coating conditions. We further performed layer-by-layer coating of multilayer nanocomposites, with alternating thin films of ellipticine and a biocompatible polymer, which demonstrate the potential of additive manufacturing of multidrug-personalized dosage forms using this approach.

  17. Engineering safer-by-design, transparent, silica-coated ZnO nanorods with reduced DNA damage potential

    PubMed Central

    Sotiriou, Georgios A.; Watson, Christa; Murdaugh, Kimberly M.; Darrah, Thomas H.; Pyrgiotakis, Georgios; Elder, Alison; Brain, Joseph D.; Demokritou, Philip

    2014-01-01

    Zinc oxide (ZnO) nanoparticles absorb UV light efficiently while remaining transparent in the visible light spectrum rendering them attractive in cosmetics and polymer films. Their broad use, however, raises concerns regarding potential environmental health risks and it has been shown that ZnO nanoparticles can induce significant DNA damage and cytotoxicity. Even though research on ZnO nanoparticle synthesis has made great progress, efforts on developing safer ZnO nanoparticles that maintain their inherent optoelectronic properties while exhibiting minimal toxicity are limited. Here, a safer-by-design concept was pursued by hermetically encapsulating ZnO nanorods in a biologically inert, nanothin amorphous SiO2 coating during their gas-phase synthesis. It is demonstrated that the SiO2 nanothin layer hermetically encapsulates the core ZnO nanorods without altering their optoelectronic properties. Furthermore, the effect of SiO2 on the toxicological profile of the core ZnO nanorods was assessed using the Nano-Cometchip assay by monitoring DNA damage at a cellular level using human lymphoblastoid cells (TK6). Results indicate significantly lower DNA damage (>3 times) for the SiO2-coated ZnO nanorods compared to uncoated ones. Such an industry-relevant, scalable, safer-by-design formulation of nanostructured materials can liberate their employment in nano-enabled products and minimize risks to the environment and human health. PMID:24955241

  18. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug.

    PubMed

    Prabha, G; Raj, V

    2016-05-01

    In this work, β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated iron oxide nanoparticles (Fe3O4-β-CD-PEG-PEI) were developed as drug carriers for drug delivery applications. The 5- Fluorouracil (5-FU) was chosen as model drug molecule. The developed nanoparticles (Fe3O4-β-CD-PEG-PEI) were characterized by various techniques such as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The average particles size range of 5-FU loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles were from 151 to 300nm and zeta potential value of nanoparticles were from -43mV to -20mV as measured using Malvern Zetasizer. Finally, encapsulation efficiency (EE), loading capacity (LC) and in-vitro drug release performance of 5-FU drug loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles was evaluated by UV-vis spectroscopy. In-vitro cytotoxicity tests investigated by MTT assay indicate that 5-FU loaded Fe3O4-β-CD-PEG-PEI nanoparticles were toxic to cancer cells and non-toxic to normal cells. The in-vitro release behavior of 5-FU from drug (5-FU) loaded Fe3O4-β-CD-PEG-PEI composite at different pH values and temperature was studied. It was found that 5-FU was released faster in pH 6.8 than in the acidic mediums (pH 1.2), and the released quantity was higher. Therefore, the newly prepared Fe3O4-β-CD-PEG-PEI carrier exhibits a promising potential capability for anticancer drug delivery in tumor therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system.

    PubMed

    Giray, Seda; Bal, Tuğba; Kartal, Ayse M; Kızılel, Seda; Erkey, Can

    2012-05-01

    A novel composite material consisting of a silica aerogel core coated by a poly(ethylene) glycol (PEG) hydrogel was developed. The potential of this novel composite as a drug delivery system was tested with ketoprofen as a model drug due to its solubility in supercritical carbon dioxide. The results indicated that both drug loading capacity and drug release profiles could be tuned by changing hydrophobicity of aerogels, and that drug loading capacity increased with decreased hydrophobicity, while slower release rates were achieved with increased hydrophobicity. Furthermore, higher concentration of PEG diacrylate in the prepolymer solution of the hydrogel coating delayed the release of the drug which can be attributed to the lower permeability at higher PEG diacrylate concentrations. The novel composite developed in this study can be easily implemented to achieve the controlled delivery of various drugs and/or proteins for specific applications. Copyright © 2012 Wiley Periodicals, Inc.

  20. Analysis of peg formation in cucumber seedlings grown on clinostats and in a microgravity (space) environment.

    PubMed

    Link, B M; Cosgrove, D J

    1999-12-01

    In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.

  1. Analysis of peg formation in cucumber seedlings grown on clinostats and in a microgravity (space) environment

    NASA Technical Reports Server (NTRS)

    Link, B. M.; Cosgrove, D. J.

    1999-01-01

    In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.

  2. Coating solid dispersions on microneedles via a molten dip coating method: development and in vitro evaluation for transdermal delivery of a water insoluble drug

    PubMed Central

    Ma, Yunzhe; Gill, Harvinder S.

    2014-01-01

    This study demonstrates for the first time the ability to coat solid dispersions on microneedles as a means to deliver water-insoluble drugs through the skin. Polyethylene glycol (PEG) was selected as the hydrophilic matrix, and lidocaine base was selected as the model hydrophobic drug to create the solid dispersion. First, thermal characterization and viscosity measurements of the PEG-lidocaine mixture at different mass fractions were performed. The results show that lidocaine can remain stable at temperatures up to ~130 °C, and that viscosity of the PEG-lidocaine molten solution increases as the mass fraction of lidocaine decreases. Differential scanning calorimetry demonstrated that at lidocaine mass fraction less than or equal to 50%, lidocaine is well dispersed in the PEG-lidocaine mixture. Uniform coatings were obtained on microneedle surfaces. In vitro dissolution studies in porcine skin showed that microneedles coated with PEG-lidocaine dispersions resulted in significantly higher delivery of lidocaine in just 3 min compared to 1 h topical application of 0.15 g EMLA®, a commercial lidocaine-prilocaine cream. In conclusion, the molten coating process we introduce here offers a practical approach to coat water-insoluble drugs on microneedles for transdermal delivery. PMID:25213295

  3. Poly(dimethylsiloxane) coatings for controlled drug release--polymer modifications.

    PubMed

    Schulze Nahrup, J; Gao, Z M; Mark, J E; Sakr, A

    2004-02-11

    Modifications of endhydroxylated poly(dimethylsiloxane) (PDMS) formulations were studied for their ability to be applied onto tablet cores in a spray-coating process and to control drug release in zero-order fashion. Modifications of the crosslinker from the most commonly used tetraethylorthosilicate (TEOS) to the trifunctional 3-(2,3-epoxypropoxy)propyltrimethoxysilane (SIG) and a 1:1 mixture of the two were undertaken. Addition of methylpolysiloxane-copolymers were studied. Lactose, microcrystalline cellulose (MCC) and polyethylene glycol 8000 (PEG) were the channeling agents applied. The effects on dispersion properties were characterized by particle size distribution and viscosity. Mechanical properties of resulting free films were studied to determine applicability in a pan-coating process. Release of hydrochlorothiazide (marker drug) was studied from tablets coated in a lab-size conventional coating pan. All dispersions were found suitable for a spray-coating process. Preparation of free films showed that copolymer addition was not possible due to great decline in mechanical properties. Tablets coated with formulations containing PEG were most suitable to control drug release, at only 5% coating weight. Constant release rates could be achieved for formulations with up to 25% PEG; higher amounts resulted in a non-linear release pattern. Upon adding 50% PEG, a drug release of 63% over 24 h could be achieved.

  4. Quantitative analysis of PEG-functionalized colloidal gold nanoparticles using charged aerosol detection.

    PubMed

    Smith, Mackensie C; Crist, Rachael M; Clogston, Jeffrey D; McNeil, Scott E

    2015-05-01

    Surface characteristics of a nanoparticle, such as functionalization with polyethylene glycol (PEG), are critical to understand and achieve optimal biocompatibility. Routine physicochemical characterization such as UV-vis spectroscopy (for gold nanoparticles), dynamic light scattering, and zeta potential are commonly used to assess the presence of PEG. However, these techniques are merely qualitative and are not sensitive enough to distinguish differences in PEG quantity, density, or presentation. As an alternative, two methods are described here which allow for quantitative measurement of PEG on PEGylated gold nanoparticles. The first, a displacement method, utilizes dithiothreitol to displace PEG from the gold surface. The dithiothreitol-coated gold nanoparticles are separated from the mixture via centrifugation, and the excess dithiothreitol and dissociated PEG are separated through reversed-phase high-performance liquid chromatography (RP-HPLC). The second, a dissolution method, utilizes potassium cyanide to dissolve the gold nanoparticles and liberate PEG. Excess CN(-), Au(CN)2 (-), and free PEG are separated using RP-HPLC. In both techniques, the free PEG can be quantified against a standard curve using charged aerosol detection. The displacement and dissolution methods are validated here using 2-, 5-, 10-, and 20-kDa PEGylated 30-nm colloidal gold nanoparticles. Further value in these techniques is demonstrated not only by quantitating the total PEG fraction but also by being able to be adapted to quantitate the free unbound PEG and the bound PEG fractions. This is an important distinction, as differences in the bound and unbound PEG fractions can affect biocompatibility, which would not be detected in techniques that only quantitate the total PEG fraction.

  5. In Vivo Efficacy of a "Smart" Antimicrobial Implant Coating.

    PubMed

    Stavrakis, Alexandra I; Zhu, Suwei; Hegde, Vishal; Loftin, Amanda H; Ashbaugh, Alyssa G; Niska, Jared A; Miller, Lloyd S; Segura, Tatiana; Bernthal, Nicholas M

    2016-07-20

    Postoperative infection is a devastating complication following arthroplasty. The goals of this study were to introduce a "smart" implant coating that combines passive elution of antibiotic with an active-release mechanism that "targets" bacteria, and to use an established in vivo mouse model of post-arthroplasty infection to longitudinally evaluate the efficacy of this polymer implant coating in decreasing bacterial burden. A novel, biodegradable coating using branched poly(ethylene glycol)-poly(propylene sulfide) (PEG-PPS) polymer was designed to deliver antibiotics both passively and actively. In vitro-release kinetics were studied using high-performance liquid chromatography (HPLC) quantification in conditions representing both the physiologic environment and the more oxidative, hyperinflammatory environment of periprosthetic infection. The in vivo efficacy of the PEG-PPS coating delivering vancomycin and tigecycline was tested using an established mouse model of post-arthroplasty infection. Noninvasive bioluminescence imaging was used to quantify the bacterial burden; radiography, to assess osseointegration and bone resorption; and implant sonication, for colony counts. In vitro-release kinetics confirmed passive elution above the minimum inhibitory concentration (MIC). A rapid release of antibiotic was noted when challenged with an oxidative environment (p < 0.05), confirming a "smart" active-release mechanism. The PEG-PPS coating with tigecycline significantly lowered the infection burden on all days, whereas PEG-PPS-vancomycin decreased infection on postoperative day (POD) 1, 3, 5, and 7 (p < 0.05). A mean of 0, 9, and 2.6 × 10(2) colony-forming units (CFUs) grew on culture from the implants treated with tigecycline, vancomycin, and PEG-PPS alone, respectively, and a mean of 1.2 × 10(2), 4.3 × 10(3), and 5.9 × 10(4) CFUs, respectively, on culture of the surrounding tissue (p < 0.05). The PEG-PPS coating provides a promising approach to preventing

  6. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice

    PubMed Central

    Zhang, Guodong; Yang, Zhi; Lu, Wei; Zhang, Rui; Huang, Qian; Tian, Mei; Li, Li; Liang, Dong; Li, Chun

    2009-01-01

    Polyethylene glycol (PEG)-coated (pegylated) gold nanoparticles (AuNPs) have been proposed as drug carriers and diagnostic contrast agents. However, the impact of particle characteristics on the biodistribution and pharmacokinetics of pegylated AuNPs is not clear. We investigated the effects of PEG molecular weight, type of anchoring ligand, and particle size on the assembly properties and colloidal stability of PEG-coated AuNPs. The pharmacokinetics and biodistribution of the most stable PEG-coated AuNPs in nude mice bearing subcutaneous A431 squamous tumors were further studied using 111In-labeled AuNPs. AuNPs coated with thioctic acid (TA)-anchored PEG exhibited higher colloidal stability in phosphate-buffered saline in the presence of dithiothreitol than did AuNPs coated with monothiol-anchored PEG. AuNPs coated with high-molecular-weight (5000 Da) PEG were more stable than AuNPs coated with low-molecular-weight (2000 Da) PEG. Of the 20-nm, 40-nm, and 80-nm AuNPs coated with TA-terminated PEG5000, the 20-nm AuNPs exhibited the lowest uptake by reticuloendothelial cells and the slowest clearance from the body. Moreover, the 20-nm AuNPs coated with TA-terminated PEG5000 showed significantly higher tumor uptake and extravasation from the tumor blood vessels than did the 40- and 80-nm AuNPs. Thus, 20-nm AuNPs coated with TA-terminated PEG5000 are promising potential drug delivery vehicles and diagnostic imaging agents. PMID:19131103

  7. Self-Expanding Nitinol Renal Artery Stents: Comparison of Safety and Efficacy of Bare Versus Polyzene-F Nanocoated Stents in a Porcine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurz, P.; Stampfl, U.; Christoph, P.

    2011-02-15

    Objective: To investigate the safety and efficacy of a Polyzene-F nanocoat on new low-profile self-expandable nitinol stents in minipig renal arteries. Materials and Methods: Ten bare nitinol stents (BNS) and 10 stents coated with a 50 nm-thin Polyzene-F coating were randomly implanted into renal arteries of 10 minipigs (4- and 12-week follow-up, 5 animals/group). Thrombogenicity, on-stent surface endothelialization, vessel wall injury, late in-stent stenosis, and peristrut vessel wall inflammation were determined by quantitative angiography and postmortem histomorphometry. Results: In 6 of 10 BNS, >50% stenosis was found, but no stenosis was found in stents with a nanothin Polyzene-F coating. Histomorphometrymore » showed a statistically significant (p < 0.05) different average maximum luminal loss of 55.16% {+-} 8.43% at 12 weeks in BNS versus 39.77% {+-} 7.41% in stents with a nanothin Polyzene-F coating. Stents with a nanothin Polyzene-F coating had a significantly (p < 0.05) lower inflammation score after 12 weeks, 1.31 {+-} 1.17 versus 2.17 {+-} 0.85 in BNS. The results for vessel wall injury (0.6 {+-} 0.58 for Polyzene-F-coated stents; 0.72 {+-} 0.98 for BNS) and re-endothelialization, (1.16 {+-} 0.43 and 1.23 {+-} 0.54, respectively) were not statistically significant at 12-week follow-up. No thrombus deposition was observed on the stents at either follow-up time point. Conclusion: Nitinol stents with a nanothin Polyzene-F coating successfully decreased in-stent stenosis and vessel wall inflammation compared with BNS. Endothelialization and vessel wall injury were found to be equal. These studies warrant long-term pig studies ({>=}120 days) because 12 weeks may not be sufficient time for complete healing; thereafter, human studies may be warranted.« less

  8. Nickel electroplating on copper pre-activated Al alloy in the electrolyte containing PEG1000 as an additive

    NASA Astrophysics Data System (ADS)

    Guan, Jie; Wang, Jinwei; Zhang, Dawei

    2018-06-01

    Ni coatings are prepared on Cu-pretreated anodic Al alloy by electroplating technique in environment-friendly electrolytes with PEG1000 as an additive. Some defects like pores, cracks and even uncovered areas are observed for the sample of the Cu-pretreated anodic Al alloy, and these defects seem to be remedied with the following Ni electroplating as observed from their SEM images; while the covering effect of Ni onto the Cu layer is rather limited as judged by their corrosion current data of polarization test. After adding PEG1000 in the Ni electroplating electrolyte, the obtained coating surfaces are seen smoother and thicker; and most of the tiny particles are seen closely packed together with some bigger particles on them. The diffusion of nickel particles into copper layer are confirmed by the line and mapping mode of EDS element analysis for the Ni-Cu composite coating. Their much lower corrosion current density ( I corr) and higher micro-hardness support the fact that the addition of PEG1000 in Ni plating electrolyte has a function of promoting the refinement of Ni particles and the formation of more compacter, thicker and smoother Ni-Cu composite coating.

  9. A novel dianionic amino acid ionic liquid-coated PEG 4000 modified Fe3O4 nanocomposite for the magnetic solid-phase extraction of trypsin.

    PubMed

    Yang, Qin; Wang, Yuzhi; Zhang, Hongmei; Xu, Kaijia; Wei, Xiaoxiao; Xu, Panli; Zhou, Yigang

    2017-11-01

    A novel magnetic extractant, PEG 4000 modified Fe 3 O 4 nanomaterial that coated with dianionic amino acid ionic liquid (Fe 3 O 4 @PEG@DAAAIL), was successfully synthesized and characterized. X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and zeta potentials were used to confirm that the novel nanocomposite was successfully synthesized. Subsequently, the prepared Fe 3 O 4 @PEG@DAAAIL nanocomposite was used as the extractant for trypsin coupled with magnetic solid-phase extraction (MSPE). The concentrations of trypsin in the supernatant were detected by UV-vis spectrophotometer at 278nm. The extraction ability turned out to be better than the other four kinds of extractants prepared in this work. Furthermore, the influence of a series of factors, such as extraction time and temperature, initial trypsin concentration, the value of pH and ionic strength, was systematically investigated. Under the optimal extraction condition, the extraction capacity for trypsin could reach up to 718.73mg/g, absolutely higher than that of other adsorbents reported. This satisfactory extraction capacity could be maintained unchangeable after at least eight days, and kept over 90% of initial extraction capacity after eight recycles. What's more, the activity of trypsin after extraction retained 92.29% of initial activity, verifying the biocompatibility of the prepared extractant. Finally, the developed Fe 3 O 4 @PEG@DAAAIL-MSPE method was successfully applied to the real sample analysis with satisfactory results. All of above proves the potential value of Fe 3 O 4 @PEG@DAAAIL-MSPE in the analysis of biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Analyzing the influence of PEG molecular weight on the separation of PEGylated gold nanoparticles by asymmetric-flow field-flow fractionation.

    PubMed

    Hansen, Matthew; Smith, Mackensie C; Crist, Rachael M; Clogston, Jeffrey D; McNeil, Scott E

    2015-11-01

    Polyethylene glycol (PEG) is an important tool for increasing the biocompatibility of nanoparticle therapeutics. Understanding how these potential nanomedicines will react after they have been introduced into the bloodstream is a critical component of the preclinical evaluation process. Hence, it is paramount that better methods for separating, characterizing, and analyzing these complex and polydisperse formulations are developed. We present a method for separating nominal 30-nm gold nanoparticles coated with various molecular weight PEG moieties that uses only phosphate-buffered saline as the mobile phase, without the need for stabilizing surfactants. The optimized asymmetric-flow field-flow fractionation technique using in-line multiangle light scattering, dynamic light scattering, refractive index, and UV-vis detectors allowed successful separation and detection of a mixture of nanoparticles coated with 2-, 5-, 10-, and 20-kDa PEG. The particles coated with the larger PEG species (10 and 20 kDa) were eluted at times significantly earlier than predicted by field-flow fractionation theory. This was attributed to a lower-density PEG shell for the higher molecular weight PEGylated nanoparticles, which allows a more fluid PEG surface that can be greater influenced by external forces. Hence, the apparent particle hydrodynamic size may fluctuate significantly depending on the overall density of the stabilizing surface coating when an external force is applied. This has considerable implications for PEGylated nanoparticles intended for in vivo application, as nanoparticle size is important for determining circulation times, accumulation sites, and routes of excretion, and highlights the importance and value of the use of secondary size detectors when one is working with complex samples in asymmetric-flow field-flow fractionation.

  11. Sol-gel immobilized short-chain poly(ethylene glycol) coating for capillary microextraction of underivatized polar analytes.

    PubMed

    Kulkarni, Sameer; Shearrow, Anne M; Malik, Abdul

    2007-12-07

    Sol-gel coating with covalently bonded low-molecular-weight (MW<300 Da) poly(ethylene glycol) (PEG) chains was developed for capillary microextraction (CME). The sol-gel chemistry proved effective in the immobilization of low-molecular-weight PEGs thanks to the formation of chemical bonds between the organic-inorganic hybrid sol-gel PEG coating and the fused silica capillary inner surface. This chemical anchorage provided excellent thermal and solvent stability to the created sol-gel PEG coating as is evidenced by its high upper limit of allowable conditioning temperature (340 degrees C) and its practically identical performance before and after rinsing with various solvents. The prepared sol-gel PEG coating provided simultaneous extraction of moderately polar and highly polar analytes from aqueous samples without requiring derivatization, pH adjustment or salting-out procedures. Detection limits on the order of nanogram per liter (ng/L) were achieved in CME-GC-flame ionization detection experiments designed for the preconcentration and trace analysis of both highly polar and moderately polar compounds extracted directly from aqueous media using sol-gel short-chain PEG coated microextraction capillaries.

  12. Fibrochondrocyte Growth and Functionality on TiO₂ Nanothin Films.

    PubMed

    Ronald, Sharon; Mills, David K

    2016-06-14

    Disorders affecting the temporomandibular joint (TMJ) are a long-standing health concern. TMJ disorders (TMJD) are often associated with an internal disc derangement accompanied by a suite of symptoms including joint noises, jaw dysfunction, and severe pain. The severity of patient symptoms and their reoccurrence can be alleviated to some extent with conservative therapy; however, refractory cases often require surgery that has shown only limited success. Bioengineered scaffolds with cell supportive surfaces an d nanoarchitectures that mimic TMJ tissue structure may offer an alternative treatment modality. In this study, titanium dioxide (TiO₂) nanothin films, fabricated by layer-by-layer assembly, were examined as means for creating such a scaffold. The viability and growth of TMJ discal fibrochondrocytes (FCs) were assessed through MTT and DNA assays and total protein content over a 14-day experimental period. ELISA was also used to measure expression of types I and II collagen, decorin and aggrecan. Quantitative analyses demonstrated that FCs synthesized characteristic discal matrix proteins, with an increased production of type I collagen and decorin as opposed to collagen type II and aggrecan. A stimulatory effect on discal FC proliferation and extracellular matrix (ECM) expression with thicker nanofilms was also observed. The cumulative results suggest that TiO₂ nanofilms may have potential as a TMJ scaffolding material.

  13. Role of the Methoxy Group in Immune Responses to mPEG-Protein Conjugates

    PubMed Central

    2012-01-01

    Anti-PEG antibodies have been reported to mediate the accelerated clearance of PEG-conjugated proteins and liposomes, all of which contain methoxyPEG (mPEG). The goal of this research was to assess the role of the methoxy group in the immune responses to mPEG conjugates and the potential advantages of replacing mPEG with hydroxyPEG (HO-PEG). Rabbits were immunized with mPEG, HO-PEG, or t-butoxyPEG (t-BuO-PEG) conjugates of human serum albumin, human interferon-α, or porcine uricase as adjuvant emulsions. Assay plates for enzyme-linked immunosorbent assays (ELISAs) were coated with mPEG, HO-PEG, or t-BuO-PEG conjugates of the non-cross-reacting protein, porcine superoxide dismutase (SOD). In sera from rabbits immunized with HO-PEG conjugates of interferon-α or uricase, the ratio of titers of anti-PEG antibodies detected on mPEG-SOD over HO-PEG-SOD (“relative titer”) had a median of 1.1 (range 0.9–1.5). In contrast, sera from rabbits immunized with mPEG conjugates of three proteins had relative titers with a median of 3.0 (range 1.1–20). Analyses of sera from rabbits immunized with t-BuO-PEG-albumin showed that t-butoxy groups are more immunogenic than methoxy groups. Adding Tween 20 or Tween 80 to buffers used to wash the assay plates, as is often done in ELISAs, greatly reduced the sensitivity of detection of anti-PEG antibodies. Competitive ELISAs revealed that the affinities of antibodies raised against mPEG-uricase were c. 70 times higher for 10 kDa mPEG than for 10 kDa PEG diol and that anti-PEG antibodies raised against mPEG conjugates of three proteins had >1000 times higher affinities for albumin conjugates with c. 20 mPEGs than for analogous HO-PEG-albumin conjugates. Overall, these results are consistent with the hypothesis that antibodies with high affinity for methoxy groups contribute to the loss of efficacy of mPEG conjugates, especially if multiply-PEGylated. Using monofunctionally activated HO-PEG instead of mPEG in preparing conjugates for

  14. Evasion of the accelerated blood clearance phenomenon by coating of nanoparticles with various hydrophilic polymers.

    PubMed

    Ishihara, Tsutomu; Maeda, Taishi; Sakamoto, Haruka; Takasaki, Naoko; Shigyo, Masao; Ishida, Tatsuhiro; Kiwada, Hiroshi; Mizushima, Yutaka; Mizushima, Tohru

    2010-10-11

    The accelerated blood clearance (ABC) phenomenon is induced upon repeated injections of poly(ethylene glycol) (PEG)-coated colloidal carriers. It is essential to suppress this phenomenon in a clinical setting because the pharmacokinetics must be reproducible. In this study, we evaluated the induction of the ABC phenomenon using nanoparticles coated with various hydrophilic polymers instead of PEG. Nanoparticles encapsulating prostaglandin E1 were prepared by the solvent diffusion method from a blend of poly(lactic acid) (PLA) and block copolymers consisting of various hydrophilic polymers and PLA. Coating of nanoparticles with poly(N-vinyl-2-pyrrolidone) (PVP), poly(4-acryloylmorpholine), or poly(N,N-dimethylacrylamide) led to extended residence of the nanoparticles in blood circulation in rats, although they had a shorter half-life than the PEG-coated nanoparticles. The ABC phenomenon was not induced upon repeated injection of PVP-coated nanoparticles at various time intervals, dosages, or frequencies, whereas it was elicited by PEG-coated nanoparticles. In addition, anti-PVP IgM antibody, which is estimated to be one of the crucial factors for induction of the ABC phenomenon, was not produced after injection of PVP-coated nanoparticles. These results suggest that the use of PVP, instead of PEG, as a coating material for colloidal carriers can evade the ABC phenomenon.

  15. PEG and mPEG-anthracene induce DNA condensation and particle formation.

    PubMed

    Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A

    2011-08-18

    In this study, we investigated the binding of DNA with poly(ethylene glycol) (PEG) of different sizes and compositions such as PEG 3350, PEG 6000, and mPEG-anthracene in aqueous solution at physiological conditions. The effects of size and composition on DNA aggregation and condensation as well as conformation were determined using Fourier transform infrared (FTIR), UV-visible, CD, fluorescence spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed moderate complex formation for PEG 3350 and PEG 6000 and weaker interaction for mPE-anthracene-DNA adducts with both hydrophilic and hydrophobic contacts. The order of ± stability of the complexes formed is K(PEG 6000) = 1.5 (±0.4) × 10(4) M(-1) > K(PEG 3350) = 7.9 (±1) × 10(3) M(-1) > K(m(PEG-anthracene))= 3.6 (±0.8) × 10(3) M(-1) with nearly 1 bound PEG molecule per DNA. No B-DNA conformational changes were observed, while DNA condensation and particle formation occurred at high PEG concentration.

  16. A new sol-gel processing routine without chelating agents for preparing highly transparent solutions and nanothin films: engineering the role of chemistry to design the process

    NASA Astrophysics Data System (ADS)

    Ashiri, Rouholah

    2015-01-01

    The great sensitivity of titanium alkoxides to hydrolysis makes their sol-gel transformation very fast and thus difficult to control. A method was proposed to alleviate this drawback. Preparation of highly transparent solutions and nanothin films is another objective of the present research. Employing nanoemulsion method and optimizing the processing conditions, a clear solution of well-dispersed nanosized particles was obtained. With the proposed process BaTiO3 precursor sols and nanothin films with enhanced optical transparency towards the visible were prepared. The optimal formulation of the sol consists of acetic acid, barium acetate, 2-propanol, TTIP and deionized water with 6:1:1:1:150 M ratios, respectively. It was found that the reduction of the temperature in the initial stage of mixing of precursors controls the size of the forming species and accordingly improves the stability and transparency of the sol. The results also showed that the applied modifications and optimizations significantly downsize the particles within the sol to the nanometric scale and accordingly result in a significant improvement in the optical response of the products.

  17. Synthesis of PEG-rich PLGA-PEG-PLGA for the PLGA-PEG-PLGA/laponite hydrogels with thermoresponsive sol-gel transitions

    NASA Astrophysics Data System (ADS)

    Tanimoto, Keishi; Maeda, Tomoki; Hotta, Atsushi

    Poly (D,L-lactide-co-glycolide)-b-poly (ethylene glycol)-b-poly (D,L-lactide-co-glycolide) (PLGA-PEG-PLGA) possesses moderate biocompatibility originating from the relatively shorter PEG block in its polymeric molecule. For the maximum utilization of the highly biocompatible PEG block, the PEG block should be relatively longer, and thus the PEG/PLGA ratio, the molecular weight ratio of PEG and PLGA, should be higher. In addition, for the wider use of PLGA-PEG-PLGA in the biological fields, the aqueous PLGA-PEG-PLGA solution should transfer from sol to gel states in response to the increase in temperature. It was reported, however, through the previous researches, that the PLGA-PEG-PLGA solution with a high PEG/PLGA ratio (above 0.5) would not exhibit thermoresponsive sol-gel transitions. In this work, PLGA-PEG-PLGAs with higher PEG/PLGA ratios were synthesized and the laponite, an inorganic nanoparticle, was added to the solutions to realize the thermoresponsive sol-gel transition. It was found that the PLGA-PEG-PLGA with the high PEG/PLGA ratio of 3.0 could exhibit the thermoresponsive sol-gel transition by adding laponite at 1.25 weight percent. The physical characteristics of the gel were also studied by the dynamic mechanical analysis (DMA) This work was supported by a Grant-in-Aid for Scientific Research (A) (No. 15H02298 to A.H.) and a Grant-in-Aid for Research Activity Start-up (No.15H06586 to T.M.) from JSPS: KAKENHI\\x9D.

  18. Competitive time- and density-dependent adhesion of staphylococci and osteoblasts on crosslinked poly(ethylene glycol)-based polymer coatings in co-culture flow chambers.

    PubMed

    Saldarriaga Fernández, Isabel C; Busscher, Henk J; Metzger, Steve W; Grainger, David W; van der Mei, Henny C

    2011-02-01

    Biomaterial-associated infections (BAI) remain a serious clinical complication, often arising from an inability of host tissue-implant integration to out-compete bacterial adhesion and growth. A commercial polymer coating based on polyethylene glycol (PEG), available in both chemically inert and NHS-activated forms (OptiChem(®)), was compared for simultaneous growth of staphylococci and osteoblasts. In the absence of staphylococci, osteoblasts adhered and proliferated well on glass controls and on the NHS-reactive PEG-based coating over 48 h, but not on the inert PEG coating. Staphylococcal growth was low on both PEG-based coatings. When staphylococci were pre-adhered on surfaces for 1.5 h to mimic peri-operative contamination, osteoblast growth and spreading was reduced on glass but virtually absent on both reactive and inert PEG-based coatings. Thus although NHS-reactive, PEG-based coatings stimulated tissue-cell interactions in the absence of contaminating staphylococci, the presence of adhering staphylococci eliminated osteoblast adhesion advantages on the PEG surface. This study demonstrates the importance of using bacterial and cellular co-cultures compared to monocultures when assessing functionalized biomaterials coatings for infectious potential. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Influence of polymeric subcoats on the drug release properties of tablets powder-coated with pre-plasticized Eudragit L 100-55.

    PubMed

    Sauer, Dorothea; Watts, Alan B; Coots, Lonique B; Zheng, Weijia C; McGinity, James W

    2009-02-09

    The aim of the study was to investigate the properties of sodium valproate tablets that were dry powder-coated with pre-plasticized Eudragit L 100-55. Polyethylene glycol 3350 (PEG 3350) was used as primer to facilitate initial coating powder adhesion. Solubility parameters were employed to determine the wetting properties of the PEG 3350 primer. Additional PEG 3350 within the powder coating formulation was required to enable powder adhesion to the tablet cores. The application of a subcoat of either Eudragit E PO or Eudragit RL PO facilitated adhesion of the enteric polymer to the tablet cores and reduced the amount PEG 3350 required in the coating formulation. Since reduction of the PEG 3350 content produced less water-vapor permeable films, the enteric coating level necessary to control the drug release was decreased. PEG 3350 and Methocel K4M were incorporated in both Eudragit E PO and Eudragit RL PO subcoating formulations as pore forming agents. The influence of the pore forming excipients on physicochemical properties of free powder-cast films was investigated. The miscibility of the PEG 3350 and Methocel K4M in the film coating was correlated with their ability to function as pore forming agent.

  20. The in vitro kinetics of the interactions between PEG-ylated magnetic-fluid-loaded liposomes and macrophages.

    PubMed

    Martina, Marie-Sophie; Nicolas, Valerie; Wilhelm, Claire; Ménager, Christine; Barratt, Gillian; Lesieur, Sylviane

    2007-10-01

    Binding and uptake kinetics of magnetic-fluid-loaded liposomes (MFL) by endocytotic cells were investigated in vitro on the model cell-line J774. MFL consisted of unilamellar phosphatidylcholine vesicles (mean hydrodynamic diameter close to 200nm) encapsulating 8-nm nanocrystals of maghemite (gamma-Fe(2)O(3)) and sterically stabilized by introducing 5mol% of distearylphosphatidylcholine poly(ethylene glycol)(2,000) (DSPE-PEG(2,000)) in the vesicle bilayer. The association processes with living macrophages were followed at two levels. On one hand, the lipid vesicles were imaged by confocal fluorescence microscopy. For this purpose 1mol% of rhodamine-marked phosphatidylethanolamine was added to the liposome composition. On the other hand, the iron oxide particles associated with cells were independently quantified by magnetophoresis. All the experiments were similarly performed with PEG-ylated or conventional MFL to point out the role of polymer coating. The results showed cell association with both types of liposomes resulting from binding followed by endocytosis. Steric stabilization by PEG chains reduced binding efficiency limiting the amount of MFL internalized by the macrophages. In contrast, PEG coating did not change the kinetics of endocytosis which exhibited the same first-order rate constant for both conventional and PEG-ylated liposomes. Moreover, lipids and iron oxide particle uptakes were perfectly correlated, indicating that MFL vesicle structure and encapsulation rate were preserved upon cell penetration.

  1. Bioactive coating with low-fouling polymers for the development of biocompatible vascular implants

    NASA Astrophysics Data System (ADS)

    Thalla, Pradeep Kumar

    The replacement of occluded blood vessels and endovascular aneurysm repair (EVAR) are performed with the use of synthetic vascular grafts and stent grafts, respectively. Both implants lead to frequent clinical complications that are different but due to a similar problem, namely the inadequate surface properties of the polymeric biomaterials used (generally polyethylene terephthalate (PET) or expanded polytetrafluoroethylene (ePTFE)). Therefore the general objective of this thesis was to create a versatile bioactive coating on vascular biomaterials that reduce material-induced thrombosis and promote desired cell interactions favorable to tissue healing around implants. The use of low-fouling backgrounds was decided in order to reduce platelet adhesion as well as the non-specific protein adsorption and thus increase the bioactivity of immobilized biomolecules. As part of the preliminary objective, a multi-arm polyethylene glycol (PEG) was chosen to create a versatile low-fouling surface, since the current coating methods are far from being versatile and rely on the availability of compatible functional groups on both PEG and the host surface. This PEG coating method was developed by taking advantage of novel primary amine-rich plasma polymerized coatings (LP). As demonstrated by quartz crystal microbalance with dissipation (QCM-D), fluorescence measurements and platelet adhesion assays, our PEG coatings exhibited low protein adsorption and almost no platelet adhesion after 15 min perfusion in whole blood. Although protein adsorption was not completely abrogated and short-term platelet adhesion assay was clearly insufficient to draw conclusions for long-term prevention of thrombosis in vivo, the low-fouling properties of this PEG coating were sufficient to be exploited for further coupling of bioactive molecules to create bioactive coatings. Therefore, as a part of the second objective, an innovative and versatile bioactive coating was developed on PEG and

  2. Antibacterial polymeric coatings grown by matrix assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Dinescu, Maria

    2013-03-01

    We report on a simple and environmental friendly method to produce composite biocompatible antibacterial coatings consisting of silver nanoparticles (AgNPs, size 40 nm) combined with polymer blends (polyethylene glycol/poly(lactide-co-glycolide), PEG/PLGA blends). The PEG/PLGA&AgNPs coatings were produced by Matrix Assisted Pulsed Laser Evaporation, using a Nd:YAG laser with λ=266 nm. The AgNPs were deposited either on top of a PEG/PLGA layer (i.e., bilayered coating), or simultaneously with the polymers (i.e., blended coating). In both cases, chemical analysis indicated that the polymers preserved their integrity, with no evidence of chemical interaction with the AgNPs. Morphological investigations evidenced homogenous distribution of individual AgNPs on the surface of the coatings, with no signs of aggregation. The size of the AgNPs was ˜40 nm, consistent with size of the as-received ones. The presence of AgNPs in the coatings was confirmed by the absorption band at ˜420 nm and their stability was checked by monitoring this absorption versus time. After exposure to air, the AgNPs from the bilayered coating showed signs of oxidation. In the blended coating, the oxidation of the AgNPs was prevented by the neighboring polymer molecules. Finally, preliminary investigations confirmed the bacterial killing activity of the coatings against Escherichia coli.

  3. Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration.

    PubMed

    Wang, Guilin; Kucharski, Cezary; Lin, Xiaoyue; Uludağ, Hasan

    2010-09-01

    A polymeric conjugate of polyethyleneimine-graft-poly(ethylene glycol) and 2-(3-mercaptopropylsulfanyl)-ethyl-1,1-bisphosphonic acid (PEI-PEG-thiolBP) was prepared and used for surface coating of bovine serum albumin (BSA) nanoparticles (NPs) designed for bone-specific delivery of bone morphogenetic protein-2 (BMP-2). The NP coating was achieved with a dialysis and an evaporation method, and the obtained NPs were characterized by particle size, zeta-potential, morphology, and cytotoxicity in vitro. The particle size and surface charge of the NPs could be effectively tuned by the PEG and thiolBP substitution ratios of the conjugate, the coating method, and the polymer concentration used for coating. The PEG modification on PEI reduced the toxicity of PEI and the coated NPs, based on in vitro assessment with human C2C12 cells and rat bone marrow stromal cells. On the basis of an alkaline phosphatase (ALP) induction assay, the NP-encapsulated BMP-2 displayed full retention of its bioactivity, except for BMP-2 in PEI-coated NPs. By encapsulating (125)I-labeled BMP-2, the polymer-coated NPs were assessed for hydroxyapatite (HA) affinity; all NP-encapsulated BMP-2 showed significant affinity to HA as compared with free BMP-2 in vitro, and the PEI-PEG-thiolBP coated NPs improved the in vivo retention of BMP-2 compared with uncoated NPs. However, the biodistribution of NPs after intravenous injection in a rat model indicated no beneficial effects of thiolBP-coated NPs for bone targeting. Our results suggested that the BP-conjugated NPs are useful for localized delivery of BMP-2 in bone repair and regeneration, but they are not effective for bone targeting after intravenous administration.

  4. Sequential Coating of Insulin Secreting Beta Cells within Multilayers of Polysaccharide Nanogels.

    PubMed

    Bal, Tugba; Oran, Dilem Ceren; Sasaki, Yoshihiro; Akiyoshi, Kazunari; Kizilel, Seda

    2018-05-01

    Pancreatic islet transplantation has emerged as a promising treatment for type-1 diabetes (T1D); however, its clinical application is still limited by the life-long use of immunosuppressive drugs, insufficient number of islets to achieve normoglycemia, and large transplantation volume. This paper reports a unique approach for nanothin coating of insulin secreting beta cell aggregates. The coating is based on hydrophobic and covalent interactions between natural acrylate modified cholesterol bearing pullulan (CHPOA) nanogels and MIN6 beta cell aggregates. Beta cell aggregates are prepared as spheroids through hanging drop method, which is optimized with respect to hanging drop volume and initial number of beta cells. These aggregates, defined as pseudoislets, are coated with sequential layers of nanogels and are evaluated as viable and functional for insulin secretion. Coating experiments are carried out using physiologically compatible medium, where pseudoislets are not brought in contact with toxic prepolymer solutions used in existing approaches. This study offers new opportunities through coating of islets with advanced functional materials under completely physiological conditions for clinical translation of cell transplantation technology. The technique developed here will establish a new paradigm for creating tolerable grafts for other chronic diseases such as anemia, cancer, central nervous system (CNS) diseases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of PEG6000 on the in vitro and in vivo transdermal permeation of ondansetron hydrochloride from EVA1802 membranes.

    PubMed

    Krishnaiah, Yellela S R; Rama, Bukka; Raghumurthy, Vanambattina; Ramanamurthy, Kolapalli V; Satyanarayana, Vemulapalli

    2009-01-01

    The objective was to evaluate ethylene vinyl acetate (EVA) copolymer membranes with vinyl acetate content of 18% w/w (EVA1802) for transdermal delivery of ondansetron hydrochloride. The EVA1802 membranes containing selected concentrations (0, 5, 10 and 15% w/w) of PEG6000 were prepared, and subjected to in vitro permeation studies from a nerodilol-based drug reservoir. Flux of ondansetron from EVA1802 membranes without PEG6000 was 64.1 +/- 0.6 microg/cm(2.)h, and with 10%w/w of PEG6000 (EVA1802-PEG6000-10) it increased to 194.9 +/- 4.6 microg/cm(2.)h. However, with 15%w/w of PEG6000, EVA1802 membranes produced a burst release of drug which in turn decreased drug flux. The EVA1802-PEG6000-10 membrane was coated with an adhesive emulsion, applied to rat epidermis and subjected to in vitro permeation studies against controls. Flux of ondansetron from transdermal patch across rat epidermis was 111.7 +/- 1.3 microg/cm(2.)h, which is about 1.3 times the required flux. A TTS was fabricated using adhesive-coated EVA1802-PEG6000-10 membrane and other TTS components, and subjected to in vivo delivery in human volunteers against a control. It was concluded from the comparative pharmacokinetic study that TTS of ondansetron, prepared with EVA1802-PEG6000-10 membrane, provided average steady-state plasma concentration on par with multiple-dosed oral tablets, but with a low percent of peak-to-trough fluctuation.

  6. Separation of [(99m)Tc]pertechnetate and molybdate using polyethylene glycol coated C18 and C30 resins.

    PubMed

    Andersson, J D; Wilson, J S; Romaniuk, J A; McEwan, A J B; Abrams, D N; McQuarrie, S A; Gagnon, K

    2016-04-01

    Hydrophobic adsorbents such as C18 and C30 were coated with PEG and subsequently used for the separation of Mo/Tc. The most effective resin for adsorbing PEG was the C18-U resin, which demonstrated a coating capacity of 97.6±2.8mg PEG per g of resin. The ability to adsorb pertechnetate was proportional to the amount of PEG coated on the hydrophobic resin. The [(99m)Tc]pertechnetate recovery during the separation of cyclotron produced (99m)Tc from (100)Mo was 91.8±0.3% (n=2). The resultant product met relevant USP monograph specifications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Targeting In-Stent-Stenosis with RGD- and CXCL1-Coated Mini-Stents in Mice.

    PubMed

    Simsekyilmaz, Sakine; Liehn, Elisa A; Weinandy, Stefan; Schreiber, Fabian; Megens, Remco T A; Theelen, Wendy; Smeets, Ralf; Jockenhövel, Stefan; Gries, Thomas; Möller, Martin; Klee, Doris; Weber, Christian; Zernecke, Alma

    2016-01-01

    Atherosclerotic lesions that critically narrow the artery can necessitate an angioplasty and stent implantation. Long-term therapeutic effects, however, are limited by excessive arterial remodeling. We here employed a miniaturized nitinol-stent coated with star-shaped polyethylenglycole (star-PEG), and evaluated its bio-functionalization with RGD and CXCL1 for improving in-stent stenosis after implantation into carotid arteries of mice. Nitinol foils or stents (bare metal) were coated with star-PEG, and bio-functionalized with RGD, or RGD/CXCL1. Cell adhesion to star-PEG-coated nitinol foils was unaltered or reduced, whereas bio-functionalization with RGD but foremost RGD/CXCL1 increased adhesion of early angiogenic outgrowth cells (EOCs) and endothelial cells but not smooth muscle cells when compared with bare metal foils. Stimulation of cells with RGD/CXCL1 furthermore increased the proliferation of EOCs. In vivo, bio-functionalization with RGD/CXCL1 significantly reduced neointima formation and thrombus formation, and increased re-endothelialization in apoE-/- carotid arteries compared with bare-metal nitinol stents, star-PEG-coated stents, and stents bio-functionalized with RGD only. Bio-functionalization of star-PEG-coated nitinol-stents with RGD/CXCL1 reduced in-stent neointima formation. By supporting the adhesion and proliferation of endothelial progenitor cells, RGD/CXCL1 coating of stents may help to accelerate endothelial repair after stent implantation, and thus may harbor the potential to limit the complication of in-stent restenosis in clinical approaches.

  8. Targeting In-Stent-Stenosis with RGD- and CXCL1-Coated Mini-Stents in Mice

    PubMed Central

    Weinandy, Stefan; Schreiber, Fabian; Megens, Remco T. A.; Theelen, Wendy; Smeets, Ralf; Jockenhövel, Stefan; Gries, Thomas; Möller, Martin; Klee, Doris; Weber, Christian; Zernecke, Alma

    2016-01-01

    Atherosclerotic lesions that critically narrow the artery can necessitate an angioplasty and stent implantation. Long-term therapeutic effects, however, are limited by excessive arterial remodeling. We here employed a miniaturized nitinol-stent coated with star-shaped polyethylenglycole (star-PEG), and evaluated its bio-functionalization with RGD and CXCL1 for improving in-stent stenosis after implantation into carotid arteries of mice. Nitinol foils or stents (bare metal) were coated with star-PEG, and bio-functionalized with RGD, or RGD/CXCL1. Cell adhesion to star-PEG-coated nitinol foils was unaltered or reduced, whereas bio-functionalization with RGD but foremost RGD/CXCL1 increased adhesion of early angiogenic outgrowth cells (EOCs) and endothelial cells but not smooth muscle cells when compared with bare metal foils. Stimulation of cells with RGD/CXCL1 furthermore increased the proliferation of EOCs. In vivo, bio-functionalization with RGD/CXCL1 significantly reduced neointima formation and thrombus formation, and increased re-endothelialization in apoE-/- carotid arteries compared with bare-metal nitinol stents, star-PEG-coated stents, and stents bio-functionalized with RGD only. Bio-functionalization of star-PEG-coated nitinol-stents with RGD/CXCL1 reduced in-stent neointima formation. By supporting the adhesion and proliferation of endothelial progenitor cells, RGD/CXCL1 coating of stents may help to accelerate endothelial repair after stent implantation, and thus may harbor the potential to limit the complication of in-stent restenosis in clinical approaches. PMID:27192172

  9. MAPLE deposited polymeric blends coatings for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Ion, Valentin; Moldovan, Antoniu; Dinescu, Maria

    2012-07-01

    We report on the use of Matrix Assisted Pulsed Laser Evaporation (MAPLE) for producing coatings of polymer blends for controlled drug delivery. The coatings consisting of blends of polyethylene glycol: poly(lactide-co-glycolide) (PEG: PLGA blends) are compared with those consisting of individual polymers (PEG, PLGA) in terms of chemical composition, morphology, hydrophilicity and optical constants. The release kinetics of an anti-inflammatory drug (indomethacin) through the polymeric coatings is monitored and possible mechanisms of the drug release are discussed. Furthermore, the compatibility of the polymeric coatings with blood constituents is investigated. Finally, the perspectives for employing MAPLE for producing coatings of polymer blends to be used in implants that deliver drugs in a controlled manner, along with the routes to be followed for elucidating the mechanism of drug release, are revealed.

  10. Electrochemical and XPS study of LiFePO4 cathode nanocomposite with PPy/PEG conductive network

    NASA Astrophysics Data System (ADS)

    Fedorková, A.; Oriňáková, R.; Oriňák, A.; Kupková, M.; Wiemhöfer, H.-D.; Audinot, J. N.; Guillot, J.

    2012-08-01

    High performance PPy/PEG-LiFePO4 nanocomposites as cathode materials were synthesized by solvothermal method and simple chemical oxidative polymerization of pyrrole (Py) monomer on the surface of LiFePO4 particles. The samples were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectrometry (XPS) and charge-discharge tests. PPyPEG hybrid layers decrease particle to particle contact resistance while the impedance measurements confirmed that the coating of PPy-PEG significantly decreases the charge transfer resistance of the electrode material. The initial discharge capacities of this sample at C/5 and 1C are 150 and 128 mAh/g, respectively. The results show that PPy/PEGLiFePO4 composites are more effective than bare LiFePO4 as cathode material.

  11. Effect of PEG and mPEG-anthracene on tRNA aggregation and particle formation.

    PubMed

    Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A

    2012-01-09

    Poly(ethylene glycol) (PEG) and its derivatives are synthetic polymers with major applications in gene and drug delivery systems. Synthetic polymers are also used to transport miRNA and siRNA in vitro. We studied the interaction of tRNA with several PEGs of different compositions, such as PEG 3350, PEG 6000, and mPEG-anthracene under physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the PEG binding mode, the binding constant, and the effects of polymer complexation on tRNA stability, aggregation, and particle formation. Structural analysis showed that PEG-tRNA interaction occurs via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(PEG 3350-tRNA)= 1.9 (±0.5) × 10(4) M(-1), K(PEG 6000-tRNA) = 8.9 (±1) × 10(4) M(-1), and K(mPEG-anthracene)= 1.2 (±0.40) × 10(3) M(-1) show stronger polymer-RNA complexation by PEG 6000 and by PEG 3350 than the mPEG-anthracene. AFM imaging showed that PEG complexes contain on average one tRNA with PEG 3350, five tRNA with PEG 6000, and ten tRNA molecules with mPEG-anthracene. tRNA aggregation and particle formation occurred at high polymer concentrations, whereas it remains in A-family structure.

  12. Fibrochondrocyte Growth and Functionality on TiO2 Nanothin Films

    PubMed Central

    Ronald, Sharon; Mills, David K.

    2016-01-01

    Disorders affecting the temporomandibular joint (TMJ) are a long-standing health concern. TMJ disorders (TMJD) are often associated with an internal disc derangement accompanied by a suite of symptoms including joint noises, jaw dysfunction, and severe pain. The severity of patient symptoms and their reoccurrence can be alleviated to some extent with conservative therapy; however, refractory cases often require surgery that has shown only limited success. Bioengineered scaffolds with cell supportive surfaces an d nanoarchitectures that mimic TMJ tissue structure may offer an alternative treatment modality. In this study, titanium dioxide (TiO2) nanothin films, fabricated by layer-by-layer assembly, were examined as means for creating such a scaffold. The viability and growth of TMJ discal fibrochondrocytes (FCs) were assessed through MTT and DNA assays and total protein content over a 14-day experimental period. ELISA was also used to measure expression of types I and II collagen, decorin and aggrecan. Quantitative analyses demonstrated that FCs synthesized characteristic discal matrix proteins, with an increased production of type I collagen and decorin as opposed to collagen type II and aggrecan. A stimulatory effect on discal FC proliferation and extracellular matrix (ECM) expression with thicker nanofilms was also observed. The cumulative results suggest that TiO2 nanofilms may have potential as a TMJ scaffolding material. PMID:27314395

  13. Antifouling activities of β-cyclodextrin stabilized peg based silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Punitha, N.; Saravanan, P.; Mohan, R.; Ramesh, P. S.

    2017-01-01

    Self-polishing polymer composites which release metal biocide in a controlled rate have been widely used in the design of antimicrobial agents and antifouling coatings. The present work focuses on the environmental friendly green synthesis of PEG based SNCs and their application to biocidal activity including marine biofouling. Biocompatible polymer β-CD and adhesive resistance polymer PEG were used to functionalize the SNPs and the as synthesized SNCs exhibit excellent micro fouling activities. The structural and optical properties were confirmed by XRD and UV-visible techniques respectively. The particle surface and cross sectional characteristics were examined by SEM-EDS, HR-TEM, AFM and FTIR. The surface potential was evaluated using ZP analysis and assessment of antibiofouling property was investigated using static immersion method.

  14. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings.

    PubMed

    Wang, Yapei; Pitet, Louis M; Finlay, John A; Brewer, Lenora H; Cone, Gemma; Betts, Douglas E; Callow, Maureen E; Callow, James A; Wendt, Dean E; Hillmyer, Marc A; DeSimonea, Joseph M

    2011-01-01

    The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.

  15. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging.

    PubMed

    Kim, Dongkyu; Park, Sangjin; Lee, Jae Hyuk; Jeong, Yong Yeon; Jon, Sangyong

    2007-06-20

    Current computed tomography (CT) contrast agents such as iodine-based compounds have several limitations, including short imaging times due to rapid renal clearance, renal toxicity, and vascular permeation. Here, we describe a new CT contrast agent based on gold nanoparticles (GNPs) that overcomes these limitations. Because gold has a higher atomic number and X-ray absorption coefficient than iodine, we expected that GNPs can be used as CT contrast agents. We prepared uniform GNPs ( approximately 30 nm in diameter) by general reduction of HAuCl4 by boiling with sodium citrate. The resulting GNPs were coated with polyethylene glycol (PEG) to impart antibiofouling properties, which extends their lifetime in the bloodstream. Measurement of the X-ray absorption coefficient in vitro revealed that the attenuation of PEG-coated GNPs is 5.7 times higher than that of the current iodine-based CT contrast agent, Ultravist. Furthermore, when injected intravenously into rats, the PEG-coated GNPs had a much longer blood circulation time (>4 h) than Ultravist (<10 min). Consequently, CT images of rats using PEG-coated GNPs showed a clear delineation of cardiac ventricles and great vessels. On the other hand, relatively high levels of GNPs accumulated in the spleen and liver, which contain phagocytic cells. Intravenous injection of PEG-coated GNPs into hepatoma-bearing rats resulted in a high contrast ( approximately 2-fold) between hepatoma and normal liver tissue on CT images. These results suggest that PEG-coated GNPs can be useful as a CT contrast agent for a blood pool and hepatoma imaging.

  16. Peritoneal retention of liposomes: Effects of lipid composition, PEG coating and liposome charge.

    PubMed

    Dadashzadeh, S; Mirahmadi, N; Babaei, M H; Vali, A M

    2010-12-01

    In the treatment of peritoneal carcinomatosis, systemic chemotherapy is not quite effective due to the poor penetration of cytotoxic agents into the peritoneal cavity, whereas intraperitoneal administration of chemotherapeutic agents is generally accompanied by quick absorption of the free drug from the peritoneum. Local delivery of drugs with controlled-release delivery systems like liposomes could provide sustained, elevated drug levels and reduce local and systemic toxicity. In order to achieve an ameliorated liposomal formulation that results in higher peritoneal levels of the drug and retention, vesicles composed of different phospholipid compositions (distearoyl [DSPC]; dipalmitoyl [DPPC]; or dimiristoylphosphatidylcholine [DMPC]) and various charges (neutral; negative, containing distearoylphosphatidylglycerol [DSPG]; or positive, containing dioleyloxy trimethylammonium propane [DOTAP]) were prepared at two sizes of 100 and 1000nm. The effect of surface hydrophilicity was also investigated by incorporating PEG into the DSPC-containing neutral and charged liposomes. Liposomes were labeled with (99m)Tc and injected into mouse peritoneum. Mice were then sacrificed at eight different time points, and the percentage of injected radiolabel in the peritoneal cavity and the tissue distribution in terms of the percent of the injected dose/gram of tissue (%ID/g) were obtained. The ratio of the peritoneal AUC to the free label ranged from a minimum of 4.95 for DMPC/CHOL (cholesterol) 100nm vesicles to a maximum of 24.99 for DSPC/CHOL/DOTAP 1000nm (DOTAP 1000) vesicles. These last positively charged vesicles had the greatest peritoneal level; moreover, their level remained constant at approximately 25% of the injected dose from 2 to 48h. Among the conventional (i.e., without PEG) 100nm liposomes, the positively charged vesicles again showed the greatest retention. Incorporation of PEG at this size into the lipid structures augmented the peritoneal level, particularly

  17. The application of polyethylene glycol (PEG) to electron microscopy

    PubMed Central

    1980-01-01

    The cytoplasm of cells from a variety of tissues has been viewed in sections (0.25-1 micrometers) devoid of any embedding resin. Glutaraldehyde- and osmium tetroxide-fixed tissues were infiltrated and embedded in a water-miscible wax, polyethylene glycol (PEG), and subsequently sectioned on dry glass or diamond knives. The PEG matrix was removed and the sections were placed on Formvarcarbon-polylysine- coated grids, dehydrated, dried by the critical-point method, and observed in either the high- or low-voltage electron microscope. Stereoscopic views of cells devoid of embedding resin present an image of cell utrastructure unobscured by electron-scattering resins similar to the image of whole, unembedded critical-point-dried or freeze-dried cultured cells observed by transmission electron microscopy. All organelles, including the cytoskeletal structures, are identified and appear not to have been damaged during processing, although membrane components appear somewhat less distinct. The absence of an embedding matrix eliminates the need for additional staining to increase contrast, unlike the situation with specimens embedded in standard electron-scattering resins. The PEG technique thus appears to be a valuable adjunct to conventional methods for ultrastructural analysis. PMID:7400222

  18. The application of polyethylene glycol (PEG) to electron microscopy.

    PubMed

    Wolosewick, J J

    1980-08-01

    The cytoplasm of cells from a variety of tissues has been viewed in sections (0.25-1 micrometers) devoid of any embedding resin. Glutaraldehyde- and osmium tetroxide-fixed tissues were infiltrated and embedded in a water-miscible wax, polyethylene glycol (PEG), and subsequently sectioned on dry glass or diamond knives. The PEG matrix was removed and the sections were placed on Formvarcarbon-polylysine-coated grids, dehydrated, dried by the critical-point method, and observed in either the high- or low-voltage electron microscope. Stereoscopic views of cells devoid of embedding resin present an image of cell utrastructure unobscured by electron-scattering resins similar to the image of whole, unembedded critical-point-dried or freeze-dried cultured cells observed by transmission electron microscopy. All organelles, including the cytoskeletal structures, are identified and appear not to have been damaged during processing, although membrane components appear somewhat less distinct. The absence of an embedding matrix eliminates the need for additional staining to increase contrast, unlike the situation with specimens embedded in standard electron-scattering resins. The PEG technique thus appears to be a valuable adjunct to conventional methods for ultrastructural analysis.

  19. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate.

    PubMed

    Kim, Sun Hwa; Jeong, Ji Hoon; Chun, Ki Woo; Park, Tae Gwan

    2005-09-13

    Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with anionic surface charge were surface coated with cationic di-block copolymer, poly(L-lysine)-poly(ethylene glycol)-folate (PLL-PEG-FOL) conjugate, for enhancing their site-specific intracellular delivery against folate receptor overexpressing cancer cells. The PLGA nanoparticles coated with the conjugate were characterized in terms of size, surface charge, and change in surface composition by XPS. By employing the flow cytometry method and confocal image analysis, the extent of cellular uptake was comparatively evaluated under various conditions. PLL-PEG-FOL coated PLGA nanoparticles demonstrated far greater extent of cellular uptake to KB cells, suggesting that they were mainly taken up by folate receptor-mediated endocytosis. The enhanced cellular uptake was also observed even in the presence of serum proteins, possibly due to the densely seeded PEG chains. The PLL-PEG-FOL coated PLGA nanoparticles could be potentially applied for cancer cell targeted delivery of various therapeutic agents.

  20. Silica-Coated Nonstoichiometric Nano Zn-Ferrites for Magnetic Resonance Imaging and Hyperthermia Treatment.

    PubMed

    Starsich, Fabian H L; Sotiriou, Georgios A; Wurnig, Moritz C; Eberhardt, Christian; Hirt, Ann M; Boss, Andreas; Pratsinis, Sotiris E

    2016-10-01

    Large-scale and reproducible synthesis of nanomaterials is highly sought out for successful translation into clinics. Flame aerosol technology with its proven capacity to manufacture high purity materials (e.g., light guides) up to kg h -1 is explored here for the preparation of highly magnetic, nonstoichiometric Zn-ferrite (Zn 0.4 Fe 2.6 O 4 ) nanoparticles coated in situ with a nanothin SiO 2 layer. The focus is on their suitability as magnetic multifunctional theranostic agents analyzing their T2 contrast enhancing capability for magnetic resonance imaging (MRI) and their magnetic hyperthermia performance. The primary particle size is closely controlled from 5 to 35 nm evaluating its impact on magnetic properties, MRI relaxivity, and magnetic heating performance. Most importantly, the addition of Zn in the flame precursor solution facilitates the growth of spinel Zn-ferrite crystals that exhibit superior magnetic properties over iron oxides typically made in flames. These properties result in strong MRI T2 contrast agents as shown on a 4.7 T small animal MRI scanner and lead to a more efficient heating with alternating magnetic fields. Also, by injecting Zn 0.4 Fe 2.6 O 4 nanoparticle suspensions into pork tissue, MR-images are acquired at clinically relevant concentrations. Furthermore, the nanothin SiO 2 shell facilitates functionalization with polymers, which improves the biocompatibility of the theranostic system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization

    NASA Astrophysics Data System (ADS)

    Koger, B.; Kirkby, C.

    2017-11-01

    One of the main appeals of using gold nanoparticles (GNPs) as radiosensitizers is that their surface coatings can be altered to manipulate their pharmacokinetic properties. However, Monte Carlo studies of GNP dosimetry tend to neglect these coatings, potentially changing the dosimetric results. This study quantifies the dosimetric effects of including a polyethylene glycol (PEG) surface coating on GNPs over both nanoscopic and microscopic ranges. Two dosimetric scales were explored using PENELOPE Monte Carlo simulations. In microscopic simulations, 500-1000 GNPs, with and without coatings, were placed in cavities of side lengths 0.8-4 µm, and the reduction of dose deposited to surrounding medium within these volumes due to the coating was quantified. Including PEG surface coatings of up to 20 nm thickness resulted in reductions of up to 7.5%, 4.0%, and 2.0% for GNP diameters of 10, 20, and 50 nm, respectively. Nanoscopic simulations observed the dose falloff in the first 500 nm surrounding a single GNP both with and without surface coatings of various thicknesses. Over the first 500 nm surrounding a single GNP, the presence of a PEG surface coating reduced dose by 5-26%, 8-28%, 8-30%, and 8-34% for 2, 10, 20, and 50 nm diameter GNPs, respectively, for various energies and coating thicknesses. Reductions in dose enhancement due to the inclusion of a GNP surface coating are non-negligible and should be taken into consideration when investigating GNP dose enhancement. Further studies should be carried out to investigate the biological effects of these coatings.

  2. Size-dependent magnetic anisotropy of PEG coated Fe3O4 nanoparticles; comparing two magnetization methods

    NASA Astrophysics Data System (ADS)

    Nayek, C.; Manna, K.; Imam, A. A.; Alqasrawi, A. Y.; Obaidat, I. M.

    2018-02-01

    Understanding the size dependent magnetic anisotropy of iron oxide nanoparticles is essential for the successful application of these nanoparticles in several technological and medical fields. PEG-coated iron oxide (Fe3O4) nanoparticles with core diameters of 12 nm, 15 nm, and 16 nm were synthesized by the usual co-precipitation method. The morphology and structure of the nanoparticles were investigated using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and X-ray diffraction (XRD). Magnetic measurements were conducted using a SQUID. The effective magnetic anisotropy was calculated using two methods from the magnetization measurements. In the first method the zero-field-cooled magnetization versus temperature measurements were used at several applied magnetic fields. In the second method we used the temperature-dependent coercivity curves obtained from the zero-field-cooled magnetization versus magnetic field hysteresis loops. The role of the applied magnetic field on the effective magnetic anisotropy, calculated form the zero-field-cooled magnetization versus temperature measurements, was revealed. The size dependence of the effective magnetic anisotropy constant Keff obtained by the two methods are compared and discussed.

  3. Chemistry and stability of thiol based polyethylene glycol surface coatings on colloidal gold and their relationship to protein adsorption and clearance in vivo

    NASA Astrophysics Data System (ADS)

    Carpinone, Paul

    Nanomaterials have presented a wide range of novel biomedical applications, with particular emphasis placed on advances in imaging and treatment delivery. Of the many particulate nanomaterials researched for biomedical applications, gold is one of the most widely used. Colloidal gold has been of great interest due to its chemical inertness and its ability to perform multiple functions, such as drug delivery, localized heating of tissues (hyperthermia), and imaging (as a contrast agent). It is also readily functionalized through the use of thiols, which spontaneously form sulfur to gold bonds with the surface. Polyethylene glycol (PEG) is the most widely used coating material for these particles as it provides both steric stability to the suspension and protein resistance. These properties extend the circulation time of the particles in blood, and consequently the efficacy of the treatment. Despite widespread use of PEG coated gold particles, the coating chemistry and stability of these particles are largely unknown. The goal of this work was to identify the mechanisms leading to degradation and stability of thiol based polyethylene glycol coatings on gold particles and to relate this behavior to protein adsorption and clearance in vivo. The results indicate that the protective PEG coating is susceptible to sources of oxidation (including dissolved oxygen) and competing adsorbates, among other factors. The quality of commercially available thiolated PEG reagents was also found to play a key role in the quality and protein resistance of the final PEG coating. Analysis of the stability of these coatings indicated that they rapidly degrade under physiological conditions, leading to the onset of protein adsorption when exposed to plasma or blood. Paralleling the protein adsorption behavior and onset of coating degradation observed in vitro, blood clearance of parenterally administered PEG coated particles in mice began after approximately 2h of circulation time. Taken

  4. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Zhong, Zhihui; Wang, Li; Li, Hongxia; Xiao, Kai

    2014-10-01

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating.

  5. Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery

    NASA Astrophysics Data System (ADS)

    Lecomte, A.; Castagnola, V.; Descamps, E.; Dahan, L.; Blatché, M. C.; Dinis, T. M.; Leclerc, E.; Egles, C.; Bergaud, C.

    2015-12-01

    The use of soft materials as substrate for neural probes aims at achieving better compliance with the surrounding neurons while maintaining minimal rejection. Many strategies have emerged to enable such probes to penetrate the cortex, among which the use of resorbable polymers. We performed several tests involving two resorbable polymers considered most promising: polyethylene glycol (PEG) and silk fibroin (SF) from Bombyx Mori silkworms. Our coating method provides a repeatable, uniform structure optimized for a stress-reduced insertion of a parylene-C neural probe. Standard compression tests as well as in vitro and in vivo insertion assessments show that both SF and PEG-coated probes are stiff enough to avoid the buckling effect during insertion in the cortex. However, with a buckling force of 300 mN and a mechanical holding in vitro of tens of minutes, we assess silk fibroin to be more reliable for practical handling. In vivo first try-outs in mouse brain showed neither buckling issues of the probe nor undesired alteration of the signal recording. Moreover, we evidenced two distinct time scales in the bioresorption of our polymer coatings: silk fibroin degrades itself in a matter of weeks and PEG dissolves itself within seconds in the presence of water. We then present a hybrid PEG and SF coating that could be used as a drug delivery system with different time scales to reduce both the acute and the chronic body reaction.

  6. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes.

    PubMed

    Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R

    2016-03-15

    Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. PEG-asparaginase induced severe hypertriglyceridemia.

    PubMed

    Galindo, Rodolfo J; Yoon, Justin; Devoe, Craig; Myers, Alyson K

    2016-04-01

    Asparaginase (ASP) is an effective chemotherapy agent extensively used in children with acute lymphocytic leukemia (ALL). There has been a recent interest in using ASP in adults with ALL, particularly the less toxic pegylated (PEG) formulation. Hypertriglyceridemia (HTG) is a rare complication of PEG-ASP therapy. We report two cases of obese patients who developed severe HTG after receiving PEG for ALL. Both patients were incidentally found to have severe HTG (TG of 4,330 and 4,420 mg/dL). In both patients, there was no personal or family history of dyslipidemia or hypothyroidism. There was no evidence of pancreatitis or skin manifestations of HTG. Both patients were treated with PEG cessation, low-fat diet and pharmacotherapy. Both patients were re-challenged with PEG, with subsequent increase in TG but no associated complications. TG returned to baseline after discontinuing PEG and while on therapy for HTG. A literature review of PEG-induced HTG in adults demonstrated similar results: asymptomatic presentation despite very severe HTG. HTG is a rare but clinically important adverse effect of PEG. Underlying obesity and/or diabetes may represent risk factors. Clinicians should monitor TG levels during PEG therapy to avoid TG-induced pancreatitis.

  8. Synthesis and characterization of nanomagnetite particles and their polymer coated forms.

    PubMed

    Utkan, Guldem Guven; Sayar, Filiz; Batat, Pinar; Ide, Semra; Kriechbaum, Manfred; Pişkin, Erhan

    2011-01-15

    Superparamagnetic nanoparticles were prepared by coprecipitation of ferrous (Fe(2+)) and ferric (Fe(3+)) aqueous solution by a base. Nanomagnetite particles were coated with poly(St/PEG-EEM/DMAPM) and poly(St/PEG-MA/DMAPM) layer by emulsifier-free emulsion polymerization. Chemical structure of nanoparticles was characterized by both FTIR and (1)H NMR. Particle morphologies were determined by Zeta Sizer, DLS, XRD and SAXS. Structural analysis showed that after polymer coating nanomagnetite particles kept their superparamagnetic property. Besides the synthesized magnetites, polymer coated forms of these particles are more biocompatible, well dispersable and uniform. These properties make them a very strong candidate for bioengineering applications, such as bioseparation, gene transfer. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Control of silk microsphere formation using polyethylene glycol (PEG).

    PubMed

    Wu, Jianbing; Zheng, Zhaozhu; Li, Gang; Kaplan, David L; Wang, Xiaoqin

    2016-07-15

    A one step, rapid method to prepare silk microspheres was developed, with particle size controlled by the addition of polyethylene glycol (PEG). PEG molecular weight (4.0K-20.0KDa) and concentration (20-50wt%), as well as silk concentration (5-20wt%), were key factors that determined particle sizes varying in a range of 1-100μm. Addition of methanol to the PEG-silk combinations increased the content of crystalline β-sheet in the silk microspheres. To track the distribution and degradation of silk microspheres in vivo, 3-mercaptopropionic acid (MPA)-coated CdTe quantum dots (QDs) were physically entrapped in the silk microspheres. QDs tightly bound to the β-sheet domains of silk via hydrophobic interactions, with over 96% of the loaded QDs remaining in the silk microspheres after exhaustive extraction. The fluorescence of QDs-incorporated silk microspheres less stable in cell culture medium than in phosphate buffer solution (PBS) and water. After subcutaneous injection in mice, microspheres prepared from 20% silk (approx. 30μm diameter particles) still fluoresced at 24h, while those prepared from 8% silk (approx. 4μm diameter particles) and free QDs were not detectable, reflecting the QDs quenching and particle size effect on microsphere clearance in vivo. The larger microspheres were more resistant to cell internalization and degradation. Since PEG is an FDA-approved polymer, and silk is FDA approved for some medical devices, the methods developed in the present study will be useful in a variety of biomedical applications where simple, rapid and scalable preparation of silk microspheres is required. The work is of significance to the biomaterial and controlled release society because it provides a new option for fabricating silk microspheres in one simple step of mixing silk and polyethylene glycol (PEG), with the size and properties of microspheres controllable by PEG molecular weight as well as PEG and silk concentrations. Although fabrication of silk

  10. Study of PEG Tether Length of Pegylated-Lipid Sensing Films in QCM Odor Sensors

    NASA Astrophysics Data System (ADS)

    Wyszynski, Bartosz; Somboon, Pakpum; Nakamoto, Takamichi

    Odor sensing system using quartz crystal microbalance (QCM) sensor array and pattern recognition technique has been for a long time an important research topic. Research of novel sensing materials for QCM odor sensors is vital for realization of artificial olfaction and related devices such as odor recorder. Herein we study quartz crystal microbalance (QCM, 20 MHz, AT-cut) sensors coated with lipopolymers with polyethylene glycol (PEG) as a tether. The tether's molecular weights were 1000, 2000 and 5000. In addition, we fabricated QCM sensors coated with PEGs of molecular weights 1000, 2000 and 4000. The fabricated sensors' properties were evaluated during experiments of exposures to vapors of alcohols, esters and acids. From the obtained results it is clear that the tether's length (molecular weight) is an important factor influencing the resulting material's sensing properties. Sensititivity patterns of the lipopolymeric sensors were clealrly different from the ones for respective polymers. The obtained sensors seem to have a good capability to discriminate among odor samples according to the functional group of an odorant.

  11. PVP and PEG doped CuO nanoparticles are more biologically active: Antibacterial, antioxidant, antidiabetic and cytotoxic perspective.

    PubMed

    Javed, Rabia; Ahmed, Madiha; Haq, Ihsan Ul; Nisa, Sobia; Zia, Muhammad

    2017-10-01

    Search for biologically active nanoparticles is prerequisite for biomedical applications. CuO nanoparticles synthesized by co-precipitation method are capped by polyethylene-glycol (PEG) and polyvinyl-pyrrolidone (PVP) on the surface by simple adsorption. Physical and chemical properties carried out by SEM, XRD and FTIR confirm nanometer in size and efficient capping of PVP and PEG on CuO NPs. Biological assays reveal higher activities of CuO-PEG and CuO-PVP as compared to the uncapped CuO nanoparticles. CuO-PEG shows better antitumor activity against Streptomyces as compared with CuO-PVP and CuO NPs. Both the capped NPs are significantly active for α-amylase inhibition assay. CuO-PVP demonstrates significantly better activity against bacterial strains followed by CuO-PEG and uncapped CuO. PVP coated CuO NPs also shows strong DPPH based free radical scavenging activity, total reducing power potential, total antioxidative potential and also carries flavonoid and phenolics properties determines to querecetin and gallic acid equivalence, respectively. It can be concluded that PVP and PEG capped CuO NPs are more capable to be used in biomedical applications as drug and diagnostic carrier molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Silica-polyethylene glycol hybrids synthesized by sol-gel: Biocompatibility improvement of titanium implants by coating.

    PubMed

    Catauro, M; Bollino, F; Papale, F; Ferrara, C; Mustarelli, P

    2015-10-01

    Although metallic implants are the most used in dental and orthopaedic fields, they can early fail due to low tissue tolerance or osseointegration ability. To overcome this drawback, functional coatings can be applied on the metallic surface to provide a firm fixation of the implants. The objective of the present study was twofold: to synthesize and to characterize silica/polyethylene glycol (PEG) hybrid materials using sol-gel technique and to investigate their capability to dip-coat titanium grade 4 (Ti-gr4) substrates to improve their biological properties. Various hybrid systems have been synthesized by changing the ratio between the organic and inorganic phases in order to study the influence of the polymer amount on the structure and, thus, on the properties of the coatings. Fourier transform infrared (FTIR) spectroscopy and solid state Nuclear Magnetic Resonance (NMR) allowed us to detect the formation of hydrogen bonds between the inorganic sol-gel matrix and the organic component. SEM analysis showed that high PEG content enables to obtain crack free-coating. Moreover, the effective improvement in biological properties of Ti-gr4 implants has been evaluated by performing in vitro tests. The bioactivity of the hybrid coatings has been showed by the hydroxyapatite formation on the surface of SiO2/PEG coated Ti-gr4 substrates after soaking in a simulated body fluid and the lack of cytotoxicity by the WST-8 Assay. The results showed that the coated substrates are more bioactive and biocompatible than the uncoated ones and that the bioactivity is not significantly affected by PEG amount whereas its addition makes the films more biocompatible. Copyright © 2015. Published by Elsevier B.V.

  13. Polyethylene glycol-coated blue-emitting silicon dots with improved properties for uses in aqueous and biological environments

    NASA Astrophysics Data System (ADS)

    Rodríguez Sartori, Damián; Lillo, Cristian R.; Romero, Juan J.; Dell‧Arciprete, María Laura; Miñán, Alejandro; de Mele, Mónica Fernández Lorenzo; Gonzalez, Mónica C.

    2016-11-01

    Grafting of polyethylene glycol (PEG) to ultrasmall photoluminescent silicon dots (SiDs) is expected to improve and expand the applications of these particles to aqueous environments and biological systems. Herein we report a novel one-pot synthesis of robust, highly water compatible PEG-coated SiDs (denoted as PEG-SiDs) of (3.3 ± 0.5) nm size. The nanoparticles’ synthesis is based on the liquid phase oxidation of magnesium silicide using PEG as reaction media and leading to high PEG density grafting. PEG-SiDs enhanced photophysical, photosensitising, and solution properties in aqueous environments are described and compared to those of 2 nm size PEG-coated SiDs with low PEG density grafting (denoted as PEG-NHSiDs) obtained from a multistep synthesis strategy. PEG-SiDs form highly dispersed suspensions in water showing stable photoluminescence and quantum yields of Φ = 0.13 ± 0.04 at 370 nm excitation in air-saturated suspensions. These particles exhibited the capacity of photosensitising the formation of singlet molecular oxygen, not observed for PEG-NHSiDs. PEG robust shielding of the silicon core luminescent properties is further demonstrated in bio-imaging experiments stressing the strong interaction between PEG-SiDs and Staphylococcus aureus smears by observing the photoluminescence of particles. PEG-SiDs were found to be nontoxic to S. aureus cells at concentrations of 100 mg ml-1, though a bacteriostatic effect on S. aureus biofilms was observed upon UV-A irradiation under conditions where light alone has no effect.

  14. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties.

    PubMed

    Gao, Qiang; Yu, Meng; Su, Yajuan; Xie, Meihua; Zhao, Xin; Li, Peng; Ma, Peter X

    2017-03-15

    Numerous antimicrobial coatings have been developed for biomedical devices/implants, but few can simultaneously fulfill the requirements for antimicrobial and antifouling ability and biocompatibility. In this study, to develop an antimicrobial and antibiofilm surface coating, diblock amphiphilic molecules with antimicrobial and antifouling segments in a single chain were rationally designed and synthesized. Cationic antimicrobial polypeptides (AMP) were first synthesized by N-carboxyanhydride ring-opening polymerization (NCA-ROP). Heterofunctionalized poly(ethylene glycol) with different lengths (methacrylate-PEG n -tosyl, n=10/45/90) was synthesized and site-specifically conjugated with polypeptides to form diblock amphiphiles. Along with increased PEG chain length, hemolytic activity was considerably improved, and broad-spectrum antimicrobial activity is retained. Three MA-PEG n -b-AMP copolymers were further grafted onto the surface of silicone rubber (a commonly used catheter material) via plasma/UV-induced surface polymerizations to form a bottlebrush-like coating with excellent antimicrobial activity against several pathogenic bacteria (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus), and effectively prevent biofilm formation. This bottlebrush coating also greatly reduced protein adsorption and platelet adhesion, indicating its excellent antifouling ability. An in vitro cytotoxicity study also demonstrated that this coating is biocompatible with mammalian cells. After subcutaneous implantation of the materials in rats, we demonstrated that the g-PEG 45 -b-AMP bottlebrush coating exhibits significant anti-infective activity in vivo. Thus, this facilely synthesized PEGylated AMP bottlebrush coating is a feasible method to prevent biomedical devices-associated infections. Current antimicrobial coatings are often associated with concerns such as antibiotic resistance, environmental pollution, short-time antimicrobial activity, biofouling

  15. [Preparation and evaluation of press-coated aminophylline tablet using crystalline cellulose and polyethylene glycol in the outer shell for timed-release dosage forms].

    PubMed

    Watanabe, Yoshiteru; Mukai, Baku; Kawamura, Ken-ichi; Ishikawa, Tatsuya; Namiki, Michihiro; Utoguchi, Naoki; Fujii, Makiko

    2002-02-01

    In an attempt to achieve chronopharmacotherapy for asthma, press-coated tablets (250 mg), which contained aminophylline in the core tablet in the form of low-substituted hydroxypropylcellulose (L-HPC) and coated with crystalline cellulose (PH-102) and polyethylene glycol (PEG) at various molecular weights and mixing ratios in the amounts of PH-102 and PEG as the outer shell (press-coating material), were prepared (chronopharmaceutics). Their applicability as timed-release (delayed-release) tablets with a lag time of disintegration and a subsequent rapid drug release phase was investigated. Various types of press-coated tablets were prepared using a tableting machine, and their aminophylline dissolution profiles were evaluated by the JP paddle method. Tablets with the timed-release characteristics could be prepared, and the lag time of disintegration was prolonged as the molecular weight and the amount of PEG, for example PEG 500,000, in the outer shell were increased. The lag time of disintegration could be controlled by the above-mentioned method, however, the pH of the medium had no effect on disintegration of the tablet and dissolution behavior of theophylline. The press-coated tablet (core tablet:aminophylline 50 mg, L-HPC and PEG 6000; outer shell:PH-102:PEG = 8:2 200 mg) with the timed-release characteristics was administered orally to rabbits for an in vivo test. Theophylline was first detected in plasma more than 2 h after administration; thus, this tablet showed a timed-release characteristics in the gastrointestinal tract. The time (tmax) required to reach the maximum plasma theophylline concentration (Cmax) observed after administration of the press-coated tablet was significantly (p < 0.05) delayed compared with that observed after administration of aminophylline solution in the control experiment. However, there was no difference in Cmax and area under the plasma theophylline concentration-time curve (AUC0-->24) between the press-coated tablet and

  16. How to adjust desired drug release patterns from ethylcellulose-coated dosage forms.

    PubMed

    Siepmann, F; Hoffmann, A; Leclercq, B; Carlin, B; Siepmann, J

    2007-06-04

    The aim of this study was to provide an easy and efficient tool to adjust desired drug release kinetics from (aqueous) ethylcellulose-coated solid dosage forms and to better understand the underlying mass transport mechanisms. Pure ethylcellulose films are poorly permeable for many substances and can result in very low release rates for certain drugs from coated dosage forms, if the film coatings are completely formed and remain intact upon exposure to the release media. To increase the permeability of the polymeric membranes, different amounts of a water-soluble poly(vinyl alcohol)-poly(ethylene glycol) graft copolymer (PVA-PEG graft copolymer) were added to an aqueous ethylcellulose dispersion (Aquacoat ECD). Importantly, the presence of only a low percentage of this hydrophilic copolymer significantly increased the resulting water uptake rate and extent, dry weight loss and drug permeability of the films. In contrast to hydroxypropyl methylcellulose (HPMC), the PVA-PEG graft copolymer does not cause flocculation of the colloidal coating dispersion (leading to potentially variable release rates). Interestingly, the transport of water as well as of the model drug theophylline through the polymeric networks was primarily controlled by pure diffusion. The penetration kinetics could be quantitatively described by Fick's law of diffusion, irrespective of the type of release medium and PVA-PEG graft copolymer content. Most important from a practical point of view, a broad spectrum of pH-independent drug release rates can easily be obtained from drug-loaded pellets by simply varying the PVA-PEG graft copolymer content. An appropriate curing step after coating is required, but interestingly the investigated curing conditions (differing in time and relative humidity) resulted in very similar drug release patterns, indicating that stable film structures are likely to be achieved.

  17. Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups

    PubMed Central

    Long, Gaobo; Yang, Xiao-lan; Zhang, Yi; Pu, Jun; Liu, Lin; Liu, Hong-bo; Li, Yuan-li; Liao, Fei

    2013-01-01

    Purpose Magnetic submicron particles (MSPs) are pivotal biomaterials for magnetic separations in bioanalyses, but their preparation remains a technical challenge. In this report, a facile one-step coating approach to MSPs suitable for magnetic separations was investigated. Methods Polyethylene glycol) (PEG) was derived into PEG-bis-(maleic monoester) and maleic monoester-PEG-succinic monoester as the monomers. Magnetofluids were prepared via chemical co-precipitation and dispersion with the monomers. MSPs were prepared via one-step coating of magnetofluids in a water-in-oil microemulsion system of aerosol-OT and heptane by radical co-polymerization of such monomers. Results The resulting MSPs contained abundant carboxyl groups, exhibited negligible nonspecific adsorption of common substances and excellent suspension stability, appeared as irregular particles by electronic microscopy, and had submicron sizes of broad distribution by laser scattering. Saturation magnetizations and average particle sizes were affected mainly by the quantities of monomers used for coating magnetofluids, and steric hindrance around carboxyl groups was alleviated by the use of longer monomers of one polymerizable bond for coating. After optimizations, MSPs bearing saturation magnetizations over 46 emu/g, average sizes of 0.32 μm, and titrated carboxyl groups of about 0.21 mmol/g were obtained. After the activation of carboxyl groups on MSPs into N-hydroxysuccinimide ester, biotin was immobilized on MSPs and the resulting biotin-functionalized MSPs isolated the conjugate of streptavidin and alkaline phosphatase at about 2.1 mg/g MSPs; streptavidin was immobilized at about 10 mg/g MSPs and retained 81% ± 18% (n = 5) of the specific activity of the free form. Conclusion The facile approach effectively prepares MSPs for magnetic separations. PMID:23589687

  18. Use of hydrophilic polymer coatings for control of electroosmosis and protein adsorption

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    The purpose of this project was to examine the utility of polyethylene glycol (PEG) and dextran coatings for control of electroosmosis and protein adsorption; electroosmosis is an important, deleterious process affecting electrophoretic separations, and protein adsorption is a factor which needs to be controlled during protein crystal growth to avoid multiple nucleation sites. Performance of the project required use of X-ray photoelectron spectroscopy to refine previously developed synthetic methods. The results of this spectroscopic examination are reported. Measurements of electroosmotic mobility of charged particles in appropriately coated capillaries reveals that a new, one-step route to coating capillaries gives a surface in which electroosmosis is dramatically reduced. Similarly, both PEG and dextran coatings were shown by protein adsorption measurements to be highly effective at reducing protein adsorption on solid surfaces. These results should have impact on future low-g electrophoretic and protein crystal growth experiments.

  19. Rapid bio-patterning method based on the fabrication of PEG microstructures and layer-by-layer polymeric thin film

    NASA Astrophysics Data System (ADS)

    Shim, Hyun-Woo; Lee, Ji-Hye; Choi, Chang-Hyoung; Song, Hwan-Moon; Kim, Bo-Yeol; Kim, Dong-Pyo; Lee, Chang-Soo

    2007-12-01

    The patterning of biomolecules in well-defined microstructures is critical issue for the development of biosensors and biochips. However, the fabrication of microstructures with well-ordered and spatially discrete forms to provide the patterned surface for the immobilization of biomolecules is difficult because of the lack of distinct physical and chemical barriers separating patterns. This study present rapid biomolecule patterning using micromolding in capillaries (MIMIC), soft-lithographic fabrication of PEG microstructures for prevention of nonspecific binding as a biological barrier, and self assembled polymeric thin film for efficient immobilization of proteins or cells. For the proof of concept, protein (FITC-BSA), bacteria (E.coli BL21-pET23b-GFP) were used for biomolecules patterning on polyelectrolyte coated surface within PEG microstructures. The novel approach of MIMIC combined with LbL coating provides a general platform for patterning a broad range of materials because it can be easily applied to various substrates such as glass, silicon, silicon dioxide, and polymers.

  20. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels

    PubMed Central

    Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.

    2008-01-01

    Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with <≈100 nm thickness. Gelation of PEG-octavinylsulfone with amines in either bovine serum albumin (BSA) or PEG-octaamine was monitored by dynamic light scattering (DLS), revealing the presence of microgels before macrogelation. NMR also revealed extremely high end group conversions prior to macrogelation, consistent with the formation of highly crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

  1. PEG-coated gold nanorod monoclonal antibody conjugates in preclinical research with optoacoustic tomography, photothermal therapy, and sensing

    NASA Astrophysics Data System (ADS)

    Liopo, Anton V.; Conjusteau, André; Oraevsky, Alexander A.

    2012-02-01

    Gold nanorods (GNR) with a peak absorption wavelength of 760 nm were prepared using a seed-mediated method. A novel protocol has been developed to replace hexadecyltrimethylammonium bromide (CTAB) on the surface of GNR with 16-mercaptohexadecanoic acid (MHDA) and metoxy-poly(ethylene glycol)-thiol (PEG), and the monoclonal antibodies: HER2 or CD33. The physical chemistry property of the conjugates was monitored through optical and zetapotential measurements to confirm surface chemistry. The plasmon resonance is kept in the near infrared area, and changes from strong positive charge for GNR-CTAB to slightly negative for GNR-PEG-mAb conjugates are observed. The conjugates were investigated for different cells lines: breast cancer cells and human leukemia lines in vivo applications. These results demonstrate successful tumor accumulation of our modified PEG-MHDA conjugates of GNR for HER2/neu in both overexpressed breast tumors in nude mice, and for thermolysis of human leukemia cells in vitro. The conjugates are non-toxic and can be used in pre-clinical applications, as well as molecular and optoacoustic imaging, and quantitative sensing of biological substrates.

  2. 2 L PEG plus ascorbic acid versus 4 L PEG plus simethicon for colonoscopy preparation: a randomized single-blind clinical trial.

    PubMed

    Gentile, Maurizio; De Rosa, Michele; Cestaro, Giovanni; Forestieri, Pietro

    2013-06-01

    The 2 L polyethylene glycol (PEG) lavage solution has been proved to be similarly safe and effective as 4 L PEG formulations, in spite of the reduced volume. To compare low-volume PEG-based solution combined with ascorbic acid with high-volume PEG-based solution combined with simethicon in terms of efficacy and patient tolerability. This was a single-blind prospective randomized trial. Patients were randomized to receive either 2 L PEG plus ascorbic acid (PEG+Asc) or 4 L PEG plus simethicon (PEG+Sim). The primary endpoint was overall colon cleansing evaluation, assessed by blinded investigators using Aronchick score. Secondary end points included patient compliance and tolerability and adverse events. Sixty patients received PEG+Asc and 60 received PEG+Sim. Overall bowel cleansing score was considered adequate in 81.67% of the PEG+Asc and 80% of the PEG+Sim groups, respectively. Excellent and good ratings were recorded in 11.6% and 38.3% receiving PEG+Asc as compared with 26.6% and 23.3% of patients receiving PEG+Sim. Patient tolerability and safety were similar with both the preparations. According to our data, low-volume PEG+Asc has comparable efficacy, safety, and tolerability as high-volume PEG+Sim; therefore, it can be considered as a good alternative solution for bowel preparation. More improvements are necessary to achieve the target of a perfect preparation.

  3. Influence of additives on melt viscosity, surface tension, and film formation of dry powder coatings.

    PubMed

    Sauer, Dorothea; McGinity, James W

    2009-06-01

    Limited information on thermally cured dry-powder coatings used for solid dosage forms has been available in the literature. The aim of this study was to characterize the film formation process of Eudragit L 100-55 dry-powder coatings and to investigate the influence of film additives on melt viscosity and surface tension. The coating process employed no liquids and the plasticizer was combined with the polymer using hot melt extrusion. Thermoanalytical methods including differential scanning calorimetry and thermogravimetric analysis (TGA) were used to investigate the thermal properties of the dry-coating formulations. The rheological behavior of the coating formulations were characterized with the extrusion torque, and the surface energy parameters were determined from contact angle measurements. The influence of the level of triethyl citrate (TEC) as plasticizer and polyethylene glycol (PEG) 3350 in the polymer film on film formation was investigated using a digital force tester. TGA confirmed thermal stability of all coating excipients at the investigated curing conditions. Increasing TEC levels and the addition of PEG 3350 as a low melting excipient in the coating reduced the viscosity of the polymer. Plasticization of the polymer with TEC increased the surface free energy, whereas the admixture of 10% PEG 3350 did not affect the surface free energy of Eudragit L 100-55. The spreading coefficient of the polymers over two sample tablet formulations was reduced with increasing surface free energy. During the curing process, puncture strength, and elongation of powder-cast films increased. The effect of curing time on the mechanical properties was dependent on the plasticizer content. The incorporation of TEC and PEG 3350 into the Eudragit L 100-55 powder coating formulation improved film formation. Mechanical testing of powder-cast films showed an increase of both elongation and puncture strength over the curing process as criterion for polymer particle fusion

  4. Autoclaving-Derived Surface Coating with In Vitro and In Vivo Antimicrobial and Antibiofilm Efficacies.

    PubMed

    Su, Yajuan; Zhi, Zelun; Gao, Qiang; Xie, Meihua; Yu, Meng; Lei, Bo; Li, Peng; Ma, Peter X

    2017-03-01

    Biomedical device-associated infections which engender severe threat to public health require feasible solutions. In this study, block copolymers consisting of antimicrobial, antifouling, and surface-tethering segments in one molecule are synthesized and grafted on polymeric substrates by a facile plasma/autoclave-assisted method. Hetero-bifunctional polyethylene glycol (PEG) with allyl and tosyl groups (APEG-OTs) is first prepared. PEGs with different molecular weights (1200 and 2400 Da) are employed. Polyhexamethylene guanidine (PHMG) which has excellent broad-spectrum antimicrobial activity and thermal/chemical stability, is conjugated with APEG-OTs to generate the block copolymer (APEG-PHMG). Allyl terminated PHMG (A-PHMG) without PEG segments is also synthesized by reacting PHMG with allyl glycidyl ether. The synthesized copolymers are thermal initiated by autoclaving and grafted on plasma pretreated silicone surface, forming permanently bonded bottlebrush-like coatings. Both A-PHMG and APEG 1200/2400 -PHMG coatings exhibit potent antimicrobial activity against gram-positive/negative bacteria and fungus, whereas APEG 1200/2400 -PHMG coatings show superior antifouling activity and long-term reusability to A-PHMG coating. APEG 2400 -PHMG coating demonstrates the most effective in vitro antibiofilm and protein/platelet-resistant properties, as well as excellent hemo/biocompatibility. Furthermore, APEG 2400 -PHMG greatly reduces the bacteria number with 5-log reduction in a rodent subcutaneous infection model. This rationally designed dual-functional antimicrobial and antifouling coating has great potential in combating biomedical devices/implant-associated infections. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Versatile theranostics agents designed by coating ferrite nanoparticles with biocompatible polymers

    NASA Astrophysics Data System (ADS)

    Zahraei, M.; Marciello, M.; Lazaro-Carrillo, A.; Villanueva, A.; Herranz, F.; Talelli, M.; Costo, R.; Monshi, A.; Shahbazi-Gahrouei, D.; Amirnasr, M.; Behdadfar, B.; Morales, M. P.

    2016-06-01

    Three biocompatible polymers, polyethylene glycol (PEG), dextran and chitosan, have been used in this work to control the colloidal stability of magnetic nanoparticles (14 ± 5 nm in diameter) and to vary the aggregation state in order to study their effect on relaxometric and heating properties. Two different coating strategies have been deeply developed; one based on the formation of an amide bond between citric acid coated nanoparticles (NPs) and amine groups present on the polymer surface and the other based on the NP encapsulation. Relaxometric properties revealed that proton relaxation rates strongly depend on the coating layer hydrophilicity and the aggregation state of the particles due to the presence of magnetic interactions. Thus, while PEG coating reduces particle aggregation by increasing inter-particle spacing leading to reduction of both T1 and T2 relaxation, dextran and chitosan lead to an increase mainly in T2 values due to the aggregation of particles in bigger clusters where they are in close contact. Dextran and chitosan coated NPs have also shown a remarkable heating effect during the application of an alternating magnetic field. They have proved to be potential candidates as theranostic agents for cancer diagnosis and treatment. Finally, cytotoxicity of PEG conjugated NPs, which seem to be ideal for intravenous administration because of their small hydrodynamic size, was investigated resulting in high cell viability even at 0.2 mg Fe ml-1 after 24 h of incubation. This suspension can be used as drug/biomolecule carrier for in vivo applications.

  6. Flagellin based biomimetic coatings: From cell-repellent surfaces to highly adhesive coatings.

    PubMed

    Kovacs, Boglarka; Patko, Daniel; Szekacs, Inna; Orgovan, Norbert; Kurunczi, Sandor; Sulyok, Attila; Khanh, Nguyen Quoc; Toth, Balazs; Vonderviszt, Ferenc; Horvath, Robert

    2016-09-15

    Biomimetic coatings with cell-adhesion-regulating functionalities are intensively researched today. For example, cell-based biosensing for drug development, biomedical implants, and tissue engineering require that the surface adhesion of living cells is well controlled. Recently, we have shown that the bacterial flagellar protein, flagellin, adsorbs through its terminal segments to hydrophobic surfaces, forming an oriented monolayer and exposing its variable D3 domain to the solution. Here, we hypothesized that this nanostructured layer is highly cell-repellent since it mimics the surface of the flagellar filaments. Moreover, we proposed flagellin as a carrier molecule to display the cell-adhesive RGD (Arg-Gly-Asp) peptide sequence and induce cell adhesion on the coated surface. The D3 domain of flagellin was replaced with one or more RGD motifs linked by various oligopeptides modulating flexibility and accessibility of the inserted segment. The obtained flagellin variants were applied to create surface coatings inducing cell adhesion and spreading to different levels, while wild-type flagellin was shown to form a surface layer with strong anti-adhesive properties. As reference surfaces synthetic polymers were applied which have anti-adhesive (PLL-g-PEG poly(l-lysine)-graft-poly(ethylene glycol)) or adhesion inducing properties (RGD-functionalized PLL-g-PEG). Quantitative adhesion data was obtained by employing optical biochips and microscopy. Cell-adhesion-regulating coatings can be simply formed on hydrophobic surfaces by using the developed flagellin-based constructs. The developed novel RGD-displaying flagellin variants can be easily obtained by bacterial production and can serve as alternatives to create cell-adhesion-regulating biomimetic coatings. In the present work, we show for the first time that. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Antimicrobial polycaprolactone/polyethylene glycol embedded lysozyme coatings of Ti implants for osteoblast functional properties in tissue engineering

    NASA Astrophysics Data System (ADS)

    Visan, A.; Cristescu, R.; Stefan, N.; Miroiu, M.; Nita, C.; Socol, M.; Florica, C.; Rasoga, O.; Zgura, I.; Sima, L. E.; Chiritoiu, M.; Chifiriuc, M. C.; Holban, A. M.; Mihailescu, I. N.; Socol, G.

    2017-09-01

    In this study, coatings based on lysozyme embedded into a matrix of polyethylene glycol (PEG) and polycaprolactone (PCL) were fabricated by two different methods (Matrix Assisted Pulsed Laser Evaporation - MAPLE and Dip Coating) for obtaining antimicrobial coatings envisaged for long term medical applications. Coatings with different PEG:PCL compositions (3:1; 1:1; 1:3) were synthesized in order to evaluate the antimicrobial activity of lysozyme embedded into the polymeric matrix. The main surface features, such as roughness and wettability, with impact on the microbial adhesion as well as on the eukaryote cell function were measured. The obtained composite coatings exhibited a significant antibacterial activity against Escherichia coli, Bacillus subtilis, Enterococcus faecalis and Staphylococcus aureus strains. As well, specific blended coatings showed appropriate viability, good spreading and normal cell morphology of SaOs2 human osteoblasts and mesenchymal stem cells (MSCs). These investigations highlight the suitability of biodegradable composites as implant coatings for decreasing the risk of bacterial contamination associated with prosthetic procedures.

  8. Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response.

    PubMed

    Cosco, Donato; Paolino, Donatella; De Angelis, Francesco; Cilurzo, Felisa; Celia, Christian; Di Marzio, Luisa; Russo, Diego; Tsapis, Nicolas; Fattal, Elias; Fresta, Massimo

    2015-01-01

    Novel PEGylated PLA nanocapsules (PEG-AcPLA nanocapsules), loading high percentage of water soluble drugs have been formulated by using multiple emulsion technique without using conventional stabilizers. In particular, sodium deoxycholate hydrate has been used to obtain nanocapsules having a mean diameter of about 200 nm and a polydispersity index of ∼ 0.1. Gemcitabine hydrochloride (GEM) was used as a model of hydrophilic drug. GEM-loaded PEG-AcPLA nanocapsules demonstrated a high encapsulation efficacy and the drug-release followed a zero-order kinetic. MTT-assay evidenced an increased antitumor effect of GEM-loaded PEG-AcPLA nanocapsules compared to the free drug on different cancer cell lines and confocal laser scanning microscopy showed a significant improvement of cell interaction at 6h of incubation. In vivo anticancer activity of GEM-loaded PEG-AcPLA nanocapsules using two xenograft murine models of human solid tumors further supported the efficacy of this nano-drug, thus providing preliminary results about the potential clinical application of this innovative nanotherapeutic. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Modeling and self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohan; Li, Suming; Coumes, Fanny; Darcos, Vincent; Lai Kee Him, Joséphine; Bron, Patrick

    2013-09-01

    A series of poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) triblock copolymers with symmetric or asymmetric chain structures were synthesized by combination of ring-opening polymerization and copper-catalyzed click chemistry. The resulting copolymers were used to prepare self-assembled aggregates by dialysis. Various architectures such as nanotubes, polymersomes and spherical micelles were observed from transmission electron microscopy (TEM), cryo-TEM and atomic force microscopy (AFM) measurements. The formation of diverse aggregates is explained by modeling from the angle of both geometry and thermodynamics. From the angle of geometry, a ``blob'' model based on the Daoud-Cotton model for star polymers is proposed to describe the aggregate structures and structural changes with copolymer composition and molar mass. In fact, the copolymer chains extend in aqueous medium to form single layer polymersomes to minimize the system's free energy if one of the two PEG blocks is short enough. The curvature of polymersomes is dependent on the chain structure of copolymers, especially on the length of PLA blocks. A constant branch number of aggregates (f) is thus required to preserve the morphology of polymersomes. Meanwhile, the aggregation number (Nagg) determined from the thermodynamics of self-assembly is roughly proportional to the total length of polymer chains. Comparing f to Nagg, the aggregates take the form of polymersomes if Nagg ~ f, and change to nanotubes if Nagg > f to conform to the limits from both curvature and aggregation number. The length of nanotubes is mainly determined by the difference between Nagg and f. However, the hollow structure becomes unstable when both PEG segments are too long, and the aggregates eventually collapse to yield spherical micelles. Therefore, this work gives new insights into the self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution which present great interest for biomedical and

  10. Wastewater treatment by sonophotocatalysis using PEG modified TiO2 film in a circular Photocatalytic-Ultrasonic system.

    PubMed

    Hu, Xiaohong; Zhu, Qi; Gu, Zhibin; Zhang, Nan; Liu, Na; Stanislaus, Mishma S; Li, Dawei; Yang, Yingnan

    2017-05-01

    TiO 2 photocatalyst film recently has been utilized as the potential candidate for the wastewater treatment, due to its high stability and low toxicity. In order to further increase the photocatalytic ability and stability, different molecular weight of polyethylene glycol (PEG) were used to modify TiO 2 structure to synthesize porous thin film used in the developed Photocatalytic-Ultrasonic system in this work. The results showed that PEG2000 modified TiO 2 calcinated under 450°C for 2h exhibited the highest photocatalytic activity, attributed to the smallest crystallite size and optimal particle size. Over 95.0% of rhodamine B (Rh B) was photocatalytically degraded by optimized PEG 2000 -TiO 2 film after 60min of UV irradiation, while only about 50.8% of Rh B was decolored over pure TiO 2 film. Furthermore, optimized PEG 2000 -TiO 2 film was used in a circular Photocatalytic-Ultrasonic system, and the obtained synergy (0.6519) of sonophotocatalysis indicated its extremely high efficiency for Rh B degradation. In this Photocatalytic-Ultrasonic system, larger amount of PEG 2000 -TiO 2 coated glass beads, stronger ultrasonic power and longer experimental time could result to higher degradation efficiency of Rh B. In addition, repetitive experiments showed that about 97.2% of Rh B were still degraded in the fifth experiment by sonophotocatalysis using PEG 2000 -TiO 2 film. Therefore, PEG 2000 -TiO 2 film used in Photocatalytic-Ultrasonic system has promising potential for wastewater treatment, due to its excellent photocatalytic activity and high stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. PEG tube insertion -- discharge

    MedlinePlus

    ... be treated with medicine. Caring for the PEG-tube Site Drainage from around the PEG tube is common for the first 1 or 2 ... cotton swab or gauze. Try to remove any drainage or crusting on the skin and tube. Be gentle. If you used soap, gently clean ...

  12. Same-day 2-L PEG-citrate-simethicone plus bisacodyl vs split 4-L PEG: Bowel cleansing for late-morning colonoscopy.

    PubMed

    de Leone, Annalisa; Tamayo, Darina; Fiori, Giancarla; Ravizza, Davide; Trovato, Cristina; De Roberto, Giuseppe; Fazzini, Linda; Dal Fante, Marco; Crosta, Cristiano

    2013-09-16

    To evaluate the efficacy, tolerability, acceptability and feasibility of bisacodyl plus low volume polyethyleneglycol-citrate-simeticone (2-L PEG-CS) taken the same day as compared with conventional split-dose 4-L PEG for late morning colonoscopy. Randomised, observer-blind, parallel group, comparative trial carried out in 2 centres. Out patients of both sexes, aged between 18 and 85 years, undergoing colonoscopy for diagnostic investigation, colorectal cancer screening or follow-up were eligible. The PEG-CS group received 3 bisacodyl tablets (4 tablets for patients with constipation) at bedtime and 2-L PEG-CS in the morning starting 5 h before colonoscopy. The control group received a conventional 4-L PEG formulation given as split regimen; the morning dose was taken with the same schedule of the low volume preparation. The Ottawa Bowel Preparation Scale (OBPS) score was used as the main outcome measure. A total of 164 subjects were enrolled and 154 completed the study; 78 in the PEG-CS group and 76 in the split 4-L PEG group. The two groups were comparable at baseline. The OBPS score in the PEG-CS group (3.09 ± 2.40) and in the PEG group (2.39 ± 2.55) were equivalent (difference +0.70; 95%CI: -0.09-1.48). This was confirmed by the rate of successful bowel cleansing in the PEG-CS group (89.7%) and in the PEG group (92.1%) (difference -2.4%; 95%CI: -11.40- 6.70). PEG-CS was superior in terms of mucosa visibility compared to PEG (85.7% vs 72.4%, P = 0.042). There were no significant differences in caecum intubation rate, time to reach the caecum and withdrawal time between the two groups. The adenoma detection rate was similar (PEG-CS 43.6% vs PEG 44.7%). No serious adverse events occurred. No difference was found in tolerability of the bowel preparations. Compliance was equal in both groups: more than 90% of subjects drunk the whole solution. Willingness to repeat the same bowel preparations was about 90% for both regimes. Same-day PEG-CS is feasible, effective

  13. Characteristics and cytotoxicity of folate-modified curcumin-loaded PLA-PEG micellar nano systems with various PLA:PEG ratios.

    PubMed

    Phan, Quoc Thong; Le, Mai Huong; Le, Thi Thu Huong; Tran, Thi Hong Ha; Xuan, Phuc Nguyen; Ha, Phuong Thu

    2016-06-30

    Targeting delivery system use natural drugs for tumor cells is an appealing platform help to reduce the side effects and enhance the therapeutic effects of the drug. In this study, we synthesized curcumin (Cur) loaded (D, L Poly lactic - Poly ethylenglycol) micelle (Cur/PLA-PEG) with the ratio of PLA/PEG of 3:1 2:1 1:1 1:2 and 1:3 (w/w) and another micelle modified by folate (Cur/PLA-PEG-Fol) for targeting cancer therapy. The PLA-PEG copolymer was synthesized by ring opening polymerization method. After loading onto the micelle, solubility of Cur increased from 0.38 to 0.73mgml(-1). The average size of prepared Cur/PLA-PEG micelles was from 60 to 69nm (corresponding to the ratio difference of PLA/PEG) and the drug encapsulating efficiency was from 48.8 to 91.3%. Compared with the Cur/PLA-PEG micelles, the size of Cur/PLA-PEG-Fol micelles were from 80 to 86nm and showed better in vitro cellular uptake and cytotoxicity towards HepG2 cells. The cytotoxicity of the NPs however depends much on the PEG component. The results demonstrated that Folate-modified micelles could serve as a potential nano carrier to improve solubility, anti-cancer activity of Cur and targeting ability of the system. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Evaluation of PEG and mPEG-co-(PGA-co-PDL) microparticles loaded with sodium diclofenac

    PubMed Central

    Tawfeek, Hesham M.

    2013-01-01

    The aim of this study was to synthesize and evaluate novel biodegradable polyesters namely; poly(ethylene glycol)-Poly(glycerol adipate-co-ω-pentadecalactone), PEG-PGA-co-PDL-PEG, and poly(ethylene glycol methyl ether)-Poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL-PEGme as an alternative sustained release carrier for lung delivery compared with non-PEG containing polymer PGA-co-PDL. The co-polymers were synthesized through lipase catalysis ring opening polymerization reaction and characterized using GPC, FT-IR, 1H-NMR and surface contact angle. Furthermore, microparticles containing a model hydrophilic drug, sodium diclofenac, were prepared via spray drying from a modified single emulsion and characterized for their encapsulation efficiency, geometrical particle size, zeta potential, tapped density, primary aerodynamic diameter, amorphous nature, morphology, in vitro release and the aerosolization performance. Microparticles fabricated from mPEG-co-polymer can be targeted to the lung periphery with an optimum in vitro deposition. Furthermore, a significantly higher in vitro release (p > 0.05, ANOVA/Dunnett’s) was observed with the PEG and mPEG-co-polymers compared to PGA-co-PDL. In addition, these co-polymers have a good safety profile upon testing on human bronchial epithelial, 16HBE14o- cell lines. PMID:24227959

  15. Injector having multiple fuel pegs

    DOEpatents

    Hadley, Mark Allan; Felling, David Kenton

    2013-04-30

    A fuel injector is provided, including a fuel injector body, a plurality of fuel vanes, and a plurality of fuel pegs. The injector body includes a manifold and an inlet. The manifold is configured for receiving fuel, and the inlet is configured for receiving air. The fuel vanes are located within the injector body and are positioned in a direction that is generally parallel with a longitudinal axis of the injector body to orient the air flowing from the inlet. The plurality of fuel pegs are fluidly connected to the manifold and are arranged within the plurality of fuel vanes. The plurality of fuel pegs are each spaced at a distance that is about equal between each of the plurality of fuel pegs.

  16. Development, optimization, and in vitro characterization of dasatinib-loaded PEG functionalized chitosan capped gold nanoparticles using Box-Behnken experimental design.

    PubMed

    Adena, Sandeep Kumar Reddy; Upadhyay, Mansi; Vardhan, Harsh; Mishra, Brahmeshwar

    2018-03-01

    The purpose of this research study was to develop, optimize, and characterize dasatinib loaded polyethylene glycol (PEG) stabilized chitosan capped gold nanoparticles (DSB-PEG-Ch-GNPs). Gold (III) chloride hydrate was reduced with chitosan and the resulting nanoparticles were coated with thiol-terminated PEG and loaded with dasatinib (DSB). Plackett-Burman design (PBD) followed by Box-Behnken experimental design (BBD) were employed to optimize the process parameters. Polynomial equations, contour, and 3D response surface plots were generated to relate the factors and responses. The optimized DSB-PEG-Ch-GNPs were characterized by FTIR, XRD, HR-SEM, EDX, TEM, SAED, AFM, DLS, and ZP. The results of the optimized DSB-PEG-Ch-GNPs showed particle size (PS) of 24.39 ± 1.82 nm, apparent drug content (ADC) of 72.06 ± 0.86%, and zeta potential (ZP) of -13.91 ± 1.21 mV. The responses observed and the predicted values of the optimized process were found to be close. The shape and surface morphology studies showed that the resulting DSB-PEG-Ch-GNPs were spherical and smooth. The stability and in vitro drug release studies confirmed that the optimized formulation was stable at different conditions of storage and exhibited a sustained drug release of the drug of up to 76% in 48 h and followed Korsmeyer-Peppas release kinetic model. A process for preparing gold nanoparticles using chitosan, anchoring PEG to the particle surface, and entrapping dasatinib in the chitosan-PEG surface corona was optimized.

  17. Same-day 2-L PEG-citrate-simethicone plus bisacodyl vs split 4-L PEG: Bowel cleansing for late-morning colonoscopy

    PubMed Central

    de Leone, Annalisa; Tamayo, Darina; Fiori, Giancarla; Ravizza, Davide; Trovato, Cristina; De Roberto, Giuseppe; Fazzini, Linda; Dal Fante, Marco; Crosta, Cristiano

    2013-01-01

    AIM: To evaluate the efficacy, tolerability, acceptability and feasibility of bisacodyl plus low volume polyethyleneglycol-citrate-simeticone (2-L PEG-CS) taken the same day as compared with conventional split-dose 4-L PEG for late morning colonoscopy. METHODS: Randomised, observer-blind, parallel group, comparative trial carried out in 2 centres. Out patients of both sexes, aged between 18 and 85 years, undergoing colonoscopy for diagnostic investigation, colorectal cancer screening or follow-up were eligible. The PEG-CS group received 3 bisacodyl tablets (4 tablets for patients with constipation) at bedtime and 2-L PEG-CS in the morning starting 5 h before colonoscopy. The control group received a conventional 4-L PEG formulation given as split regimen; the morning dose was taken with the same schedule of the low volume preparation. The Ottawa Bowel Preparation Scale (OBPS) score was used as the main outcome measure. RESULTS: A total of 164 subjects were enrolled and 154 completed the study; 78 in the PEG-CS group and 76 in the split 4-L PEG group. The two groups were comparable at baseline. The OBPS score in the PEG-CS group (3.09 ± 2.40) and in the PEG group (2.39 ± 2.55) were equivalent (difference +0.70; 95%CI: -0.09-1.48). This was confirmed by the rate of successful bowel cleansing in the PEG-CS group (89.7%) and in the PEG group (92.1%) (difference -2.4%; 95%CI: -11.40- 6.70). PEG-CS was superior in terms of mucosa visibility compared to PEG (85.7% vs 72.4%, P = 0.042). There were no significant differences in caecum intubation rate, time to reach the caecum and withdrawal time between the two groups. The adenoma detection rate was similar (PEG-CS 43.6% vs PEG 44.7%). No serious adverse events occurred. No difference was found in tolerability of the bowel preparations. Compliance was equal in both groups: more than 90% of subjects drunk the whole solution. Willingness to repeat the same bowel preparations was about 90% for both regimes. CONCLUSION: Same

  18. Lubiprostone plus PEG electrolytes versus placebo plus PEG electrolytes for outpatient colonoscopy preparation: a randomized, double-blind placebo-controlled trial.

    PubMed

    Sofi, Aijaz A; Nawras, Ali T; Pai, Chetan; Samuels, Qiana; Silverman, Ann L

    2015-01-01

    Bowel preparation using large volume of polyethylene glycol (PEG) solutions is often poorly tolerated. Therefore, there are ongoing efforts to develop an alternative bowel cleansing regimen that should be equally effective and better tolerated. The aim of this study was to assess the efficacy of lubiprostone (versus placebo) plus PEG as a bowel cleansing preparation for colonoscopy. Our study was a randomized, double-blind placebo-controlled design. Patients scheduled for screening colonoscopy were randomized 1:1 to lubiprostone (group 1) or placebo (group 2) plus 1 gallon of PEG. The primary endpoints were patient's tolerability and endoscopist's evaluation of the preparation quality. The secondary endpoint was to determine any reduction in the amount of PEG consumed in the lubiprostone group compared with the placebo group. One hundred twenty-three patients completed the study and were included in the analysis. There was no difference in overall cleanliness. The volume of PEG was similar in both the groups. The volume of PEG approached significance as a predictor of improved score for both the groups (P = 0.054). Lubiprostone plus PEG was similar to placebo plus PEG in colon cleansing and volume of PEG consumed. The volume of PEG consumed showed a trend toward improving the quality of the colon cleansing.

  19. Enteric-coated capsules filled with mono-disperse micro-particles containing PLGA-lipid-PEG nanoparticles for oral delivery of insulin.

    PubMed

    Yu, Fei; Li, Yang; Liu, Chang Sheng; Chen, Qin; Wang, Gui Huan; Guo, Wei; Wu, Xue E; Li, Dong Hui; Wu, Winston Duo; Chen, Xiao Dong

    2015-04-30

    The success of the oral delivery of insulin (INS) as a therapeutic protein drug would significantly improve the quality of life of diabetic patients who would otherwise receive multiple daily INS injections. The oral delivery of INS, however, is still limited in its delivery efficiency, which could be due to the chemical, enzymatic, and adsorption barriers. In this work, in an attempt to improve the delivery efficiency, the INS-loaded polymer-lipid hybrid nanoparticles (INS-PLGA-lipid-PEG NPs) were designed and constructed through a double-emulsion solvent evaporation technique, followed by formulation of the spherical micro-particles using a spray freeze dryer (SFD). This kind of dryers has a uniquely designed microfluidic aerosol nozzle (MFAN), ensuring the formation of uniform particles. The resulted particles of ∼212 μm could easily be reverted to discrete INS-PLGA-lipid-PEG NPs in an aqueous solution. The INS-PLGA-lipid-PEG NPs created in this work showed a highly negative surface charge, excellent entrapment efficiency (92.3%) and a sustained drug release (∼24 h). Confocal laser scanning microscopy and flow cytometer were used to show that the cellular uptake efficiency for the INS-PLGA-lipid-PEG NPs was more effective than the INS in Caco-2 cells. More importantly, the in vivo pharmacodynamics demonstrated that the orally delivered system induced a prolonged decrease in blood glucose levels among diabetic rats. The relative bioavailability of INS compared with subcutaneous injection in diabetic rats was found to be approximately 12%. These results suggested that the encapsulated INS-PLGA-lipid-PEG NPs are promising and should be investigated further in the near future as an effective INS oral delivery system. Copyright © 2015. Published by Elsevier B.V.

  20. A computational study suggests that replacing PEG with PMOZ may increase exposure of hydrophobic targeting moiety.

    PubMed

    Magarkar, Aniket; Róg, Tomasz; Bunker, Alex

    2017-05-30

    In a previous study we showed that the cause of failure of a new, proposed, targeting ligand, the AETP moiety, when attached to a PEGylated liposome, was occlusion by the poly(ethylene glycol) (PEG) layer due to its hydrophobic nature, given that PEG is not entirely hydrophilic. At the time we proposed that possible replacement with a more hydrophilic protective polymer could alleviate this problem. In this study we have used computational molecular dynamics modelling, using a model with all atom resolution, to suggest that a specific alternative protective polymer, poly(2-methyloxazoline) (PMOZ), would perform exactly this function. Our results show that when PEG is replaced by PMOZ the relative exposure to the solvent of AETP is increased to a level even greater than that we found in previous simulations for the RGD peptide, a targeting moiety that has previously been used successfully in PEGylated liposome based therapies. While the AETP moiety itself is no longer under consideration, the results of this computational study have broader significance: the use of PMOZ as an alternative polymer coating to PEG could be efficacious in the context of more hydrophobic targeting ligands. In addition to PMOZ we studied another polyoxazoline, poly(2-ethyloxazoline) (PEOZ), that has also been mooted as a possible alternate protective polymer. It was also found that the RDG peptide occlusion was significantly greater for the case of both oxazolines as opposed to PEG and that, unlike PEG, neither oxazoline entered the membrane. As far as we are aware this is the first time that polyoxazolines have been studied using molecular dynamics simulation with all atom resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshio; Nagasu, Ryoko; Shibuya, Kyosuke; Nakagawa, Tomohiko; Kubota, Yohsuke; Gonda, Kohsuke; Ohuchi, Noriaki

    2014-08-01

    This work proposes a method for fabricating silica-coated gold (Au) nanoparticles, surface modified with poly(ethylene glycol) (PEG) (Au/SiO2/PEG), with a particle size of 54.8 nm. X-ray imaging of a mouse is performed with the colloid solution. A colloid solution of 17.9 nm Au nanoparticles was prepared by reducing Au ions (III) with sodium citrate in water at 80 °C. The method used for silica-coating the Au nanoparticles was composed of surface-modification of the Au nanoparticles with (3-aminopropyl)-trimethoxysilane (APMS) and a sol-gel process. The sol-gel process was performed in the presence of the surface-modified Au nanoparticles using tetraethylorthosilicate, APMS, water, and sodium hydroxide, in which the formation of silica shells and the introduction of amino groups to the silica-coated particles took place simultaneously (Au/SiO2-NH2). Surface modification of the Au/SiO2-NH2 particles with PEG, or PEGylation of the particle surface, was performed by adding PEG with a functional group that reacted with an amino group in the Au/SiO2-NH2 particle colloid solution. A computed tomography (CT) value of the aqueous colloid solution of Au/SiO2/PEG particles with an actual Au concentration of 0.112 M was as high as 922 ± 12 Hounsfield units, which was higher than that of a commercial X-ray contrast agent with the same iodine concentration. Injecting the aqueous colloid solution of Au/SiO2/PEG particles into a mouse increased the light contrast of tissues. A CT value of the heart rose immediately after the injection, and this rise was confirmed for up to 6 h.

  2. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds.

    PubMed

    Jiang, Cho-Pei; Chen, Yo-Yu; Hsieh, Ming-Fa; Lee, Hung-Maan

    2013-04-01

    Bone tissue engineering is an emerging approach to provide viable substitutes for bone regeneration. Poly(ethylene glycol) (PEG) is a good candidate of bone scaffold because of several advantages such as hydrophilicity, biocompatibility, and intrinsic resistance to protein adsorption and cell adhesion. However, its low compressive strength limits application for bone regeneration. Poly(ε-caprolactone) (PCL), a hydrophobic nonionic polymer, is adopted to enhance the compressive strength of PEG alone.We aimed to investigate the in-vitro response of osteoblast-like cells cultured with porous scaffolds of triblock PEG-PCL-PEG copolymer fabricated by an air pressure-aided deposition system. A desktop air pressure-aided deposition system that involves melting and plotting PEG-PCL-PEG was used to fabricate three-dimensional scaffolds having rectangular pores. The experimental results showed that PEG-PCL-PEG with a molecular weight of 25,000 can be melted and stably deposited through a heating nozzle at an air pressure of 0.3 MPa and no crack occurs after it solidifies. The scaffolds with pre-determined pore size of 400× 420 μm and a porosity of 79 % were fabricated, and their average compressive strength was found to be 18.2 MPa. Osteoblast-like cells, MC3T3-E1, were seeded on fabricated scaffolds to investigate the in-vitro response of cells including toxicity and cellular locomotion. In a culture period of 28 days, the neutral-red stained osteoblasts were found to well distributed in the interior of the scaffold. Furthermore, the cellular attachment and movement in the first 10 h of cell culture were observed with time-lapse microscopy indicating that the porous PEG-PCL-PEG scaffolds fabricated by air pressure-aided deposition system is non-toxicity for osteoblast-like cells.

  3. The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus

    NASA Technical Reports Server (NTRS)

    Link, B. M.; Wagner, E. R.; Cosgrove, D. J.

    2001-01-01

    In young cucumber seedlings, the peg is a polar outgrowth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. The development of the peg is thought to be gravity-dependent and has become a model system for plant-gravity response. Peg development requires rapid cell expansion, a process thought to be catalyzed by alpha-expansins, and thus was a good system to identify expansins that were regulated by gravity. This study identified 7 new alpha-expansin cDNAs from cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) and examined their expression patterns. Two alpha-expansins (CsExp3 and CsExp4) were more highly expressed in the peg and the root. Earlier reports stated that pegs tend not to form in the absence of gravity, so the expression levels were compared in the pegs of seedlings grown in space (STS-95), on a clinostat, and on earth (1 g). Pegs were observed to form at high frequency on clinostat and space-grown seedlings, yet on clinostats there was more than a 4-fold reduction in the expression of CsExp3 in the pegs of seedlings grown on clinostats vs. those grown at 1 g, while the CsExp4 gene appeared to be turned off (below detection limits). There were no detectable differences in expansin gene expression levels for the pegs of seedlings grown in space or in the orbiter environmental simulator (OES) (1 g) at NASA. The microgravity environment did not affect the expression of CsExp3 or CsExp4, and the clinostat did not simulate the microgravity environment well.

  4. ‘Green’-synthesized near-infrared PbS quantum dots with silica-PEG dual-layer coating: ultrastable and biocompatible optical probes for in vivo animal imaging

    NASA Astrophysics Data System (ADS)

    Wang, D.; Qian, J.; Cai, F.; He, S.; Han, S.; Mu, Y.

    2012-06-01

    In this paper, PbS semiconductor quantum dots (QDs) with near-infrared (NIR) photoluminescence were synthesized in oleic acid and paraffin liquid mixture by using an easily handled and ‘green’ approach. Surface functionalization of the QDs was accomplished with a silica and polyethylene glycol (PEG) phospholipid dual-layer coating and the excellent chemical stability of the nanoparticles is demonstrated. We then successfully applied the ultrastable PbS QDs to in vivo sentinel lymph node (SLN) mapping of mice. Histological analyses were also carried out to ensure that the intravenously injected nanoparticles did not produce any toxicity to the organism of mice. These experimental results suggested that our ultrastable NIR PbS QDs can serve as biocompatible and efficient probes for in vivo optical bioimaging and has great potentials for disease diagnosis and clinical therapies in the future.

  5. Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor.

    PubMed

    Kim, Su-Jin; Lee, Dong-Sup; Kim, In-Gul; Sohn, Dong-Wan; Park, Jung-Yul; Choi, Bum-Kyoo; Kim, Sae-Woong

    2012-03-01

    As the applications for implantable medical devices have increased, the need for biocompatible packaging materials has become important. Recently, we reported an implantable sensor for real-time monitoring of the changes in bladder volume, which necessitated finding a safe coating material for use in bladder tissue. At present, materials like polyethylene glycol (PEG), polydimethylsiloxane (PDMS) and parylene-C are used in biomedical devices or as coating materials, owing to their excellent safety in various medical fields. However, few studies have assessed their safety in bladder tissue, therefore, we evaluated the biocompatibility of PEG, PDMS and parylene-C in the bladder. All three materials turned out to be safe in in vitro tests of live/dead staining and cell viability. In vivo tests with hematoxylin and eosin and immunofluorescence staining with MAC387 showed no persistent inflammation. Therefore, we consider that the three materials are biocompatible in bladder tissue. Despite this safety, however, PEG has biodegradable characteristics and thus is not suitable for use as packaging. We suggest that PDMS and parylene-C can be used as safe coating materials for the implantable bladder volume sensor reported previously. Copyright © 2012. Published by Elsevier B.V.

  6. Pharmacokinetic analysis of multi PEG-theophylline conjugates.

    PubMed

    Grassi, Mario; Bonora, Gian Maria; Drioli, Sara; Cateni, Francesca; Zacchigna, Marina

    2012-10-01

    In the attempt of prolonging the effect of drugs, a new branched, high-molecular weight multimeric poly(ethylene glycol) (MultiPEG), synthesized with a simple assembling procedure that devised the introduction of functional groups with divergent and selective reactivity, was employed as drug carrier. In particular, the attention was focused on the study of theophylline (THEO) and THEO-MultiPEG conjugates pharmacokinetic after oral administration in rabbit. Pharmacokinetic behavior was studied according to an ad hoc developed mathematical model accounting for THEO-MultiPEG in vivo absorption and decomposition into drug (THEO) and carrier (MultiPEG). The branched high-molecular weight MultiPEG proved to be a reliable drug delivery system able to prolong theophylline staying in the blood after oral administration of a THEO-MultiPEG solution. The analysis of experimental data by means of the developed mathematical model revealed that the prolongation of THEO effect was essentially due to the low THEO-MultiPEG permeability in comparison to that of pure THEO. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Sol-gel approach for fabrication of coated anodized titanium wire for solid-phase microextraction: highly efficient adsorbents for enrichment of trace polar analytes.

    PubMed

    Jia, Jing; Xu, Lili; Wang, Shuai; Wang, Licheng; Liu, Xia

    2014-05-01

    Nanotubular titania film was prepared in situ on titanium wire and was used as the fiber substrate for solid-phase microextraction (SPME) because of its high surface-to-volume ratio, easy preparation, and mechanical stability. Three different functional coatings, β-cyclodextrin (β-CD), β-cyclodextrin-co-poly(ethylenepropylene glycol) (β-CD/PEG), and polyethylene glycol (PEG)-based sorbents were chemically bonded to the nanostructured wire surface via sol-gel technology to further enhance the absorbing capability and extraction selectivity. Coupled to gas chromatography-flame ionic detection (GC-FID), the prepared SPME fibers were investigated using diverse compounds. The results indicated that the fibers showed good mechanical strength, excellent thermal stability, and wonderful capacity and selectivity to polar compounds, including polar aromatic compounds, alcohols, and ketones. Combining the superior hydrophilic property of a bonded functional molecule and the highly porous structure of a fiber coating, the prepared PEG-coated SPME fiber showed much higher adsorption affinity to ephedrine and methylephedrine than β-CD and β-CD/PEG fibers. The as-established PEG-coated SPME-GC analytical method provided excellent sensitivity (LODs, 0.004 and 0.001 ng mL(-1) for ephedrine and methylephedrine, respectively) and better linear range (0.01-2 000 μg L(-1)). In addition, it has surprising repeatability and reproducibility. Finally, the present approach was used to analyze ephedrine and methylephedrine from real urine samples, and reliable results were obtained.

  8. Chemical Interactions of Polyethylene Glycols (PEG) and Glycerol with Protein Functional Groups: Applications to PEG, Glycerol Effects on Protein Processes

    PubMed Central

    Knowles, DB; Shkel, Irina A; Phan, Noel M; Sternke, Matt; Lingeman, Emily; Cheng, Xian; Cheng, Lixue; O’Connor, Kevin; Record, M. Thomas

    2015-01-01

    Here we obtain the data needed to predict chemical interactions of polyethylene glycols (PEGs) and glycerol with proteins and related organic compounds, and thereby interpret or predict chemical effects of PEGs on protein processes. To accomplish this we determine interactions of glycerol and tetraEG with >30 model compounds displaying the major C, N, and O functional groups of proteins. Analysis of these data yields coefficients (α-values) quantifying interactions of glycerol, tetraEG and PEG end (-CH2OH) and interior (-CH2OCH2-) groups with these groups, relative to interactions with water. TetraEG (strongly) and glycerol (weakly) interact favorably with aromatic C, amide N, and cationic N, but unfavorably with amide O, carboxylate O and salt ions. Strongly unfavorable O and salt anion interactions help make both small and large PEGs effective protein precipitants. Interactions of tetraEG and PEG interior groups with aliphatic C are quite favorable, while interactions of glycerol and PEG end groups with aliphatic C are not. Hence tetraEG and PEG 300 favor unfolding of the DNA-binding domain of lac repressor (lacDBD) while glycerol, di- and mono-ethylene glycol are stabilizers. Favorable interactions with aromatic and aliphatic C explain why PEG400 greatly increases the solubility of aromatic hydrocarbons and steroids. PEG400-steroid interactions are unusually favorable, presumably because of simultaneous interactions of multiple PEG interior groups with the fused ring system of the steroid. Using α-values reported here, chemical contributions to PEG m-values can be predicted or interpreted in terms of changes in water-accessible surface area (ΔASA), and separated from excluded volume effects. PMID:25962980

  9. Fast and facile fabrication of antifouling and hemocompatible PVDF membrane tethered with amino-acid modified PEG film

    NASA Astrophysics Data System (ADS)

    Zhang, Shuyou; Cao, Jingjing; Ma, Na; You, Meng; Wang, Xushan; Meng, Jianqiang

    2018-01-01

    A fast and facile protocol is reported aiming at improving the antifouling property and hemocompatibility of poly(vinylidene fluoride) (PVDF) membranes by tethering PEG hydrogel and zwitterion immobilization. The coated PEG hydrogel was first prepared by interfacial polymerization and tethered on an alkali treated PVDF membrane (PVDFA) surface via a simultaneous thio-ene and thiol-epoxy reaction. Then, the thiol groups of cysteine reacted with the epoxy groups in PEG hydrogel to fabricate the PVDFA-g-Cys membrane. The membrane fabrication was complete within less than 20 min and was conducted in mild conditions. The successful preparation of PVDFA-g-Cys membrane was confirmed by ATR-FTIR and XPS. Raman spectroscopy showed that the hydrogels covalently bonded to the PVDF membrane surface. The membrane retained its mechanical strength after modification. The SEM measurements suggested that the membrane became denser after hydrogel coating, meanwhile, the EDX test verified that the functional species uniformly distributed in the membrane matrix. Water contact angle (WCA), protein adsorption and protein filtration tests showed significant improvements in hydrophilicity and antifouling properties for the modified membrane. The negativity of the membrane surface measured by the streaming potential method provides a basis for protein resistance and hemocompatibility. Moreover, the suppressed platelet adhesion and prolonged plasma coagulant time show that the PVDFA-g-Cys membrane has ultralow thrombotic potential and better hemocompatibility. The reported surface modification method combing thio-ene and thio-epoxy chemistry not only facilitates fabrication of hemocompatible PVDF membrane but also provide an universal chemical platform for multifunctionalization of porous membranes.

  10. In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles.

    PubMed

    Simpson, Carrie A; Salleng, Kenneth J; Cliffel, David E; Feldheim, Daniel L

    2013-02-01

    Gold nanoparticles are emerging as promising materials from which to construct nanoscale therapeutics and therapeutic delivery systems. However, animal studies have shown that gold nanoparticles modified with certain thiol monolayers such as tiopronin can cause renal complications and morbidity. Although these effects may be eliminated by coadsorbing small amounts of polyethylene glycol (PEG) onto the nanoparticle surface, PEG can also lower cellular internalization efficiency and binding interactions with protein disease targets, significantly reducing the potential for using gold nanoparticles as therapeutics. Using ICP-MS analysis of blood, urine, and several organs, we show in this article that glutathione-coated gold nanoparticles (1.2 nm ± 0.9 nm) cause no morbidity at any concentration up to and including 60 μM and target primary organs although providing gradual dissipation and clearance over time. This study suggests that glutathione may be an attractive alternative to PEG in the design of gold nanoparticle therapeutics. This study describes the utility and toxicity of glutathione coated gold nanoparticles in comparison to PEGylated counterparts that are commonly used to increase "Stealth" properties and lower cytotoxicity. Too much PEG on the NPs can lead to lower cellular internalization efficiency and less efficient binding interactions with protein disease targets, significantly reducing the potential for using gold nanoparticles as therapeutics. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Mobility-Enhancing Coatings for Vitreoretinal Surgical Devices: Hydrophilic and Enzymatic Coatings Investigated by Microrheology.

    PubMed

    Pokki, Juho; Parmar, Jemish; Ergeneman, Olgaç; Torun, Hamdi; Guerrero, Miguel; Pellicer, Eva; Sort, Jordi; Pané, Salvador; Nelson, Bradley J

    2015-10-07

    Ophthalmic wireless microrobots are proposed for minimally invasive vitreoretinal surgery. Devices in the vitreous experience nonlinear mobility as a result of the complex mechanical properties of the vitreous and its interaction with the devices. A microdevice that will minimize its interaction with the macromolecules of the vitreous (i.e., mainly hyaluronan (HA) and collagen) can be utilized for ophthalmic surgeries. Although a few studies on the interactions between the vitreous and microdevices exist, there is no literature on the influence of coatings on these interactions. This paper presents how coatings on devices affect mobility in the vitreous. Surgical catheters in the vasculature use hydrophilic polymer coatings that reduce biomolecular absorption and enhance mobility. In this work such polymers, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), and HA coatings were utilized, and their effects on mobility in the vitreous were characterized. Hydrophilic titanium dioxide (TiO2) coating was also developed and characterized. Collagenase and hyaluronidase enzymes were coated on probes' surfaces with a view to enhancing their mobility by enzymatic digestion of the collagen and HA of the vitreous, respectively. To model the human vitreous, ex vivo porcine vitreous and collagen were used. For studying the effects of hyaluronidase, the vitreous and HA were used. The hydrophilic and enzymatic coatings were characterized by oscillatory magnetic microrheology. The statistical significance of the mean relative displacements (i.e., mobility) of the coated probes with respect to control probes was assessed. All studied hydrophilic coatings improve mobility, except for HA which decreases mobility potentially due to bonding with vitreal macromolecules. TiO2 coating improves mobility in collagen by 28.3% and in the vitreous by 15.4%. PEG and PVP coatings improve mobility in collagen by 19.4 and by 39.6%, respectively, but their improvement in the vitreous is

  12. Efflorescence of ammonium sulfate and coated ammonium sulfate particles: evidence for surface nucleation.

    PubMed

    Ciobanu, V Gabriela; Marcolli, Claudia; Krieger, Ulrich K; Zuend, Andreas; Peter, Thomas

    2010-09-09

    Using optical microscopy, we investigated the efflorescence of ammonium sulfate (AS) in aqueous AS and in aqueous 1:1 and 8:1 (by dry weight) poly(ethylene glycol)-400 (PEG-400)/AS particles deposited on a hydrophobically coated slide. Aqueous PEG-400/AS particles exposed to decreasing relative humidity (RH) exhibit a liquid-liquid phase separation below approximately 90% RH with the PEG-400-rich phase surrounding the aqueous AS inner phase. Pure aqueous AS particles effloresced in the RH range from 36.3% to 43.7%, in agreement with literature data (31-48% RH). In contrast, aqueous 1:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 7.2 to 19.2 mum effloresced between 26.8% and 33.9% RH and aqueous 8:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 1.8 to 7.3 mum between 24.3% and 29.3% RH. Such low efflorescence relative humidity (ERH) values have never been reached before for AS particles of this size range. We show that these unprecedented low ERHs of AS in PEG-400/AS particles could not possibly be explained by the presence of low amounts of PEG-400 in the aqueous AS phase, by a potential inhibition of water evaporation via anomalously slow diffusion through the PEG coating, or by different time scales between various experimental techniques. High-speed photography of the efflorescence process allowed the development of the AS crystallization fronts within the particles to be monitored with millisecond time resolution. The nucleation sites were inferred from the initial crystal growth sites. Analysis of the probability distribution of initial sites of 31 and 19 efflorescence events for pure AS and 1:1 (by dry weight) PEG-400/AS particles, respectively, showed that the particle volume can be excluded as the preferred nucleation site in the case of pure AS particles. For aqueous 1:1 (by dry weight) PEG-400/AS particles preferential AS nucleation in the PEG phase and at the PEG/AS/substrate contact line can be

  13. Informed peg-in-hole insertion using optical sensors

    NASA Astrophysics Data System (ADS)

    Paulos, Eric; Canny, John F.

    1993-08-01

    Peg-in-hole insertion is not only a longstanding problem in robotics but the most common automated mechanical assembly task. In this paper we present a high precision, self-calibrating peg-in-hole insertion strategy using several very simple, inexpensive, and accurate optical sensors. The self-calibrating feature allows us to achieve successful dead-reckoning insertions with tolerances of 25 microns without any accurate initial position information for the robot, pegs, or holes. The program we implemented works for any cylindrical peg, and the sensing steps do not depend on the peg diameter, which the program does not know. The key to the strategy is the use of a fixed sensor to localize both a mobile sensor and the peg, while the mobile sensor localizes the hole. Our strategy is extremely fast, localizing pegs as they are in route to their insertion location without pausing. The result is that insertion times are dominated by the transport time between pick and place operations.

  14. Release behavior and toxicity profiles towards leukemia (WEHI-3B) cell lines of 6-mercaptopurine-PEG-coated magnetite nanoparticles delivery system.

    PubMed

    Dorniani, Dena; Kura, Aminu Umar; Hussein-Al-Ali, Samer Hasan; bin Hussein, Mohd Zobir; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2014-01-01

    The coating of an active drug, 6-mercaptopurine, into the iron oxide nanoparticles-polyethylene glycol (FNPs-PEG) in order to form a new nanocomposite, FPEGMP-2, was accomplished using coprecipitation technique. The resulting nanosized with a narrow size distribution magnetic polymeric particles show the superparamagnetic properties with 38.6 emu/g saturation magnetization at room temperature. Fourier transform infrared spectroscopy and the thermal analysis study supported the formation of the nanocomposite and the enhancement of thermal stability in the resulting nanocomposite comparing with its counterpart in free state. The loading of 6-mercaptopurine (MP) in the FPEGMP-2 nanocomposite was estimated to be about 5.6% and the kinetic experimental data properly correlated with the pseudo-second order model. Also, the release of MP from the FPEGMP-2 nanocomposite shows the sustained release manner which is remarkably lower in phosphate buffered solution at pH 7.4 than pH 4.8, due to different release mechanism. The maximum percentage release of MP from the nanocomposite reached about 60% and 97% within about 92 and 74 hours when exposed to pH 7.4 and 4.8, respectively.

  15. Release Behavior and Toxicity Profiles towards Leukemia (WEHI-3B) Cell Lines of 6-Mercaptopurine-PEG-Coated Magnetite Nanoparticles Delivery System

    PubMed Central

    Kura, Aminu Umar; Hussein-Al-Ali, Samer Hasan; Hussein, Mohd Zobir bin; Fakurazi, Sharida; Shaari, Abdul Halim; Ahmad, Zalinah

    2014-01-01

    The coating of an active drug, 6-mercaptopurine, into the iron oxide nanoparticles-polyethylene glycol (FNPs-PEG) in order to form a new nanocomposite, FPEGMP-2, was accomplished using coprecipitation technique. The resulting nanosized with a narrow size distribution magnetic polymeric particles show the superparamagnetic properties with 38.6 emu/g saturation magnetization at room temperature. Fourier transform infrared spectroscopy and the thermal analysis study supported the formation of the nanocomposite and the enhancement of thermal stability in the resulting nanocomposite comparing with its counterpart in free state. The loading of 6-mercaptopurine (MP) in the FPEGMP-2 nanocomposite was estimated to be about 5.6% and the kinetic experimental data properly correlated with the pseudo-second order model. Also, the release of MP from the FPEGMP-2 nanocomposite shows the sustained release manner which is remarkably lower in phosphate buffered solution at pH 7.4 than pH 4.8, due to different release mechanism. The maximum percentage release of MP from the nanocomposite reached about 60% and 97% within about 92 and 74 hours when exposed to pH 7.4 and 4.8, respectively. PMID:24895684

  16. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use

    PubMed Central

    Shin, Chan Young; Kim, Kyu-Bong

    2015-01-01

    Polyethylene glycols (PEGs) are products of condensed ethylene oxide and water that can have various derivatives and functions. Since many PEG types are hydrophilic, they are favorably used as penetration enhancers, especially in topical dermatological preparations. PEGs, together with their typically nonionic derivatives, are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. The compounds studied in this review include PEG/PPG-17/6 copolymer, PEG-20 glyceryl triisostearate, PEG-40 hydrogenated castor oil, and PEG-60 hydrogenated castor oil. Overall, much of the data available in this review are on PEGylated oils (PEG-40 and PEG-60 hydrogenated castor oils), which were recommended as safe for use in cosmetics up to 100% concentration. Currently, PEG-20 glyceryl triisostearate and PEGylated oils are considered safe for cosmetic use according to the results of relevant studies. Additionally, PEG/PPG-17/6 copolymer should be further studied to ensure its safety as a cosmetic ingredient. PMID:26191379

  17. High density load bearing insulation peg

    DOEpatents

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.

  18. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation

    NASA Astrophysics Data System (ADS)

    Ponnuswamy, Nandhini; Bastings, Maartje M. C.; Nathwani, Bhavik; Ryu, Ju Hee; Chou, Leo Y. T.; Vinther, Mathias; Li, Weiwei Aileen; Anastassacos, Frances M.; Mooney, David J.; Shih, William M.

    2017-05-01

    DNA nanostructures have evoked great interest as potential therapeutics and diagnostics due to ease and robustness of programming their shapes, site-specific functionalizations and responsive behaviours. However, their utility in biological fluids can be compromised through denaturation induced by physiological salt concentrations and degradation mediated by nucleases. Here we demonstrate that DNA nanostructures coated by oligolysines to 0.5:1 N:P (ratio of nitrogen in lysine to phosphorus in DNA), are stable in low salt and up to tenfold more resistant to DNase I digestion than when uncoated. Higher N:P ratios can lead to aggregation, but this can be circumvented by coating instead with an oligolysine-PEG copolymer, enabling up to a 1,000-fold protection against digestion by serum nucleases. Oligolysine-PEG-stabilized DNA nanostructures survive uptake into endosomal compartments and, in a mouse model, exhibit a modest increase in pharmacokinetic bioavailability. Thus, oligolysine-PEG is a one-step, structure-independent approach that provides low-cost and effective protection of DNA nanostructures for in vivo applications.

  19. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation

    PubMed Central

    Ponnuswamy, Nandhini; Bastings, Maartje M. C.; Nathwani, Bhavik; Ryu, Ju Hee; Chou, Leo Y. T.; Vinther, Mathias; Li, Weiwei Aileen; Anastassacos, Frances M.; Mooney, David J.; Shih, William M.

    2017-01-01

    DNA nanostructures have evoked great interest as potential therapeutics and diagnostics due to ease and robustness of programming their shapes, site-specific functionalizations and responsive behaviours. However, their utility in biological fluids can be compromised through denaturation induced by physiological salt concentrations and degradation mediated by nucleases. Here we demonstrate that DNA nanostructures coated by oligolysines to 0.5:1 N:P (ratio of nitrogen in lysine to phosphorus in DNA), are stable in low salt and up to tenfold more resistant to DNase I digestion than when uncoated. Higher N:P ratios can lead to aggregation, but this can be circumvented by coating instead with an oligolysine-PEG copolymer, enabling up to a 1,000-fold protection against digestion by serum nucleases. Oligolysine-PEG-stabilized DNA nanostructures survive uptake into endosomal compartments and, in a mouse model, exhibit a modest increase in pharmacokinetic bioavailability. Thus, oligolysine-PEG is a one-step, structure-independent approach that provides low-cost and effective protection of DNA nanostructures for in vivo applications. PMID:28561045

  20. High density load bearing insulation peg

    DOEpatents

    Nowobilski, J.J.; Owens, W.J.

    1985-01-29

    A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

  1. Graphene oxide/polyethyleneglycol composite coated stir bar for sorptive extraction of fluoroquinolones from chicken muscle and liver.

    PubMed

    Fan, Wenying; He, Man; Wu, Xiaoran; Chen, Beibei; Hu, Bin

    2015-10-30

    Graphene oxide (GO) is an ideal adsorbent for polar and less polar compounds due to its hexagonal carbon network structure with oxygen-containing groups, while its strong hydrophilicity and water solubility limited its application in sample pretreatment techniques. Herein, GO was composited with polyethyleneglycol (PEG) or polyaniline (PAN) through intermolecular interactions to improve its stability, and the GO/PEG and GO/PAN composite coated stir bars were prepared by sol-gel technique. Compared with GO/PAN composite and polydimethylsiloxane (PDMS) coated stir bar, the prepared GO/PEG composite coated stir bar exhibited higher extraction efficiency for five fluoroquinolones (FQs). Based on it, a method of GO/PEG composite coated stir bar sorptive extraction (SBSE) combined with high-performance liquid chromatography-fluorescence detector (HPLC-FLD) was proposed. The factors influencing SBSE, such as sample pH, salt effect, stirring rate, extraction time, desorption solvent and desorption time, were optimized, and the analytical performance of the developed SBSE-HPLC-FLD method was evaluated. The limits of detection (LODs) for five FQs were in the range of 0.0045-0.0079μgL(-1), and the enrichment factors (EFs) were in the range of 41.5-65.5-fold (theoretical enrichment factor was 100-fold). The reproducibility was also investigated at concentrations of 0.05μgL(-1) and the relative standard deviations (RSDs, n=6) were found to be in the range of 4.6-12.1%. The proposed method was successfully applied for the determination of FQs in chicken muscle and chicken liver samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG-PCL-PEG.

    PubMed

    Feng, Zujian; Zhao, Junqiang; Li, Yin; Xu, Shuxin; Zhou, Junhui; Zhang, Jianhua; Deng, Liandong; Dong, Anjie

    2016-10-20

    Thermo-sensitive injectable hydrogels based on poly(ε-caprolactone)/poly(ethylene glycol) (PCL/PEG) block copolymers have attracted considerable attention for sustained drug release and tissue engineering applications. Previously, we have reported a thermo-sensitive hydrogel of P(CL-co-TOSUO)-PEG-P(CL-co-TOSUO) (PECT) triblock copolymers modified by hydrophilic cyclic ether pendant groups 1,4,8-trioxa-[4.6]spiro-9-undecanone (TOSUO). Unfortunately, the low gel modulus of PECT (only 50-70 Pa) may limit its applications. Herein, another kind of thermogelling triblock copolymer of a pendant cyclic ether-modified caprolactonic poloxamer analog, PEG-P(CL-co-TOSUO)-PEG (PECTE), was successfully prepared by control of the hydrophilicity/hydrophobicity balance and chemical compositions of the copolymers. PECTE powder could directly disperse in water to form a stable nanoparticle (NP) aqueous dispersion and underwent sol-gel-sol transition behavior at a higher concentration with the temperature increasing from ambient or lower temperatures. Significantly, the microstructure parameters (e.g., different chemical compositions of the hydrophobic block and topology) played a critical role in the phase transition behavior. Furthermore, comparison studies on PECTE and PEG-PCL-PEG (PECE) showed that the introduction of pendant cyclic ether groups into PCL blocks could avoid unexpected ahead-of-time gelling of the PECE aqueous solution. In addition, the rheological analysis of PECTE and PECT indicated that the storage modulus of the PECTE hydrogel could be 100 times greater than that of the PECT hydrogel under the same mole ratios of TOSUO/CL and lower molecular weight. Consequently, PECTE thermal hydrogel systems are believed to be promising as in situ gel-forming biomaterials for drug delivery and tissue engineering.

  3. Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements.

    PubMed

    Zhang, Tingting; Stilwell, Jackie L; Gerion, Daniele; Ding, Lianghao; Elboudwarej, Omeed; Cooke, Patrick A; Gray, Joe W; Alivisatos, A Paul; Chen, Fanqing Frank

    2006-04-01

    Quantum dots (Qdots) are now used extensively for labeling in biomedical research, and this use is predicted to grow because of their many advantages over alternative labeling methods. Uncoated Qdots made of core/shell CdSe/ZnS are toxic to cells because of the release of Cd2+ ions into the cellular environment. This problem has been partially overcome by coating Qdots with polymers, poly(ethylene glycol) (PEG), or other inert molecules. The most promising coating to date, for reducing toxicity, appears to be PEG. When PEG-coated silanized Qdots (PEG-silane-Qdots) are used to treat cells, toxicity is not observed, even at dosages above 10-20 nM, a concentration inducing death when cells are treated with polymer or mercaptoacid coated Qdots. Because of the importance of Qdots in current and future biomedical and clinical applications, we believe it is essential to more completely understand and verify this negative global response from cells treated with PEG-silane-Qdots. Consequently, we examined the molecular and cellular response of cells treated with two different dosages of PEG-silane-Qdots. Human fibroblasts were exposed to 8 and 80 nM of these Qdots, and both phenotypic as well as whole genome expression measurements were made. PEG-silane-Qdots did not induce any statistically significant cell cycle changes and minimal apoptosis/necrosis in lung fibroblasts (IMR-90) as measured by high content image analysis, regardless of the treatment dosage. A slight increase in apoptosis/necrosis was observed in treated human skin fibroblasts (HSF-42) at both the low and the high dosages. We performed genome-wide expression array analysis of HSF-42 exposed to doses 8 and 80 nM to link the global cell response to a molecular and genetic phenotype. We used a gene array containing approximately 22,000 total probe sets, containing 18,400 probe sets from known genes. Only approximately 50 genes (approximately 0.2% of all the genes tested) exhibited a statistically significant

  4. Efficacy and tolerability of peg-only laxative on faecal impaction and chronic constipation in children. A controlled double blind randomized study vs a standard peg-electrolyte laxative

    PubMed Central

    2012-01-01

    Background PEG-based laxatives are considered today the gold standard for the treatment of constipation in children. PEG formulations differ in terms of composition of inactive ingredients which may have an impact on acceptance, compliance and adherence to treatment. We therefore compared the efficacy, tolerability, acceptance and compliance of a new PEG-only formulation compared to a reference PEG-electrolyte (PEG-EL) formulation in resolving faecal impaction and in the treatment of chronic constipation. Methods Children aged 2–16 years with functional chronic constipation for at least 2 months were randomized to receive PEG-only 0.7 g/kg/day in 2 divided doses or 6.9 g PEG-EL 1–4 sachets according to age for 4 weeks. Children with faecal impaction were randomized to receive PEG-only 1.5/g/kg in 2 divided doses until resolution or for 6 days or PEG-EL with an initial dose of 4 sachets and increasing 2 sachets a day until resolution or for 7 days. Results Ninety-six children were randomized into the study. Five patients withdrew consent before starting treatment. Three children discontinued treatment for refusal due to bad taste of the product (1 PEG-only, 2 PEG-EL); 1 (PEG-EL) for an adverse effect (abdominal pain). Intent-to-treat analysis was carried out in 49 children in the PEG-only group and 42 in the PEG-EL group. No significant differences were observed between the two treatment groups at baseline. Adequate relief of constipation in terms of normalized frequency and painless defecation of soft stools was achieved in all patients in both groups. The number of stools/week was 9.2 ± 3.2 (mean ± SD) in the PEG-only group and 7.8 ± 2.4 in the PEG-EL group (p = 0.025); the number of days with stool was 22.4 ± 5.1 in the PEG-only group and 19.6 ± 7.2 in the PEG-EL group (p = 0.034). In the PEG-only group faecaloma resolution was observed in 5 children on the second day and in 2 children on the third day, while in the PEG-EL group it was observed in 2

  5. Biotransformation of magnetic nanoparticles as a function of coating in a rat model

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Gutiérrez, L.; Cáceres-Vélez, P. R.; Santos, D.; Chaves, S. B.; Fascineli, M. L.; Garcia, M. P.; Azevedo, R. B.; Morales, M. P.

    2015-10-01

    Long-term in vivo studies in murine models have shown that DMSA-coated nanoparticles accumulate in spleen, liver and lung tissues during extended periods of time (at least up to 3 months) without any significant signs of toxicity detected. During that time, nanoparticles undergo a process of biotransformation either by reducing the size or the particle aggregation or both. Using a rat model, we have evaluated the transformations of magnetic nanoparticles injected at low doses. Particles with two different coatings, dimercaptosuccinic acid (NP-DMSA) and polyethylene glycol (NP-PEG-(NH2)2) have been administered to animals, to evaluate the role of coating in the degradation of the particles. We have found that low doses of magnetic nanoparticles are quickly metabolized by the animals. In fact, using a nanoparticle dose four times lower than in previous experiments, NP-DMSA were not observed 24 h after the administration either in the liver or in the lungs. Interestingly, an increased amount of ferritin, the iron storage protein, was observed in liver tissues from rats that were treated with the low dose of NP-DMSA in comparison with the control ones, suggesting a rapid metabolization of the particles into ferritin iron. On the other side we have found that, NP-PEG-(NH2)2 are still detectable in several organs 24 h after their administration at low doses. Probably, due to the longer circulation times of the NP-PEG-(NH2)2, there is a delay in the arrival of the particles to the tissue and this is the reason why we are able to see the particles 24 h post-administration. PEG coating could also be protecting the nanoparticles from rapid degradation of the reticuloendothelial system. Knowledge on the biodistribution, circulation time and degradation processes is required to gain a better understanding of the safety evaluation of this kind of nanomaterial for biomedical applications.

  6. Protein-resistant polymer coatings obtained by matrix assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Rusen, L.; Mustaciosu, C.; Mitu, B.; Filipescu, M.; Dinescu, M.; Dinca, V.

    2013-08-01

    Adsorption of proteins and polysaccharides is known to facilitate microbial attachment and subsequent formation of biofilm on surfaces that ultimately results in its biofouling. Therefore, protein repellent modified surfaces are necessary to block the irreversible attachment of microorganisms. Within this context, the feasibility of using the Poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether (PEG-block-PCL Me) copolymer as potential protein-resistant coating was explored in this work. The films were deposited using Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique that allows good control of composition, thickness and homogeneity. The chemical and morphological characteristics of the films were examined using Fourier Transform Infrared Spectroscopy (FTIR), contact angle measurements and Atomic Force Microscopy (AFM). The FTIR data demonstrates that the functional groups in the MAPLE-deposited films remain intact, especially for fluences below 0.5 J cm-2. Optical Microscopy and AFM images show that the homogeneity and the roughness of the coatings are related to both laser parameters (fluence, number of pulses) and target composition. Protein adsorption tests were performed on the PEG-block-PCL Me copolymer coated glass and on bare glass surface as a control. The results show that the presence of copolymer as coating significantly reduces the adsorption of proteins.

  7. Influence of surface coating on the intracellular behaviour of gold nanoparticles: a fluorescence correlation spectroscopy study.

    PubMed

    Silvestri, A; Di Silvio, D; Llarena, I; Murray, R A; Marelli, M; Lay, L; Polito, L; Moya, S E

    2017-10-05

    In the biomedical applications of nanoparticles (NPs), the proper choice of surface chemistry is a crucial aspect in their design. The nature of the coating can heavily impact the interaction of NPs with biomolecules, affect the state of aggregation, and ultimately determine their biological fate. As such, protein corona formation and the aggregation behaviour of gold NPs (Au NPs) are studied here. Au NPs are prepared with four distinct surface functionalisations, namely mercaptosuccinic acid (MSA), N-4-thiobutyroil glucosamine, HS-PEG 5000 and HS-alkyl-PEG 600 . Corona formation, aggregation, and the intracellular behaviour of the Au NPs are then investigated by means of Fluorescence Correlation Spectroscopy (FCS) in cell culture media and in live cells. To evaluate the state of aggregation and the formation of a protein corona, the Au NPs are incubated in cell media and the diffusion coefficient is determined via FCS. The in vitro behaviour is compared with the level of aggregation of the NPs in cells. Diffusion times of the NPs are estimated at different positions in the cell after a one hour incubation period. It is found that the majority of MSA and glucose-Au NPs are present inside the cell as slowly diffusing species with diffusion times (τ D ) greater than 6000 μs (hydrodynamic diameter >250 nm). PEGylated Au NPs adsorb a small amount of protein and manifest low agglomeration both in media and in living cells. In particular, the HS-alkyl-PEG 600 coating shows an excellent correlation between lower protein adsorption, 4-fold lower compared to the MSA coated NPs, and limited intracellular aggregation. In the case of single HS-alkyl-PEG 600 coated NPs, it is found that typical intracellular τ D values range from 500 to 1500 μs, indicating that these particles display reduced aggregation in the intracellular environment.

  8. CTAB-coated gold nanorods elicit allergic response through degranulation and cell death in human basophils

    NASA Astrophysics Data System (ADS)

    Cheung, Ka Lun; Chen, Huanjun; Chen, Qiulan; Wang, Jianfang; Ho, Ho Pui; Wong, Chun Kwok; Kong, Siu Kai

    2012-07-01

    The effect of CTAB (cetyltrimethylammonium bromide)- or PEG (polyethylene glycol)-coated gold-nanorods (Au-NRs) on the non-IgE mediated allergic response was studied. We found that the CTAB-Au-NRs released more allergic mediators such as histamine and β-hexosaminidase from human basophil KU812, a common model for studying allergy, after 20 min incubation. Also, the CTAB-Au-NRs induced more apoptosis than the PEG-Au-NRs in KU812 24 h after treatment. These short- and long-term effects were not solely due to the CTAB residues in the supernatant desorbed from the Au-NRs.The effect of CTAB (cetyltrimethylammonium bromide)- or PEG (polyethylene glycol)-coated gold-nanorods (Au-NRs) on the non-IgE mediated allergic response was studied. We found that the CTAB-Au-NRs released more allergic mediators such as histamine and β-hexosaminidase from human basophil KU812, a common model for studying allergy, after 20 min incubation. Also, the CTAB-Au-NRs induced more apoptosis than the PEG-Au-NRs in KU812 24 h after treatment. These short- and long-term effects were not solely due to the CTAB residues in the supernatant desorbed from the Au-NRs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30435j

  9. Comparison of diamond-like carbon-coated nitinol stents with or without polyethylene glycol grafting and uncoated nitinol stents in a canine iliac artery model

    PubMed Central

    Kim, J H; Shin, J H; Shin, D H; Moon, M-W; Park, K; Kim, T-H; Shin, K M; Won, Y H; Han, D K; Lee, K-R

    2011-01-01

    Objective Neointimal hyperplasia is a major complication of endovascular stent placement with consequent in-stent restenosis or occlusion. Improvements in the biocompatibility of stent designs could reduce stent-associated thrombosis and in-stent restenosis. We hypothesised that the use of a diamond-like carbon (DLC)-coated nitinol stent or a polyethylene glycol (PEG)-DLC-coated nitinol stent could reduce the formation of neointimal hyperplasia, thereby improving stent patency with improved biocompatibility. Methods A total of 24 stents were implanted, under general anaesthesia, into the iliac arteries of six dogs (four stents in each dog) using the carotid artery approach. The experimental study dogs were divided into three groups: the uncoated nitinol stent group (n = 8), the DLC-nitinol stent group (n = 8) and the PEG-DLC-nitinol stent group (n = 8). Results The mean percentage of neointimal hyperplasia was significantly less in the DLC-nitinol stent group (26.7±7.6%) than in the nitinol stent group (40.0±20.3%) (p = 0.021). However, the mean percentage of neointimal hyperplasia was significantly greater in the PEG-DLC-nitinol stent group (58.7±24.7%) than in the nitinol stent group (40.0±20.3%) (p = 0.01). Conclusion Our findings indicate that DLC-coated nitinol stents might induce less neointimal hyperplasia than conventional nitinol stents following implantation in a canine iliac artery model; however, the DLC-coated nitinol stent surface when reformed with PEG induces more neointimal hyperplasia than either a conventional or DLC-coated nitinol stent. PMID:21325363

  10. Safety assessment of nanoparamagnetic contrast agents with different coatings for molecular MRI

    NASA Astrophysics Data System (ADS)

    Azizian, Gholamreza; Riyahi-Alam, Nader; Haghgoo, Soheila; Saffari, Mojtaba; Zohdiaghdam, Reza; Gorji, Ensieh

    2013-04-01

    Despite the wide application of gadolinium as a contrast agent for magnetic resonance imaging (MRI), there is a serious lack of information on its toxicity. Gadolinium and gadolinium oxide (Gd-oxide) are used as contrast agents for magnetic resonance imaging (MRI). There are methods for reducing toxicity of these materials, such as core nanoparticles coating or conjugating. Therefore, for toxicity evaluation, we compared the viability of commercial contrast agents in MRI (Gd-DTPA) and three nanoparticles with the same core Gd2O3 and small particulate gadolinium oxide or SPGO (< 40 nm) but different coatings of diethyleneglycol (DEG) as Gd2O3-DEG and methoxy polyethylene glycol-silane (mPEG-silane: 550 and 2000 Dalton) as SPGO-mPEG-silane550 and SPGO-mPEG-silane2000, respectively, in the SK-MEL3 cell line, by light microscopy, MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, and the LDH assay detecting lactate dehydrogenase activity. The viability values were not statistically different between the three nanoparticles and Gd-DTPA. The MTT and LDH assay results showed that Gd2O3-DEG nanoparticles were more toxic than Gd-DTPA and other nanoparticles. Also, SPGO-mPEG-silane2000 was more biocompatible than other nanoparticles. The obtained results did not show any significant increase in cytotoxicity of the nanoparticles and Gd-DTPA, neither dose-dependent nor time-dependent. Therefore, DEG and PEG, due to their considerable properties and irregular sizes (different molecular weights), were selected as the useful surface covering materials of nanomagnetic particles that could reveal noticeable relaxivity and biocompatibility characteristics.

  11. Functional PEG-PAMAM-tetraphosphonate capped NaLnF₄ nanoparticles and their colloidal stability in phosphate buffer.

    PubMed

    Zhao, Guangyao; Tong, Lemuel; Cao, Pengpeng; Nitz, Mark; Winnik, Mitchell A

    2014-06-17

    Developing surface coatings for NaLnF4 nanoparticles (NPs) that provide long-term stability in solutions containing competitive ions such as phosphate remains challenging. An amine-functional polyamidoamine tetraphosphonate (NH2-PAMAM-4P) as a multidentate ligand for these NPs has been synthesized and characterized as a ligand for the surface of NaGdF4 and NaTbF4 nanoparticles. A two-step ligand exchange protocol was developed for introduction of the NH2-PAMAM-4P ligand on oleate-capped NaLnF4 NPs. The NPs were first treated with methoxy-poly(ethylene glycol)-monophosphoric acid (M(n) = 750) in tetrahydrofuran. The mPEG750-OPO3-capped NPs were stable colloidal solutions in water, where they could be ligand-exchanged with NH2-PAMAM-4P. The surface amine groups on the NPs were available for derivatization to attach methoxy-PEG (M(n) = 2000) and biotin-terminated PEG (M(n) = 2000) chains. The surface coverage of ligands on the NPs was examined by thermal gravimetric analysis, and by a HABA analysis for biotin-containing NPs. Colloidal stability of the NPs was examined by dynamic light scattering. NaGdF4 and NaTbF4 NPs capped with mPEG2000-PAMAM-4P showed colloidal stability in DI water and in phosphate buffer (10 mM, pH 7.4). A direct comparison with NaTbF4 NPs capped with a mPEG2000-lysine-based tetradentate ligand that we reported previously (Langmuir 2012, 28, 12861-12870) showed that both ligands provided long-term stability in phosphate buffer, but that the lysine-based ligand provided better stability in phosphate-buffered saline.

  12. Electrically conductive poly-ɛ-caprolactone/polyethylene glycol/multi-wall carbon nanotube nanocomposite scaffolds coated with fibrin glue for myocardial tissue engineering

    NASA Astrophysics Data System (ADS)

    Mehdikhani, Mehdi; Ghaziof, Sharareh

    2018-01-01

    In this research, poly-ɛ-caprolactone (PCL), polyethylene glycol (PEG), multi-wall carbon nanotubes (MWCNTs), and nanocomposite scaffolds containing 0.5 and 1% (w/w) MWCNTs coated with fibrin glue (FG) were prepared via solvent casting and freeze-drying technique for cardiac tissue engineering. Scanning electron microscopy, transmission electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction were used to characterize the samples. Furthermore, mechanical properties, electrical conductivity, degradation, contact angle, and cytotoxicity of the samples were evaluated. Results showed the uniform distribution of the MWCNTs with some aggregates in the prepared nanocomposite scaffolds. The scaffolds containing 1% (w/w) MWCNTs with and without FG coating illustrated optimum modulus of elasticity, high electrical conductivity, and wettability compared with PCL/PEG and PCL/PEG/0.5%(w/w) MWCNTs' scaffolds. FG coating enhanced electrical conductivity and cell response, and increased wettability of the constructs. The prepared scaffolds were degraded significantly after 60 days of immersion in PBS. Meanwhile, the nanocomposite containing 1% (w/w) MWCNTs with FG coating (S3) showed proper spreading and viability of the myoblasts seeded on it after 1, 4, and 7 days of culture. The scaffold containing 1% (w/w) MWCNTs with FG coating demonstrated optimal properties including acceptable mechanical properties, proper wettability, high electrical conductivity, satisfactory degradation, and excellent myoblasts response to it.

  13. Effect of Liposome Characteristics and Dose on the Pharmacokinetics of Liposomes Coated with Poly(amino acid)s

    PubMed Central

    Romberg, Birgit; Oussoren, Christien; Snel, Cor J.; Hennink, Wim E.

    2007-01-01

    Long-circulating liposomes, such as PEG-liposomes, are frequently studied for drug delivery and diagnostic purposes. In our group, poly(amino acid) (PAA)-based coatings for long-circulating liposomes have been developed. These coatings provide liposomes with similar circulation times as compared to PEG-liposomes, but have the advantage of being enzymatically degradable. For PEG-liposomes it has been reported that circulation times are relatively independent of their physicochemical characteristics. In this study, the influence of factors such as PAA grafting density, cholesterol inclusion, surface charge, particle size, and lipid dose on the circulation kinetics of PAA-liposomes was evaluated after intravenous administration in rats. Prolonged circulation kinetics of PAA-liposomes can be maintained upon variation of liposome characteristics and the lipid dose given. However, the use of relatively high amounts of strongly charge-inducing lipids and a too large mean size is to be avoided. In conclusion, PAA-liposomes represent a versatile drug carrier system for a wide variety of applications. PMID:17674159

  14. In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semete, B., E-mail: Bsemete@csir.co.z; Booysen, L.I.J.; Department of Pharmaceutics, North-West University, Potchefstroom Campus, Potchefstroom, 2520

    2010-12-01

    Nanoparticulate drug delivery systems offer great promise in addressing challenges of drug toxicity, poor bioavailability and non-specificity for a number of drugs. Much progress has been reported for nano drug delivery systems for intravenous administration, however very little is known about the effects of orally administered nanoparticles. Furthermore, the development of nanoparticulate systems necessitates a thorough understanding of the biological response post exposure. This study aimed to elucidate the in vivo uptake of chitosan and polyethylene glycol (PEG) coated Poly, DL, lactic-co-glycolic Acid (PLGA) nanoparticles and the immunological response within 24 h of oral and peritoneal administration. These PLGA nanoparticlesmore » were administered orally and peritoneally to female Balb/C mice, they were taken up by macrophages of the peritoneum. When these particles were fluorescently labelled, intracellular localisation was observed. The expression of pro-inflammatory cytokines IL-2, IL-6, IL-12p70 and TNF-{alpha} in plasma and peritoneal lavage was found to remain at low concentration in PLGA nanoparticles treated mice as well as ZnO nanoparticles during the 24 hour period. However, these were significantly increased in lipopolysaccharide (LPS) treated mice. Of these pro-inflammatory cytokines, IL-6 and IL-12p70 were produced at the highest concentration in the positive control group. The anti-inflammatory cytokines IL-10 and chemokines INF-{gamma}, IL-4, IL-5 remained at normal levels in PLGA treated mice. IL-10 and INF-{gamma} were significantly increased in LPS treated mice. MCP-1 was found to be significantly produced in all groups in the first hours, except the saline treated mice. These results provide the first report to detail the induction of cytokine production by PLGA nanoparticles engineered for oral applications.« less

  15. Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications

    NASA Astrophysics Data System (ADS)

    Chen, L.; Lai, C.; Marchewka, R.; Berry, R. M.; Tam, K. C.

    2016-07-01

    Structural colors and photoluminescence have been widely used for anti-counterfeiting and security applications. We report for the first time the use of CdS quantum dot (QD)-functionalized cellulose nanocrystals (CNCs) as building blocks to fabricate nanothin films via layer-by-layer (LBL) self-assembly for anti-counterfeiting applications. Both negatively- and positively-charged CNC/QD nanohybrids with a high colloidal stability and a narrow particle size distribution were prepared. The controllable LBL coating process was characterized by scanning electron microscopy and ellipsometry. The rigid structure of CNCs leads to nanoporous structured films on poly(ethylene terephthalate) (PET) substrates with high transmittance (above 70%) over the entire range of visible light and also resulted in increased hydrophilicity (contact angles of ~40 degrees). Nanothin films on PET substrates showed good flexibility and enhanced stability in both water and ethanol. The modified PET films with structural colors from thin-film interference and photoluminescence from QDs can be used in anti-counterfeiting applications.Structural colors and photoluminescence have been widely used for anti-counterfeiting and security applications. We report for the first time the use of CdS quantum dot (QD)-functionalized cellulose nanocrystals (CNCs) as building blocks to fabricate nanothin films via layer-by-layer (LBL) self-assembly for anti-counterfeiting applications. Both negatively- and positively-charged CNC/QD nanohybrids with a high colloidal stability and a narrow particle size distribution were prepared. The controllable LBL coating process was characterized by scanning electron microscopy and ellipsometry. The rigid structure of CNCs leads to nanoporous structured films on poly(ethylene terephthalate) (PET) substrates with high transmittance (above 70%) over the entire range of visible light and also resulted in increased hydrophilicity (contact angles of ~40 degrees). Nanothin films

  16. The detection of organic solvent vapor by using polymer coated chemocapacitor sensor

    NASA Astrophysics Data System (ADS)

    Rusdiarna Indrapraja, Apik; Rivai, Muhammad; Arifin, Achmad; Purwanto, Djoko

    2017-05-01

    A chemocapacitor consists of planar interdigital electrodes (IDE) made by two comb electrodes on a substrate. A dielectric film was applied on the electrodes in which the absorbed vapor will modify its permittivity. This study has fabricated chemocapacitor with the IDE distance of 0.5 mm, while the dielectric film was a sensitive layer consisting of a polymeric material. The deposition of the polymeric film was accomplished by drop casting. A sensor array consisting of four chemocapacitors coated with different polymers namely PEG-1540, PEG-20M, PEG-6000, and PVP was used to obtain the pattern of shift in the capacitance. The integrated circuit AD7746 was used as the capacitance to-digital converter (CDC). The organic solvents of ethanol, benzene, and aceton were used as the vapor samples in this experiment. The results showed that the change in the capacitance value increases proportionally to the concentration of vapour where sensors coated with PEG-1540 and PVP have higher sensitivity, i.e. 0.0028pF/part per thousand and 0.0027pF/part per thousand, respectively. Based on the capacitance to digital conversion capabilities, the system provides there solution of 0.4084ppm. The sensor array could produce a different pattern for each of the vapor sample. The Neural Network pattern recognition system could identify the type of vapor automatically with the root mean square error of 10-5

  17. PVA and PEG functionalised LSMO nanoparticles for magnetic fluid hyperthermia application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadhav, S.V.; Nikam, D.S.; Khot, V.M.

    2015-04-15

    La{sub 0.7}Sr{sub 0.3}MnO{sub 3} magnetic nanoparticles are synthesized by a solution combustion method and functionalised with polyvinyl alcohol and polyethylene glycol. The induction heating characteristics of coated magnetic nanoparticles (42 °C) were observed at a reasonably low concentration (5 mg/mL). Remarkably, coated magnetic nanoparticles exhibited a promisingly high specific absorption rate with varying magnetic field and constant frequency. The surface analysis is carried out by X-ray photoelectron spectroscopy. A reduction in the agglomeration of the particles was observed when the magnetic nanoparticles were functionalised with polyvinyl alcohol or polyethylene glycol and can be confirmed by transmission electron microscopy and dynamicmore » light scattering studies. Vibrating sample magnetometer measurements indicate superparamagnetic behaviour at room temperature before and after coating. Colloidal stability revealed a considerably higher zeta potential value for coated system. In vitro cytotoxicity test of the magnetic nanoparticles indicates that coated nanoparticles have no significant effect on cell viability within the tested concentrations (1–5 mg mL{sup -1}) as compared to uncoated La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. All these findings explore the potentiality of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} nanoparticles for magnetic fluid hyperthermia. - Highlights: • Surface functionalization of LSMO nanoparticles — first time with PVA • Surface functionalization of LSMO nanoparticles — first time with PEG • BSA protein — first time used as dispersion medium for stability of LSMO nanoparticles • The heating ability observed at low concentration • Improved efficiency of magnetic fluid hyperthermia treatment with surfactants.« less

  18. Imaging experimental intraabdominal abscesses with 99mTc-PEG liposomes and 99mTc-HYNIC IgG.

    PubMed Central

    Dams, E T; Reijnen, M M; Oyen, W J; Boerman, O C; Laverman, P; Storm, G; van der Meer, J W; Corstens, F H; van Goor, H

    1999-01-01

    OBJECTIVE: To evaluate the accuracy of technetium-99m-labeled polyethylene glycol-coated liposomes (99mTc-PEG liposomes) and technetium-99m-labeled nonspecific human immunoglobulin G (99mTc-HYNIC IgG) for the scintigraphic detection of experimental intraabdominal abscesses in comparison with that of a standard agent, gallium-67 citrate. BACKGROUND: Scintigraphic imaging techniques can be very useful for the rapid and accurate localization of intraabdominal abscesses. Two newly developed radiolabeled agents, 99mTc-PEG liposomes and 99mTc-HYNIC IgG, have shown to be excellent agents for imaging experimental focal infection, but have not yet been studied in the detection of abdominal abscesses. METHODS: Intraabdominal abscesses were induced in 42 rats using the cecal ligation and puncture technique. Seven days later, randomized groups of rats received 99mTc-PEG liposomes, 99mTc-HYNIC IgG, or 67Ga citrate intravenously. The rats were imaged up to 24 hours after the injection. The biodistribution of the radiolabel was determined by counting dissected tissues ex vivo. Macroscopic intraabdominal abnormalities and focal uptake on the images were independently scored on a semiquantitative scale. RESULTS: 99mTc-PEG liposomes provided the earliest scintigraphic visualization of the abscess (as soon as 2 hours after the injection vs. 4 hours for the other two agents). Liposomes, IgG, and gallium all showed similarly high absolute uptake in the abscess. Focal uptake of liposomes and gallium correlated best with the extent of the macroscopic abnormalities. CONCLUSIONS: 99mTc-PEG liposomes and 99mTc-HYNIC IgG performed at least as well as the standard agent, 67Ga citrate, in the detection of experimental intraabdominal abscesses, with obvious advantages such as lower radiation exposure and more favorable physical properties. Of the two technetium agents, the liposomes seemed to be superior, providing the earliest diagnostic image and the best correlation with the inflammatory

  19. A Dense Poly(ethylene glycol) Coating Improves Penetration of Large Polymeric Nanoparticles within Brain Tissue

    PubMed Central

    Nance, Elizabeth A.; Woodworth, Graeme F.; Sailor, Kurt A.; Shih, Ting-Yu; Xu, Qingguo; Swaminathan, Ganesh; Xiang, Dennis; Eberhart, Charles; Hanes, Justin

    2013-01-01

    Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114-nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm, and that more than one-quarter of all pores are ≥100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles, spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible. PMID:22932224

  20. Improved Anticancer Effect of Magnetite Nanocomposite Formulation of GALLIC Acid (Fe₃O₄-PEG-GA) Against Lung, Breast and Colon Cancer Cells.

    PubMed

    Rosman, Raihana; Saifullah, Bullo; Maniam, Sandra; Dorniani, Dena; Hussein, Mohd Zobir; Fakurazi, Sharida

    2018-02-02

    Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.

  1. Decorin causes autophagy in endothelial cells via Peg3

    PubMed Central

    Buraschi, Simone; Neill, Thomas; Goyal, Atul; Poluzzi, Chiara; Smythies, James; Owens, Rick T.; Schaefer, Liliana; Torres, Annabel; Iozzo, Renato V.

    2013-01-01

    Soluble decorin affects the biology of several receptor tyrosine kinases by triggering receptor internalization and degradation. We found that decorin induced paternally expressed gene 3 (Peg3), an imprinted tumor suppressor gene, and that Peg3 relocated into autophagosomes labeled by Beclin 1 and microtubule-associated light chain 3. Decorin evoked Peg3-dependent autophagy in both microvascular and macrovascular endothelial cells leading to suppression of angiogenesis. Peg3 coimmunoprecipitated with Beclin 1 and LC3 and was required for maintaining basal levels of Beclin 1. Decorin, via Peg3, induced transcription of Beclin 1 and microtubule-associated protein 1 light chain 3 alpha genes, thereby leading to a protracted autophagic program. Mechanistically, decorin interacted with VEGF receptor 2 (VEGFR2) in a region overlapping with its natural ligand VEGFA, and VEGFR2 was required for decorin-evoked Beclin 1 and microtubule-associated protein 1 light chain 3 alpha expression as well as for Peg3 induction in endothelial cells. Moreover, decorin induced VEGFR2-dependent mitochondrial fragmentation and loss of mitochondrial membrane potential. Thus, we have unveiled a mechanism for a secreted proteoglycan in inducing Peg3, a master regulator of macroautophagy in endothelial cells. PMID:23798385

  2. A noticeable phenomenon: thiol terminal PEG enhances the immunogenicity of PEGylated emulsions injected intravenously or subcutaneously into rats.

    PubMed

    Wang, Chunling; Cheng, Xiaobo; Sui, Yue; Luo, Xiang; Jiang, Gongping; Wang, Yu; Huang, Zhenjun; She, Zhennan; Deng, Yihui

    2013-11-01

    Repeated intravenous injection of long-circulating methoxy-polyethylene glycol (PEG)-liposomes alters the pharmacokinetics and biodistribution of the second administration, regarded as the "accelerated blood clearance (ABC) phenomenon." Nevertheless, the effect of terminal groups of distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG) on the induction of the ABC phenomenon had not been reported previously. In this study, rats were injected intravenously or subcutaneously with PEG coated emulsions (DE) which were prepared using PEG terminated with either the methoxyl (OCH3), hydroxyl (OH), amino (NH2), carboxyl (COOH), or thiol (SH) group. DE-OCH3 demonstrated the longest prolonged half-life in vivo after a single intravenous injection, followed by DE-SH and DE-COOH. In contrast, DE-OH was rapidly removed from the blood circulation, as was DE-NH2. Moreover, we observed a strong positive relationship between the circulation time of initially injected PEGylated emulsions and the extent to which the ABC phenomenon was induced, but a exception of DE-SH increasing the ABC effect. Furthermore, the present study suggested that thiols might stimulate the proliferation and differentiation of B cells to induce the fastest clearance of the second intravenous administration by inducing the synthesis of the cell membrane and cytosolic proteins or reacting with follicular dendritic cells. The results strongly suggested that thiol groups played a stimulatory role in the immune response and provided a considerable implication for multiple drug therapy of thiol groups. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Development of antimicrobial coating by later-by-layer dip coating of chlorhexidine-loaded micelles.

    PubMed

    Tambunlertchai, Supreeda; Srisang, Siriwan; Nasongkla, Norased

    2017-06-01

    Layer-by-layer (LbL) dip coating, accompanying with the use of micelle structure, allows hydrophobic molecules to be coated on medical devices' surface via hydrogen bonding interaction. In addition, micelle structure also allows control release of encapsulated compound. In this research, we investigated methods to coat and maximize the amount of chlorhexidine (CHX) on silicone surface through LbL dip coating method utilizing hydrogen bonding interaction between PEG on micelle corona and PAA. The number of coated cycles was varied in the process and 90 coating cycles provided the maximum amount of CHX loaded onto the surface. In addition, pre-coating the surface with PAA enhanced the amount of coated CHX by 20%. Scanning electron microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to validate and characterize the coating. For control release aspect, the coated film tended to disrupt at physiological condition; hence chemical crosslinking was performed to minimize the disruption and maximize the release time. Chemical crosslinking at pH 2.5 and 4.5 were performed in the process. It was found that chemical crosslinking could help extend the release period up to 18 days. This was significantly longer when compared to the non-crosslinking silicone tube that could only prolong the release for 5 days. In addition, chemical crosslinking at pH 2.5 gave higher and better initial burst release, release period and antimicrobial properties than that of pH 4.5 or the normal used pH for chemical crosslinking process.

  4. PEG-protein interaction induced contraction of NalD chains.

    PubMed

    Yu, Jiyan; Chen, Weizhong; Wu, Chi; Chen, Hao

    2014-01-01

    In a recent attempt to crystallize a regulator of MexAB-OprM multi-drug efflux systems in Pseudomonas aeruginosa (NalD), we found that adding polyethylene glycol (PEG3350, Mw = 3,350 g/mol) into the protein solution increases the speed of NalD migration in gel electrophoresis, signaling a smaller hydrodynamic size. At first we conjectured that NalD was degraded unexpectedly by PEG; however, we found that there was no change in its molar mass by MALDI-TOF characterization. Moreover, we found that adding polyacrylic acid (PAA) into the solution mixture returned the NalD migration to its normal speed. Furthermore, our analytic ultracentrifugation and dynamic laser light scattering results directly reveal that NalD interacts with PEG so that individual NalD chains gradually shrink as more PEG chains are added in the range of 10-50 mg/mL. Size exclusion chromatography also confirms that the NalD chain shrinks in the presence of PEG. A combination of these results indicates that PEG3350 chains can complex with NalD to induce an intra-protein chain contraction, presumably via the formation of hydrogen bond between -C-O-C- on PEG and -COOH on NalD, resulting in a smaller hydrodynamic size (faster migration) and a higher apparent molar mass. Note that because the presence of PEG affects osmotic pressure, it is considered to be a precipitator of protein crystallization. Our current finding reveals that the interaction of PEG/protein may play a significant role in protein crystallization. The complexation potentially makes the protein chain segments less flexible, and consequently makes crystallization easier. Hopefully, our current results will stimulate further studies in this direction.

  5. Polyethylene glycol coated CoFe{sub 2}O{sub 4} nanoparticles: A potential spinel ferrite for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbe, Ashok V.; Birajdar, Shankar D.; Jadhav, K. M., E-mail: drjadhavkm@gmail.com

    2015-06-24

    The structural and magnetic properties of the polyethylene glycol (PEG) coated cobalt spinel ferrite (CoFe{sub 2}O{sub 4}) nanoparticles have been reported in the present study. CoFe{sub 2}O{sub 4} nanoparticles were prepared by sol-gel auto-combustion method using citric acid + ethylene glycol as a fuel. The prepared powder of cobalt ferrite nanoparticles was annealed at 600°C for 6h and used for further study. The structural characterization of CoFe{sub 2}O{sub 4} nanoparticles were carried out by X-ray diffraction technique. The X-ray analysis confirmed the formation of single phase cubic spinel structure. The crystallite size, Lattice constant and X-ray density of the PEGmore » coated CoFe{sub 2}O{sub 4} nanoparticles were calculated by using XRD data. The presence of PEG on CoFe{sub 2}O{sub 4} nanoparticles and reduced agglomeration in the CoFe{sub 2}O{sub 4} nanoparticles were revealed by SEM studies. The magnetic properties were studied by pulse field hysteresis loop tracer technique at a room temperature. The magnetic parameters such as saturation magnetization, remanence magnetization, coercivity etc have been obtained. These magnetic parameters were get decreased by PEG coating.« less

  6. Biomolecular strategies for cell surface engineering

    NASA Astrophysics Data System (ADS)

    Wilson, John Tanner

    Islet transplantation has emerged as a promising cell-based therapy for the treatment of diabetes, but its clinical efficacy remains limited by deleterious host responses that underlie islet destruction. In this dissertation, we describe the assembly of ultrathin conformal coatings that confer molecular-level control over the composition and biophysicochemical properties of the islet surface with implications for improving islet engraftment. Significantly, this work provides novel biomolecular strategies for cell surface engineering with broad biomedical and biotechnological applications in cell-based therapeutics and beyond. Encapsulation of cells and tissue offers a rational approach for attenuating deleterious host responses towards transplanted cells, but a need exists to develop cell encapsulation strategies that minimize transplant volume. Towards this end, we endeavored to generate nanothin films of diverse architecture with tunable properties on the extracellular surface of individual pancreatic islets through a process of layer-by-layer (LbL) self assembly. We first describe the formation of poly(ethylene glycol) (PEG)-rich conformal coatings on islets via LbL self assembly of poly(L-lysine)-g-PEG(biotin) and streptavidin. Multilayer thin films conformed to the geometrically and chemically heterogeneous islet surface, and could be assembled without loss of islet viability or function. Significantly, coated islets performed comparably to untreated controls in a murine model of allogenic intraportal islet transplantation, and, to our knowledge, this is the first study to report in vivo survival and function of nanoencapsulated cells or cell aggregates. Based on these findings, we next postulated that structurally similar PLL-g-PEG copolymers comprised of shorter PEG grafts might be used to initiate and propagate the assembly of polyelectrolyte multilayer (PEM) films on pancreatic islets, while simultaneously preserving islet viability. Through control of PLL

  7. Evidence for surface nucleation: efflorescence of ammonium sulfate and coated ammonium sulfate aerosol particles

    NASA Astrophysics Data System (ADS)

    Ciobanu, V. Gabriela; Marcolli, Claudia; Krieger, Ulrich K.; Zuend, Andreas; Peter, Thomas

    2010-05-01

    Aerosol particles are ubiquitous in the atmosphere and can undergo different phase transitions, such as deliquescence and efflorescence. Using optical microscopy, we investigated the efflorescence of ammonium sulfate (AS) in supersaturated AS and 1:1 and 8:1 (by weight) poly(ethylene glycol)-400 (PEG-400)/AS particles, which were deposited as droplets with diameters in the 16 - 35 μm range on a hydrophobically coated slide. The PEG-400/AS particles that are exposed to decreasing relative humidity (RH) exhibit a liquid-liquid phase separation below 90 % RH with the PEG-400 phase surrounding the aqueous AS inner phase (Marcolli and Krieger, 2006; Ciobanu et al., 2009). Pure AS particles effloresced in the RH range from 36.3 to 43.7 % RH, in agreement with literature data (31 - 48 % RH). In contrast, 1:1 PEG-400/AS particles with diameters of the AS phase from 7.2 - 19.2 μm effloresced between 26.8 - 33.9 % RH and 8:1 PEG-400/AS particles with diameters of the AS phase from 1.8 - 7.3 μm between 24.3 - 29.3 % RH. Such low efflorescence relative humidity (ERH) values have never been reached before for AS particles of this size range. We show that neither a potential inhibition of water evaporation via anomalously slow diffusion through the PEG coating, nor the presence of low amounts of PEG-400 in the AS phase, nor different timescales between various experimental techniques could possibly explain the low AS ERH values of PEG-400/AS particles in our setup. High-speed photography of the efflorescence process allowed to monitor the proceeding of the AS crystallization fronts within the particles with millisecond time resolution. The nucleation locations were deduced based on the initial crystals growth locations. Statistical analysis of 31 and 19 efflorescence events for pure AS and 1:1 PEG-400/AS particles, respectively, identified the air/droplet/substrate contact line and the air/droplet interface as preferred nucleation locations in the case of pure AS particles

  8. PEG-based degradable networks for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Ostroha, Jamie L.

    The controlled delivery of therapeutic agents by biodegradable hydrogels has become a popular mechanism for drug administration in recent years. Hydrogels are three-dimensional networks of polymer chains held together by crosslinks. Although the changes which the hydrogel undergoes in solution are important to a wide range of experimental studies, they have not been investigated systematically and the factors which influence the degree of swelling have not been adequately described. Hydrogels made of poly(ethylene glycol) (PEG) will generally resist degradation in aqueous conditions, while a hydrogel made from a copolymer of poly(lactic acid) (PLA) and PEG will degrade via hydrolysis of the lactic acid group. This ability to degrade makes these hydrogels promising candidates for controlled release drug delivery systems. The goal of this research was to characterize the swelling and degradation of both degradable and non-degradable gels and to evaluate the release of different drugs from these hydrogels, where the key variable is the molecular weight of the PEG segment. These hydrogels were formed by the addition and subsequent chemically crosslinking of methacrylate end groups. During crosslinking, both PEG and LA-PEG-LA hydrogels of varied PEG molecular weight were loaded with Vitamin B12, Insulin, Haloperidol, and Dextran. It was shown that increasing PEG molecular weight produces a hydrogel with larger pores, thus increasing water uptake and degradation rate. While many environmental factors do not affect the swelling behavior, they do significantly impact the degradation of the hydrogel, and thus the release of incorporated therapeutic agents.

  9. PEG attachment to osteoblasts enhances mechanosensitivity.

    PubMed

    Hamamura, Kazunori; Weng, Yiming; Zhao, Jun; Yokota, Hiroki; Xie, Dong

    2008-06-01

    Fluid flow induces proliferation and differentiation of osteoblasts, and fibrous structure like a primary cilium on a cell surface contributes to flow sensing and flow-driven gene regulation. We address a question: Does attachment of synthetic polymers on a cell surface enhance mechanosensitivity of osteoblasts? Using MC3T3 osteoblast cells (C4 clone) and a PEG polymer, one of whose termini was covalently linked to a succinimidyl succinate group (functionalized PEG-PEGSS), we examined attachment of PEGSS to osteoblasts and evaluated its effects on the mRNA expression of stress-responsive genes. AFM images exhibited globular PEGSS conformation of approximately 100 nm in size, and SEM images confirmed the attachment of a cluster of pancake-like PEGSS molecules on the osteoblast surface. Compared to control cells incubated with unfunctionalized PEG, real-time PCR revealed that RNA upregulation of c-fos, egr1, ATF3 and Cox2 genes was magnified in the cells incubated with PEGSS. These results support a PEG-induced increase in mechanosensitivity of osteoblasts and indicate that the described approach would be useful to accelerate growth and development of osteoblasts for bone repair and tissue engineering.

  10. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    NASA Astrophysics Data System (ADS)

    Prabha, G.; Raj, V.

    2016-06-01

    In the present research work, the anticancer drug 'curcumin' is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe3O4) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183-390 nm with a zeta potential value of 26-41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix.

  11. Insights into effects and mechanism of pre-dispersant on surface morphologies of silica or alumina coated rutile TiO2 particles

    NASA Astrophysics Data System (ADS)

    Dong, Xiongbo; Sun, Zhiming; Liu, Yangyu; Jiang, Lei; Zheng, Shuilin

    2018-05-01

    Silica and alumina coated rutile TiO2 samples with various surface morphologies were fabricated using four different pre-dispersants. Using sodium silicate nonahydrate (SSNH) as pre-dispersant, the received sample displayed the best acidic stability. The addition of SSNH could induce layer-by-layer growth of hydrous silica via enhancing the dispersion of hydrous silica nucleus and accelerating the dehydration condensation rate of silica film. Alumina coated rutile TiO2 sample obtained by polyethyleneglycol 1000 (PEG) presented the highest dispersion stability. The existence of PEG can induce the formation of fibrous hydrous alumina film, which would increase the steric hindrance and the promotion of dispersion stability.

  12. PEG-Protein Interaction Induced Contraction of NalD Chains

    PubMed Central

    Yu, Jiyan; Chen, Weizhong; Wu, Chi; Chen, Hao

    2014-01-01

    In a recent attempt to crystallize a regulator of MexAB-OprM multi-drug efflux systems in Pseudomonas aeruginosa (NalD), we found that adding polyethylene glycol (PEG3350, Mw = 3,350 g/mol) into the protein solution increases the speed of NalD migration in gel electrophoresis, signaling a smaller hydrodynamic size. At first we conjectured that NalD was degraded unexpectedly by PEG; however, we found that there was no change in its molar mass by MALDI-TOF characterization. Moreover, we found that adding polyacrylic acid (PAA) into the solution mixture returned the NalD migration to its normal speed. Furthermore, our analytic ultracentrifugation and dynamic laser light scattering results directly reveal that NalD interacts with PEG so that individual NalD chains gradually shrink as more PEG chains are added in the range of 10–50 mg/mL. Size exclusion chromatography also confirms that the NalD chain shrinks in the presence of PEG. A combination of these results indicates that PEG3350 chains can complex with NalD to induce an intra-protein chain contraction, presumably via the formation of hydrogen bond between –C-O-C– on PEG and –COOH on NalD, resulting in a smaller hydrodynamic size (faster migration) and a higher apparent molar mass. Note that because the presence of PEG affects osmotic pressure, it is considered to be a precipitator of protein crystallization. Our current finding reveals that the interaction of PEG/protein may play a significant role in protein crystallization. The complexation potentially makes the protein chain segments less flexible, and consequently makes crystallization easier. Hopefully, our current results will stimulate further studies in this direction. PMID:24810951

  13. pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine) decorated liposomes for the delivery of gemcitabine to cancer cells.

    PubMed

    Bersani, Sara; Vila-Caballer, Marian; Brazzale, Chiara; Barattin, Michela; Salmaso, Stefano

    2014-11-01

    Novel, acid-sensitive liposomes that respond to physiopathological pH for tumour targeting applications were obtained by surface decoration with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] (mPEG-DSPE) and stearoyl-poly(ethylene glycol)-poly(methacryloyl sulfadimethoxine) copolymer (stearoyl-PEG-polySDM). The pH-sensitive stearoyl-PEG-polySDM copolymer contained an average of seven methacryloyl sulfadimethoxines per molecule and was found to possess an apparent pKa of 7.2. Preliminary cloud point studies showed that the hydrophilic/hydrophobic copolymer conversion occurred at pH 7.0. The copolymer was soluble above pH 7.0 and underwent aggregation at lower pH. Liposome formulations were prepared with 0.2:0.6:100, 0.5:1.5:100 and 1:3:100 mPEG-DSPE/stearoyl-PEG-polySDM/lipids molar ratios. All of the liposome formulations were stable at pH 7.4, even in the presence of foetal bovine serum, but they underwent rapid size increase at pH 6.5. TEM analysis showed that, at pH 6.5, the formulations coated with a stearoyl-PEG-polySDM/lipids molar ratio greater than 1:100 underwent aggregation. At pH 7.4, the liposomes showed negative zeta potential that significantly decreased after incubation at pH 6.5. Cell-culture studies indicated that the liposomes were not toxic up to 10mg/mL. Fluorescence spectroscopy, cytofluorimetry and confocal microscopy showed that at pH 6.5, the incubation of MCF-7 tumour cells with fluorescein-labelled 1:3:100 mPEG-DSPE/stearoyl-PEG-polySDM/lipids molar ratio liposomes resulted in time-dependent cell association, while at pH 7.4 the cell interaction was significantly lower. The same pH-responsive liposome formulation loaded with gemcitabine (98.2±4.7nmol gemcitabine/lipid μmol loading capacity) was stable at pH 7.4 for several hours, while at pH 6.5 it rapidly aggregated. At pH 6.5, these liposomes displayed higher cytotoxicity than at pH 7.4 or compared to non-responsive control liposomes at both incubation

  14. Protein resistance of dextran and dextran-PEG copolymer films

    PubMed Central

    Kozak, Darby; Chen, Annie; Bax, Jacinda; Trau, Matt

    2011-01-01

    The protein resistance of dextran and dextran-poly(ethylene glycol) (PEG) copolymer films was examined on an organosilica particle-based assay support. Comb-branched dextran-PEG copolymer films were synthesized in a two step process using the organosilica particle as a solid synthetic support. Particles modified with increasing amounts (0.1-1.2 mg m−2) of three molecular weights (10 000, 66 900, 400 000 g mol−1) of dextran were found to form relatively poor protein-resistant films compared to dextran-PEG copolymers and previously studied PEG films. The efficacy of the antifouling polymer films was found to be dependent on the grafted amount and its composition, with PEG layers being the most efficient, followed by dextran-PEG copolymers, and dextran alone being the least efficient. Immunoglobulin gamma (IgG) adsorption decreased from ~ 5 to 0.5 mg m−2 with increasing amounts of grafted dextran, but bovine serum albumin (BSA) adsorption increased above monolayer coverage (to ~2 mg m−2) indicating ternary adsorption of the smaller protein within the dextran layer. PMID:21614699

  15. Interaction of polymer-coated silicon nanocrystals with lipid bilayers and surfactant interfaces

    NASA Astrophysics Data System (ADS)

    Elbaradei, Ahmed; Brown, Samuel L.; Miller, Joseph B.; May, Sylvio; Hobbie, Erik K.

    2016-10-01

    We use photoluminescence (PL) microscopy to measure the interaction between polyethylene-glycol-coated (PEGylated) silicon nanocrystals (SiNCs) and two model surfaces: lipid bilayers and surfactant interfaces. By characterizing the photostability, transport, and size-dependent emission of the PEGylated nanocrystal clusters, we demonstrate the retention of red PL suitable for detection and tracking with minimal blueshift after a year in an aqueous environment. The predominant interaction measured for both interfaces is short-range repulsion, consistent with the ideal behavior anticipated for PEGylated phospholipid coatings. However, we also observe unanticipated attractive behavior in a small number of scenarios for both interfaces. We attribute this anomaly to defective PEG coverage on a subset of the clusters, suggesting a possible strategy for enhancing cellular uptake by controlling the homogeneity of the PEG corona. In both scenarios, the shape of the apparent potential is modeled through the free or bound diffusion of the clusters near the confining interface.

  16. Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy.

    PubMed

    Liu, Jian; Ohta, Shin-Ichi; Sonoda, Akinaga; Yamada, Masatoshi; Yamamoto, Masaya; Nitta, Norihisa; Murata, Kiyoshi; Tabata, Yasuhiko

    2007-01-22

    A novel photosensitizer with magnetic resonance imaging (MRI) activity was designed from fullerene (C(60)) for efficient photodynamic therapy (PDT) of tumor. After chemical conjugation of polyethylene glycol (PEG) to C(60) (C(60)-PEG), diethylenetriaminepentaacetic acid (DTPA) was subsequently introduced to the terminal group of PEG to prepare PEG-conjugated C(60) (C(60)-PEG-DTPA). The C(60)-PEG-DTPA was mixed with gadolinium acetate solution to obtain Gd(3+)-chelated C(60)-PEG (C(60)-PEG-Gd). Following intravenous injection of C(60)-PEG-Gd into tumor-bearing mice, the PDT anti-tumor effect and the MRI tumor imaging were evaluated. The similar O(2)(*-)generation was observed with or without Gd(3+) chelation upon light irradiation. Both of the C(60)-PEG-Gd and Magnevist(R) aqueous solutions exhibited a similar MRI activity. When intravenously injected into tumor-bearing mice, the C(60)-PEG-Gd maintained an enhanced MRI signal at the tumor tissue for a longer time period than Magnevist(R). Injection of C(60)-PEG-Gd plus light irradiation showed significant tumor PDT effect although the effect depended on the timing of light irradiation. The PDT efficacy of C(60)-PEG-Gd was observed at the time when the tumor accumulation was detected by the enhanced intensity of MRI signal. This therapeutic and diagnostic hybrid system is a promising tool to enhance the PDT efficacy for tumor.

  17. Immune cell impact of three differently coated lipid nanocapsules: pluronic, chitosan and polyethylene glycol.

    PubMed

    Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M; Marchal, Juan A; Madeddu, Roberto; Delogu, Lucia G

    2016-01-05

    Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.

  18. Immune cell impact of three differently coated lipid nanocapsules: pluronic, chitosan and polyethylene glycol

    PubMed Central

    Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M.; Marchal, Juan A.; Madeddu, Roberto; Delogu, Lucia G.

    2016-01-01

    Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications. PMID:26728491

  19. Elasticity of bilayers containing PEG lipids

    NASA Astrophysics Data System (ADS)

    Bivas, I.; Winterhalter, M.; Méléard, P.; Bothorel, P.

    1998-02-01

    The addition of lipids with a poly(ethylene glycol) head group (Stealth or grafted or PEG lipids) to a phosphatidylcholine bilayer changes the mechanical properties of the membrane. We calculate the dependences of the bending and stretching elasticities of the bilayer on the PEG lipid concentration and on the monomer number in its polymer chain. The role of the bending elasticity at blocked flip-flop of the pure bilayer is revealed.

  20. Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake.

    PubMed

    Lee, Jong Woo; Lee, Seonju; Jang, Sangmok; Han, Kyu Young; Kim, Younggyu; Hyun, Jaekyung; Kim, Seong Keun; Lee, Yan

    2013-05-01

    Fluorescent nanodiamonds (FNDs) are very promising fluorophores for use in biosystems due to their high biocompatibility and photostability. To overcome their tendency to aggregate in physiological solutions, which severely limits the biological applications of FNDs, we developed a new non-covalent coating method using a block copolymer, PEG-b-P(DMAEMA-co-BMA), or proteins such as BSA and HSA. By simple mixing of the block copolymer with FNDs, the cationic DMAEMA and hydrophobic BMA moieties can strongly interact with the anionic and hydrophobic moieties on the FND surface, while the PEG block can form a shell to prevent the direct contact between FNDs. The polymer-coated FNDs, along with BSA- and HSA-coated FNDs, showed non-aggregation characteristics and maintained their size at the physiological salt concentration. The well-dispersed, polymer- or protein-coated FNDs in physiological solutions showed enhanced intracellular uptake, which was confirmed by CLSM. In addition, the biocompatibility of the coated FNDs was expressly supported by a cytotoxicity assay. Our simple non-covalent coating with the block copolymer, which can be easily modified by various chemical methods, projects a very promising outlook for future biomedical applications, especially in comparison with covalent coating or protein-based coating.

  1. Uptake and intracellular processing of PEG-liposomes and PEG-immunoliposomes by kupffer cells in vitro 1 *.

    PubMed

    Koning, G A; Morselt, H W; Kamps, J A; Scherphof, G L

    2001-01-01

    Specific targeting of drugs to for instance tumors or sites of inflammation may be achieved by means of immunoliposomes carrying site-specific antibodies on their surface. The presence of these antibodies may adversely affect the circulation kinetics of such liposomes as a result of interactions with cells of the mononuclear phagocyte system (MPS), mainly represented by macrophages in liver and spleen. The additional insertion of poly(ethylene glycol) chains on the surface of the immunoliposomes may, however, attenuate this effect. We investigated the influence of surface-coupled rat or rabbit antibodies and of PEG on the uptake of liposomes by rat Kupffer cells in culture with (3)H-cholesteryloleyl ether as a metabolically stable marker. Additionally, we assessed the effects of surface-bound IgG and PEG on the intracellular processing of the liposomes by the Kupffer cells, based on a double-label assay using the (3)H-cholesteryl ether as an absolute measure for liposome uptake and the hydrolysis of the degradable marker cholesteryl-(14)C-oleate as relative measure of degradation. Attachment of both rat and rabbit antibodies to PEG-free liposomes caused a several-fold increase in apparent size. The uptake by Kupffer cells, however, was 3-4 fold higher for the rat than for the rabbit IgG liposomes. The presence of PEG drastically reduced the difference between these liposome types. Uptake of liposomes without antibodies amounted to only about 10% (non-PEGylated) or less (PEGylated) of that of the immunoliposomes. In contrast to the marked effects of IgG and PEG on Kupffer cell uptake, the rate of intracellular processing of the liposomes remained virtually unaffected by the presence of these substances on the liposomal surface. These observations are discussed with respect to the design of optimally formulated liposomal drug preparations, combining maximal therapeutic efficacy with minimal toxicity.

  2. Final report on the safety assessment of Triethylene Glycol and PEG-4.

    PubMed

    2006-01-01

    Triethylene Glycol and PEG-4 (polyethylene glycol) are polymers of ethylene oxide alcohol. Triethylene Glycol is a specific three-unit chain, whereas PEG-4 is a polymer with an average of four units, but may contain polymers ranging from two to eight ethylene oxide units. In the same manner, other PEG compounds, e.g., PEG-6, are mixtures and likely contain some Triethylene Glycol and PEG-4. Triethylene Glycol is a fragrance ingredient and viscosity decreasing agent in cosmetic formulations, with a maximum concentration of use of 0.08% in skin-cleansing products. Following oral doses, Triethylene Glycol and its metabolites are excreted primarily in urine, with small amounts released in feces and expired air. With oral LD50 values in rodents from 15 to 22 g/kg, this compound has little acute toxicity. Rats given short term oral doses of 3% in water showed no signs of toxicity, whereas all rats given 10% died by the 12th day of exposure. At levels up to 1 g/m3, rats exposed to aerosolized Triethylene Glycol for 6 h per day for 9 days showed no signs of toxicity. Rats fed a diet containing 4% Triethylene Glycol for 2 years showed no signs of toxicity. There were no treatment-related effects on rats exposed to supersaturated Triethylene Glycol vapor for 13 months nor in rats that consumed 0.533 cc Triethylene Glycol per day in drinking water for 13 months. Triethylene Glycol was not irritating to the skin of rabbits and produced only minimal injury to the eye. In reproductive and developmental toxicity studies in rats and mice, Triethylene Glycol did not produce biologically significant embryotoxicity or teratogenicity. However, some maternal toxicity was seen in dams given 10 ml/kg/day during gestation. Triethylene Glycol was not mutagenic or genotoxic in Ames-type assays, the Chinese hamster ovary mutation assay, and the sister chromatid exchange assays. PEG-4 is a humectant and solvent in cosmetic products, with a maximum concentration of use of 20% in the "other

  3. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 02: Dosimetric effects of gold nanoparticle surface coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, Brandon; Kirkby, Charles

    2016-08-15

    Introduction: Gold nanoparticles (GNPs) can enhance radiation therapy within a tumour, increasing local energy deposition under irradiation, but experimental evidence suggests the enhancement is not as large as predicted by dose enhancement alone. Many studies neglect to account for surface coatings that are frequently used to optimize GNP uptake and biological distribution. This study uses Monte Carlo methods to investigate the consequences on local dose enhancement due to including these surface coatings. Methods: Using the PENELOPE Monte Carlo code system, GNP irradiation was simulated both with and without surface coatings of polyethylene glycol (PEG) of various molecular weights. Dose wasmore » scored to the gold, coating, and surrounding water, and the dosimetric differences between these scenarios were examined. Results: The simulated PEG coating absorbs a large portion of the energy that would otherwise be deposited in the medium. The mean dose to water was reduced by up to 2.5, 3.5, and 4.5% for GNPs of diameters 50, 20, and 10 nm, respectively. This effect was more pronounced for smaller GNPs, thicker coatings, and low photon source energies where the enhancement due to GNPs is the greatest. The molecular weight of the coating material did not have a significant impact on the dose. Conclusions: The inclusion of a coating material in GNP enhanced radiation may reduce the dose enhancement due to the nanoparticles. Both the composition and size of the coating play a role in the level of this reduction and should be considered carefully.« less

  4. Amphiphilic Ferrocene-Containing PEG Block Copolymers as Micellar Nanocarriers and Smart Surfactants.

    PubMed

    Alkan, Arda; Wald, Sarah; Louage, Benoit; De Geest, Bruno G; Landfester, Katharina; Wurm, Frederik R

    2017-01-10

    An important and usually the only function of most surfactants in heterophase systems is stabilizing one phase in another, for example, droplets or particles in water. Surfactants with additional chemical or physical handles are promising in controlling the colloidal properties by external stimuli. The redox stimulus is an attractive feature; however, to date only a few ionic redox-responsive surfactants have been reported. Herein, the first nonionic and noncytotoxic ferrocene-containing block copolymers are prepared, carrying a hydrophilic poly(ethylene glycol) (PEG) chain and multiple ferrocenes in the hydrophobic segment. These amphiphiles were studied as redox-sensitive surfactants that destabilize particles as obtained in miniemulsion polymerization. Because of the nonionic nature of such PEG-based copolymers, they can stabilize nanoparticles even after the addition of ions, whereas particles stabilized with ionic surfactants would be destabilized by the addition of salt. The redox-active surfactants were prepared by the anionic ring-opening polymerization of ferrocenyl glycidyl ether, with PEG monomethyl ether as the macroinitiator. The resultant block copolymers with molecular weights (M n ) between 3600 and 8600 g mol -1 and narrow molecular weight distributions (M w /M n = 1.04-1.10) were investigated via 1 H nuclear magnetic resonance and diffusion ordered spectroscopy, size exclusion chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Furthermore, the block copolymers were used as building blocks for redox-responsive micelles and as redox-responsive surfactants in radical polymerization in miniemulsion to stabilize model polystyrene nanoparticles. Oxidation of iron to the ferrocenium species converted the amphiphilic block copolymers into double hydrophilic macromolecules, which led to the destabilization of the nanoparticles. This destabilization of nanoparticle dispersions may be useful for the formation of

  5. Towards potential nanoparticle contrast agents: Synthesis of new functionalized PEG bisphosphonates

    PubMed Central

    Kachbi-Khelfallah, Souad; Monteil, Maelle; Cortes-Clerget, Margery; Migianu-Griffoni, Evelyne; Pirat, Jean-Luc; Gager, Olivier; Deschamp, Julia

    2016-01-01

    Summary The use of nanotechnologies for biomedical applications took a real development during these last years. To allow an effective targeting for biomedical imaging applications, the adsorption of plasmatic proteins on the surface of nanoparticles must be prevented to reduce the hepatic capture and increase the plasmatic time life. In biologic media, metal oxide nanoparticles are not stable and must be coated by biocompatible organic ligands. The use of phosphonate ligands to modify the nanoparticle surface drew a lot of attention in the last years for the design of highly functional hybrid materials. Here, we report a methodology to synthesize bisphosphonates having functionalized PEG side chains with different lengths. The key step is a procedure developed in our laboratory to introduce the bisphosphonate from acyl chloride and tris(trimethylsilyl)phosphite in one step. PMID:27559386

  6. Towards potential nanoparticle contrast agents: Synthesis of new functionalized PEG bisphosphonates.

    PubMed

    Kachbi-Khelfallah, Souad; Monteil, Maelle; Cortes-Clerget, Margery; Migianu-Griffoni, Evelyne; Pirat, Jean-Luc; Gager, Olivier; Deschamp, Julia; Lecouvey, Marc

    2016-01-01

    The use of nanotechnologies for biomedical applications took a real development during these last years. To allow an effective targeting for biomedical imaging applications, the adsorption of plasmatic proteins on the surface of nanoparticles must be prevented to reduce the hepatic capture and increase the plasmatic time life. In biologic media, metal oxide nanoparticles are not stable and must be coated by biocompatible organic ligands. The use of phosphonate ligands to modify the nanoparticle surface drew a lot of attention in the last years for the design of highly functional hybrid materials. Here, we report a methodology to synthesize bisphosphonates having functionalized PEG side chains with different lengths. The key step is a procedure developed in our laboratory to introduce the bisphosphonate from acyl chloride and tris(trimethylsilyl)phosphite in one step.

  7. Distribution of PEG-coated hollow polyelectrolyte microcapsules after introduction into the circulatory system and muscles of zebrafish

    PubMed Central

    2018-01-01

    ABSTRACT The use of polyelectrolyte multilayer microcapsules as carriers for fluorescent molecular probes is a prospective technique for monitoring the physiological characteristics of animal vasculature and interstitial environment in vivo. Polyelectrolyte microcapsules have many features that favor their use as implantable carriers of optical sensors, but little information is available on their interactions with complex living tissues, distribution or residence time following different routes of administration in the body of vertebrates. Using the common fish model, the zebrafish Danio rerio, we studied in vivo the distribution of non-biodegradable microcapsules covered with polyethylene glycol (PEG) over time in the adults and evaluated potential side effects of their delivery into the fish bloodstream and muscles. Fluorescent microcapsules administered into the bloodstream and interstitially (in concentrations that were sufficient for visualization and spectral signal recording) both showed negligible acute toxicity to the fishes during three weeks of observation. The distribution pattern of microcapsules delivered into the bloodstream was stable for at least one week, with microcapsules prevalent in capillaries-rich organs. However, after intramuscular injection, the phagocytosis of the microcapsules by immune cells was manifested, indicating considerable immunogenicity of the microcapsules despite PEG coverage. The long-term negative effects of chronic inflammation were also investigated in fish muscles by histological analysis. PMID:29305467

  8. Constructing of DNA vectors with controlled nanosize and single dispersion by block copolymer coating gold nanoparticles as template assembly

    NASA Astrophysics Data System (ADS)

    Li, Junbo; Wu, Wenlan; Gao, Jiayu; Liang, Ju; Zhou, Huiyun; Liang, Lijuan

    2017-03-01

    Synthesized vectors with nanoscale size and stable colloid dispersion are highly desirable for improving gene delivery efficiency. Here, a core-shell template particle was constructed with polyethylene glycol- b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG- b-PAMPImB) coating gold nanoparticles (PEG- b-PAMPImB-@-Au NPs) for loading DNA and delivering in vitro. Data from transmission electron microscopy (TEM) and dynamic light scattering (DLS) suggest that these nanoplexes, by forming an electrostatic complex with DNA at the inner PAMPImB shell, offer steric protection for the outer PEG corona leading to single dispersion and small size. Notably, higher colloid stability and lower cytotoxicity were achieved with these nanoplexes when compared with PAMPImB monolayer-coated gold nanoparticles (Au NPs). Confocal laser scanning microscopy and intracellular trafficking TEM further indicate that the nanoplexes can translocate across the cell membrane and partly enter the nucleus for high efficient expression. Thus, template assembly represents a promising approach to control the size and colloid stability of gene vectors and ensure safety and efficiency of DNA delivery.

  9. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells

    NASA Astrophysics Data System (ADS)

    Pozzi, Daniela; Colapicchioni, Valentina; Caracciolo, Giulio; Piovesana, Susy; Capriotti, Anna Laura; Palchetti, Sara; de Grossi, Stefania; Riccioli, Anna; Amenitsch, Heinz; Laganà, Aldo

    2014-02-01

    When nanoparticles (NPs) enter a physiological environment, medium components compete for binding to the NP surface leading to formation of a rich protein shell known as the ``protein corona''. Unfortunately, opsonins are also adsorbed. These proteins are immediately recognized by the phagocyte system with rapid clearance of the NPs from the bloodstream. Polyethyleneglycol (PEG) coating of NPs (PEGylation) is the most efficient anti-opsonization strategy. Linear chains of PEG, grafted onto the NP surface, are able to create steric hindrance, resulting in a significant inhibition of protein adsorption and less recognition by macrophages. However, excessive PEGylation can lead to a strong inhibition of cellular uptake and less efficient binding with protein targets, reducing the potential of the delivery system. To reach a compromise in this regard we employed a multi-component (MC) lipid system with uncommon properties of cell uptake and endosomal escape and increasing length of PEG chains. Nano liquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS) analysis allowed us to accurately determine the corona composition showing that apolipoproteins are the most abundant class in the corona and that increasing the PEG length reduced the protein adsorption and the liposomal surface affinity for apolipoproteins. Due to the abundance of apolipoproteins, we exploited the ``protein corona effect'' to deliver cationic liposome-human plasma complexes to human prostate cancer PC3 cells that express a high level of scavenger receptor class B type 1 in order to evaluate the cellular uptake efficiency of the systems used. Combining laser scanning confocal microscopy with flow cytometry analysis in PC3 cells we demonstrated that MC-PEG2k is the best compromise between an anti-opsonization strategy and active targeting and could be a promising candidate to treat prostate cancer in vivo.When nanoparticles (NPs) enter a physiological environment, medium components

  10. PEG tubes: dealing with complications.

    PubMed

    Malhi, Hardip; Thompson, Rosie

    A percutaneous endoscopic gastronomy tube can be used to deliver nutrition, hydration and medicines directly into the patient's stomach. Patients will require a tube if they are unable to swallow safely, putting them at risk of aspiration of food, drink and medicines into their lungs. It is vital that nurses are aware of the complications that may arise when caring for a patient with a PEG tube. It is equally important that nurses know how to deal with these complications or from where tc seek advice. This article provides a quick troubleshooting guide to help nurses deal with complications that can arise with PEG feeding.

  11. Improvement of pharmacokinetic and antitumor activity of layered double hydroxide nanoparticles by coating with PEGylated phospholipid membrane

    PubMed Central

    Yan, Mina; Zhang, Zhaoguo; Cui, Shengmiao; Lei, Ming; Zeng, Ke; Liao, Yunhui; Chu, Weijing; Deng, Yihui; Zhao, Chunshun

    2014-01-01

    Layered double hydroxide (LDH) has attracted considerable attention as a drug carrier. However, because of its poor in vivo behavior, polyethylene glycolylated (PEGylated) phospholipid must be used as a coformer to produce self-assembled core–shell nanoparticles. In the present study, we prepared a PEGylated phospholipid-coated LDH (PLDH) (PEG-PLDH) delivery system. The PEG-PLDH nanoparticles had an average size of 133.2 nm. Their core–shell structure was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. In vitro liposome-cell-association and cytotoxicity experiments demonstrated its ability to be internalized by cells. In vivo studies showed that PEGylated phospholipid membranes greatly reduced the blood clearance rate of LDH nanoparticles. PEG-PLDH nanoparticles demonstrated a good control of tumor growth and increased the survival rate of mice. These results suggest that PEG-PLDH nanoparticles can be a useful drug delivery system for cancer therapy. PMID:25364245

  12. Synthesis, characterization, and biocompatibility of alternating block polyurethanes based on PLA and PEG.

    PubMed

    Mei, Tingzhen; Zhu, Yonghe; Ma, Tongcui; He, Tao; Li, Linjing; Wei, Chiju; Xu, Kaitian

    2014-09-01

    A series of alternating block polyurethanes (abbreviated as PULA-alt-PEG) and random block polyurethanes (abbreviated as PULA-ran-PEG) based on poly(L-lactic acid) (PLA) and poly(ethylene glycol) (PEG) were synthesized. The differences of PULA-alt/ran-PEG chemical structure, molecular weight, distribution, thermal properties, mechanical properties and static contact angle were systematically investigated. The PULA-alt/ran-PEG polyurethanes exhibited low T(g) (-47.3 ∼ -34.4°C), wide mechanical properties (stress σ(t): 4.6-32.6 MPa, modulus E: 11.4-323.9 MPa and strain ε: 468-1530%) and low water contact angle (35.4-51.4°). Scanning electron microscope (SEM) observation showed that PULA-alt-PEG film displays rougher and more patterned surface morphology than PULA-ran-PEG does, due to more regular structures of PULA-alt-PEG. Hydrolytic degradation shows that degradation rate of random block polyurethane series PULA-ran-PEG is higher than the alternating counterpart PULA-alt-PEG. PLA segment degradation is faster than urethane linkage and PEG segment almost does not degrade in the buffer solution. Platelet adhesion study showed that all the polyurethanes possess excellent hemocompatibility. The cell culture assay revealed that PULA-alt/ran-PEG polyurethanes were cell inert and unfavorable for the attachment of rat glial cell due to the hydrophilic characters of the materials. © 2013 Wiley Periodicals, Inc.

  13. Electrospinning synthesis and characterization of PLA-PEG-MNPs composite fibrous membranes

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Klimke, S.; Preiss, A.; Unruh, D.; Wengerowsky, D.; Lehmann, R.; Sindelar, R.; Klingelhöfer, G.; Boča, R.; Renz, F.

    2017-11-01

    An electrospinning technique was used to fabricate PLA, PLA-PEG and PLA-PEG-MNPs composite fibrous membranes. The morphology of electrospun composite membranes were characterized by scanning electron microscope. To test the potential availability of MNPs in PLA-PEG composite membranes, TG, Raman, Mössbauer, VSM and ICP-OES analysis were used. The PLA-PEG composite fibrous membranes showed the presence of MNPs, hence offers the possibility for magnetically triggered on-demand drug delivery.

  14. Catching the PEG-induced attractive interaction between proteins.

    PubMed

    Vivarès, D; Belloni, L; Tardieu, A; Bonneté, F

    2002-09-01

    We present the experimental and theoretical background of a method to characterize the protein-protein attractive potential induced by one of the mostly used crystallizing agents in the protein-field, the poly(ethylene glycol) (PEG). This attractive interaction is commonly called, in colloid physics, the depletion interaction. Small-Angle X-ray Scattering experiments and numerical treatments based on liquid-state theories were performed on urate oxidase-PEG mixtures with two different PEGs (3350 Da and 8000 Da). A "two-component" approach was used in which the polymer-polymer, the protein-polymer and the protein-protein pair potentials were determined. The resulting effective protein-protein potential was characterized. This potential is the sum of the free-polymer protein-protein potential and of the PEG-induced depletion potential. The depletion potential was found to be hardly dependent upon the protein concentration but strongly function of the polymer size and concentration. Our results were also compared with two models, which give an analytic expression for the depletion potential.

  15. Electro-spun PLA-PEG-yarns for tissue engineering applications.

    PubMed

    Kruse, Magnus; Greuel, Marc; Kreimendahl, Franziska; Schneiders, Thomas; Bauer, Benedict; Gries, Thomas; Jockenhoevel, Stefan

    2018-06-27

    Electro-spinning is widely used in tissue-engineered applications mostly in form of non-woven structures. The development of e-spun yarn opens the door for textile fabrics which combine the micro to nanoscale dimension of electro-spun filaments with three-dimensional (3D) drapable textile fabrics. Therefore, the aim of the study was the implementation of a process for electro-spun yarns. Polylactic acid (PLA) and polyethylene glycol (PEG) were spun from chloroform solutions with varying PLA/PEG ratios (100:0, 90:10, 75:25 and 50:50). The yarn samples produced were analyzed regarding their morphology, tensile strength, water uptake and cytocompatibility. It was found that the yarn diameter decreased when the funnel collector rotation was increasd, however, the fiber diameter was not influenced. The tensile strength was also found to be dependent on the PEG content. While samples composed of 100% PLA showed a tensile strength of 2.5±0.7 cN/tex, the tensile strength increased with a decreasing PLA content (PLA 75%/PEG 25%) to 6.2±0.5 cN/tex. The variation of the PEG content also influenced the viscosity of the spinning solutions. The investigation of the cytocompatibility with endothelial cells was conducted for PLA/PEG 90:10 and 75:25 and indicated that the samples are cytocompatible.

  16. High-Resolution Imaging of Polyethylene Glycol Coated Dendrimers via Combined Atomic Force and Scanning Tunneling Microscopy

    PubMed Central

    Zhong, Qian; Yin, Nai-Ning; Karsai, Arpad; da Rocha, Sandro R. P.; Liu, Gang-yu

    2015-01-01

    Dendrimers have shown great promise as drug delivery vehicles in recent years because they can be synthesized with designed size and functionalities for optimal transportation, targeting, and biocompatibility. One of the most well-known termini used for biocompatibility is polyethylene glycol (PEG), whose performance is affected by its actual conformation. However, the conformation of individual PEG bound to soft materials such as dendrimers has not been directly observed. Using atomic force microscopy (AFM) and scanning tunneling microscopy (STM), this work characterizes the structure adopted by PEGylated dendrimers with the highest resolution reported to date. AFM imaging enables visualization of the individual dendrimers, as well as the differentiation and characterization of the dendrimer core and PEG shell. STM provides direct imaging of the PEG extensions with high-resolution. Collectively, this investigation provides important insight into the structure of coated dendrimers, which is crucial for the design and development of better drug delivery vehicles. PMID:25685559

  17. Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. © The Author(s) 2016.

  18. [Efficacy, influencing factors and safety of PEG-INF alpha-2a (PEG-INF-2a) in the treatment of chronic hepatitis C: analysis of 89 patients].

    PubMed

    Ma, Li-na; Chen, Xin-yue; Chen, Jie; Shen, Cheng-li; Wang, Jun-tao

    2006-06-01

    To investigate the efficacy, influencing factors and safety of PEG-INF alpha-2a (PEG-INF-2a) in the treatment of hepatitis C. Totally 89 patients with hepatitis C were included in this study and 46 patients were treated with PEG-INF-2a (180 microg or 135 microg/week) and RBV 900 mg/d, 43 patients were treated with IFNalpha-2a (5 MIU/qod) and RBV 900 mg/d. The time of treatment was 48 weeks, and all the patients were visited 24 weeks after treatment. There were no significant differences between the two groups in pretreatment HCV-RNA, HCV genotype and other clinical data. The main parameters to evaluate the efficacy were virological and biochemical responses. The side effects were intensively observed. Sustained virological response (SVR) rate in PEG-IFNalpha-2a group was significantly higher than that in IFNalpha-2a group (56.5% and 19.5% respectively, P<0.001). As the patients were divided according to HCV genotype 1 and high virus load, the SVR rate of PEG-INF alpha-2a group was higher than IFNalpha-2a group (P<0.001). However, there was no significant difference between two groups in the patients with non-genotype 1 and low viral load (P=0.664, 0.116). Similar side-effects were observed in PEG-IFNalpha-2a group and IFNalpha-2a group, but the rate of weight decline and the degree of leukocyte decrease were more significant in PEG-INF alpha-2a group than in IFNalpha-2a group (P=0.001). The efficacy of PEG-INF alpha-2a in the treatment of chronic hepatitis C is superior to that of conventional IFNalpha-2a, PEG-INF alpha-2a had good tolerance and safety profiles.

  19. [Tolerance, safety and efficacy of the one-day preparation of PEG3350 + bisacodyl compared to 2 days of PEG3350 + bisacodyl in pediatric patients].

    PubMed

    Portillo Canizalez, Ligia Marcela; Blanco Rodriguez, Gerardo; Teyssier Morales, Gustavo; Penchyna Grub, Jaime; Trauernicht Mendieta, Sean; Zurita-Cruz, Jessie Nallely

    Multiple intestinal preparations have been used in children undergoing colonoscopy, with variable limitation due to acceptance, tolerance, and proper cleaning. The objective of this study was to compare the tolerability, safety and efficacy of the colonoscopy preparation with 1 day with PEG 3350 (poliethylenglycol) (4g/kg/day) + bisacodyl compared to 2 days of preparation with PEG 3350 (2g/kg/day) + bisacodyl in pediatric patients. A clinical, randomized, and blind trial was performed. Patients aged 2 to 18 years scheduled for colonoscopy were included. Patients were randomized into two groups: 1 day of preparation with PEG 3350 4g/kg/day + bisacodyl and 2 days of preparation with PEG 3350 2g/kg/day + bisacodyl. Through a questionnaire, physical examination and endoscopic evaluation (Boston scale), the tolerance, safety and efficacy of the 2 preparations to be evaluated were determined. Student's t test was performed for quantitative variables and χ 2 for qualitative variables. There were no significant differences in compliance rates, adverse effects, and extent of colonoscopic evaluation. Tolerance and safety between the intestinal preparation for 1-day colonoscopy with PEG 3350 (4g/kg/day) + bisacodyl and the 2-day preparation with PEG 3350 (2g/kg/day) + bisacodyl were similar. The quality of cleanliness was good in both groups, being partially more effective in the 1-day group with PEG 3350 (4g/kg/day). Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  20. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes.

    PubMed

    Qhattal, Hussaini Syed Sha; Hye, Tanvirul; Alali, Amer; Liu, Xinli

    2014-06-24

    Hyaluronan-grafted liposomes (HA-liposomes) preferentially target CD44-overexpressing tumor cells in vitro via receptor-mediated endocytosis. We investigated the pharmacokinetics and biodistribution of HA-liposomes with various sizes of HA (MW 5-8, 50-60, and 175-350 kDa) in mice. Incorporation of negatively charged HA on the liposome surface compromised its blood circulation time, which led to decreased tumor accumulation in CD44+ human breast cancer MDA-MB-231 xenografts compared to PEGylated liposomes (PEG-5000). Clearance of HA-liposomes was HA polymer length-dependent; high MW (175-350 kDa, highest ligand binding affinity) HA-liposomes displayed faster clearance compared to low MW (5-8, 50-60 kDa) HA-liposomes or PEGylated liposomes. Surface HA ligand density can also affect clearance of HA-liposomes. Thus, HA is not an effective stealth coating material. When dual coating of PEG and HA was used, the PEG-HA-liposomes displayed similar blood circulation time and tumor accumulation to that of the PEGylated liposomes; however, the PEG-HA-liposomes displayed better cellular internalization capability in vivo. Tumor histology showed that PEG-HA-liposomes had a more direct association with CD44+ cancer cells, while PEGylated liposomes located predominantly in the tumor periphery, with less association with CD44+ cells. Flow cytometry analysis of ex vivo tumor cells showed that PEG-HA-liposomes had significantly higher tumor cell internalization compared to PEGylated liposomes. This study demonstrates that a long blood circulation time is critical for active tumor targeting. Furthermore, the use of the tumor-targeting ligand HA does not increase total tumor accumulation of actively targeted liposomes in solid tumors; however, it can enhance intracellular delivery.

  1. Static Corrosion Test of Porous Iron Material with Polymer Coating

    NASA Astrophysics Data System (ADS)

    Markušová-Bučková, Lucia; Oriňaková, Renáta; Oriňak, Andrej; Gorejová, Radka; Kupková, Miriam; Hrubovčáková, Monika; Baláž, Matej; Kováľ, Karol

    2016-12-01

    At present biodegradable implants received increased attention due to their use in various fields of medicine. This work is dedicated to testing of biodegradable materials which could be used as bone implants. The samples were prepared from the carbonyl iron powder by replication method and surface polymer film was produced through sol-gel process. Corrosion testing was carried out under static conditions during 12 weeks in Hank's solution. The quantity of corrosion products increased with prolonging time of static test as it can be concluded from the results of EDX analysis. The degradation of open cell materials with polyethylene glycol coating layer was faster compared to uncoated Fe sample. Also the mass losses were higher for samples with PEG coating. The polymer coating brought about the desired increase in degradation rate of porous iron material.

  2. Monitoring of RU Peg requested for Swift observations

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2012-06-01

    Dr. Koji Mukai (Universities Space Research Association/NASA Goddard Space Flight Center) has requested AAVSO observers' assistance in monitoring the SS Cyg-type dwarf nova RU Peg in support of target-of-opportunity observations with the NASA Swift satellite during an outburst. His observations will be targeted during the rise to outburst and during late decline from outburst. Thus, your prompt notification to AAVSO Headquarters of activity in RU Peg will be crucial to the success of this campaign. Dr. Mukai writes: "In the famous AAVSO/EUVE/RXTE campaign on SS Cyg (Mattei et al. 2000JAVSO..28..160M), the hard X-ray flux went up (with a delay) during the rise, then suddenly dropped; there was a corresponding flux enhancement episode during the decline. We know that, during the peak of the outburst, many dwarf novae are hard X-ray fainter than in quiescence (with a few exceptions, like U Gem). However, the hard X-ray enhancement episodes seen in SS Cyg have never been obs! erved in other dwarf novae. We have proposed a hypothesis that this is related to the mass of the accreting white dwarf; only dwarf novae with a relatively massive white dwarf show the hard X-ray enhancement. If that's true, we may well see similar enhancement in RU Peg, which is thought to have a massive white dwarf. Even if this hypothesis is completely wrong, RU Peg is a good target for an SS Cyg-like campaign, since it's X-ray bright during quiescence." Visual and CCD observations (filtered preferred to unfiltered) are appropriate for this campaign. Observers are requested to monitor RU Peg duning minimum, throughout the next outburst, and after return to minimym, and report their observations in a timely manner. If RU Peg appears to be brightening from minimum, please report your observations immediately to the AAVSO. If it is brighter than magnitude 12.3, please also send an email report to Elizabeth Waagen (eowaagen@aavso.org) and Matthew Templeton (matthewt@aavso.org). Please be aware that

  3. PEG Enhancement for EM1 and EM2+ Missions

    NASA Technical Reports Server (NTRS)

    Von der Porten, Paul; Ahmad, Naeem; Hawkins, Matt

    2018-01-01

    NASA is currently building the Space Launch System (SLS) Block-1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. The next evolution of SLS, the Block-1B Exploration Mission 2 (EM-2), is currently being designed. The Block-1 and Block-1B vehicles will use the Powered Explicit Guidance (PEG) algorithm. Due to the relatively low thrust-to-weight ratio of the Exploration Upper Stage (EUS), certain enhancements to the Block-1 PEG algorithm are needed to perform Block-1B missions. In order to accommodate mission design for EM-2 and beyond, PEG has been significantly improved since its use on the Space Shuttle program. The current version of PEG has the ability to switch to different targets during Core Stage (CS) or EUS flight, and can automatically reconfigure for a single Engine Out (EO) scenario, loss of communication with the Launch Abort System (LAS), and Inertial Navigation System (INS) failure. The Thrust Factor (TF) algorithm uses measured state information in addition to a priori parameters, providing PEG with an improved estimate of propulsion information. This provides robustness against unknown or undetected engine failures. A loft parameter input allows LAS jettison while maximizing payload mass. The current PEG algorithm is now able to handle various classes of missions with burn arcs much longer than were seen in the shuttle program. These missions include targeting a circular LEO orbit with a low-thrust, long-burn-duration upper stage, targeting a highly eccentric Trans-Lunar Injection (TLI) orbit, targeting a disposal orbit using the low-thrust Reaction Control System (RCS), and targeting a hyperbolic orbit. This paper will describe the design and implementation of the TF algorithm, the strategy to handle EO in various flight regimes, algorithms to cover off-nominal conditions, and other enhancements to the Block-1 PEG algorithm. This paper illustrates challenges posed by the Block-1B vehicle, and results show that the improved PEG

  4. Effect of Rheological Properties on Liquid Curtain Coating

    NASA Astrophysics Data System (ADS)

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Griffith, William; Pujari, Saswati; Carvalho, Marcio; Francis, Lorraine; Dow Chemical Company Collaboration; PUC-Rio Collaboration

    2017-11-01

    Curtain coating is one of the preferred methods for high-speed precision application of single-layer and multi-layer coatings in technology. However, uniform coatings are only obtained in a certain range of operating parameters, called coating window. The two main physical mechanisms that limit successful curtain coating are liquid curtain breakup and air entrainment. The rheological properties of the liquid play an important role on these mechanisms, but the fundamental understanding of these relations is still not complete. The effect of rate-dependent shear and extensional viscosities on the stability of viscoelastic and shear thinning liquid curtains were explored by high-speed visualization. Aqueous solutions of polyethylene oxide (PEO) and polyethylene glycol (PEG) were used as viscoelastic liquids. Xanthan Gum in water and glycerol solutions with a range of compositions were used as shear thinning liquids. The critical condition was determined by examining flow rate below which curtain broke. In this work, we also analyze relative importance of rate-dependent shear and extensional viscosity on both curtain breakup and air entrainment. We would like to acknowledge the financial support from the Dow Chemical Company.

  5. Novel coatings for stir bar sorptive extraction to determine pharmaceuticals and personal care products in environmental waters by liquid chromatography and tandem mass spectrometry.

    PubMed

    Gilart, Núria; Miralles, Núria; Marcé, Rosa Maria; Borrull, Francesc; Fontanals, Núria

    2013-04-24

    Two new commercially available polar coatings for stir bar sorptive extraction (SBSE), consisting of polyacrylate (PA) with a proportion of polyethyleneglycol (PEG) (Acrylate Twister(®)) and PEG modified silicone (EG Silicone Twister(®)), were evaluated and compared with the classic coating based on polydimethylsiloxane (PDMS Twister(®)) for the extraction of a group of pharmaceuticals and personal care products (PPCPs) from wastewater samples. The SBSE parameters, such as sample pH, agitation speed, extraction temperature, extraction time, desorption solvent and time, were optimised in order to achieve suitable sorption of the target analytes. The EG Silicone coating enabled more efficient extraction of some polar compounds as well as improving the sorption of apolar compounds, in comparison with the other two coatings. Finally, the method of SBSE followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) using the EG Silicone coating was validated achieving good linearity (r(2)>0.994, except for CBZ (r(2)>0.989)), precision (%RSD<17%) and low limits of quantification (LOQs) (20-40 ng L(-1)). The SBSE/LC-MS/MS methodology was applied for the determination of PPCPs in wastewater samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Synthesis and characterization of pHLIP® coated gold nanoparticles.

    PubMed

    Daniels, Jennifer L; Crawford, Troy M; Andreev, Oleg A; Reshetnyak, Yana K

    2017-07-01

    Novel approaches in synthesis of spherical and multispiked gold nanoparticles coated with polyethylene glycol (PEG) and pH Low Insertion Peptide (pHLIP ® ) were introduced. The presence of a tumor-targeting pHLIP ® peptide in the nanoparticle coating enhances the stability of particles in solution and promotes a pH-dependent cellular uptake. The spherical particles were prepared with sodium citrate as a gold reducing agent to form particles of 7.0±2.5 nm in mean metallic core diameter and ∼43 nm in mean hydrodynamic diameter. The particles that were injected into tumors in mice (21 µg of gold) were homogeneously distributed within a tumor mass with no staining of the muscle tissue adjacent to the tumor. Up to 30% of the injected gold dose remained within the tumor one hour post-injection. The multispiked gold nanoparticles with a mean metallic core diameter of 146.0±50.4 nm and a mean hydrodynamic size of ~161 nm were prepared using ascorbic acid as a reducing agent and disk-like bicelles as a template. Only the presence of a soft template, like bicelles, ensured the appearance of spiked nanoparticles with resonance in the near infrared region. The irradiation of spiked gold nanoparticles by an 805 nm laser led to the time- and concentration-dependent increase of temperature. Both pHLIP ® and PEG coated gold spherical and multispiked nanoparticles might find application in radiation and thermal therapies of tumors.

  7. Avidin-biotin-PEG-CPA complexes as potential EPR-directed therapeutic protein carriers: preparation and characterization.

    PubMed

    Ke, Shan; Wright, John C; Kwon, Glen S

    2007-01-01

    Bovine carboxypeptidase A (CPA) conjugated with biotinylated poly(ethylene glycol) (PEG) has been synthesized and characterized in terms of stoichiometry and half-life of the avidin-biotin-PEG(s)-CPA complex. The half-lives for dissociation are 3.34 days for the avidin-biotin-PEG(3400)-CPA 1:1 complex, 3.65 days for the avidin-biotin-PEG(5000)-CPA 1:1 complex, 3.91 days for the avidin-biotin-PEG(3400)-CPA-PEG(2000) 1:1 complex, and 2.74 days for the avidin-biotin-PEG(5000)-CPA-PEG(2000) 1:1 complex. The slow dissociation demonstrates the stability of complexes using a PEGylated biotin terminus as a linker with avidin. The stoichiometry of the biotin-PEGylated CPA with avidin was determined by the 2,6-ANS method, and the results are consistent with measurements of the stoichiometry using size exclusion chromatography. The stoichiometries are 1:2 for the avidin-biotin-PEG(3400)-CPA complex and the avidin-biotin-PEG(3400)-CPA-PEG(2000) complex, 1:1 for the avidin-biotin-PEG(5000)-CPA complex, and 1:4 for the avidin-biotin-PEG(5000)-CPA-PEG(2000) complex. These findings stress both the importance of the length of a PEG chain as an appropriate spacer between the biotin terminus and a functional group, and the great potential of the avidin-biotin-PEGylated-protein complex as a therapeutic protein delivery system for solid tumor prodrug targeting.

  8. Antitumor Effect of GO-PEG-DOX Complex on EMT-6 Mouse Breast Cancer Cells.

    PubMed

    Yan, Jinyin; Song, Bo; Hu, Wanning; Meng, Ying; Niu, Fengling; Han, Xiaochen; Ge, Yuhui; Li, Ning

    2018-05-01

    Doxorubicin (DOX) can be used to treat malignant tumors, but with multiple adverse effects. Graphene oxide-polyethylene glycol (GO-PEG) is a novel nanoscale carrier material and can elevate solubility and biocompatibility of drugs. This study prepared a GO-PEG-DOX complex, whose toxicity and antitumor effects were evaluated on mouse EMT-6 breast cancer cells. GO-PEG-DOX complex was prepared for calculating the drug carrier rate of DOX on GO-PEG by MV approach. EMT-6 cells were treated with 40 μg/mL GO-PEG, 1 μg/mL DOX, or 40 μg/mL +1 μg/mL GO-PEG-DOX for 72 h of incubation. Cells without treatment were considered the control group. Cell survival rate and apoptotic rate were tested at different time points. GO-PEG and GO-PEG-DOX complex were successfully prepared with satisfactory solubility. After 72 h of incubation, EMT-6 cells after GO-PEG-DOX treatment had significantly higher survival rate than GO-PEG group (p < 0.05). All three treatment groups had significantly elevated apoptotic rates than control group (p < 0.05). GO-PEG-DOX group had much more apoptosis (p < 0.05 compared with DOX group). Moreover, with elongated treatment time, all groups showed decreased survival rate (p < 0.05). GO-PEG did not reduce the cytotoxicity of DOX on EMT-6 cells. GO-PEG-DOX complex can increase the water solubility and targeting sensitivity of DOX, with facilitating effects on DOX-induced tumor cell apoptosis.

  9. Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating. © The Author(s) 2015.

  10. Bioactive Hydrogels Made from Step-Growth Derived PEG-Peptide Macromers

    PubMed Central

    Miller, Jordan S.; Shen, Colette J.; Legant, Wesley R.; Baranski, Jan D.; Blakely, Brandon L.; Chen, Christopher S.

    2010-01-01

    Synthetic hydrogels based on poly(ethylene glycol) (PEG) have been used as biomaterials for cell biology and tissue engineering investigations. Bioactive PEG-based gels have largely relied on heterobifunctional or multi-arm PEG precursors that can be difficult to synthesize and characterize or expensive to obtain. Here, we report an alternative strategy, which instead uses inexpensive and readily available PEG precursors to simplify reactant sourcing. This new approach provides a robust system in which to probe cellular interactions with the microenvironment. We used the step-growth polymerization of PEG diacrylate (PEGDA, 3400 Da) with bis-cysteine matrix metalloproteinase (MMP)-sensitive peptides via Michael-type addition to form biodegradable photoactive macromers of the form acrylate-PEG-(peptide-PEG)m-acrylate. The molecular weight (MW) of these macromers is controlled by the stoichiometry of the reaction, with a high proportion of resultant macromer species greater than 500 kDa. In addition, the polydispersity of these materials was nearly identical for three different MMP-sensitive peptide sequences subjected to the same reaction conditions. When photopolymerized into hydrogels, these high MW materials exhibit increased swelling and sensitivity to collagenase-mediated degradation as compared to previously published PEG hydrogel systems. Cell-adhesive acrylate-PEG-CGRGDS was synthesized similarly and its immobilization and stability in solid hydrogels was characterized with a modified Lowry assay. To illustrate the functional utility of this approach in a biological setting, we applied this system to develop materials that promote angiogenesis in an ex vivo aortic arch explant assay. We demonstrate the formation and invasion of new sprouts mediated by endothelial cells into the hydrogels from embedded embryonic chick aortic arches. Furthermore, we show that this capillary sprouting and three-dimensional migration of endothelial cells can be tuned by

  11. Structural analysis of binding functionality of folic acid-PEG dendrimers against folate receptor.

    PubMed

    Sampogna-Mireles, Diana; Araya-Durán, Ingrid D; Márquez-Miranda, Valeria; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D

    2017-03-01

    Dendrimers functionalized with folic acid (FA) are drug delivery systems that can selectively target cancer cells with folate receptors (FR-α) overexpression. Incorporation of polyethylene glycol (PEG) can enhance dendrimers solubility and pharmacokinetics, but ligand-receptor binding must not be affected. In this work we characterized, at atomic level, the binding functionality of conventional site-specific dendrimers conjugated with FA with PEG 750 or PEG 3350 as a linker. After Molecular Dynamics simulation, we observed that both PEG's did not interfere over ligand-receptor binding functionality. Although binding kinetics could be notably affected, the folate fragment from both dendrimers remained exposed to the solvent before approaching selectively to FR-α. PEG 3350 provided better solubility and protection from enzymatic degradation to the dendrimer than PEG 750. Also, FA-PEG3350 dendrimer showed a slightly better interaction with FR-α than FA-PEG750 dendrimer. Therefore, theoretical evidence supports that both dendrimers are suitable as drug delivery systems for cancer therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications.

    PubMed

    Chen, L; Lai, C; Marchewka, R; Berry, R M; Tam, K C

    2016-07-21

    Structural colors and photoluminescence have been widely used for anti-counterfeiting and security applications. We report for the first time the use of CdS quantum dot (QD)-functionalized cellulose nanocrystals (CNCs) as building blocks to fabricate nanothin films via layer-by-layer (LBL) self-assembly for anti-counterfeiting applications. Both negatively- and positively-charged CNC/QD nanohybrids with a high colloidal stability and a narrow particle size distribution were prepared. The controllable LBL coating process was characterized by scanning electron microscopy and ellipsometry. The rigid structure of CNCs leads to nanoporous structured films on poly(ethylene terephthalate) (PET) substrates with high transmittance (above 70%) over the entire range of visible light and also resulted in increased hydrophilicity (contact angles of ∼40 degrees). Nanothin films on PET substrates showed good flexibility and enhanced stability in both water and ethanol. The modified PET films with structural colors from thin-film interference and photoluminescence from QDs can be used in anti-counterfeiting applications.

  13. Lamellar, micro-phase separated blends of methyl cellulose and dendritic polyethylene glycol, POSS-PEG.

    PubMed

    Chinnam, Parameswara Rao; Mantravadi, Ramya; Jimenez, Jayvic C; Dikin, Dmitriy A; Wunder, Stephanie L

    2016-01-20

    Blends of methyl cellulose (MC) and liquid pegylated polyoctahedralsilsesquioxane (POSS-PEG) were prepared from non-gelled, aqueous solutions at room temperature (RT), which was below their gel temperatures (Tm). Lamellar, fibrillated films (pure MC) and increasingly micro-porous morphologies with increasing POSS-PEG content were formed, which had RT moduli between 1 and 5GPa. Evidence of distinct micro-phase separated MC and POSS-PEG domains was indicated by the persistence of the MC and POSS-PEG (at 77K) crystal structures in the X-ray diffraction data, and scanning transmission electron images. Mixing of MC and POSS-PEG in the interface region was indicated by suppression of crystallinity in the POSS-PEG, and increases/decreases in the glass transition temperatures (Tg) of POSS-PEG/MC in the blends compared with the pure components. These interface interactions may serve as cross-link sites between the micro-phase separated domains that permit incorporation of high amounts of POSS-PEG in the blends, prevent macro-phase separation and result in rubbery material properties (at high POSS-PEG content). Above Tg/Tm of POSS-PEG, the moduli of the blends increase with MC content as expected. However, below Tg/Tm of POSS-PEG, the moduli are greater for blends with high POSS-PEG content, suggesting that it behaves like semi-crystalline polyethylene oxide reinforced with silica (SiO1.5). Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. PEG-lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication.

    PubMed

    Gill, Kanwaldeep K; Kaddoumi, Amal; Nazzal, Sami

    2015-04-01

    PEG-lipid micelles, primarily conjugates of polyethylene glycol (PEG) and distearyl phosphatidylethanolamine (DSPE) or PEG-DSPE, have emerged as promising drug-delivery carriers to address the shortcomings associated with new molecular entities with suboptimal biopharmaceutical attributes. The flexibility in PEG-DSPE design coupled with the simplicity of physical drug entrapment have distinguished PEG-lipid micelles as versatile and effective drug carriers for cancer therapy. They were shown to overcome several limitations of poorly soluble drugs such as non-specific biodistribution and targeting, lack of water solubility and poor oral bioavailability. Therefore, considerable efforts have been made to exploit the full potential of these delivery systems; to entrap poorly soluble drugs and target pathological sites both passively through the enhanced permeability and retention (EPR) effect and actively by linking the terminal PEG groups with targeting ligands, which were shown to increase delivery efficiency and tissue specificity. This article reviews the current state of PEG-lipid micelles as delivery carriers for poorly soluble drugs, their biological implications and recent developments in exploring their active targeting potential. In addition, this review sheds light on the physical properties of PEG-lipid micelles and their relevance to the inherent advantages and applications of PEG-lipid micelles for drug delivery.

  15. Physiologically based pharmacokinetic modeling of PLGA nanoparticles with varied mPEG content

    PubMed Central

    Li, Mingguang; Panagi, Zoi; Avgoustakis, Konstantinos; Reineke, Joshua

    2012-01-01

    Biodistribution of nanoparticles is dependent on their physicochemical properties (such as size, surface charge, and surface hydrophilicity). Clear and systematic understanding of nanoparticle properties’ effects on their in vivo performance is of fundamental significance in nanoparticle design, development and optimization for medical applications, and toxicity evaluation. In the present study, a physiologically based pharmacokinetic model was utilized to interpret the effects of nanoparticle properties on previously published biodistribution data. Biodistribution data for five poly(lactic-co-glycolic) acid (PLGA) nanoparticle formulations prepared with varied content of monomethoxypoly (ethyleneglycol) (mPEG) (PLGA, PLGA-mPEG256, PLGA-mPEG153, PLGA-mPEG51, PLGA-mPEG34) were collected in mice after intravenous injection. A physiologically based pharmacokinetic model was developed and evaluated to simulate the mass-time profiles of nanoparticle distribution in tissues. In anticipation that the biodistribution of new nanoparticle formulations could be predicted from the physiologically based pharmacokinetic model, multivariate regression analysis was performed to build the relationship between nanoparticle properties (size, zeta potential, and number of PEG molecules per unit surface area) and biodistribution parameters. Based on these relationships, characterized physicochemical properties of PLGA-mPEG495 nanoparticles (a sixth formulation) were used to calculate (predict) biodistribution profiles. For all five initial formulations, the developed model adequately simulates the experimental data indicating that the model is suitable for description of PLGA-mPEG nanoparticle biodistribution. Further, the predicted biodistribution profiles of PLGA-mPEG495 were close to experimental data, reflecting properly developed property–biodistribution relationships. PMID:22419876

  16. Development practices and lessons learned in developing SimPEG

    NASA Astrophysics Data System (ADS)

    Cockett, R.; Heagy, L. J.; Kang, S.; Rosenkjaer, G. K.

    2015-12-01

    Inverse modelling provides a mathematical framework for constructing a model of physical property distributions in the subsurface that are consistent with the data collected in geophysical surveys. The geosciences are increasingly moving towards the integration of geological, geophysical, and hydrological information to better characterize the subsurface. This integration must span disciplines and is not only challenging scientifically, but additionally the inconsistencies between conventions often makes implementations complicated, non­ reproducible, or inefficient. SimPEG is an open-source, multi-university effort aimed at providing a generalized framework for solving forward and inverse problems. SimPEG includes finite volume discretizations on structured and unstructured meshes, interfaces to standard numerical solver packages, convex optimization algorithms, model parameterizations, and visualization routines. The SimPEG package (http://simpeg.xyz) supports an ecosystem of forward and inverse modelling applications, including electromagnetics, vadose zone flow, seismic, and potential­ fields, that are all written with a common interface and toolbox. The goal of SimPEG is to support a community of researchers with well-tested, extensible tools, and encourage transparency and reproducibility both of the SimPEG software and the geoscientific research it is applied to. In this presentation, we will share some of the lessons we have learned in designing the modular infrastructure, testing and development practices of SimPEG. We will discuss our use of version control, extensive unit-testing, continuous integration, documentation, issue tracking, and resources that facilitate communication between existing team members and allows new researchers to get involved. These practices have enabled the use of SimPEG in research, industry, and education as well as the ability to support a growing number of dependent repositories and applications. We hope that sharing our

  17. Controlled Thermoresponsive Hydrogels by Stereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-Mixed Copolymers with Different PEG Lengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abebe, Daniel G.; Fujiwara, Tomoko

    2012-09-05

    The stereocomplexed hydrogels derived from the micelle mixture of two enantiomeric triblock copolymers, PLLA-PEG-PLLA and PDLA-PEG-PDLA, reported in 2001 exhibited sol-to-gel transition at approximately body temperature upon heating. However, the showed poor storage modulus (ca. 1000 Pa) determined their insufficiency as injectable implant biomaterials for many applications. In this study, the mechanical property of these hydrogels was significantly improved by the modifications of molecular weights and micelle structure. Co-micelles composed of block copolymers with two sizes of PEG block length were shown to possess unique and dissimilar properties from the micelles composed of single-sized block copolymers. The stereomixture of PLA-PEG-PLAmore » comicelles showed a controllable sol-to-gel transition at a wide temperature range of 4 and 80 C. The sol-gel phase diagram displays a linear relationship of temperature versus copolymer composition; hence, a transition at body temperature can be readily achieved by adjusting the mixed copolymer ratio. The resulting thermoresponsive hydrogels exhibit a storage modulus notably higher (ca. 6000 Pa) than that of previously reported hydrogels. As a physical network solely governed by self-reorganization of micelles, followed by stereocomplexation, this unique system offers practical, safe, and simple implantable biomaterials.« less

  18. Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles.

    PubMed

    Lin, Run; Li, Yuancheng; MacDonald, Tobey; Wu, Hui; Provenzale, James; Peng, Xingui; Huang, Jing; Wang, Liya; Wang, Andrew Y; Yang, Jianyong; Mao, Hui

    2017-02-01

    Detecting circulating tumor cells (CTCs) with high sensitivity and specificity is critical to management of metastatic cancers. Although immuno-magnetic technology for in vitro detection of CTCs has shown promising potential for clinical applications, the biofouling effect, i.e., non-specific adhesion of biomolecules and non-cancerous cells in complex biological samples to the surface of a device/probe, can reduce the sensitivity and specificity of cell detection. Reported herein is the application of anti-biofouling polyethylene glycol-block-allyl glycidyl ether copolymer (PEG-b-AGE) coated iron oxide nanoparticles (IONPs) to improve the separation of targeted tumor cells from aqueous phase in an external magnetic field. PEG-b-AGE coated IONPs conjugated with transferrin (Tf) exhibited significant anti-biofouling properties against non-specific protein adsorption and off-target cell uptake, thus substantially enhancing the ability to target and separate transferrin receptor (TfR) over-expressed D556 medulloblastoma cells. Tf conjugated PEG-b-AGE coated IONPs exhibited a high capture rate of targeted tumor cells (D556 medulloblastoma cell) in cell media (58.7±6.4%) when separating 100 targeted tumor cells from 1×10 5 non-targeted cells and 41 targeted tumor cells from 100 D556 medulloblastoma cells spiked into 1mL blood. It is demonstrated that developed nanoparticle has higher efficiency in capturing targeted cells than widely used micron-sized particles (i.e., Dynabeads ® ). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes.

    PubMed

    Derycke, Annelies S L; De Witte, Peter A M

    2002-01-01

    Over the last few decades, photodynamic therapy evolved to a promising new treating modality for cancer. The photosensitizers used, induce light sensitivity to a normal light insensitive chemical or physical process. Third generation photosensitizers are derivatives of second generation photosensitizers introduced into or attached to chemical devices. This modification increases the biological specificity to deliver photosensitizers to a defined cell type. The aim of this study was to improve the specificity of hypericin for tumor cells using transferrin-conjugated PEG-liposomes. Transferrin was used as tumor-seeking molecule, since many tumor cells, among which HeLa cells, overexpress transferrin receptors on their surface. Hypericin, a potent second generation photosensitizer, was integrated in the lipid bilayers of the liposomes. The antiproliferative effect of the targeted PEG-liposomes was determined and compared with the results of non-targeted PEG-liposomes and free hypericin. Additionally, the intracellular accumulation assay was performed. All manipulations were done on HeLa cells. To interpret the results, the data were supplemented by findings concerning embedding stability. Targeting hypericin by transferrin-conjugated PEG-liposomes did not significantly favour the photocytotoxicity and the intracellular accumulation of hypericin, in comparison with non-targeted PEG-liposomes or free hypericin. Embedding stability experiments showed only limited stable embedding. Despite of their proven efficiency as a targeting carrier system, transferrin-conjugated PEG-liposomes seem less effective in targeting hypericin to tumor cells due to the amount of hypericin leaking out of the PEG-liposomes.

  20. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting.

    PubMed

    Cole, Adam J; David, Allan E; Wang, Jianxin; Galbán, Craig J; Hill, Hannah L; Yang, Victor C

    2011-03-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, potentially enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140-190 nm) and relative PEG labeling (1.5% of surface amines - A5/D5, 0.4% - A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37 °C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 h) and D20 (11.75 h) showing much longer half-lives than D (0.12 h). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC(0-∞). Sustained tumor exposure over 24 h was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that a polyethylene glycol modified, cross-linked starch-coated MNP is a promising platform for enhanced magnetic tumor targeting, warranting further study in tumor models. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Crystalline polyoxometalate (POM)–polyethylene glycol (PEG) composites aimed as non-humidified intermediate-temperature proton conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuboi, Masaki; Hibino, Mitsuhiro; Mizuno, Noritaka

    2016-02-15

    Crystalline polyoxometalate (POM)–polyethylene glycol (PEG) composites aimed as non-humidified intermediate-temperature proton conductors were synthesized and characterized by single crystal and powder XRD, solid state MASNMR, and TG-DTA measurements. Among the POM–PEG composites, Cs{sub 2.7}H{sub 0.3}[PW{sub 12}O{sub 40}]·1.2PEG1000 (CsHPW-PEG1000) possessed one-dimensional channels with diameters of ca. 6 and 8 Å, where PEG probably resided, and showed the best performance as a proton conductor (1.2×10{sup −5} S cm{sup −1} at 443 K). Proton conductivities of POM–PEG composites decreased by the increase in molecular weights of PEG (CsHPW-PEG12,000) or anion charges (CsHSiW-PEG1000). Variable contact time {sup 13}C-CP (cross polarization) MASNMR revealed that localmore » mobility (i.e., segmental motion) of PEG is related to the trends in proton conductivities. These results show that amount of acidic protons (H{sup +}) is not the primary factor in proton conduction and that segmental motion of PEG assists the proton hopping among POMs in the crystal lattice of POM–PEG composites. - Graphical abstract: Non-humidified intermediate-temperature proton conduction in crystalline polyoxometalate (POM)–polyethylene (PEG) composites are assisted by the segmental motion of PEG. - Highlights: • Crystalline polyoxometalate–polyethlene glycol (PEG) composites were synthesized. • CsHPW-PEG1000 possessed one-dimensional channels and showed the highest proton conductivity. • {sup 13}C CPMASNMR revealed that segmental motion of PEG is related to the proton conduction.« less

  2. Auxin efflux facilitator and auxin dynamism responsible for the gravity-regulated development of peg in cucumber seedlings

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Watanabe, Chiaki; Fujii, Nobuharu; Miyazawa, Yutaka

    Cucumber seedlings develop a protuberance, peg, by which seed coats are pulled out just af-ter germination. The peg is usually formed on the lower side of the transition zone between hypocotyl and root of the seedlings grown in a horizontal position. Our previous spaceflight experiment showed that unilateral positioning of a peg in cucumber seedlings occurred due to its suppression on the upper side of the transition zone because seedlings grown in microgravity developed a peg on each side of the transition zone. We also showed that auxin was a major factor responsible for peg development. There was a redistribution of auxin in the gravistimu-lated transition zone, decreasing IAA level on the upper side, and IAA application induced a peg on both lower and upper sides of the transition zone. In addition, peg was released from its suppression in the seedlings treated with inhibitors of auxin efflux. Namely, two pegs devel-oped in the TIBA-treated seedlings even when they were grown in a horizontal position. These results imply that a reduction of auxin level due to its efflux is required for the suppression of peg development on the upper side of the transition zone in a horizontal position. To under-stand molecular mechanism underlying the negative control of morphogenesis by graviresponse in cucumber seedlings, we isolated cDNAs of auxin efflux facilitators, CsPINs, from cucumber and examined the expressions of their proteins, in relation to the redistribution of endogenous auxin and peg development. We isolated six cDNAs of PIN homologues CsPIN1 to CsPIN6 from cucumber. By immunohistochemical study using some of their anti-bodies, we revealed that CsPIN1 was localized in endodermis, vascular tissue and pith around the transition zone of cucumber seedlings. In cucumber seedlings grown in a vertical position with radicles pointing down, CsPIN1 in endodermal cells was mainly localized on the plasma membrane neighboring vascular bundle but not on the plasma membrane

  3. Analysis of PEG oligomers in black gel inks: Discrimination and ink dating.

    PubMed

    Sun, Qiran; Luo, Yiwen; Xiang, Ping; Yang, Xu; Shen, Min

    2017-08-01

    Carbon-based black gel inks are common samples in forensic practice of questioned document examination in China, but there are few analytical methods for this type of ink. In this study, a liquid chromatography-.high resolution mass spectrometry (LC-HRMS) method was established for the analysis of PEG oligomers in carbon-based black gel ink entries. The coupled instruments achieve both the identification and quantification of PEG oligomers in ink entries with reproducible results. Twenty carbon-based black gel inks, whose Raman spectra appeared identical, were analyzed using the LC-HRMS method. As a result, the twenty gel inks were classified into four groups according to the distribution of PEG oligomers. Artificially aging of PEG 400 and a gel ink showed that as PEG degraded, the relative amounts of low molecular weight PEG oligomers increased, while those of high molecular weight decreased. The degradation of PEG oligomers in a naturally aged gel ink was consistent with those in the artificially aged samples, but occurred more slowly. This study not only provided a new method for discriminating carbon-based black gel ink entries, but also offered a new approach for studying the relative ink dating of carbon-based black gel ink entries. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Nanothin Coculture Membranes with Tunable Pore Architecture and Thermoresponsive Functionality for Transfer-Printable Stem Cell-Derived Cardiac Sheets.

    PubMed

    Ryu, Seungmi; Yoo, Jin; Jang, Yeongseon; Han, Jin; Yu, Seung Jung; Park, Jooyeon; Jung, Seon Yeop; Ahn, Kyung Hyun; Im, Sung Gap; Char, Kookheon; Kim, Byung-Soo

    2015-10-27

    Coculturing stem cells with the desired cell type is an effective method to promote the differentiation of stem cells. The features of the membrane used for coculturing are crucial to achieving the best outcome. Not only should the membrane act as a physical barrier that prevents the mixing of the cocultured cell populations, but it should also allow effective interactions between the cells. Unfortunately, conventional membranes used for coculture do not sufficiently meet these requirements. In addition, cell harvesting using proteolytic enzymes following coculture impairs cell viability and the extracellular matrix (ECM) produced by the cultured cells. To overcome these limitations, we developed nanothin and highly porous (NTHP) membranes, which are ∼20-fold thinner and ∼25-fold more porous than the conventional coculture membranes. The tunable pore size of NTHP membranes at the nanoscale level was found crucial for the formation of direct gap junctions-mediated contacts between the cocultured cells. Differentiation of the cocultured stem cells was dramatically enhanced with the pore size-customized NTHP membrane system compared to conventional coculture methods. This was likely due to effective physical contacts between the cocultured cells and the fast diffusion of bioactive molecules across the membrane. Also, the thermoresponsive functionality of the NTHP membranes enabled the efficient generation of homogeneous, ECM-preserved, highly viable, and transfer-printable sheets of cardiomyogenically differentiated cells. The coculture platform developed in this study would be effective for producing various types of therapeutic multilayered cell sheets that can be differentiated from stem cells.

  5. Synthesis and characterization of PEG-P(MAA-SS-VCL) nanoparticles

    NASA Astrophysics Data System (ADS)

    Yu, L. L.; Yang, K.; Mu, R. H.; Zhang, N.; Su, L.

    2016-07-01

    The PEG-P(MAA-SS-VCL) nanoparticles were obtained using disulfide containing dimethacrylate (SS) as cross-linking agent, using polyethylene glycol methyl acrylate (PEGMA), N-Vinyl-ε-caprolactam (VCL), and methacrylic acid (MAA) as monomers via homogeneous polymerization in aqueous. The PEG-P(MAA-SS-VCL) nanoparticles were characterized by FT-IR and TGA. The particle size and morphology variation in different environments were detected by dynamic light scattering (DLS) and scanning electron microscopy (SEM). It is the very method that PEG-P(MAA-SS-VCL) nanoparticles can be obtained in this study.

  6. Pore structure modified diatomite-supported PEG composites for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-09-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol-1, which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability.

  7. Pore structure modified diatomite-supported PEG composites for thermal energy storage

    PubMed Central

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-01-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol−1, which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability. PMID:27580677

  8. Pore structure modified diatomite-supported PEG composites for thermal energy storage.

    PubMed

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-09-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol(-1), which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability.

  9. Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity.

    PubMed

    Cheng, Dong; Wen, Yangbing; Wang, Lijuan; An, Xingye; Zhu, Xuhai; Ni, Yonghao

    2015-06-05

    In this work, the adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals (CNC) was investigated for preparing re-dispersible dried CNC. Results showed that the re-dispersity of CNC in water can be significantly enhanced using a PEG1000 dosage of 5wt% (based on the dry weight of CNC). The elemental analysis confirmed the adsorption of PEG onto the CNC surface. Transmission electron microscopy (TEM) was used to characterize the dry powder and indicated that the irreversible agglomeration of CNC after drying was essentially eliminated based on the PEG adsorption concept. Thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD) suggested that CNC crystallinity and thermal stability were not affected by the adsorption of PEG. Thus, the adsorption of PEG has great potential for producing re-dispersible powder CNC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Physicochemical characterization of spray-dried PLGA/PEG microspheres, and preliminary assessment of biological response.

    PubMed

    Javiya, Curie; Jonnalagadda, Sriramakamal

    2016-09-01

    The use of spray-drying to prepare blended PLGA:PEG microspheres with lower immune detection. To study physical properties, polymer miscibility and alveolar macrophage response for blended PLGA:PEG microspheres prepared by a laboratory-scale spray-drying process. Microspheres were prepared by spray-drying 0-20% w/w ratios of PLGA 65:35 and PEG 3350 in dichloromethane. Particle size and morphology was studied using scanning electron microscopy. Polymer miscibility and residual solvent levels evaluated by thermal analysis (differential scanning calorimetry - DSC and thermogravimetric analysis - TGA). Immunogenicity was assessed in vitro by response of rat alveolar macrophages (NR8383) by the MTT-based cell viability assay and reactive oxygen species (ROS) detection. The spray dried particles were spherical, with a size range of about 2-3 µm and a yield of 16-60%. Highest yield was obtained at 1% PEG concentration. Thermal analysis showed a melting peak at 59 °C (enthalpy: 170.61 J/g) and a degradation-onset of 180 °C for PEG 3350. PLGA 65:35 was amorphous, with a Tg of 43 °C. Blended PLGA:PEG microspheres showed a delayed degradation-onset of 280 °C, and PEG enthalpy-loss corresponding to 15% miscibility of PEG in PLGA. NR8383 viability studies and ROS detection upon exposure to these cells suggested that blended PLGA:PEG microspheres containing 1 and 5% PEG are optimal in controling cell proliferation and activation. This research establishes the feasibility of using a spray-drying process to prepare spherical particles (2-3 µm) of molecularly-blended PLGA 65:35 and PEG 3350. A PEG concentration of 1-5% was optimal to maximize process yield, with minimal potential for immune detection.

  11. The Osteogenesis of Bone Marrow Stem Cells on mPEG-PCL-mPEG/Hydroxyapatite Composite Scaffold via Solid Freeform Fabrication

    PubMed Central

    Liao, Han-Tsung; Jiang, Cho-Pei

    2014-01-01

    The study described a novel bone tissue scaffold fabricated by computer-aided, air pressure-aided deposition system to control the macro- and microstructure precisely. The porcine bone marrow stem cells (PBMSCs) seeded on either mPEG-PCL-mPEG (PCL) or mPEG-PCL-mPEG/hydroxyapatite (PCL/HA) composite scaffold were cultured under osteogenic medium to test the ability of osteogenesis in vitro. The experimental outcomes indicated that both scaffolds possessed adequate pore size, porosity, and hydrophilicity for the attachment and proliferation of PBMSCs and the PBMSCs expressed upregulated genes of osteogensis and angiogenesis in similar manner on both scaffolds. The major differences between these two types of the scaffolds were the addition of HA leading to higher hardness of PCL/HA scaffold, cell proliferation, and VEGF gene expression in PCL/HA scaffold. However, the in vivo bone forming efficacy between PBMSCs seeded PCL and PCL/HA scaffold was different from the in vitro results. The outcome indicated that the PCL/HA scaffold which had bone-mimetic environment due to the addition of HA resulted in better bone regeneration and mechanical strength than those of PCL scaffold. Therefore, providing a bone-mimetic scaffold is another crucial factor for bone tissue engineering in addition to the biocompatibility, 3D architecture with high porosity, and interpored connection. PMID:24868523

  12. Functionalization and Characterization of Metal Oxide Coatings of Stainless Steel and Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Slaney, Anne Margaret

    The development of tolerogens, fabricated devices eliciting tolerance toward incompatible donor ABO antigens in implant patients, is the ultimate goal of this project. This would permit ABO incompatible organ transplants, increase the donor pool for patients, increase efficiency in the use of available organs, reduce waitlist times and reduce mortality rates of patients. Stainless steel stents and silica nanoparticles were chosen as platforms for the stationary and circulating tolerogens. Stainless steel was coated with silica by solgel dip-coating, electrodeposition, and atomic layer deposition (ALD). The coatings were evaluated by CV, EIS, SEM, AFM, VASE, FTIR, XPS, and AES. Of the silica films, those deposited by ALD provided superior insulating, conformal, and thin coatings. These silica ALD films outperformed even titania ALD films upon stressing. Silica ALD films were subsequently functionalized with mixtures of silane derivatives of poly(ethylene glycol) (PEG), to prevent nonspecific protein binding, and monosaccharides (MS) or trisaccharide and tetrasaccharide (TS) antigens. Functionalizations were characterized by FTIR, XPS and UV-Vis following enzyme-linked lectin assays (ELLAs) or enzyme-linked immunosorbent assays (ELISAs). Effective functionalization allowing biological availability and activity even after incubation in blood plasma was confirmed. Microarray microscope slides were similarly developed with all ABO antigen subtypes, characterized by ToF-SIMS and ELISA, and proved useful in detecting antibodies in human blood samples. Silica nanoparticles, including fluorescent and magnetic varieties, in a range of sizes were prepared by sol-gel synthesis. The nanoparticles were evaluated by SEM, DLS, zeta potential measurements, fluorescence imaging, flow cytometry, two-photon excitation fluorescence correlation spectroscopy and TEM. Different dye incorporation methods were used for effective detection of NPs, and additional silica layers improved

  13. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel.

    PubMed

    Angelopoulou, A; Voulgari, E; Diamanti, E K; Gournis, D; Avgoustakis, K

    2015-06-01

    To investigate the application of water-dispersible poly(lactide)-poly(ethylene glycol) (PLA-PEG) copolymers for the stabilization of graphene oxide (GO) aqueous dispersions and the feasibility of using the PLA-PEG stabilized GO as a delivery system for the potent anticancer agent paclitaxel. A modified Staudenmaier method was applied to synthesize graphene oxide (GO). Diblock PLA-PEG copolymers were synthesized by ring-opening polymerization of dl-lactide in the presence of monomethoxy-poly(ethylene glycol) (mPEG). Probe sonication in the presence of PLA-PEG copolymers was applied in order to reduce the hydrodynamic diameter of GO to the nano-size range according to dynamic light scattering (DLS) and obtain nano-graphene oxide (NGO) composites with PLA-PEG. The composites were characterized by atomic force microscopy (AFM), thermogravimetric analysis (TGA), and DLS. The colloidal stability of the composites was evaluated by recording the size of the composite particles with time and the resistance of composites to aggregation induced by increasing concentrations of NaCl. The composites were loaded with paclitaxel and the in vitro release profile was determined. The cytotoxicity of composites against A549 human lung cancer cells in culture was evaluated by flow cytometry. The uptake of FITC-labeled NGO/PLA-PEG by A549 cells was also estimated with flow cytometry and visualized with fluorescence microscopy. The average hydrodynamic diameter of NGO/PLA-PEG according to DLS ranged between 455 and 534 nm, depending on the molecular weight and proportion of PLA-PEG in the composites. NGO/PLA-PEG exhibited high colloidal stability on storage and in the presence of high concentrations of NaCl (far exceeding physiological concentrations). Paclitaxel was effectively loaded in the composites and released by a highly sustained fashion. Drug release could be regulated by the molecular weight of the PLA-PEG copolymer and its proportion in the composite. The paclitaxel

  14. Application of microchip CGE for the analysis of PEG-modified recombinant human granulocyte-colony stimulating factors.

    PubMed

    Park, Eun Ji; Lee, Kyung Soo; Lee, Kang Choon; Na, Dong Hee

    2010-11-01

    The purpose of this study was to evaluate the microchip CGE (MCGE) for the analysis of PEG-modified granulocyte-colony stimulating factor (PEG-G-CSF) prepared with PEG-aldehydes. The unmodified and PEG-modified G-CSFs were analyzed by Protein 80 and 230 Labchips on the Agilent 2100 Bioanalyzer. The MCGE allowed size-based separation and quantitation of PEG-G-CSF. The Protein 80 Labchip was useful for PEG-5K-G-CSF, while the Protein 230 Labchip was more suitable for PEG-20K-G-CSF. The MCGE was also used to monitor a search for optimal PEG-modification (PEGylation) conditions to produce mono-PEG-G-CSF. This study demonstrates the usefulness of MCGE for monitoring and optimizing the PEGylation of G-CSF with the advantages of speed, minimal sample consumption, and automatic quantitation.

  15. Conditional internalization of PEGylated nanomedicines by PEG engagers for triple negative breast cancer therapy

    NASA Astrophysics Data System (ADS)

    Su, Yu-Cheng; Burnouf, Pierre-Alain; Chuang, Kuo-Hsiang; Chen, Bing-Mae; Cheng, Tian-Lu; Roffler, Steve R.

    2017-06-01

    Triple-negative breast cancer (TNBC) lacks effective treatment options due to the absence of traditional therapeutic targets. The epidermal growth factor receptor (EGFR) has emerged as a promising target for TNBC therapy because it is overexpressed in about 50% of TNBC patients. Here we describe a PEG engager that simultaneously binds polyethylene glycol and EGFR to deliver PEGylated nanomedicines to EGFR+ TNBC. The PEG engager displays conditional internalization by remaining on the surface of TNBC cells until contact with PEGylated nanocarriers triggers rapid engulfment of nanocargos. PEG engager enhances the anti-proliferative activity of PEG-liposomal doxorubicin to EGFR+ TNBC cells by up to 100-fold with potency dependent on EGFR expression levels. The PEG engager significantly increases retention of fluorescent PEG probes and enhances the antitumour activity of PEGylated liposomal doxorubicin in human TNBC xenografts. PEG engagers with specificity for EGFR are promising for improved treatment of EGFR+ TNBC patients.

  16. Generation, characterization and in vivo biological activity of two distinct monoclonal anti-PEG IgMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Yosuke; Shimizu, Taro; Mima, Yu

    PEGylation, the attachment of polyethylene glycol (PEG) to nanocarriers and proteins, is a widely accepted approach to improving the in vivo efficacy of the non-PEGylated products. However, both PEGylated liposomes and PEGylated proteins reportedly trigger the production of specific antibodies, mainly IgM, against the PEG moiety, which possibly leads to a reduction in safety and therapeutic efficacy of the PEGylated products. In the present study, two monoclonal anti-PEG IgMs — HIK-M09 via immunization with an intravenous injection of PEGylated liposomes (SLs) and HIK-M11 via immunization with a subcutaneous administration of PEGylated ovalbumin (PEG-OVA) were successfully generated. The generated IgMs showedmore » efficient reactivity to mPEG{sub 2000} conjugated to 1,2-distearoyl-sn-glycero-3-phospho-ethanolamine (DSPE), PEGylated liposome (SL) and PEG-OVA. It appears that HIK-M09 recognizes ethoxy (OCH{sub 2}CH{sub 2}) repeat units along with a terminal motif of PEG, while HIK-M11 recognizes only ethoxy repeat units of PEG. Such unique properties allow HIK-M09 to bind with dense PEG. In addition, their impact on the in vivo clearance of the PEGylated products was investigated. It was found that the generated ant-PEG IgMs induced a clearance of SL as they were intravenously administered with SL. Interestingly, the HIK-M11, generated by PEG-OVA, induced the clearance of both SL and PEG-OVA, while the HIK-M09, generated by SL, induced the clearance of SL only. We here revealed that the presence of serum anti-PEG IgM and the subsequent binding of anti-PEG IgM to the PEGylated products are not necessarily related to the enhanced clearance of the products. It appears that subsequent complement activation following anti-PEG IgM binding is the most important step in dictating the in vivo fate of PEGylated products. This study may have implications for the design, development and clinical application of PEGylated products and therapeutics. - Highlights: • Two

  17. Development and in vivo evaluation of an oral insulin-PEG delivery system.

    PubMed

    Calceti, P; Salmaso, S; Walker, G; Bernkop-Schnürch, A

    2004-07-01

    Insulin-monomethoxypoly(ethylene glycol) derivatives were obtained by preparation of mono- and di-terbutyl carbonate insulin derivatives, reaction of available protein amino groups with activated 750 Da PEG and, finally, amino group de-protection. This procedure allowed for obtaining high yield of insulin-1PEG and insulin-2PEG. In vivo studies carried out by subcutaneous injection into diabetic mice demonstrated that the two bioconjugates maintained the native biological activity. In vitro, PEGylation was found to enhance the hormone stability towards proteases. After 1 h incubation with elastase, native insulin, insulin-1PEG and insulin-2PEG undergo about 70, 30 and 10% degradation, respectively, while in the presence of pepsin protein degradation was 100, 70 and 50%, respectively. The attachment of low molecular weight PEG did not significantly (P >0.05) alter insulin permeation behavior across the intestinal mucosa. Insulin-1PEG was formulated into mucoadhesive tablets constituted by the thiolated polymer poly(acrylic acid)-cysteine. The therapeutic agent was sustained released from these tablets within 5 h. In vivo, by oral administration to diabetic mice, the glucose levels were found to decrease of about 40% since the third hour from administration and the biological activity was maintained up to 30 h. According to these results, the combination of PEGylated insulin with a thiolated polymer used as drug carrier matrix might be a promising strategy for oral insulin administration.

  18. PEG-rHuMGDF ameliorates thrombocytopenia in carboplatin-treated rats without inducing myelofibrosis.

    PubMed

    Ide, Y; Harada, K; Imai, A; Yanagida, M

    1999-08-01

    We examined the effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) on carboplatin-induced thrombocytopenia in rats. The focus was on whether myelofibrosis is associated with the PEG-rHuMGDF treatment in this chemotherapy model. After a single injection of carboplatin, rats received subcutaneous PEG-rHuMGDF at pharmacologic doses (1,3, or 30 micrograms/kg) or a vehicle daily for 7 days. PEG-rHuMGDF at more than 3 micrograms/kg ameliorated the thrombocytopenia at day 10. Histologically, no myelofibrosis was detected in the rats treated with PEG-rHuMGDF or vehicle. Subsequently, PEG-rHuMGDF at a suprapharmacologic dose (100 micrograms/kg) was subcutaneously administered to normal and to carboplatin-treated rats daily for 7 days. Histological analysis revealed that the treatment with PEG-rHuMGDF induced myelofibrosis in the normal rats but not in the carboplatin-treated rats. Additionally, the transforming growth factor-beta 1 (TGF-beta 1) levels in the extracellular fluid and the whole extract of the bone marrow were increased to a much lesser degree in the carboplatin-treated rats compared to the normal rats. These findings suggest that PEG-rHuMGDF is effective for carboplatin-induced thrombocytopenia. Proper control of platelet counts and TGF-beta 1 levels is essential so that myelofibrosis is not induced in clinical use.

  19. Mussel-inspired chitosan-polyurethane coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes.

    PubMed

    Wang, Rui; Song, Xin; Xiang, Tao; Liu, Qiang; Su, Baihai; Zhao, Weifeng; Zhao, Changsheng

    2017-07-15

    A straightforward mussel-inspired approach was proposed to construct chitosan-polyurethane coatings and load Ag nanoparticles (AgNPs) to endow polyethersulfone (PES) membranes with dual-antibacterial and antifouling properties. The macromolecule O-carboxymethyl chitosan (CMC) was directly reacted with catechol in the absence of carbodiimide chemistry to form the coating and load AgNPs via in situ reduction; while lysine (Lys) was used as a representative small molecule for comparison. Then, PEG-based polyurethane (PU) was used for constructing Lys-Ag-PU and CMC-Ag-PU composite coatings, which substantially improved the protein antifouling property of the membranes. Furthermore, the CMC-Ag-PU coating exhibited superior broad-spectrum antibacterial property towards E. coli and S. aureus than Lys-Ag-PU coating. Meanwhile, the CMC-Ag-PU coating showed sustained antifouling property against bacteria and could reload AgNPs to be regenerated as antibacterial and antifouling coating. This approach is believed to have potential to fabricate reusable antifouling and antibacterial coatings on materials surfaces for aquatic industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Glutathione-mediated release of Bodipy® from PEG cofunctionalized gold nanoparticles

    PubMed Central

    Kumar, Dhiraj; Meenan, Brian J; Dixon, Dorian

    2012-01-01

    Gold nanoparticles synthesized via sodium citrate reduction of chloroauric acid (HAuCl4) were functionalized with either various concentrations of thiol-terminated Bodipy® FL L-cystine (0.5, 1.0, 1.5, and 2.0 μg/mL) or Bodipy-poly(ethylene glycol) at concentrations of 0.5–18.75, 1.0–12.50, and 1.5–6.25 μg/mL to form a mixed monolayer of BODIPY-PEG. Thiol-terminated Bodipy, a fluorescing molecule, was used as the model drug, while PEG is widely used in drug-delivery applications to shield nanoparticles from unwanted immune responses. Understanding the influence of PEG-capping on payload release is critical because it is the most widely used type of nanoparticle functionalization in drug delivery studies. It has been previously reported that glutathione can trigger release of thiol-bound payloads from gold nanoparticles. Bodipy release from Bodipy capped and from Bodipy-PEG functionalized gold nanoparticles was studied at typical intracellular glutathione levels. It was observed that the addition of PEG capping inhibits the initial burst release observed in gold nanoparticles functionalized only with Bodipy and inhibits nanoparticle aggregation. Efficient and controlled payload release was observed in gold nanoparticles cofunctionalized with only a limited amount of PEG, thus enabling the coattachment of large amounts of drug, targeting groups or other payloads. PMID:22915847

  1. Effects of PEG4000 template on sol-gel synthesis of porous cerium titanate photocatalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjie; Tao, Yingjie; Li, Chuanguo

    2018-04-01

    Porous cerium titanate was synthesized by sol-gel method, using polyethylene glycol (PEG4000) as template agent. Brannerite structured CeTi2O6 in monoclinic system is the major substance formed in the materials. Formation of CeO2 and rutile TiO2 depends on the amount of PEG4000. The addition of PEG4000 leads to production of fine particles in the samples, but it does not apparently affect the band gap energy. Pore volume of the cerium titanate sample continuously increases with rising PEG4000 amount. The sample obtained using 3.5 g PEG4000 has BET surface area of 16.2 m2/g and pore volume of 0.0232 cm3/g. The addition of PEG4000 can obviously promote photocatalytic activity of cerium titanate, which can be proven by both enhanced production of hydroxyl radical and ofloxacin degradation efficiency. As much as 95.2% of the initial ofloxacin molecules are removed from the solution after 50 min of photocatalytic degradation on the cerium titanate obtained using 3.5 g PEG4000, while only 48.4% ofloxacin is removed on cerium titanate obtained without PEG4000.

  2. PEG 3350 Administration Is Not Associated with Sustained Elevation of Glycol Levels.

    PubMed

    Williams, Kent C; Rogers, Lynette K; Hill, Ivor; Barnard, John; Di Lorenzo, Carlo

    2018-04-01

    To determine whether trace amounts of ethylene glycol (EG), diethylene glycol (DEG), or triethylene glycol (TEG) in PEG 3350 are associated with increased blood levels of EG, DEG, or TEG in children receiving daily PEG 3350 therapy. Blood samples were drawn from 9 children who were being treated for constipation with PEG 3350 (6-12 years old) before and every 30 minutes for 3 hours after receiving 17 g of PEG 3350. PEG 3350, tap water, and blood samples from 18 age- and sex-matched controls also were analyzed. Baseline blood levels of EG and TEG did not differ between control and treated groups. DEG levels (median [IQR]) were lower in the PEG 3350 group (40.13 ng/mL [36.69, 63.94] vs 92.83 ng/mL [51.06, 128.93], P = .008). After PEG 3350 dose, levels of EG (390.51 ng/mL [326.06, 624.55]) and TEG (2.21 ng/mL [0, 4.5]) peaked at 90 minutes at 1032.81 ng/mL (826.84, 1486.13) (P = .009) and 35.17 ng/mL (15.81, 45.13) (P = .0005), respectively. DEG levels did not significantly change. Standard 17-g doses of PEG 3350 in 8 oz (237 mL) of water resulted in concentrations (mean ± SD) of EG, DEG, and TEG of 1.32 ± 0.23 µg/mL, 0.18 ± 0.03 µg/mL, and 0.12 ± 0.01 µg/mL, respectively. EG, DEG, and TEG levels in public water supply were 0.07 µg/mL, 0.21 µg/mL, and 0.02 µg/mL, respectively. Daily PEG 3350 therapy in children was not associated with sustained elevation of EG, DEG, or TEG blood levels over levels in matched controls. Although EG and TEG levels increased after a standard dose of PEG 3350, their peak values remained well below toxic levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Gravity-regulated formation of the peg in developing cucumber seedlings

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Scott, T. K.

    1994-01-01

    It has been proposed that peg formation in the vascular transition region (TR zone) between the hypocotyl and the root in Cucurbitaceae seedlings is a gravimorphogenetic phenomenon. Initiation of the peg became visible 36 h after imbibition when cucumber (Cucumis sativus L. cv. Burpee Hybrid II) seeds were germinated in a horizontal position at 24 degrees C in the dark. Simultaneously, sedimented amyloplasts (putative statoliths) were apparent in the sheath cells surrounding the vascular strands, and in the cortical cells immediately adjacent to them, in the TR zone. In contrast, the other cortical cells, some of which were destined to develop into the peg, contained amyloplasts which were not sedimented. These results suggest that the graviperception mechanism for peg formation may be like that of statoliths in shoot gravitropism. By 48 h following imbibition, the cells of the TR zone still had sedimented amyloplasts but had lost their sensitivity to gravity, possibly because of their maturation.

  4. Preparation of monodisperse PEG hydrogel composite microspheres via microfluidic chip with rounded channels

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Cong, Hailin; Liu, Xuesong; Ren, Yumin; Wang, Jilei; Zhang, Lixin; Tang, Jianguo; Ma, Yurong; Akasaka, Takeshi

    2013-09-01

    An effective microfluidic method to fabricate monodisperse polyethylene glycol (PEG) hydrogel composite microspheres with tunable dimensions and properties is reported in this paper. A T-junction microfluidic chip equipped with rounded channels and online photopolymerization system is applied for the microsphere microfabrication. The shape and size of the microspheres are well controlled by the rounded channels and PEG prepolymer/silicon oil flow rate ratios. The obtained PEG/aspirin composite microspheres exhibit a sustained release of aspirin for a wide time range; the obtained PEG/Fe3O4 nanocomposite microspheres exhibit excellent magnetic properties; and the obtained binary PEG/dye composite microspheres show the ability to synchronously load two functional components in the same peanut-shaped or Janus hydrogel particles.

  5. Sensitive and rapid detection of anti-PEG in blood using surface plasmon resonance sensor (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sun, Fang; Jiang, Shaoyi; Yu, Qiuming

    2016-03-01

    Polyethylene glycol (PEG) is widely used to modify many therapeutic proteins and nanoparticles to reduce their immunogenicity and to improve their pharmacokinetic and therapeutic properties. It is generally accepted that PEG is non-immunogenic and non-antigenic. However, an emerging of literature and studies shows that the immune system can generate specific antibodies binding PEG. These anti-PEG antibodies not only correlate with adverse reactions appeared after patient infusions, but are also found to be the reason for therapeutic efficacy loss during chronical administrations. In addition, because of constant exposure to PEG in daily consumer products including detergents, processed food and cosmetics, a substantial proportion of the population has likely developed anti-PEG immunity. Thus a method to quickly and accurately measure the anti-PEG antibody level is desired. Nevertheless, the gold standard to detect anti-PEG antibodies is ELISA, which is costly and time-consuming especially for quantification. Herein, we demonstrated the anti-PEG measurement in blood serum using surface plasmon resonance (SPR) sensor. Several PEG-based surface functionalization on SPR sensor chip were studied in terms of protein resistance and the limit of detection (LOD) of anti-PEG. The quantitative detection can be achieved in less than 30 min with LOD comparable to ELISA. Furthermore, the IgG and IgM of anti-PEG can be differentiated by following the secondary antibody.

  6. Enhanced circulation half-life of site-specific PEGylated rhG-CSF: optimization of PEG molecular weight.

    PubMed

    Zhai, Yanqin; Zhao, Yongjiang; Lei, Jiandu; Su, Zhiguo; Ma, Guanghui

    2009-07-15

    Recombinant human granulocyte colony stimulating factor (rhG-CSF) and its PEGylated product "mono-PEG20-GCSF" have already been widely used for treatment of all kinds of neutropenia. However, the high required dosage of mono-PEG20-GCSF made it relatively expensive in clinical use. We postulated that an N-terminal site-specific PEGylated rhG-CSF with higher PEG Mw (PEG30 kDa) might be able to achieve longer circulation half-life while retaining its bioactivity, allowing the reduction of dosage for clinical use. rhG-CSF was PEGylated at the N-terminus by 5 kDa, 10 kDa, 20 kDa and 30 kDa methoxy-poly(ethylene glycol)-propionaldehyde (mPEG-ALD), and the four PEGylates were compared with respect to reaction, separation, characterization and also in vivo/in vitro activity, results showed that the mPEG-ALD of higher Mw demonstrated better N-terminal site-specific selectivity, separation purity and yield. The production cost and in vitro activity of mono-PEG30-GCSF and mono-PEG20-GCSF were almost the same, while mono-PEG30-GCSF showed longer in vivo circulation half-life and 60% higher drug bioavailability than mono-PEG20-GCSF. Consequently, mono-PEG30-GCSF shall be administered at a lower dosage than mono-PEG20-GCSF while retaining the same therapeutic efficacy.

  7. Inhibition of HeLa cell growth by doxorubicin-loaded and tuftsin-conjugated arginate-PEG microparticles.

    PubMed

    Hu, Tianmu; Qahtan, Anwar Saeed Ahmed; Lei, Lei; Lei, Zhixin; Zhao, Dapeng; Nie, Hemin

    2018-03-01

    In order to improve the release pattern of chemotherapy drug and reduce the possibility of drug resistance, poly(ethylene glycol amine) (PEG)-modified alginate microparticles (ALG-PEG MPs) were developed then two different mechanisms were employed to load doxorubicin (Dox): 1) forming Dox/ALG-PEG complex by electrostatic attractions between unsaturated functional groups in Dox and ALG-PEG; 2) forming Dox-ALG-PEG complex through EDC-reaction between the amino and carboxyl groups in Dox and ALG, respectively. Additionally, tuftsin (TFT), a natural immunomodulation peptide, was conjugated to MPs in order to enhance the efficiency of cellular uptake. It was found that the Dox-ALG-PEG-TFT MPs exhibited a significantly slower release of Dox than Dox/ALG-PEG-TFT MPs in neutral medium, suggesting the role of covalent bonding in prolonging Dox retention. Besides, the release of Dox from these MPs was pH-sensitive, and the release rate was observably increased at pH 6.5 compared to the case at pH 7.4. Compared with Dox/ALG-PEG MPs and Dox-ALG-PEG MPs, their counterparts further conjugated with TFT more efficiently inhibited the growth of HeLa cells over a period of 48 h, implying the effectiveness of TFT in enhancing cellular uptake of MPs. Over a period of 48 h, Dox-ALG-PEG-TFT MPs inhibited the growth of HeLa cells less efficiently than Dox/ALG-PEG-TFT MPs but the difference was not significant ( p  > 0.05). In consideration of the prolonged and sustained release of Dox, Dox-ALG-PEG-TFT MPs possess the advantages for long-term treatment.

  8. Luminescence of polyethylene glycol coated CdSeTe/ZnS and InP/ZnS nanoparticles in the presence of copper cations.

    PubMed

    Beaune, Grégory; Tamang, Sudarsan; Bernardin, Aude; Bayle-Guillemaud, Pascale; Fenel, Daphna; Schoehn, Guy; Vinet, Françoise; Reiss, Peter; Texier, Isabelle

    2011-08-22

    The use of click chemistry for quantum dot (QD) functionalization could be very promising for the development of bioconjugates dedicated to in vivo applications. Alkyne-azide ligation usually requires copper(I) catalysis. The luminescence response of CdSeTe/ZnS nanoparticles coated with polyethylene glycol (PEG) is studied in the presence of copper cations, and compared to that of InP/ZnS QDs coated with mercaptoundecanoic acid (MUA). The quenching mechanisms appear different. Luminescence quenching occurs without any wavelength shift in the absorption and emission spectra for the CdSeTe/ZnS/PEG nanocrystals. In this case, the presence of copper in the ZnS shell is evidenced by energy-filtered transmission electron microscopy (EF-TEM). By contrast, in the case of InP/ZnS/MUA nanocrystals, a redshift of the excitation and emission spectra, accompanied by an increase in absorbance and a decrease in photoluminescence, is observed. For CdSeTe/ZnS/PEG nanocrystals, PL quenching is enhanced for QDs with 1) smaller inorganic-core diameter, 2) thinner PEG shell, and 3) hydroxyl terminal groups. Whereas copper-induced PL quenching can be interesting for the design of sensitive cation sensors, copper-free click reactions should be used for the efficient functionalization of nanocrystals dedicated to bioapplications, in order to achieve highly luminescent QD bioconjugates. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Peg supported thermal insulation panel

    DOEpatents

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  10. True incidence and clinical significance of pneumoperitoneum after PEG placement: a prospective study.

    PubMed

    Wiesen, Ari J; Sideridis, Kostas; Fernandes, Angelo; Hines, Jonathan; Indaram, Anant; Weinstein, Lenny; Davidoff, Samuel; Bank, Simmy

    2006-12-01

    PEG is a widely used method for providing nutritional support. Although pneumoperitoneum is a known finding after PEG placement, its true incidence is subject to debate. Small retrospective studies have found varied rates of free air after PEG placement. There were a total of 65 patients. To assess the true incidence of pneumoperitoneum and its clinical significance. Prospective study. Long Island Jewish Medical Center. We obtained upright and anterior-posterior chest radiographs of 65 patients within 3 hours after PEG placement. Type of PEG tube, gauge of the needle used, number of sticks, and indications were recorded. The presence of pneumoperitoneum on the initial chest film was considered to be a positive finding. After a positive result, a repeat chest film was obtained 72 hours later to determine whether there was progression or resolution of the free air. Patients enrolled in the study were also monitored clinically for evidence of peritonitis. Of the 65 patients who underwent PEG placement, 13 developed a pneumoperitoneum on the initial chest radiograph; there was complete resolution of pneumoperitoneum at 72 hours in 10 of the 13 patients. In 3 patients, the free air persisted but was of no clinical significance. The free air was quantified by measuring the height of the air column under the diaphragm and was graded with a scoring system (0, no air; 1, small; 2, moderate; 3, large). Eleven patients who underwent PEG died during the hospitalization; none of the deaths were related to the PEG placement or pneumoperitoneum. The other 54 patients were discharged to a skilled nursing facility. No patients in the study had clinical evidence of peritonitis. There were no adverse events, ie, infection or bleeding, associated with the PEG placement in any of the patients. Our data suggest that pneumoperitoneum after PEG placement is common and, in the absence of clinical symptoms, is of no clinical significance and does not warrant any further intervention.

  11. Bio-orthogonal coupling on PEG-modified quantum dots (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhan, Naiqian; Palui, Goutam; Mattoussi, Hedi

    2017-02-01

    We have designed two sets of aldehyde- and azide-modified ligands; these ligands also present lipoic acid anchors and PEG hydrophilic moieties (LA-PEG-CHO and LA-PEG-azide). We combined this design with a photoligation strategy to prepare QDs with good control over the fraction of intact reactive groups per nanocrystal. We first applied the extremely efficient hydrazone coupling ligation to react the QD with hydrozinopyridine, which produces a well-defined absorption feature at 354 nm ascribed to the hydrazone chromophore. We exploited this signature to measure the number of aldehyde groups per QD when the fraction of LA-PEG-CHO per nanocrystal was varied, by comparing the optical signature at 354 with the molar extinction coefficient of the chromophore. This allowed us to extract an estimate for the number of LA-PEG ligand per QDs for a few distinct size nanocrystals. We further complemented these findings with the use of NMR spectroscopy to estimate of the ligand density using well defined signatures of the terminal protons of the ligands, and found a good agreement between the two techniques. We then showed that bio-orthogonal reactions based on CLICK and hydrazone coupling can be achieved using QDs presenting a mixture of azide and CHO functions. We anticipate that this strategy could be applied other nanoparticles such as those of Au and metals and semiconductor nanocrystals.

  12. Asymmetrical flow field-flow fractionation for the analysis of PEG-asparaginase.

    PubMed

    John, C; Herz, T; Boos, J; Langer, K; Hempel, G

    2016-01-01

    Monomethoxypolyethylene glycol L-asparaginase (PEG-ASNASE) is the PEGylated version of the enzyme L-asparaginase (ASNASE). Both are used for remission induction in acute lymphoblastic leukemia (ALL) and non-Hodgkin's lymphoma (NHL). The treatment control is generally carried out by performing activity assays, though methods to determine the actual enzyme rather than its activity are rare. Using asymmetrical flow field-flow fractionation (AF4) offered the chance to develop a method capable of simultaneously measuring PEG-ASNASE and PEG. A method validation was performed in accordance with FDA guidelines for PEG-ASNASE from non-biological solutions. The method unfolded a linearity of 15-750 U/mL with coefficients of correlation of r(2)>0.99. The coefficients of variation (CV) for within-run and between-run variability were 1.18-10.15% and 2.43-8.73%, respectively. Furthermore, the method was used to perform stability tests of the product Oncaspar® (PEG-ASNASE) and estimation of the molecular weight by multi-angle light scattering (MALS) of stressed samples to correlate them with the corresponding activity. The findings indicate that Oncaspar® stock solution should not be stored any longer than 24 h at room temperature and cannot be frozen in pure aqueous media. The validated method might be useful for the pharmaceutical industry and its quality control of PEG-ASNASE production. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Complete regression of xenograft tumors using biodegradable mPEG-PLA-SN38 block copolymer micelles.

    PubMed

    Lu, Lu; Zheng, Yan; Weng, Shuqiang; Zhu, Wenwei; Chen, Jinhong; Zhang, Xiaomin; Lee, Robert J; Yu, Bo; Jia, Huliang; Qin, Lunxiu

    2016-06-01

    7-Ethyl-10-hydroxy-comptothecin (SN38) is an active metabolite of irinotecan (CPT-11) and the clinical application of SN38 is limited by its hydrophobicity and instability. To address these issues, a series of novel amphiphilic mPEG-PLA-SN38-conjugates were synthesized by linking SN38 to mPEG-PLA-SA, and they could form micelles by self-assembly. The effects of mPEG-PLA composition were studied in vitro and in vivo. The mean diameters of mPEG2K-PLA-SN38 micelles and mPEG4K-PLA-SN38 micelles were 10-20nm and 120nm, respectively, and mPEG2K-PLA-SN38 micelles showed greater antitumor efficacy than mPEG4K-PLA-SN38 micelles both in vitro and in vivo. These data suggest that the lengths of mPEG and PLA chains had a major impact on the physicochemical characteristics and antitumor activity of SN38-conjugate micelles. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Peg supported thermal insulation panel

    DOEpatents

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  15. Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions

    NASA Astrophysics Data System (ADS)

    Burke, Benjamin P.; Baghdadi, Neazar; Kownacka, Alicja E.; Nigam, Shubhanchi; Clemente, Gonçalo S.; Al-Yassiry, Mustafa M.; Domarkas, Juozas; Lorch, Mark; Pickles, Martin; Gibbs, Peter; Tripier, Raphaël; Cawthorne, Christopher; Archibald, Stephen J.

    2015-09-01

    The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging.The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron-oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T2 MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no

  16. Effect of PEG molecular weight on stability, T₂ contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs).

    PubMed

    Park, Yoonjee C; Smith, Jared B; Pham, Tuan; Whitaker, Ragnhild D; Sucato, Christopher A; Hamilton, James A; Bartolak-Suki, Elizabeth; Wong, Joyce Y

    2014-07-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are currently unavailable as MRI contrast agents for detecting atherosclerosis in the clinical setting because of either low signal enhancement or safety concerns. Therefore, a new generation of SPIONs with increased circulation time, enhanced image contrast, and less cytotoxicity is essential. In this study, monodisperse SPIONs were synthesized and coated with polyethylene glycol (PEG) of varying molecular weights. The resulting PEGylated SPIONs were characterized, and their interactions with vascular smooth muscle cells (VSMCs) were examined. SPIONs were tested at different concentrations (100 and 500 ppm Fe) for stability, T2 contrast, cytotoxicity, and cellular uptake to determine an optimal formulation for in vivo use. We found that at 100 ppm Fe, the PEG 2K SPIONs showed adequate stability and magnetic contrast, and exhibited the least cytotoxicity and nonspecific cellular uptake. An increase in cell viability was observed when the SPION-treated cells were washed with PBS after 1h incubation compared to 5 and 24h incubation without washing. Our investigation provides insight into the potential safe application of SPIONs in the clinic. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2005-11-28

    This study is an investigation to experimentally confirm whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of plasmid DNA in tumor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow to polyionically complex with a plasmid DNA. The cationized dextran prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have an active ester and methoxy groups at each terminal, to obtain cationized dextran with different percentages of PEG introduced. Various cationized dextrans with or without PEG introduction were mixed with a plasmid DNA of LacZ to form cationized dextran-plasmid DNA complexes. Electrophoretical examination revealed that the plasmid DNA was complexed both with the cationized dextran and PEG-introduced cationized dextran, irrespective of the PEG introduction percentage, although the higher N/P ratio was needed for plasmid DNA complexation with the latter. By complexation with the cationized dextran, the zeta potential of plasmid DNA was changed to be positive. The charge of PEG-introduced cationized dextran-plasmid DNA complexes became close to 0 mV as their percentage of PEG introduced increased, although the molecular size was about 250 nm, irrespective of the PEG introduction. When cationized dextran-plasmid DNA complexes with or without PEG introduction were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass and the subsequent US irradiation to the tumor mass percutaneously, the PEG-introduced cationized dextran-plasmid DNA complex plus US irradiation enhanced the tumor level of gene expression to a significantly high extent compared with the cationized dextran-plasmid DNA complex and free plasmid DNA with or without US irradiation. The enhanced level depended on the time period and timing of US irradiation. Fluorescent microscopic studies revealed that the localization of plasmid DNA and the gene expression were observed in

  18. Randomised clinical trial: low-volume bowel preparation for colonoscopy - a comparison between two different PEG-based formulations.

    PubMed

    Repici, A; Cestari, R; Annese, V; Biscaglia, G; Vitetta, E; Minelli, L; Trallori, G; Orselli, S; Andriulli, A; Hassan, C

    2012-10-01

    Low-volume bowel preparations with polyethylene glycol (PEG) have been shown to provide an equivalent cleansing with improved tolerability as compared with standard PEG bowel preparation for colonoscopy. A new iso-osmotic sulphate-free formulation of PEG-Citrate-Simethicone (PEG-CS) in combination with bisacodyl has been recently developed. To compare the quality of bowel cleansing with PEG-CS with bisacodyl vs. PEG-Ascorbate (PEG-ASC) in adult out-patients undergoing colonoscopy. Randomised, observer-blind, parallel group study in adult out-patients undergoing colonoscopy in five Italian centres. Both preparations were taken the evening before the procedure. Subjects were instructed to take 2-4 tablets of 5 mg bisacodyl at 16:00 hours and 2 L of PEG-CS at 20:00 hours or 2 L of PEG-ASC plus 1 L of additional water the day before colonoscopy. Bowel cleansing was evaluated according to the Boston Bowel Preparation Scale (≥6 scores were considered as 'clinical success'), and mucosal visibility according to a 3-point scale. Tolerability, acceptability and compliance were also evaluated. Four hundred and eight patients were randomly allocated to PEG-CS and bisacodyl (n = 204, male patient 48%, mean age 59.1 years) or PEG-ASC (n = 204, male patient 51%, age 59.4 years). In the planned per-protocol analysis, the rate of successful preparation was 79.1% following PEG-CS with bisacodyl, and 70% following PEG-ASC (P < 0.05). Mucosal visibility was evaluated as optimal in 56.1% in the PEG-CS and bisacodyl and 46.3% in the PEG-ASC group (P < 0.05). There were no serious adverse events (AE) in each of the two experimental groups. Two subjects in the PEG-ASC group discontinued the study because of AE. Polyethylene glycol-Citrate-Simethicone in combination with bisacodyl was more effective for bowel cleansing than PEG-ASC for out-patient colonoscopy. Tolerability, safety, acceptability and compliance of the two low-volume bowel preparations were similar. © 2012

  19. Unexpected electronic perturbation effects of simple PEG environments on the optical properties of small cadmium chalcogenide clusters

    NASA Astrophysics Data System (ADS)

    Fukunaga, Naoto; Konishi, Katsuaki

    2015-12-01

    Poly(ethylene glycol) (PEG) has been widely used for the surface protection of inorganic nanoobjects because of its virtually `inert' nature, but little attention has been paid to its inherent electronic impacts on inorganic cores. Herein, we definitively show, through studies on optical properties of a series of PEG-modified Cd10Se4(SR)10 clusters, that the surrounding PEG environments can electronically affect the properties of the inorganic core. For the clusters with PEG units directly attached to an inorganic core (R = (CH2CH2O)nOCH3, 1-PEGn, n = 3, ~7, ~17, ~46), the absorption bands, associated with the low-energy transitions, continuously blue-shifted with the increasing PEG chain length. The chain length dependencies were also observed in the photoluminescence properties, particularly in the excitation spectral profiles. By combining the spectral features of several PEG17-modified clusters (2-Cm-PEG17 and 3) whose PEG and core units are separated by various alkyl chain-based spacers, it was demonstrated that sufficiently long PEG units, including PEG17 and PEG46, cause electronic perturbations in the cluster properties when they are arranged near the inorganic core. These unique effects of the long-PEG environments could be correlated with their large dipole moments, suggesting that the polarity of the proximal chemical environment is critical when affecting the electronic properties of the inorganic cluster core.Poly(ethylene glycol) (PEG) has been widely used for the surface protection of inorganic nanoobjects because of its virtually `inert' nature, but little attention has been paid to its inherent electronic impacts on inorganic cores. Herein, we definitively show, through studies on optical properties of a series of PEG-modified Cd10Se4(SR)10 clusters, that the surrounding PEG environments can electronically affect the properties of the inorganic core. For the clusters with PEG units directly attached to an inorganic core (R = (CH2CH2O)nOCH3, 1-PEGn

  20. Dielectric studies on PEG-LTMS based polymer composites

    NASA Astrophysics Data System (ADS)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-02-01

    PEG LTMS based polymer composites were prepared and studied for dielectric constant variation with frequency and temperature as a potential candidate with better dielectric properties. Solution cast technique is used for the preparation of polymer composite with five different compositions. Samples show variation in dielectric constant with frequency and temperature. Dielectric constant is large at low frequencies and higher temperatures. Samples with larger space charges have shown larger dielectric constant. The highest dielectric constant observed was about 29244 for PEG25LTMS sample at 100Hz and 312 K.

  1. Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels.

    PubMed

    Statz, Andrea; Finlay, John; Dalsin, Jeffrey; Callow, Maureen; Callow, James A; Messersmith, Phillip B

    2006-01-01

    The marine antifouling and fouling-release performance of titanium surfaces coated with a bio-inspired polymer was investigated. The polymer consisted of methoxy-terminated poly(ethylene glycol) (mPEG) conjugated to the adhesive amino acid l-3,4-dihydroxyphenylalanine (DOPA) and was chosen based on its successful resistance to protein and mammalian cell fouling. Biofouling assays for the settlement and release of the diatom Navicula perminuta and settlement, growth and release of zoospores and sporelings (young plants) of the green alga Ulva linza were carried out. Results were compared to glass, a poly(dimethylsiloxane) elastomer (Silastic T2) and uncoated Ti. The mPEG-DOPA3 modified Ti surfaces exhibited a substantial decrease in attachment of both cells of N. perminuta and zoospores of U. linza as well as the highest detachment of attached cells under flow compared to control surfaces. The superior performance of this polymer over a standard silicone fouling-release coating in diatom assays and approximately equivalent performance in zoospore assays suggests that this bio-inspired polymer may be effective in marine antifouling and fouling-release applications.

  2. Automated real time peg and tool detection for the FLS trainer box.

    PubMed

    Nemani, Arun; Sankaranarayanan, Ganesh

    2012-01-01

    This study proposes a method that effectively tracks trocar tool and peg positions in real time to allow real time assessment of the peg transfer task of the Fundamentals of Laparoscopic Surgery (FLS). By utilizing custom code along with OpenCV libraries, tool and peg positions can be accurately tracked without altering the original setup conditions of the FLS trainer box. This is achieved via a series of image filtration sequences, thresholding functions, and Haar training methods.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Yang; Li, Weizhen; Wang, Baoyu

    Carbon nanotubes (CNTs) functionalized by a nanothin poly(dopamine) (PDA) layer were produced by a one-pot, nondestructive approach, with direct polymerization of dopamine on the CNT surface. The thickness of the PDA layer can be well-controlled by the reaction time and the proportion of dopamine, and this thickness is found to be the key factor in controlling the dispersion of CNTs and the extent of the interfacial interactions between the CNT@PDA and epoxy resin. SEM results indicated that the dispersion of CNTs in epoxy was improved significantly by coating a nanothin PDA layer onto the CNT surface. In agreeme nt withmore » this finding, the CNTs functionalized with the thinnest PDA layer provided the best mechanical and thermal properties. This result confirmed that a thinner PDA layer could provide optimized interfacial interactions between the CNT@PDA and epoxy matrix and weaken the self-agglomeration of CNTs, which led to an improved effective stress and heat transfer between the CNTs and the polymer matrix.« less

  4. PPy/PMMA/PEG-based sensor for low-concentration acetone detection

    NASA Astrophysics Data System (ADS)

    Daneshkhah, A.; Shrestha, S.; Agarwal, M.; Varahramyan, K.

    2014-05-01

    A polymer pellet-based sensor device comprised of polypyrrole (PPy), polymethyl methacrylate (PMMA) and polyethylene glycol (PEG), its fabrication methods, and the experimental results for low-concentration acetone detection are presented. The design consists of a double layer pellet, where the top layer consists of PPy/PMMA and the bottom layer is composed of PPy/PMMA/PEG. Both sets of material compositions are synthesized by readily realizable chemical polymerization techniques. The mechanism of the sensor operation is based on the change in resistance of PPy and the swelling of PMMA when exposed to acetone, thereby changing the resistance of the layers. The resistances measured on the two layers, and across the pellet, are taken as the three output signals of the sensor. Because the PPy/PMMA and PPy/PMMA/PEG layers respond differently to acetone, as well as to other volatile organic compounds, it is demonstrated that the three output signals can allow the presented sensor to have a better sensitivity and selectivity than previously reported devices. Materials characterizations show formation of new composite with PPy/PMMA/PEG. Material response at various concentrations of acetone was conducted using quartz crystal microbalance (QCM). It was observed that the frequency decreased by 98 Hz for 290 ppm of acetone and by 411 Hz for 1160 ppm. Experimental results with a double layer pellet of PPy/PMMA and PPy/PMMA/PEG show an improved selectivity of acetone over ethanol. The reported acetone sensor is applicable for biomedical and other applications.

  5. Synthesis and characterisation of PEG modified chitosan nanocapsules loaded with thymoquinone.

    PubMed

    Vignesh Kumar, Suresh Kumar; Renuka Devi, Ponnuswamy; Harish, Saru; Hemananthan, Eswaran

    2017-02-01

    Thymoquinone (TQ), a major bioactive compound of Nigella sativa seeds has several therapeutic properties. The main drawback in bringing TQ to therapeutic application is that it has poor stability and bioavailability. Hence a suitable carrier is essential for TQ delivery. Recent studies indicate biodegradable polymers are potentially good carriers of bioactive compounds. In this study, polyethylene glycol (PEG) modified chitosan (Cs) nanocapsules were developed as a carrier for TQ. Aqueous soluble low molecular weight Cs and PEG was selected among different biodegradable polymers based on their biocompatibility and efficacy as a carrier. Optimisation of synthesis of nanocapsules was done based on particle size, PDI, encapsulation efficiency and process yield. A positive zeta potential value of +48 mV, indicating good stability was observed. Scanning electron microscope and atomic-force microscopy analysis revealed spherical shaped and smooth surfaced nanocapsules with size between 100 to 300 nm. The molecular dispersion of the TQ in Cs PEG nanocapsules was studied using X-ray powder diffraction. The Fourier transform infrared spectrum of optimised nanocapsule exhibited functional groups of both polymer and drug, confirming the presence of Cs, PEG and TQ. In vitro drug release studies showed that PEG modified Cs nanocapsules loaded with TQ had a slow and sustained release.

  6. Treatment with mPEG-SPA improves the survival of corneal grafts in rats by immune camouflage.

    PubMed

    Wang, Shuangyong; Li, Liangliang; Liu, Ying; Li, Chaoyang; Zhang, Min; Wang, Bowen; Huang, Zheqian; Gao, Xinbo; Wang, Zhichong

    2015-03-01

    We investigated the immune camouflage effects of methoxy polyethylene glycol succinimidyl propionate (mPEG-SPA) on corneal antigens and explored a novel approach for reducing corneal antigenicity, thereby decreasing corneal graft rejection. Importantly, this approach did not alter normal local immunity. Corneal grafts were treated with mPEG-SPA 5KD or 20KD (3% W/V), which could shield major histocompatibility antigen class I molecules (RT1-A) of corneal grafts. Skin grafts of Wistar rats were transplanted to SD rats. Then the splenic lymphocytes were isolated from SD rats. Subsequently, the lymphocytes were co-cultured with autologous corneal grafts or untreated corneal grafts and PEGylated grafts treated with mPEG-SPA 5KD or 20KD obtained from the counterpart skin donors, which were used as autologous control, allogeneic control, mPEG-SPA 5KD group and mPEG-SPA 20KD group, respectively. Lymphocyte proliferation was lower in mPEG-SPA 5KD group and mPEG-SPA 20KD group than in the allogeneic control. SD rats with corneal neovascularisation were used as recipients for high-risk corneal transplantation and were randomly divided into four groups: autologous control, allogeneic control, mPEG-SPA 5KD group and mPEG-SPA 20KD group. The recipients received corneal grafts from Wistar rats. Corneal graft survival was prolonged and graft rejection was reduced in the mPEG-SPA 5KD group and the mPEG-SPA 20KD group compared to the allogeneic control. Thus, we think that mPEG-SPA could immunologically camouflage corneal antigens to prolong corneal grafts survival in high-risk transplantation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Impact of large aggregated uricases and PEG diol on accelerated blood clearance of PEGylated canine uricase.

    PubMed

    Zhang, Chun; Fan, Kai; Ma, Xuefeng; Wei, Dongzhi

    2012-01-01

    Uricase has proven therapeutic value in treating hyperuricemia but sufficient reduction of its immunogenicity may be the largest obstacle to its chronic use. In this study, canine uricase was modified with 5 kDa mPEG-SPA and the impact of large aggregated uricases and cross-linked conjugates induced by difunctional PEG diol on immunogenicity was investigated. Recombinant canine uricase was first expressed and purified to homogeneity. Source 15Q anion-exchange chromatography was used to separate tetrameric and aggregated uricase prior to pegylation, while DEAE anion-exchange chromatography was used to remove Di-acid PEG (precursor of PEG diol) from unfractionated 5 kDa mPEG-propionic acid. Tetrameric and aggregated uricases were separately modified with the purified mPEG-SPA. In addition, tetrameric uricases was modified with unfractionated mPEG-SPA, resulting in three types of 5 kDa mPEG-SPA modified uricase. The conjugate size was evaluated by dynamic light scattering and transmission electron microscope. The influence of differently PEGylated uricases on pharmacokinetics and immunogenicity were evaluated in vivo. The accelerated blood clearance (ABC) phenomenon previously identified for PEGylated liposomes occurred in rats injected with PEGylated uricase aggregates. Anti-PEG IgM antibodies, rather than neutralizing antibodies, were found to mediate the ABC. The size of conjugates is important for triggering such phenomena and we speculate that 40-60 nm is the lower size limit that can trigger ABC. Removal of the uricase aggregates and the PEG diol contaminant and modifying with small PEG reagents enabled ABC to be successfully avoided and sufficient reduction in the immunogenicity of 5 kDa mPEG-modified tetrameric canine uricase.

  8. Impact of Large Aggregated Uricases and PEG Diol on Accelerated Blood Clearance of PEGylated Canine Uricase

    PubMed Central

    Zhang, Chun; Fan, Kai; Ma, Xuefeng; Wei, Dongzhi

    2012-01-01

    Background Uricase has proven therapeutic value in treating hyperuricemia but sufficient reduction of its immunogenicity may be the largest obstacle to its chronic use. In this study, canine uricase was modified with 5 kDa mPEG-SPA and the impact of large aggregated uricases and cross-linked conjugates induced by difunctional PEG diol on immunogenicity was investigated. Methods and Findings Recombinant canine uricase was first expressed and purified to homogeneity. Source 15Q anion-exchange chromatography was used to separate tetrameric and aggregated uricase prior to pegylation, while DEAE anion-exchange chromatography was used to remove Di-acid PEG (precursor of PEG diol) from unfractionated 5 kDa mPEG-propionic acid. Tetrameric and aggregated uricases were separately modified with the purified mPEG-SPA. In addition, tetrameric uricases was modified with unfractionated mPEG-SPA, resulting in three types of 5 kDa mPEG-SPA modified uricase. The conjugate size was evaluated by dynamic light scattering and transmission electron microscope. The influence of differently PEGylated uricases on pharmacokinetics and immunogenicity were evaluated in vivo. The accelerated blood clearance (ABC) phenomenon previously identified for PEGylated liposomes occurred in rats injected with PEGylated uricase aggregates. Anti-PEG IgM antibodies, rather than neutralizing antibodies, were found to mediate the ABC. Conclusions The size of conjugates is important for triggering such phenomena and we speculate that 40–60 nm is the lower size limit that can trigger ABC. Removal of the uricase aggregates and the PEG diol contaminant and modifying with small PEG reagents enabled ABC to be successfully avoided and sufficient reduction in the immunogenicity of 5 kDa mPEG-modified tetrameric canine uricase. PMID:22745806

  9. Assessment of PLGA-PEG-PLGA Copolymer Hydrogel for Sustained Drug Delivery in the Ear

    PubMed Central

    Feng, Liang; Ward, Jonette A.; Li, S. Kevin; Tolia, Gaurav; Hao, Jinsong; Choo, Daniel I.

    2014-01-01

    Temperature sensitive copolymer systems were previously studied using modified diffusion cells in vitro for intratympanic injection, and the PLGA-PEG-PLGA copolymer systems were found to provide sustained drug delivery for several days. The objectives of the present study were to assess the safety of PLGA-PEG-PLGA copolymers in intratympanic injection in guinea pigs in vivo and to determine the effects of additives glycerol and poloxamer in PLGA-PEG-PLGA upon drug release in the diffusion cells in vitro for sustained inner ear drug delivery. In the experiments, the safety of PLGA-PEG-PLGA copolymers to inner ear was evaluated using auditory brainstem response (ABR). The effects of the additives upon drug release from PLGA-PEG-PLGA hydrogel were investigated in the modified Franz diffusion cells in vitro with cidofovir as the model drug. The phase transition temperatures of the PLGA-PEG-PLGA copolymers in the presence of the additives were also determined. In the ABR safety study, the PLGA-PEG-PLGA copolymer alone did not affect hearing when delivered at 0.05-mL dose but caused hearing loss after 0.1-mL injection. In the drug release study, the incorporation of the bioadhesive additive, poloxamer, in the PLGA-PEG-PLGA formulations was found to decrease the rate of drug release whereas the increase in the concentration of the humectant additive, glycerol, provided the opposite effect. In summary, the PLGA-PEG-PLGA copolymer did not show toxicity to the inner ear at the 0.05-mL dose and could provide sustained release that could be controlled by using the additives for inner ear applications. PMID:24438444

  10. Very rare outburst of the symbiotic variable AG Peg

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2015-06-01

    The symbiotic variable AG Peg is in outburst, the first one observed since its only known outburst, which occurred in 1860-1870. Currently at visual/V magnitude 7.2 (B=7.8), it is an excellent target for visual, PEP, CCD, and DSLR observers and spectroscopists. The current outburst began after 2015 May 27 UT (T. Markham, Leek, Staffordshire, England, from the BAAVSS online database) and was underway by June 13.90 (A. Kosa-Kiss, Salonta, Romania). AG Peg has a very interesting history. Regarding the 1860-1870 outburst, data collected by E. Zinner (Merrill, 1959, S&T, 18, 9, 490) show AG Peg slowly brightening from visual magnitude 9.2 in 1821 to 8.0 in 1855, then at 6.2 in 1860 and brightening to 6.0 in 1870, then in decline at 6.8 by 1903, and continuing to decline slowly ( 6.9 in 1907, 8.0 in 1920, 8.3 in 1940). Observations in the AAVSO International Database since July 1941 show that the decline has continued without interruption from an average magnitude of 7.7 to an average magnitude of 8.8-9.0 by mid-January 2015. The AAVSO data since 1941 also show the periodic 0.4-magnitude variations ( 825 days) that have been present since the 1920s. Thus, after taking about 10 years to brighten from its minimum magnitude of about 9 to its maximum magnitude of 6.0, and then fading gradually over 140-145 years, AG Peg is now in outburst again. There are no observations of the 1860-1870 outburst that show the outburst's beginning. This time, however, in 2015, the opportunity is here to follow the outburst itself closely and learn just what this system does during outburst. Observations in all bands and visual observations are strongly encouraged. AG Peg is bright enough to be a very good PEP target. For spectroscopists, AG Peg has an extremely complex spectrum that undergoes substantial changes and would make a very interesting target. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be

  11. Evaluation of polyethylene glycol coated liposomes labeled with Tc-99m as a blood pool agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, W.T.; Klipper, R.; Goins, B.

    1994-05-01

    This investigation evaluated Tc-99m liposomes coated with polyethylene glycol (PEG) as a blood pool agent in comparison with Tc-99m liposomes carrying no surface charge (Neutral) and with Tc-99m autologous red cells. Liposomes (135 nm diameter) encapsulating glutathione were labeled with Tc-99m using the lipophilic chelator, HMPAO as previously described. Autologous red cells were labeled using an Ultratag kit. Labeling efficiencies averaged 66%, 52%, and 97% for the PEG liposomes. Neutral liposomes, and red cells, respectively. Rabbits (3-3.5 Kg) were injected IV via ear vein with 2.0 mls of PEG liposomes (2 mCi, 17 mg phospholipid/Kg body weight, n=5). Neutral liposomesmore » (1.3 mCi, 17 mg phospholipid/Kg body weight, n=4), or red cells (2.6 mCi, n=2). Gamma camera images were acquired at 5,22, and 45 minutes, and 2,20,and 44 hours post-injection. Blood samples were obtained at each time point to determine clearance kinetics. Circulation half lives of both Tc-99m liposome formulations were longer than Tc-99m red cells (8 hrs), with the half life of PEG liposomes (35 hrs) 1.6 times longer than Neutral liposomes (22 hrs). In vivo stability of the Tc-99m label was excellent for the liposomes with only 3.5-4% bladder activity at 45 minutes compared to 12% bladder activity for the red cells. Excellent blood pool images were obtained for the PEG liposomes in the rabbit. Heart/liver ratios calculated from region of interest analysis of 45 minutes images were 1.9, 1.5, and 1.7 for PEG liposomes, Neutral liposomes and red cells. This study demonstrates the feasibility of using Tc-99m PEG liposomes to perform gated cardiac blood pool and rapid gastrointestinal bleeding studies.« less

  12. Endostar-loaded PEG-PLGA nanoparticles: in vitro and in vivo evaluation.

    PubMed

    Hu, Sanyuan; Zhang, Yangde

    2010-11-24

    Endostar, a novel recombinant human endostatin, which was approved by the Chinese State Food and Drug Administration in 2005, has a broad spectrum of activity against solid tumors. In this study, we aimed to determine whether the anticancer effect of Endostar is increased by using a nanocarrier system. It is expected that the prolonged circulation of endostar will improve its anticancer activity. Endostar-loaded nanoparticles were prepared to improve controlled release of the drug in mice and rabbits, as well as its anticancer effects in mice with colon cancer. A protein release system could be exploited to act as a drug carrier. Nanoparticles were formulated from poly (ethylene glycol) modified poly (DL-lactide-co-glycolide) (PEG-PLGA) by a double emulsion technique. Physical and release characteristics of endostar-loaded nanoparticles in vitro were evaluated by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and micro bicinchoninic acid protein assay. The pharmacokinetic parameters of endostar nanoparticles in rabbit and mice plasma were measured by enzyme-linked immunosorbent assay. Western blot was used to detect endostatin in different tissues. To study the effects of endostar-loaded nanoparticles in vivo, nude mice in which tumor cells HT-29 were implanted, were subsequently treated with endostar or endostar-loaded PEG-PLGA nanoparticles. Using TEM and PCS, endostar-loaded PEG-PLGA nanoparticles were found to have a spherical core-shell structure with a diameter of 169.56 ± 35.03 nm. Drug-loading capacity was 8.22% ± 2.35% and drug encapsulation was 80.17% ± 7.83%. Compared with endostar, endostar-loaded PEG-PLGA nanoparticles had a longer elimination half-life and lower peak concentration, caused slower growth of tumor cell xenografts, and prolonged tumor doubling times. The nanoparticles changed the pharmacokinetic characteristics of endostar in mice and rabbits, thereby reinforcing anticancer activity. In conclusion, PEG

  13. Current status of percutaneous endoscopic gastrostomy (PEG) in a general hospital in Japan: a cross-sectional study

    PubMed Central

    Kusano, Chika; Yamada, Nobuo; Kikuchi, Kenji; Hashimoto, Masaji; Gotoda, Takuji

    2016-01-01

    Background: There has been debate over the indications for percutaneous endoscopic gastrostomy (PEG) in recent years in Japan. In addition, the level of satisfaction of patients and patient’s family after PEG remains unclear. The aim of this study was to investigate the current status of PEG and the level of satisfaction of patients and patients’ families after PEG in Japan. Methods: We reviewed the existing data of all patients who underwent PEG tube insertion at Yuri Kumiai General Hospital (Akita, Japan) between February 2000 and December 2010. We examined the following points: underlying diseases requiring PEG, levels of consciousness, and performance status. We also sent a questionnaire to the patients and patient’s families to ask about their satisfaction with and thoughts about PEG. Results: The data of 545 patients who underwent PEG were reviewed. There were 295 men and 250 women, with a mean age of 77.2 ± 11.4 years. PEG was indicated most frequently for cerebrovascular disorders (48.2%, 239/545). There were 515 (94.4%, 515/545) patients showing consciousness disturbance and 444 (81.5%, 444/545) bedridden patients. The questionnaire was answered by one patient himself and 316 patients’ families. When asked, “Was performing PEG a good decision?”, 57.5% (182/316) of the patients’ families answered yes. Meanwhile, when patients’ family members were asked if they would wish to undergo PEG if they were in the same condition as the patient, 28.4% (90/316) answered yes, whereas 55.3% (175/316) answered no. Conclusions: Few patients were able to make their own decision about PEG tube placement because of consciousness disturbance. As a result, many family members of the patients did not want to experience PEG for themselves. Future studies should be performed to clarify the quality of life and ethical aspects associated with PEG. PMID:27313796

  14. Drug release patterns and cytotoxicity of PEG-poly(aspartate) block copolymer micelles in cancer cells.

    PubMed

    Eckman, Allison M; Tsakalozou, Eleftheria; Kang, Nayon Y; Ponta, Andrei; Bae, Younsoo

    2012-07-01

    To test physicochemical and biological properties of PEG-poly(aspartate) [PEG-p(Asp)] block copolymer micelles entrapping doxorubicin hydrochloride (DOX) through ionic interaction. PEG-p(Asp) was synthesized from 5 kDa PEG and 20 Asp units. Carboxyl groups of p(Asp) were present as benzyl ester [PEG-p(Asp/Bz)], sodium salt [PEG-p(Asp/Na)] or free acid [PEG-p(Asp/H)]. Block copolymers and DOX were mixed at various ratios to prepare polymer micelles, which were subsequently characterized to determine particle size, drug loading and release patterns, and cytotoxicity against prostate (PC3 and DU145) and lung (A549) cancer cell lines. PEG-p(Asp/Bz), Na- and H-micelles entrapped 1.1, 56.8 and 40.6 wt.% of DOX, respectively. Na- and H-micelles (<100 nm) showed time-dependent DOX release at pH 7.4, which was accelerated at pH 5.0. Na-micelles were most stable at pH 7.4, retaining 31.8% of initial DOX for 48 h. Cytotoxicity of Na-micelles was 23.2% (A549), 28.5% (PC3) and 45.9% (DU145) more effective than free DOX. Ionic interaction appeared to entrap DOX efficiently in polymer micelles from PEG-p(Asp) block copolymers. Polymer micelles possessing counter ions (Na) of DOX in the core were the most stable, releasing drugs for prolonged time in a pH-dependent manner, and suppressing cancer cells effectively.

  15. Sheddable Coatings for Long-Circulating Nanoparticles

    PubMed Central

    Romberg, Birgit; Hennink, Wim E.

    2007-01-01

    Nanoparticles, such as liposomes, polymeric micelles, lipoplexes and polyplexes are frequently studied as targeted drug carrier systems. The ability of these particles to circulate in the bloodstream for a prolonged period of time is often a prerequisite for successful targeted delivery. To achieve this, hydrophilic ‘stealth’ polymers, such as poly(ethylene glycol) (PEG), are used as coating materials. Such polymers shield the particle surface and thereby reduce opsonization by blood proteins and uptake by macrophages of the mononuclear phagocyte system. Yet, after localizing in the pathological site, nanoparticles should deliver their contents in an efficient manner to achieve a sufficient therapeutic response. The polymer coating, however, may hinder drug release and target cell interaction and can therefore be an obstacle in the realization of the therapeutic response. Attempts have been made to enhance the therapeutic efficacy of sterically stabilized nanoparticles by means of shedding, i.e. a loss of the coating after arrival at the target site. Such an ‘unmasking’ process may facilitate drug release and/or target cell interaction processes. This review presents an overview of the literature regarding different shedding strategies that have been investigated for the preparation of sterically stabilized nanoparticulates. Detach mechanisms and stimuli that have been used are described. PMID:17551809

  16. Clicked bis-PEG-peptide conjugates for studying calmodulin-Kv7.2 channel binding.

    PubMed

    Bonache, M Angeles; Alaimo, Alessandro; Malo, Covadonga; Millet, Oscar; Villarroel, Alvaro; González-Muñiz, Rosario

    2014-11-28

    The recombinant Kv7.2 calmodulin (CaM) binding site (Q2AB CaMBD) shows a high tendency to aggregate, thus complicating biochemical and structural studies. To facilitate these studies we have conceived bis-PEG-peptide CaMBD-mimetics linking helices A and B in single, easy to handle molecules. Short PEG chains were selected as spacers between the two peptide molecules, and a Cu(i)-catalyzed cycloaddition (CuAAC) protocol was used to assemble the final bis-PEG-peptide conjugate, by the convenient functionalization of PEG arms with azide and alkyne groups. The resulting conjugates, with a certain helical character in TFE solutions (CD), showed nanomolar affinity in a fluorescence CaM binding in vitro assay, higher than just the sum of the precursor PEG-peptide affinities, thus validating our design. The approach to these first described examples of Kv7.2 CaMBD-mimetics could pave the way to chimeric conjugates merging helices A and B from different Kv7 subunits.

  17. Stabilization of Resveratrol in Blood Circulation by Conjugation to mPEG and mPEG-PLA Polymers: Investigation of Conjugate Linker and Polymer Composition on Stability, Metabolism, Antioxidant Activity and Pharmacokinetic Profile

    PubMed Central

    Siddalingappa, Basavaraj; Benson, Heather A. E.; Brown, David H.; Batty, Kevin T.; Chen, Yan

    2015-01-01

    Resveratrol is naturally occurring phytochemical with diverse biological activities such as chemoprevention, anti-inflammatory, anti-cancer, anti-oxidant. But undergoes rapid metabolism in the body (half life 0.13h). Hence Polymer conjugation utilizing different chemical linkers and polymer compositions was investigated for enhanced pharmacokinetic profile of resveratrol. Ester conjugates such as α-methoxy-ω-carboxylic acid poly(ethylene glycol) succinylamide resveratrol (MeO-PEGN-Succ-RSV) (2 and 20 kDa); MeO-PEG succinyl ester resveratrol (MeO-PEGO-Succ-RSV) (2 kDa); α-methoxy poly(ethylene glycol)-co-polylactide succinyl ester resveratrol (MeO-PEG-PLAO-Succ-RSV) (2 and 6.6kDa) were prepared by carbodiimide coupling reactions. Resveratrol-PEG ethers (2 and 5 kDa) were synthesized by alkali-mediated etherification. All polymer conjugates were fully characterized in vitro and the pharmacokinetic profile of selected conjugates was characterized in rats. Buffer and plasma stability of conjugates was dependent on polymer hydrophobicity, aggregation behavior and PEG corona, with MeO-PEG-PLAO-Succ-RSV (2 kDa) showing a 3h half-life in rat plasma in vitro. Polymer conjugates irrespective of linker chemistry protected resveratrol against metabolism in vitro. MeO-PEG-PLAO-Succ-RSV (2 kDa), Resveratrol-PEG ether (2 and 5 kDa) displayed improved pharmacokinetic profiles with significantly higher plasma area under curve (AUC), slower clearance and smaller volume of distribution, compared to resveratrol. PMID:25799413

  18. Novel Fouling-Reducing Coatings for Ultrafiltration, Nanofiltration, and Reverse Osmosis Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benny Freeman

    2008-08-31

    Polymeric membranes could potentially be the most flexible and viable long-term strategy for treatment of produced water from oil and gas production. However, widespread use of membranes, including reverse osmosis (RO) membranes, for produced water purification is hindered due to fouling caused by the impurities present in the water. Fouling of RO membranes is likely caused by surface properties including roughness, hydrophilicity, and charge, so surface modification is the most widely considered approach to improve the fouling properties of current RO membranes. This project focuses on two main approaches to surface modification: coating and grafting. Hydrophilic coating and grafting materialsmore » based on poly(ethylene glycol) (PEG) are applied to commercial RO membranes manufactured by Dow FilmTec and GE. Crossflow filtration experiments are used to determine the fouling resistance of modified membranes, and compare their performance to that of unmodified commercial RO membranes. Grafting and coating are shown to be two alternative methods of producing modified membranes with improved fouling resistance.« less

  19. The efficacy of nimodipine drug delivery using mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles.

    PubMed

    Huang, Shuling; Yu, Xiaohong; Yang, Linlin; Song, Fenglan; Chen, Gang; Lv, Zhufen; Li, Tiao; Chen, De; Zhu, Wanhua; Yu, Anan; Zhang, Yongming; Yang, Fan

    2014-10-15

    In order to develop and compare mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles, with the intention to develop a highly efficient formulation for nimodipine (NIM), NIM-loaded micelles and mixed micelles were made and their pharmacokinetics were studied. Single factor experiments and orthogonal experiments were designed to optimize the final preparation process, characterizations and drug release behaviors were studied. Pharmacokinetics of NIM micelles, NIM mixed micelles were researched and were compared to NIM solution. Micelles and mixed micelles were prepared by solvent evaporation method, with relatively high drug loading efficiency and within nano-particle size range. The CMC value of mPEG-PLA was lower than that of mPEG-PLA/TPGS. The results of FTIR and TEM confirmed the spherical core-shell structure of micelles as well as mixed micelles, and the encapsulation of NIM inside the cores. In vitro release showed that micelles and mixed micelles had sustained release effect in the forms of passive diffusion and dissolution process, respectively. Following intraperitoneal administration (5mg/kg), micelles and mixed micelles were absorbed faster than solution, and with larger MRT(0-t), smaller CLz and larger AUC(0-t) as compared to that of solution, which showed micelles and mixed micelles had higher retention, slower elimination and higher bioavailability. This experiment also showed that mixed micelles released NIM more stably than micelles. By evaluate the bioequivalence, NIM micelles and NIM mixed micelles were testified non-bioequivalent to NIM solution. Micelles and mixed micelles could sustain the NIM concentrations more efficiently in plasma as compared to solution. Mixed micelles were the best ones since they had high loading content and released more stably. Thus, apprehending micelles and mixed micelles were suited as poor aqueous solubility drug carriers, and mixed micelles were better due to their high loading content and more stable release

  20. PEG and Thickeners: A Critical Interaction Between Polyethylene Glycol Laxative and Starch-Based Thickeners.

    PubMed

    Carlisle, Brian J; Craft, Garrett; Harmon, Julie P; Ilkevitch, Alina; Nicoghosian, Jenik; Sheyner, Inna; Stewart, Jonathan T

    2016-09-01

    Clinicians commonly encounter dysphagia and constipation in a skilled nursing population. Increasing the viscosity of liquids, usually with a starch- or xanthan gum-based thickener, serves as a key intervention for patients with dysphagia. We report a newly identified and potentially dangerous interaction between polyethylene glycol 3350 laxative (PEG) and starch-thickened liquids. A patient requiring nectar-thickened liquids became constipated, and medical staff prescribed PEG for constipation. His nurse observed that the thickened apple juice immediately thinned to near-water consistency when PEG was added. She obtained the same results with thickened water and coffee. We quantified this phenomenon by isothermal rotational rheology. Results confirmed a precipitous loss of thickening when PEG was added to starch-based thickeners but not with xanthan gum-based thickeners. Clinicians and front-line staff should be aware of this potentially critical interaction between PEG- and starch-based thickeners. Although confirmatory studies are needed, our preliminary data suggest that PEG may be compatible with xanthan gum-- based thickeners. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. All rights reserved.

  1. mPEG-PLA Micelle for Delivery of Effective Parts of Andrographis Paniculata.

    PubMed

    Yao, Hailu; Song, Shiyong; Miao, Xiaolu; Liu, Xiao; Zhao, Junli; Wang, Zhen; Shao, Xiaoting; Zhang, Yu; Han, Guang

    2018-01-01

    Many studies have shown that Andrographis paniculata (Burm. f.) Nees has a good anti-tumor effect, but poor solubility in water and poor bioavailability hinder the modernization of it. To formulate the effective parts (mainly diterpene lactones) of Andrographis paniculata (AEP) into targeting drug delivery system, a series of poly(ethylene glycol)-poly(D.L-lactic acid)(mPEG-PLA) with different ratio of hydrophilic and hydrophobic segment was synthetized to encapsulate AEP. AEP micelles were prepared by a simple solvent-evaporation method. According to the loading capacity, the best polymer was chosen. mPEG-PLA micelles were characterized in terms of drug entrapping efficiency, loading capacity, size, the crystalline state of AEP, stability and release profile. Meanwhile, the cytotoxicity of micelles on mouse breast cancer 4T-1 was investigated. These micelle (mPEG-PLA-AEP) particles had a size of (92.84±5.63) nm and a high entrapping efficiency and loading capacity of (91.00±11.53)% and (32.14±3.02)%(w/w), respectively. The powder DSC showed that drugs were well encapsulated in the core of micelles. mPEG-PLA-AEP had a good stability against salt dissociation, protein adsorption and anion substitution and the solubility of andrographolide (AG) and 14-deoxy-11,12-didehydroandrographolide(DDAG) in AEP increased 4.51 times and 2.12 times in water, and the solubility of DAG showed no difference. mPEG-PLA-AEP had the same release profile in different dissolution medium. Cytotoxicity testing in vitro demonstrated that mPEG-PLA-AEP exhibited higher cell viability inhibition in mouse breast cancer 4T-1 than free AEP. mPEG-PLA micelles offer a promising alternative for TCM therapy with higher solubility and improved antitumor effect. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent.

    PubMed

    Chen, Zhijin; Yu, Dexin; Liu, Chunxi; Yang, Xiaoyan; Zhang, Na; Ma, Chunhong; Song, Jibin; Lu, Zaijun

    2011-09-01

    A nanoparticle magnetic resonance imaging (MRI) contrast agent targeted to liver was developed by conjugation of gadolinium (Gd) chelate groups onto the biocompatible poly(l-lactide)-block-poly (ethylene glycol) (PLA-PEG) nanoparticles. PLA-PEG conjugated with diethylenetriaminopentaacetic acid (DTPA) was used to formulate PLA-PEG-DTPA nanoparticles by solvent diffusion method, and then Gd was loaded onto the nanoparticles by chelated with the unfolding DTPA on the surface of the PLA-PEG-DTPA nanoparticles. The mean size of the nanoparticles was 265.9 ± 6.7 nm. The relaxivity of the Gd-labeled nanoparticles was measured, and the distribution in vivo was evaluated in rats. Compared with conventional contrast agent (Magnevist), the Gd-labeled PLA-PEG nanoparticles showed significant enhancement both on liver targeting ability and imaging signal intensity. The T(1) and T(2) relaxivities per [Gd] of the Gd-labeled nanoparticles was 18.865 mM(-1) s(-1) and 24.863 mM(-1) s(-1) at 3 T, respectively. In addition, the signal intensity in vivo was stronger comparing with the Gd-DTPA and the T(1) weight time was lasting for 4.5 h. The liver targeting efficiency of the Gd-labeled PLA-PEG nanoparticles in rats was 14.57 comparing with Magnevist injection. Therefore, the Gd-labeled nanoparticles showed the potential as targeting molecular MRI contrast agent for further clinical utilization.

  3. Electrothermal Microactuators With Peg Drive Improve Performance for Brain Implant Applications

    PubMed Central

    Anand, Sindhu; Sutanto, Jemmy; Baker, Michael S.; Okandan, Murat; Muthuswamy, Jit

    2013-01-01

    This paper presents a new actuation scheme for in-plane bidirectional translation of polysilicon microelectrodes. The new Chevron-peg actuation scheme uses microelectromechanical systems (MEMS) based electrothermal microactuators to move microelectrodes for brain implant applications. The design changes were motivated by specific needs identified by the in vivo testing of an earlier generation of MEMS microelectrodes that were actuated by the Chevron-latch type of mechanism. The microelectrodes actuated by the Chevron-peg mechanism discussed here show improved performance in the following key areas: higher force generation capability (111 μN per heat strip compared to 50 μN), reduced power consumption (91 mW compared to 360 mW), and reliable performance with consistent forward and backward movements of microelectrodes. Failure analysis of the Chevron-latch and the Chevron-peg type of actuation schemes showed that the latter is more robust to wear over four million cycles of operation. The parameters for the activation waveforms for Chevron-peg actuators were optimized using statistical analysis. Waveforms with a 1-ms time period and a 1-Hz frequency of operation showed minimal error between the expected and the actual movement of the microelectrodes. The new generation of Chevron-peg actuators and microelectrodes are therefore expected to enhance the longevity and performance of implanted microelectrodes in the brain.  [2011-0341] PMID:24431926

  4. The traveling salesman problem in surgery: economy of motion for the FLS Peg Transfer task.

    PubMed

    Falcone, John L; Chen, Xiaotian; Hamad, Giselle G

    2013-05-01

    In the Peg Transfer task in the Fundamentals of Laparoscopic Surgery (FLS) curriculum, six peg objects are sequentially transferred in a bimanual fashion using laparoscopic instruments across a pegboard and back. There are over 268 trillion ways of completing this task. In the setting of many possibilities, the traveling salesman problem is one where the objective is to solve for the shortest distance traveled through a fixed number of points. The goal of this study is to apply the traveling salesman problem to find the shortest two-dimensional path length for this task. A database platform was used with permutation application output to generate all of the single-direction solutions of the FLS Peg Transfer task. A brute-force search was performed using nested Boolean operators and database equations to calculate the overall two-dimensional distances for the efficient and inefficient solutions. The solutions were found by evaluating peg object transfer distances and distances between transfers for the nondominant and dominant hands. For the 518,400 unique single-direction permutations, the mean total two-dimensional peg object travel distance was 33.3 ± 1.4 cm. The range in distances was from 30.3 to 36.5 cm. There were 1,440 (0.28 %) of 518,400 efficient solutions with the minimized peg object travel distance of 30.3 cm. There were 8 (0.0015 %) of 518,400 solutions in the final solution set that minimized the distance of peg object transfer and minimized the distance traveled between peg transfers. Peg objects moved 12.7 cm (17.4 %) less in the efficient solutions compared to the inefficient solutions. The traveling salesman problem can be applied to find efficient solutions for surgical tasks. The eight solutions to the FLS Peg Transfer task are important for any examinee taking the FLS curriculum and for certification by the American Board of Surgery.

  5. [Study on the stability of chicken egg yolk immunoglobulin (IgY) modified with mPEG].

    PubMed

    Wang, Li-Ying; Ma, Mei-Hu; Huang, Qun; Shi, Xiao-Xia

    2012-09-01

    The objective of the present paper was to study the effect of monomethoxypolyethlene glycol (mPEG) modification on the stability of chicken IgY and compare the stability of the modification products by Fourier transform infrared spectroscopy (FTIR), CD spectrooscopy and fluorescence spectroscopy. NHS-mPEG was used to modify IgY after mPEG was activated with N-hydroxysuccinimide (NHS). The optimal reaction condition for modification was 1:10 molar rate of IgY to mPEG at pH 7, reaction for 1 h, and the product was obtained with modification rate of 20.56% and activity reservation of 87. 62%. In addition, the thermal and pH stability of IgY and mPEG-IgY was compared by spectroscopic methods. The results showed that the alpha-helix, beta-sheet, beta-turn, and random content of IgY changed from 14.5%, 42.1%, 6.2% and 37.2% to 1.6%, 55.25%, 5.8% and 37.5%, while mPEG changed from 12.9%, 42.7%, 6.3% and 38. 1% to 3.1%, 50.5%, 7.2% and 39.2%, respectively, after incubating for 120 min at 70 degrees C. For the treatment with acid-base, similarly, the structure changes of mPEG-IgY were smaller than IgY. Thus, it is indicated that IgY modified by mPEG had greater stable properties.

  6. A Retrospective Study of Association between Peg-shaped Maxillary Lateral Incisors and Dental Anomalies.

    PubMed

    Kim, Jae-Hwan; Choi, Nam-Ki; Kim, Seon-Mi

    The purpose of this study was to investigate the prevalence of peg-shaped maxillary lateral incisors and the incidence of associated dental anomalies in children. We investigated the prevalence of peg-laterals and incidence of associated dental anomalies in 3,834 children aged 7-15 who visited the Department of Pediatric Dentistry from January 2010 to December 2015 and underwent panoramic radiographs. The prevalence of peg-laterals was 1.69% in boys, 1.75% in girls, and 1.72% overall. Among children with peg-laterals, the frequencies of associated dental anomalies were as follows: congenitally missing teeth, 31.8%; dens invaginatus, 19.7%; palatally displaced canines, 12.1%; supernumerary teeth, 7.6%; and transposition, 7.6%. As children with peg-laterals have a higher incidence of other dental anomalies, careful consideration is needed when planning diagnosis and treatment.

  7. Characterization, efficacy, pharmacokinetics, and biodistribution of 5kDa mPEG modified tetrameric canine uricase variant.

    PubMed

    Zhang, Chun; Fan, Kai; Luo, Hua; Ma, Xuefeng; Liu, Riyong; Yang, Li; Hu, Chunlan; Chen, Zhenmin; Min, Zhiqiang; Wei, Dongzhi

    2012-07-01

    PEGylated uricase is a promising anti-gout drug, but the only commercially marketed 10kDa mPEG modified porcine-like uricase (Pegloticase) can only be used for intravenous infusion. In this study, tetrameric canine uricase variant was modified by covalent conjugation of all accessible ɛ amino sites of lysine residues with a smaller 5kDa mPEG (mPEG-UHC). The average modification degree and PEGylation homogeneity were evaluated. Approximately 9.4 5 kDa mPEG chains were coupled to each monomeric uricase and the main conjugates contained 7-11 mPEG chains per subunit. mPEG-UHC showed significantly therapeutic or preventive effect on uric acid nephropathy and acute urate arthritis based on three different animal models. The clearance rate from an intravenous injection of mPEG-UHC varied significantly between species, at 2.61 mL/h/kg for rats and 0.21 mL/h/kg for monkeys. The long elimination half-life of mPEG-UHC in non-human primate (191.48 h, intravenous injection) indicated the long-term effects in humans. Moreover, the acceptable bioavailability of mPEG-UHC after subcutaneous administration in monkeys (94.21%) suggested that subcutaneous injection may be regarded as a candidate administration route in clinical trails. Non-specific tissue distribution was observed after administration of (125)I-labeled mPEG-UHC in rats, and elimination by the kidneys into the urine is the primary excretion route. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Pharmacometrics and delivery of novel nanoformulated PEG-b-poly(ε-caprolactone) micelles of rapamycin

    PubMed Central

    Yáñez, Jaime A.; Forrest, M. Laird; Ohgami, Yusuke

    2008-01-01

    Purpose To determine the pharmacokinetics, tissue, and blood distribution of rapamycin PEG-block-poly(ε-caprolactone) (PEG-b-PCL) micelle formulations with and without the addition of α-tocopherol compared to control rapamycin in Tween 80/PEG 400/N,N-dimethylacetamide (DMA) (7:64:29). Methods Rapamycin was incorporated at 10% w/w into PEG-b-PCL micelles (5:10 kDa) using a solvent extraction technique. The co-incorporation of 2:1 α-tocopherol:PEG-b-PCL was also studied. Rapamycin was quantified utilizing LC/MS in a Waters XTerra MS C18 column with 32-desmethoxyrapamycin as the internal standard. Male Sprague Dawley rats (N = 4 per group; ~200 g) were cannulated via the left jugular and dosed intravenously (IV) with the rapamycin control and micelle formulations (10 mg/kg, 1:9 ratio for rapamycin to PEG-b-PCL). For tissue distribution 24 h after IV dosing, whole blood, plasma, red blood cells, and all the representative tissues were collected. The tissues were rapidly frozen under liquid nitrogen and ground to a fine powder. The rapamycin concentrations in plasma and red blood cells were utilized to determine the blood distribution (partition coefficient between plasma and red blood cells). For the determination of the pharmacokinetic parameters, blood, plasma, and urine samples were collected over 48 h. The pharmacokinetic parameters were calculated using WinNonlin® (Version 5.1) software. Results Rapamycin concentrations were considerably less in brain after administration of both micelle formulations compared to a rapamycin in the Tween 80/PEG 400/DMA control group. There was a 2-fold and 1.6-fold increase in the plasma fraction for rapamycin micelles with and without α-tocopherol. There was a decrease in volume of distribution for both formulations, an increase in AUC, a decrease in clearance, and increase in half life respectively for rapamycin in PEG-b-PCL + α-tocopherol micelles and in PEG-b-PCL micelles. There was no mortality with the micelle

  9. PNA-PEG modified silicon platforms as functional bio-interfaces for applications in DNA microarrays and biosensors.

    PubMed

    Cattani-Scholz, Anna; Pedone, Daniel; Blobner, Florian; Abstreiter, Gerhard; Schwartz, Jeffrey; Tornow, Marc; Andruzzi, Luisa

    2009-03-09

    The synthesis and characterization of two types of silicon-based biofunctional interfaces are reported; each interface bonds a dense layer of poly(ethylene glycol) (PEG(n)) and peptide nucleic acid (PNA) probes. Phosphonate self-assembled monolayers were derivatized with PNA using a maleimido-terminated PEG(45). Similarly, siloxane monolayers were functionalized with PNA using a maleimido-terminated PEG(45) spacer and were subsequently modified with a shorter methoxy-terminated PEG(12) ("back-filling"). The long PEG(45) spacer was used to distance the PNA probe from the surface and to minimize undesirable nonspecific adsorption of DNA analyte. The short PEG(12) "back-filler" was used to provide additional passivation of the surface against nonspecific DNA adsorption. X-ray photoelectron spectroscopic (XPS) analysis near the C 1s and N 1s ionization edges was done to characterize chemical groups formed in the near-surface region, which confirmed binding of PEG and PNA to the phosphonate and silane films. XPS also indicated that additional PEG chains were tethered to the surface during the back-filling process. Fluorescence hybridization experiments were carried out with complementary and noncDNA strands; both phosphonate and siloxane biofunctional surfaces were effective for hybridization of cDNA strands and significantly reduced nonspecific adsorption of the analyte. Spatial patterns were prepared by polydimethylsiloxane (PDMS) micromolding on the PNA-functionalized surfaces; selective hybridization of fluorescently labeled DNA was shown at the PNA functionalized regions, and physisorption at the probe-less PEG-functionalized regions was dramatically reduced. These results show that PNA-PEG derivatized phosphonate monolayers hold promise for the smooth integration of device surface chemistry with semiconductor technology for the fabrication of DNA biosensors. In addition, our results confirm that PNA-PEG derivatized self-assembled carboxyalkylsiloxane films are

  10. PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate.

    PubMed

    Gao, Yuan; Sun, Yan; Ren, Fuzheng; Gao, Shen

    2010-10-01

    This study aims to investigate the suitability of thermosensitive triblock polymer poly-(DL-lactic acid-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-PLGA as a matrix material for ocular delivery of dexamethasone acetate (DXA). The copolymer was synthesized and evaluated for its thermosensitive and gelation properties. DXA in situ gel-forming solution based on PLGA-PEG-PLGA copolymer of 20% (w/w) was prepared and evaluated for ocular pharmacokinetics in rabbit according to the microdialysis method, which was compared to the normal eye drop. The copolymer with 20% (w/w) had a low critical solution temperature of 32 degrees C, which is close to the surface temperature of the eye. The C(max) of DXA in the anterior chamber for the PLGA-PEG-PLGA solution was 125.2 microg/mL, which is sevenfold higher than that of the eye drop, along with greater area under the concentration-time curves (AUC). These results suggest that the PLGA-PEG-PLGA copolymer is potential thermosensitive in situ gel-forming material for ocular drug delivery, and it may improve the bioavailability, efficacy of some eye drugs.

  11. Synthesis and in vitro cytotoxicity of mPEG-SH modified gold nanorods

    NASA Astrophysics Data System (ADS)

    Didychuk, Candice L.; Ephrat, Pinhas; Belton, Michelle; Carson, Jeffrey J. L.

    2008-02-01

    Plasmon-resonant gold nanorods show great potential as an agent for contrast-enhanced biomedical imaging or for phototherapeutics. This is primarily due to the high molar extinction coefficient at the absorption maximum and the dependence of the wavelength of the absorption maximum on the aspect ratio, which is tunable in the near-infrared (NIR) during synthesis. Although gold nanorods can be produced in high-yield through the seed-mediated growth technique, the presence of residual cetyltrimethylammonium bromide (CTAB), a stabilizing surfactant required for nanorod growth, interferes with cell function and causes cytotoxicity. To overcome this potential obstacle to in vivo use, we synthesized gold nanorods and conjugated them to a methoxy (polyethylene glycol)-thiol (mPEG (5000)-SH). This approach yielded mPEG-SH modified gold nanorods with optical and morphometric properties that were similar to raw (CTAB) nanorods. Both the CTAB and mPEG-SH nanorods were tested for cytotoxicity against the HL-60 human leukemia cell line by trypan blue exclusion, and the mPEG-SH modified gold nanorods were also tested against a rat insulinoma (RIN-38) and squamous cell carcinoma (SCCVII) cell line. Cells incubated for 24 h with the mPEG-SH modified nanorods had little change in cell viability compared to cells incubated with vehicle alone. This was in contrast to cytotoxicity of CTAB nanorods on HL-60 cells. These results suggest that mPEG-SH modified gold nanorods are better suited for cell loading protocols and injection into animals and facilitate their use for imaging and phototherapeutic purposes.

  12. In vitro degradation and release characteristics of spin coated thin films of PLGA with a “breath figure” morphology

    PubMed Central

    Ponnusamy, Thiruselvam; Lawson, Louise B.; Freytag, Lucy C.; Blake, Diane A.; Ayyala, Ramesh S.; John, Vijay T.

    2012-01-01

    Poly (lactic-co-glycolic acid) (PLGA) coatings on implant materials are widely used in controlled drug delivery applications. Typically, such coatings are made with non-porous films. Here, we have synthesized a thin PLGA film coating with a highly ordered microporous structure using a simple and inexpensive water templating “breath figure” technique. A single stage process combining spin coating and breath figure process was used to obtain drug incorporated porous thin films. The films were characterized by scanning electron microscope (SEM) to observe the surface and bulk features of porosity and also, degradation pattern of the films. Moreover, the effect of addition of small amount of poly (ethylene glycol) (PEG) into PLGA was characterized. SEM analysis revealed an ordered array of ~2 µm sized pores on the surface with the average film thickness measured to be 20 µm. The incorporation of hydrophilic poly (ethylene glycol) (PEG) enhances pore structure uniformity and facilitates ingress of water into the structure. A five week in vitro degradation study showed a gradual deterioration of the breath figure pores. During the course of degradation, the surface pore structure deteriorates to initially flatten the surface. This is followed by the formation of new pinprick pores that eventually grow into a macroporous film prior to film breakup. Salicylic acid (highly water soluble) and Ibuprofen (sparingly water soluble) were chosen as model drug compounds to characterize release rates, which are higher in films of the breath figure morphology rather than in non-porous films. The results are of significance in the design of biodegradable films used as coatings to modulate delivery. PMID:23507805

  13. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials.

    PubMed

    Li, Guangyao; Li, Dandan; Niu, Yuqing; He, Tao; Chen, Kevin C; Xu, Kaitian

    2014-03-01

    Polyurethanes with regular and controlled block arrangement, i.e., alternating block polyurethanes (abbreviated as PUCL-alt-PEG) based on poly(ε-caprolactone) (PCL-diol) and poly(ethylene glycol) (PEG) was prepared via selectively coupling reaction between PCL-diol and diisocyanate end-capped PEG. Chemical structure, molecular weight, distribution, and thermal properties were systematically characterized by FTIR, (1)H NMR, GPC, DSC, and TGA. Hydrophilicity was studied by static contact angle of H2O and CH2I2. Film surface was observed by scanning electron microscope (SEM) and atomic force microscopy, and mechanical properties were assessed by universal test machine. Results show that alternating block polyurethanes give higher crystal degree, higher mechanical properties, and more hydrophilic and rougher (deep ravine) surface than their random counterpart, due to regular and controlled structure. Platelet adhesion illustrated that PUCL-alt-PEG has better hemocompatibility and the hemacompatibility was affected significantly by PEG content. Excellent hemocompatibility was obtained with high PEG content. CCK-8 assay and SEM observation revealed much better cell compatibility of fibroblast L929 and rat glial cells on the alternating block polyurethanes than that on random counterpart. Alternating block polyurethane PUC20-a-E4 with optimized composition, mechanical, surface properties, hemacompatibility, and highest cell growth and proliferation was achieved for potential use in nerve regeneration. Copyright © 2013 Wiley Periodicals, Inc.

  14. ``Sheddable'' PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake

    NASA Astrophysics Data System (ADS)

    Zhao, Caiyan; Deng, Hongzhang; Xu, Jing; Li, Shuyi; Zhong, Lin; Shao, Leihou; Wu, Yan; Liang, Xing-Jie

    2016-05-01

    PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic microenvironment, the PEG chains detached from the surfaces of the micelles while the degree of linker cleavage could not cause a significant particle size change, which facilitated the carrier binding to tumor cells and improved the cellular uptake. Subsequently, the ``sheddable'' PEG-lipid micelles easily internalized into cells and the increased acidity in the lysosomes further promoted drug release. Thus, this ``sheddable'' PEG-lipid nanocarrier could be a good candidate for effective intracellular drug delivery in cancer chemotherapy.PEGylated lipids confer longer systemic circulation and tumor accumulation via the enhanced permeability and retention (EPR) effect. However, PEGylation inhibits cellular uptake and subsequent endosomal escape. In order to balance the contradiction between the advantages of long circulation and the disadvantages of poor uptake of PEGylated lipids, we prepared a ``sheddable'' PEG-lipid micelle system based on the conjugation of PEG and phosphatidyl ethanolamine (DSPE) with a pH sensitive benzoic imine bond. In a physiological environment, the PEG-protected micelles were not readily taken up by the reticuloendothelial system (RES) and could be successfully delivered to tumor tissue by the EPR effect. In a tumor acidic

  15. Degradation prediction model and stem cell growth of gelatin-PEG composite hydrogel.

    PubMed

    Zhou, Nan; Liu, Chang; Lv, Shijie; Sun, Dongsheng; Qiao, Qinglong; Zhang, Rui; Liu, Yang; Xiao, Jing; Sun, Guangwei

    2016-12-01

    Gelatin hydrogel has great potential in regenerative medicine. The degradation of gelatin hydrogel is important to control the release profile of encapsulated biomolecules and regulate in vivo tissue repair process. As a plasticizer, PEG can significantly improve the mechanical property of gelatin hydrogel. However, how preparation parameters affect the degradation rate of gelatin-PEG composite hydrogel is still not clear. In this study, the significant effect factor, glutaraldehyde (GA) concentration, was confirmed by means of Plackett-Burman method. Then a mathematical model was built to predict the degradation rate of composite hydrogels under different preparation conditions using the response surface method (RSM), which was helpful to prepare the certain composite hydrogel with desired degradation rate. In addition, it was found that gelatin-PEG composite hydrogel surface well supported the adhesion and growth of human mesenchymal stem cells (MSCs). Moreover, PEG concentration not only could adjust hydrogel degradation more subtly, but also might increase the cross-linking degree and affect the cell migration. Therefore, these results would be useful to optimize the preparation of gelatin-PEG composite hydrogel for drug delivery or tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3149-3156, 2016. © 2016 Wiley Periodicals, Inc.

  16. The exploration of endocytic mechanisms of PLA-PEG nanoparticles prepared by coaxialtri-capillary electrospray-template removal method.

    PubMed

    Chen, Jiaming; Cao, Lihua; Cui, Yuecheng; Tu, Kehua; Wang, Hongjun; Wang, Li-Qun

    2018-01-01

    The nano-sized poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) particles with core-shell structure were efficiently prepared by using coaxial tri-capillary electrospray-template removal method. The cellular uptake mechanism, intracellular distribution and exocytosis in A549 cell model of electrosprayed PLA-PEG nanoparticles were systemically studied. The drug release behavior of electrosprayed PLA-PEG nanoparticles were also investigated. Our results showed that PLA-PEG nanoparticles can be endocytosed quickly by A549 cells. The cellular uptake of PLA-PEG nanoparticles was an energy dependent endocytosis process. Caveolae-mediated endocytosis was only one of endocytosis pathways in A549 cells for PLA-PEG nanoparticles, while clathrin mediated endocytosis was not involved in the endocytosis process. The endocytosed PLA-PEG nanoparticles enriched in the head of A549 cells and only a small amount of them was transported into lysosome after 24h incubation. These findings provided insights into the application of electrosprayed PLA-PEG nanoparticles in nano drug delivery field. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enhancement of light absorption by blood to Nd:YAG laser using PEG-modified gold nanorods.

    PubMed

    Xing, Linzhuang; Li, Dong; Chen, Bin; Dai, Yuze; Wu, Wenjuan; Wang, Guoxiang

    2016-10-01

    On the basis of the principle of selective photothermolysis, laser therapy has been the most effective treatment strategy for Port-wine stains (PWSs) caused by the expansion of dermal capillaries. Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser at 1064 nm wavelength has great potential for deeply buried PWS, although its application is limited because of its weak absorption by blood. The purpose of this study is to investigate the effect of PEG-modified gold nanorods (NRs) on the blood absorption enhancement for Nd:YAG laser. PEG-modified gold nanorods (NRs) were synthesized via the seeded growth method. Then, the effect of PEG-modified gold NRs on blood light absorbance was investigated through adding different concentration of PEG-modified gold NRs to 1 ml of blood at room temperature. Finally, the optical properties of whole mice blood with or without PEG-modified gold NRs under slow heating were investigated. The average length and width of PEG-modified gold NRs are 79.5 ± 10.5 and 13.5 ± 0.9 nm, respectively, with the aspect ratio of 5.89, and a strong absorption peak exists at ∼1050 nm in the near-infrared range. A linear correlation between the blood absorbance at 1064 nm and the amount of PEG-modified gold NRs was obtained. The absorbance at 1064 nm increased 17.6, 33.0, 48.3, and 65.4 times when 0.4, 0.8, 1.2, and 1.6 mg of PEG-modified gold NRs was added to 1 ml of blood at room temperature, respectively. After adding 0.8 mg of PEG-modified gold NRs to 1 ml of blood, blood absorbance at 1064 nm at different temperatures increased by an average of 24.0 times. After intravenously injecting PEG-modified gold NRs (0.87 mg/ml) into Sprague-Dawley mice, the blood absorbance at 1064 nm increased from 0.014 to 0.5. Our findings suggest that PEG-modified gold NRs injection is an efficient way to enhance light absorption by blood to Nd:YAG laser. Lasers Surg. Med. 48:790-803, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley

  18. X-ray studies of recombinant anti-testosterone Fab fragments: the use of PEG 3350 in crystallization.

    PubMed

    Valjakka, J; Hemminki, A; Teerinen, T; Takkinen, K; Rouvinen, J

    2000-02-01

    Recombinant anti-testosterone wild-type Fab fragment and mutant Fab fragments with high binding selectivity developed by protein engineering have been crystallized with and without ligands. Crystals of these Fab fragments were obtained by the vapour-diffusion technique at room temperature using solutions of PEG 3350 with various biological buffers and with a wide pH range. So far, five data sets have been collected from crystals of three Fab-antigen complexes and from two uncomplexed Fab fragments, with resolutions ranging from 2.10 to 3.1 A. Crystallization conditions for Fab fragments were found by using modifications of the low ionic strength PEG 3350 series. Suitable concentrations of PEG 400, MPD and glycerol solutions for use as cryoprotectants in PEG 3350 solutions have been determined. One useful observation was that PEG 3350 is able to work alone as a cryoprotectant. The screening protocol used requires a smaller amount of protein material to achieve auspicious pre-crystals than previously. Results support the claim that PEG 3350 is more suitable for the crystallization of Fab fragments than higher molecular weight PEGs.

  19. Preventing Protein Adsorption and Macrophage Uptake of Gold Nanoparticles via a Hydrophobic Shield

    PubMed Central

    Larson, Timothy A.; Joshi, Pratixa P.; Sokolov, Konstantin

    2012-01-01

    Polyethylene glycol (PEG) surface coatings are widely used to render stealth properties to nanoparticles in biological applications. There is abundant literature on benefits of PEG coatings and their ability to reduce protein adsorption, to diminish non-specific interactions with cells, and to improve pharmacokinetics, but very little discussion of the limitations of PEG coatings. Here, we show that physiological concentrations of cysteine and cystine can displace methoxy-PEG-thiol molecules from the gold nanoparticle (GNP) surface that leads to protein adsorption and cell uptake in macrophages within 24 hours. Furthermore, we address this problem by incorporating an alkyl linker between the PEG and the thiol moieties that provides a hydrophobic shield layer between the gold surface and the hydrophilic outer PEG layer. The mPEG-alkyl-thiol coating greatly reduces protein adsorption on GNPs and their macrophage uptake. This has important implications for the design of GNP for biological systems. PMID:23009596

  20. Effect of DSPE-PEG on compound action potential, injury potential and ion concentration following compression in ex vivo spinal cord.

    PubMed

    Wang, Aihua; Huo, Xiaolin; Zhang, Guanghao; Wang, Xiaochen; Zhang, Cheng; Wu, Changzhe; Rong, Wei; Xu, Jing; Song, Tao

    2016-05-04

    It has been shown that polyethylene glycol (PEG) can reseal membrane disruption on the spinal cord, but only high concentrations of PEG have been shown to have this effect. Therefore, the effect of PEG is somewhat limited, and it is necessary to investigate a new approach to repair spinal cord injury. This study assesses the ability of 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly (ethylene glycol)) 2000] (DSPE-PEG) to recover physiological function and attenuate the injury-induced influx of extracellular ions in ex vivo spinal cord injury. Isolated spinal cords were subjected to compression injury and treated with PEG or DSPE-PEG immediately after injury. The compound action potential (CAP) was recorded before and after injury to assess the functional recovery. Furthermore, injury potential, the difference in gap potentials before and after compression, and the concentration of intracellular ions were used to evaluate the effect of DSPE-PEG on reducing ion influx. Data showed that the injury potential and ion concentration of the untreated, PEG and DSPE-PEG group, without significant difference among them, are remarkably higher than those of the intact group. Moreover, the CAP recovery of the DSPE-PEG and PEG treated spinal cords was significantly greater than that of the untreated spinal cords. The level of CAP recovery in the DSPE-PEG and PEG treated groups was the same, but the concentration of DSPE-PEG used was much lower than the concentration of PEG. These results suggest that instant application of DSPE-PEG could effectively repair functional disturbance in SCI at a much lower concentration than PEG. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Effect of PEG-PDLLA polymeric nanovesicles loaded with doxorubicin and hematoporphyrin monomethyl ether on human hepatocellular carcinoma HepG2 cells in vitro.

    PubMed

    Xiang, Guang-Hua; Hong, Guo-Bin; Wang, Yong; Cheng, Du; Zhou, Jing-Xing; Shuai, Xin-Tao

    2013-01-01

    To evaluate the cytotoxicity of poly(ethylene glycol)-block-poly(D,L-lactic acid) (PEG-PDLLA) nanovesicles loaded with doxorubicin (DOX) and the photosensitizer hematoporphyrin monomethyl ether (HMME) on human hepatocellular carcinoma HepG2 cells and to investigate potential apoptotic mechanisms. PEG-PDLLA nanovesicles were simultaneously loaded with DOX and HMME (PEG-PDLLA-DOX-HMME), and PEG-PDLLA nanovesicles were loaded with DOX (PEG-PDLLA-DOX), HMME (PEG-PDLLA-HMME), or the PEG-PDLLA nanovesicle alone as controls. The cytotoxicity of PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA against HepG2 cells was measured, and the cellular reactive oxygen species, percentage of cells with mitochondrial membrane potential depolarization, and apoptotic rate following treatment were determined. Four nanovesicles (PEG-PDLLA-DOX-HMME, PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA) were synthesized, and mean particle sizes were 175±18 nm, 154±3 nm, 196±2 nm, and 147±15 nm, respectively. PEG-PDLLA-DOX-HMME was more cytotoxic than PEG-PDLLA-DOX, PEG-PDLLA-HMME, and PEG-PDLLA. PEG-PDLLA-HMME-treated cells had the highest mean fluorescence intensity, followed by PEG-PDLLA-DOX-HMME-treated cells, whereas PEG-PDLLA-DOX- and PEG-PDLLA-treated cells had a similar fluorescence intensity. Mitochondrial membrane potential depolarization was observed in 54.2%, 59.4%, 13.8%, and 14.8% of the cells treated with PEG-PDLLA-DOX-HMME, PEG-PDLLA-HMME, PEG-PDLLA-DOX, and PEG-PDLLA, respectively. The apoptotic rate was significantly higher in PEG-PDLLA-DOX-HMME-treated cells compared with PEG-PDLLA-DOX- and PEG-PDLLA-HMME-treated cells. The PEG-PDLLA nanovesicle, a drug delivery carrier, can be simultaneously loaded with two anticancer drugs (hydrophilic DOX and hydrophobic HMME). PEG-PDLLA-DOX-HMME cytotoxicity to HepG2 cells is significantly higher than the PEG-PDLLA nanovesicle loaded with DOX or HMME alone, and DOX and HMME have a synergistic effect against human

  2. Applying terahertz technology for nondestructive detection of crack initiation in a film-coated layer on a swelling tablet

    PubMed Central

    Momose, Wataru; Yoshino, Hiroyuki; Katakawa, Yoshifumi; Yamashita, Kazunari; Imai, Keiji; Sako, Kazuhiro; Kato, Eiji; Irisawa, Akiyoshi; Yonemochi, Etsuo; Terada, Katsuhide

    2012-01-01

    Here, we describe a nondestructive approach using terahertz wave to detect crack initiation in a film-coated layer on a drug tablet. During scale-up and scale-down of the film coating process, differences in film density and gaps between the film-coated layer and the uncoated tablet were generated due to differences in film coating process parameters, such as the tablet-filling rate in the coating machine, spray pressure, and gas–liquid ratio etc. Tablets using the PEO/PEG formulation were employed as uncoated tablets. We found that heat and humidity caused tablets to swell, thereby breaking the film-coated layer. Using our novel approach with terahertz wave nondestructively detect film surface density (FSD) and interface density differences (IDDs) between the film-coated layer and an uncoated tablet. We also found that a reduced FSD and IDD between the film-coated layer and uncoated tablet increased the risk of crack initiation in the film-coated layer, thereby enabling us to nondestructively predict initiation of cracks in the film-coated layer. Using this method, crack initiation can be nondestructively assessed in swelling tablets after the film coating process without conducting accelerated stability tests, and film coating process parameters during scale-up and scale-down studies can be appropriately established. PMID:25755992

  3. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    PubMed Central

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  4. Cancer cell migration within 3D layer-by-layer microfabricated photocrosslinked PEG scaffolds with tunable stiffness.

    PubMed

    Soman, Pranav; Kelber, Jonathan A; Lee, Jin Woo; Wright, Tracy N; Vecchio, Kenneth S; Klemke, Richard L; Chen, Shaochen

    2012-10-01

    Our current understanding of 3-dimensional (3D) cell migration is primarily based on results from fibrous scaffolds with randomly organized internal architecture. Manipulations that change the stiffness of these 3D scaffolds often alter other matrix parameters that can modulate cell motility independently or synergistically, making observations less predictive of how cells behave when migrating in 3D. In order to decouple microstructural influences and stiffness effects, we have designed and fabricated 3D polyethylene glycol (PEG) scaffolds that permit orthogonal tuning of both elastic moduli and microstructure. Scaffolds with log-pile architectures were used to compare the 3D migration properties of normal breast epithelial cells (HMLE) and Twist-transformed cells (HMLET). Our results indicate that the nature of cell migration is significantly impacted by the ability of cells to migrate in the third dimension. 2D ECM-coated PEG substrates revealed no statistically significant difference in cell migration between HMLE and HMLET cells among substrates of different stiffness. However, when cells were allowed to move along the third dimension, substantial differences were observed for cell displacement, velocity and path straightness parameters. Furthermore, these differences were sensitive to both substrate stiffness and the presence of the Twist oncogene. Importantly, these 3D modes of migration provide insight into the potential for oncogene-transformed cells to migrate within and colonize tissues of varying stiffness. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Towards Virtual FLS: Development of a Peg Transfer Simulator

    PubMed Central

    Arikatla, Venkata S; Ahn, Woojin; Sankaranarayanan, Ganesh; De, Suvranu

    2014-01-01

    Background Peg transfer is one of five tasks in the Fundamentals of Laparoscopic Surgery (FLS), program. We report the development and validation of a Virtual Basic Laparoscopic Skill Trainer-Peg Transfer (VBLaST-PT©) simulator for automatic real-time scoring and objective quantification of performance. Methods We have introduced new techniques in order to allow bi-manual manipulation of pegs and automatic scoring/evaluation while maintaining high quality of simulation. We performed a preliminary face and construct validation study with 22 subjects divided into two groups: experts (PGY 4–5, fellow and practicing surgeons) and novice (PGY 1–3). Results Face validation shows high scores for all the aspects of the simulation. A two-tailed Mann-Whitney U-test scores showed significant difference between the two groups on completion time (p=0.003), FLS score (p=0.002) and the VBLaST-PT© score (p=0.006). Conclusions VBLaST-PT© is a high quality virtual simulator that showed both face and construct validity. PMID:24030904

  6. Buried bumper syndrome revisited: a rare but potentially fatal complication of PEG tube placement.

    PubMed

    Biswas, Saptarshi; Dontukurthy, Sujana; Rosenzweig, Mathew G; Kothuru, Ravi; Abrol, Sunil

    2014-01-01

    Percutaneous endoscopic gastrostomy (PEG) has been used for providing enteral access to patients who require long-term enteral nutrition for years. Although generally considered safe, PEG tube placement can be associated with many immediate and delayed complications. Buried bumper syndrome (BBS) is one of the uncommon and late complications of percutaneous endoscopic gastrostomy (PEG) placement. It occurs when the internal bumper of the PEG tube erodes into the gastric wall and lodges itself between the gastric wall and skin. This can lead to a variety of additional complications such as wound infection, peritonitis, and necrotizing fasciitis. We present here a case of buried bumper syndrome which caused extensive necrosis of the anterior abdominal wall.

  7. Doxorubicin-loaded micelles based on multiarm star-shaped PLGA-PEG block copolymers: influence of arm numbers on drug delivery.

    PubMed

    Ma, Guilei; Zhang, Chao; Zhang, Linhua; Sun, Hongfan; Song, Cunxian; Wang, Chun; Kong, Deling

    2016-01-01

    Star-shaped block copolymers based on poly(D,L-lactide-co-glycolide) (PLGA) and poly(ethylene glycol) (PEG) (st-PLGA-PEG) were synthesized with structural variation on arm numbers in order to investigate the relationship between the arm numbers of st-PLGA-PEG copolymers and their micelle properties. st-PLGA-PEG copolymers with arm numbers 3, 4 and 6 were synthesized by using different cores such as trimethylolpropane, pentaerythritol and dipentaerythritol, and were characterized by nuclear magnetic resonance and gel permeation chromatography. The critical micelle concentration decreased with increasing arm numbers in st-PLGA-PEG copolymers. The doxorubicin-loaded st-PLGA-PEG micelles were prepared by a modified nanoprecipitation method. Micellar properties such as particle size, drug loading content and in vitro drug release behavior were investigated as a function of the number of arms and compared with each other. The doxorubicin-loaded 4-arm PLGA-PEG micelles were found to have the highest cellular uptake efficiency and cytotoxicity compared with 3-arm PLGA-PEG micelles and 6-arm PLGA-PEG micelles. The results suggest that structural tailoring of arm numbers from st-PLGA-PEG copolymers could provide a new strategy for designing drug carriers of high efficiency. Structural tailoring of arm numbers from star shaped-PLGA-PEG copolymers (3-arm/4-arm/6-arm-PLGA-PEG) could provide a new strategy for designing drug carriers of high efficiency.

  8. Nanosized self-emulsifying lipid vesicles of diacylglycerol-PEG lipid conjugates: Biophysical characterization and inclusion of lipophilic dietary supplements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koynova, Rumiana; Tihova, Mariana; Biopharma)

    Hydrated diacylglycerol-PEG lipid conjugates, glyceryl dioleate-PEG12 (GDO-PEG12) and glyceryl dipalmitate-PEG23 (GDP-PEG23), spontaneously form uni- or oligolamellar liposomes in their liquid crystalline phase, in distinct difference from the PEGylated phospholipids which form micelles. GDP-PEG23 exhibits peculiar hysteretic phase behavior and can arrange into a long-living hexagonal phase at ambient and physiological temperatures. Liposomes of GDO-PEG12 and its mixture with soy lecithin exchange lipids with the membranes much more actively than common lecithin liposomes; such an active lipid exchange might facilitate the discharging of the liposome cargo upon uptake and internalization, and can thus be important in drug delivery applications. Diacylglycerol-PEG lipidmore » liposome formulations can encapsulate up to 20-30 wt.% lipophilic dietary supplements such as fish oil, coenzyme Q10, and vitamins D and E. The encapsulation is feasible by way of dry mixing, avoiding the use of organic solvent.« less

  9. Pharmacokinetics and in vivo delivery of curcumin by copolymeric mPEG-PCL micelles.

    PubMed

    Kheiri Manjili, Hamidreza; Ghasemi, Parisa; Malvandi, Hojjat; Mousavi, Mir Sajjad; Attari, Elahe; Danafar, Hossein

    2017-07-01

    Curcumin (CUR) has been associated with anti-inflammatory, antimicrobial, antioxidant, anti-amyloid, and antitumor effects, but its application is limited because of its low aqueous solubility and poor oral bioavailability. To progress the bioavailability and water solubility of CUR, we synthesized five series of mono methoxy poly (ethylene glycol)-poly (ε-caprolactone) (mPEG-PCL) diblock copolymers. The structure of the copolymers was characterized by H NMR, FTIR, DSC and GPC techniques. In this study, CUR was encapsulated within micelles through a single-step nano-precipitation method, leading to formation of CUR-loaded mPEG-PCL (CUR/mPEG-PCL) micelles. The resulting micelles were characterized further by various techniques such as dynamic light scattering (DLS) and atomic force microscopy (AFM). The cytotoxicity of void CUR, mPEG-PCL and CUR/mPEG-PCL micelles was compared to each other by performing MTT assay of the treated MCF-7 and 4T1 cell line. Study of the in vivo pharmacokinetics of the CUR-loaded micelles was also carried out on selected copolymers in comparison with CUR solution formulations. The results showed that the zeta potential of CUR-loaded micelles was about -11.5mV and the average size was 81.0nm. CUR was encapsulated into mPEG-PCL micelles with loading capacity of 20.65±0.015% and entrapment efficiency of 89.32±0.34%. The plasma AUC (0-t), t 1/2 and C max of CUR micelles were increased by 52.8, 4.63 and 7.51-fold compared to the CUR solution, respectively. In vivo results showed that multiple injections of CUR-loaded micelles could prolong the circulation time and increase the therapeutic efficacy of CUR. These results suggested that mPEG-PCL micelles would be a potential carrier for CUR. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Near-infrared (1550 nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly(4-vinylbenzylphosphonate)

    NASA Astrophysics Data System (ADS)

    Kamimura, Masao; Kanayama, Naoki; Tokuzen, Kimikazu; Soga, Kohei; Nagasaki, Yukio

    2011-09-01

    A novel poly(ethylene glycol) (PEG)-based block copolymer possessing a 4-vinylbenzylphosphonate repeating unit in another segment (PEG-block-poly(4-vinylbenzylphosphonate)) (PEG-b-PVBP) was designed and successfully synthesized. As a control, an end-functionalized PEG possessing a mono-phosphonate group (PEG-PO3H2) was also synthesized. The surface of near-infrared (NIR) phosphors (i.e., ytterbium (Yb) and erbium (Er) ion-codoped Y2O3 nanoparticles (YNPs)) were modified with PEG-b-PVBP (PEG-YNP(b)s) and PEG-PO3H2 (PEG-YNP(1)s). The adsorption of PEG-b-PVBP and PEG-PO3H2 was estimated by Fourier transform infrared (FT-IR) measurements and thermal gravimetric analysis (TGA). The physicochemical characteristics of the obtained YNP samples were analyzed by ζ-potential and dynamic light scattering (DLS) measurements. The ζ-potentials of YNPs modified by these polymers were close to zero, indicating the effective coverage of the YNP surface by our new PEG derivatives. However, the dispersion stability of the PEGylated YNPs was strongly affected by the structure of the PEG terminus. The average diameter of the PEG-YNP(1)s increased, and aggregates precipitated after less than 1 h in phosphate buffer saline (PBS). In contrast, the size did not change at all in the case of PEG-YNP(b)s and the dispersion in PBS was stable for over 1 week. PEG-YNP(b)s also showed high erosion resistance under acidic conditions. The multiple coordinated PVBP segment of the block copolymer on the YNP surface plays a substantial role in improving such dispersion stability. The excellent dispersion stability and strong NIR luminescence of the obtained PEG-YNP(b)s were also confirmed in fetal bovine serum (FBS) solution over 1 week. Furthermore, in vivo NIR imaging of live mice was performed, and the 1550 nm NIR emission of PEG-YNP(b)s from the organ of live mice was confirmed without dissection.A novel poly(ethylene glycol) (PEG)-based block copolymer possessing a 4-vinylbenzylphosphonate

  11. Request for Observations of V405 Peg

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2009-12-01

    Dr. Axel Schwope (Astrophysikalisches Institut Potsdam) requests time-series monitoring of the magnetic cataclysmic variable V405 Pegasi from 2009 December 28 through 2009 December 30. These observations are requested in support of a planned XMM-Newton observation of V405 Peg on 2009 December 29 beginning at 18:51 UT (JD 2455195.2854) and continuing for 12.5 hours. Observers are asked to provide intensive coverage during the three day window centered on the XMM-Newton observation to provide information on the activity state of V405 Peg, to improve the orbital ephemeris, and to provide optical data that will help constrain the spectral energy distribution of this poorly understood cataclysmic variable. The primary filters for this observation are Johnson B and Cousins I, but all observations will be useful for determining the orbital ephemeris. V405 Peg may show both orbital modulation as well as changes in its activity level. The orbital period is approximately four hours, and observers are asked to obtain at least ten and preferably more data points per cycle in each filter. Please use exposure times that provide S/N of at least 20 in both the comparison and target stars but short exposure times are preferred to detect flickering and other short-timescale variations. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  12. P-chlorophenoxyisobutyric acid impairs auxin response for gravity-regulated peg formation in cucumber (Cucumis sativus) seedlings.

    PubMed

    Shimizu, Minobu; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki

    2008-01-01

    Cucumber (Cucumis sativus L.) seedlings form a specialized protuberance, the peg, on the transition zone between the hypocotyl and the root. When cucumber seeds germinate in a horizontal position, the seedlings develop a peg on the lower side of the transition zone. To verify the role of auxin action in peg formation, we examined the effect of the anti-auxin, p-chlorophenoxyisobutyric acid (PCIB), on peg formation and mRNA accumulation of auxin-regulated genes. Application of PCIB to cucumber seedlings inhibited peg formation. The application of indole-3-acetic acid (IAA) competed with PCIB and induced peg formation. Furthermore, application of PCIB decreased auxin-inducible CsIAA1 mRNA and increased auxin-repressible CsGRP1 mRNA in the lower side of the transition zone. The differential accumulation of CsIAA1 and CsGRP1 mRNAs in the transition zone of cucumber seedlings grown in a horizontal position was smaller in the PCIB-treated seedlings. These results demonstrate that endogenous auxin redistributes and induces the differential expression of auxin-regulated genes, and ultimately results in the suppression or induction of peg formation in the gravistimulated transition zone of cucumber seedlings.

  13. PEG conjugates in clinical development or use as anticancer agents: an overview.

    PubMed

    Pasut, Gianfranco; Veronese, Francesco M

    2009-11-12

    During the almost forty years of PEGylation, several antitumour agents, either proteins, peptides or low molecular weight drugs, have been considered for polymer conjugation but only few entered clinical phase studies. The results from the first clinical trials have shared and improved the knowledge on biodistribution, clearance, mechanism of action and stability of a polymer conjugate in vivo. This has helped to design conjugates with improved features. So far, most of the PEG conjugates comprise of a protein, which in the native form has serious shortcomings that limit the full exploitation of its therapeutic action. The main issues can be short in vivo half-life, instability towards degrading enzymes or immunogenicity. PEGylation proved to be effective in shielding sensitive sites at the protein surface, such as antigenic epitopes and enzymatic degradable sequences, as well as in prolonging the drug half-life by decreasing the kidney clearance. In this review PEG conjugates of proteins or low molecular weight drugs, in clinical development or use as anticancer agents, will be taken into consideration. In the case of PEG-protein derivatives the most represented are depleting enzymes, which act by degrading amino acids essential for cancer cells. Interestingly, PEGylated conjugates have been also considered as adjuvant therapy in many standard anticancer protocols, in this regard the case of PEG-G-CSF and PEG-interferons will be presented.

  14. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish

    PubMed Central

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    2016-01-01

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)-b-poly(ε-caprolactone) (PCL), namely PEG-b-PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG-b-PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG-b-PCL nano-micelle on cardiovascular development. The results showed that PEG-b-PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG-b-PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG-b-PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG-b-PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG-b-PCL nano-micelles, indicating that PEG-b-PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG-b-PCL nano-micelle could pose potential hazards

  15. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish.

    PubMed

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)- b -poly( ε -caprolactone) (PCL), namely PEG- b -PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG- b -PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG- b -PCL nano-micelle on cardiovascular development. The results showed that PEG- b -PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG- b -PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG- b -PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG- b -PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG- b -PCL nano-micelles, indicating that PEG- b -PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG- b -PCL nano-micelle could

  16. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice.

    PubMed

    Bhirde, Ashwin A; Patel, Sachin; Sousa, Alioscka A; Patel, Vyomesh; Molinolo, Alfredo A; Ji, Youngmi; Leapman, Richard D; Gutkind, J Silvio; Rusling, James F

    2010-12-01

    To study the distribution and clearance of polyethylene glycol (PEG)-ylated single-walled carbon nanotube (SWCNTs) as drug delivery vehicles for the anticancer drug cisplatin in mice. PEG layers were attached to SWCNTs and dispersed in aqueous media and characterized using dynamic light scattering, scanning transmission electron microscopy and Raman spectroscopy. Cytotoxicity was assessed in vitro using Annexin-V assay, and the distribution and clearance pathways in mice were studied by histological staining and Raman spectroscopy. Efficacy of PEG-SWCNT-cisplatin for tumor growth inhibition was studied in mice. PEG-SWCNTs were efficiently dispersed in aqueous media compared with controls, and did not induce apoptosis in vitro. Hematoxylin and eosin staining, and Raman bands for SWCNTs in tissues from several vital organs from mice injected intravenously with nanotube bioconjugates revealed that control SWCNTs were lodged in lung tissue as large aggregates compared with the PEG-SWCNTs, which showed little or no accumulation. Characteristic SWCNT Raman bands in feces revealed the presence of bilary or renal excretion routes. Attachment of cisplatin on bioconjugates was visualized with Z-contrast scanning transmission electron microscopy. PEG-SWCNT-cisplatin with the attached targeting ligand EGF successfully inhibited growth of head and neck tumor xenografts in mice. PEG-SWCNTs, as opposed to control SWCNTs, form more highly dispersed delivery vehicles that, when loaded with both cisplatin and EGF, inhibit growth of squamous cell tumors.

  17. Mitochondria-targeting cyclometalated iridium(III)-PEG complexes with tunable photodynamic activity.

    PubMed

    Li, Steve Po-Yam; Lau, Chris Tsan-Shing; Louie, Man-Wai; Lam, Yun-Wah; Cheng, Shuk Han; Lo, Kenneth Kam-Wing

    2013-10-01

    We present a new class of phosphorescent cyclometalated iridium(III) polypyridine poly(ethylene glycol) (PEG) complexes [Ir(N(^)C)2(bpy-CONH-PEG)](PF6) (bpy-CONH-PEG = 4-(N-(2-(ω-methoxypoly-(1-oxapropyl))ethyl)aminocarbonyl)-4'-methyl-2,2'-bipyridine, number average molecular weight (Mn) = 5272.23, weight average molecular weight (Mw) = 5317.38, polydispersity index (PDI) = 1.009; HN(^)C = 2-phenylpyridine, Hppy (1a), 2-((1,1'-biphenyl)-4-yl)pyridine, Hpppy (2a), 2-phenylquinoline, Hpq (3a), 2-phenylbenzothiazole, Hbt (4a), 2-(1-naphthyl)benzothiazole, Hbsn (5a)). The photophysical, photochemical, and biological properties of these complexes have been compared with those of their PEG-free counterparts [Ir(N(^)C)2(bpy-CONH-Et)](PF6) (bpy-CONH-Et = 4-(N-ethylaminocarbonyl)-4'-methyl-2,2'-bipyridine; HN(^)C = Hppy (1b), Hpppy (2b), Hpq (3b), Hbt (4b), Hbsn (5b)). Upon irradiation, all the complexes exhibited intense and long-lived green to orange-red emission under ambient conditions. The emission was phosphorescence in nature and can be quenched by O2 with the generation of singlet oxygen ((1)O2). The quantum yields for (1)O2 production of the complexes in aerated DMSO (0.24-0.83) were found to be dependent on the excited-state lifetimes of the complexes, which can be altered using different cyclometalating ligands (N(^)C). Cell-based assays indicated that the PEG complexes were noncytotoxic in the dark (IC50 > 300 μM); however, most of them became significantly cytotoxic upon irradiation (IC50 = 3.4 - 23.2 μM). Laser-scanning confocal microscopy images revealed localization of complex 3a in the mitochondrial region of HeLa cells and the induction of rapid necrotic cell death upon light activation. Additionally, the lack of dark toxicity and potential application of the PEG complexes as a visualizing reagent have been demonstrated using zebrafish (Danio rerio) as an animal model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Short-Chain PEG Mixed-Monolayer Protected Gold Clusters Increase Clearance and Red Blood Cell Counts

    PubMed Central

    Simpson, Carrie A.; Agrawal, Amanda C.; Balinski, Andrzej; Harkness, Kellen M.; Cliffel, David E.

    2011-01-01

    Monolayer-protected gold nanoparticles have great potential as novel building blocks for the design of new drugs and therapeutics based on the easy ability to multifunctionalize them for biological targeting and drug activity. In order to create nanoparticles that are biocompatible in vivo, poly-ethylene glycol functional groups have been added to many previous multifunctionalized particles to eliminate non-specific binding. Recently, monolayer-protected gold nanoparticles with mercaptoglycine functionalities were shown to elicit deleterious effects on the kidney in vivo that were eliminated by incorporating a long-chain, mercapto-undecyl-tetraethylene glycol, at very high loadings into a mixed monolayer. These long-chain PEGs induced an immune response to the particle presumably generating an anti-PEG antibody as seen in other long-chain PEG-ylated nanoparticles in vivo. In the present work, we explore the in vivo effects of high and low percent ratios of a shorter chain, mercapto-tetraethylene glycol, within the monolayer using simple place-exchange reactions. The shorter chain PEG MPCs were expected to have better water solubility due to elimination of the alkyl chain, no toxicity, and long-term circulation in vivo. Shorter chain lengths at lower concentrations should not trigger the immune system into creating an anti-PEG antibody. We found that a 10% molar exchange of this short chain PEG within the monolayer met three of the desired goals: high water solubility, no toxicity, and no immune response as measured by white blood cell counts, but none of the short chain PEG mixed monolayer compositions enabled the nanoparticles to have a long circulation time within the blood as compared to mercapto-undecyl-ethylene glycol, which had a residence time of 4 weeks. We also compared the effects of a hydroxyl versus a carboxylic acid terminal functional group on the end of the PEG thiol on both clearance and immune response. The results indicate that short-chain length

  19. Investigation of PEG crystallization in frozen and freeze-dried PEGylated recombinant human growth hormone-sucrose systems: implications on storage stability.

    PubMed

    Bhatnagar, Bakul S; Martin, Susan W H; Hodge, Tamara S; Das, Tapan K; Joseph, Liji; Teagarden, Dirk L; Shalaev, Evgenyi Y; Suryanarayanan, Raj

    2011-08-01

    The objectives of the current study were to investigate (i) the phase behavior of a PEGylated recombinant human growth hormone (PEG-rhGH, ∼60 kDa) during freeze-drying and (ii) its storage stability. The phase transitions during freeze-thawing of an aqueous solution containing PEG-rhGH and sucrose were characterized by differential scanning calorimetry. Finally, PEG-rhGH and sucrose formulations containing low, medium, and high polyethylene glycol (PEG) to sucrose ratios were freeze-dried in dual-chamber syringes and stored at 4°C and 25°C. Chemical decomposition (methionine oxidation and deamidation) and irreversible aggregation were characterized by size-exclusion and ion-exchange chromatography, and tryptic mapping. PEG crystallization was facilitated when it was covalently linked with rhGH. When the solutions were frozen, phase separation into PEG-rich and sucrose-rich phases facilitated PEG crystallization and the freeze-dried cake contained crystalline PEG. Annealing caused PEG crystallization and when coupled with higher drying temperatures, the primary drying time decreased by up to 51%. When the freeze-dried cakes were stored at 4°C, while there was no change in the purity of the PEG-rhGH monomer, deamidation was highest in the formulations with the lowest PEG to sucrose ratio. When stored at 25°C, this composition also showed the most pronounced decrease in monomer purity, the highest level of aggregation, and deamidation. Furthermore, an increase in PEG crystallinity during storage was accompanied by a decrease in PEG-rhGH stability. Interestingly, during storage, there was no change in PEG crystallinity in formulations with medium and high PEG to sucrose ratios. Although PEG crystallization during freeze-drying did not cause protein degradation, crystallization during storage might have influenced protein stability. Copyright © 2011 Wiley-Liss, Inc.

  20. Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: thermodynamic behaviour of fatty acids, PEGs and PEG-fatty acids.

    PubMed

    Vijayaraghavan, Meera; Stolnik, Snjezana; Howdle, Steven M; Illum, Lisbeth

    2012-11-15

    The thermodynamic behaviour of selected polymeric components for preparation of controlled release microparticles using supercritical carbon dioxide (scCO(2)) processing was investigated. The polymeric materials selected were egg lecithin (a model for the lung surfactant phospholipid), poly(ethyleneglycol) (PEG) of different molecular weights, fatty acids (C18, C16, and C14), and physical blends of PEGs and fatty acids. In addition a range of PEG-stearates was also assessed. Analysis of thermodynamic behaviour was performed by differential scanning calorimetry (DSC) and by assessment of their interaction with scCO(2) in a high-pressure variable volume view cell. The key criterion was to demonstrate a strong interaction with scCO(2) and to show liquefaction of the polymeric material at acceptable processing temperatures and pressures. Positive results should then indicate the suitability of these materials for processing by the Particle from Gas Saturated Solutions (PGSS) technique using scCO(2) to create microparticles for pulmonary administration. It was found that the materials tested interacted with scCO(2) and showed a sufficient lowering of their melting temperature (T(m)) to make them suitable for use in the PGSS microparticle production rig. Fatty acids of low T(m) were shown to act as a plasticising agent and to lower the T(m) of PEG further during interaction with scCO(2). Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Multifunctional PEG modified DOX loaded mesoporous silica nanoparticle@CuS nanohybrids as photo-thermal agent and thermal-triggered drug release vehicle for hepatocellular carcinoma treatment

    NASA Astrophysics Data System (ADS)

    Wu, Lingjie; Wu, Ming; Zeng, Yongyi; Zhang, Da; Zheng, Aixian; Liu, Xiaolong; Liu, Jingfeng

    2015-01-01

    The combination of a multi-therapeutic mode with a controlled fashion is a key improvement in nanomedicine. Here, we synthesized polyethylene glycol (PEG)-modified doxorubicin (DOX)-loaded mesoporous silica nanoparticle (MSN) @CuS nanohybrids as efficient drug delivery carriers, combined with photothermal therapy and chemotherapy to enhance the therapeutic efficacy on hepatocellular carcinoma (HCC). The physical properties of the nanohybrids were characterized by transmission electron microscopy (TEM), N2 adsorption and desorption experiments and by the Vis-NIR absorption spectra. The results showed that the doxorubicin could be stored in the inner pores of mesoporous silica nanoparticles; the CuS nanoparticles, which are coated on the surface of a mesoporous silica nanoparticle, could serve as efficient photothermal therapy (PTT) agents; the loaded drug release could be easily triggered by NIR irradiation. The combination of the PTT treatment with controlled chemotherapy could further enhance the cancer ablation ability compared to any of the single approaches alone. Hence, the reported PEG-modified DOX-loaded mesoporous silica nanoparticle@CuS nanohybrids might be very promising therapeutic agents for HCC treatment.

  2. PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B.

    PubMed

    Jain, Arvind K; Goyal, Amit K; Mishra, Neeraj; Vaidya, Bhuvaneshwar; Mangal, Sharad; Vyas, Suresh P

    2010-03-15

    PLA/PLGA nanoparticles are well known as efficient vaccine delivery systems, but they have got limitation in oral vaccine delivery because of their sensitivity to harsh gastric environment. The aim of present study was to improve the stability of PLA nanoparticles in such environment by copolymerizing PLA with PEG. Nanoparticles were formulated using different block copolymers AB, ABA and BAB (where 'A' is PLA and 'B' is PEG) encapsulating hepatitis B surface antigen (HBsAg) to evaluate their efficacy as oral vaccine delivery system. The results of in vitro studies engrave the efficiency of copolymeric nanoparticles to retain encapsulated antigen and average particle size even after 2 h incubation in simulated gastric fluid and simulated intestinal fluid. Fluorescence microscopic studies indicated efficient uptake of copolymeric nanoparticles by gut mucosa of immunized mice model as compared to control. Finally copolymeric and PLA nanoparticles, encapsulating HBsAg, were evaluated for their adjuvancity in generating immune response after oral administration. PLA nanoparticles could not generate an effective immune response due to stability issues. On the other hand, oral administration of copolymeric nanoparticles exhibited effective levels of humoral immunity along with the mucosal (sIgA) and cellular immune response (T(H)1). The results of in vitro and in vivo studies demonstrate that BAB nanoparticles depict enhanced mucosal uptake leading to effective immune response as compared to other copolymeric nanoparticles. Present study indicates the efficacy of BAB nanoparticles as a promising carrier for oral immunization. 2009 Elsevier B.V. All rights reserved.

  3. Study of SiRNA-loaded PS-mPEG/CaP nanospheres on lung cancer

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Qin, Liubin; Sun, Ying; Shen, Ming; Duan, Yourong

    2014-05-01

    An ultrasound-adsorption method was used to prepare Bcl-2-SiRNA-loaded PS-mPEG/CaP nanospheres. The size and zeta potential were 18.41 ± 4.31 nm ( n = 5) and -23.5 ± 0.6 mV, respectively. The entrapment efficiency of SiRNA was 92.86 %. MTT assay results confirmed that the blank nanospheres demonstrated a negligible cytotoxicity response in H1299 cells. Flow cytometer analysis results demonstrated that PS-mPEG/CaP NSs could carry SiRNA into the cells effectively. RT-PCR experiments and apoptosis assay results approved that, compared with free SiRNA, SiRNA-loaded PS-mPEG/CaP NSs could silence Bcl-2 gene and induce cell apoptosis effectively. In vivo distribution results confirmed PS-mPEG/CaP NSs could carry SiRNA enter the tumor tissue effectively. Taken together, these results suggest that the Bcl-2-SiRNA-loaded PS-mPEG/CaP nanospheres have great potential to be used to cure lung cancer.

  4. Cholesterol-PEG comodified poly (N-butyl) cyanoacrylate nanoparticles for brain delivery: in vitro and in vivo evaluations.

    PubMed

    Hu, Xiao; Yang, Feifei; Liao, Yonghong; Li, Lin; Zhang, Lan

    2017-11-01

    This study investigated cholesterol-polyethylene glycol (PEG) comodified poly (ethyleneglycol)-poly (lactide) nanoparticles (CLS-PEG NPs) as a novel, biodegradable brain drug delivery system and included an evaluation of its in vitro and in vivo properties. To this end, coumarin-6 (C6), a fluorescent probe, was encapsulated into CLS-PEG NPs by an emulsion polymerization method. We reported that the use of CLS-PEG NPs led to a sustained drug release in vitro. Additionally, cell viability experiments confirmed their safety. The uptake and transport of CLS-PEG NPs, by bEnd.3 cells (an immortalized mouse brain endothelial cell line), was significantly higher than that of a control C6 solution. An investigation of the uptake mechanisms of different NP formulations demonstrated that cholesterol modifications may be the primary way to improve the efficiency of cellular uptake, wherein macropinocytosis may be the most important endocytic pathway in this process. An investigation of the transport mechanisms of CLS-PEG NPs also implicated macropinocytosis, energy and cholesterol in bEnd.3 cells lines. Following an intravenous (IV) administration to rats, pharmacokinetic experiments indicated that C6-loaded CLS-PEG NPs achieved sustained release for up to 12 h. In addition, IV delivery of CLS-PEG NPs appeared to significantly improve the ability of C6 to pass through the blood-brain barrier: the concentration of C6 found in the brain increased nearly 14.2-fold when C6 CLS-PEG NPs were used rather than a C6 solution. These in vitro and in vivo results strongly suggest that CLS-PEG NPs are a promising drug delivery system for targeting the brain, with low toxicity.

  5. In vitro testing of curcumin based composites coatings as antitumoral systems against osteosarcoma cells

    NASA Astrophysics Data System (ADS)

    Tirca, I.; Mitran, V.; Marascu, V.; Brajnicov, S.; Ion, V.; Stokker-Cheregi, F.; Popovici, I. A.; Cimpean, A.; Dinca, V.; Dinescu, M.

    2017-12-01

    In this work, we propose a new design for biodegradable composite coatings obtained by laser methods, which are aimed at evaluating the effects of active antitumoral elements on osteosarcoma cells. Our approach relies on embedding curcumin, which is a natural polyphenol having antitumoral properties, within biodegradable copolymer coatings (i.e. polyvinyl alcohol-polyethylene glycol - PVA-PEG) by using matrix assisted pulsed laser evaporation (MAPLE). The structural and morphological characteristics of the coatings were tailored by using different solvents (water, ethanol, benzene, dimethylsufoxide) as deposition matrix. The morphological characteristics of the resulting films were investigated by atomic force microscopy (AFM), whereas their chemical composition was characterized by Fourier transform infrared spectroscopy (FTIR). These characteristics were correlated with the degradation behavior by using ellipsometry (SE) and AFM measurements data. The in vitro study of the MG-63 osteosarcoma cell behavior indicates that the developed hybrid coatings significantly decreased osteosarcoma cell viability and proliferation potential. The physico-chemical characteristics of the thin films, along with the preliminary in vitro analyses, suggest that our developed polymeric hybrid coatings represent an efficient way to tackle the design of antitumoral surfaces, with applications in biomedicine.

  6. Development and Validation of a New Near-Infrared Sensor to Measure Polyethylene Glycol (PEG) Concentration in Water.

    PubMed

    Buzzi, Olivier; Yuan, Shengyang; Routley, Benjamin

    2017-06-10

    A near-infrared absorption based laser sensor has been designed and validated for the real-time measurement of polyethylene glycol (PEG) concentration. The wavelength was selected after the determination of the absorption spectrum of deionised water and PEG solutions using a Varian Cary 6000i spectrophotometer, in order to limit the influence of PEG molecular mass on the absorption measurement. With this new sensor, the water is treated as the attenuating species and the addition of PEG in water reduces the absorbance of the medium. The concept was validated using three different PEG types (PEG 6,000, 20,000, and 35,000) and it was found that the results follow Beer Lambert's law. The influence of temperature was assessed by testing the PEG 20,000 at four different temperatures that could be encountered in a laboratory environment. The data show a slight temperature influence (increase of absorbance by 8% when the temperature rises from about 20 to about 29 degrees). Following the validation phase conducted ex situ, a prototype of an immersible sensor was built and calibrated for in situ measurements.

  7. Volumetric Properties, Viscosities, and Refractive Indices of the Binary Systems 1-Butanol + PEG 200, + PEG 400, and + TEGDME

    NASA Astrophysics Data System (ADS)

    Živković, N.; Šerbanović, S.; Kijevčanin, M.; Živković, E.

    2013-06-01

    Densities, viscosities, and refractive indices of three binary systems consisting of 1-butanol with polyethylene glycols of different molecular weights (PEG 200 and PEG 400) or tetraethylene glycol dimethyl ether (TEGDME) were measured at ten temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15, 328.15, and 333.15) K and atmospheric pressure. Densities of the selected binary mixtures were measured with an Anton Paar DMA 5000 digital vibrating U-tube densimeter, refractive indices were measured with an automatic Anton Paar RXA-156 refractometer, while for viscosity measurements, a digital Stabinger SVM 3000/G2 viscometer was used. From these data, excess molar volumes were calculated and fitted to the Redlich-Kister equation. The obtained results have been analyzed in terms of specific molecular interactions and mixing behavior between mixture components, as well as the influence of temperature on them. Viscosity data were also correlated by Grunberg-Nissan, Eyring-UNIQUAC, three-body McAlister, and Eyring-NRTL models.

  8. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery.

    PubMed

    Liu, Peifeng; Yu, Hui; Sun, Ying; Zhu, Mingjie; Duan, Yourong

    2012-06-01

    A amphiphilic block copolymer composed of conventional monomethoxy (polyethylene glycol)-poly (d,l-lactide-co-glycolide)-poly (l-lysine) (mPEG-PLGA-b-PLL) was synthesized. The chemical structure of this copolymer and its precursors was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), (1)H Nuclear Magnetic Resonance ((1)H NMR) and Gel Permeation Chromatography (GPC). The copolymer was used to prepare nanoparticles (NPs) that were then loaded with either the anti-cancer drug adriamycin or small interfering RNA-negative (siRNA) using a double emulsion method. MTT assays used to study the in vitro cytotoxicity of mPEG-PLGA-b-PLL NPs showed that these particles were not toxic in huh-7 hepatic carcinoma cells. Confocal laser scanning microscopy (CLSM) and flow cytometer analysis results demonstrated efficient mPEG-PLGA-b-PLL NPs-mediated delivery of both adriamycin and siRNA into the cells. In vivo the targeting delivery of adriamycin or siRNA mediated by mPEG-PLGA-b-PLL NPs in the huh-7 hepatic carcinoma-bearing mice was evaluated using a fluorescence imaging system. The targeting delivery results and froze section analysis confirmed that drug or siRNA is deliver to tumor more efficiently by mPEG-PLGA-b-PLL NPs than free drug or Lipofectamine™2000. The high efficiency delivery of mPEG-PLGA-b-PLL NPs mainly due to the enhancement of cellular uptake. These results imply that mPEG-PLGA-b-PLL NPs have a great potential to be used as an effective carriers for adriamycin or siRNA. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  9. A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent.

    PubMed

    Xiong, Fei; Hu, Ke; Yu, Haoli; Zhou, Lijun; Song, Lina; Zhang, Yu; Shan, Xiuhong; Liu, Jianping; Gu, Ning

    2017-08-01

    Tumor targeting could greatly promote the performance of magnetic nanomaterials as MRI (Magnetic Resonance Imaging) agent for tumor diagnosis. Herein, we reported a novel magnetic nanoparticle modified with PLA (poly lactic acid)-PEG (polyethylene glycol)-DG (D-glucosamine) as Tumor-targeted MRI Contrast Agent. In this work, we took use of the D-glucose passive targeting on tumor cells, combining it on PLA-PEG through amide reaction, and then wrapped the PLA-PEG-DG up to the Fe 3 O 4 @OA NPs. The stability and anti phagocytosis of Fe 3 O 4 @OA@PLA-PEG-DG was tested in vitro; the MRI efficiency and toxicity was also detected in vivo. These functional magnetic nanoparticles demonstrated good biocompatibility and stability both in vitro and in vivo. Cell experiments showed that Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles exist good anti phagocytosis and high targetability. In vivo MRI images showed that the contrast effect of Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles prevailed over the commercial non tumor-targeting magnetic nanomaterials MRI agent at a relatively low dose. The DG can validly enhance the tumor-targetting effect of Fe 3 O 4 @OA@PLA-PEG nanoparticle. Maybe MRI agents with DG can hold promise as tumor-targetting development in the future.

  10. Use of read-across and computer-based predictive analysis for the safety assessment of PEG cocamines.

    PubMed

    Skare, Julie A; Blackburn, Karen; Wu, Shengde; Re, Thomas A; Duche, Daniel; Ringeissen, Stephanie; Bjerke, Donald L; Srinivasan, Viny; Eisenmann, Carol

    2015-04-01

    In the European Union animal testing has been eliminated for cosmetic ingredients while the US Cosmetic Ingredient Review Expert Panel may request data from animal studies. The use of read-across and predictive toxicology provides a path for filling data gaps without additional animal testing. The PEG cocamines are tertiary amines with an alkyl group derived from coconut fatty acids and two PEG chains of varying length. Toxicology data gaps for the PEG cocamines can be addressed by read-across based on structure-activity relationship using the framework described by Wu et al. (2010) for identifying suitable structural analogs. Data for structural analogs supports the conclusion that the PEG cocamines are non-genotoxic and not expected to exhibit systemic or developmental/reproductive toxicity with use in cosmetics. Due to lack of reliable dermal sensitization data for suitable analogs, this endpoint was addressed using predictive software (TIMES SS) as a first step (Laboratory of Mathematical Chemistry). The prediction for PEG cocamines was the same as that for PEGs, which have been concluded to not present a significant concern for dermal sensitization. This evaluation for PEG cocamines demonstrates the utility of read-across and predictive toxicology tools to assess the safety of cosmetic ingredients. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Development of PEG-PLGA based Intravenous Low Molecular Weight Heparin (LMWH) Nanoparticles Intended to Treat Venous Thrombosis.

    PubMed

    Jogala, Satheesh; Rachamalla, Shyam Sunder; Aukunuru, Jithan

    2016-01-01

    Anticoagulant therapy is effective in the treatment of DVT. In this regard, LMWH demonstrated significant promise. It is widely used clinically. The goal of this study was to prepare and evaluate intravenous sustained release stealth nanoparticles encapsulating LMWH using PLGA (polylactidecoglycolide) and different grades of PEG (poly ethylene glycols). The nanoparticles were prepared using w/o/w solvent evaporation technique. Prepared nanoparticles were evaluated for particle size, encapsulation efficiency, in-vitro drug release, anti-thrombotic activity in venous thrombosis rat model, estimation of aPTT, tissue bio-distribution studies and stability. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) studies confirmed the formation of smooth spherical particles. FTIR study reveals successful coating of PEG on the nanoparticles. DSC and XRD results demonstrated that drug changed its physical form in the formulation. The encapsulation efficiency was 63-74%. In vitro drug release was 57-75% for 48 hrs. Macrophage uptake of LMWH with pegylated nanoparticles was less compared to conventional PLGA nanoparticles. In vivo drug release was sustained for 48hrs; Optimized formulation exhibited good enhancement in pharmacokinetic parameters when compared to free drug solution. In vivo sustained release was also demonstrated with antithrombotic activity as well aPTT activity. Optimized formulation demonstrated significant stability, excellent antithrombotic activity in venous thrombosis rat model, improved aPTT levels when compared to free drug solution. An effective stealth LMWH nanoparticle formulation to treat venous thrombosis was successfully developed using w/o/w solvent evaporation technique.

  12. Effects of bevacizumab loaded PEG-PCL-PEG hydrogel intracameral application on intraocular pressure after glaucoma filtration surgery.

    PubMed

    Han, Qian; Wang, Yuqi; Li, Xiabin; Peng, Ribo; Li, Ailing; Qian, Zhiyong; Yu, Ling

    2015-08-01

    PEG-PCL-PEG (PECE) hydrogel for intracameral injection as a sustained delivery system can get a stable release of the medication and achieve an effective local concentration. The injectable PECE hydrogel is thermosensitive nano-material which is flowing sol at low temperature and can shift to nonflowing gel at body temperature. This study evaluated the intracameral injection of bevacizumab combined with a PECE hydrogel drug release system on postoperative scarring and bleb survival after experimental glaucoma filtration surgery. The best result was achieved in the bevacizumab loaded PECE hydrogels group, which presented the lowest IOP values after surgery. And the blebs were significantly more persistent in this group. Histology, Massion trichrome staining and immunohistochemistry further demonstrated that glaucoma filtration surgery in combination with bevacizumab loaded PECE hydrogel resulted in good bleb survival due to scar formation inhibition. In conclusions, this study demonstrated that bevacizumab-loaded PECE hydrogel for intracameral injection as a sustained delivery system provide a great opportunity to increase the therapeutic efficacy of glaucoma filtration surgery.

  13. Inert Reassessment Document for PEG Fatty Acid Esters

    EPA Pesticide Factsheets

    The tolerance reassessment decision document and action memorandum for the PEG fatty acid ester date September 28, 2005, included two tolerance exemptions (under 40 CFR 180.910 and $) CFR 180.930, respectively)

  14. A PEG-Based Hydrogel for Effective Wound Care Management

    PubMed Central

    Chen, Sen-Lu; Fu, Ru-Huei; Liao, Shih-Fei; Liu, Shih-Ping; Lin, Shinn-Zong; Wang, Yu-Chi

    2018-01-01

    It is extremely challenging to achieve strong adhesion in soft tissues while minimizing toxicity, tissue damage, and other side effects caused by wound sealing materials. In this study, flexible synthetic hydrogel sealants were prepared based on polyethylene glycol (PEG) materials. PEG is a synthetic material that is nontoxic and inert and, thus, suitable for use in medical products. We evaluated the in vitro biocompatibility tests of the dressings to assess cytotoxicity and irritation, sensitization, pyrogen toxicity, and systemic toxicity following the International Organization for Standardization 10993 standards and the in vivo effects of the hydrogel samples using Coloskin liquid bandages as control samples for potential in wound closure. PMID:29637814

  15. Near-infrared (1550 nm) in vivo bioimaging based on rare-earth doped ceramic nanophosphors modified with PEG-b-poly(4-vinylbenzylphosphonate).

    PubMed

    Kamimura, Masao; Kanayama, Naoki; Tokuzen, Kimikazu; Soga, Kohei; Nagasaki, Yukio

    2011-09-01

    A novel poly(ethylene glycol) (PEG)-based block copolymer possessing a 4-vinylbenzylphosphonate repeating unit in another segment (PEG-block-poly(4-vinylbenzylphosphonate)) (PEG-b-PVBP) was designed and successfully synthesized. As a control, an end-functionalized PEG possessing a mono-phosphonate group (PEG-PO(3)H(2)) was also synthesized. The surface of near-infrared (NIR) phosphors (i.e., ytterbium (Yb) and erbium (Er) ion-codoped Y(2)O(3) nanoparticles (YNPs)) were modified with PEG-b-PVBP (PEG-YNP(b)s) and PEG-PO(3)H(2) (PEG-YNP(1)s). The adsorption of PEG-b-PVBP and PEG-PO(3)H(2) was estimated by Fourier transform infrared (FT-IR) measurements and thermal gravimetric analysis (TGA). The physicochemical characteristics of the obtained YNP samples were analyzed by ζ-potential and dynamic light scattering (DLS) measurements. The ζ-potentials of YNPs modified by these polymers were close to zero, indicating the effective coverage of the YNP surface by our new PEG derivatives. However, the dispersion stability of the PEGylated YNPs was strongly affected by the structure of the PEG terminus. The average diameter of the PEG-YNP(1)s increased, and aggregates precipitated after less than 1 h in phosphate buffer saline (PBS). In contrast, the size did not change at all in the case of PEG-YNP(b)s and the dispersion in PBS was stable for over 1 week. PEG-YNP(b)s also showed high erosion resistance under acidic conditions. The multiple coordinated PVBP segment of the block copolymer on the YNP surface plays a substantial role in improving such dispersion stability. The excellent dispersion stability and strong NIR luminescence of the obtained PEG-YNP(b)s were also confirmed in fetal bovine serum (FBS) solution over 1 week. Furthermore, in vivo NIR imaging of live mice was performed, and the 1550 nm NIR emission of PEG-YNP(b)s from the organ of live mice was confirmed without dissection.

  16. E-selectin-targeted Sialic Acid-PEG-dexamethasone Micelles for Enhanced Anti-Inflammatory Efficacy for Acute Kidney Injury.

    PubMed

    Hu, Jing-Bo; Kang, Xu-Qi; Liang, Jing; Wang, Xiao-Juan; Xu, Xiao-Ling; Yang, Ping; Ying, Xiao-Ying; Jiang, Sai-Ping; Du, Yong-Zhong

    2017-01-01

    The effective treatment for acute kidney injury (AKI) is currently limited, and care is primarily supportive. Sialic acid (SA) is main component of Sialyl Lewis x antigen on the mammalian cell surface, which participates in E-selectin binding. Therefore, dexamethasone(DXM)-loaded E-selectin-targeting sialic acid-polyethylene glycol-dexamethasone (SA-PEG-DXM/DXM) conjugate micelles are designed for ameliorating AKI. The conjugates are synthesized via the esterification reaction between PEG and SA or DXM, and can spontaneously form micelles in an aqueous solution with a 65.6 µg/mL critical micelle concentration. Free DXM is incorporated into the micelles with 6.28 ± 0.21% drug loading content. In vitro DXM release from SA-PEG-DXM/DXM micelles can be prolonged to 48h. Much more SA-PEG-DXM micelles can be internalized by lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs) in comparison to PEG-DXM micelles due to specific interaction between SA and E-selectin expressed on HUVECs, and consequently more SA-PEG-DXM micelles are accumulated in the kidney of AKI murine model. Furthermore, SA in SA-PEG-DXM conjugates can significantly ameliorate LPS-induced production of pro-inflammatory cytokines via suppressing LPS-activated Beclin-1/Atg5-Atg12-mediated autophagy to attenuate toxicity. Compared with free DXM and PEG-DXM/DXM micelles, SA-PEG-DXM/DXM micelles show better therapeutical effects, as reflected by the improved renal function, histopathological changes, pro-inflammatory cytokines, oxidative stress and expression of apoptotic related proteins.

  17. Photoinduced PEG deshielding from ROS-sensitive linkage-bridged block copolymer-based nanocarriers for on-demand drug delivery.

    PubMed

    Li, Jie; Sun, Chunyang; Tao, Wei; Cao, Ziyang; Qian, Haisheng; Yang, Xianzhu; Wang, Jun

    2018-07-01

    Controlling poly(ethylene glycol) (PEG) shielding/deshielding at the desired site of action exhibits great advantages for nanocarrier-based on-demand drug delivery in vivo. However, the current PEG deshielding strategies were mainly designed for anticancer drug delivery; even so, their applications are also limited by tumor heterogeneity. As a proof-of-concept, we explored a photoinduced PEG deshielding nanocarrier TK-NP Ce6&PTX to circumvent the aforementioned challenge. The TK-NP Ce6&PTX encapsulating chlorin e6 (Ce6) and paclitaxel (PTX) was self-assembled from an innovative thioketal (TK) linkage-bridged diblock copolymer of PEG with poly(d,l-lactic acid) (PEG-TK-PLA). We demonstrated that the high PEGylation of TK-NP Ce6&PTX in blood helps the nanocarrier efficiently avoid rapid clearance and consequently prolongs its circulation time. At the desired site (tumor), 660-nm red light irradiation led to ROS generation in situ, which readily cleaved the TK linkage, resulting in PEG deshielding. Such photoinduced PEG deshielding at the desired site significantly enhances the cellular uptake of the nanocarriers, achieving on-demand drug delivery and superior therapeutic efficacy. More importantly, this strategy of photoinducing PEG deshielding of nanocarriers could potentially extend to a variety of therapeutic agents beyond anticancer drugs for on-demand delivery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Development of flexible Ni80Fe20 magnetic nano-thin films

    NASA Astrophysics Data System (ADS)

    Vopson, M. M.; Naylor, J.; Saengow, T.; Rogers, E. G.; Lepadatu, S.; Fetisov, Y. K.

    2017-11-01

    Flexible magnetic Ni80Fe20 thin films with excellent adhesion, mechanical and magnetic properties have been fabricated using magnetron plasma deposition. We demonstrate that flexible Ni80Fe20 thin films maintain their non-flexible magnetic properties when the films are over 60 nm thick. However, when their thickness is reduced, the flexible thin films display significant increase in their magnetic coercive field compared to identical films coated on a solid Silicon substrate. For a 15 nm flexible Ni80Fe20 film coated onto 110 μm Polyvinylidene fluoride polymer substrate, we achieved a remarkable 355% increase in the magnetic coercive field relative to the same film deposited onto a Si substrate. Experimental evidence, backed by micro-magnetic modelling, indicates that the increase in the coercive fields is related to the larger roughness texture of the flexible substrates. This effect essentially transforms soft Ni80Fe20 permalloy thin films into medium/hard magnetic films allowing not only mechanical flexibility of the structure, but also fine tuning of their magnetic properties.

  19. In situ formation of leak-free polyethylene glycol (PEG) membranes in microfluidic fuel cells.

    PubMed

    Ho, W F; Lim, K M; Yang, K-L

    2016-11-29

    Membraneless microfluidic fuel cells operated under two co-laminar flows often face serious fuel cross-over problems, especially when flow rates are close to zero. In this study, we show that polyethylene glycol (PEG) monomers can be cross-linked inside microfluidic channels to form leak-free PEG membranes, which prevent mixing of two incompatible electrolyte solutions while allowing diffusion of certain molecules (e.g. glucose) and ions. By using PEG monomers of different molecular weights and cross-linking conditions, we are able to tailor selectivity of the membrane to allow passage of glucose while blocking larger molecules such as trypan blue. As a proof of principle, a microfluidic fuel cell with a PEG membrane and two incompatible electrolytes (acid and base) is demonstrated. Thanks to the leak-free nature of the PEG membrane, these two electrolytes do not mix together even at very slow flow rates. This microfluidic fuel cell is able to generate a voltage up to ∼450 mV from 10 mM of glucose with a flow rate of 20 μL min -1 . This microfluidic fuel cell is potentially useful as a miniature power source for many applications.

  20. Photo-crosslinked PDMSstar-PEG Hydrogels: Synthesis, Characterization, and Potential Application for Tissue Engineering Scaffolds

    PubMed Central

    Hou, Yaping; Schoener, Cody A.; Regan, Katherine R.; Munoz-Pinto, Dany; Hahn, Mariah S.; Grunlan, Melissa A.

    2010-01-01

    Inorganic-organic hydrogels with tunable chemical and physical properties were prepared from methacrylated star polydimethylsiloxane (PDMSstar-MA) and diacrylated poly(ethylene glycol) (PEG-DA) for use as tissue engineering scaffolds. Eighteen compositionally unique hydrogels were prepared by photo-crosslinking varying weight ratios of PEG-DA and PDMSstar-MA of different molecular weights (Mn): PEG-DA (Mn = 3.4k and 6k g/mol) and PDMSstar-MA (Mn = 1.8k, 5k and 7k g/mol). Introduction of PDMSstar-MA caused formation of discrete PDMS-enriched microparticles dispersed within the PEG matrix. The swelling ratio, mechanical properties in tension and compression, non-specific protein adhesion, controlled introduction of bioactivity and cytotoxicity of hydrogels were studied. This library of inorganic-organic hydrogels with tunable properties provides a useful platform to study the effect of scaffold properties on cell behavior. PMID:20146518

  1. Targeted PEG-based bioconjugates enhance the cellular uptake and transport of a HIV-1 TAT nonapeptide.

    PubMed

    Ramanathan, S; Qiu, B; Pooyan, S; Zhang, G; Stein, S; Leibowitz, M J; Sinko, P J

    2001-12-13

    We previously described the enhanced cell uptake and transport of R.I-K(biotin)-Tat9, a large ( approximately 1500 Da) peptidic inhibitor of HIV-1 Tat protein, via SMVT, the intestinal biotin transporter. The aim of the present study was to investigate the feasibility of targeting biotinylated PEG-based conjugates to SMVT in order to enhance cell uptake and transport of Tat9. The 29 kDa peptide-loaded bioconjugate (PEG:(R.I-Cys-K(biotin)-Tat9)8) used in these studies contained eight copies of R.I-K(biotin)-Tat9 appended to PEG by means of a cysteine linkage. The absorptive transport of biotin-PEG-3400 (0.6-100 microM) and the bioconjugate (0.1-30 microM) was studied using Caco-2 cell monolayers. Inhibition of biotin-PEG-3400 by positive controls (biotin, biocytin, and desthiobiotin) was also determined. Uptake of these two compounds was also determined in CHO cells transfected with human SMVT (CHO/hSMVT) and control cells (CHO/pSPORT) over the concentration ranges of 0.05-12.5 microM and 0.003-30 microM, respectively. Nonbiotinylated forms of these two compounds, PEG-3350 and PEG:(R.I-Cys-K-Tat9)8, were used in the control studies. Biotin-PEG-3400 transport was found to be concentration-dependent and saturable in Caco-2 cells (K(m)=6.61 microM) and CHO/hSMVT cells (K(m)=1.26 microM). Transport/uptake was significantly inhibited by positive control substrates of SMVT. PEG:(R.I-Cys-K(biotin)Tat9)8 also showed saturable transport kinetics in Caco-2 cells (K(m)=6.13 microM) and CHO/hSMVT cells (K(m)=8.19 microM). Maximal uptake in molar equivalents of R.I-Cys-K(biotin)Tat9 was 5.7 times greater using the conjugate versus the biotinylated peptide alone. Transport of the nonbiotinylated forms was significantly lower (P<0.001) in all cases. The present results demonstrate that biotin-PEG-3400 and PEG:(R.I-Cys-K(biotin)Tat9)8 interact with human SMVT to enhance the cellular uptake and transport of these larger molecules and that targeted bioconjugates may have potential

  2. In vitro dissolution and in vivo gamma scintigraphic evaluation of press-coated salbutamol sulfate tablets.

    PubMed

    Li, Wei; Shi, Cai-Hong; Sheng, Yi-Ling; Cui, Ping; Zhao, Yu-Qing; Zhang, Xiang-Rong

    2013-12-01

    The aim of this study was to investigate the in vitro and in vivo performance of salbutamol sulfate press-coated tablets for delayed release. The in vitro release behavior of press-coated tablets with the outer layer of PEG 6000/ Eudragit S100 blends (2:1) in pH 1.2 (0.1 mol L-1 HCl) and then pH 6.8 buffer solution was examined. Morphological change of the press-coated tablet during in vitro release was recorded with a digital camera. Release of salbutamol sulfate from press-coated tablets was less than 5 % before 3 h and was completed after 8 h in pH 6.8 phosphate buffer solution. In vivo gamma scintigraphy study carried out on healthy men indicated that the designed system released the drug in lower parts of the GI tract after a lag time of 5 hours. The results showed the capability of the system of achieving delayed release of the drug in both in vitro and in vivo gamma scintigraphy studies.

  3. Therapeutic PEG-ceramide nanomicelles synergize with salinomycin to target both liver cancer cells and cancer stem cells.

    PubMed

    Wang, Meiping; Xie, Fangyuan; Wen, Xikai; Chen, Han; Zhang, Hai; Liu, Junjie; Zhang, He; Zou, Hao; Yu, Yuan; Chen, Yan; Sun, Zhiguo; Wang, Xinxia; Zhang, Guoqing; Yin, Chuan; Sun, Duxin; Gao, Jie; Jiang, Beige; Zhong, Yanqiang; Lu, Ying

    2017-05-01

    Salinomycin (SAL)-loaded PEG-ceramide nanomicelles (SCM) were prepared to target both liver cancer cells and cancer stem cells. The synergistic ratio of SAL/PEG-ceramide was evaluated to prepare SCM, and the antitumor activity of SCM was examined both in vitro and in vivo. SAL/PEG-ceramide molar ratio of 1:4 was chosen as the synergistic ratio, and SCM showed superior cytotoxic effect and increased apoptosis-inducing activity in both liver cancer cells and cancer stem cells. In vivo, SCM showed the best tumor inhibitory effect with a safety profile. Thus, PEG-ceramide nanomicelles could serve as an effective and safe therapeutic drug carrier to deliver SAL into liver cancer, opening up the avenue of using PEG-ceramide as therapeutic drug carriers.

  4. Strong variable linear polarization in the cool active star II Peg

    NASA Astrophysics Data System (ADS)

    Rosén, Lisa; Kochukhov, Oleg; Wade, Gregg A.

    2014-08-01

    Magnetic fields of cool active stars are currently studied polarimetrically using only circular polarization observations. This provides limited information about the magnetic field geometry since circular polarization is only sensitive to the line-of-sight component of the magnetic field. Reconstructions of the magnetic field topology will therefore not be completely trustworthy when only circular polarization is used. On the other hand, linear polarization is sensitive to the transverse component of the magnetic field. By including linear polarization in the reconstruction the quality of the reconstructed magnetic map is dramatically improved. For that reason, we wanted to identify cool stars for which linear polarization could be detected at a level sufficient for magnetic imaging. Four active RS CVn binaries, II Peg, HR 1099, IM Peg, and σ Gem were observed with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope. Mean polarization profiles in all four Stokes parameters were derived using the multi-line technique of least-squares deconvolution (LSD). Not only was linear polarization successfully detected in all four stars in at least one observation, but also, II Peg showed an extraordinarily strong linear polarization signature throughout all observations. This qualifies II Peg as the first promising target for magnetic Doppler imaging in all four Stokes parameters and, at the same time, suggests that other such targets can possibly be identified.

  5. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder

    PubMed Central

    Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; DuRoss, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav

    2016-01-01

    2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1−/−) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1−/− cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders. PMID:27572704

  6. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder

    NASA Astrophysics Data System (ADS)

    Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; Duross, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav

    2016-08-01

    2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1-/-) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1-/- cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders.

  7. Preventing False Negatives for Histochemical Detection of Phenolics and Lignins in PEG-Embedded Plant Tissues

    PubMed Central

    Ferreira, Bruno G.; Falcioni, Renan; Guedes, Lubia M.; Avritzer, Sofia C.; Antunes, Werner C.; Souza, Luiz A.; Isaias, Rosy M.S.

    2016-01-01

    Polyethylene glycol (PEG) is a low-cost and advantageous embedding medium, which maintains the majority of cell contents unaltered during the embedding process. Some hard or complex plant materials are better embedded in PEG than in other usual embedding media. However, the histochemical tests for phenolics and lignins in PEG-embedded plant tissues commonly result in false negatives. We hypothesize that these false negatives should be prevented by the use of distinct fixatives, which should avoid the bonds between PEG and phenols. Novel protocols for phenolics and flavanols detection are efficiently tested, with fixation of the samples in ferrous sulfate and formalin or in caffeine and sodium benzoate, respectively. The differentiation of lignin types is possible in safranin-stained sections observed under fluorescence. The Maule’s test faultlessly distinguishes syringyl-rich from guaiacyl- and hydroxyphenyl-rich lignins in PEG-embedded material under light microscopy. Current hypothesis is corroborated, that is, the adequate fixation solves the false-negative results, and the new proposed protocols fill up some gaps on the detection of phenolics and lignins. PMID:28117630

  8. Update on PEG-interferon α-2b as adjuvant therapy in melanoma.

    PubMed

    Di Trolio, Rossella; Simeone, Ester; Di Lorenzo, Giuseppe; Grimaldi, Antonio Maria; Romano, Anna; Ayala, Fabrizio; Caracò, Corrado; Mozzillo, Nicola; Ascierto, Paolo A

    2012-09-01

    Based on the results of European Organization for Research and Treatment of Cancer (EORTC) 18991 trial, the US Food and Drug Administration (FDA) approved PEG-interferon α-2b (PEG-IFN) (Sylatron) as adjuvant therapy for high-risk melanoma. The EORTC 18991 trial was an open-label study of resectable stage III melanoma with 1,256 patients who were randomized to observation-alone or to treatment with PEG-IFN for up to 5 years. The median recurrence-free survival of the treatment groups was significantly longer, while overall survival, a secondary endpoint, was not significantly different between the two groups. This review, after a short summary of interferon α-2b trials, critically analyzes the EORTC18991 trial, as well as the subgroup results and future perspectives for this stage of disease.

  9. Optimization of PEG-based extraction of polysaccharides from Dendrobium nobile Lindl. and bioactivity study.

    PubMed

    Zhang, Yi; Wang, Hongxin; Wang, Peng; Ma, ChaoYang; He, GuoHua; Rahman, Md Ramim Tanver

    2016-11-01

    Polyethylene glycol (PEG) as a green solvent was employed to extract polysaccharide. The optimal conditions for PEG-based ultrasonic extraction of Dendrobium nobile Lindl. polysaccharide (JCP) were determined by response surface methodology. Under the optimal conditions: extraction temperature of 58.5°C; ultrasound power of 193W, and the concentration of polyethylene glycol-200 (PEG-200) solution of 45%, the highest JCP yield was obtained as 15.23±0.57%, which was close to the predicted yield, 15.57%. UV and FT-IR analysis revealed the general characteristic absorption peaks of both JCP with water extraction (JCP w ) and PEG-200 solvent extraction (JCP p ). Thermal analysis of both JCPs was performed with Thermal Gravimetric Analyzer (TGA) and Differential Scanning Calorimeter (DSC). Antioxidant activities of two polysaccharides were also compared and no significant difference in vitro was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Chemical peeling by SA-PEG remodels photo-damaged skin: suppressing p53 expression and normalizing keratinocyte differentiation.

    PubMed

    Dainichi, Teruki; Amano, Satoshi; Matsunaga, Yukiko; Iriyama, Shunsuke; Hirao, Tetsuji; Hariya, Takeshi; Hibino, Toshihiko; Katagiri, Chika; Takahashi, Motoji; Ueda, Setsuko; Furue, Masutaka

    2006-02-01

    Chemical peeling with salicylic acid in polyethylene glycol vehicle (SA-PEG), which specifically acts on the stratum corneum, suppresses the development of skin tumors in UVB-irradiated hairless mice. To elucidate the mechanism through which chemical peeling with SA-PEG suppresses skin tumor development, the effects of chemical peeling on photodamaged keratinocytes and cornified envelopes (CEs) were evaluated in vivo. Among UVB-irradiated hairless mice, the structural atypia and expression of p53 protein in keratinocytes induced by UVB irradiation were intensely suppressed in the SA-PEG-treated mice 28 days after the start of weekly SA-PEG treatments when compared to that in the control UVB-irradiated mice. Incomplete expression of filaggrin and loricrin in keratinocytes from the control mice was also improved in keratinocytes from the SA-PEG-treated mice. In photo-exposed human facial skin, immature CEs were replaced with mature CEs 4 weeks after treatment with SA-PEG. Restoration of photodamaged stratum corneum by treatment with SA-PEG, which may affect remodeling of the structural environment of the keratinocytes, involved the normalization of keratinocyte differentiation and suppression of skin tumor development. These results suggest that the stratum corneum plays a protective role against carcinogenesis, and provide a novel strategy for the prevention of photo-induced skin tumors.

  11. A Prospective Randomized Controlled Trial of AJG522 versus Standard PEG + E as Bowel Preparation for Colonoscopy

    PubMed Central

    Sagawa, Toshihiko; Tomizawa, Taku; Mizuide, Masafumi; Yasuoka, Hidetoshi; Shimoyama, Yasuyuki; Kakizaki, Satoru; Kawamura, Osamu; Kusano, Motoyasu; Yamada, Masanobu

    2015-01-01

    Polyethylene glycol- (PEG-) based bowel preparations for colonoscopies are often poorly tolerated due to the large volumes of fluid intake required. We compared low-volume “modified” PEG + ascorbic acid (AJG522) with standard PEG with electrolytes (PEG + E) in addition to a stimulant laxative and an agent to improve bowel function for the bowel cleansing before colonoscopy to evaluate its efficacy, safety, and acceptability. Outpatients scheduled to undergo colonoscopy were randomized to receive either AJG522 or PEG + E. Bowel cleansing conditions were assessed via macroscopic fecal findings by blinded and independent investigators. A survey of the patients' feedback regarding the preparation was conducted by questionnaire. Successful cleansing was achieved in all cases, except for 4 cases in the PEG + E group, at 3 hours after taking the preparation. The fecal properties were significantly clearer in the AJG522 group than in the PEG + E group at 2 hours after taking each preparation (P = 0.013). Although the total liquid volume of the bowel preparation was not reduced, the AJG522 preparation could significantly reduce the required volume of the preparation (P < 0.0001). Moreover, the patients in the AJG522 group had better acceptability (P = 0.010). There were no significant differences in the safety profiles between groups (UMIN000013892). PMID:25688357

  12. Oral PEG 15-20 protects the intestine against radiation : role of lipid rafts.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valuckaite, V.; Zaborina, O.; Long, J.

    Intestinal injury following abdominal radiation therapy or accidental exposure remains a significant clinical problem that can result in varying degrees of mucosal destruction such as ulceration, vascular sclerosis, intestinal wall fibrosis, loss of barrier function, and even lethal gut-derived sepsis. We determined the ability of a high-molecular-weight polyethylene glycol-based copolymer, PEG 15-20, to protect the intestine against the early and late effects of radiation in mice and rats and to determine its mechanism of action by examining cultured rat intestinal epithelia. Rats were exposed to fractionated radiation in an established model of intestinal injury, whereby an intestinal segment is surgicallymore » placed into the scrotum and radiated daily. Radiation injury score was decreased in a dose-dependent manner in rats gavaged with 0.5 or 2.0 g/kg per day of PEG 15-20 (n = 9-13/group, P < 0.005). Complementary studies were performed in a novel mouse model of abdominal radiation followed by intestinal inoculation with Pseudomonas aeruginosa (P. aeruginosa), a common pathogen that causes lethal gut-derived sepsis following radiation. Mice mortality was decreased by 40% in mice drinking 1% PEG 15-20 (n = 10/group, P < 0.001). Parallel studies were performed in cultured rat intestinal epithelial cells treated with PEG 15-20 before radiation. Results demonstrated that PEG 15-20 prevented radiation-induced intestinal injury in rats, prevented apoptosis and lethal sepsis attributable to P. aeruginosa in mice, and protected cultured intestinal epithelial cells from apoptosis and microbial adherence and possible invasion. PEG 15-20 appeared to exert its protective effect via its binding to lipid rafts by preventing their coalescence, a hallmark feature in intestinal epithelial cells exposed to radiation.« less

  13. Separation of no-carrier-added rhenium from bulk tantalum by the sodium malonate-PEG aqueous biphasic system.

    PubMed

    Dutta, Binita; Lahiri, Susanta; Tomar, B S

    2014-02-01

    The aqueous biphasic system (ABS) involving sodium malonate-polyethylene glycol (PEG) phases has been applied for the first time for separation of no-carrier-added (183)Re (T1/2=70 d) from α-particle irradiated bulk tantalum target. The various ABS conditions were applied for investigating the separation by varying pH, temperature, PEG-molecular weight, concentration of salt. The extraction pattern was hardly affected by change in pH and the molecular weight of PEG. One step separation of nca (183)Re from Ta was achieved at the optimal conditions of (i) 50% (w/w) PEG-4000-2 M sodium malonate, 40 °C and (ii) 50% (w/w) PEG-4000-3 M sodium malonate, room temperature (27 °C). © 2013 Published by Elsevier Ltd.

  14. Redox-sensitive micelles assembled from amphiphilic mPEG-PCL-SS-DTX conjugates for the delivery of docetaxel.

    PubMed

    Zhang, Huiyuan; Wang, Kaiming; Zhang, Pei; He, Wenxiu; Song, Aixin; Luan, Yuxia

    2016-06-01

    Docetaxel (DTX) can produce anti-tumor effects by inhibiting cell growth and inducing apoptosis. However, the poor solubility of DTX restricts its application and its clinical formulation has caused serious adverse reaction due to the use of Tween-80. In the present study, DTX was conjugated to an amphiphilic di-block polymer to solve these problems. Methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) was selected as the polymer skeleton and a redox sensitive disulfide bond was used as the linker between DTX and mPEG-PCL. The synthesized mPEG-PCL-SS-DTX conjugates were characterized by (1)H-nuclear magnetic resonance ((1)H NMR) and Fourier transform infrared spectroscopy (FTIR). Interestingly, the mPEG-PCL-SS-DTX conjugates could self-assemble into micelles in aqueous solution. The critical micelle concentration (CMC) of mPEG-PCL-SS-DTX micelles was about 2.3mgL(-1) determined using pyrene molecule fluorescent probe method while the size of mPEG-PCL-SS-DTX micelles was determined to be ca. 17.6nm and 116.0nm with a bimodal distribution by dynamic light scattering (DLS). The in vitro release results indicated that the as-prepared micelles exhibited a sustained release profile with good redox sensitive properties. In particular, the hemolytic toxicity test indicated the as-prepared mPEG-PCL-SS-DTX micelles had negligible hemolytic activity, demonstrating their safety in drug delivery system. Cytotoxicity assay of the mPEG-PCL-SS-DTX micelles verified their highly enhanced cytotoxicity to MCF-7/A and A549 cells. These results thus demonstrated that the present redox-sensitive mPEG-PCL-SS-DTX micelle was an efficient and safe sustained drug delivery system in the biomedical area. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization

    NASA Astrophysics Data System (ADS)

    Gong, ChangYang; Wei, XiaWei; Wang, XiuHong; Wang, YuJun; Guo, Gang; Mao, YongQiu; Luo, Feng; Qian, ZhiYong

    2010-05-01

    This study aims to develop self-assembled poly(ethylene glycol)-poly(ɛ-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles to encapsulate hydrophobic honokiol (HK) in order to overcome its poor water solubility and to meet the requirement of intravenous administration. Honokiol loaded micelles (HK-micelles) were prepared by self-assembly of PECE copolymer in aqueous solution, triggered by its amphiphilic characteristic assisted by ultrasonication without any organic solvents, surfactants and vigorous stirring. The particle size of the prepared HK-micelles measured by Malvern laser particle size analyzer were 58 nm, which is small enough to be a candidate for an intravenous drug delivery system. Furthermore, the HK-micelles could be lyophilized into powder without any adjuvant, and the re-dissolved HK-micelles are stable and homogeneous with particle size about 61 nm. Furthermore, the in vitro release profile showed a significant difference between the rapid release of free HK and the much slower and sustained release of HK-micelles. Moreover, the cytotoxicity results of blank micelles and HK-micelles showed that the PECE micelle was a safe carrier and the encapsulated HK retained its potent antitumor effect. In short, the HK-micelles were successfully prepared by an improved method and might be promising carriers for intravenous delivery of HK in cancer chemotherapy, being effective, stable, safe (organic solvent and surfactant free), and easy to produce and scale up.

  16. Accelerated cell sheet detachment by copolymerizing hydrophilic PEG side chains into PNIPAm nanocomposite hydrogels.

    PubMed

    Liu, Dan; Wang, Tao; Liu, Xinxing; Tong, Zhen

    2012-10-01

    One-end-connected short poly(ethylene glycol) (PEG) side chains were facilely introduced into the poly(N-isopropylacrylamide) (PNIPAm) nanocomposite hydrogel (NC gel) via in situ copolymerization of NIPAm monomer and PEG macromonomer in the aqueous suspension of hectorite clay Laponite XLS. The NC gels were characterized with Fourier transform infrared and x-ray photoelectron spectroscopy for the composition, DSC and transmittance for the phase separation temperature, dynamic mechanical spectra and swelling ratio for the interaction. Increasing the PEG content led to a small increase in the storage modulus and the lower critical solution temperature (LCST) of the copolymerized NC gels, and the LCST of the copolymerized NC gels was still below 37 °C. The L929 cell adhesion and proliferation on the surface of these NC gels were not suppressed by the incorporation of hydrophilic PEG side chains. By lowering temperature below the LCST, the cell sheet spontaneously detached from the copolymerized NC gels. The surface morphology and surface wettability of the NC gels were detected by atom force microscope and contact angle measurement. A rough and hydrophilic surface induced by a small amount of PEG side chains was found to be favorable to accelerate the cell sheet detachment, probably due to the enhanced water permeation into the gel-cell sheet interface.

  17. Randomized clinical trial: macrogol/PEG 3350 plus electrolytes for treatment of patients with constipation associated with irritable bowel syndrome.

    PubMed

    Chapman, R W; Stanghellini, V; Geraint, M; Halphen, M

    2013-09-01

    Polyethylene glycol (PEG) 3350 plus electrolytes (PEG 3350+E) is an established treatment for constipation and has been proposed as a treatment option for constipation associated with irritable bowel syndrome (IBS-C). This study aimed to compare the efficacy and safety of PEG 3350+E vs. placebo in adult patients with IBS-C. Following a 14-day run-in period without study medication, patients with confirmed IBS-C were randomized to receive PEG 3350+E (N=68) or placebo (N=71) for 28 days. The primary endpoint was the mean number of spontaneous bowel movements (SBMs) per day in the last treatment week. In both groups, mean weekly number of SBMs (±s.d.) increased from run-in. The difference between the groups in week 4 (PEG 3350+E, 4.40±2.581; placebo, 3.11±1.937) was statistically significant (95% confidence interval: 1.17, 1.95; P<0.0001). Although mean severity score for abdominal discomfort/pain was significantly reduced compared with run-in with PEG 3350+E, there was no difference vs. placebo. Spontaneous complete bowel movements, responder rates, stool consistency, and severity of straining also showed superior improvement in the PEG 3350+E group over placebo in week 4. The most common drug related treatment-emergent adverse events were abdominal pain (PEG 3350+E, 4.5%; placebo, 0%) and diarrhoea (PEG 3350+E, 4.5%; placebo, 4.3%). In IBS-C, PEG 3350+E was superior to placebo for relief of constipation, and although a statistically significant improvement in abdominal discomfort/pain was observed compared with baseline, there was no associated improvement compared with placebo. PEG 3350+E is a well-established and effective treatment that should be considered suitable for use in IBS-C.

  18. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    NASA Astrophysics Data System (ADS)

    Ding, Hong; Yong, Ken-Tye; Roy, Indrajit; Hu, Rui; Wu, Fang; Zhao, Lingling; Law, Wing-Cheung; Zhao, Weiwei; Ji, Wei; Liu, Liwei; Bergey, Earl J.; Prasad, Paras N.

    2011-04-01

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l - 1. Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the αvβ3 integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  19. Fluorescent water-Soluble Probes Based on Ammonium Cation Peg Substituted Perylenepisimides: Synthesis, Photophysical Properties, and Live Cell Images

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Cai, Jiaxuan; Zhang, Shuchen; Yi, Xuegang; Gao, Baoxiang

    2018-01-01

    To synthesize perylenbisimides (PBI) fluorescent probes that will improve the water-soluble ability and the cytocompatibility, the synthesis and properties of fluorescent water-soluble probes based on dendritic ammonium cation polyethylene glycol (PEG) substituted perylenebisimides(GPDIs) are presented. As we expected, with increased ammonium cation PEG, the aggregation of the PBI in an aqueous solution is completely suppressed by the hydrophilic ammonium cation PEG groups. And the fluorescence quantum yield increases from 25% for GPDI-1 to 62% for GPDI-2. When incubated with Hela cells for 48 h, the viabilities are 71% (for GPDI-1) and 76% (for GPDI-2). Live cell imaging shows that these probes are efficiently internalized by HeLa cells. The study of the photophysical properties indicated increasing the ammonium cation PEG generation can increase the fluorescence quantum yield. Live cell imaging shows that with the ammonium cation PEG chains of perylenebisimides has high biocompatibility. The exceptionally low cytotoxicity is ascribed to the ammonium cation PEG chains, which protect the dyes from nonspecifically interacting with the extracellular proteins. Live cell imaging shows that ammonium cations PEG chains can promote the internalization of these probes.

  20. Construction and characterization of Gal-chitosan graft methoxy poly (ethylene glycol) (Gal-CS-mPEG) nanoparticles as efficient gene carrier

    NASA Astrophysics Data System (ADS)

    Jin, Jiting; Fu, Wandong; Liao, Miaofei; Han, Baoqin; Chang, Jing; Yang, Yan

    2017-10-01

    In the present study, galactosylated chitosan (Gal-CS) was conjugated with methoxy poly(ethylene glycol) (mPEG) as a hydrophilic group. The structure of Gal-CS-mPEG polymer was characterized and the nanoparticles (NPs) were prepared using ironic gelation method. The study was designed to investigate the characteristics and functions of Gal-CS-mPEG NPs. The morphology of Gal-CS-mPEG NPs was observed by SEM and it was a compact and spherical shape. The size of the NPs was approximately 200 nm in diameter under the ideal process parameters. The interaction between Gal-CS-mPEG NPs and pDNA, and the protection of pDNA against DNase I and serum degradation by Gal-CS-mPEG NPs were evaluated. Agarose gel electrophoresis results showed that Gal-CS-mPEG NPs had strong interaction with pDNA at the weight ratio of 12:1, 4:1 and 2:1 and could protect pDNA from DNase I and serum degradation. Gal-CS-mPEG NPs exhibited high loading efficiency and sustainable in vitro release. The blood compatibility studies demonstrated that Gal-CS-mPEG NPs had superior compatibility with erythrocytes in terms of aggregation degree and hemolysis level. Gal-CS-mPEG NPs showed no cytotoxicity on L929 cells, which is a normal mouse connective tissue fibroblast, but showed inhibitory effects on the proliferation of Bel-7402 cells, which is a liver cancer cell line. In conclusion, Gal-CS-mPEG NP is a bio-safe and efficient gene carrier with potential application in gene delivery.

  1. Evaluation of BSA protein release from hollow hydroxyapatite microspheres into PEG hydrogel

    PubMed Central

    Fu, Hailuo; Rahaman, Mohamed N.; Brown, Roger F.; Day, Delbert E.

    2013-01-01

    Implants that simultaneously function as an osteoconductive matrix and as a device for local drug or growth factor delivery could provide an attractive system for bone regeneration. In our previous work, we prepared hollow hydroxyapatite (abbreviated HA) microspheres with a high surface area, mesoporous shell wall and studied the release of a model protein, bovine serum albumin (BSA), from the microspheres into phosphate-buffered saline (PBS). The present work is an extension of our previous work to study the release of BSA from similar HA microspheres into a biocompatible hydrogel, poly(ethylene glycol) (PEG). BSA-loaded HA microspheres were placed in a PEG solution which was rapidly gelled using ultraviolet radiation. The BSA release rate into the PEG hydrogel, measured using a spectrophotometric method, was slower than into PBS, and it was dependent on the initial BSA loading and on the microstructure of the microsphere shell wall. A total of 35–40% of the BSA initially loaded into the microspheres was released into PEG over ~14 days. The results indicate that these hollow HA microspheres have promising potential as an osteoconductive device for local drug or growth factor delivery in bone regeneration and in the treatment of bone diseases. PMID:23498254

  2. [PEG-chitosan branched copolymers to improve the biocatalytic properties of Erwinia carotovora recombinant L-asparaginase].

    PubMed

    Kudryashova, E V; Suhoverkov, K V; Sokolov, N N

    2015-01-01

    A new approach to the regulation of catalytic properties of medically relevant enzymes has been proposed using the novel recombinant preparation of L-asparaginase from Erwinia carotovora (EwA), a promising antitumor agent. New branched co-polymers of different composition based on chitosan modified with polyethylene glycol (PEG) molecules, designated as PEG-chitosan, have been synthesized. PEG-chitosan copolymers were further conjugated with EwA. In order to optimize the catalytic properties of asparaginase two types of conjugates differing in their architecture have been synthesized: (1) crown-type conjugates were synthesized by reductive amination reaction between the reducing end of the PEG-chitosan copolymer and enzyme amino groups; (2) multipoint-conjugates were synthesized using the reaction of multipoint amide bond formation between PEG-chitosan amino groups and carboxyl groups of the enzyme in the presence of the Woodward's reagent. The structure and composition of these conjugates were determined by IR spectroscopy. The content of the copolymers in the conjugates was controlled by the characteristic absorption band of C-O-C bonds in the PEG structure at the frequency of 1089 cm-1. The study of catalytic characteristics of EwA preparations by conductometry showed that at physiological pH values the enzyme conjugates with PEG-chitosan with optimized structure and the optimal composition demonstrated 5-8-fold higher catalytic efficiency (kcat/Km) than the native enzyme. To certain extent, this can be attributed to favorable shift of pH-optima in result of positively charged amino-groups introduction in the vicinity of the active site. The proposed approach, chito-pegylation, is effective for regulating the catalytic and pharmacokinetic properties of asparaginase, and is promising for the development of prolonged action dosage forms for other enzyme therapeutics.

  3. Quantitative analysis of polyethylene glycol (PEG) and PEGylated proteins in animal tissues by LC-MS/MS coupled with in-source CID.

    PubMed

    Gong, Jiachang; Gu, Xiaomei; Achanzar, William E; Chadwick, Kristina D; Gan, Jinping; Brock, Barry J; Kishnani, Narendra S; Humphreys, W Griff; Iyer, Ramaswamy A

    2014-08-05

    The covalent conjugation of polyethylene glycol (PEG, typical MW > 10k) to therapeutic peptides and proteins is a well-established approach to improve their pharmacokinetic properties and diminish the potential for immunogenicity. Even though PEG is generally considered biologically inert and safe in animals and humans, the slow clearance of large PEGs raises concerns about potential adverse effects resulting from PEG accumulation in tissues following chronic administration, particularly in the central nervous system. The key information relevant to the issue is the disposition and fate of the PEG moiety after repeated dosing with PEGylated proteins. Here, we report a novel quantitative method utilizing LC-MS/MS coupled with in-source CID that is highly selective and sensitive to PEG-related materials. Both (40K)PEG and a tool PEGylated protein (ATI-1072) underwent dissociation in the ionization source of mass spectrometer to generate a series of PEG-specific ions, which were subjected to further dissociation through conventional CID. To demonstrate the potential application of the method to assess PEG biodistribution following PEGylated protein administration, a single dose study of ATI-1072 was conducted in rats. Plasma and various tissues were collected, and the concentrations of both (40K)PEG and ATI-1072 were determined using the LC-MS/MS method. The presence of (40k)PEG in plasma and tissue homogenates suggests the degradation of PEGylated proteins after dose administration to rats, given that free PEG was absent in the dosing solution. The method enables further studies for a thorough characterization of disposition and fate of PEGylated proteins.

  4. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules.

    PubMed

    Mosqueira, V C; Legrand, P; Gulik, A; Bourdon, O; Gref, R; Labarre, D; Barratt, G

    2001-11-01

    The aim of our work was to examine the relationship between modifications of the surface of nanocapsules (NC) by adsorption or covalent grafting of poly(ethylene oxide) (PEG), and changes in their phospholipid (PL) content on complement activation (C3 cleavage) and on uptake by macrophages. The physicochemical characterization of the NC included an investigation of their properties, such as surface charge, size, hydrophilicity, morphology and homogeneity. This is the first time that such properties have been correlated with biological interactions for NC, a novel carrier system with a structure more complex than nanospheres. C3 crossed immunoelectrophoresis revealed the reduced activation for NC with longer PEG chain and higher density, although all formulations induced C3 cleavage to a lesser or greater extent. NC bearing PEG covalently bound to the surface were weaker activators of complement than plain PLA [poly(D,L-lactide)] NC or nanospheres (NS). Furthermore, the fluorescent/confocal microscopy of J774A1 cells in contact with NC reveal a dramatically reduced interaction with PEG-bearing NC. However, the way in which PEG was attached (covalent or adsorbed) seemed to affect the mechanism of uptake. Taken together, these results suggest that the low level of protein binding to NC covered with a high density of 20kDa PEG chains is likely to be due to the steric barriers surrounding these particles, which prevents protein adsorption and reduces their interaction with macrophages.

  5. The curious ability of PEG-fusion technologies to restore lost behaviors after nerve severance

    PubMed Central

    Bittner, G.D.; Sengelaub, D.R.; Trevino, R.C.; Peduzzi, J.D.; Mikesh, M.; Ghergherehchi, C.L.; Schallert, T.; Thayer, W.P.

    2016-01-01

    Traumatic injuries to PNS and CNS axons are not uncommon. Restoration of lost behaviors following severance of mammalian peripheral nerve axons (PNAs) relies on regeneration by slow outgrowths and is typically poor or nonexistent if after ablation or injuries close to the soma. Behavioral recovery after severing spinal tract axons (STAs) is poor because STAs do not naturally regenerate. Current techniques to enhance PNA and/or STA regeneration have had limited success and do not prevent the onset of Wallerian degeneration of severed distal segments. This review describes the use of a recently-developed polyethylene glycol (PEG)-fusion technology combining concepts in biochemical engineering, cell biology and clinical microsurgery. Within minutes after micro-suturing carefully-trimmed cut ends and applying a well-specified sequence of solutions, PEG-fused axons exhibit morphological continuity (assessed by intra-axonal dye diffusion) and electrophysiological continuity (assessed by conduction of action potentials) across the lesion site. Wallerian degeneration of PEG-fused PNAs is greatly reduced as measured by counts of sensory and/or motor axons, and maintenance of axonal diameters and neuromuscular synapses. After PEG-fusion repair, cut- or crush-severed or ablated PNAs or crush-severed STAs rapidly (within days to weeks), more completely, and permanently restore PNA- or STA-mediated behaviors compared to non-treated or conventionally-treated animals. PEG-fusion success is enhanced or decreased by applying anti-oxidants or oxidants, trimming cut ends or stretching axons, exposure to Ca2+-free or - containing solutions, respectively. PEG-fusion technology employs surgical techniques and chemicals already used by clinicians and has the potential to produce a paradigm-shift in the treatment of traumatic injuries to PNAs and STAs. PMID:26525605

  6. Polyethylene glycol (PEG) assisted size-controlled SnO{sub 2} nanoparticles by sol-gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, P., E-mail: ptrip71@yahoo.com; Ahmed, Ateeq; Ali, Tinku

    2016-05-23

    Tetragonal phase tin oxide (SnO{sub 2}) nanoparticles have been synthesized by sol–gel method using SnCl{sub 4}.5H{sub 2}O and polyethylene glycol (PEG) of different concentration. The phase, size and purity of the final products are characterized by X-ray diffraction (XRD). The morphology is confirmed by scanning electron microscopy (SEM) analysis. There exists relationship between the concentration of PEG and particle size of SnO{sub 2} nanoparticles. Increase in concentration of PEG caused the reduction of particle size of tin oxide nanoparticles. The results suggest that the concentration of PEG plays a significant role in determining the size of SnO{sub 2} nanoparticles synthesizedmore » via this method. The optical property of the product has been explored by Ultraviolet (UV-visible) and Fourier Transform Infrared (FTIR) spectroscopic techniques.« less

  7. Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets.

    PubMed

    Zhou, Teng; Zhang, Bo; Wei, Peng; Du, Yipeng; Zhou, Hejiang; Yu, Meifang; Yan, Liang; Zhang, Wendi; Nie, Guangjun; Chen, Chunying; Tu, Yaping; Wei, Taotao

    2014-12-01

    Recent advances in nanomedicine provide promising alternatives for cancer treatment that may improve the survival of patients with metastatic disease. The goal of the present study was to evaluate graphene oxide (GO) as a potential anti-metastatic agent. For this purpose, GO was modified with polyethylene glycol (PEG) to form PEG-modified GO (PEG-GO), which improves its aqueous stability and biocompatibility. We show here that PEG-GO exhibited no apparent effects on the viability of breast cancer cells (MDA-MB-231, MDA-MB-436, and SK-BR-3) or non-cancerous cells (MCF-10A), but inhibited cancer cell migration in vitro and in vivo. Analysis of cellular energy metabolism revealed that PEG-GO significantly impaired mitochondrial oxidative phosphorylation (OXPHOS) in breast cancer cells; however, PEG-GO showed no effect on OXPHOS in non-cancerous cells. To explore the underlying mechanisms, a SILAC (Stable Isotope Labeling by Amino acids in Cell culture) labeling strategy was used to quantify protein expression in PEG-GO-exposed breast cancer versus non-cancerous cells. The results indicated that PEG-GO selectively down-regulated PGC-1α in breast cancer cells and thus modified the expression of diverse energy generation-related proteins, which accounts for the inhibition of OXPHOS. The inhibition of OXPHOS by PEG-GO significantly reduced ATP production and impaired assembly of the F-actin cytoskeleton in breast cancer cells, which is required for the migratory and invasive phenotype of cancer cells. Taken together, these effects of PEG-GO on cancer cell metastasis may allow the development of a new approach to treat metastatic breast cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya; Travesset, Alex; Vaknin, David

    2017-12-01

    In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol-capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs2SO4 ) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. By taking advantage of element specificity with the GIXFS method, we find that the cation Cs+ concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film compared with that in the bulk.

  9. Evaluation of self-assembled HCPT-loaded PEG-b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles.

    PubMed

    Yang, Xiangrui; Wu, Shichao; Wang, Yange; Li, Yang; Chang, Di; Luo, Yin; Ye, Shefang; Hou, Zhenqing

    2014-12-01

    We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly(D,L-lactide) (PEG-b-PLA) and PLA, respectively. Both HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG-b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG-b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG-b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG-b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

  10. The influence of polymer molecular weight in lamellar gels based on PEG-lipids.

    PubMed Central

    Warriner, H E; Keller, S L; Idziak, S H; Slack, N L; Davidson, P; Zasadzinski, J A; Safinya, C R

    1998-01-01

    We report x-ray scattering, rheological, and freeze-fracture and polarizing microscopy studies of a liquid crystalline hydrogel called Lalpha,g. The hydrogel, found in DMPC, pentanol, water, and PEG-DMPE mixtures, differs from traditional hydrogels, which require high MW polymer, are disordered, and gel only at polymer concentrations exceeding an "overlap" concentration. In contrast, the Lalpha,g uses very low-molecular-weight polymer-lipids (1212, 2689, and 5817 g/mole), shows lamellar order, and requires a lower PEG-DMPE concentration to gel as water concentration increases. Significantly, the Lalpha,g contains fluid membranes, unlike Lbeta' gels, which gel via chain ordering. A recent model of gelation in Lalpha phases predicts that polymer-lipids both promote and stabilize defects; these defects, resisting shear in all directions, then produce elasticity. We compare our observations to this model, with particular attention to the dependence of gelation on the PEG MW used. We also use x-ray lineshape analysis of scattering from samples spanning the fluid-gel transition to obtain the elasticity coefficients kappa and B; this analysis demonstrates that although B in particular depends strongly on PEG-DMPE concentration, gelation is uncorrelated to changes in membrane elasticity. PMID:9649387

  11. Zwitterionic PEG-PC Hydrogels Modulate the Foreign Body Response in a Modulus-Dependent Manner.

    PubMed

    Jansen, Lauren E; Amer, Luke D; Chen, Esther Y-T; Nguyen, Thuy V; Saleh, Leila S; Emrick, Todd; Liu, Wendy F; Bryant, Stephanie J; Peyton, Shelly R

    2018-05-15

    Reducing the foreign body response (FBR) to implanted biomaterials will enhance their performance in tissue engineering. Poly(ethylene glycol) (PEG) hydrogels are increasingly popular for this application due to their low cost, ease of use, and the ability to tune their compliance via molecular weight and cross-linking densities. PEG hydrogels can elicit chronic inflammation in vivo, but recent evidence has suggested that extremely hydrophilic, zwitterionic materials and particles can evade the immune system. To combine the advantages of PEG-based hydrogels with the hydrophilicity of zwitterions, we synthesized hydrogels with comonomers PEG and the zwitterion phosphorylcholine (PC). Recent evidence suggests that stiff hydrogels elicit increased immune cell adhesion to hydrogels, which we attempted to reduce by increasing hydrogel hydrophilicity. Surprisingly, hydrogels with the highest amount of zwitterionic comonomer elicited the highest FBR. Lowering the hydrogel modulus (165 to 3 kPa), or PC content (20 to 0 wt %), mitigated this effect. A high density of macrophages was found at the surface of implants associated with a high FBR, and mass spectrometry analysis of the proteins adsorbed to these gels implicated extracellular matrix, immune response, and cell adhesion protein categories as drivers of macrophage recruitment. Overall, we show that modulus regulates macrophage adhesion to zwitterionic-PEG hydrogels, and demonstrate that chemical modifications to hydrogels should be studied in parallel with their physical properties to optimize implant design.

  12. Influence of different peg length in glenoid bone loss: A biomechanical analysis regarding primary stability of the glenoid baseplate in reverse shoulder arthroplasty.

    PubMed

    Königshausen, M; Jettkant, B; Sverdlova, N; Ehlert, C; Gessmann, J; Schildhauer, T A; Seybold, D

    2015-01-01

    There is no biomechanical basis to determine the influence of different length of the central peg of the baseplate anchored within the native scapula in glenoid defect reconstruction in cases of degenerative or posttraumatic glenoid bone loss in reversed shoulder arthroplasty. The purpose of this study was to analyse the stability of different peg lengths used in glenoid bone loss in reversed shoulder arthroplasty. Different lengths of metaglene pegs with different depths of peg anchorage performed with or without metaglene screws in sawbone foam blocks were loaded in vertical and horizontal directions for differentiating load capacities. Simulated physiological loadings were then applied to the peg implants to determine the limits of loading in each depth of anchorage. The loading capacity of the implant was reduced as less of the peg was anchored. The vertically loaded implants showed a significantly higher stability, in contrast to those loaded horizontally at a corresponding peg length and depth of anchorage (p < 0.05). The tests revealed that the metaglene screws are more essential for primary stability than is the peg particularly in the vertically directed loadings (2/3 anchored: peg contributed to 28% of the stability, 1/3 anchorage: peg contributed to 12%). Under the second test conditions, the lowest depth of peg anchorage (1/3) resulted in 322 Newtons [N] in the long peg with a vertical loading direction, and in 130 N in the long peg with a horizontal loading direction (p < 0.05). The pegs should be anchored as deeply as possible into the native scapula bone stock. The metaglene screws play a major role in the initial stability, in contrast to the peg, and they become more important when the depth of the peg anchorage is reduced. If possible, four metaglene screws should be used in cases of uncontained bone loss to guarantee the highest stability.

  13. Evaluation of a novel GRPR antagonist for prostate cancer PET imaging: [64Cu]-DOTHA2-PEG-RM26.

    PubMed

    Mansour, Nematallah; Paquette, Michel; Ait-Mohand, Samia; Dumulon-Perreault, Véronique; Guérin, Brigitte

    2018-01-01

    Gastrin releasing peptide receptors (GRPRs) are significantly over-expressed on a large proportion of prostate cancers making them prime candidates for receptor-mediated nuclear imaging by PET. Recently, we synthesized a novel bifunctional chelator (BFC) bearing hydroxamic acid arms (DOTHA 2 ). Here we investigated the potential of a novel DOTHA 2 -conjugated, 64 Cu-radiolabeled GRPR peptide antagonist, [D-Phe 6 -Sta 13 -Leu 14 -NH 2 ]bombesin(6-14) (DOTHA 2 -PEG-RM26) to visualize prostate tumors by PET imaging. DOTHA 2 -PEG-RM26 was conveniently and efficiently assembled on solid support. The compound was radiolabeled with 64 Cu and its affinity, stability, cellular uptake on PC3 prostate cancer cells were evaluated. The in vitro and in vivo behavior of [ 64 Cu]DOTHA 2 -PEG-RM26 was examined by PET imaging using human PC3 prostate cancer xenografts and its behavior was compared to that of the analogous [ 64 Cu]NOTA-PEG-RM26. The inhibition constant of nat Cu-DOTHA 2 -PEG-RM26 was in the low nanomolar range (0.68±0.19 nM). The [ 64 Cu]DOTHA 2 -PEG-RM26 conjugate was prepared with a labeling yield >95% and molar activity of 56±3 GBq/μmol after a 5-min room temperature labeling. [ 64 Cu]-DOTHA 2 -PEG-RM26 demonstrated rapid blood and renal clearance as well as a high tumor uptake. Small animal PET images confirmed high and specific uptake in PC3 tumor. Both [ 64 Cu]-DOTHA 2 -PEG-RM26 and [ 64 Cu]-NOTA-PEG-RM26 displayed similar tumor and normal tissue uptakes at early time point post injection. [ 64 Cu]-DOTHA 2 -PEG-RM26 allows visualization of prostate tumors by PET imaging. DOTHA 2 enables fast 64 Cu chelation under mild condition, and as such could be used advantageously for the development of other 64 Cu-labeled peptide-derived PET tracers. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. PEG 3350 (Transipeg) versus lactulose in the treatment of childhood functional constipation: a double blind, randomised, controlled, multicentre trial

    PubMed Central

    Voskuijl, W; de Lorijn, F; Verwijs, W; Hogeman, P; Heijmans, J; Mäkel, W; Taminiau, J; Benninga, M

    2004-01-01

    Background: Recently, polyethylene glycol (PEG 3350) has been suggested as a good alternative laxative to lactulose as a treatment option in paediatric constipation. However, no large randomised controlled trials exist evaluating the efficacy of either laxative. Aims: To compare PEG 3350 (Transipeg: polyethylene glycol with electrolytes) with lactulose in paediatric constipation and evaluate clinical efficacy/side effects. Patients: One hundred patients (aged 6 months–15 years) with paediatric constipation were included in an eight week double blinded, randomised, controlled trial. Methods: After faecal disimpaction, patients <6 years of age received PEG 3350 (2.95 g/sachet) or lactulose (6 g/sachet) while children ⩾6 years started with 2 sachets/day. Primary outcome measures were: defecation and encopresis frequency/week and successful treatment after eight weeks. Success was defined as a defecation frequency ⩾3/week and encopresis ⩽1 every two weeks. Secondary outcome measures were side effects after eight weeks of treatment. Results: A total of 91 patients (49 male) completed the study. A significant increase in defecation frequency (PEG 3350: 3 pre v 7 post treatment/week; lactulose: 3 pre v 6 post/week) and a significant decrease in encopresis frequency (PEG 3350: 10 pre v 3 post/week; lactulose: 8 pre v 3 post/week) was found in both groups (NS). However, success was significantly higher in the PEG group (56%) compared with the lactulose group (29%). PEG 3350 patients reported less abdominal pain, straining, and pain at defecation than children using lactulose. However, bad taste was reported significantly more often in the PEG group. Conclusions: PEG 3350 (0.26 (0.11) g/kg), compared with lactulose (0.66 (0.32) g/kg), provided a higher success rate with fewer side effects. PEG 3350 should be the laxative of first choice in childhood constipation. PMID:15479678

  15. PEG 3350 (Transipeg) versus lactulose in the treatment of childhood functional constipation: a double blind, randomised, controlled, multicentre trial.

    PubMed

    Voskuijl, W; de Lorijn, F; Verwijs, W; Hogeman, P; Heijmans, J; Mäkel, W; Taminiau, J; Benninga, M

    2004-11-01

    Recently, polyethylene glycol (PEG 3350) has been suggested as a good alternative laxative to lactulose as a treatment option in paediatric constipation. However, no large randomised controlled trials exist evaluating the efficacy of either laxative. To compare PEG 3350 (Transipeg: polyethylene glycol with electrolytes) with lactulose in paediatric constipation and evaluate clinical efficacy/side effects. One hundred patients (aged 6 months-15 years) with paediatric constipation were included in an eight week double blinded, randomised, controlled trial. After faecal disimpaction, patients <6 years of age received PEG 3350 (2.95 g/sachet) or lactulose (6 g/sachet) while children > or =6 years started with 2 sachets/day. Primary outcome measures were: defecation and encopresis frequency/week and successful treatment after eight weeks. Success was defined as a defecation frequency > or =3/week and encopresis < or =1 every two weeks. Secondary outcome measures were side effects after eight weeks of treatment. A total of 91 patients (49 male) completed the study. A significant increase in defecation frequency (PEG 3350: 3 pre v 7 post treatment/week; lactulose: 3 pre v 6 post/week) and a significant decrease in encopresis frequency (PEG 3350: 10 pre v 3 post/week; lactulose: 8 pre v 3 post/week) was found in both groups (NS). However, success was significantly higher in the PEG group (56%) compared with the lactulose group (29%). PEG 3350 patients reported less abdominal pain, straining, and pain at defecation than children using lactulose. However, bad taste was reported significantly more often in the PEG group. PEG 3350 (0.26 (0.11) g/kg), compared with lactulose (0.66 (0.32) g/kg), provided a higher success rate with fewer side effects. PEG 3350 should be the laxative of first choice in childhood constipation.

  16. Aqueous biphasic systems containing PEG-based deep eutectic solvents for high-performance partitioning of RNA.

    PubMed

    Zhang, Hongmei; Wang, Yuzhi; Zhou, Yigang; Xu, Kaijia; Li, Na; Wen, Qian; Yang, Qin

    2017-08-01

    In this work, 16 kinds of novel deep eutectic solvents (DESs) composed of polyethylene glycol (PEG) and quaternary ammonium salts, were coupled with Aqueous Biphasic Systems (ABSs) to extract RNA. The phase forming ability of ABSs were comprehensively evaluated, involving the effects of various proportions of DESs' components, carbon chain length and anions species of quaternary ammonium salts, average molecular weights of PEG and inorganic salts nature. Then the systems were applied in RNA extraction, and the results revealed that the extraction efficiency values were distinctly enhanced by relatively lower PEG content in DESs, smaller PEG molecular weights, longer carbon chain of quaternary ammonium salts and more hydrophobic inorganic salts. Then the systems composed of [TBAB][PEG600] and Na 2 SO 4 were utilized in the influence factor experiments, proving that the electrostatic interaction was the dominant force for RNA extraction. Therefore, back-extraction efficiency values ranging between 85.19% and 90.78% were obtained by adjusting the ionic strength. Besides, the selective separation of RNA and tryptophane (Trp) was successfully accomplished. It was found that 86.19% RNA was distributed in the bottom phase, while 72.02% Trp was enriched in the top phase in the novel ABSs. Finally, dynamic light scattering (DLS) and transmission electron microscope (TEM) were used to further investigate the extraction mechanism. The proposed method reveals the outstanding feasibility of the newly developed ABSs formed by PEG-based DESs and inorganic salts for the green extraction of RNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Tailored biodegradable triblock copolymer coatings obtained by MAPLE: a parametric study

    NASA Astrophysics Data System (ADS)

    Brajnicov, S.; Neacsu, P.; Moldovan, A.; Marascu, V.; Bonciu, A.; Ion, R.; Dinca, V.; Cimpean, A.; Dinescu, M.

    2017-11-01

    Biocompatible and biodegradable coatings with controllable and tailored chemical and physical characteristics (i.e. morphology and roughness) are of great interest in bone related research applications. Within this research direction, in this work, a series of novel biodegradable coatings based on triblock copolymers poly(lactide- co-caprolactone)-block-poly(ethylene-glycol)-block-poly(lactide- co-caprolactone) (PLCL-PEG-PLCL) were obtained by matrix-assisted pulsed laser evaporation (MAPLE) and their morphological characteristics and roughness were modulated by varying target composition and laser fluence. The coatings were used for preliminary in vitro testing with MC3T3-E1 pre-osteoblasts. It was found that for a specific range of fluences, the main functional groups in the MAPLE-deposited thin films, as determined by Fourier transform infrared spectroscopy, are similar to the molecular structures of the initial material. Depending on the deposition parameters, significant changes in morphologies, i.e. material accumulation in the form of droplets, wrinkles, or carpet-like structures were revealed by atomic force microscopy (AFM) and scanning electron microscopy. The optimized coating characteristics were further correlated to MC3T3-E1 pre-osteoblasts response. The ability to control the morphology and to maintain unaltered the chemistry of the deposited material through MAPLE is an important step in creating functional bio-interfaces in the field of biomedical research and tissue engineering.

  18. Ring and peg electrodes for minimally-Invasive and long-term sub-scalp EEG recordings.

    PubMed

    Benovitski, Y B; Lai, A; McGowan, C C; Burns, O; Maxim, V; Nayagam, D A X; Millard, R; Rathbone, G D; le Chevoir, M A; Williams, R A; Grayden, D B; May, C N; Murphy, M; D'Souza, W J; Cook, M J; Williams, C E

    2017-09-01

    Minimally-invasive approaches are needed for long-term reliable Electroencephalography (EEG) recordings to assist with epilepsy diagnosis, investigation and more naturalistic monitoring. This study compared three methods for long-term implantation of sub-scalp EEG electrodes. Three types of electrodes (disk, ring, and peg) were fabricated from biocompatible materials and implanted under the scalp in five ambulatory ewes for 3months. Disk electrodes were inserted into sub-pericranial pockets. Ring electrodes were tunneled under the scalp. Peg electrodes were inserted into the skull, close to the dura. EEG was continuously monitored wirelessly. High resolution CT imaging, histopathology, and impedance measurements were used to assess the status of the electrodes at the end of the study. EEG amplitude was larger in the peg compared with the disk and ring electrodes (p<0.05). Similarly, chewing artifacts were lower in the peg electrodes (p<0.05). Electrode impedance increased after long-term implantation particularly for those within the bone (p<0.01). Micro-CT scans indicated that all electrodes stayed within the sub-scalp layers. All pegs remained within the burr holes as implanted with no evidence of extrusion. Eight of 10 disks partially eroded into the bone by 1.0mm from the surface of the skull. The ring arrays remained within the sub-scalp layers close to implantation site. Histology revealed that the electrodes were encapsulated in a thin fibrous tissue adjacent to the pericranium. Overlying this was a loose connective layer and scalp. Erosion into the bone occurred under the rim of the sub-pericranial disk electrodes. The results indicate that the peg electrodes provided high quality EEG, mechanical stability, and lower chewing artifact. Whereas, ring electrode arrays tunneled under the scalp enable minimal surgical techniques to be used for implantation and removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Assay of S for Quantitation of PEG and TNF Ligated Au Nanoparticles using ID-HR-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Mann, J. L.; Vocke, R. D.; Newman, J. D.; Kelly, W. R.

    2009-12-01

    The use of nanomaterials in medicine has recently increased with the discovery that these materials can deliver drugs to specific sites within the body. An active area of nanomedicine involves the use of gold nanoparticles (AuNPs) as a delivery platform for anti-cancer agents such as tumor necrosis factor-α (TNF-α). TNF-α molecules attack the blood vessels in a tumor causing them to hemorrhage profusely. TNF-α is also highly toxic to normal cells, making targeted delivery to the tumor site crucial. AuNPs ensure the ligated TNF-α is delivered to its appropriate target, mitigating systemic toxicity. Additionally, coating AuNPs with the surface modifier polyethylene glycol (PEG) promotes bioavailability and biodistribution of TNF-α by preventing protein binding and bodily uptake thereby increasing the lifetime in the bloodstream. The FDA will likely mandate all nanotechnologies of this sort undergo quality control to ensure the nanoplatforms are modified with approximately the same number of drug molecules and other surface modifiers. Quality control methods, such as visible spectroscopy, can be used to qualitatively assess the total amounts of TNF-α and PEG on AuNPs, however, these methods need to be validated via calibration by an absolute technique. The sulfur content can be used as a proxy for both PEG and TNF-α concentrations because of the presence of at least one thiol in each of the ligands. The goal of this work was to provide a benchmark for future spectroscopic results by providing an accurate assessment of the TNF-α and PEG concentrations through the accurate quantitation of S. The sulfur concentration was assayed using isotope dilution (ID) combined with high resolution multi-collector inductively coupled plasma mass spectrometry (HR-MC-ICPMS). The measurement of S using ICPMS instrumentation is challenging because 1) molecular interferences (e.g. oxides, nitrides, and hydrides) exist on each of the S isotopes and 2) the need to perform the

  20. Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya

    In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol–capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs 2SO 4) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. In conclusion, by taking advantage of element specificity with the GIXFS method, we find that the cation Cs + concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film comparedmore » with that in the bulk.« less

  1. Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces

    DOE PAGES

    Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya; ...

    2017-12-14

    In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol–capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs 2SO 4) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. In conclusion, by taking advantage of element specificity with the GIXFS method, we find that the cation Cs + concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film comparedmore » with that in the bulk.« less

  2. Lack of lasting effectiveness of PEG 3350 laxative treatment of constipation.

    PubMed

    Tran, Lily C; Di Palma, Jack A

    2005-08-01

    PEG 3350 (MiraLax, Braintree Laboratories Inc., Braintree, MA) 17 g daily has been shown to be safe and effective in a 14-day trial for constipation. This present investigation was designed to extend the treatment and safety experience with PEG 3350 and to evaluate any lasting effectiveness during a 30-day post-treatment observation period. Study subjects met Rome II criteria for constipation and reported <3 bowel movements a week. They were treated with PEG 3350 17 g daily for 14 days. Treatment efficacy was defined by resolution of constipation symptoms as determined by the Rome II and stool frequency definitions during the treatment period. Fifty healthy constipated subjects formed the study group. There were 42 females and 8 males. Mean age was 52 +/- 15.5 years (+/-SD). Symptom duration was 22.6 +/- 16.7 months (+/-SD). At baseline, all had <3 bowel movements a week and met Rome II criteria. Two were lost to follow-up. Two took enemas or laxatives and 2 discontinued active treatment because of "gas" and were considered treatment failures. At the end of 14 days, 40 of 48 (83.3%) had >3 stools in the last week and no longer met Rome criteria. Thirty-two of 45 (71.1%) reported satisfaction with the first bowel movement after initiating treatment. Thirty days after active treatment, 29 of 47 (61.7%) responded that they needed laxative treatment. PEG 3350 relieved constipation in most treated study subjects. During a 30-day post-treatment observation period, 29 of 47 (61.7%) had additional constipation treatment interventions.

  3. PEG Molecular Net-Cloth Grafted on Polymeric Substrates and Its Bio-Merits

    NASA Astrophysics Data System (ADS)

    Zhao, Changwen; Lin, Zhifeng; Yin, Huabing; Ma, Yuhong; Xu, Fujian; Yang, Wantai

    2014-05-01

    Polymer brushes and hydrogels are sensitive to the environment, which can cause uncontrolled variations on their performance. Herein, for the first time, we report a non-swelling ``PEG molecular net-cloth'' on a solid surface, fabricated using a novel ``visible light induced surface controlled graft cross-linking polymerization'' (VSCGCP) technique. Via this method, we show that 1) the 3D-network structure of the net-cloth can be precisely modulated and its thickness controlled; 2) the PEG net-cloth has excellent resistance to non-specific protein adsorption and cell adhesion; 3) the mild polymerization conditions (i.e. visible light and room temperature) provided an ideal tool for in situ encapsulation of delicate biomolecules such as enzymes; 4) the successive grafting of reactive three-dimensional patterns on the PEG net-cloth enables the creation of protein microarrays with high signal to noise ratio. Importantly, this strategy is applicable to any C-H containing surface, and can be easily tailored for a broad range of applications.

  4. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds.

    PubMed

    Bhaskar, Birru; Owen, Robert; Bahmaee, Hossein; Wally, Zena; Sreenivasa Rao, Parcha; Reilly, Gwendolen C

    2018-05-01

    Controllable pore size and architecture are essential properties for tissue-engineering scaffolds to support cell ingrowth colonization. To investigate the effect of polyethylene glycol (PEG) addition on porosity and bone-cell behavior, porous polylactic acid (PLA)-PEG scaffolds were developed with varied weight ratios of PLA-PEG (100/0, 90/10, 75/25) using solvent casting and porogen leaching. Sugar 200-300 µm in size was used as a porogen. To assess scaffold suitability for bone tissue engineering, MLO-A5 murine osteoblast cells were cultured and cell metabolic activity, alkaline phosphatase (ALP) activity and bone-matrix production determined using (alizarin red S staining for calcium and direct red 80 staining for collagen). It was found that metabolic activity was significantly higher over time on scaffolds containing PEG, ALP activity and mineralized matrix production were also significantly higher on scaffolds containing 25% PEG. Porous architecture and cell distribution and penetration into the scaffold were analyzed using SEM and confocal microscopy, revealing that inclusion of PEG increased pore interconnectivity and therefore cell ingrowth in comparison to pure PLA scaffolds. The results of this study confirmed that PLA-PEG porous scaffolds support mineralizing osteoblasts better than pure PLA scaffolds, indicating they have a high potential for use in bone tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1334-1340, 2018. © 2018 Wiley Periodicals, Inc.

  5. Clinical trial: single- and multiple-dose pharmacokinetics of polyethylene glycol (PEG-3350) in healthy young and elderly subjects.

    PubMed

    Pelham, R W; Nix, L C; Chavira, R E; Cleveland, M Vb; Stetson, P

    2008-07-01

    The pharmacokinetics of polyethylene glycol 3350 (PEG-3350) have not been fully described because of lack of a sufficiently sensitive analytical method. To describe the pharmacokinetics of PEG-3350 in humans. A highly sensitive, high performance liquid chromatography with mass spectrometry (HPLC/MS/MS) method was developed for PEG-3350 in urine, plasma and faeces with quantification limits of 30 ng/mL, 100 ng/mL and 500 microg/g respectively. Noncompartmental pharmacokinetics methods were used and the effects of gender, age, renal status and dosing frequency were examined after the oral administration of 17 g to healthy volunteers. Peak PEG-3350 plasma concentrations occurred at 2-4 h and declined to nonquantifiable levels usually within 18 h after single and multiple doses, with a half-life of about 4-6 h. Steady state was reached within 5 days of dosing. Mean urinary excretion of the administered dose ranged from 0.19% to 0.25%. Age, gender or mild kidney impairment did not alter the pharmacokinetics of PEG-3350. Mean faecal excretion of the administered dose was 93% in young subjects. For the first time, a highly sensitive assay allowed comprehensive pharmacokinetics studies of PEG-3350 in humans. These studies confirmed that orally administered PEG-3350 is minimally absorbed, rapidly excreted and primarily eliminated via faeces.

  6. Synthetic PEG Hydrogel for Engineering the Environment of Ovarian Follicles.

    PubMed

    Mendez, Uziel; Zhou, Hong; Shikanov, Ariella

    2018-01-01

    The functional unit within the ovary is the ovarian follicle, which is also a morphological unit composed of three basic cell types: the oocyte, granulosa, and theca cells. Similar to human ovarian follicles, mouse follicles can be isolated from their ovarian environment and cultured in vitro to study folliculogenesis, or follicle development for days or weeks. Over the course of the last decade, follicle culture in a three-dimensional (3D) environment exponentially improved the outcomes of in vitro folliculogenesis. Follicle culture in 3D environments preserves follicle architecture and promotes the cross talk between cells in the follicle. Hydrogels, such as polyethylene glycol (PEG), have been used for various physiological systems for regenerative purposes because they provide a 3D environment similar to soft tissues, allow diffusion of nutrients, and can be readily modified to present biological signals, including cell adhesion ligands and proteolytic degradation facilitated by enzymes secreted by the encapsulated cells. This chapter outlines the application of PEG hydrogels to the follicle culture, including the procedures to isolate, encapsulate, and culture mouse ovarian follicles. The tunable properties of PEG hydrogels support co-encapsulation of ovarian follicles with somatic cells, which further promote follicle survival and growth in vitro through paracrine and juxtacrine interactions.

  7. Use of Powder PEG-3350 as a Sole Bowel Preparation

    PubMed Central

    Arora, Manish

    2008-01-01

    Objective: To assess the efficacy of low-volume powder polyethylene glycol (PEG)-3350 as a sole bowel preparation for colonoscopy. Methods: This case series examined 245 consecutive patients (a mixture of inpatients and outpatients undergoing screening colonoscopy) at a hospital endoscopy center over a 2-year period. The patients received powder PEG-3350 in the amount of 204 g dissolved in 32 oz of water and taken in 3 divided doses 1 hour apart with 8 oz of water in between each dose. Colon preparation scores (CPS) were used to assess the quality of colon cleansing. The results obtained from the 245 patients were collated and compared to those of patients receiving sodium phosphate, the historical control. Results: The mean CPS was calculated to be 3.43, with a standard deviation of 1.12. Of the 245 patients, 92 were scored with a grade of 4, and 5 patients had incomplete colonoscopies secondary to failure of bowel preparation (CPS=0). Among the remaining patients, 22 and 26 were graded as poor (CPS=1) or fair (CPS=2) bowel preparations, respectively. Conclusion: The low-volume powder PEG-3350 formula used in our case series showed effective colon cleansing and may be considered for use as a sole bowel preparation. PMID:21960925

  8. Modification of titanium surfaces by adding antibiotic-loaded PHB spheres and PEG for biomedical applications.

    PubMed

    Rodríguez-Contreras, Alejandra; Marqués-Calvo, María Soledad; Gil, Francisco Javier; Manero, José María

    2016-08-01

    Novel researches are focused on the prevention and management of post-operative infections. To avoid this common complication of implant surgery, it is preferable to use new biomaterials with antibacterial properties. Therefore, the aim of this work is to develop a method of combining the antibacterial properties of antibiotic-loaded poly(3-hydroxybutyrate) (PHB) nano- and micro-spheres and poly(ethylene glycol) (PEG) as an antifouling agent, with titanium (Ti), as the base material for implants, in order to obtain surfaces with antibacterial activity. The Ti surfaces were linked to both PHB particles and PEG by a covalent bond. This attachment was carried out by firstly activating the surfaces with either Oxygen plasma or Sodium hydroxide. Further functionalization of the activated surfaces with different alkoxysilanes allows the reaction with PHB particles and PEG. The study confirms that the Ti surfaces achieved the antibacterial properties by combining the antibiotic-loaded PHB spheres, and PEG as an antifouling agent.

  9. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar

    Air–water interfacial monolayers of poly((d,l-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA–PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure–area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air–water monolayers formed by a PLGA–PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((d,l-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL–PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA filmmore » and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA–PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA–PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the “n-cluster” effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the “n-cluster” effects.« less

  10. Effect of PEG-PDMAEMA Block Copolymer Architecture on Polyelectrolyte Complex Formation with Heparin.

    PubMed

    Välimäki, Salla; Khakalo, Alexey; Ora, Ari; Johansson, Leena-Sisko; Rojas, Orlando J; Kostiainen, Mauri A

    2016-09-12

    Heparin is a naturally occurring polyelectrolyte consisting of a sulfated polysaccharide backbone. It is widely used as an anticoagulant during major surgical operations. However, the associated bleeding risks require rapid neutralization after the operation. The only clinically approved antidote for heparin is protamine sulfate, which is, however, ineffective against low molecular weight heparin and can cause severe adverse reactions in patients. In this study, the facile synthesis of cationic-neutral diblock copolymers and their effective heparin binding is presented. Poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) (PEG-PDMAEMA) block copolymers were synthesized in two steps via atom-transfer radical polymerization (ATRP) using PEG as a macroinitiator. Solution state binding between heparin and a range of PEG-PDMAEMA block copolymers and one homopolymer was studied with dynamic light scattering and methylene blue displacement assay. Also in vitro binding in plasma was studied by utilizing a chromogenic heparin anti-Xa assay. Additionally, quartz crystal microbalance and multiparametric surface plasmon resonance were used to study the surface adsorption kinetics of the polymers on a heparin layer. It was shown that the block copolymers and heparin form electrostatically bound complexes with varying colloidal properties, where the block lengths play a key role in controlling the heparin binding affinity, polyelectrolyte complex size and surface charge. With the optimized polymers (PEG114PDMAEMA52 and PEG114PDMAEMA100), heparin could be neutralized in a dose-dependent manner, and bound efficiently into small neutral complexes, with a hydrodynamic radius less than 100 nm. These complexes had only a limited effect on cell viability. Based on these studies, our approach paves the way for the development of new polymeric heparin binding agents.

  11. Ethylene Glycol - Polyethylene Glycol (EG-PEG) Mixtures: Infrared Spectra Wavelet Cross-Correlation Analysis.

    PubMed

    Caccamo, Maria Teresa; Magazù, Salvatore

    2017-03-01

    Infrared spectra were collected on mixtures of ethylene glycol (EG) and polyethylene glycol 600 (PEG600) as a function of weight fraction from pure EG to pure PEG600. In this paper, it will be shown that while the OH vibrational contribution drastically reduces its center frequency from 3450 cm -1 to 3300 cm -1 in the weight fraction range 0-25%, the displacement of the mixture spectral features of the mixtures from ideal behavior, i.e., in the absence of interaction, shows the presence of a non-ideal mixing process. Furthermore, wavelet cross-correlation analysis of the registered pairs of spectra and of the intramolecular O-H stretching contributions reveals how the addition of a small amount of pure EG to PEG600 dramatically influences the structural properties of the polymeric matrix, owing to an increase the intermolecular connectivity. In particular, the wavelet cross-correlation parameters, evaluated between each pair of the registered data as a function of weight fraction, in a linear-logarithmic plot, reveals an inflection point for a weight fraction of about 25% of EG, which confirms that, within the three-dimensional networks of hydrogen-bonded EG-PEG600 molecules, a key role is played by EG in determining an increase in the hydrogen-bond network density.

  12. Structural, spectroscopic and anti-microbial inspection of PEG capped ZnO nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Meshram, J. V.; Koli, V. B.; Kumbhar, S. G.; Borde, L. C.; Phadatare, M. R.; Pawar, S. H.

    2018-04-01

    Zinc oxide (ZnO) nanoparticles (NPs) have a wide range of biomedical applications. Present study demonstrates the new methodology in sol-gel technology for synthesizing Polyethylene glycol (PEG) capped ZnO NPs and its size effect on anti-microbial activity. The reaction time was increased from 1 h to 5 h for the synthesis of ZnO NPs at 130 °C. The size of PEG capped ZnO NPs is increased from 10 to 84 nm by increasing the reaction upto 5 h. The x-ray diffraction studies and transmission electron microscopy analysis reveals the phase purity and hexagonal wurtzite crystal structure with uniform PEG capping on the surface of ZnO NPs. UV–visible spectroscopy exhibits the peak at 366 nm which is attributed to ZnO NPs. No adverse effect is observed in case of absorbance spectroscopy. Further, Fourier transforms infrared spectroscopy and thermo gravimetric analysis depicts the adsorption of PEG molecules on the ZnO NPs surface. The anti-microbial activities for both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria were studied by optical density (OD) mesurement. The remarkable anti-microbial activity was observed for PEG capped ZnO NPs synthesized at 1 h reaction time showing higher activity in comparison with that synthesized from 2 h to 5 h reaction time. The microbial growth was found to be inhibited after 10 h OD measurement for both the bacteria. The anti-microbial activity may be attributed to the generation of ROS and H2O2. However, these generated species plays a vital role in inhibition of microbial growth. Hence, PEG capped ZnO NPs has promising biomedical applications.

  13. In situ crosslinking of surface-initiated ring opening metathesis polymerization of polynorbornene for improved stability.

    PubMed

    Fursule, Ishan A; Abtahi, Ashkan; Watkins, Charles B; Graham, Kenneth R; Berron, Brad J

    2018-01-15

    In situ crosslinking is expected to increase the solvent stability of coatings formed by surface-initiated ring opening metathesis polymerization (SI ROMP). Solvent-associated degradation limits the utility of SI ROMP coatings. SI ROMP coatings have a unique capacity for post-functionalization through reaction of the unsaturated site on the polymer backbone. Any post-reaction scheme which requires a liquid solvent has the potential to degrade the coating and lower the thickness of the resulting film. We designed a macromolecular crosslinking group based on PEG dinorbornene. The PEG length is tailored to the expected mean chain to chain distance during surface-initiated polymerization. This crosslinking macromer is randomly copolymerized with norbornene through SI ROMP on a gold coated substrate. The solvent stability of polynorbornene coatings with and without PEG dinorbornene is quantitatively determined, and the mechanism of degradation is further supported through XPS and AFM analyses. The addition of the 0.25mol% PEG dinorbornene significantly increases the solvent stability of the SI ROMP coatings. The crosslinker presence in the more stable films is supported with observable PEG absorbances by FTIR and an increase in contact angle hysteresis when compared to non-crosslinked coatings. The oxidation of the SI ROMP coatings is supported by the observation of carbonyl oxygen in the polynorbornene coatings. The rapid loss of the non-crosslinked SI ROMP coating corresponds to nanoscale pitting across the surface and micron-scale regions of widespread film loss. The crosslinked coatings have uniform nanoscale pitting, but the crosslinked films show no evidence of micron-scale film damage. In all, the incorporation of minimal crosslinking content is a simple strategy for improving the solvent stability of SI ROMP coatings. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Shedding PEG Palisade by Temporal Photostimulation and Intracellular Reducing Milieu for Facilitated Intracellular Trafficking and DNA Release.

    PubMed

    Wang, Tieyan; Chen, Qixian; Lu, Hongguang; Li, Wei; Li, Zaifen; Ma, Jianbiao; Gao, Hui

    2016-08-17

    The dilemma of poly(ethylene glycol) surface modification (PEGylation) inspired us to develop an intracellularly sheddable PEG palisade for synthetic delivery systems. Here, we attempted to conjugate PEG to polyethylenimine (PEI) through tandem linkages of disulfide-bridge susceptible to cytoplasmic reduction and an azobenzene/cyclodextrin inclusion complex responsive to external photoirradiation. The subsequent investigations revealed that facile PEG detachment could be achieved in endosomes upon photoirradiation, consequently engendering exposure of membrane-disruptive PEI for facilitated endosome escape. The liberated formulation in the cytosol was further subjected to complete PEG detachment relying on disulfide cleavage in the reductive cytosol, thus accelerating dissociation of electrostatically assembled PEI/DNA polyplex to release DNA by means of polyion exchange reaction with intracellularly charged species, ultimately contributing to efficient gene expression.

  15. Hydrophilization of Magnetic Nanoparticles with Modified Alternating Copolymers. Part 1: The Influence of the Grafting

    PubMed Central

    Bronstein, Lyudmila M.; Shtykova, Eleonora V.; Malyutin, Andrey; Dyke, Jason C.; Gunn, Emily; Gao, Xinfeng; Stein, Barry; Konarev, Peter V.; Dragnea, Bogdan; Svergun, Dmitri I.

    2010-01-01

    Iron oxide nanoparticles (NPs) with a diameter 21.6 nm were coated with poly(maleic acid-alt-1-octadecene) (PMAcOD) modified with grafted 5,000 Da poly(ethyelene glycol) (PEG) or short ethylene glycol (EG) tails. The coating procedure utilizes hydrophobic interactions of octadecene and oleic acid tails, while the hydrolysis of maleic anhydride moieties as well as the presence of hydrophilic PEG (EG) tails allows the NP hydrophilicity. The success of the NP coating was found to be independent of the degree of grafting which was varied between 20 and 80% of the –MacOD-units, but depended on the length of the grafted tail. The NP coating and hydrophilization did not occur when the modified copolymer contained 750 Da PEG tails independently of the grafting degree. To explain this phenomenon the micellization of the modified PMAcOD copolymers in water was analyzed by small angle x-ray scattering (SAXS). The PMAcOD molecules with the grafted 750 Da PEG tails form compact non-interacting disk-like micelles, whose stability apparently allows for no interactions with the NP hydrophobic shells. The PMAcOD containing the 5,000 Da PEG and EG tails form much larger aggregates capable of an efficient coating of the NPs. The coated NPs were characterized using transmission electron microscopy, dynamic light scattering, ζ-potential measurements, and thermal gravimetry analysis. The latter method demonstrated that the presence of long PEG tails in modified PMAcOD allows the attachment of fewer macromolecules (by a factor of ~20) compared to the case of non-modified or EG modified PMAcOD, emphasizing the importance of PEG tails in NP hydrophilization. The NPs coated with PMAcOD modified with 60% (towards all –MAcOD- units) of the 5,000 PEG tails bear a significant negative charge and display good stability in buffers. Such NPs can be useful as magnetic cores for virus-like particle formation. PMID:21221425

  16. Clinical Trial of AC105 (Mg/PEG) for Treatment of Acute Spinal Cord Injury (SCI). Phase 2

    DTIC Science & Technology

    2013-10-01

    glycol with a molecular weight of 3350 Daltons ( PEG 3350 ), is manufactured by Dow Chemical Company and complies with NF, FCC and EurPh requirements...Mg/ PEG ) for Treatment of Acute Spinal Cord Injury (SCI) PRINCIPAL INVESTIGATOR: Andrew Blight, PhD RECIPIENT: Acorda Therapeutics...of AC105 (Mg/ PEG ) for Treatment of Acute Spinal Cord Injury (SCI) 5b. GRANT NUMBER W81XWH-12-2 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  17. Effect of spatial distribution of wax and PEG-isocyanate on the morphology and hydrophobicity of starch films.

    PubMed

    Muscat, Delina; Adhikari, Raju; Tobin, Mark J; McKnight, Stafford; Wakeling, Lara; Adhikari, Benu

    2014-10-13

    This study proposes a novel method for improving surface hydrophobicity of glycerol plasticized high amylose (HAG) films. We used polyethylene glycol isocyanate (PEG-iso) crosslinker to link HAG and three natural waxes (beeswax, candelilla wax and carnauba wax) to produce HAG+wax+PEG-iso films. The spatial distributions of wax and PEG-iso across the thickness of these films were determined using Synchrotron-based Fourier transform infrared spectroscopy. The hydrophobicity and surface morphology of the films were determined using contact angle (CA) and scanning electron microscopic measurements, respectively. The distribution patterns of wax and the PEG-iso across the thickness of the film, and the nature of crystalline patterns formed on the surface of these films were found to be the key factors affecting surface hydrophobicity. The highest hydrophobicity (CA >90°) was created when the PEG-iso was primarily distributed in the interior of the films and a hierarchical circular pinnacle structure of solidified wax was formed on the surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Toxicity Evaluation and Anti-Tumor Study of Docetaxel Loaded mPEG-Polyester Micelles for Breast Cancer Therapy.

    PubMed

    Tan, Li Wei; Ma, Bu Yun; Zhao, Qian; Zhang, Lan; Chen, Li Juan; Peng, Jin Rong; Qian, Zhi Yong

    2017-04-01

    In this work, docetaxel (DTX) was encapsulated in monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) micelles and monomethoxy poly(ethylene glycol)-poly(D, L-lactic acid) (mPEG-PLA) micelles, respectively. For the further application, the acute/genetic toxicity evaluation and pharmacokinetic/pharmacodynamic study of the two kinds of micellar nanomedicines were performed. In the study of anticancer activity in vitro and in vivo, DTX micelles showed better tumorgrowth inhibition than free DTX. The pharmacokinetic and tissue distribution studies showed that the DTX incorporated in micelles (especially in DTX-mPEG-PCL) retained significantly higher concentration in plasma and tumor tissue compared with free DTX. The acute toxicity and genotoxicity studies indicated that DTX micelles were safer than the docetaxel injection in cancer therapy and DTX-mPEG-PCL had less damage to DNA than DTX-mPEG-PLA. So the micelles had a pronounced effect on reducing acute toxicity and genotoxicity of docetaxel. In conclusion, DTX micelles were efficient and safe on breast carcinoma chemotherapy.

  19. Vitamin D in addition to peg-interferon-alpha/ribavirin in chronic hepatitis C virus infection: ANRS-HC25-VITAVIC study.

    PubMed

    Terrier, Benjamin; Lapidus, Nathanael; Pol, Stanislas; Serfaty, Lawrence; Ratziu, Vlad; Asselah, Tarik; Thibault, Vincent; Souberbielle, Jean-Claude; Carrat, Fabrice; Cacoub, Patrice

    2015-05-14

    To investigate if correction of hypovitaminosis D before initiation of Peg-interferon-alpha/ribavirin (PegIFN/RBV) therapy could improve the efficacy of PegIFN/RBV in previously null-responder patients with chronic genotype 1 or 4 hepatitis C virus (HCV) infection. Genotype 1 or 4 HCV-infected patients with null response to previous PegIFN/RBV treatment and with hypovitaminosis D (< 30 ng/mL) prospectively received cholecalciferol 100000 IU per week for 4 wk [from week -4 (W-4) to W0], followed by 100000 IU per month in combination with PegIFN/RBV for 12 mo (from W0 to W48). The primary outcome was the rate of early virological response defined by an HCV RNA < 12 IU/mL after 12 wk PegIFN/RBV treatment. A total of 32 patients were included, 19 (59%) and 13 (41%) patients were HCV genotype 1 and 4, respectively. The median baseline vitamin D level was 15 ng/mL (range: 7-28). In modified intention-to-treat analysis, 29 patients who received at least one dose of PegIFN/RBV were included in the analysis. All patients except one normalized their vitamin D serum levels. The rate of early virologic response was 0/29 (0%). The rate of HCV RNA < 12 IU/mL after 24 wk of PegIFN/RBV was 1/27 (4%). The safety profile was favorable. Addition of vitamin D to PegIFN/RBV does not improve the rate of early virologic response in previously null-responders with chronic genotype 1 or 4 HCV infection.

  20. Biomedical applications of SPION@APTES@PEG-folic acid@carboxylated quercetin nanodrug on various cancer cells

    NASA Astrophysics Data System (ADS)

    Akal, Z. Ü.; Alpsoy, L.; Baykal, A.

    2016-08-01

    In this study, carboxylated quercetin (CQ) was conjugated to superparamagnetic iron oxide nanoparticles (SPIONs) which were modified by (3-aminopropyl) triethoxysilane (APTES), Folic acid (FA) and carboxylated Polyethylene glycol (PEG); (SPION@APTES@FA-PEG@CQ), nanodrug has been synthesized via polyol and accompanying by various chemical synthesis routes. The characterization of the final product was done via X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermal gravimetric analysis (TGA), Transmission electron spectroscopy (TEM) and Vibrating sample magnetometer (VSM). Its cytotoxic and apoptotic activities on over expressed folic acid receptor (FR +) (MCF-7, HeLa) and none expressed folic acid receptor (FR-) (A549) cancer cell lines were determined by using MTT assay, Real-Time Cell Analysis, TUNEL assay, Annexin assay and RT-PCR analysis for Caspase3/7 respectively. SPION@APTES@FA-PEG@CQ nanodrug showed higher cytotoxicity against HeLa and MCF-7 cell lines as compared with A549 cell line. Moreover, SPION@APTES@FA-PEG@CQ nanodrug also caused higher apoptotic and necrotic effects in 100 μg/mL HeLa and MCF-7 cells than A549 cells. The findings showed that SPION@APTES@FA-PEG@CQ nanodrug has cytotoxic, apoptotic and necrotic effects on HeLa and MCF-7 which are FR over expressed cell lines and can be potentially used for the delivery of quercetin to cervical and breast cancer cells.

  1. Effect of Modified Nanoclay Composite on Blended PVDF/PEG Electrolyte Membranes for Fuel Cell Applications

    NASA Astrophysics Data System (ADS)

    Bahavan Palani, P.; Sainul Abidin, K.; Kannan, R.; Rajashabala, S.

    This research work describes the fabrication of polymer blend nanocomposite membranes using the solution casting method. These membranes were fabricated with Poly (Vinylidene Fluoride) (PVdF) as host, Poly (Ethylene Glycol) (PEG) in steps of 2wt.% as blending polymer and Montmorillonite (MMT) nanoclay particles in steps of 3wt.% which were used as received. The protonated MMT was synthesized through an ion exchange process with column chromatographic technique. The prepared membrane’s performance was investigated using different characterization techniques of Thermo Gravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), water uptake, IEC and electrochemical impedance spectroscopy. Thermal stability was decreased while adding PEG into PVDF but it is controlled with the addition of MMT on PVDF/PEG blend matrix. Moreover, It is noticed that, the increase of water uptake, IEC by the increasing additive concentration of PEG and MMT. XRD studies reveal the increased amorphous phase with uniform exfoliation of nanoclay particles. The highest proton conductivity value of 0.127S cm‑1 is obtained with 9wt.% of MMT in the PVdF/PEG/MMT composite membranes at room temperature with 100% Relative Humid (RH) condition and 10 V.% of sulfonation. The blended nanocomposite membranes fulfill the requirements of proton exchange membrane for fuel cell application.

  2. Polyethylene Glycol Modified, Cross-Linked Starch Coated Iron Oxide Nanoparticles for Enhanced Magnetic Tumor Targeting

    PubMed Central

    Cole, Adam J.; David, Allan E.; Wang, Jianxin; Galbán, Craig J.; Hill, Hannah L.; Yang, Victor C.

    2010-01-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140–190 nm) and relative PEG labeling (1.5% of surface amines – A5/D5, 0.4% – A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37°C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 hr) and D20 (11.75 hr) showing much longer half-lives than D (0.12 hr). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC0-∞ Sustained tumor exposure over 24 hours was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that both D5 and D20 are promising MNP platforms for enhanced magnetic tumor targeting, warranting further study in tumor models. PMID:21176955

  3. Inhibition mechanism of P-glycoprotein mediated efflux by mPEG-PLA and influence of PLA chain length on P-glycoprotein inhibition activity.

    PubMed

    Li, Wenjing; Li, Xinru; Gao, Yajie; Zhou, Yanxia; Ma, Shujin; Zhao, Yong; Li, Jinwen; Liu, Yan; Wang, Xinglin; Yin, Dongdong

    2014-01-06

    The present study aimed to investigate the effect of monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid) (mPEG-PLA) on the activity of P-glycoprotein (P-gp) in Caco-2 cells and further unravel the relationship between PLA chain length in mPEG-PLA and influence on P-gp efflux and the action mechanism. The transport results of rhodamine 123 (R123) across Caco-2 cell monolayers suggested that mPEG-PLA unimers were responsible for its P-gp inhibitory effect. Furthermore, transport studies of R123 revealed that the inhibitory potential of P-gp efflux by mPEG-PLA analogues was strongly correlated with their structural features and showed that the hydrophilic mPEG-PLA copolymers with an intermediate PLA chain length and 10.20 of hydrophilic-lipophilic balance were more effective at inhibiting P-gp efflux in Caco-2 cells. The fluorescence polarization measurement results ruled out the plasma membrane fluidization as a contributor for inhibition of P-gp by mPEG-PLA. Concurrently, mPEG-PLA inhibited neither basal P-gp ATPase (ATP is adenosine triphosphate) activity nor substrate stimulated P-gp ATPase activity, suggesting that mPEG-PLA seemed not to be a substrate of P-gp and a competitive inhibitor. No evident alteration in P-gp surface level was detected by flow cytometry upon exposure of the cells to mPEG-PLA. The depletion of intracellular ATP, which was likely to be a result of partial inhibition of cellular metabolism, was directly correlated with inhibitory potential for P-gp mediated efflux by mPEG-PLA analogues. Hence, intracellular ATP-depletion appeared to be possible explanation to the inhibition mechanism of P-gp by mPEG-PLA. Taken together, the establishment of a relationship between PLA chain length and impact on P-gp efflux activity and interpretation of action mechanism of mPEG-PLA on P-gp are of fundamental importance and will facilitate future development of mPEG-PLA in the drug delivery area.

  4. Carbon-Coated Gold Nanorods: A Facile Route to Biocompatible Materials for Photothermal Applications.

    PubMed

    Kaneti, Yusuf Valentino; Chen, Chuyang; Liu, Minsu; Wang, Xiaochun; Yang, Jia Lin; Taylor, Robert Allen; Jiang, Xuchuan; Yu, Aibing

    2015-11-25

    Gold nanorods and their core-shell nanocomposites have been widely studied because of their well-defined anisotropy and unique optical properties and applications. This study demonstrates a facile hydrothermal synthesis strategy for generating carbon coating on gold nanorods (AuNRs@C) under mild conditions (<200 °C), where the carbon shell is composed of polymerized sugar molecules (glucose). The structure and composition of the produced core-shell nanocomposites were characterized using advanced microscopic and spectroscopic techniques. The functional properties, particularly the photothermal and biocompatibility properties of the produced AuNRs@C, were quantified to assess their potential in photothermal hyperthermia. These AuNRs@C were tested in vitro (under representative treatment conditions) using near-infrared (NIR) light irradiation. It was found that the AuNRs produced here exhibit exemplary heat generation capability. Temperature changes of 10.5, 9, and 8 °C for AuNRs@C were observed with carbon shell thicknesses of 10, 17, and 25 nm, respectively, at a concentration of 50 μM, after 600 s of irradiation with a laser power of 0.17 W/cm(2). In addition, the synthesized AuNRs@C also exhibit good biocompatibility toward two soft tissue sarcoma cell lines (HT1080, a fibrosarcoma; and GCT, a fibrous histiocytoma). The cell viability study shows that AuNRs@C (at a concentration of <0.1 mg/mL) core-shell particles induce significantly lower cytotoxicity on both HT1080 and GCT cell lines, as compared with cetyltrimethylammonium bromide (CTAB)-capped AuNRs. Furthermore, similar to PEG-modified AuNRs, they are also safe to both HT1080 and GCT cell lines. This biocompatibility results from a surface full of -OH or -COH groups, which are suitable for linking and are nontoxic Therefore, the AuNRs@C represent a viable alternative to PEG-coated AuNRs for facile synthesis and improved photothermal conversion. Overall, these findings open up a new class of carbon-coated

  5. One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating technique combined with polysaccharide incorporated sol--gel process.

    PubMed

    Li, Feng; Li, Xue-Mei; Zhang, Shu-Sheng

    2006-10-06

    A simple and reliable one-pot approach using surface imprinting coating technique combined with polysaccharide incorporated sol-gel process was established to synthesize a new organic-inorganic hybrid matrix possessing macroporous surface and functional ligand. Using mesoporous silica gel being a support, immobilized metal affinity adsorbent with a macroporous shell/mesoporous core structure was obtained after metal ion loading. In the prepared matrix, covalently bonded coating and morphology manipulation on silica gel was achieved by using one-pot sol-gel process starting from an inorganic precursor, -glycidoxypropyltrimethoxysiloxane (GPTMS), and a functional biopolymer, chitosan (CS) at the atmosphere of imprinting polyethylene glycol (PEG). Self-hydrolysis of GPTMS, self-condensation, and co-condensation of silanol groups (Si-OH) from siloxane and silica gel surface, and in situ covalent cross-linking of CS created an orderly coating on silica gel surface. PEG extraction using hot ammonium hydroxide solution gave a chemically and mechanically stabilized pore structure and deactivated residual epoxy groups. The prepared matrix was characterized by using X-ray energy dispersion spectroscopy (EDX), scanning electron microscopy (SEM) and mercury intrusion porosimetry. The matrix possessed a high capacity for copper ion loading. Protein adsorption performance of the new immobilized metal affinity adsorbent was evaluated by batch adsorption and column chromatographic experiment using bovine serum albumin (BSA) as a simple model protein. Under the optimized coating conditions, the obtained macroporous surface resulted in a fast kinetics and high capability for protein adsorption, while the matrix non-charged with metal ions offered a low non-specific adsorption.

  6. Zwitterion-Coated Iron Oxide Nanoparticles: Surface Chemistry and Intracellular Uptake by Hepatocarcinoma (HepG2) Cells.

    PubMed

    Mondini, Sara; Leonzino, Marianna; Drago, Carmelo; Ferretti, Anna M; Usseglio, Sandro; Maggioni, Daniela; Tornese, Paolo; Chini, Bice; Ponti, Alessandro

    2015-07-07

    Nanoparticles (NPs) have received much attention in recent years for their diverse potential biomedical applications. However, the synthesis of NPs with desired biodistribution and pharmacokinetics is still a major challenge, with NP size and surface chemistry being the main factors determining the behavior of NPs in vivo. Here we report on the surface chemistry and in vitro cellular uptake of magnetic iron oxide NPs coated with zwitterionic dopamine sulfonate (ZDS). ZDS-coated NPs were compared to similar iron oxide NPs coated with PEG-like 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (MEEA) to investigate how surface chemistry affects their in vitro behavior. ZDS-coated NPs had a very dense coating, guaranteeing high colloidal stability in several aqueous media and negligible interaction with proteins. Treatment of HepG2 cells with increasing doses (2.5-100 μg Fe/mL) of ZDS-coated iron oxide NPs had no effect on cell viability and resulted in a low, dose-dependent NP uptake, inferior than most reported data for the internalization of iron oxide NPs by HepG2 cells. MEEA-coated NPs were scarcely stable and formed micrometer-sized aggregates in aqueous media. They decreased cell viability for dose ≥50 μg Fe/mL, and were more efficiently internalized than ZDS-coated NPs. In conclusion, our data indicate that the ZDS layer prevented both aggregation and sedimentation of iron oxide NPs and formed a biocompatible coating that did not display any biocorona effect. The very low cellular uptake of ZDS-coated iron NPs can be useful to achieve highly selective targeting upon specific functionalization.

  7. Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery.

    PubMed

    Liu, Bei; Li, Chunxia; Ma, Ping'an; Chen, Yinyin; Zhang, Yuanxin; Hou, Zhiyao; Huang, Shanshan; Lin, Jun

    2015-02-07

    A low toxic multifunctional nanoplatform, integrating both mutimodal diagnosis methods and antitumor therapy, is highly desirable to assure its antitumor efficiency. In this work, we show a convenient and adjustable synthesis of multifunctional nanoparticles NaYF4:Yb, Er@mSiO2@Fe3O4-PEG (MFNPs) based on different sizes of up-conversion nanoparticles (UCNPs). With strong up-conversion fluorescence offered by UCNPs, superparamagnetism properties attributed to Fe3O4 nanoparticles and porous structure coming from the mesoporous SiO2 shell, the as-obtained MFNPs can be utilized not only as a contrast agent for dual modal up-conversion luminescence (UCL)/magnetic resonance (MR) bio-imaging, but can also achieve an effective magnetically targeted antitumor chemotherapy both in vitro and in vivo. Furthermore, the UCL intensity of UCNPs and the magnetic properties of Fe3O4 in the MFNPs were carefully balanced. Silica coating and further PEG modifying can improve the hydrophilicity and biocompatibility of the as-synthesized MFNPs, which was confirmed by the in vitro/in vivo biocompatibility and in vivo long-time bio-distributions tests. Those results revealed that the UCNPs based magnetically targeted drug carrier system we synthesized has great promise in the future for multimodal bio-imaging and targeted cancer therapy.

  8. Long-term safety of PEG 4000 in children with chronic functional constipation: A biochemical perspective

    PubMed Central

    2010-01-01

    Purpose To evaluate the long-term safety of polyethylene glycol (PEG) 4000 in children with constipation, particularly the biochemical aspects of safety. Methods Medical records were evaluated, and 100 children, who had been taking PEG 4000 for more than 6 months, and who had been under clinical and biochemical monitoring, were enrolled. Ages; 6.11±3.12 years, Duration of therapy; 16.93±7.02 months, dose of PEG 4000; 0.72±0.21 g/kg/d. Results None of the children complained of clinical adverse effect. The first biochemical test was performed at 8.05 months after beginning of PEG 4000. Serum phosphate (SP) value was high in 10 children, and leucopenia was noted in one child. The second test was performed in 44 children at 7.57 months after the first test. The SP value was high in four children, including the three children whose initial SP value was high and one new child. Six out of 10 children with high initial SP value became normal and one was lost. Hypernatremia was noted in one child. The third test was done in 15 children at 7.5 months after the second test. The SP value of the new child from the second test was high, but became normal after finishing treatment. Two out of 3 children with high SP value at the second test became normal and one was lost. The fourth test was done in 2 children few months after the third test. All of the results were normal. There were no relation between duration of therapy and hyperphosphatemia, or between dose of PEG 4000 and hyperphosphatemia. Conclusions PEG 4000 is safe for long-term therapy in children with constipation with respect to biochemical parameters. PMID:21189949

  9. δ Scuti-type pulsation in the hot component of the Algol-type binary system BG Peg

    NASA Astrophysics Data System (ADS)

    Şenyüz, T.; Soydugan, E.

    2014-02-01

    In this study, 23 Algol-type binary systems, which were selected as candidate binaries with pulsating components, were observed at the Çanakkale Onsekiz Mart University Observatory. One of these systems was BG Peg. Its hotter component shows δ Scuti-type light variations. Physical parameters of BG Peg were derived from modelling the V light curve using the Wilson-Devinney code. The frequency analysis shows that the pulsational component of the BG Peg system pulsates in two modes with periods of 0.039 and 0.047 d. Mode identification indicates that both modes are most likely non-radial l = 2 modes.

  10. Design and Validation of PEG-Derivatized Vitamin E Copolymer for Drug Delivery into Breast Cancer.

    PubMed

    Li, Yanping; Liu, Qinhui; Li, Wenyao; Zhang, Ting; Li, Hanmei; Li, Rui; Chen, Lei; Pu, Shiyun; Kuang, Jiangying; Su, Zhiguang; Zhang, Zhirong; He, Jinhan

    2016-08-17

    This study examined the ability of amphiphilic poly(ethylene glycol) (PEG) derivatives to assemble into micelles for drug delivery. Linear PEG chains were modified on one end with hydrophobic vitamin E succinate (VES), and PEG and VES were mixed in different molar ratios to make amphiphiles, which were characterized in terms of critical micelle concentration (CMC), drug loading capacity (DLC), serum stability, tumor spheroid penetration and tumor targeting in vitro and in vivo. The amphiphile PEG5K-VES6 (PAMV6), which has a wheat-like structure, showed a CMC of 3.03 × 10(-6) M, good serum stability, and tumor accumulation. The model drug, pirarubicin (THP), could be efficiently loaded into PAMV6 micelles at a DLC of 24.81%. PAMV6/THP micelles were more effective than THP solution at inducing cell apoptosis and G2/M arrest in 4T1 cells. THP-loaded PAMV6 micelles also inhibited tumor growth much more than free THP in a syngeneic mouse model of breast cancer. PAMV6-based micellar systems show promise as nanocarriers for improved anticancer chemotherapy.

  11. Effects of ammonium sulfate and sodium chloride concentration on PEG/protein liquid-liquid phase separation.

    PubMed

    Dumetz, André C; Lewus, Rachael A; Lenhoff, Abraham M; Kaler, Eric W

    2008-09-16

    When added to protein solutions, poly(ethylene glycol) (PEG) creates an effective attraction between protein molecules due to depletion forces. This effect has been widely used to crystallize proteins, and PEG is among the most successful crystallization agents in current use. However, PEG is almost always used in combination with a salt at either low or relatively high concentrations. Here the effects of sodium chloride and ammonium sulfate concentration on PEG 8000/ovalbumin liquid-liquid (L-L) phase separation are investigated. At low salt the L-L phase separation occurs at decreasing protein concentration with increasing salt concentration, presumably due to repulsive electrostatic interactions between proteins. At high salt concentration, the behavior depends on the nature of the salt. Sodium chloride has little effect on the L-L phase separation, but ammonium sulfate decreases the protein concentration at which the L-L phase separation occurs. This trend is attributed to the effects of critical fluctuations on depletion forces. The implications of these results for designing solution conditions optimal for protein crystallization are discussed.

  12. Polyethylene Oxide (PEO) and Polyethylene Glycol (PEG) Polymer Sieving Matrix for RNA Capillary Electrophoresis

    PubMed Central

    Yamaguchi, Yoshinori; Li, Zhenqing; Zhu, Xifang; Liu, Chenchen; Zhang, Dawei; Dou, Xiaoming

    2015-01-01

    The selection of sieving polymer for RNA fragments separation by capillary electrophoresis is imperative. We investigated the separation of RNA fragments ranged from 100 to 10,000 nt in polyethylene glycol (PEG) and polyethylene oxide (PEO) solutions with different molecular weight and different concentration. We found that the separation performance of the small RNA fragments (<1000 nt) was improved with the increase of polymer concentration, whereas the separation performance for the large ones (>4000 nt) deteriorated in PEG/PEO solutions when the concentration was above 1.0%/0.6%, respectively. By double logarithmic plot of mobility and RNA fragment size, we revealed three migration regimes for RNA in PEG (300-500k) and PEO (4,000k). Moreover, we calculated the smallest resolvable nucleotide length (N min) from the resolution length analysis. PMID:25933347

  13. Nonadhesive, silica nanoparticles-based brush-coated contact lens cases--compromising between ease of cleaning and microbial transmission to contact lenses.

    PubMed

    Qu, Wenwen; Hooymans, Johanna M M; Qiu, Jun; de-Bont, Nik; Gelling, Onko-Jan; van der Mei, Henny C; Busscher, Henk J

    2013-05-01

    Surface properties of lens cases are determinant for their cleanability and for microbial transmission from lens cases to contact lenses (CLs). PEG-polymer-brush-coatings are known to decrease microbial adhesion more than other surface-coatings. Here, we applied a robust, silica nanoparticles-based brush-coating to polypropylene cases to evaluate their ease of cleaning and probability of bacterial transmission to CLs. Adhesion forces of nine bacterial strains (Pseudomonas, Staphylococci, and Serratia) to rigid CLs, polypropylene, and silica nanoparticles-based brush-coated polypropylene were measured using atomic-force-microscopy and subjected to Weibull analyses to yield bacterial transmission probabilities. Biofilms of each strain were grown in coated and uncoated cases and rinsed with a NaCl or antimicrobial lens care solution. Residual, viable organisms were quantified. Bacterial adhesion forces of all strains were significantly, up to tenfold smaller on brush-coated than on uncoated polypropylene. This yielded, higher transmission probabilities to a CL, but mild-rinsing yielded 10-100 fold higher removal of bacteria from brush-coated than from polypropylene cases. Moreover, due to weak adhesion forces, bacteria on brush-coated cases were two-to-three fold more susceptible to an antimicrobial lens care solution than on polypropylene cases. Therewith, the design of lens case surfaces is a compromise between ease of cleaning and transmission probability to CLs. Copyright © 2013 Wiley Periodicals, Inc.

  14. Face and Construct Validation of a Virtual Peg Transfer Simulator

    PubMed Central

    Arikatla, Venkata S; Sankaranarayanan, Ganesh; Ahn, Woojin; Chellali, Amine; De, Suvranu; Caroline, GL; Hwabejire, John; DeMoya, Marc; Schwaitzberg, Steven; Jones, Daniel B.

    2013-01-01

    Background The Fundamentals of Laparascopic Surgery (FLS) trainer box is now established as a standard for evaluating minimally invasive surgical skills. A particularly simple task in this trainer box is the peg transfer task which is aimed at testing the surgeon’s bimanual dexterity, hand-eye coordination, speed and precision. The Virtual Basic Laparoscopic Skill Trainer (VBLaST©) is a virtual version of the FLS tasks which allows automatic scoring and real time, subjective quantification of performance without the need of a human proctor. In this paper we report validation studies of the VBLaST© peg transfer (VBLaST-PT©) simulator. Methods Thirty-five subjects with medical background were divided into two groups: experts (PGY 4-5, fellows and practicing surgeons) and novices (PGY 1-3). The subjects were asked to perform the peg transfer task on both the FLS trainer box and the VBLaST-PT© simulator and their performance was evaluated based on established metrics of error and time. A new length of trajectory (LOT) metric has also been introduced for offline analysis. A questionnaire was used to rate the realism of the virtual system on a 5-point Likert scale. Results Preliminary face validation of the VBLaST-PT© with 34 subjects rated on a 5-point Likert scale questionnaire revealed high scores for all aspects of simulation, with 3.53 being the lowest mean score across all questions. A two-tailed Mann-Whitney performed on the total scores showed significant (p=0.001) difference between the groups. A similar test performed on the task time (p=0.002) and the length of trajectory (p=0.004) separately showed statistically significant differences between the experts and novice groups (p<0.05). The experts appear to be traversing shorter overall trajectories in less time than the novices. Conclusion VBLaST-PT© showed both face and construct validity and has promise as a substitute for the FLS to training peg transfer skills. PMID:23263645

  15. Dual-Functional Polyethylene Glycol-b-polyhexanide Surface Coating with in Vitro and in Vivo Antimicrobial and Antifouling Activities.

    PubMed

    Zhi, Zelun; Su, Yajuan; Xi, Yuewei; Tian, Liang; Xu, Miao; Wang, Qianqian; Padidan, Sara; Li, Peng; Huang, Wei

    2017-03-29

    In recent years, microbial colonization on the surface of biomedical implants/devices has become a severe threat to human health. Herein, surface-immobilized guanidine derivative block copolymers create an antimicrobial and antifouling dual-functional coating. We report the preparation of an antimicrobial and antifouling block copolymer by the conjugation of polyhexanide (PHMB) with either allyl glycidyl ether or allyloxy polyethylene glycol (APEG; MW 1200 and 2400). The allyl glycidyl ether modified PHMB (A-PHMB) and allyloxy polyethylene glycol 1200/2400 modified PHMB (APEG 1200/2400 -PHMB) copolymers were grafted onto a silicone rubber surface as a bottlebrush-like coating, respectively, using a plasma-UV-assisted surface-initiated polymerization. Both A-PHMB and APEG 1200/2400 -PHMB coatings exhibited excellent broad-spectrum antimicrobial properties against Gram-negative/positive bacteria and fungi. The APEG 2400 -PHMB coating displayed an improved antibiofilm as well as antifouling properties and a long reusable cycle, compared with two other coatings, due to its abundant PEG blocks among those copolymers. Also, the APEG 2400 -PHMB-coated silicone coupons were biocompatible toward mammalian cells, as revealed by in vitro hemocompatibile and cytotoxic assays. An in vivo study showed a significant decline of Escherichia coli colonies with a 5-log reduction, indicating the APEG 2400 -PHMB coating surface worked effectively in the rodent subcutaneous infection model. This PHMB-based block copolymer coating is believed to be an effective strategy to prevent biomaterial-associated infections.

  16. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties.

    PubMed

    Avgoustakis, K; Beletsi, A; Panagi, Z; Klepetsanis, P; Karydas, A G; Ithakissios, D S

    2002-02-19

    The in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties of PLGA-mPEG nanoparticles of cisplatin were investigated. The nanoparticles were prepared by a double emulsion method and characterized with regard to their morphology, size, zeta potential and drug loading. The rate of in vitro degradation of the PLGA-mPEG nanoparticles in PBS (pH 7.4) depended on their composition, increasing when the mPEG content (mPEG:PLGA ratio) of the nanoparticles increased. Sustained cisplatin release over several hours from the PLGA-mPEG nanoparticles in vitro (PBS) was observed. The composition of the nanoparticles affected drug release: the rate of release increased when the mPEG content of the nanoparticles increased. Within the range of drug loadings investigated, the drug loading of the nanoparticles did not have any significant effect on drug release. The loading efficiency was low and needs improvement in order to obtain PLGA-mPEG nanoparticles with a satisfactory cisplatin content for therapeutic application. The i.v. administration of PLGA-mPEG nanoparticles of cisplatin in BALB/c mice resulted in prolonged cisplatin residence in systemic blood circulation. The results appear to justify further investigation of the suitability of the PLGA-mPEG nanoparticles for the controlled i.v. delivery and/or targeting of cisplatin.

  17. Thermosensitive behavior of poly(ethylene glycol)-based block copolymer (PEG-b-PADMO) controlled via self-assembled microstructure.

    PubMed

    Cui, Qianling; Wu, Feipeng; Wang, Erjian

    2011-05-19

    Stimuli-responsive, well-defined diblock copolymers (PEG-b-PADMO) comprising poly(ethylene glycol) (PEG, DP (degree of polymerization)=45) as the hydrophilic and temperature-sensitive part and poly(N-acryloyl-2,2-dimethyl-1,3-oxazolidine) (PADMO, DP=18-47) as the hydrophobic and acid-labile part self-assembled in water into spherical micelles with high aggregation number. The micellar structures and thermally induced phase transitions of the copolymers were investigated with (1)H NMR spectroscopy, light scattering, microscopy, turbidimetry, and fluorescence techniques. Thermoresponsive phase transitions of the copolymers in water were controlled via formation of core-shell-type micelles with densely compact PEG corona. Their lower critical solution temperatures (LCSTs) were modulated within the range 40-72 °C by varying PADMO block length. This unusually low LCST was attributed to the densely packed PEG structure in the polymer micelles, which resulted in strong n-clustering attractive interactions and insufficient hydration of PEG chains in the shell and greatly enhanced the thermosensitivity. The LCST behavior can also be modulated by partial acid hydrolysis of PADMO segments through the resulting change of hydrophobicity. © 2011 American Chemical Society

  18. Biocatalytic route to sugar-PEG-based polymers for drug delivery applications.

    PubMed

    Bhatia, Sumati; Mohr, Andreas; Mathur, Divya; Parmar, Virinder S; Haag, Rainer; Prasad, Ashok K

    2011-10-10

    Sugar-PEG-based polymers were synthesized by enzymatic copolymerization of 4-C-hydroxymethyl-1,2-O-isopropylidene-β-L-threo-pentofuranose/4-C-hydroxymethyl-1,2-O-benzylidene-β-L-threo-pentofuranose/4-C-hydroxymethyl-1,2-O-isopropylidene-3-O-pentyl-β-L-threo-pentofuranose with PEG-600 dimethyl ester using Novozyme-435 (Candida antarctica lipase immobilized on polyacrylate). Carbohydrate monomers were obtained by the multistep synthesis starting from diacetone-D-glucose and PEG-600 dimethyl ester, which was in turn obtained by the esterification of the commercially available PEG-600 diacid. Aggregation studies on the copolymers revealed that in aqueous solution those polymers bearing the hydrophobic pentyl/benzylidene moiety spontaneously self-assembled into supramolecular aggregates. The critical aggregation concentration (CAC) of polymers was determined by surface tension measurements, and the precise size of the aggregates was obtained by dynamic light scattering. The polymeric aggregates were further explored for their drug encapsulation properties in buffered aqueous solution of pH 7.4 (37 °C) using nile red as a hydrophobic model compound by means of UV/vis and fluorescence spectroscopy. There was no significant encapsulation in polymer synthesized from 4-C-hydroxymethyl-1,2-O-isopropylidene-β-L-threo-pentofuranose because this sugar monomer does not contain a big hydrophobic moiety as the pentyl or the benzylidene moiety. Nile red release study was performed at pH 5.0 and 7.4 using fluorescence spectroscopy. The release of nile red from the polymer bearing benzylidene moiety and pentyl moiety was observed with a half life of 3.4 and 2.0 h, respectively at pH 5.0, whereas no release was found at pH 7.4.

  19. Targeted gene delivery by polyplex micelles with crowded PEG palisade and cRGD moiety for systemic treatment of pancreatic tumors.

    PubMed

    Ge, Zhishen; Chen, Qixian; Osada, Kensuke; Liu, Xueying; Tockary, Theofilus A; Uchida, Satoshi; Dirisala, Anjaneyulu; Ishii, Takehiko; Nomoto, Takahiro; Toh, Kazuko; Matsumoto, Yu; Oba, Makoto; Kano, Mitsunobu R; Itaka, Keiji; Kataoka, Kazunori

    2014-03-01

    Adequate retention in systemic circulation is the preliminary requirement for systemic gene delivery to afford high bioavailability into the targeted site. Polyplex micelle formulated through self-assembly of oppositely-charged poly(ethylene glycol) (PEG)-polycation block copolymer and plasmid DNA has gained tempting perspective upon its advantageous core-shell architecture, where outer hydrophilic PEG shell offers superior stealth behaviors. Aiming to promote these potential characters toward systemic applications, we strategically introduced hydrophobic cholesteryl moiety at the ω-terminus of block copolymer, anticipating to promote not only the stability of polyplex structure but also the tethered PEG crowdedness. Moreover, Mw of PEG in the PEGylated polyplex micelle was elongated up to 20 kDa for expecting further enhancement in PEG crowdedness. Furthermore, cyclic RGD peptide as ligand molecule to integrin receptors was installed at the distal end of PEG in order for facilitating targeted delivery to the tumor site as well as promoting cellular uptake and intracellular trafficking behaviors. Thus constructed cRGD conjugated polyplex micelle with the elevated PEG shielding was challenged to a modeled intractable pancreatic cancer in mice, achieving potent tumor growth suppression by efficient gene expression of antiangiogenic protein (sFlt-1) at the tumor site. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Prevention of Oxidized Low Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound

    PubMed Central

    Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong

    2017-01-01

    In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA-PLGA-PEG

  1. Prevention of Oxidized Low Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound.

    PubMed

    Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong

    2017-04-13

    In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA-PLGA-PEG

  2. Coherent source interaction, third-order nonlinear response of synthesized PEG coated magnetite nanoparticles in polyethylene glycol and its application

    NASA Astrophysics Data System (ADS)

    Gopal, S. Veena; Chitrambalam, S.; Joe, I. Hubert

    2018-01-01

    Third-order nonlinear response of synthesized polyethylene glycol coated Fe3O4 nanoparticles dispersed in a suitable solvent, polyethylene glycol has been studied. The structural characterization of the synthesized magnetite nanoparticles were carried out. The linear optical property of the synthesized magnetite nanoparticles was investigated using UV-visible technique. Both closed and open aperture Z-scan techniques have been performed at 532 nm with pulse width 5 ns and repetition rate 10 Hz. It was found that polyethylene glycol coated magnetite exhibits reverse saturable absorption, with significant nonlinear absorption coefficient. Two-photon absorption intensity dependent positive nonlinear refraction coefficients indicate self focusing phenomena. Results show that higher concentration gives better nonlinear and optical limiting properties.

  3. Structure and Dynamics of Highly PEG-ylated Sterically Stabilized Micelles in Aqueous Media

    PubMed Central

    Vuković, Lela; Khatib, Fatima A.; Drake, Stephanie P.; Madriaga, Antonett; Brandenburg, Kenneth S.; Král, Petr; Onyuksel, Hayat

    2011-01-01

    Molecular assemblies of highly PEG-ylated phospholipids are important in many biomedical applications. We study sterically stabilized micelles (SSM) of self-assembled DSPE-PEG2000 in pure water and isotonic HEPES buffered saline solution. The observed SSM sizes of 2 – 15 nm largely depend on the solvent and the lipid concentration used. The critical micelle concentration (CMC) of DSPE-PEG2000 is ≈ 10 times higher in water than in buffer and the viscosity of the dispersion dramatically increases with the lipid concentration. To explain the experimentally observed results, we perform atomistic molecular dynamics simulations of the solvated SSM. Our modeling reveal that the observed assemblies have very different aggregation numbers of Nagg ≈ 90 (saline solution) and Nagg < 8 (water), due to very different screening of their charged −PO4− groups. We also demonstrate that the micelle cores can inflate and their corona highly fluctuate, allowing thus storage and delivery of molecules with different chemistry. PMID:21780810

  4. Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media.

    PubMed

    Vuković, Lela; Khatib, Fatima A; Drake, Stephanie P; Madriaga, Antonett; Brandenburg, Kenneth S; Král, Petr; Onyuksel, Hayat

    2011-08-31

    Molecular assemblies of highly PEG-ylated phospholipids are important in many biomedical applications. We have studied sterically stabilized micelles (SSMs) of self-assembled DSPE–PEG2000 in pure water and isotonic HEPES-buffered saline solution. The observed SSM sizes of 2–15 nm largely depend on the solvent and the lipid concentration used. The critical micelle concentration of DSPE–PEG2000 is 10 times higher in water than in buffer, and the viscosity of the dispersion dramatically increases with the lipid concentration. To explain the experimentally observed results, we performed atomistic molecular dynamics simulations of solvated SSMs. Our modeling revealed that the observed assemblies have very different aggregation numbers (N(agg) ≈ 90 in saline solution and N(agg) < 8 in water) because of very different screening of their charged PO4(–) groups. We also demonstrate that the micelle cores can inflate and their coronas can fluctuate strongly, thus allowing storage and delivery of molecules with different chemistries.

  5. Effects of Terminal Sterilization on PEG-Based Bioresorbable Polymers Used in Biomedical Applications.

    PubMed

    Bhatnagar, Divya; Dube, Koustubh; Damodaran, Vinod B; Subramanian, Ganesan; Aston, Kenneth; Halperin, Frederick; Mao, Meiyu; Pricer, Kurt; Murthy, N Sanjeeva; Kohn, Joachim

    2016-10-01

    The effects of ethylene oxide (EO), vaporized hydrogen peroxide (VHP), gamma (γ) radiation, and electron-beam (E-beam) on the physiochemical and morphological properties of medical device polymers are investigated. Polymers with ether, carbonate, carboxylic acid, amide and ester functionalities are selected from a family of poly(ethylene glycol) (PEG) containing tyrosine-derived polycarbonates (TyrPCs) to include slow, medium, fast, and ultrafast degrading polymers. Poly(lactic acid) (PLA) is used for comparison. Molecular weight ( M w ) of all tested polymers decreases upon gamma and E-beam, and this effect becomes more pronounced at higher PEG content. Gamma sterilization increases the glass transition temperature of polymers with high PEG content. EO esterifies the carboxylic acid groups in desaminotyrosol-tyrosine (DT) and causes significant degradation. VHP causes hydroxylation of the phenyl ring, and hydrolytic degradation. This study signifies the importance of the chemical composition when selecting a sterilization method, and provides suggested conditions for each of the sterilization methods.

  6. Effects of PEG tethering chain length of vitamin E TPGS with a Herceptin-functionalized nanoparticle formulation for targeted delivery of anticancer drugs.

    PubMed

    Zhao, Jing; Feng, Si-Shen

    2014-03-01

    Drug formulation by ligand conjugated nanoparticles of biodegradable polymers has become one of the most important strategies in drug targeting. We have developed in our previous work nanoparticles of a mixture of two vitamin E TPGS based copolymers PLA-TPGS and TPGS-TOOH with the latter for Herceptin conjugation for targeted delivery of anticancer drugs such as docetaxel to the cancer cells of human epidermal growth factor receptor 2 (HER2) overexpression. In this research, we investigated the effects of the PEG chain length in TPGS, which is in fact a PEGylated vitamin E, on the cellular uptake and cytotoxicity of the drug formulated in the Herceptin-conjugated nanoparticles of PLA-TPGS/TPGS-COOH blend (NPs). Such NPs of PEG1000, PEG2000, PEG3350 and PEG5000, i.e. the PEG of molecule weight 1000, 2000, 3350 and 5000, were prepared by the nanoprecipitation method and characterized for their size and size distribution, drug loading, surface morphology, surface charge and surface chemistry as well as in vitro drug release profile, cellular uptake and cytotoxicity. We found among such nanoparticles, those of PEG1000, i.e. of the shortest PEG tethering chain length, could result in the best therapeutic effects, which are 24.1%, 37.3%, 38.1% more efficient in cellular uptake and 68.1%, 90%, 92.6% lower in IC50 (thus higher in cytotoxicity) than the Herceptin-conjugated nanoparticles of PLA-TPGS/TPGS-COOH blend of PEG2000, PEG3350 and PEG5000 respectively in treatment of SK-BR-3 cancer cells which are of high HER2 overexpression. We provided a theoretical explanation from surface mechanics and thermodynamics for endocytosis of nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipid complex to facilitate the oral delivery efficiency.

    PubMed

    Yu, Fei; Ao, Mingtao; Zheng, Xiao; Li, Nini; Xia, Junjie; Li, Yang; Li, Donghui; Hou, Zhenqing; Qi, Zhongquan; Chen, Xiao Dong

    2017-11-01

    The natural product berberine (BBR), present in various plants, arouses great interests because of its numerous pharmacological effects. However, the further development and application of BBR had been hampered by its poor oral bioavailability. In this work, we report on polymer-lipid hybrid nanoparticles (PEG-lipid-PLGA NPs) loaded with BBR phospholipid complex using a solvent evaporation method for enhancing the oral BBR efficiency. The advantage of this new drug delivery system is that the BBR-soybean phosphatidylcholine complex (BBR-SPC) could be used to enhance the liposolubility of BBR and improve the affinity with the biodegradable polymer to increase the drug-loading capacity and controlled/sustained release. The entrapment efficiency of the PEG-lipid-PLGA NPs/BBR-SPC was observed to approach approximately 89% which is more than 2.4 times compared with that of the PEG-lipid-PLGA NPs/BBR. To the best of our knowledge, this is the first report on using polymer material for effective encapsulation of BBR to improve its oral bioavailability. The prepared BBR delivery systems demonstrated a uniform spherical shape, a well-dispersed core-shell structure and a small particle size (149.6 ± 5.1 nm). The crystallographic and thermal analysis has indicated that the BBR dispersed in the PEG-lipid-PLGA NPs matrix is in an amorphous form. More importantly, the enhancement in the oral relative bioavailability of the PEG-lipid-PLGA NPs/BBR-SPC was ∼343% compared with that of BBR. These positive results demonstrated that PEG-lipid-PLGA NPs/BBR-SPC may have the potential for facilitating the oral drug delivery of BBR.

  8. Nanosilica sol leads to further increase in polyethylene glycol (PEG) 1000-enhanced thermostability of β-cyclodextrin glycosyltransferase from Bacillus circulans.

    PubMed

    Li, Caiming; Huang, Min; Gu, Zhengbiao; Hong, Yan; Cheng, Li; Li, Zhaofeng

    2014-04-02

    A major disadvantage of cyclodextrin production is the limited thermostability of cyclodextrin glycosyltransferase. The ability of combinations of nanosilica sol with polyethylene glycol (PEG) 1000 to enhance the thermostability of the β-cyclodextrin glycosyltransferase from Bacillus circulans was investigated. It was found that 10% PEG 1000 combined with 0.05% nanosilica sol could activate the β-cyclodextrin glycosyltransferase by 17.2%. Furthermore, 0.05% nanosilica sol leads to further increase in PEG 1000-enhanced thermostability of β-cyclodextrin glycosyltransferase. With the simultaneous addition of 10% PEG 1000 and 0.05% nanosilica into the enzyme solution, which was allowed to incubate for 60 min at 60 °C, 61.3% of β-cyclodextrin-forming activity could be retained, which was much higher than that with only 10% PEG 1000 added. Atomic force microscopy, fluorescence spectroscopy, and circular dichroism analysis indicated that silica nanoparticles helped PEG 1000 further protect the tertiary and secondary structures of β-cyclodextrin glycosyltransferase. This study provides an effective approach for improving the thermostability of cyclodextrin glycosyltransferase and related enzymes.

  9. Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood.

    PubMed

    Campelo, Clayton S; Chevallier, Pascale; Vaz, Juliana M; Vieira, Rodrigo S; Mantovani, Diego

    2017-03-01

    Thrombosis and calcification constitute the main clinical problems when blood-interacting devices are implanted in the body. Coatings with thin polymer layers represent an acknowledged strategy to modulate interactions between the material surface and the blood environment. To ensure the implant success, at short-term the coating should limit platelets adhesion and delay the clot formation, and at long-term it should delay the calcification process. Sulfonated chitosan, if compared to native chitosan, shows the unique ability to reduce proteins adsorption, decrease thrombogenic properties and limit calcification. In this work, stainless steel surfaces, commonly used for cardiovascular applications, were coated with sulfonated chitosan, by using dopamine and PEG as anchors, and the effect of these grafted surfaces on platelet adhesion, clot formation as well as on calcification were investigated. Surface characterization techniques evidenced that the coating formation was successful, and the sulfonated chitosan grafted sample exhibited a higher roughness and hydrophilicity, if compared to native chitosan one. Moreover, sulfonated surface limited platelet activation and the process of clot formation, thus confirming its high biological performances in blood. Calcium deposits were also lower on the sulfonated chitosan sample compared to the chitosan one, thus showing that calcification was minimal in presence of sulfonate groups. In conclusion, this sulfonated-modified surface has potential to be as blood-interacting material. Copyright © 2016. Published by Elsevier B.V.

  10. Purification of inclusion bodies using PEG precipitation under denaturing conditions to produce recombinant therapeutic proteins from Escherichia coli.

    PubMed

    Chen, Huanhuan; Li, Ninghuan; Xie, Yueqing; Jiang, Hua; Yang, Xiaoyi; Cagliero, Cedric; Shi, Siwei; Zhu, Chencen; Luo, Han; Chen, Junsheng; Zhang, Lei; Zhao, Menglin; Feng, Lei; Lu, Huili; Zhu, Jianwei

    2017-07-01

    It has been documented that the purification of inclusion bodies from Escherichia coli by size exclusion chromatography (SEC) may benefit subsequent refolding and recovery of recombinant proteins. However, loading volume and the high cost of the column limits its application in large-scale manufacturing of biopharmaceutical proteins. We report a novel process using polyethylene glycol (PEG) precipitation under denaturing conditions to replace SEC for rapid purification of inclusion bodies containing recombinant therapeutic proteins. Using recombinant human interleukin 15 (rhIL-15) as an example, inclusion bodies of rhIL-15 were solubilized in 7 M guanidine hydrochloride, and rhIL-15 was precipitated by the addition of PEG 6000. A final concentration of 5% (w/v) PEG 6000 was found to be optimal to precipitate target proteins and enhance recovery and purity. Compared to the previously reported S-200 size exclusion purification method, PEG precipitation was easier to scale up and achieved the same protein yields and quality of the product. PEG precipitation also reduced manufacturing time by about 50 and 95% of material costs. After refolding and further purification, the rhIL-15 product was highly pure and demonstrated a comparable bioactivity with a rhIL-15 reference standard. Our studies demonstrated that PEG precipitation of inclusion bodies under denaturing conditions holds significant potential as a manufacturing process for biopharmaceuticals from E. coli protein expression systems.

  11. Establishment of the first international standard for PEGylated granulocyte colony stimulating factor (PEG-G-CSF): Report of an international collaborative study

    PubMed Central

    Wadhwa, Meenu; Bird, Chris; Dougall, Thomas; Rigsby, Peter; Bristow, Adrian; Thorpe, Robin

    2015-01-01

    We assessed the feasibility of developing a suitable international reference standard for determination of in vitro biological activity of human sequence recombinant PEG-G-CSF products with a 20 kD linear PEG linked to the N-terminal methionyl residue of G-CSF (INN Filgrastim), produced using a conjugation process and coupling chemistry similar to that employed for the lead PEGfilgrastim product. Based on initial data which showed that the current WHO 2nd international standard, IS for G-CSF (09/136) or alternatively, a PEG-G-CSF standard with a unitage traceable to the G-CSF IS may potentially serve as the IS for PEG-G-CSF products, two candidate preparations of PEG-G-CSF were formulated and lyophilized at NIBSC. These preparations were tested by 23 laboratories using in vitro bioassays in a multi-centre collaborative study. Results indicated that on the basis of parallelism, the current WHO 2nd IS for G-CSF or any of the PEG-G-CSF samples could be used as the international standard for PEG-G-CSF preparations. However, because of the variability in potency estimates seen when PEG-G-CSF preparations were compared with the current WHO 2nd IS for G-CSF, a candidate PEG-G-CSF was suitable as the WHO IS. The preparation 12/188 was judged suitable to serve as the WHO IS based on in vitro biological activity data. Therefore, the preparation coded 12/188 was established by the WHO Expert Committee on Biological Standardization (ECBS) in 2013 as the WHO 1st IS for human PEGylated G-CSF with an assigned in vitro bioactivity of 10,000 IU per ampoule. PMID:25450254

  12. Camouflaging endothelial cells: does it prolong graft survival?

    PubMed

    Stuhlmeier, K M; Lin, Y

    1999-08-05

    Camouflaging antigens on the surface of cells seems an appealing way to prevent activation of the immune system. We explored the possibility of preventing hyperacute rejection by chemically camouflaging endothelial cells (EC). In vitro as well as in vivo experiments were performed. First, the ability of mPEG coating to prevent antibody-antigen interactions was evaluated. Second, we tested the degree to which mPEG coating prevents activation of EC by stimuli such as TNF-alpha and LPS. Third, in vivo experiments were performed to test the ability of mPEG coating to prolong xenograft survival. We demonstrate that binding of several antibodies to EC or serum proteins can be inhibited by mPEG. Furthermore, binding of TNF-alpha as well as LPS to EC is blocked since mPEG treatment of EC inhibits the subsequent up-regulation of E-selectin by these stimuli. However, in vivo experiments revealed that currently this method alone is not sufficient to prevent hyperacute rejection.

  13. Tolerability, safety, and efficacy of PEG 3350 as a 1-day bowel preparation in children.

    PubMed

    Walia, Ritu; Steffen, Rita; Feinberg, Lisa; Worley, Sarah; Mahajan, Lori

    2013-02-01

    The aim of the study was to evaluate the tolerability, safety, and efficacy of polyethylene glycol (PEG) 3350 without electrolytes as a 1-day bowel preparation for colonoscopy in children. A prospective study of 45 children undergoing colonoscopy prescribed PEG 3350 without electrolytes mixed with a commercial electrolyte beverage was performed. Patients <45 kg received 136 g of PEG 3350 without electrolytes mixed in 32 ounces of Gatorade. Patients ≥ 45 kg were given 255 g of PEG 3350 without electrolytes in 64 ounces of Gatorade A basic metabolic panel was performed at the time of the clinic visit and just before colonoscopy. Patients completed a survey related to bowel preparation. Endoscopists graded bowel preparation and noted the proximal extent of the examination. A total of 44 patients (14 ± 3 years) completed the study. One patient was excluded due to protocol breach. All subjects reported the preparation was easy (61%) or tolerable (39%). Adverse events included nausea (34%), abdominal pain (23%), vomiting (16%), abdominal distension (20%), bloating (23%), and dizziness (7%). Although significant changes in serum glucose and CO2 were noted, no therapeutic interventions were indicated. Significant changes in sodium, potassium chloride, blood urea nitrogen, or creatinine did not occur. Colonic preparation was rated as excellent in 23%, good in 52%, fair in 23%, and poor in 2% of patients. Intubation of the ileum was successful in 100%. One-day bowel preparation with high dose PEG 3350 mixed with commercial electrolyte solution is tolerable, safe, and effective in children before colonoscopy.

  14. SS-mPEG chemical modification of recombinant phospholipase C for enhanced thermal stability and catalytic efficiency.

    PubMed

    Fang, Xian; Wang, Xueting; Li, Guiling; Zeng, Jun; Li, Jian; Liu, Jingwen

    2018-05-01

    PEGylation is one of the most promising and extensively studied strategies for improving the properties of proteins as well as enzymic physical and thermal stability. Phospholipase C, hydrolyzing the phospholipids offers tremendous applications in diverse fields. However, the poor thermal stability and higher cost of production have restricted its industrial application. This study focused on improving the stabilization of recombinant PLC by chemical modification with methoxypolyethylene glycol-Succinimidyl Succinate (SS-mPEG, MW 5000). PLC gene from isolate Bacillus cereus HSL3 was fused with SUMO, a novel small ubiquitin-related modifier expression vector and over expressed in Escherichia coli. The soluble fraction of SUMO-PLC reached 80% of the total recombinant protein. The enzyme exhibited maximum catalytic activity at 80 °C and was relatively thermostable at 40-70 °C. It showed extensive substrate specificity pattern and marked activity toward phosphatidylcholine, which made it a typical non-specific PLC for industrial purpose. SS-mPEG-PLC complex exhibited an enhanced thermal stability at 70-80 °C and the catalytic efficiency (K cat /K m ) had increased by 3.03 folds compared with free PLC. CD spectrum of SS-mPEG-PLC indicated a possible enzyme aggregation after chemical modification, which contributed to the higher thermostability of SS-mPEG-PLC. The increase of antiparallel β sheets in secondary structure also made it more stable than parallel β sheets. The presence of SS-mPEG chains on the enzyme molecule surface somewhat changed the binding rate of the substrates, leading to a significant improvement in catalytic efficiency. This study provided an insight into the addition of SS-mPEG for enhancing the industrial applications of phospholipase C at higher temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Functionalization of Cellulose Nanocrystals with PEG-Metal-Chelating Diblock Copolymers via Controlled Conjugation in Aqueous Medium

    NASA Astrophysics Data System (ADS)

    Guo, Melinda

    The surface of cellulose nanocrystals (CNCs) was successfully functionalized with metal chelating diblock copolymers via HyNic-4FB conjugation. Two types of PEG-metal-chelating block polymers with hydrazinonicotinate acetone hydrazine (HyNic) end groups were synthesized: mPEG-PGlu(DTPA) 18-HyNic and mPEG-PGlu(DTPA)25-HyNic. These two polymers both had a methoxy PEG (M ˜ 2000 Da) block that differed in the mean degree of polymerization of the metal-chelating block. They were characterized by 1H NMR spectroscopy and gel-permeation chromatography (GPC). 4-Formylbenzamide (4FB) groups were introduced onto the surface of CNCs and quantified through their reaction with 2-hydrazinopyridine. The polymers were grafted onto the surface of CNCs via bis-aryl hydrazone bond formation, and the kinetics of this reaction was explored by UV/Vis spectroscopy. The CNCs were also labeled with rhodamine and Alexa FluorRTM 488 dyes. Students in our collaborator's group in Pharmacy are examining applications of these materials as radiotherapeutic agents for cancer treatment.

  16. Efficient Self-Assembly of mPEG End-Capped Porous Silica as a Redox-Sensitive Nanocarrier for Controlled Doxorubicin Delivery.

    PubMed

    Nguyen, Anh Khoa; Nguyen, Thi Hiep; Bao, Bui Quoc; Bach, Long Giang; Nguyen, Dai Hai

    2018-01-01

    Porous nanosilica (PNS) has been regarded as a promising candidate for controlled delivery of anticancer drugs. Unmodified PNS-based nanocarriers, however, showed a burst release of encapsulated drugs, which may limit their clinical uses. In this report, PNS was surface conjugated with adamantylamine (ADA) via disulfide bridges (-SS-), PNS-SS-ADA, which was further modified with cyclodextrin-poly(ethylene glycol) methyl ether conjugate (CD-mPEG) to form a core@shell structure PNS-SS-ADA@CD-mPEG for redox triggered delivery of doxorubicin (DOX), DOX/PNS-SS-ADA@CD-mPEG. The prepared PNS-SS-ADA@CD-mPEG nanoparticles were spherical in shape with an average diameter of 55.5 ± 3.05 nm, a little larger than their parentally PNS nanocarriers, at 49.6 ± 2.56 nm. In addition, these nanoparticles possessed high drug loading capacity, at 79.2 ± 3.2%, for controlled release. The release of DOX from DOX/PNS-SS-ADA@CD-mPEG nanoparticles was controlled and prolonged up to 120 h in PBS medium (pH 7.4), compared to less than 40 h under reducing condition of 5 mM DTT. Notably, the PNS-SS-ADA@CD-mPEG was a biocompatible nanocarrier, and the toxicity of DOX was dramatically reduced after loading drugs into the porous core. This redox-sensitive PNS-SS-ADA@CD-mPEG nanoparticle could be considered a potential candidate with high drug loading capacity and a lower risk of systemic toxicity.

  17. Simultaneous CCD Photometry of Two Eclipsing Binary Stars in Pegasus - Part2: BX Peg

    NASA Astrophysics Data System (ADS)

    Alton, K. B.

    2013-05-01

    BX Peg is an overcontact W UMa binary system (P = 0.280416 d) which has been rather well studied, but not fully understood due to complex changes in eclipse timings and light curve variations attributed to star spots. Photometric data collected in three bandpasses (B, V, and Ic) produced nineteen new times of minimum for BX Peg. These were used to update the linear ephemeris and further analyze potential changes in orbital periodicity by examining long-term changes in eclipse timings. In addition, synthetic fitting of light curves by Roche modeling was accomplished with the assistance of three different programs, two of which employ the Wilson-Devinney code. Different spotted solutions were necessary to achieve the best Roche model fits for BX Peg light curves collected in 2008 and 2011. Overall, the long-;term decrease (9.66 × 10-3 sec y-1) in orbital period defined by the parabolic fit of eclipse timing data could arise from mass transfer or angular momentum loss. The remaining residuals from observed minus predicted eclipse timings for BX Peg exhibit complex but non-random behavior. These may be related to magnetic activity cycles and/or the presence of an unseen mass influencing the times of minimum, however, additional minima need to be collected over a much longer timescale to resolve the nature of these complex changes.

  18. Biomechanical Evaluation of All-Polyethylene Pegged Bony Ingrowth Glenoid Fixation Techniques on Implant Micromotion.

    PubMed

    Wiater, Brett P; Moravek, James E; Kurdziel, Michael D; Baker, Kevin C; Wiater, J Michael

    2016-01-01

    Newer glenoid components that allow for hybrid cement fixation via traditional cementation of peripheral pegs and bony ingrowth into an interference-fit central peg introduce the possibility of long-term biological fixation. However, little biomechanical work has been done on the initial stability of these components and the various fixation options. We conducted a study in which all-polyethylene glenoid components with a centrally fluted peg were implanted in polyurethane blocks with interference-fit, hybrid cement, and fully cemented fixation (5 per fixation group). Biomechanical evaluation of glenoid loosening, according to ASTM Standard F-2028-12, subjected the glenoids to 50,000 cycles of rim loading, and glenoid component motion was recorded with 2 differential variable reluctance transducers fixed to each glenoid prosthesis. Fully cemented fixation exhibited significantly less mean distraction in comparison with interference-fit fixation (P < .001) and hybrid cement fixation (P < .001). Hybrid cement fixation exhibited significantly less distraction (P < .001), more compression (P < .001), and no significant difference in glenoid translation (P = .793) in comparison with interference-fit fixation. Fully cemented fixation exhibited the most resistance to glenoid motion in comparison with hybrid cement fixation and interference-fit fixation. However, hybrid cement fixation and interference-fit fixation exhibited equivocal motion. Given these results, cementation of peripheral pegs may confer no additional initial stability over that provided by uncemented interference-fit fixation.

  19. Two-week aerosol inhalation study on polyethylene glycol (PEG) 3350 in F-344 rats.

    PubMed

    Klonne, D R; Dodd, D E; Losco, P E; Troup, C M; Tyler, T R

    1989-03-01

    PEGs in the 3000 to 4000 MW range are used in many pharmaceutical and cosmetic applications; they produce little ocular or dermal irritation and have extremely low acute and subchronic toxicity by oral and dermal routes of administration. However, little information exists on the potential of aerosols of these materials to produce adverse health effects. F-344 rats were exposed to aerosols of PEG 3350 (20% w:w in water) at 0, 109, 567, or 1008 (highest attainable) mg/m3 for 6 hr/d, 5 d/wk for 2 wk. No exposure-related toxicity was found with regard to clinical signs, ophthalmology, serum chemistry, urinalysis, or gross pathology. Exposure-related effects included: a 50% increase in the neutrophil count (males only) at 1008 mg/m3; decreased body weight gain (16%) for both the 567 and 1008 mg/m3 groups (males only); absolute lung weights of both sexes were increased 10 and 18% for the 567 and 1008 mg/m3 groups, respectively. A slight increase in the number of macrophages in the alveoli was the only change observed histologically in all PEG 3350-exposed groups. Therefore, inhalation of aerosols of PEG 3350 at concentrations up to 1008 mg/m3 produced relatively little toxicity in rats, the lung was the target organ, and the no-observable-effect-level was between 109 to 567 mg/m3.

  20. Optical tweezers reveal force plateau and internal friction in PEG-induced DNA condensation.

    PubMed

    Ojala, Heikki; Ziedaite, Gabija; Wallin, Anders E; Bamford, Dennis H; Hæggström, Edward

    2014-03-01

    The simplified artificial environments in which highly complex biological systems are studied do not represent the crowded, dense, salty, and dynamic environment inside the living cell. Consequently, it is important to investigate the effect of crowding agents on DNA. We used a dual-trap optical tweezers instrument to perform force spectroscopy experiments at pull speeds ranging from 0.3 to 270 μm/s on single dsDNA molecules in the presence of poly(ethylene glycol) (PEG) and monovalent salt. PEG of sizes 1,500 and 4,000 Da condensed DNA, and force-extension data contained a force plateau at approximately 1 pN. The level of the force plateau increased with increasing pull speed. During slow pulling the dissipated work increased linearly with pull speed. The calculated friction coefficient did not depend on amount of DNA incorporated in the condensate, indicating internal friction is independent of the condensate size. PEG300 had no effect on the dsDNA force-extension curve. The force plateau implies that condensation induced by crowding agents resembles condensation induced by multivalent cations.

  1. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage.

    PubMed

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-08-11

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG.

  2. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage

    PubMed Central

    Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan’gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen

    2015-01-01

    Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG. PMID:26261089

  3. Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages

    NASA Astrophysics Data System (ADS)

    Orlando, Antonina; Colombo, Miriam; Prosperi, Davide; Gregori, Maria; Panariti, Alice; Rivolta, Ilaria; Masserini, Massimo; Cazzaniga, Emanuela

    2015-09-01

    Engineered iron oxide nanoparticles (IONP) offer the possibility of a wide range of medical uses, from clinical imaging to magnetically based hyperthermia for tumor treatment. These applications require their systemic administration in vivo. An important property of nanoparticles is their stability in biological media. For this purpose, a multicomponent nanoconstruct combining high colloidal stability and improved physical properties was synthesized and characterized. IONP were coated with an amphiphilic polymer (PMA), which confers colloidal stability, and were pegylated in order to obtain the nanoconstruct PEG-IONP-PMA. The aim of this study was to utilize cultured human endothelial cells (HUVEC) and murine macrophages, taken as model of cells exposed to NP after systemic administration, to assess the biocompatibility of PEG-IONP-PMA (23.1 ± 1.4 nm) or IONP-PMA (15.6 ± 3.4 nm). PEG-IONP-PMA, tested at different concentrations as high as 20 μg mL-1, exhibited no cytotoxicity or inflammatory responses. By contrast, IONP-PMA showed a concentration-dependent increase of cytotoxicity and of TNF-α production by macrophages and NO production by HUVECs. Cell uptake analysis suggested that after PEGylation, IONP were less internalized either by macrophages or by HUVEC. These results suggest that the choice of the polymer and the chemistry of surface functionalization are a crucial feature to confer to IONP biocompatibility.

  4. Dendrothele griseocana (Corticiaceae) and related taxa with hyphal pegs

    Treesearch

    Karen K. Nakasone

    2006-01-01

    Four Dendrothele (Corticiaceae, Polyporales) species with hyphal pegs are described and illustrated. Type specimens of Corticium griseocanum and Dendrothele papillosa were examined and found to be conspecific. Two new taxa, D. americana and D. tanzaniana, are described and illustrated, and the new combination, Dendrothele andina, is proposed. A key to D. griseocana and...

  5. Targeting hepatocellular carcinoma with aptamer-functionalized PLGA/PLA-PEG nanoparticles

    NASA Astrophysics Data System (ADS)

    Weigum, Shannon E.; Sutton, Melissa; Barnes, Eugenia; Miller, Sarah; Betancourt, Tania

    2014-08-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, particularly in regions where chronic Hepatitis B and C infections are common. Nanoparticle assemblies that incorporate high-affinity aptamers which specifically bind malignant hepatocellular carcinoma cells could be useful for targeted drug delivery or enhancing contrast with existing ablation therapies. The in vitro interactions of a tumor-specific aptamer, TLS11a, were characterized in a hepatoma cell line via live-cell fluorescence imaging, SDS-PAGE and Western Blotting techniques. Cell surface binding of the aptamer-AlexaFluor®546 conjugate was found to occur within 20 minutes of initial exposure, followed by internalization and localization to late endosomes or lysosomes using a pH-sensitive LysoSensor™ Green dye and confocal microscopy. Aptamer-functionalized polymer nanoparticles containing poly(lactic-co-glycolic acid) (PLGA) and poly(lactide)-b-poly(ethylene glycol) (PLA-PEG) were then prepared by nanoprecipitation and passively loaded with the chemotherapeutic agent, doxorubicin, yielding spherical nanoparticles approximately 50 nm in diameter. Targeted drug delivery and cytotoxicity was assessed using live/dead fluorescent dyes and a MTT colorimetric viability assay with elevated levels of cell death found in cultures treated with either the aptamer-coated and uncoated polymer nanoparticles. Identification and characterization of the cell surface protein epitope(s) recognized by the TLS11a aptamer are ongoing along with nanoparticle optimization, but these preliminary studies support continued investigation of this aptamer and functionalized nanoparticle conjugates for targeted labeling and drug delivery within malignant hepatocellular carcinomas.

  6. Is short-term PEG-tube placement beneficial in acutely ill cognitively intact elderly patients? A proposed decision making algorithm

    PubMed Central

    Abraham, Rtika R; Girotra, Mohit; Wei, Jeanne Y.; Azhar, Gohar

    2014-01-01

    Aim Percutaneous Endoscopic Gastrostomy (PEG) tube is an important method of enteral feeding for patients who require temporary or long-term artificial nutritional support to prevent or correct disease-related malnutrition. However, there is paucity of data on the utility of short-term PEG tube placements in acute illnesses in cognitively intact elderly. Methods We present a series of seven, cognitively intact patients (age range = 72 to 93 years), who had PEG tubes placed for short periods. These patients were diagnosed with “failure to thrive” and were managed by placing a PEG tube temporarily for nutritional management. None of these patients had terminal illness or hospice eligibility and all of our patients were community dwellers. Results All our elderly patients experienced good outcomes in terms of their functional status and nutritional support. Conclusions Our series clearly supports the notion that short-term PEG tube placement in cognitively-intact elderly patients could be a successful strategy to support them during an episode of acute illness and to improve their nutritional deficits and survival. PMID:25109444

  7. PEG-poly(amino acid) block copolymer micelles for tunable drug release.

    PubMed

    Ponta, Andrei; Bae, Younsoo

    2010-11-01

    To achieve tunable pH-dependent drug release in tumor tissues. Poly(ethylene glycol)-poly(aspartic acid) [PEG-p(Asp)] containing 12 kDa PEG and pAsp (5, 15, and 35 repeating units) were prepared. Hydrazide linkers with spacers [glycine (Gly) and 4-aminobenzoate (Abz)] were introduced to PEG-p(Asp), followed by drug conjugation [doxorubicin (DOX)]. The block copolymer-drug conjugates were either reconstituted or dialyzed in aqueous solutions to prepare micelles. Drug release patterns were observed under sink conditions at pH 5.0 and 7.4, 37°C, for 48 h. A collection of six block copolymers with different chain lengths and spacers was synthesized. Drug binding yields were 13-43.6%. The polymer-drug conjugates formed <50 nm polymer micelles irrespective of polymer compositions. Gly-introduced polymer micelles showed marginal change in particle size (40 ± 10 nm), while the size of Abz-micelles increased gradually from 10 to 40 nm as the polymer chain lengths increased. Drug release patterns of both Gly and Abz micelles were pH-dependent and tunable. The spacers appear to play a crucial role in controlling drug release and stability of polymer micelles in combination with block copolymer chain lengths. A drug delivery platform for tunable drug release was successfully developed with polymer micelles possessing spacer-modified hydrazone drug-binding linkers.

  8. Progesterone PLGA/mPEG-PLGA Hybrid Nanoparticle Sustained-Release System by Intramuscular Injection.

    PubMed

    Xie, Bin; Liu, Yang; Guo, Yuting; Zhang, Enbo; Pu, Chenguang; He, Haibing; Yin, Tian; Tang, Xing

    2018-02-14

    To prepare sustained-release PLGA/mPEG-PLGA hybrid nanoparticles of progesterone (PRG), and evaluate the descending required administration dosage in vivo. PRG hybrid nanoparticles (PRG H-NPs) based on PLGA/mPEG-PLGA were compared with PRG nanoparticles (PRG-NPs) of pure PLGA as the matrix and PRG-oil solutions. Nanoparticles (NPs) were formed by the method of nanoemulsion, and the pharmacokinetics of the sustained-release PRG H-NPs in male Sprague dawley (SD) rats were investigated. The rats were randomly divided into four groups, each group received: single dose of PRG H-NPs (14.58 mg/kg, i.m.) and PRG-NPs (14.58 mg/kg, i.m.), repeated dosing for 7 days of PRG-oil (2.08 mg/kg, i.m.) solution (Oil-L) and a higher dosage of PRG-oil (6.24 mg/kg, i.m.) solution (Oil-H), respectively. In the pharmacokinetic test, the PRG H-NPs exhibited a comparatively good sustained-release effect against the PRG-NPs without mPEG-PLGA and PRG-oil solution. The pharmacokinetic parameters of the PRG H-NPs, PRG-NPs, Oil-L and Oil-H were AUC 0-t (ng·h·mL -1 ) 8762.1, 1546.1, 1914.5, and 12,138.9, t 1/2 (h)52.7, 44.1, 8.4 and 44.6 respectively. Owing to the modification of PEG, PRG H-NPs can act as safe delivery platforms for sustained-release of drugs with a lower dosage required.

  9. Dissolution thermodynamics and solubility of silymarin in PEG 400-water mixtures at different temperatures.

    PubMed

    Shakeel, Faiyaz; Anwer, Md Khalid

    2015-01-01

    An isothermal method was used to measure the solubility of silymarin in binary polyethylene glycol 400 (PEG 400) + water co-solvent mixtures at temperatures T = 298.15-333.15 K and pressure p = 0.1 MPa. Apelblat and Yalkowsky models were used to correlate experimental solubility data. The mole fraction solubility of silymarin was found to increase with increasing the temperature and mass fraction of PEG 400 in co-solvent mixtures. The root mean square deviations were observed in the range of 0.48-5.32% and 1.50-9.65% for the Apelblat equation and Yalkowsky model, respectively. The highest and lowest mole fraction solubility of silymarin was observed in pure PEG 400 (0.243 at 298.15 K) and water (1.46 × 10(-5) at 298.15 K). Finally, thermodynamic parameters were determined by Van't Hoff and Krug analysis, which indicated an endothermic and spontaneous dissolution of silymarin in all co-solvent mixtures.

  10. Enhanced bioactivity of internally functionalized cationic dendrimers with PEG cores

    PubMed Central

    Albertazzi, Lorenzo; Mickler, Frauke M.; Pavan, Giovanni M.; Salomone, Fabrizio; Bardi, Giuseppe; Panniello, Mariangela; Amir, Elizabeth; Kang, Taegon; Killops, Kato L.; Bräuchle, Christoph; Amir, Roey J.; Hawker, Craig J.

    2012-01-01

    Hybrid dendritic-linear block copolymers based on a 4-arm polyethylene glycol (PEG) core were synthesized using an accelerated AB2/CD2 dendritic growth approach through orthogonal amine/epoxy and thiol-yne chemistries. The biological activity of these 4-arm and the corresponding 2-arm hybrid dendrimers revealed an enhanced, dendritic effect with an exponential increase in cell internalization concomitant with increasing amine end-groups and low cytotoxicity. Furthermore, the ability of these hybrid dendrimers to induce endosomal escape combined with their facile and efficient synthesis makes them attractive platforms for gene transfection. The 4-arm-based dendrimer showed significantly improved DNA binding and gene transfection capabilities in comparison with the 2-arm derivative. These results combined with the MD simulation indicate a significant effect of both the topology of the PEG core and the multivalency of these hybrid macromolecules, on their DNA binding and delivery capablities. PMID:23140570

  11. Effective mRNA Inhibition in PANC-1 Cells in Vitro Mediated via an mPEG-SeSe-PEI Delivery System.

    PubMed

    Zhang, Yuefeng; Yang, Bin; Liu, Yajie; Qin, Wenjie; Li, Chao; Wang, Lantian; Zheng, Wen; Wu, Yulian

    2016-05-01

    RNA interference (RNAi)-mediated gene therapy is a promising approach to cure various diseases. However, developing an effective, safe, specific RNAi delivery system remains a major challenge. In this study, a novel redox-responsive polyetherimide (PEI)-based nanovector, mPEG-SeSe-PEI, was developed and its efficacy evaluated. We prepared three mPEG-SeSe-PEI vector candidates for small interfering glyceraldehyde-3-phosphate dehydrogenase (siGADPH) and determined their physiochemical properties and transfection efficiency using flow cytometry and PEG11.6-SeSe-PEI polymer. We investigated the silencing efficacy of GADPH mRNA expression in PANC-1 cells and observed that PEG11.6-SeSe-PEI/siGADPH (N/P ratio=10) polyplexes possessed the appropriate size and zeta-potential and exhibited excellent in vitro gene silencing effects with the least cytotoxicity in PANC-1 cells. In conclusion, we present PEG11.6-SeSe-PEI as a potential therapeutic gene delivery system for small interfering RNA (siRNA).

  12. Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.

    PubMed

    Pramual, Sasivimon; Lirdprapamongkol, Kriengsak; Svasti, Jisnuson; Bergkvist, Magnus; Jouan-Hureaux, Valérie; Arnoux, Philippe; Frochot, Céline; Barberi-Heyob, Muriel; Niamsiri, Nuttawee

    2017-08-01

    Polymer-lipid-PEG hybrid nanoparticles were investigated as carriers for the photosensitizer (PS), 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) for use in photodynamic therapy (PDT). A self-assembled nanoprecipitation technique was used for preparing two types of core polymers poly(d,l-lactide-co-glycolide) (PLGA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lipid-PEG as stabilizer. The resulting nanoparticles had an average particle size of 88.5±3.4nm for PLGA and 215.0±6.3nm for PHBV. Both nanoparticles exhibited a core-shell structure under TEM with high zeta potential and loading efficiency. X-ray powder diffraction analysis showed that the encapsulated pTHPP molecules in polymeric nanoparticles no longer had peaks of free pTHPP in the crystalline state. The pTHPP molecules encapsulated inside the polymeric core demonstrated improved photophysical properties in terms of singlet oxygen generation and cellular uptake rate in a FTC-133 human thyroid carcinoma cell line, compared to non-encapsulated pTHPP. The pTHPP-loaded polymer-lipid-PEG nanoparticles showed better in vitro phototoxicity compared to free pTHPP, in both time- and concentration-dependent manners. Overall, this study provides detailed analysis of the photophysical properties of pTHPP molecules when entrapped within either PLGA or PHBV nanoparticle cores, and demonstrates the effectiveness of these systems for delivery of photosensitizers. The two polymeric systems may have different potential benefits, when used with cancer cells. For instance, the pTHPP-loaded PLGA system requires only a short time to show a PDT effect and may be suitable for topical PDT, while the delayed photo-induced cytotoxic effect of the pTHPP-loaded PHBV system may be more suitable for cancer solid tumors. Hence, both pTHPP-encapsulated polymer-lipid-PEG nanoparticles can be considered promising delivery systems for PDT cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Polyelectrolyte complexes of hTERT siRNA and polyethyleneimine: Effect of degree of PEG grafting on biological and cellular activity.

    PubMed

    Safari, Fatemeh; Tamaddon, Ali M; Zarghami, Nosratollah; Abolmali, S; Akbarzadeh, Abolfazl

    2016-09-01

    Gene silencing by siRNA (short interfering RNA)-targeted human telomerase reverse transcriptase (hTERT) is considered a successful strategy for cancer gene therapy. Polyelectrolyte complexes (PEC) of siRNA and cationic polymers such as polyethyleneimine (PEI) have been widely used for cellular transfection; however, they demonstrate some disadvantages such as cytotoxicity and extracellular matrix restrictions. PEG grafting technology was used in an attempt to improve the biocompatibility of PECs. Considering that this technology may compromise the cellular uptake of PECs, we aimed to study the effect of degree of PEI PEGylation on the carrier cytotoxicity, cellular association, and transfection efficiency of hTERT siRNA in the lung cancer cell line A549. Activated NHS ester of methoxy PEG-COOH 5 KDa was grafted to hyperbranched PEI 25 KDa in the molar ratios of 0.2 and 1. The copolymers were characterized by (1)H-NMR spectroscopy. PECs of PEI or PEG-g-PEI with siRNA, alone or co-incubated with heparin sulfate, were studied by the ethidium bromide exclusion assay. Cytotoxicity of the polymers (PEG-g-PEI vs PEI), alone and upon formation of PEC nanoparticles with hTERT siRNA, was determined by a validated MTT assay, in comparison to a scrambled control sequence, in A549 human lung carcinoma cells. The cellular uptake of the PECs of FITC-labeled siRNA was investigated by flow cytometry at different N/P ratios, and the silencing effect of the transfected siRNA was compared to that of the control sequence for different PECs by real time RT-PCR. The cytotoxicity of PEI decreased significantly by PEG grafting, even at a low degree of PEGylation. Moreover, the nonspecific cytotoxicity of PECs decreased by PEG grafting. PECs of PEG-g-PEI showed more biologic stability on incubation with heparin sulfate. Average particle size and zeta potential of PEC nanoparticles were diminished for those of PEG-g-PEI. The cellular association was more pronounced at an N/P ratio of 2.5 for

  14. Virioplankton 'pegylation': use of PEG (polyethylene glycol) to concentrate and purify viruses in pelagic ecosystems.

    PubMed

    Colombet, J; Robin, A; Lavie, L; Bettarel, Y; Cauchie, H M; Sime-Ngando, T

    2007-12-01

    We have described the use of Polyethylene glycol (PEG) for the precipitation of natural communities of aquatic viruses, and its comparison with the usual concentration method based on ultracentrifugation. Experimental samples were obtained from different freshwater ecosystems whose trophic status varied. Based on transmission electron microscope observations and counting of phage-shaped particles, our results showed that the greatest recovery efficiency for all ecosystems was obtained when we used the PEG protocol. On average, this protocol allowed the recovery of >2-fold more viruses, compared to ultracentrifugation. In addition, the diversity of virioplankton, based on genomic size profiling using pulsed field gel electrophoresis, was higher and better discriminated when we used the PEG method. We conclude that pegylation offers a valid, simple and cheaper alternative method to ultracentrifugation, for the concentration and the purification of pelagic viruses.

  15. Ectopic Expression of Retrotransposon-Derived PEG11/RTL1 Contributes to the Callipyge Muscular Hypertrophy

    PubMed Central

    Xu, Xuewen; Ectors, Fabien; Davis, Erica E.; Pirottin, Dimitri; Cheng, Huijun; Farnir, Frédéric; Hadfield, Tracy; Cockett, Noelle; Charlier, Carole; Georges, Michel; Takeda, Haruko

    2015-01-01

    The callipyge phenotype is an ovine muscular hypertrophy characterized by polar overdominance: only heterozygous + Mat /CLPG Pat animals receiving the CLPG mutation from their father express the phenotype. + Mat /CLPG Pat animals are characterized by postnatal, ectopic expression of Delta-like 1 homologue (DLK1) and Paternally expressed gene 11/Retrotransposon-like 1 (PEG11/RTL1) proteins in skeletal muscle. We showed previously in transgenic mice that ectopic expression of DLK1 alone induces a muscular hypertrophy, hence demonstrating a role for DLK1 in determining the callipyge hypertrophy. We herein describe newly generated transgenic mice that ectopically express PEG11 in skeletal muscle, and show that they also exhibit a muscular hypertrophy phenotype. Our data suggest that both DLK1 and PEG11 act together in causing the muscular hypertrophy of callipyge sheep. PMID:26474044

  16. Surfactant-enhanced PEG-4000-NZVI for remediating trichloroethylene-contaminated soil.

    PubMed

    Tian, Huifang; Liang, Ying; Zhu, Tianle; Zeng, Xiaolan; Sun, Yifei

    2018-03-01

    In this study a NZVI was prepared by the liquid phase reduction method. The modified NZVI obtained was characterized by BET, TEM and XRD. The results showed that the iron in the PEG-4000 modified material is mainly zero-valent iron with a stable crystal structure. It has a uniform particle size, ranging from 20 to 80 nm, and a larger specific surface area than CTAB modified NZVI, SDS modified NZVI and commercial zero-valent iron. The two surfactants CTAB and SDS are also selected as solubilizers, the results showed that the two selected surfactants obviously solubilize trichloroethylene in soil. Compared with commercial zero-valent iron, PEG-4000 modified NZVI is better removed trichloroethylene from soil; Also, the optimal operational parameters were obtained. When the experimental conditions were: PEG-4000 modified NZVI dosage 1.0 g/L, CTAB/SDS concentration equal to the CMC, SDS concentration was 2.0 × CMC, CTAB was concentration 1.0 × CMC and the vibration speed 150 r/min, the removal efficiency of trichloroethylene in a soil-water system reached 100% after 4 h. Both NZVI combined with CTAB and NZVI combined with SDS followed fitted first order reaction kinetics during the removal of trichloroethylene and their reaction rate constant k was 0.6869 mg/(L·h) and 0.5659 mg/(L·h), respectively. According to the chloride ion detection test, the trichloroethylene degradation is mainly due to reductive dechlorination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Raman-Scattering Line Profiles of the Symbiotic Star AG Peg

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Jae; Hyung, Siek

    2017-06-01

    The high dispersion Hα and Hβ line profiles of the Symbiotic star AG Peg consist of top double Gaussian and bottom components. We investigated the formation of the broad wings with Raman scattering mechanism. Adopting the same physical parameters from the photo-ionization study of Kim and Hyung (2008) for the white dwarf and the ionized gas shell, Monte Carlo simulations were carried out for a rotating accretion disk geometry of non-symmetrical latitude angles from -7° < θ < +7° to -16° < θ < +16°. The smaller latitude angle of the disk corresponds to the approaching side of the disk responsible for weak blue Gaussian profile, while the wider latitude angle corresponds to the other side of the disk responsible for the strong red Gaussian profile. We confirmed that the shell has the high gas density ˜ 109.85 cm-3 in the ionized zone of AG Peg derived in the previous photo-ionization model study. The simulation with various HI shell column densities (characterized by a thickness ΔD × gas number density nH) shows that the HI gas shell with a column density Hhi ≈ 3 - 5 × 1019 cm-2 fits the observed line profiles well. The estimated rotation speed of the accretion disk shell is in the range of 44 - 55 kms-1. We conclude that the kinematically incoherent structure involving the outflowing gas from the giant star caused an asymmetry of the disk and double Gaussian profiles found in AG Peg.

  18. Fabrication of biodegradable PEG-PLA nanospheres for solubility, stabilization, and delivery of curcumin.

    PubMed

    Liang, Hongying; Friedman, Joel M; Nacharaju, Parimala

    2017-03-01

    Curcumin is an effective and safe anticancer agent, and also known to induce vasodilation, but its hydrophobicity limits its clinical application. In this study, a simple emulsion method was developed to prepare biodegradable poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) nanospheres to encapsulate curcumin to improve its solubility and stability. The nanoparticle size was around 150 nm with a narrow size distribution. Fluorescence microscopy showed that curcumin encapsulated PEG-PLA nanospheres were taken up rapidly by Hela and MDA-MB-231 cancer cells. This novel nanoparticulate carrier may improve the bioavailability of curcumin without affecting its anticancer properties.

  19. Preparation, structural analysis and bioactivity of ribonuclease A-albumin conjugate: tetra-conjugation or PEG as the linker.

    PubMed

    Li, Chunju; Lin, Qixun; Wang, Jun; Shen, Lijuan; Ma, Guanghui; Su, Zhiguo; Hu, Tao

    2012-12-31

    Ribonuclease A (RNase A) is a therapeutic enzyme with cytotoxic action against tumor cells. Its clinical application is limited by the short half-life and insufficient stability. Conjugation of albumin can overcome the limitation, whereas dramatically decrease the enzymatic activity of RNase A. Here, three strategies were proposed to prepare the RNase A-bovine serum albumin (BSA) conjugates. R-SMCC-B (a conjugate of four RNase A attached with one BSA) and R-PEG-B (a mono-conjugate) were prepared using Sulfo-SMCC (a short bifunctional linker) and mal-PEG-NHS (a bifunctional PEG), respectively. Mal-PEG-NHS and hexadecylamine (HDA) were used to prepare the mono-conjugate, R-HDA-B, where HDA was adopted to bind BSA. The PEG linker can elongate the proximity between RNase A and BSA. In contrast, four RNase A were closely located on BSA in R-SMCC-B. R-SMCC-B showed the lowest K(m) and the highest relative enzymatic activity and k(cat)/K(m) in the three conjugates. Presumably, the tetravalent interaction of RNase A in R-SMCC-B can increase the binding affinity to its substrate. In addition, the slow release of BSA from R-HDA-B may increase the enzymatic activity of R-HDA-B. Our study is expected to provide strategies to develop protein-albumin conjugate with high therapeutic potential. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Effects of temperature and PEG grafting density on the translocation of PEGylated nanoparticles across asymmetric lipid membrane.

    PubMed

    Zhang, Zuoheng; Lin, Xubo; Gu, Ning

    2017-12-01

    Plasma membrane internalization of nanoparticles (NPs) is important for their biomedical applications such as drug-delivery carriers. On one hand, in order to improve their half-life in circulation, PEGylation has been widely used. However, it may hinder the NPs' membrane internalization ability. On the other hand, higher temperature could enhance the membrane permeability and may affect the NPs' ability to enter into or exit from cells. To make full use of their advantages, we systematically investigated the effects of temperature and PEG density on the translocation of PEGylated nanoparticles across the plasma asymmetric membrane of eukaryotic cells, using near-atom level coarse-grained molecular dynamics simulations. Our results showed that higher temperature could accelerate the translocation of NPs across membranes by making lipids more disorder and faster diffusion. On the contrary, steric hindrance effects of PEG would inhibit NPs' translocation process and promote lipids flip-flops. The PEG chains could rearrange themselves to minimize the contacts between PEG and lipid tails during the translocation, which was similar to 'snorkeling effect'. Moreover, lipid flip-flops were affected by PEGylated density as well as NPs' translocation direction. Higher PEG grafting density could promote lipid flip-flops, but inhibit lipid extraction from bilayers. The consequence of lipid flip-flop and extraction was that the membranes got more symmetric. Copyright © 2017. Published by Elsevier B.V.

  1. Bromelain purification through unconventional aqueous two-phase system (PEG/ammonium sulphate).

    PubMed

    Coelho, D F; Silveira, E; Pessoa Junior, A; Tambourgi, E B

    2013-02-01

    This paper focuses on the feasibility of unconventional aqueous two-phase systems for bromelain purification from pineapple processing waste. The main difference in comparison with conventional systems is the integration of the liquid-liquid extraction technique with fractional precipitation, which can decrease the protein content with no loss of biological activity by removing of unwanted molecules. The analysis of the results was based on the response surface methodology and revealed that the use of the desirability optimisation methodology (DOM) was necessary to achieve higher purification factor values and greater bromelain recovery. The use of DOM yielded an 11.80-fold purification factor and 66.38 % biological activity recovery using poly(ethylene glycol) (PEG) with a molar mass of 4,000, 10.86 % PEG concentration (m/m) and 36.21 % saturation of ammonium sulphate.

  2. NuLYTELY (PEG 3350, sodium chloride, sodium bicarbonate and potassium chloride for oral solution).

    PubMed

    Swartz, M L

    1992-02-01

    NuLYTELY (PEG 3350, Sodium Chloride, Sodium Bicarbonate, and Potassium Chloride for Oral Solution), a product from Braintree Laboratories, Inc. is a modification of GoLYTELY (PEG 3350 and Electrolytes for Oral Solution) that has been found to have the same therapeutic advantages in terms of safety, efficacy, speed and patient acceptance. This product was developed to improve upon the taste of GoLYTELY. NuLYTELY represents an effective alternative for bowel cleansing prior to colonoscopy that may be more acceptable to some patients.

  3. Current microbiology of percutaneous endoscopic gastrostomy tube (PEG tube) insertion site infections in patients with cancer.

    PubMed

    Rolston, Kenneth V I; Mihu, Coralia; Tarrand, Jeffrey J

    2011-08-01

    Percutaneous endoscopic gastrostomy (PEG) is frequently used to provide enteral access in cancer patients who are unable to swallow. Infection is an important complication in this setting. Current microbiological data are needed to guide infection prevention and treatment strategies. The microbiological records of our institution (a 550-bed comprehensive cancer center) were retrospectively reviewed over an 8-month study period in order to identify patients who developed PEG tube insertion site infections, and review their microbiological details and susceptibility/resistance data. Fifty-eight episodes of PEG tube insertion site infections were identified. Of these, 31 (53%) were monomicrobial, and the rest were polymicrobial. The most common organisms isolated were Candida species, Staphylococcus aureus, and Pseudomonas aeruginosa. All infections were local (cellulitis, complicated skin, and skin structure infections including abdominal wall abscess) with no cases of concomitant bacteremia being documented. Most of the organisms isolated were susceptible to commonly used antimicrobial agents, although some quinolone-resistant and some multidrug-resistant organisms were isolated. This retrospective study provides descriptive data regarding PEG tube insertion site infections. These data have helped us update institutional guidelines for infection prevention and treatment as part of our focus on antimicrobial stewardship.

  4. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID).

    PubMed

    Booth, Claire; Gaspar, H Bobby

    2009-01-01

    Adenosine deaminase deficiency (ADA) is a rare, inherited disorder of purine metabolism characterized by immunodeficiency, failure to thrive and metabolic abnormalities. A lack of the enzyme ADA allows accumulation of toxic metabolites causing defects of both cell mediated and humoral immunity leading to ADA severe combined immune deficiency (SCID), a condition that can be fatal in early infancy if left untreated. Hematopoietic stem cell transplant is curative but is dependent on a good donor match. Other therapeutic options include enzyme replacement therapy (ERT) with pegademase bovine (PEG-ADA) and more recently gene therapy. PEG-ADA has been used in over 150 patients worldwide and has allowed stabilization of patients awaiting more definitive treatment with hematopoietic stem cell transplant. It affords both metabolic detoxification and protective immune function with patients remaining clinically well, but immune reconstitution is often suboptimal and may not be long lived. We discuss the pharmacokinetics, immune reconstitution, effects on systemic disease and side effects of treatment with PEG-ADA. We also review the long-term outcome of patients receiving ERT and discuss the role of PEG-ADA in the management of infants and children with ADA-SCID, alongside other therapeutic options.

  5. Addition of Lubiprostone to polyethylene glycol(PEG) enhances the quality & efficacy of colonoscopy preparation: a randomized, double-blind, placebo controlled trial.

    PubMed

    Banerjee, Rupa; Chaudhari, Hrushikesh; Shah, Nirish; Saravanan, Arjunan; Tandan, Manu; Reddy, D Nageshwar

    2016-10-13

    Adequate bowel preparation is an essential prerequisite for complete mucosal visualization during colonoscopy. Polyethylene glycol (PEG) solutions are commonly used. However the large volume of the solution is often poorly tolerated. Addition of Lubiprostone (LB) could improve the adequacy of standard PEG preparation & reduce requirement. The aims to assess adequacy of PEG preparation with addition of single dose LB (24mcg) vs placebo and efficacy of reduced dose PEG + LB compared with full dose PEG + LB. Single center prospective double blind randomized controlled trial. Part I: 442 patients for colonoscopy randomized to receive placebo (GrA) or single dose of LB (GrB) prior to PEG preparation. Quality of bowel preparation graded 0-9 according to Boston Bowel Preparation Scale (BBPS). BBPS-9: excellent and BBPS 0-4: repeat procedure. Part II: 146 patients randomized to receive LB + 1.5 L PEG (GrC; 75) or LB + 1 L PEG (GrD; 71). BBPS score compared with GrB (2 L PEG). Part I: 442 patients (221 GrA & 221 Gr B). LB resulted in significant improvement in total BBPS (7.44 + 0.14 vs. 6.36 + 0.16, p < 0.0001). 66.5 % Gr B vs 38 % Gr A had excellent prep; 42.5 % GrB vs 24 % GrA had adequate prep. Repeat procedure needed 9.5 % Gr B vs 16.7 % Gr A (P < 0.01). Part II: No difference in BBPS scores with lower doses (Gr C&D) compared to standard (GrB) (Mean BBPS 7.44 + 0.14 GrA,7.30 + 0.25 GrC;7.25 + 0.26 GrD;p >0.05). Single dose LB prior to PEG significantly enhanced bowel preparation compared to PEG alone. There was no significant difference in quality of preparation with lower doses of PEG when combined with LB. The study protocol was approved by institutional review board and the trial was registered on March 22, 2011 with clinicaltrials.gov ( NCT01324284 ).

  6. Defined PEG smears as an alternative approach to enhance the search for crystallization conditions and crystal-quality improvement in reduced screens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaikuad, Apirat, E-mail: apirat.chaikuad@sgc.ox.ac.uk; Knapp, Stefan; Johann Wolfgang Goethe-University, Building N240 Room 3.03, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main

    An alternative strategy for PEG sampling is suggested through the use of four newly defined PEG smears to enhance chemical space in reduced screens with a benefit towards protein crystallization. The quest for an optimal limited set of effective crystallization conditions remains a challenge in macromolecular crystallography, an issue that is complicated by the large number of chemicals which have been deemed to be suitable for promoting crystal growth. The lack of rational approaches towards the selection of successful chemical space and representative combinations has led to significant overlapping conditions, which are currently present in a multitude of commercially availablemore » crystallization screens. Here, an alternative approach to the sampling of widely used PEG precipitants is suggested through the use of PEG smears, which are mixtures of different PEGs with a requirement of either neutral or cooperatively positive effects of each component on crystal growth. Four newly defined smears were classified by molecular-weight groups and enabled the preservation of specific properties related to different polymer sizes. These smears not only allowed a wide coverage of properties of these polymers, but also reduced PEG variables, enabling greater sampling of other parameters such as buffers and additives. The efficiency of the smear-based screens was evaluated on more than 220 diverse recombinant human proteins, which overall revealed a good initial crystallization success rate of nearly 50%. In addition, in several cases successful crystallizations were only obtained using PEG smears, while various commercial screens failed to yield crystals. The defined smears therefore offer an alternative approach towards PEG sampling, which will benefit the design of crystallization screens sampling a wide chemical space of this key precipitant.« less

  7. Co-encapsulated resveratrol and quercetin in chitosan and peg modified chitosan nanoparticles: For efficient intra ocular pressure reduction.

    PubMed

    Natesan, Subramanian; Pandian, Saravanakumar; Ponnusamy, Chandrasekar; Palanichamy, Rajaguru; Muthusamy, Sivakumar; Kandasamy, Ruckmani

    2017-11-01

    Natural anti-oxidants resveratrol (RES) and quercetin (QUR) posses the ability to reduce intra ocular pressure efficiently. Concurrent administration of RES and QUR was able to enhance the bioavailability of RES. Present research work describes upsurge of QUR in RES loaded chitosan (CS) nanoparticles (NPs) and polyethylene glycol (PEG) modified CS NPs for improved delivery and synergic effects on reducing intra ocular pressure for the treatment of glaucoma. CS NPs and PEG modified CS NPs were prepared by ionic gelation of tripolyphosphate and CS. The synthesised NPs were spherical in shape and RES entrapment and loading efficiency in the formulation decreased with increasing PEG concentration. Particle size of the formulation increased while incorporating PEG and drugs. The crystalline nature of RES and QUR changed in the NPs and that was confirmed by XRD study. Free radical neutralising efficiency improved while incorporating QUR in the formulation. Ex-vivo corneal permeation of RES was higher from RES and QUR loaded formulation than RES alone containing NPs and free RES dispersion. RES and QUR loaded PEG modified CS NPs showed sustained and enhanced reduction of intra ocular pressure (5.5±0.5mmHg) in normotensive rabbits. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Examination of the Perceived Efficacy and Goal Setting System (PEGS) with children with disabilities, their parents, and teachers.

    PubMed

    Missiuna, Cheryl; Pollock, Nancy; Law, Mary; Walter, Stephen; Cavey, Nina

    2006-01-01

    The Perceived Efficacy and Goal Setting System (PEGS) is an instrument and a process that enables children with disabilities to reflect on their ability to perform everyday occupations and to identify goals for occupational therapy intervention. In this study, 117 children with disabilities in grades 1-3 completed the PEGS with occupational therapists who work in school settings. Children from 6-9 years of age with a variety of disabilities were able to self-report perceptions of their effectiveness performing 24 activities that would be expected of them each day. Parents and teachers, who completed a parallel questionnaire, rated their abilities lower than the children did. The School Function Assessment, a measure of the amount and type of support required for school participation, had low correlations with the Parent and Teacher PEGS questionnaires and did not correlate with the Child PEGS. No differences in perceived efficacy were found for children across grades or gender; however, differences were found across types of disabilities. Children were able to use the perceived efficacy information to identify and prioritize goals for intervention and these goals remained stable 2 weeks later. Occupational therapists can use the PEGS within a client-centered practice to help the child set goals for therapy and to incorporate explicitly the perspectives of parents and teachers.

  9. Silicon Quantum Dot Nanoparticles with Antifouling Coatings for Immunostaining on Live Cancer Cells.

    PubMed

    Tu, Chang-Ching; Chen, Kuang-Po; Yang, Tsu-An; Chou, Min-Yuan; Lin, Lih Y; Li, Yaw-Kuen

    2016-06-08

    Fluorescent silicon quantum dots (SiQDs) have shown a great potential as antiphotobleaching, nontoxic and biodegradable labels for various in vitro and in vivo applications. However, fabricating SiQDs with high water-solubility and high photoluminescence quantum yield (PLQY) remains a challenge. Furthermore, for targeted imaging, their surface chemistry has to be capable of conjugating to antibodies, as well as sufficiently antifouling. Herein, antibody-conjugated SiQD nanoparticles (SiQD-NPs) with antifouling coatings composed of bovine serum albumin (BSA) and polyethylene glycol (PEG) are demonstrated for immunostaining on live cancer cells. The monodisperse SiQD-NPs of diameter about 130 nm are synthesized by a novel top-down method, including electrochemical etching, photochemical hydrosilylation, high energy ball milling, and "selective-etching" in HNO3 and HF. Subsequently, the BSA and PEG are covalently grafted on to the SiQD-NP surface through presynthesized chemical linkers, resulting in a stable, hydrophilic, and antifouling organic capping layer with isothiocyanates as the terminal functional groups for facile conjugation to the antibodies. The in vitro cell viability assay reveals that the BSA-coated SiQD-NPs had exceptional biocompatibility, with minimal cytotoxicity at concentration up to 1600 μg mL(-1). Under 365 nm excitation, the SiQD-NP colloid emits bright reddish photoluminescence with PLQY = 45-55% in organic solvent and 5-10% in aqueous buffer. Finally, through confocal fluorescent imaging and flow cytometry analysis, the anti-HER2 conjugated SiQD-NPs show obvious specific binding to the HER2-overexpressing SKOV3 cells and negligible nonspecific binding to the HER2-nonexpressing CHO cells. Under similar experimental conditions, the immunofluorescence results obtained with the SiQD-NPs are comparable to those using conventional fluorescein isothiocyanate (FITC).

  10. Control of Dielectric Constant and Anti-Bacterial Activity of PVA-PEG/x-SnO2 Nanofiber

    NASA Astrophysics Data System (ADS)

    Diantoro, M.; Sari, L. A.; Istirohah, T.; Kusumawati, A. D.; Nasikhudin; Sunaryono

    2018-05-01

    Research in the utilization of organic natural materials for electronic devices and for the biological application becoming extensively studied. We report a comprehensive review of the role of SnO2 nanoparticle and the effect of light intensity on toxicity properties, antibacterial activity, microstructure and electrical properties of PVA-PEG nanofiber films. The PVA-PEG/SnO2 nanofiber structure has been successfully fabricated on the ITO-glass substrate. Characterization was performed on samples using FTIR, XRD, SEM, toxicity and antibacterial tests, as well as LCR measurement. The presence of various light intensities has also measured the dielectric constant. The addition of SnO2 nanoparticle influenced the structure of the PVA-PEG/SnO2 nanofiber bonding functional group indicated by the appearance of Sn-O-Sn peaks at 648.08 cm-1 and 958 cm-1 wavenumbers. The addition of SnO2 nanoparticles affects the grain size of SnO2. Addition of SnO2 nanoparticles increases the detected toxicity voltage but is still below the threshold. It means the compound is not toxic, or safe to use in the body. The film lacks the antibacterial power of S. Aurelius. The addition of nanoparticles SnO2 increases the dielectric constant but decreases with increasing frequency of input voltage and the intensity of light employed to PVA-PEG/SnO2 nanofiber. The application of the light intensity reduces the dielectric constant of the PVA-PEG/SnO2 nanofiber in all nanoparticle doping ranges.

  11. Co-delivery of hydrophilic and hydrophobic drugs by micelles: a new approach using drug conjugated PEG-PCLNanoparticles.

    PubMed

    Danafar, Hossein; Rostamizadeh, Kobra; Davaran, Soodabeh; Hamidi, Mehrdad

    2017-11-01

    Co-delivery strategy has been proposed to minimize the amount of each drug and to achieve the synergistic effect for cancer therapies. A conjugate of the antitumor drug, doxorubicin, with diblock methoxy poly (ethylene glycol)-poly caprolactone (mPEG-PCL) copolymer was synthesized by the reaction of mPEG-PCL copolymer with doxorubicin in the presence of p-nitrophenylchloroformate. The conjugated copolymer was characterized in vitro by 1 H-NMR, FTIR, DSC and GPC techniques. Then, the doxorubicin conjugated mPEG-PCL(DOX-mPEG-PCL) was self-assembled into micelles in the presence of curcumin in aqueous solution. The resulting micelles were characterized further by various techniques such as dynamic light scattering (DLS) and atomic force microscopy (AFM).The encapsulation efficiency of doxorubicin and curcumin were 82.31 ± 3.32 and 78.15 ± 3.14%, respectively. The results revealed that the micelles formed by the DOX-mPEG-PCL with and without curcumin have spherical structure with average size of 116 and 134 nm respectively. The release behavior of curcumin and doxorubicin loaded to micelles were investigated in a different media. The release rate of micelles consisted of the conjugated copolymer was pH dependent as it was higher at lower pH than in neutral condition. Another feature of the conjugated micelles was a sustained release profile. The cytotoxicity of micelles were evaluated by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, atetrazole) assay on lung cancer A549 cell lines. In vitro cytotoxicity assay showed that the mPEG-PCL copolymer did not affect the growth of A549 cells. The cytotoxic activity of the micelles against A549 cells was greater than free doxorubicin and free curcumin.

  12. Volar fixed-angle plating of extra-articular distal radius fractures--a biomechanical analysis comparing threaded screws and smooth pegs.

    PubMed

    Weninger, Patrick; Dall'Ara, Enrico; Leixnering, Martin; Pezzei, Christoph; Hertz, Harald; Drobetz, Herwig; Redl, Heinz; Zysset, Philippe

    2010-11-01

    Distal radius fractures represent the most common fractures in adult individuals. Volar fixed-angle plating has become a popular modality for treating unstable distal radius fractures. Most of the plates allow insertion of either threaded locking screws or smooth locking pegs. To date, no biomechanical studies compare locking screws and pegs under axial and torsional loading. Ten Sawbones radii were used to simulate an AO/OTA A3 fracture. Volar fixed-angle plates (Aptus Radius 2.5, Medartis, Switzerland) with threaded locking screws (n = 5) or smooth locking pegs (n = 5) were used to fix the distal metaphyseal fragment. Each specimen was tested under axial compression and under torsional load with a servohydraulic testing machine. Qualitative parameters were recorded as well as axial and torsional stiffness, torsion strength, energy absorbed during monotonic loading and energy absorbed in one cycle. Axial stiffness was comparable between both groups (p = 0.818). If smooth pegs were used, a 17% reduction of torsional stiffness (p = 0.017) and a 12% reduction of minimum torque (p = 0.012) were recorded. A 12% reduction of energy absorbed (p = 0.013) during monotonic loading and unloading was recorded if smooth pegs were used. A 34% reduction of energy absorbed in one cycle (p < 0.007) was recorded if threaded screws were used. Sliding of the pegs out of the distal radius metaphyses of the synthetic bones was recorded at a mean torque of 3.80 Nm ± 0.19 Nm. No sliding was recorded if threaded screws were used. According to the results of this study using Sawbones, volar fixed-angle plates with threaded locking screws alone are mechanically superior to volar fixed-angle plates with smooth locking pegs alone under torsional loading.

  13. Xingnaojing mPEG2000-PLA modified microemulsion for transnasal delivery: pharmacokinetic and brain-targeting evaluation.

    PubMed

    Wen, Ran; Zhang, Qing; Xu, Pan; Bai, Jie; Li, Pengyue; Du, Shouying; Lu, Yang

    2016-01-01

    Xingnaojing microemulsion (XNJ-M) administered intranasally is used for stroke treatment. In order to decrease the XNJ-M-induced mucosal irritation, XNJ-M modified by mPEG2000-PLA (XNJ-MM) were prepared in a previous work. The present work aimed to assess the impact of mPEG2000-PLA on pharmacokinetic features and brain-targeting ability of XNJ-M. The bioavailability and brain-target effects of borneol and geniposide in XNJ-M and XNJ-MM were compared in mice after intravenous (i.v.) and intranasal (i.n.) administrations. Gas chromatography, high-performance liquid chromatography, and ultra-performance liquid chromatography/tandem mass spectrometry methods were developed for the quantification of borneol and geniposide. Blood and brain samples were collected from mice at different time points after i.v. and i.n. treatments with borneol at 8.0 mg/kg, geniposide at 4.12 mg/kg. In addition, near-infrared fluorescence dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethyl indotricarbocyanine iodide was loaded into microemulsions to evaluate the brain-targeting ability of XNJ-M and XNJ-MM by near-infrared fluorescence imaging in vivo and ex vivo. For XNJ-M and XNJ-MM, the relative brain targeted coefficients (Re) were 134.59% and 198.09% (borneol), 89.70% and 188.33% (geniposide), respectively. Besides, significant near-infrared fluorescent signal was detected in the brain after i.n. administration of microemulsions, compared with that of groups for i.v. administration. These findings indicated that mPEG2000-PLA modified microemulsion improved drug entry into blood and brain compared with normal microemulsion: the introduction of mPEG2000-PLA in microemulsion resulted in brain-targeting enhancement of both fat-soluble and water-soluble drugs. These findings provide a basis for the significance of mPEG2000-PLA addition in microemulsion, defining its effects on the drugs in microemulsion.

  14. Efficient SO2 capture by amine functionalized PEG.

    PubMed

    Yang, Dezhong; Hou, Minqiang; Ning, Hui; Zhang, Jianling; Ma, Jun; Han, Buxing

    2013-11-07

    Polyethylene glycols (PEGs) are a class of non-toxic, non-volatile, biocompatible, and widely available polymers. In this work, we synthesized N-ethyl-N-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-2-aminoethanol (EE3AE) that combines the properties of PEG and amines, and N-decyl-N-ethyl-2-aminoethanol (DEAE). Their performances to capture SO2 were studied at different temperatures, pressures, and absorption times. The interaction between the absorbents and SO2 were characterized by NMR and FTIR techniques. It was demonstrated that both EE3AE and DEAE could absorb SO2 efficiently, and there existed chemical and physical interactions between the absorbents and SO2. In particular, the absorption capacity of EE3AE could be as high as 1.09 g SO2 per g EE3AE at 1 atm. The absorption capacity of EE3AE was much larger than that of DEAE because the ether group in the EE3AE interacted with SO2 more strongly than the alkyl group in the DEAE. The SO2 absorbed by EE3AE could be stripped out by bubbling N2 or by applying a vacuum and the EE3AE could be reused. Moreover, both absorbents exhibited a high SO2-CO2 selectivity.

  15. A randomized, controlled, double-blind trial of the adjunct use of Clebopride in polyethylene glycol electrolyte (PEG) solution for colonoscopy preparation.

    PubMed

    Abdullah, Murdani; Rani, A Aziz; Fauzi, Achmad; Syam, Ari Fahrial; Makmun, Dadang; Simadibrata, Marcellus; Manan, Chudahman; Harjodisastro, Daldiyono

    2010-01-01

    To study the benefit of Clebopride as an adjuvant in polyethylene glycol electrolyte (PEG) solution for colonoscopy preparation. Eighty one adult patients who underwent colonoscopy examination were recruited in this randomized double blind controlled study. First group received PEG and placebo, whereas second group received PEG and Clebopride. Two litres of PEG was taken at night before colonoscopy. The acceptability and tolerability of bowel preparation were assessed through interview method. The efficacy of bowel preparation was assessed using Aronchick's Criteria. In terms of acceptability, 64 patients (31 patients from placebo group vs 33 patients from Clebopride group) were able to drink two litres of PEG solution. Sixty patients (29 patients from placebo group and 31 patients from Clebopride group) were willing to accept PEG solution for their next bowel preparation. On the term of tolerability, nausea, abdominal distension, and borborygmus were more frequent in the placebo group (34.2% vs 27.9%; 44.7% vs 32.6%; 26.3% vs 4.6% respectively). However, only the difference at the incidence of borborygmus that was statistically significant (p<0.05). On the terms of efficacy, both groups showed a comparable bowel preparation quality with 88.4% of bowel preparation in Clebopride group and 81.6% of bowel preparation in placebo group were optimal (p = 0.585). The adjunct use of Clebopride in PEG solution for colonoscopy preparations tends to increase the acceptability, tolerability, and efficacy. The presence of borborygmus was significantly lower in the Clebopride group.

  16. Honeycomb-like PLGA- b-PEG Structure Creation with T-Junction Microdroplets.

    PubMed

    Gultekinoglu, Merve; Jiang, Xinyue; Bayram, Cem; Ulubayram, Kezban; Edirisinghe, Mohan

    2018-06-04

    Amphiphilic block copolymers are widely used in science owing to their versatile properties. In this study, amphiphilic block copolymer poly(lactic- co-glycolic acid)- block-poly(ethylene glycol) (PLGA- b-PEG) was used to create microdroplets in a T-junction microfluidic device with a well-defined geometry. To compare interfacial characteristics of microdroplets, dichloromethane (DCM) and chloroform were used to prepare PLGA- b-PEG solution as an oil phase. In the T-junction device, water and oil phases were manipulated at variable flow rates from 50 to 300 μL/min by increments of 50 μL/min. Fabricated microdroplets were directly collected on a glass slide. After a drying period, porous two-dimensional and three-dimensional structures were obtained as honeycomb-like structure. Pore sizes were increased according to increased water/oil flow rate for both DCM and chloroform solutions. Also, it was shown that increasing polymer concentration decreased the pore size of honeycomb-like structures at a constant water/oil flow rate (50:50 μL/min). Additionally, PLGA- b-PEG nanoparticles were also obtained on the struts of honeycomb-like structures according to the water solubility, volatility, and viscosity properties of oil phases, by the aid of Marangoni flow. The resulting structures have a great potential to be used in biomedical applications, especially in drug delivery-related studies, with nanoparticle forming ability and cellular responses in different surface morphologies.

  17. The role of transforming growth factor-beta in PEG-rHuMGDF-induced reversible myelofibrosis in rats.

    PubMed

    Yanagida, M; Ide, Y; Imai, A; Toriyama, M; Aoki, T; Harada, K; Izumi, H; Uzumaki, H; Kusaka, M; Tokiwa, T

    1997-12-01

    Pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) injected at a suprapharmacologic dose (100 microg/kg) daily for 5 d in normal rats caused marked increases in marrow megakaryocytes and platelet counts at 6-8 d followed by gradual decreases to control levels at 10-20 d. Interestingly, in addition to the expected thrombopoiesis, PEG-rHuMGDF was associated with myelofibrosis with a predominance of reticulin fibres at day 10 followed by complete normalization by day 20. At 6-8 d, the levels of transforming growth factor-beta1 (TGF-beta1) in the extracellular fluid of the marrow, the platelet poor plasma, and the platelet extract were increased 23-, 7- and 2-fold, respectively. The elevated levels of TGF-beta1 were gradually reduced to baseline levels at 13-20 d in accordance with the normalization of myelofibrosis and thrombopoiesis. An ultrastructural analysis showed that large fragments of megakaryocytes were deposited in the marrow parenchyma of PEG-rHuMGDF-treated rats at day 6. PEG-rHuMGDF administration at pharmacologic doses (1 and 10 microg/kg) did not induce the deposition of reticulin fibres in the marrow. These findings suggest that TGF-beta1 leaked from megakaryocytes is involved in the development of the PEG-rHuMGDF-induced myelofibrosis and that this is a reversible process related to the regulation of the excess production of platelets.

  18. X-ray Spectral Analysis of the Cataclysmic Variable LS Peg using XMM-Newton Observatory Data

    NASA Astrophysics Data System (ADS)

    Talebpour Sheshvan, N.; Nabizadeh, A.; Balman, S.

    2017-10-01

    LS Peg is a Cataclysmic Variable (CV) suggested as Intermediate Polar (IP) because of similar properties to those observed in IP systems. We used archival XMM-Newton observation of LS Peg in order to study the X-ray characteristics of the system. We show LS Peg light curves in several different energy bands, and discuss about orbital modulations and power spectral analysis. Unlike the previous spectral analysis of the EPIC-MOS data by fitting a hot optically thin plasma emission model with a single temperature, we simultaneously fit EPIC spectrum (pn+MOS) using a composite model of absorption (tbabs) along with two different partial covering absorbers plus a multi-temperature plasma emission component in XSPEC. In addition, we find a Gaussian emission line at 6.4 keV. For LS Peg the maximum temperature of the plasma distribution is found to be ˜ 17.8 keV with a luminosity of ˜ 7.4×10^{32}erg s^{-1} translating to an accretion rate of ˜ 1.7×10 ^{-10} M_{⊙} yr^{-1}. We present spectra for orbital minimum and orbital maximum. In addition, we use SWIFT observations of the source in order to make a comparison. We elaborate on the geometry of accretion and absorption in the X-ray emitting region with articulation on the magnetic nature.

  19. YY1 as a controlling factor for the Peg3 and Gnas imprinted domains

    PubMed Central

    Kim, Jeong Do; Hinz, Angela K.; Choo, Jung Ha; Stubbs, Lisa; Kim, Joomyeong

    2007-01-01

    Imprinting Control Regions (ICRs) often harbor tandem arrays of transcription factor binding sites, as demonstrated by the identification of multiple YY1 binding sites within the ICRs of Peg3, Nespas, and Xist/Tsix domains. In the current study, we have sought to characterize possible roles of YY1 in transcriptional control and epigenetic modification of these imprinted domains. RNA interference-based knockdown experiments in Neuro2A cells resulted in overall transcriptional up-regulation of most of the imprinted genes within the Peg3 domain and also, concomitantly, caused significant loss in the DNA methylation of Peg3-DMR (Differentially Methylated Regions). A similar overall and coordinated expression change was also observed for the imprinted genes of the Gnas domain: up-regulation of Nespas and down-regulation of Nesp and Gnasxl. YY1 knockdown also resulted in changes in the expression levels of Xist and Snrpn. These results support the idea that YY1 plays a major role, as a trans factor, for the control of these imprinted domains. PMID:17067777

  20. 12P-conjugated PEG-modified gold nanorods combined with near-infrared laser for tumor targeting and photothermal therapy.

    PubMed

    Zhan, Tao; Li, Pengfei; Bi, Shan; Dong, Biao; Song, Hongwei; Ren, Hui; Wang, Liping

    2012-09-01

    Gold nanorods have been reported as potential tumor photothermal therapy in vivo and in vitro. However, development of the safe and efficient tumor-targeting gold nanorods for in vivo localized tumor therapy is still a challenge. In our present study, we synthesized the PEG modified gold nanorods and demonstrated its negligible cytotoxicity in vitro. These nanorods also have been demonstrated to efficiently ablate the different kinds of tumor cells in vitro after exposure to the near-infrared laser. When the PEG modified gold nanorods conjugated with the 12P (sequence: TACHQHVRMVRP), this conjugate showed great tumor-targeting and hyperthermia effects on the human liver cancer cell line HepG2 in vitro when coupled with the near-infrared laser treatment. To determine the potential hyperthermia effect of PEG modified gold nanorods or 12P conjugate on tumor cells in vivo, the mice hepatic cancer cells were used to induce the subcutaneous tumor-bearing model in ICR mice. The significant inhibition effects of near-infrared laser mediated PEG modified gold nanorods or 12P conjugate on the tumor growth were observed. These composite results suggest that the 12P-conjugated PEG modified gold nanorods exhibit great biocompatible, particular tumor-targeting and effective photothermal ablation of tumor cells, which warrant the potential therapeutic value of this conjugate for further application in in vivo localized tumor therapy.