Science.gov

Sample records for nanotube field emitters

  1. Carbon nanotube emitters and field emission triode

    NASA Astrophysics Data System (ADS)

    Fan, Zhiqin; Zhang, Binglin; Yao, Ning; Zhang, Lan; Ma, Huizhong; Deng, Jicai

    2006-05-01

    Based on our study on field emission from multi-walled carbon nanotubes (MWNTs), we experimentally manufactured field emission display (FED) triode with a MWNTs cold cathode, and demonstrated an excellent performance of MWNTs as field emitters. The measured luminance of the phosphor screens was 1.8*10^(3) cd/m2 for green light. The emission is stable with a fluctuation of only 1.5% at an average current of 260 'mu'A.

  2. Ballasted and electrically steerable carbon nanotube field emitters

    NASA Astrophysics Data System (ADS)

    Cole, M. T.; Li, C.; Qu, K.; Zhang, Y.; Wang, B.; Pribat, D.; Milne, W. I.

    2012-09-01

    Here we present our on-going efforts toward the development of stable ballasted carbon nanotube-based field emitters employing hydrothermally synthesized zinc oxide nanowires and thin film silicon-on-insulator substrates. The semiconducting channel in each controllably limits the emission current thereby preventing detrimental burn-out of individual emitters that occurs due to unavoidable statistical variability in emitter characteristics, particularly in their length. Fabrication details and emitter characterization are discussed in addition to their field emission performance. The development of a beam steerable triode electron emitter formed from hexagonal carbon nanotube arrays with central focusing nanotube electrodes, is also described. Numerical ab-initio simulations are presented to account for the empirical emission characteristics. Our engineered ballasted emitters have shown some of the lowest reported lifetime variations (< 0.7%) with on-times of < 1 ms, making them ideally-suited for next-generation displays, environmental lighting and portable x-rays sources.

  3. Arrays of Bundles of Carbon Nanotubes as Field Emitters

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bronkowski, Michael

    2007-01-01

    Experiments have shown that with suitable choices of critical dimensions, planar arrays of bundles of carbon nanotubes (see figure) can serve as high-current-density field emitter (cold-cathode) electron sources. Whereas some hot-cathode electron sources must be operated at supply potentials of thousands of volts, these cold-cathode sources generate comparable current densities when operated at tens of volts. Consequently, arrays of bundles of carbon nanotubes might prove useful as cold-cathode sources in miniature, lightweight electron-beam devices (e.g., nanoklystrons) soon to be developed. Prior to the experiments, all reported efforts to develop carbon-nanotube-based field-emission sources had yielded low current densities from a few hundred microamperes to a few hundred milliamperes per square centimeter. An electrostatic screening effect, in which taller nanotubes screen the shorter ones from participating in field emission, was conjectured to be what restricts the emission of electrons to such low levels. It was further conjectured that the screening effect could be reduced and thus emission levels increased by increasing the spacing between nanotubes to at least by a factor of one to two times the height of the nanotubes. While this change might increase the emission from individual nanotubes, it would decrease the number of nanotubes per unit area and thereby reduce the total possible emission current. Therefore, to maximize the area-averaged current density, it would be necessary to find an optimum combination of nanotube spacing and nanotube height. The present concept of using an array of bundles of nanotubes arises partly from the concept of optimizing the spacing and height of field emitters. It also arises partly from the idea that single nanotubes may have short lifetimes as field emitters, whereas bundles of nanotubes could afford redundancy so that the loss of a single nanotube would not significantly reduce the overall field emission.

  4. Gas ionization sensors with carbon nanotube/nickel field emitters.

    PubMed

    Huang, Bohr-Ran; Lin, Tzu-Ching; Yang, Ying-Kan; Tzeng, Shien-Der

    2011-12-01

    Gas ionization sensors based on the field emission properties of the carbon nanotube/nickel (CNT/Ni) field emitters were first developed in this work. It is found that the breakdown electric field (E(b)) slightly decreases from 2.2 V/microm to 1.9 V/microm as the pressure of H2 gas increases from 0.5 Torr to 100 Torr. On the contrary, E(b) obviously increases from 2.9 V/microm to 6.5 V/microm as O2 gas pressure increases from 0.5 Torr to 100 Torr. This may be explained by the depression of the electron emission that caused by the adsorption of the O2 gas on the CNT emitters. The Raman spectra of the CNT/Ni emitters also show that more defects were generated on the CNTs after O2 gas sensing. The Joule heating effect under high current density as performing H2 sensing was also observed. These effects may contribute the pressure dependence on the breakdown electric field of the CNT/Ni gas ionization sensors. PMID:22409010

  5. Systems and Methods for Implementing Robust Carbon Nanotube-Based Field Emitters

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Kristof, Valerie (Inventor); Toda, Risaku (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention implement carbon nanotube-based field emitters. In one embodiment, a method of fabricating a carbon nanotube field emitter includes: patterning a substrate with a catalyst, where the substrate has thereon disposed a diffusion barrier layer; growing a plurality of carbon nanotubes on at least a portion of the patterned catalyst; and heating the substrate to an extent where it begins to soften such that at least a portion of at least one carbon nanotube becomes enveloped by the softened substrate.

  6. Effective hybrid graphene/carbon nanotubes field emitters by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Koh, Angel T. T.; Chen, Ting; Pan, Likun; Sun, Zhuo; Chua, Daniel H. C.

    2013-05-01

    Hybrid graphene and carbon nanotube (CNT) field emitters were fabricated with electrophoretic deposition (EPD). The combination of both materials was used to improve the turn-on field for pure carbon nanotubes emitters and the reliability of pure graphene emitters deposited by the same method. The CNT was envisioned to hold down the graphene flakes, like a safety belt or Velcro, at high voltages to prevent an early short circuit at relatively low voltages. These hybrid emitters were studied for their field emission performance in relation to the EPD deposition duration. It was observed that the emitters performed better when the EPD duration was increased due to the increase in the amount and density of graphene flakes. Possible reasons for the improvement of field emission performance were suggested. The roles of graphene and CNT in these hybrid emitters were also discussed.

  7. Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing

    SciTech Connect

    Sun, Yuning; Shin, Dong Hoon; Yun, Ki Nam; Leti, Guillaume; Hwang, Yeon Mo; Song, Yenan; Saito, Yahachi; Lee, Cheol Jin

    2014-07-15

    The carbon nanotube (CNT) field emitters have been fabricated by attaching a CNT film on a graphite rod using graphite adhesive material. The CNT field emitters showed much improved field emission properties due to increasing crystallinity and decreasing defects in CNTs after the high temperature thermal annealing at 900 °C in vacuum ambient. The CNT field emitters showed the low turn-on electric field of 1.15 V/μm, the low threshold electric field of 1.62 V/μm, and the high emission current of 5.9 mA which corresponds to a current density of 8.5 A/cm{sup 2}. In addition, the CNT field emitters indicated the enhanced field emission properties due to the multi-stage effect when the length of the graphite rod increases. The CNT field emitter showed good field emission stability after the high temperature thermal annealing. The CNT field emitter revealed a focused electron beam spot without any focusing electrodes and also showed good field emission repeatability.

  8. Field emission from optimized structure of carbon nanotube field emitter array

    NASA Astrophysics Data System (ADS)

    Chouhan, V.; Noguchi, T.; Kato, S.

    2016-04-01

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm2 at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  9. Energy distribution for undergate-type triode carbon nanotube field emitters

    NASA Astrophysics Data System (ADS)

    Yu, SeGi; Yi, Whikun; Lee, Jeonghee; Jeong, Taewon; Jin, Sunghwan; Heo, Jungna; Kang, J. H.; Choi, Y. S.; Lee, Chang Soo; Yoo, Ji-Beom; Kim, J. M.

    2002-05-01

    Field emission energy distribution (FEED) has been measured for undergate-type triode carbon nanotube (CNT) field emitters where the gate electrodes are located underneath the cathode electrodes. The diode-type emission for these CNT emitters was found to follow the Fowler-Nordheim relation, whereas the triode-type emission exhibited the deviation from this relation. The FEED peaks for the undergate CNT emitters under the triode-type emission shifted to lower energy as the gate voltage increased, indicating nonmetallic behavior for the CNT emitters. There exist two different characteristic FEED peaks, where their peak energy shifts as a function of the gate voltage belong to two different slopes. From the difference in the position and intensity of the peaks, it was found that one was field emission directly from CNTs and the other might be emitted from CNTs through glass powders which were added during the CNT field emitter fabrication process.

  10. Fabrication of Gate-Electrode Integrated Carbon-Nanotube Bundle Field Emitters

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; Bronikowski, Michael; Luong, Edward; Manohara, Harish

    2008-01-01

    A continuing effort to develop carbon-nanotube-based field emitters (cold cathodes) as high-current-density electron sources has yielded an optimized device design and a fabrication scheme to implement the design. One major element of the device design is to use a planar array of bundles of carbon nanotubes as the field-emission tips and to optimize the critical dimensions of the array (principally, heights of bundles and distances between them) to obtain high area-averaged current density and high reliability over a long operational lifetime a concept that was discussed in more detail in Arrays of Bundles of Carbon Nanotubes as Field Emitters (NPO-40817), NASA Tech Briefs, Vol. 31, No. 2 (February 2007), page 58. Another major element of the design is to configure the gate electrodes (anodes used to extract, accelerate, and/or focus electrons) as a ring that overhangs a recess wherein the bundles of nanotubes are located, such that by virtue of the proximity between the ring and the bundles, a relatively low applied potential suffices to generate the large electric field needed for emission of electrons.

  11. Stable electron field emission from carbon nanotubes emitter transferred on graphene films

    NASA Astrophysics Data System (ADS)

    Zhao, Ning; Chen, Jing; Qu, Ke; Khan, Qasim; Lei, Wei; Zhang, Xiaobing

    2015-08-01

    Carbon nanotubes (CNTs) arrays grown by microwave plasma enhanced chemical vapor deposition (MPCVD) method was transferred onto the substrate covered with graphene layer obtained by thermal chemical vapor deposition (CVD) technology. The graphene buffer layer provides good electrical and thermal contact to the CNTs. The field emission characteristics of this hybrid structure were investigated in this study. Compared with the CNTs arrays directly grown on the silicon substrate, the hybrid emitter shows better field emission performance, such as high emission current and long-term emission stability. The presence of this graphene layer was shown to improve the field emission behavior of CNTs. This work provides an effective way to realize stable field emission from CNTs emitter and similar hybrid structures.

  12. Fabrication of carbon nanotube emitters on the graphite rod and their high field emission performance

    SciTech Connect

    Sun, Yuning; Hoon Shin, Dong; Nam Yun, Ki; Song, Yenan; Saito, Yahachi; Jin Lee, Cheol

    2014-01-27

    Carbon nanotube (CNT) emitters with small emission area were fabricated on graphite rods using CNT films. By introducing the edge polishing process, the field emission performance of the CNT emitter was much improved, which showed a very high emission current of 6.34 mA (1.6 A/cm{sup 2}) under an applied electric field of 5.3 V/μm. It also indicates good long-term emission stability, which reveals no degradation in the emission current for 20 h. The emission patterns demonstrate uniform and well-focused electron beam spots. The enhanced field emission performance is mainly attributed to the suppressed edge emission after the edge polishing process.

  13. Transmission-type microfocus x-ray tube using carbon nanotube field emitters

    SciTech Connect

    Heo, Sung Hwan; Ihsan, Aamir; Cho, Sung Oh

    2007-04-30

    A microfocus x-ray tube that can generate x rays with the focal spot size less than 5 {mu}m has been demonstrated using carbon nanotube (CNT) field emitters. A CNT cathode on a sharp tungsten tip, a magnetic solenoid lens, and a transmission-type x-ray target were adopted for the microfocus x-ray tube. The design characteristics and the operation performance of the microfocus x-ray tube are presented. Due to the small focal spot size, clear x-ray radiographic images of 6 {mu}m bars and x-ray images with the magnification factor of higher than 230 were obtained.

  14. Approach for fabricating microgated field-emission arrays with individual carbon nanotube emitters

    SciTech Connect

    Ding, Ming Q.; Shao, Wen S.; Li, Xing H.; Bai, Guo D.; Zhang, Fu Q.; Li, Han Y.; Feng, Jin J.

    2005-12-05

    We propose an approach for fabricating microgated field-emission arrays (FEAs) with individual carbon nanotube (CNT) emitters. Beginning with the fabrication of microgated cell arrays, the process involves depositing a sacrificial layer at a glancing angle to close in the aperture that a small area catalyst can be placed on the bottom of the cells (for type A) or on the predeposited Mo tips (for type B); then, vertically aligned CNTs are grown by a dc plasma-enhanced chemical vapor deposition following a lift-off process. Scanning electron microscopy (SEM) images of both types of CNT FEAs show a large percentage of emitters with single, double or triple CNTs. For a 5x5 type B CNT FEA, at a gate voltage of 100 V, an average anode current reaches 1.4 {mu}A per cell while the gate current is less than 5% of the anode current.

  15. Enhanced Field-Emission Performance from Carbon Nanotube Emitters on Nickel Foam Cathodes

    NASA Astrophysics Data System (ADS)

    Song, Meng; Xu, Peng; Han, Lijing; Yi, Lan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wang, Xiumin; Wu, Huizhen; Zhao, Pei; Song, Yenan; Wang, Miao

    2016-04-01

    We present a three-dimensionally configured cathode with enhanced field-emission performance formed by combining carbon nanotube (CNT) emitters with a nickel foam (NiF) substrate via a conventional screen-printing technique. The CNT/NiF cathode has low turn-on electric field of 0.53 V μm-1 (with current density of 10 μA cm-2) and threshold electric field of 0.87 V μm-1 (with current density of 0.1 mA cm-2), and a very high field enhancement factor of 1.4 × 104. The porous structure of the NiF substrate can greatly improve the field-emission properties due to its large specific surface area that can accommodate more CNTs and increase the emitter density, as well as its high electrical and thermal conductivities that facilitate current transition and heat dissipation in the cathode. Most importantly, the local electric field was also enhanced by the multistage effect resulting from the rough metal surface, which furthermore leads to a high field enhancement factor. We believe that this improved field-emission performance makes such cathodes promising candidates for use in various field-emission applications.

  16. Evolution of the characteristics of a field-electron emitter based on nitrocellulose-carbon nanotube composite

    NASA Astrophysics Data System (ADS)

    Kolos'ko, A. G.; Ershov, M. V.; Filippov, S. V.; Popov, E. O.

    2013-05-01

    Characteristics of a field-electron emitter based on a nitrocelulose-multiwalled carbon nanotube composite have been studied. A new method of the recording and online processing of current-voltage ( I-U) characteristics of multipoint field-electron emitters has been developed for monitoring the evolution of their properties. Using this method, we have (i) determined the dependences of the field enhancement factor and number of emission centers on the interelectrode distance, (ii) discovered hysteresis of the I-V curve related to variation of the amplitude of applied voltage pulses, and (iii) revealed the influence of the initial emission current level on the temporal evolution of emitter properties.

  17. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers.

    PubMed

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-14

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10,000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm(-2). The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices. PMID:24434798

  18. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-01

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10 000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm-2. The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  19. Fabrication of field emission display prototype utilizing printed carbon nanotubes/nanofibers emitters

    NASA Astrophysics Data System (ADS)

    Guo, P. S.; Chen, T.; Chen, Y. W.; Zhang, Z. J.; Feng, T.; Wang, L. L.; Lin, L. F.; Sun, Z.; Zheng, Z. H.

    2008-06-01

    Carbon nanotubes/nanofibers (CNTs) used as emitters, diode-type field emission display (FED) prototypes of dot matrix and character images were fabricated by low-cost techniques and equipments, respectively. The technical development in the design and fabrication of the cathode, the anode, and the panel, is described. CNTs were produced by a simple, low-cost and easily-controllable thermal chemical vapor deposition. The cathode was prepared by the screen-printing method. The field emission characteristics were enhanced by a heat post-treatment in H2 gas atmosphere. The panel structure was packaged by a vacuum fluorescent display-like process and vacuum-sealed through an exhaust glass tube. The fully-sealed CNTs FED (c-FED) showed good emission properties. The brightness of 600 cd/m2 was achieved from the yellow phosphor at a relatively low applied electric field. The developed technology has a potential practical application in c-FED.

  20. A digital miniature x-ray tube with a high-density triode carbon nanotube field emitter

    SciTech Connect

    Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Kim, Jae-Woo; Song, Yoon-Ho; Ahn, Seungjoon

    2013-01-14

    We have fabricated a digital miniature x-ray tube (6 mm in diameter and 32 mm in length) with a high-density triode carbon nanotube (CNT) field emitter for special x-ray applications. The triode CNT emitter was densely formed within a diameter of below 4 mm with the focusing-functional gate. The brazing process enables us to obtain and maintain a desired vacuum level for the reliable electron emission from the CNT emitters after the vacuum packaging. The miniature x-ray tube exhibited a stable and reliable operation over 250 h in a pulse mode at an anode voltage of above 25 kV.

  1. Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters.

    PubMed

    Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-Guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun

    2016-07-01

    We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices. PMID:27233004

  2. Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters

    NASA Astrophysics Data System (ADS)

    Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun

    2016-07-01

    We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.

  3. Field Emission Characteristics Depending on Emitter Patterns of A Screen-Printed Carbon Nanotube Field Emission Array

    NASA Astrophysics Data System (ADS)

    Kwon, Sang Jik; Lee, Sang Heon

    2006-01-01

    We have fabricated carbon nanotube field-emission displays (CNT-FEDs) panel with a 2 in. diagonal size using a screen printing method and in-situ vacuum sealing technology. The field emission properties of the CNT-FED panel with square-type CNT emitters were characterized and compared with those of the panel with line-type CNT emitters. As results, the square-type CNT emitters showed a much larger emission current and more stable current-voltage (I-V) characteristics. Light emission started to occur at an electric field of 3.5 V/μm, for a corresponding to an anode-cathode voltage of 700 V. The vacuum level inside of the in-situ vacuum-sealed panel was 1.4× 10-5 Torr. The sealed panel showed similar I-V characteristics with the unsealed one and uniform light emission with very high brightness at a current density of 243 μA/cm2 obtained at an electric field of 10 V/μm.

  4. Asymmetrical field emitter

    DOEpatents

    Fleming, James G.; Smith, Bradley K.

    1995-01-01

    Providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure.

  5. Asymmetrical field emitter

    DOEpatents

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  6. High Stability Electron Field Emitters Synthesized via the Combination of Carbon Nanotubes and N₂-Plasma Grown Ultrananocrystalline Diamond Films.

    PubMed

    Chang, Ting-Hsun; Hsieh, Ping-Yen; Kunuku, Srinivasu; Lou, Shiu-Cheng; Manoharan, Divinah; Leou, Keh-Chyang; Lin, I-Nan; Tai, Nyan-Hwa

    2015-12-16

    An electron field emitter with superior electron field emission (EFE) properties and improved lifetime stability is being demonstrated via the combination of carbon nanotubes and the CH4/N2 plasma grown ultrananocrystalline diamond (N-UNCD) films. The resistance of the carbon nanotubes to plasma ion bombardment is improved by the formation of carbon nanocones on the side walls of the carbon nanotubes, thus forming strengthened carbon nanotubes (s-CNTs). The N-UNCD films can thus be grown on s-CNTs, forming N-UNCD/s-CNTs carbon nanocomposite materials. The N-UNCD/s-CNTs films possess good conductivity of σ = 237 S/cm and marvelous EFE properties, such as low turn-on field of (E0) = 3.58 V/μm with large EFE current density of (J(e)) = 1.86 mA/cm(2) at an applied field of 6.0 V/μm. Moreover, the EFE emitters can be operated under 0.19 mA/cm(2) for more than 350 min without showing any sign of degradation. Such a superior EFE property along with high robustness characteristic of these combination of materials are not attainable with neither N-UNCD films nor s-CNTs films alone. Transmission electron microscopic investigations indicated that the N-UNCD films contain needle-like diamond grains encased in a few layers of nanographitic phase, which enhanced markedly the transport of electrons in the N-UNCD films. Moreover, the needle-like diamond grains were nucleated from the s-CNTs without the necessity of forming the interlayer that facilitate the transport of electrons crossing the diamond-to-Si interface. Both these factors contributed to the enhanced EFE behavior of the N-UNCD/s-CNTs films.

  7. Diamond fiber field emitters

    DOEpatents

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  8. Effect of increased crystallinity of single-walled carbon nanotubes used as field emitters on their electrical properties

    SciTech Connect

    Shimoi, Norihiro

    2015-12-07

    Single-walled carbon nanotubes (SWCNTs) synthesized by arc discharge are expected to exhibit good field emission (FE) properties at a low driving voltage. We used a coating containing homogeneously dispersed highly crystalline SWCNTs produced by a high-temperature annealing process to fabricate an FE device by a wet-coating process at a low cost. Using the coating, we succeeded in reducing the power consumption of field emitters for planar lighting devices. SWCNTs synthesized by arc discharge have crystal defects in the carbon network, which are considered to induce inelastic electron tunneling that deteriorates the electrical conductivity of the SWCNTs. In this study, the blocking of the transport of electrons in SWCNTs with crystal defects is simulated using an inelastic electron tunneling model. We succeeded in clarifying the mechanism underlying the electrical conductivity of SWCNTs by controlling their crystallinity. In addition, it was confirmed that field emitters using highly crystalline SWCNTs can lead to new applications operating with low power consumption and new devices that may change our daily lives in the future.

  9. A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters

    PubMed Central

    2012-01-01

    A vacuum-sealed miniature X-ray tube based on a carbon nanotube field-emission electron source has been demonstrated. The diameter of the X-ray tube is 10 mm; the total length of the tube is 50 mm, and no external vacuum pump is required for the operation. The maximum tube voltage reaches up to 70 kV, and the X-ray tube generates intense X-rays with the air kerma strength of 108 Gy·cm2 min−1. In addition, X-rays produced from the miniature X-ray tube have a comparatively uniform spatial dose distribution. PMID:22594627

  10. Pulsed hybrid field emitter

    SciTech Connect

    Sampayan, Stephen E.

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  11. Pulsed hybrid field emitter

    SciTech Connect

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  12. Fabrication of barium/strontium carbonate coated amorphous carbon nanotubes as an improved field emitter

    NASA Astrophysics Data System (ADS)

    Maity, S.; Jha, A.; Das, N. S.; Chattopadhyay, K. K.

    2013-02-01

    Amorphous carbon nanotubes (aCNTs) were synthesized by a chemical reaction between ferrocene and ammonium chloride at a temperature ˜250 ∘C in an air furnace. As-synthesized aCNTs were coated with the barium/strontium carbonate through a simple chemical process. The coating of barium/strontium carbonate was confirmed by a high resolution transmission electron microscopy, X-ray diffraction, and Fourier transformed infrared spectroscopy. Morphology of the as-prepared samples was studied by field emission scanning electron microscopy. Thermal gravimetric analysis showed that barium/strontium carbonate coated aCNTs are more stable than the pristine aCNTs. As-prepared barium/strontium carbonate coated aCNTs showed significantly improved field emission properties with a turn-on field as low as 2.5 V/μm. The variation of field emission characteristics of the barium/strontium carbonate coated aCNTs with interelectrode distances was also studied.

  13. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc Dung; Tai, Nyan-Hwa; Chen, Szu-Ying; Chueh, Yu-Lun

    2012-01-01

    We report a versatile synthetic process based on rapid heating and cooling chemical vapor deposition for the growth of carbon nanotube (CNT)-graphene hybrid materials where the thickness of graphene and density of CNTs are properly controlled. Graphene films are demonstrated as an efficient barrier layer for preventing poisoning of iron nanoparticles, which catalyze the growth of CNTs on copper substrates. Based on this method, the opto-electronic and field emission properties of graphene integrated with CNTs can be remarkably tailored. A graphene film exhibits a sheet resistance of 2.15 kΩ sq-1 with a transmittance of 85.6% (at 550 nm), while a CNT-graphene hybrid film shows an improved sheet resistance of 420 Ω sq-1 with an optical transmittance of 72.9%. Moreover, CNT-graphene films are demonstrated as effective electron field emitters with low turn-on and threshold electric fields of 2.9 and 3.3 V μm-1, respectively. The development of CNT-graphene films with a wide range of tunable properties presented in this study shows promising applications in flexible opto-electronic, energy, and sensor devices.

  14. Carbon nanotube electron field emitters for x-ray imaging of human breast cancer.

    PubMed

    Gidcumb, Emily; Gao, Bo; Shan, Jing; Inscoe, Christy; Lu, Jianping; Zhou, Otto

    2014-06-20

    For imaging human breast cancer, digital breast tomosynthesis (DBT) has been shown to improve image quality and breast cancer detection in comparison to two-dimensional (2D) mammography. Current DBT systems have limited spatial resolution and lengthy scan times. Stationary DBT (s-DBT), utilizing an array of carbon nanotube (CNT) field emission x-ray sources, provides increased spatial resolution and potentially faster imaging than current DBT systems. This study presents the results of detailed evaluations of CNT cathodes for x-ray breast imaging tasks. The following were investigated: high current, long-term stability of CNT cathodes for DBT; feasibility of using CNT cathodes to perform a 2D radiograph function; and cathode performance through several years of imaging. Results show that a breast tomosynthesis system using CNT cathodes could run far beyond the experimentally tested lifetime of one to two years. CNT cathodes were found capable of producing higher currents than typical DBT would require, indicating that the s-DBT imaging time can be further reduced. The feasibility of using a single cathode of the s-DBT tube to perform 2D mammography in 4 s was demonstrated. Over the lifetime of the prototype s-DBT system, it was found that both cathode performance and transmission rate were stable and consistent.

  15. Carbon nanotube electron field emitters for x-ray imaging of human breast cancer

    NASA Astrophysics Data System (ADS)

    Gidcumb, Emily; Gao, Bo; Shan, Jing; Inscoe, Christy; Lu, Jianping; Zhou, Otto

    2014-06-01

    For imaging human breast cancer, digital breast tomosynthesis (DBT) has been shown to improve image quality and breast cancer detection in comparison to two-dimensional (2D) mammography. Current DBT systems have limited spatial resolution and lengthy scan times. Stationary DBT (s-DBT), utilizing an array of carbon nanotube (CNT) field emission x-ray sources, provides increased spatial resolution and potentially faster imaging than current DBT systems. This study presents the results of detailed evaluations of CNT cathodes for x-ray breast imaging tasks. The following were investigated: high current, long-term stability of CNT cathodes for DBT; feasibility of using CNT cathodes to perform a 2D radiograph function; and cathode performance through several years of imaging. Results show that a breast tomosynthesis system using CNT cathodes could run far beyond the experimentally tested lifetime of one to two years. CNT cathodes were found capable of producing higher currents than typical DBT would require, indicating that the s-DBT imaging time can be further reduced. The feasibility of using a single cathode of the s-DBT tube to perform 2D mammography in 4 s was demonstrated. Over the lifetime of the prototype s-DBT system, it was found that both cathode performance and transmission rate were stable and consistent.

  16. Effect of purity, edge length, and growth area on field emission of multi-walled carbon nanotube emitter arrays

    SciTech Connect

    Shahi, Monika; Gautam, S.; Shah, P. V.; Jha, P.; Kumar, P.; Rawat, J. S.; Chaudhury, P. K.; Harsh; Tandon, R. P.

    2013-05-28

    Present report aims to study the effect of purity, edge length, and growth area on field emission of patterned carbon nanotube (CNT) emitter arrays. For development of four CNT emitter arrays (CEAs), low resistively silicon substrates were coated with thin film of iron catalyst using photolithography, sputtering, and lift off process. Four CEAs were synthesized on these substrates using thermal chemical vapor deposition with minor changes in pretreatment duration. Out of these, two CEAs have 10 {mu}m Multiplication-Sign 10 {mu}m and 40 {mu}m Multiplication-Sign 40 {mu}m solid square dots of CNTs with constant 20 {mu}m inter-dot separation. Other two CEAs have ring square bundles of CNTs and these CEAs are envisioned as 10 {mu}m Multiplication-Sign 10 {mu}m square dots with 4 {mu}m Multiplication-Sign 4 {mu}m scooped out area and 15 {mu}m Multiplication-Sign 15 {mu}m square dots with 5 {mu}m Multiplication-Sign 5 {mu}m lift out area with constant 20 {mu}m inter-dot spacing. Solid square dot structures have exactly constant edge length per unit area with more than four-fold difference in CNT growth area however ring square dot patterns have minor difference in edge length per unit area with approximately two times difference in CNT growth area. Quality and morphology of synthesized CEAs were assessed by scanning electron microscope and Raman characterization which confirm major differences. Field emission of all CEAs was carried out under same vacuum condition and constant inter-electrode separation. Field emission of solid square dot CEAs show approximately identical current density-electric field curves and Fowler-Nordheim plots with little difference in emission current density at same electric field. Similar results were observed for ring square structure CEAs when compared separately. Maximum emission current density observed from these four CEAs reduces from 14.53, 12.23, 11.01, to 8.66 mA/cm{sup 2} at a constant electric field of 5 V/{mu}m, according to edge

  17. Electrochemical formation of field emitters

    DOEpatents

    Bernhardt, Anthony F.

    1999-01-01

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area.

  18. A glass-sealed field emission x-ray tube based on carbon nanotube emitter for medical imaging

    NASA Astrophysics Data System (ADS)

    Yeo, Seung Jun; Jeong, Jaeik; Ahn, Jeung Sun; Park, Hunkuk; Kwak, Junghwan; Noh, Eunkyong; Paik, Sanghyun; Kim, Seung Hoon; Ryu, Jehwang

    2016-04-01

    We report the design and fabrication of a carbon nanotube based a glass-sealed field emission x-ray tube without vacuum pump. The x-ray tube consists of four electrodes with anode, focuser, gate, and cathode electrode. The shape of cathode is rectangular for isotropic focal spot size at anode target. The obtained x-ray images show clearly micrometer scale.

  19. Electrochemical formation of field emitters

    DOEpatents

    Bernhardt, A.F.

    1999-03-16

    Electrochemical formation of field emitters, particularly useful in the fabrication of flat panel displays is disclosed. The fabrication involves field emitting points in a gated field emitter structure. Metal field emitters are formed by electroplating and the shape of the formed emitter is controlled by the potential imposed on the gate as well as on a separate counter electrode. This allows sharp emitters to be formed in a more inexpensive and manufacturable process than vacuum deposition processes used at present. The fabrication process involves etching of the gate metal and the dielectric layer down to the resistor layer, and then electroplating the etched area and forming an electroplated emitter point in the etched area. 12 figs.

  20. Thionyl chloride assisted functionalization of amorphous carbon nanotubes: A better field emitter and stable nanofluid with better thermal conductivity

    SciTech Connect

    Sarkar, S.K.; Jha, A.; Chattopadhyay, K.K.

    2015-06-15

    Highlights: • Thionyl chloride assisted functionalization of amorphous carbon nanotubes (a-CNTs). • Improved dispersion enhanced thermal conductivity of engine oil. • Again f-a-CNTs showed enhanced field emission property compared to pure a-CNTs. - Abstract: Amorphous carbon nanotubes (a-CNTs) were synthesized at low temperature in open atmosphere and further functionalized by treating them in thionyl chloride added stearic acid-dichloro methane solution. The as prepared functionalized a-CNTs (f-a-CNTs) were characterized by Raman spectroscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission and scanning electron microscopy. The nanofluid was prepared by dispersing f-a-CNTs in engine oil using ultrasonic treatment. The effective thermal conductivity of as prepared nanofluid was investigated at different loading (volume fraction of f-a-CNTs). Obtained experimental data of thermal conductivity were compared with the predicted values, calculated using existing theoretical models. Stability of the nanofluid was tested by means of zeta potential measurement to optimize the loading. The as prepared f-a-CNTs sample also showed improved field emission result as compared to pristine a-CNTs. Dependence of field emission behavior on inter electrode distance was investigated too.

  1. Design of a carbon-nanotube yarn field emitter for micro-focus X-ray generation

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Suk; Castro, Edward Joseph D.; Lee, Choong Hun

    2016-08-01

    The field-emission (F-E) characteristics of multi-walled carbon-nanotube (MWCNT) yarn and its contribution to X-ray generation have been investigated in the current work. A dry spinning method was used to fabricateMWCNT yarn from superMWCNTs that had been fabricated by using microwave plasma-enhanced chemical vapor deposition (MW-PECVD). The F-E behavior of the MWCNT yarn followed the Fowler-Nordheim model. Compared to a MWCNT, the MWCNT yarn displayed a significant F-E capability in both the diode and the triode X-ray generation structures. The low-voltage F-E of the MWCNT yarn can be attributed to the field-enhancing effect of the yarn due to its shape and to the contribution of the high-aspect-ratio nanotubes that protrude from the sides of the yarn. The effect of filters on the development of X-ray images has also been demonstrated. The amount of exposure of the samples to X-rays was also manipulated. Results of this study indicate that the MWCNT yarn may be a good candidate for use in low-voltage F-E applications for X-ray imaging.

  2. Electric field distribution of electron emitter surfaces

    NASA Astrophysics Data System (ADS)

    Tagawa, M.; Takenobu, S.; Ohmae, N.; Umeno, M.

    1987-03-01

    The electric field distribution of a tungsten field emitter surface and a LaB6 thermionic emitter surface has been studied. The computer simulation of electric field distribution on the emitter surface was carried out with a charge simulation method. The electric field distribution of the LaB6 thermionic emitter was experimentally evaluated by the Schottky plot. Two independent equations are necessary for obtaining local electric field and work function; the Fowler-Nordheim equation and the equation of total energy distribution of emitted electron being used to evaluate the electric field distribution of the tungsten field emitter. The experimental results agreed with the computer simulation.

  3. Improved Photoresist Coating for Making CNT Field Emitters

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; Manohara, Harish

    2009-01-01

    An improved photoresist-coating technique has been developed for use in the fabrication of carbon-nanotube- (CNT) based field emitters is described. The improved photoresist coating technique overcomes what, heretofore, has been a major difficulty in the fabrication process.

  4. Shielding in ungated field emitter arrays

    SciTech Connect

    Harris, J. R.; Jensen, K. L.; Shiffler, D. A.; Petillo, J. J.

    2015-05-18

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  5. Diamond/diamond-like carbon coated nanotube structures for efficient electron field emission

    NASA Technical Reports Server (NTRS)

    Dimitrijevic, Steven (Inventor); Withers, James C. (Inventor); Loutfy, Raouf O. (Inventor)

    2005-01-01

    The present invention is directed to a nanotube coated with diamond or diamond-like carbon, a field emitter cathode comprising same, and a field emitter comprising the cathode. It is also directed to a method of preventing the evaporation of carbon from a field emitter comprising a cathode comprised of nanotubes by coating the nanotube with diamond or diamond-like carbon. In another aspect, the present invention is directed to a method of preventing the evaporation of carbon from an electron field emitter comprising a cathode comprised of nanotubes, which method comprises coating the nanotubes with diamond or diamond-like carbon.

  6. Studying fringe field effect of a field emitter array

    NASA Astrophysics Data System (ADS)

    Sayfullin, M. F.; Nikiforov, K. A.

    2014-10-01

    Field emitter arrays on heavy As-doped Si wafer are studied in vacuum nanoelectronics diode configuration. Different shapes of emitters are considered: cone-shaped point-emitters and cylinder-shaped sharp-edge-emitters are compared. Micro scale field enhancement factor on the edge of cylindrical emitter was calculated via home-developed Matlab application and the results are presented. Two types of anode geometry are proposed: plane anode and spherical anode. Experimental and modelling results of surface electric field distribution are presented. The spherical shape of anode allows higher voltage (and higher field emission current) without destructive arcs risk.

  7. Field emitter technologies for nanovision science

    NASA Astrophysics Data System (ADS)

    Mimura, H.; Neo, Y.; Aoki, T.; Nagao, M.; Yoshida, T.; Kanemaru, S.

    2009-10-01

    We have been investigating an ultra fine field emission display (FED) and an ultra fine CdTe X-ray image sensor for creating nanovision science. For an ultra fine FED with a sub-micron pixel, we have developed a volcano-structured double-gated field emitter arrays with a capability of focusing electron beam without serous reduction in emission current. For an ultra fine X-ray image sensor, we have proposed and demonstrated a novel CdTe X-ray sensor consisting of a CdTe diode and field emitter array.

  8. Numerical and experimental studies of enhanced electron emission from functionalized carbon nanotube emitters

    NASA Astrophysics Data System (ADS)

    Jin, Feng; Little, Scott; Alzubi, Feras

    2007-03-01

    Vertically aligned carbon nanotubes (CNTs) were grown using plasma enhanced chemical vapor deposition (PECVD) method. The CNTs were further functionalized by coating their surface with a thin layer of low work function oxide emissive materials. The electron emission capability of the coated CNT emitters was greatly improved with the low work function emissive layer, particularly at high temperature. Thermionic emission current three orders magnitude higher was observed. The emission properties of the oxide coated CNTs were measured and characterized over a wide temperature and field ranges. It was found that neither the Fowler-Nordheim theory for field emission nor the Richardson theory for thermionic emission were adequate to describe the electron emission characteristics of these emitters in certain range of temperature and field. However, by adopting a general electron emission formulism developed by Murphy and Good, we were able to simulate the electron emission from the coated CNTs over the whole temperature and field range and fit the experimental data.

  9. Field-emitter arrays for vacuum microelectronics

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.; Holland, C. E.; Rosengreen, A.; Brodie, Ivor

    1991-01-01

    An ongoing program on microfabricated field-emitter arrays has produced a gated field-emitter tip structure with submicrometer dimensions and techniques for fabricating emitter arrays with tip packaging densities of up to 1.5 x 10 exp 7 tips/sq cm. Arrays have been fabricated over areas varying from a few micrometers up to 13 cm in diameter. Very small overall emitter size, materials selection, and rigorous emitter-tip processing procedures have contributed to reducing the potential required for field emission to tens of volts. Emission current densities of up to 100 A/sq cm have been achieved with small arrays of tips, and 100-mA total emission is commonly produced with arrays 1 mm in diameter containing 10,000 tips. Transconductances of 5.0 micro-S per tip have been demonstrated, indicating that 50 S/sq cm should be achievable with tip densities of 10 exp 7 tips/sq cm. Details of the cathode arrays and a variety of performance characteristics are discussed.

  10. Technology for producing carbon field emitters

    SciTech Connect

    Khatapova, R.M.; Demskaya, L.L.; Romanova, V.K.

    1985-12-01

    This paper describes methods for producing field emitters from carbon filaments. Coating of Ni and two-layer coatings of Ni-Mo with a thickness of 10-40 um are applied to the carbon filaments by electrochemical deposition so that they can be spot welded to a metal holder. A technology for attaching carbon filaments with a refractory adhesive composition is also described. Field emitters with point radius of curvature of 0.2-0.4 um are made from three types of carbon filament.

  11. Current limiting of field emitter array cathodes

    SciTech Connect

    Lee, K.J.

    1986-01-01

    The Field Emitter Array (FEA) cathode possesses high emission potential (approx.30A/cm/sup 2/) at low applied voltages (100-200 volts) but performance has been hampered by non-uniform emission across the array. Poor emission uniformity is mainly related to small variations in emitter tip geometry (of the order of 10-100A), which cannot be rectified by present fabrication techniques. To improve emission uniformity from the arrays, this dissertation investigated the use of current-limiting resistors, individually dedicated to and in series with each emitter, to compensate for the differences in emission. A thin film of silicon was deposited on the backside of a ZrO/sub 2/-W composite chip (the substrate on which emitter structure was based) to form series resistors. Characterization of the silicon film was carried out in a SEM with a micromanipulator capable of making contact with a single tungsten pin so that direct I-V measurement of individual series resistors was possible. To supplement the experimental effort, a mathematical mode of the Current-Limited Field Emitter Array (CLFEA) cathode was devised. A study of the model indicated the Fowler-Nordheim (F-N) plot of resistor current-limited emission from an array would have an upturning curvature.

  12. Nanoelectrospray Emitter Arrays Providing Interemitter Electric Field Uniformity

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Marginean, Ioan; Tang, Keqi; Smith, Richard D.

    2008-07-15

    Arrays of electrospray ionization (ESI) emitters have been reported previously as a means of achieving the enhanced ionization efficiencies. A key challenge when working with multiple, closely spaced ESI emitters is overcoming the deleterious effects caused by electrical interference among neighboring emitters. Individual emitters experience different electric fields depending on their relative position in the array, such that it becomes difficult to operate all of the emitters optimally for a given applied potential. In this work, we have developed multi-nanoESI emitters arranged with a circular pattern, which enable the constituent emitters to experience a uniform electric field. The performance of the circular emitter array was compared to a single emitter and to a previously developed linear emitter array, which verified that improved electric field uniformity was achieved with the circular arrangement. The circular arrays were also interfaced with a mass spectrometer via a matching multi-capillary inlet, and the results were compared with those obtained using a single emitter. By minimizing inter-emitter electric field inhomogeneities, much larger arrays having closer emitter spacing should be feasible.

  13. Modeling of carbon nanotube-based devices: from nanoFETs to THz emitters

    NASA Astrophysics Data System (ADS)

    Di Carlo, Aldo; Pecchia, Alessandro; Petrolati, Eleonora; Paoloni, Claudio

    2006-08-01

    In the first part of the present contribution, we will report on transport calculations of nanoscaled devices based on Carbon Nanotubes obtained via self-consistent density-functional method coupled with non-equilibrium Green's function approaches. In particular, density functional tight-binding techniques are very promising due to their intrinsic efficiency. This scheme allows treatment of systems comprising a large number of atoms and enables the computation of the current flowing between two or more contacts in a fully self-consistent manner with the open boundary conditions that naturally arise in transport problems. We will give a description of this methodology and application to field effect transistor based on Carbon nanotubes. The advances in manufacturing technology are allowing new opportunities even for vacuum electron devices producing radio-frequency radiation. Modern micro and nano-technologies can overcome the typical severe limitations of vacuum tube devices. As an example, Carbon Nanotubes used as cold emitters in micron-scaled triodes allow for frequency generation up to THz region. The purpose of the second part of this contribution will be a description of the modelling of Carbon Nanotube based vacuum devices such as triodes. We will present the calculation of important figures of merit and possible realizations.

  14. Plasmons in doped finite carbon nanotubes and their interactions with fast electrons and quantum emitters

    NASA Astrophysics Data System (ADS)

    de Vega, Sandra; Cox, Joel D.; de Abajo, F. Javier García

    2016-08-01

    We study the potential of highly doped finite carbon nanotubes to serve as plasmonic elements that mediate the interaction between quantum emitters. Similar to graphene, nanotubes support intense plasmons that can be modulated by varying their level of electrical doping. These excitations exhibit large interaction with light and electron beams, as revealed upon examination of the corresponding light extinction cross-section and electron energy-loss spectra. We show that quantum emitters experience record-high Purcell factors, while they undergo strong mutual interaction mediated by their coupling to the tube plasmons. Our results show the potential of doped finite nanotubes as tunable plasmonic materials for quantum optics applications.

  15. Group-III Nitride Field Emitters

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhak; Berishev, Igor

    2008-01-01

    Field-emission devices (cold cathodes) having low electron affinities can be fabricated through lattice-mismatched epitaxial growth of nitrides of elements from group III of the periodic table. Field emission of electrons from solid surfaces is typically utilized in vacuum microelectronic devices, including some display devices. The present field-emission devices and the method of fabricating them were developed to satisfy needs to reduce the cost of fabricating field emitters, make them compatible with established techniques for deposition of and on silicon, and enable monolithic integration of field emitters with silicon-based driving circuitry. In fabricating a device of this type, one deposits a nitride of one or more group-III elements on a substrate of (111) silicon or other suitable material. One example of a suitable deposition process is chemical vapor deposition in a reactor that contains plasma generated by use of electron cyclotron resonance. Under properly chosen growth conditions, the large mismatch between the crystal lattices of the substrate and the nitride causes strains to accumulate in the growing nitride film, such that the associated stresses cause the film to crack. The cracks lie in planes parallel to the direction of growth, so that the growing nitride film becomes divided into microscopic growing single-crystal columns. The outer ends of the fully-grown columns can serve as field-emission tips. By virtue of their chemical compositions and crystalline structures, the columns have low work functions and high electrical conductivities, both of which are desirable for field emission of electrons. From examination of transmission electron micrographs of a prototype device, the average column width was determined to be about 100 nm and the sharpness of the tips was determined to be characterized by a dimension somewhat less than 100 nm. The areal density of the columns was found to about 5 x 10(exp 9)/sq cm . about 4 to 5 orders of magnitude

  16. Field emission energy distributions from individual multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fransen, M. J.; van Rooy, Th. L.; Kruit, P.

    1999-05-01

    We measured field emission energy distributions of electrons emitted from individual multiwalled carbon nanotubes mounted on tungsten tips. The shape of the energy distribution is strongly sample dependent. Some nanotube emitters exhibit an almost metallic behaviour, while others show sharply peaked energy distributions. The smallest half-width we measured was only 0.11 eV, without correction for the broadening of the energy analyzer. A common feature of both types of carbon nanotube energy spectra is that the position of the peaks in the spectrum depends linearly on the extraction voltage, unlike metallic emitters, where the position stays in the vicinity of the Fermi level. With a small modification to the field emission theory for metals we extract the distance between the highest filled energy level of the nanotube and the vacuum potential, the field on the emitter surface, the emitter radius and the emitting area, from the energy distribution and the Fowler-Nordheim plot. The last two parameters are in good agreement with transmission electron micrographs of such samples. The sharply-peaked energy distributions from other samples indicate that resonant states can exist at the top of the nanotube.

  17. Magnetic field emission gun with zirconiated emitter.

    PubMed

    Troyon, M

    1989-03-01

    A magnetic-field-superimposed field emission gun with low aberrations and equipped with a zirconiated tungsten emitter has been developed for applications where very stable high probe currents are required. It has been tested on a conventional electron microscope at 10 kV and on an electron beam testing system at 1 kV. Probe current i = 250 nA in a probe size d = 0.4 micron is obtained at 10 kV; at 1 kV the resolution is 0.1 micron with i = 5 nA, and 0.4 micron with i = 30 nA. For these probe currents, the spatial broadening effect due to electron-electron interactions in the beam is the preponderant factor limiting the probe size.

  18. Vertically aligned carbon nanotube emitter on metal foil for medical X-ray imaging.

    PubMed

    Ryu, Je Hwang; Kim, Wan Sun; Lee, Seung Ho; Eom, Young Ju; Park, Hun Kuk; Park, Kyu Chang

    2013-10-01

    A simple method is proposed for growing vertically aligned carbon nanotubes on metal foil using the triode direct current plasma-enhanced chemical vapor deposition (PECVD). The carbon nanotube (CNT) electron emitter was fabricated using fewer process steps with an acid treated metal substrate. The CNT emitter was used for X-ray generation, and the X-ray image of mouse's joint was obtained with an anode current of 0.5 mA at an anode bias of 60 kV. The simple fabrication of a well-aligned CNT with a protection layer on metal foil, and its X-ray application, were studied. PMID:24245201

  19. Photolithographic fabrication of gated self-aligned parallel electron beam emitters with a single-stranded carbon nanotube

    NASA Astrophysics Data System (ADS)

    Ho, Justin; Ono, Takahito; Tsai, Ching-Hsiang; Esashi, Masayoshi

    2008-09-01

    In this paper we report on the development of a photolithographic process to fabricate a gated-emitter array with single-stranded carbon nanotubes (CNTs) self-aligned to the center of the emitter gate using plasma-enhanced chemical vapor deposition (PECVD). Si tips are formed on a silicon wafer by anisotropic etching of Si using SiO2 as a mask. Deposition of a SiO2 insulating layer and Cr-W electrode layers creates protrusions above the Si tips. This wafer is polished, and the Cr-W on the tips is removed. Etching of the SiO2 using hydrofluoric acid is performed to expose the gated Si tip. Incorporation of a novel diffusion process produces single-stranded CNTs by depositing a thin Ni layer on the Si tips and thermally diffusing the Ni layer to yield a catalyst particle for single-stranded CNT growth. The large surface to volume ratio at the apex of the Si tip allows a Ni particle to remain to act as a catalyst to grow a single-stranded CNT for fabricating the CNT based emitter structure. Diffusion of the Ni is carried out in situ during the heating phase of the PECVD CNT growth process at 600 °C. The diameters of the observed CNTs are on the order of 20 nm. The field emission characteristics of the gated field emitters are evaluated. The measured turn-on voltage of the gated emitter is 5 V.

  20. Sharpening of field emitter tips using high-energy ions

    DOEpatents

    Musket, Ronald G.

    1999-11-30

    A process for sharpening arrays of field emitter tips of field emission cathodes, such as found in field-emission, flat-panel video displays. The process uses sputtering by high-energy (more than 30 keV) ions incident along or near the longitudinal axis of the field emitter to sharpen the emitter with a taper from the tip or top of the emitter down to the shank of the emitter. The process is particularly applicable to sharpening tips of emitters having cylindrical or similar (e.g., pyramidal) symmetry. The process will sharpen tips down to radii of less than 12 nm with an included angle of about 20 degrees. Because the ions are incident along or near the longitudinal axis of each emitter, the tips of gated arrays can be sharpened by high-energy ion beams rastered over the arrays using standard ion implantation equipment. While the process is particularly applicable for sharpening of arrays of field emitters in field-emission flat-panel displays, it can be effectively utilized in the fabrication of other vacuum microelectronic devices that rely on field emission of electrons.

  1. The dust nature of micro field emitters in accelerators

    NASA Astrophysics Data System (ADS)

    Volkov, V.; Petrov, V. M.

    2016-11-01

    Field emission currents emitted by micro-emitters are a limiting factor for the operational gradients of accelerating radio frequency (rf) cavities. Within the rf field emission theory the existence of needle like micro field emitters with very high length relative to the radius and corresponding high enhancement factor (β) is assumed. In this article the hypothesis that micro field emitters consists of long chains of conductive micro-particles is considered. Five different forces acting onto the particles in a high rf field are considered and the respective equations are derived. Some experimental observations and their explanation within this hypothesis are discussed.

  2. Nanotube field electron emission: principles, development, and applications.

    PubMed

    Li, Yunhan; Sun, Yonghai; Yeow, J T W

    2015-06-19

    There is a growing trend to apply field emission (FE) electron sources in vacuum electronic devices due to their fast response, high efficiency and low energy consumption compared to thermionic emission ones. Carbon nanotubes (CNTs) have been regarded as a promising class of electron field emitters since the 1990s and have promoted the development of FE technology greatly because of their high electrical and thermal conductivity, chemical stability, high aspect ratio and small size. Recent studies have shown that FE from CNTs has the potential to replace conventional thermionic emission in many areas and that it exhibits advanced features in practical applications. Consequently, FE from nanotubes and applications thereof have attracted much attention. This paper provides a comprehensive review of both recent advances in CNT field emitters and issues related to applications of CNT based FE. FE theories and principles are introduced, and the early development of field emitters is related. CNT emitter types and their FE performance are discussed. The current situation for applications based on nanotube FE is reviewed. Although challenges remain, the tremendous progress made in CNT FE over the past ten years indicates the field's development potential.

  3. Physical electrostatics of small field emitter arrays/clusters

    NASA Astrophysics Data System (ADS)

    Forbes, Richard G.

    2016-08-01

    This paper aims to improve qualitative understanding of electrostatic influences on apex field enhancement factors (AFEFs) for small field emitter arrays/clusters. Using the "floating sphere at emitter-plate potential" (FSEPP) model, it re-examines the electrostatics and mathematics of three simple systems of identical post-like emitters. For the isolated emitter, various approaches are noted. An adequate approximation is to consider only the effects of sphere charges and (for significantly separated emitters) image charges. For the 2-emitter system, formulas are found for charge-transfer ("charge-blunting") effects and neighbor-field effects, for widely spaced and for "sufficiently closely spaced" emitters. Mutual charge-blunting is always the dominant effect, with a related (negative) fractional AFEF-change δtwo. For sufficiently small emitter spacing c, |δtwo| varies approximately as 1/c; for large spacing, |δtwo| decreases as 1/c3. In a 3-emitter equispaced linear array, differential charge-blunting and differential neighbor-field effects occur, but differential charge-blunting effects are dominant, and cause the "exposed" outer emitters to have higher AFEF (γ0) than the central emitter (γ1). Formulas are found for the exposure ratio Ξ = γ0/γ1, for large and for sufficiently small separations. The FSEPP model for an isolated emitter has accuracy around 30%. Line-charge models (LCMs) are an alternative, but an apparent difficulty with recent LCM implementations is identified. Better descriptions of array electrostatics may involve developing good fitting equations for AFEFs derived from accurate numerical solution of Laplace's equation, perhaps with equation form(s) guided qualitatively by FSEPP-model results. In existing fitting formulas, the AFEF-reduction decreases exponentially as c increases, which is different from the FSEPP-model formulas. This discrepancy needs to be investigated, using systematic Laplace-based simulations and appropriate results

  4. Diamond-Coated Carbon Nanotubes for Efficient Field Emission

    NASA Technical Reports Server (NTRS)

    Dimitrijevic, Stevan; Withers, James C.

    2005-01-01

    Field-emission cathodes containing arrays of carbon nanotubes coated with diamond or diamondlike carbon (DLC) are undergoing development. Multiwalled carbon nanotubes have been shown to perform well as electron field emitters. The idea underlying the present development is that by coating carbon nanotubes with wideband- gap materials like diamond or DLC, one could reduce effective work functions, thereby reducing threshold electric-field levels for field emission of electrons and, hence, improving cathode performance. To demonstrate feasibility, experimental cathodes were fabricated by (1) covering metal bases with carbon nanotubes bound to the bases by an electrically conductive binder and (2) coating the nanotubes, variously, with diamond or DLC by plasma-assisted chemical vapor deposition. In tests, the threshold electric-field levels for emission of electrons were reduced by as much as 40 percent, relative to those of uncoated- nanotube cathodes. Coating with diamond or DLC could also make field emission-cathodes operate more stably by helping to prevent evaporation of carbon from nanotubes in the event of overheating of the cathodes. Cathodes of this type are expected to be useful principally as electron sources for cathode-ray tubes and flat-panel displays.

  5. Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

    PubMed

    Sun, Bin; Wang, Yan; Ding, Guifu

    2016-12-01

    This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray. PMID:27401089

  6. Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Wang, Yan; Ding, Guifu

    2016-07-01

    This paper reports a novel implanting micromachining technology. By using this method, for the first time, we could implant nano-scale materials into milli-scale metal substrates at room temperature. Ni-based flexible carbon nanotube (CNT) field emitters were fabricated by the novel micromachining method. By embedding CNT roots into Ni foil using polymer matrix as transfer media, effective direct contact between Ni and CNTs was achieved. As a result, our novel emitter shows relatively good field emission properties such as low turn-on field and good stability. Moreover, the emitter was highly flexible with preservation of the field emission properties. The excellent field emission characteristics attributed to the direct contact and the strong interactions between CNTs and the substrate. To check the practical application of the novel emitter, a simple X-ray imaging system was set up by modifying a traditional tube. The gray shadow that appears on the sensitive film after being exposed to the radiation confirms the successful generation of X-ray.

  7. Process for making a cesiated diamond film field emitter and field emitter formed therefrom

    DOEpatents

    Anderson, D.F.; Kwan, S.W.

    1999-03-30

    A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10{sup {minus}4} Torr and about 10{sup {minus}7} Torr, (b) increasing the vacuum to at least about 10{sup {minus}8} Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters. 2 figs.

  8. Process for making a cesiated diamond film field emitter and field emitter formed therefrom

    DOEpatents

    Anderson, David F.; Kwan, Simon W.

    1999-01-01

    A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10.sup.-4 Torr and about 10.sup.-7 Torr, (b) increasing the vacuum to at least about 10.sup.-8 Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters.

  9. Photolithographic fabrication of gated self-aligned parallel electron beam emitters with a single-stranded carbon nanotube.

    PubMed

    Ho, Justin; Ono, Takahito; Tsai, Ching-Hsiang; Esashi, Masayoshi

    2008-09-10

    In this paper we report on the development of a photolithographic process to fabricate a gated-emitter array with single-stranded carbon nanotubes (CNTs) self-aligned to the center of the emitter gate using plasma-enhanced chemical vapor deposition (PECVD). Si tips are formed on a silicon wafer by anisotropic etching of Si using SiO(2) as a mask. Deposition of a SiO(2) insulating layer and Cr-W electrode layers creates protrusions above the Si tips. This wafer is polished, and the Cr-W on the tips is removed. Etching of the SiO(2) using hydrofluoric acid is performed to expose the gated Si tip. Incorporation of a novel diffusion process produces single-stranded CNTs by depositing a thin Ni layer on the Si tips and thermally diffusing the Ni layer to yield a catalyst particle for single-stranded CNT growth. The large surface to volume ratio at the apex of the Si tip allows a Ni particle to remain to act as a catalyst to grow a single-stranded CNT for fabricating the CNT based emitter structure. Diffusion of the Ni is carried out in situ during the heating phase of the PECVD CNT growth process at 600 °C. The diameters of the observed CNTs are on the order of 20 nm. The field emission characteristics of the gated field emitters are evaluated. The measured turn-on voltage of the gated emitter is 5 V. PMID:21828872

  10. Field emission characteristics of regular arrays of carbon nanotubes.

    PubMed

    Al-Ghamdi, A A; Al-Heniti, S; Al-Hazmi, F S; Faidah, Adel S; Shalaan, E; Husain, M

    2014-06-01

    The developments of electronic devices based on micron-sized vacuum electron sources during the last decades have triggered intense research on highly efficient carbon based thin film electron emitters. The synthesis of massive arrays of carbon nanotubes that are oriented on patterned Fe catalyst deposited on quartz substrates is reported. The well-ordered nanotubes can be used as electron field emission arrays. Scaling up of the synthesis process should be entirely compatible with the existing semiconductor processes, and should allow the development of nanotubes devices integrated into future technology. The emission from carbon nanotubes array is explained by Fowler-Nordheim tunneling of electrons from tip-like structures in the nanometer range, which locally amplify the applied field by the field enhancement factor beta. We found that the low pressure chemical vapour deposition (LPCVD) system can produce nanotubes capable of excellent emission currents at lower voltages. The carbon nanotubes array shows good field emission with turn on field E(alpha) = 1.30 V/microm at the current density of 3.50 mA/cm2 with enhancement factor beta = 1.22 x 10(2).

  11. Field emitter arrays for plasma and microwave source applications

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.

    1999-05-01

    Field emitter arrays (FEAs) stand to strongly impact device performance when physical size, weight, power consumption, beam current, and/or high pulse repetition frequencies are an issue. FEAs are capable of instant ON/OFF performance, high brightness, high current density, large transconductance to capacitance ratio, and low voltage operation characteristics. Advanced microwave power tubes, and in particular, inductive output amplifiers, are by far the most technically challenging use to date. Other important uses include, e.g., electron sources for micropropulsion systems-Hall thrusters-and tethers for satellites, and (the most widely pursued application) field emission displays. The characteristics of field emitters that make them attractive to such applications shall be surveyed. A thorough analytical model of a field emitter array, beginning with a review of the nature of field emission and continuing with an analytical model of a single emitter and the operation of an array of emitters, shall be presented. In particular, attention shall be directed towards those features of FEAs that render them attractive as cold cathode candidates for electron beam generation. Tip characteristics, such as emission distribution, and array operation, such as space charge effects, will be analyzed in the context of the model. Finally, restricting attention to microwave applications, the performance of a tapered-helix inductive output amplifier to highlight the advantages of high frequency emission gating of the electron beam in a power tube shall be investigated.

  12. Wide-range Vacuum Measurements from MWNT Field Emitters Grown Directly on Stainless Steel Substrates.

    PubMed

    Zhang, Jian; Li, Detian; Zhao, Yangyang; Cheng, Yongjun; Dong, Changkun

    2016-12-01

    The field emission properties and the vacuum measurement application are investigated from the multi-walled carbon nanotubes (MWNTs) grown directly on catalytic stainless steel substrates. The MWNT emitters present excellent emission properties after the acid treatment of the substrate. The MWNT gauge is able to work down to the extreme-high vacuum (XHV) range with linear measurement performance in wide range from 10(-11) to 10(-6) Torr. A modulating grid is attempted with improved gauge sensitivity. The extension of the lower pressure limit is attributed largely to low outgassing effect due to direct growth of MWNTs and justified design of the electron source.

  13. Ultra-Sensitivity Glucose Sensor Based on Field Emitters

    PubMed Central

    2009-01-01

    A new glucose sensor based on field emitter of ZnO nanorod arrays (ZNA) was fabricated. This new type of ZNA field emitter-based sensor shows high sensitivity with experimental limit of detection of 1 nM glucose solution and a detection range from 1 nM to 50 μM in air at room temperature, which is lower than that of glucose sensors based on surface plasmon resonance spectroscopy, fluorescence signal transmission, and electrochemical signal transduction. The new glucose sensor provides a key technique for promising consuming application in biological system for detecting low levels of glucose on single cells or bacterial cultures. PMID:20596378

  14. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices. PMID:27607498

  15. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  16. Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission

    NASA Astrophysics Data System (ADS)

    Chen, Yi Wen; Miao, H. Y.; Zhang, Mei; Liang, Richard; Zhang, Chuck; Wang, Ben

    2009-08-01

    This study reports a laser irradiation process to enhance the field emission properties of buckypaper, which is a thin sheet of high-loading carbon nanotube networks. The scanning laser treated the selected regions of buckypaper to activate carbon nanotube (CNT) emitters. This post-process causes a decrease in turn-on field and increases the field enhancement factor (β), luminance intensity, and uniformity of buckypaper emitters. The phosphorescence luminance intensity and uniformity of buckypaper emitters are measured and characterized. The low turn-on field of 0.56 V µm-1, highest average luminance intensity of 235.9/255, and uniformity of 99.8% are achieved by adjusting the machining parameters of laser power, laser lens motion speed, laser resolution, laser beam size, and pattern orientation. Those parameters relate to the field emission properties of β, turn-on electric field, luminance intensity, and uniformity. Using design of experiment (DOE) methodology, the optimal parameter settings for high and uniform electron emission of a buckypaper emitter are obtained within fewer experimental runs.

  17. Modeling field emitter arrays using nonlinear line charge distribution

    NASA Astrophysics Data System (ADS)

    Biswas, Debabrata; Singh, Gaurav; Kumar, Raghwendra

    2016-09-01

    Modeling high aspect ratio field emitter arrays is a computational challenge due to the enormity of the resources involved. The line charge model (LCM) provides an alternate semi-analytical tool that has been used to model both infinite as well as finite sized arrays. It is shown that the linearly varying charge density used in the LCM generically mimics ellipsoidal emitters rather than a Cylindrical-Post-with-an-Ellipsoidal-Tip (CPET) that is typical of nanowires. Furthermore, generalizing the charge density beyond the linear regime allows for modeling shapes that are closer to a CPET. Emitters with a fixed base radius and a fixed apex radius are studied with a view to understanding the effect of nonlinearity on the tip enhancement factor and the emitter current in each case. Furthermore, an infinite square array of the CPET emitters is studied using the nonlinear line charge model, each having a height h =1500 μm and a base radius b =1.5 μm . It is found that for moderate external field strengths ( 0.3 -0.4 V /μm ), the array current density falls sharply for lattice spacings smaller than 4/3 h . Beyond this value, the maximal array current density can be observed over a range of lattice spacings and falls gradually thereafter.

  18. Synthesis, characterization and field emission properties of nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Dong, Lifeng

    2005-11-01

    with different work functions and explore new emitter candidates, nanowires with various compositions (CdS, ZnO, SiOx, WOx, and WS 2), diameters, morphologies and crystal structures were synthesized on tungsten substrates. In comparison to carbon nanotubes, these nanowires exhibit higher turn-on fields and threshold fields, but demonstrate similar noise power spectral of a 1/f3/2 characteristic from 1 Hz to 6 KHz.

  19. An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes.

    PubMed

    Mori, Tatsuya; Yamauchi, Yohei; Honda, Satoshi; Maki, Hideyuki

    2014-06-11

    The integration of high-speed light emitters on silicon chips is an important issue that must be resolved in order to realize on-chip or interchip optical interconnects. Here, we demonstrate the first electrically driven ultrafast carbon nanotube (CNT) light emitter based on blackbody radiation with a response speed (1-10 Gbps) that is more than 10(6) times higher than that of conventional incandescent emitters and is either higher than or comparable to that of light-emitting diodes or laser diodes. This high-speed response is explained by the extremely fast temperature response of the CNT film, which is dominated by the small heat capacity of the CNT film and its high heat dissipation to the substrate. Moreover, we experimentally demonstrate 140 ps width pulsed light generation and real-time optical communication. This CNT-based emitter with the advantages of ultrafast response speeds, a small footprint, and integration on silicon can enable novel architectures for optical interconnects, photonic, and optoelectronic integrated circuits.

  20. Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Martín-Moreno, Luis; de Abajo, F. Javier García; García-Vidal, Francisco J.

    2015-10-01

    We show that a single quantum emitter can efficiently couple to the tunable plasmons of a highly doped single-wall carbon nanotube (SWCNT). Plasmons in these quasi-one-dimensional carbon structures exhibit deep subwavelength confinement that pushes the coupling efficiency close to 100% over a very broad spectral range. This phenomenon takes place for distances and tube diameters comprising the nanometer and micrometer scales. In particular, we find a β factor ≈1 for QEs placed 1-100 nm away from SWCNTs that are just a few nanometers in diameter, while the corresponding Purcell factor exceeds 106.

  1. Imaging of alpha emitters in a field environment

    NASA Astrophysics Data System (ADS)

    Sand, Johan; Ihantola, Sakari; Peräjärvi, Kari; Nicholl, Adrian; Hrnecek, Erich; Toivonen, Harri; Toivonen, Juha

    2015-05-01

    Cameras sensitive to ultraviolet light can be applied to detection of surface contamination induced by alpha particle emitters. When absorbed in air, alpha particles excite nitrogen molecules and the radiative relaxation creates a faint light emission. This radioluminescence can be used for detection purposes, provided that background lighting levels are low. In this work, three low-light sensitive camera technologies (CCD, EMCCD and ICCD) were utilized in a nuclear facility, and their performance in detecting alpha emitters was investigated. The results show that low readout noise is essential for the detection of radioluminescence, as it allows short exposure times to be used. The ICCD camera was found to perform slightly better than the EMCCD camera in the field, while both enable the detection of MBq level alpha activities in 100 s in the test configuration (camera-target distance 0.5 m). Overall, the cameras and techniques used in this study are shown to be effective in detecting alpha emitters in a standard glovebox. This technology can be applied to nuclear security, safety and safeguards, when stand-off detection of alpha emitters is required.

  2. Diamond coated silicon field emitter array

    SciTech Connect

    S. Albin; W. Fu; A. Varghese; A. C. Lavarias; G. R. Myneni

    1999-07-01

    Diamond coated silicon tip arrays, with and without a self-aligned gate, were fabricated, and current-voltage characteristics of 400 tips were measured. Diamond films were grown uniformly on Si tips using microwave plasma after nucleation with 10 nm diamond suspension and substrate bias. An emission current of 57 ?A was obtained at 5 V from the ungated array tips separated from an anode at 2 ?m. In the case of the gated arrays with 1.5 ?m aperture, an emission current of 3.4 ?A was measured at a gate voltage of 80 V for an anode separation of 200 ?m. The turn-on voltages for these two types of devices were 0.2 and 40 V, respectively. Diamond coated Si tip arrays have potential applications in field emission based low voltage vacuum electronic devices and microsensors.

  3. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    SciTech Connect

    Hojati-Talemi, Pejman; Gibson, Mark A.; East, Daniel; Simon, George P.

    2011-11-07

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  4. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  5. A thin film triode type carbon nanotube field emission cathode

    NASA Astrophysics Data System (ADS)

    Sanborn, Graham; Turano, Stephan; Collins, Peter; Ready, W. Jud

    2013-01-01

    The field electron emission of carbon nanotubes has been heavily studied over the past two decades for various applications, such as in display technologies, microwave amplifiers, and spacecraft propulsion. However, a commercializable lightweight and internally gated electron source has yet to be realized. This work presents the fabrication and testing of a novel internally gated carbon nanotube field electron emitter. Several specific methods are used to prevent electrical shorting of the gate layer, a common failure for internally gated devices. A unique design is explored where the etch pits extend into the silicon substrate and isotropic etching is used to create a lateral buffer zone between the gate and carbon nanotubes. Carbon nanotubes are self-aligned to and within 10 microns from the gate, which creates large electric fields at low potential inputs. Initial tests confirm high field emission performance with an anode current density (based on total area of the device) of 293 μA cm-2 and a gate current density of 1.68 mA cm-2 at 250 V.

  6. Spacecraft charging control by thermal, field emission with lanthanum-hexaboride emitters

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1978-01-01

    Thermal, field emitters of lanthanum (or perhaps cerium) hexaboride (LaB6) with temperature variability up to about 1500K are suggested for spacecraft charging control. Such emitters operate at much lower voltages with considerably more control and add plasma-diagnostic versatility. These gains should outweigh the additional complexity of providing heat for the LaB6 thermal, field emitter.

  7. The effects of emitter-tied field plates on lateral PNP ionizing radiation response

    SciTech Connect

    Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R.; Pease, R.L.; Fleetwood, D.M.; Kosier, S.L.

    1998-03-01

    Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps.

  8. A novel inexpensive device for the electrochemical generation of metallic emitters for field desorption.

    PubMed

    Rechsteiner, C E; Mathis, D E; Bursey, M M; Buck, R P

    1977-02-01

    Details for the construction of a novel, inexpensive device for the electrochemical generation of metallic emitters for field desorption mass spectrometry are described. Use of the device for the generation of cobalt and nickel emitters is demonstrated. PMID:836944

  9. Generalized Fowler-Nordheim Theory of Field Emission of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Chen, Lu

    2008-07-01

    Based on the low-energy band structure of carbon nanotubes (CNs), we develop a generalized Fowler-Nordheim theory of the CN field emission, in which the behavior of the current-voltage (I-V) characteristics depends on the electric field and the diameter of the CNs. This formalism reveals the key differences of field emission between conventional bulk metallic emitters and low-dimensional emitters and gives a clear physical understanding of the non-Fowler-Nordheim feature of the I-V characteristics of the CN field emission.

  10. Generalized Fowler-Nordheim theory of field emission of carbon nanotubes.

    PubMed

    Liang, Shi-Dong; Chen, Lu

    2008-07-11

    Based on the low-energy band structure of carbon nanotubes (CNs), we develop a generalized Fowler-Nordheim theory of the CN field emission, in which the behavior of the current-voltage (I-V) characteristics depends on the electric field and the diameter of the CNs. This formalism reveals the key differences of field emission between conventional bulk metallic emitters and low-dimensional emitters and gives a clear physical understanding of the non-Fowler-Nordheim feature of the I-V characteristics of the CN field emission. PMID:18764229

  11. Field emission and growth of fullerene nanotubes

    SciTech Connect

    Rinzler, A.G.; Hafner, J.H.; Nilolaev, P.; Colbert, D.T.; Smalley, R.E.

    1994-11-01

    Efforts to control the growth of individual carbon nanotubes from nanotube seed crystals have led to a characterization of their field-induced electron emission behavior. The application of a bias voltage in the growth apparatus was motivated by the prolific formation of nanotubes in the carbon are growth method, in which the electric field appears to play a central role. The authors report here the ability to achieve various tube tip configurations by the controlled application of voltage, heat and chemicals to an individual nanotube, and that these states are well characterized by the emission currents they induce.

  12. Origin of enhanced field emission characteristics postplasma treatment of multiwalled carbon nanotube array

    SciTech Connect

    Lee, Kyu; Lim, Seong Chu; Lee, Young Hee; Choi, Young Chul

    2008-08-11

    Field emission properties of chemical-vapor-deposition-grown multiwalled carbon nanotubes (MWCNTs) with plasma treatment have been investigated. Origin of the enhanced field emission current was interpreted in terms of surface morphology of MWCNTs, work function, field enhancement factor, and emission area. Contrary to the general belief, the change in the work function increased slightly with the plasma treatment time, whereas the field enhancement factor decreased. We found that the number of emittable MWCNTs played a dominant role in the current enhancement.

  13. Discrete space charge affected field emission: Flat and hemisphere emitters

    SciTech Connect

    Jensen, Kevin L.; Shiffler, Donald A.; Tang, Wilkin; Rittersdorf, Ian M.; Lebowitz, Joel L.; Harris, John R.; Lau, Y. Y.; Petillo, John J.; Luginsland, John W.

    2015-05-21

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surface roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.

  14. Effect of Purity and Substrate on Field Emission Properties of Multi-walled Carbon Nanotubes

    PubMed Central

    2007-01-01

    Multi-walled carbon nanotubes (MWNT) have been synthesized by chemical vapour decomposition (CVD) of acetylene over Rare Earth (RE) based AB2(DyNi2) alloy hydride catalyst. The as-grown carbon nanotubes were purified by acid and heat treatments and characterized using powder X-ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Thermo Gravimetric Analysis and Raman Spectroscopy. Fully carbon based field emitters have been fabricated by spin coating a solutions of both as-grown and purified MWNT and dichloro ethane (DCE) over carbon paper with and without graphitized layer. The use of graphitized carbon paper as substrate opens several new possibilities for carbon nanotube (CNT) field emitters, as the presence of the graphitic layer provides strong adhesion between the nanotubes and carbon paper and reduces contact resistance. The field emission characteristics have been studied using an indigenously fabricated set up and the results are discussed. CNT field emitter prepared by spin coating of the purified MWNT–DCE solution over graphitized carbon paper shows excellent emission properties with a fairly stable emission current over a period of 4 h. Analysis of the field emission characteristics based on the Fowler–Nordheim (FN) theory reveals current saturation effects at high applied fields for all the samples. PMID:21798103

  15. Effect of Purity and Substrate on Field Emission Properties of Multi-walled Carbon Nanotubes.

    PubMed

    Rakhi, Rb; Sethupathi, K; Ramaprabhu, S

    2007-06-21

    Multi-walled carbon nanotubes (MWNT) have been synthesized by chemical vapour decomposition (CVD) of acetylene over Rare Earth (RE) based AB2(DyNi2) alloy hydride catalyst. The as-grown carbon nanotubes were purified by acid and heat treatments and characterized using powder X-ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Thermo Gravimetric Analysis and Raman Spectroscopy. Fully carbon based field emitters have been fabricated by spin coating a solutions of both as-grown and purified MWNT and dichloro ethane (DCE) over carbon paper with and without graphitized layer. The use of graphitized carbon paper as substrate opens several new possibilities for carbon nanotube (CNT) field emitters, as the presence of the graphitic layer provides strong adhesion between the nanotubes and carbon paper and reduces contact resistance. The field emission characteristics have been studied using an indigenously fabricated set up and the results are discussed. CNT field emitter prepared by spin coating of the purified MWNT-DCE solution over graphitized carbon paper shows excellent emission properties with a fairly stable emission current over a period of 4 h. Analysis of the field emission characteristics based on the Fowler-Nordheim (FN) theory reveals current saturation effects at high applied fields for all the samples.

  16. Extension of the general thermal field equation for nanosized emitters

    NASA Astrophysics Data System (ADS)

    Kyritsakis, A.; Xanthakis, J. P.

    2016-01-01

    During the previous decade, Jensen et al. developed a general analytical model that successfully describes electron emission from metals both in the field and thermionic regimes, as well as in the transition region. In that development, the standard image corrected triangular potential barrier was used. This barrier model is valid only for planar surfaces and therefore cannot be used in general for modern nanometric emitters. In a recent publication, the authors showed that the standard Fowler-Nordheim theory can be generalized for highly curved emitters if a quadratic term is included to the potential model. In this paper, we extend this generalization for high temperatures and include both the thermal and intermediate regimes. This is achieved by applying the general method developed by Jensen to the quadratic barrier model of our previous publication. We obtain results that are in good agreement with fully numerical calculations for radii R > 4 nm, while our calculated current density differs by a factor up to 27 from the one predicted by the Jensen's standard General-Thermal-Field (GTF) equation. Our extended GTF equation has application to modern sharp electron sources, beam simulation models, and vacuum breakdown theory.

  17. Quantum emitters dynamically coupled to a quantum field

    NASA Astrophysics Data System (ADS)

    Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.

    2013-12-01

    We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system's quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.

  18. High-density Au nanorod optical field-emitter arrays

    NASA Astrophysics Data System (ADS)

    Hobbs, R. G.; Yang, Y.; Keathley, P. D.; Swanwick, M. E.; Velásquez-García, L. F.; Kärtner, F. X.; Graves, W. S.; Berggren, K. K.

    2014-11-01

    We demonstrate the design, fabrication, characterization, and operation of high-density arrays of Au nanorod electron emitters, fabricated by high-resolution electron beam lithography, and excited by ultrafast femtosecond near-infrared radiation. Electron emission characteristic of multiphoton absorption has been observed at low laser fluence, as indicated by the power-law scaling of emission current with applied optical power. The onset of space-charge-limited current and strong optical field emission has been investigated so as to determine the mechanism of electron emission at high incident laser fluence. Laser-induced structural damage has been observed at applied optical fields above 5 GV m-1, and energy spectra of emitted electrons have been measured using an electron time-of-flight spectrometer.

  19. Quantum emitters dynamically coupled to a quantum field

    SciTech Connect

    Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.

    2013-12-04

    We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system’s quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.

  20. Field Emission Characteristics of the Structure of Vertically Aligned Carbon Nanotube Bundles.

    PubMed

    Lin, Pao-Hung; Sie, Cong-Lin; Chen, Ching-An; Chang, Hsuan-Chen; Shih, Yi-Ting; Chang, Hsin-Yueh; Su, Wei-Jhih; Lee, Kuei-Yi

    2015-12-01

    In this study, we performed thermal chemical vapor deposition for growing vertically aligned carbon nanotube (VACNT) bundles for a field emitter and applied photolithography for defining the arrangement pattern to simultaneously compare square and hexagonal arrangements by using two ratios of the interbundle distance to the bundle height (R) of field emitters. The hexagon arrangement with R = 2 had the lowest turn-on electric field (E to) and highest enhancement factor, whereas the square arrangement with R = 3 had the most stable field emission (FE) characteristic. The number density can reveal the correlation to the lowest E to and highest enhancement factor more effectively than can the R or L. The fluorescent images of the synthesized VACNT bundles manifested the uniformity of FE currents. The results of our study indicate the feasibility of applying the VACNT field emitter arrangement to achieve optimal FE performance. PMID:26183388

  1. Carbon nanotube superlattices in a magnetic field

    NASA Astrophysics Data System (ADS)

    Jaskólski, W.; Pelc, M.

    The influence of magnetic field on the band structure of carbon nanotube superlattices is investigated. In particular, we study superlattices built of finite sections of (6,6) and (12,0) tubes connected by pentagon/heptagon topological defects. Magnetic field is parallel to the axis of the superlattice. We demonstrate that the superlattice band structure does not show periodicity with the flux quantum, which is typical for pure carbon nanotubes.

  2. Field Emitter Arrays and Displays Produced by Ion Tracking Lithography

    SciTech Connect

    Felter, T E; Musket, R G; Bernhardt, A F

    2004-12-28

    When ions of sufficient electronic energy loss traverse a dielectric film or foil, they alter the chemical bonding along their nominally straight path within the material. A suitable etchant can quickly dissolve these so-called latent tracks leaving holes of small diameter ({approx}10nm) but long length - several microns. Continuing the etching process gradually increases the diameter reproducibly and uniformly. The trackable medium can be applied as a uniform film onto large substrates. The small, monodisperse holes produced by this track etching can be used in conjunction with additional thin film processing to create functional structures attached to the substrate. For example, Lawrence Livermore National Laboratory and Candescent Technologies Corporation (CTC) co-developed a process to make arrays of gated field emitters ({approx}100nm diameter electron guns) for CTC's ThinCRT{trademark} displays, which have been fabricated to diagonal dimensions > 13. Additional technological applications of ion tracking lithography will be briefly covered.

  3. Electric Field Screening by the Proximity of Two Knife-Edge Field Emitters of Finite Width

    NASA Astrophysics Data System (ADS)

    Wong, P.; Tang, W.; Lau, Y. Y.; Hoff, B.

    2015-11-01

    Field emitter arrays have the potential to provide high current density, low voltage operation, and high pulse repetition for radar and communication. It is well known that packing density of the field emitter arrays significantly affect the emission current. Previously we calculated analytically the electric field profile of two-dimensional knife-edge cathodes with arbitrary separation by using a Schwarz-Christoffel transformation. Here we extend this previous work to include the finite width of two identical emitters. From the electric field profile, the field enhancement factor, thereby the severity of the electric field screening, are determined. It is found that for two identical emitters with finite width, the magnitude of the electric field on the knife-edge cathodes depends strongly on the ratio h / a and h / r , where h is the height of the knife-edge cathode, 2a is the distance between the cathodes, and 2 r represents their width. Particle-in-cell simulations are performed to compare with the analytical results on the emission current distribution. P. Y. Wong was supported by a Directed Energy Summer Scholar internship at Air Force Research Laboratory, Kirtland AFB, and by AFRL Award No. FA9451-14-1-0374.

  4. Hemispherical reflectance and emittance properties of carbon nanotubes coatings at infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Quijada, Manuel A.; Hagopian, John G.; Getty, Stephanie; Kinzer, Raymond E., Jr.; Wollack, Edward J.

    2011-10-01

    Recent visible wavelength observations of Multiwalled Carbon Nanotubes (MWCNT) coatings have revealed that they represent the blackest materials known in nature with a Total Hemispherical Reflectance (THR) of less than 0.25%. This makes them exceptionally good as absorbers, with the potential to provide order-ofmagnitude improvement in stray-light suppression over current black surface treatments when used in an optical system. Here we extend the characterization of this class of materials into the infrared spectral region to further evaluate their potential for use on instrument baffles for stray-light suppression and to manage spacecraft thermal properties through radiant heat transfer process. These characterizations will include the wavelength-dependent Total Hemispherical Reflectance (THR) properties in the mid- and far-infrared spectral regions (2-110 μm). Determination of the temperature-dependent emittance will be investigated in the temperature range of 40 to 300 K. These results will be compared with other more conventional black coatings such as Acktar Fractal Black or Z306 coatings among others.

  5. Interpretation of the field enhancement factor for electron emission from carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Smith, R. C.; Silva, S. R. P.

    2009-07-01

    The local electric fields in the vicinity of the tips of metallic nanotubes are calculated. The variation in the field enhancement factor as a function of internanotube separation, anode-substrate separation, and height and radius of the nanotube is reported. Calculations show that the field induced electron emission current, based on the Fowler-Nordheim theory, is reduced when the intertube separation is less than twice the height of the nanotube. The location of the anode plane is shown to be important when the anode-substrate separation is less than three times the height of the nanotube. The results also predict that the macroscopic threshold field for electron emission should decrease as the anode-substrate separation D decreases. For separations greater than three times the height of the nanotube, the threshold field becomes constant and independent of anode-cathode geometry. Conversely, the manner in which applied electric field is defined is crucial if the results are be understood better. Experimental field emission measurements made on an isolated carbon nanotube confirms the need for a new interpretation of the electric field around stand alone point emitters.

  6. Emission Characteristics of Graphite Nanofiber Field Emitter for Field Emission Display

    NASA Astrophysics Data System (ADS)

    Ushirozawa, Mizumoto; Hagiwara, Kei; Yamamoto, Toshihiro; Yokoo, Kuniyoshi

    Graphite nanofiber (GNF) is a field emission material consisting of intricately tangled nano-sized carbon fibers and has similar field emission characteristics to CNT. An important issue in achieving practical use of FED (field emission display) using carbon nano-materials is how to attain emission uniformity. With the objective of uniformity, field emission characteristics of GNF emitter were examined using a scanning Faraday cup emission profiler. The current density of emitted electrons changed considerably over the emitting area at a low field, as high as two orders in intensity in a measuring emitter area of 1 mm2. However, uniformity was significantly improved due to current saturation at a high field. This paper discusses the current saturation in field emission of GNF from the space-charge effect of emitted electrons.

  7. Nanostructured ultrafast silicon-tip optical field-emitter arrays.

    PubMed

    Swanwick, Michael E; Keathley, Phillip D; Fallahi, Arya; Krogen, Peter R; Laurent, Guillaume; Moses, Jeffrey; Kärtner, Franz X; Velásquez-García, Luis F

    2014-09-10

    Femtosecond ultrabright electron sources with spatially structured emission are an enabling technology for free-electron lasers, compact coherent X-ray sources, electron diffractive imaging, and attosecond science. In this work, we report the design, modeling, fabrication, and experimental characterization of a novel ultrafast optical field emission cathode comprised of a large (>100,000 tips), dense (4.6 million tips·cm(-2)), and highly uniform (<1 nm tip radius deviation) array of nanosharp high-aspect-ratio silicon columns. Such field emitters offer an attractive alternative to UV photocathodes while providing a direct means of structuring the emitted electron beam. Detailed measurements and simulations show pC electron bunches can be generated in the multiphoton and tunneling regime within a single optical cycle, enabling significant advances in electron diffractive imaging and coherent X-ray sources on a subfemtosecond time scale, not possible before. At high charge emission yields, a slow rollover in charge is explained as a combination of the onset of tunneling emission and the formation of a virtual cathode. PMID:25075552

  8. Field emission from hydrogen titanate nanotubes

    NASA Astrophysics Data System (ADS)

    Chakraborty, Indrani; Chatterjee, Sriparna; Ayyub, Pushan

    2011-10-01

    Hydrothermally synthesized hydrogen titanate (H2Ti3O7) nanotube meshes and arrays exhibit excellent field emission characteristics. The turn-on field is as low as 1.4 V μm-1 for the mesh and 2.6 V μm-1 for the array, while the electric field corresponding to an emission current density of 10 μA cm-2 is 2 V μm-1 (mesh) and 3.8 V μm-1 (array). The H2Ti3O7 nanotube mesh has one of the lowest reported turn-on voltages and highest enhancement factors. The emission current also shows good long term stability. We attribute the efficient field emission to the presence of mid-gap states arising from the negative surface charge on the H2Ti3O7 nanotubes.

  9. Elementary framework for cold field emission from quantum-confined, non-planar emitters

    SciTech Connect

    Patterson, A. A. Akinwande, A. I.

    2015-05-07

    For suitably small field emitters, the effects of quantum confinement at the emitter tip may have a significant impact on the emitter performance and total emitted current density (ECD). Since the geometry of a quantum system uniquely determines the magnitude and distribution of its energy levels, a framework for deriving ECD equations from cold field electron emitters of arbitrary geometry and dimensionality is developed. In the interest of obtaining semi-analytical ECD equations, the framework is recast in terms of plane wave solutions to the Schrödinger equation via the use of the Jeffreys-Wentzel-Kramers-Brillouin approximation. To demonstrate the framework's consistency with our previous work and its capabilities in treating emitters with non-planar geometries, ECD equations were derived for the normally unconfined cylindrical nanowire (CNW) and normally confined (NC) CNW emitter geometries. As a function of the emitter radius, the NC CNW emitter ECD profile displayed a strong dependence on the Fermi energy and had an average ECD that exceeded the Fowler-Nordheim equation for typical values of the Fermi energy due to closely spaced, singly degenerate energy levels (excluding electron spin), comparatively large electron supply values, and the lack of a transverse, zero-point energy. Such characteristics suggest that emitters with non-planar geometries may be ideal for emission from both an electron supply and electrostatics perspective.

  10. Magnetoexciton in nanotube under external electric field

    NASA Astrophysics Data System (ADS)

    Garcia Russi, L. F.; Paredes Gutiérrez, H.; Santos, Y. F.; Mikhailov, I. D.

    2016-08-01

    We study the Aharonov-Bohm oscillation of the energy levels of an electron-hole pair confined in a narrow nanotube in the presence of the magnetic field applied along the symmetry axis. We show that the electric field applied at the same direction makes the oscillation more pronounced.

  11. Field electron emission enhancement of graphenated MWCNTs emitters following their decoration with Au nanoparticles by a pulsed laser ablation process

    NASA Astrophysics Data System (ADS)

    Gautier, L.-A.; Le Borgne, V.; Delegan, N.; Pandiyan, R.; El Khakani, M. A.

    2015-01-01

    A plasma-enhanced chemical vapor deposition (PECVD) process was adapted to alter the growth of multiwall carbon nanotubes (MWCNTs) so that graphene sheets grow out of their tips. Gold nanoparticle (Au-NP) decoration of graphenated MWCNTs (g-MWCNTs) was obtained by subsequent decoration by a pulsed laser deposition (PLD) process. By varying the number of laser ablation pulses (NLp) in the PLD process, we were able to control the size of the gold nanoparticles and the surface coverage of the decorated g-MWCNTs. The presence of Au-NPs, preferentially located at the tip of the g-MWCNTs emitters, is shown to significantly improve the field electron emission (FEE) properties of the global g-MWCNT/Au-NP nanohybrid films. Indeed, the electric field needed to extract a current density of 0.1 μA cm-2 from the g-MWCNT/Au-NP films was decreased from 2.68 V μm-1 to a value as low as 0.96 V μm-1. On the other hand, UV photoelectron spectroscopy (UPS) characterization revealed a decrease in the global work function of the Au-decorated g-MWCNT nanohybrids compared to that of bare g-MWCNT emitters. Surprisingly, the work function of g-MWCNT was found to decrease from 4.9 to 4.7 eV with the addition of Au-NPs—a value lower than the work function of both materials worth 5.2 and 4.9 eV for gold and g-MWCNT, respectively. Our results show that the NLp dependence of the FEE characteristics of the g-MWCNT/Au-NP emitters correlates well with their work function changes. Fowler-Nordheim-theory-based calculations suggest that the significant FEE enhancement of the emitters is also caused by the Au-NPs acting as nanoscale electric field enhancers.

  12. Field electron emission enhancement of graphenated MWCNTs emitters following their decoration with Au nanoparticles by a pulsed laser ablation process.

    PubMed

    Gautier, L-A; Le Borgne, V; Delegan, N; Pandiyan, R; El Khakani, M A

    2015-01-30

    A plasma-enhanced chemical vapor deposition (PECVD) process was adapted to alter the growth of multiwall carbon nanotubes (MWCNTs) so that graphene sheets grow out of their tips. Gold nanoparticle (Au-NP) decoration of graphenated MWCNTs (g-MWCNTs) was obtained by subsequent decoration by a pulsed laser deposition (PLD) process. By varying the number of laser ablation pulses (N(Lp)) in the PLD process, we were able to control the size of the gold nanoparticles and the surface coverage of the decorated g-MWCNTs. The presence of Au-NPs, preferentially located at the tip of the g-MWCNTs emitters, is shown to significantly improve the field electron emission (FEE) properties of the global g-MWCNT/Au-NP nanohybrid films. Indeed, the electric field needed to extract a current density of 0.1 μA cm(-)(2) from the g-MWCNT/Au-NP films was decreased from 2.68 V μm(-1) to a value as low as 0.96 V μm(-1). On the other hand, UV photoelectron spectroscopy (UPS) characterization revealed a decrease in the global work function of the Au-decorated g-MWCNT nanohybrids compared to that of bare g-MWCNT emitters. Surprisingly, the work function of g-MWCNT was found to decrease from 4.9 to 4.7 eV with the addition of Au-NPs-a value lower than the work function of both materials worth 5.2 and 4.9 eV for gold and g-MWCNT, respectively. Our results show that the N(Lp) dependence of the FEE characteristics of the g-MWCNT/Au-NP emitters correlates well with their work function changes. Fowler-Nordheim-theory-based calculations suggest that the significant FEE enhancement of the emitters is also caused by the Au-NPs acting as nanoscale electric field enhancers. PMID:25567743

  13. Quantum mechanical understanding of field dependence of the apex barrier of a single-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Peng, Jie; Li, Zhibing; He, Chunshan; Deng, Shaozhi; Xu, Ningsheng; Zheng, Xiao; Chen, Guanhua

    2005-12-01

    The potential barrier at the apex of a single-wall carbon nanotube emitter is found to be strongly and nonlinearly dependent on the external applied field, due to a quantum mechanical mechanism instead of the correction of image potential in Fowler-Nordheim theory. The field enhancement factor depends on the applied field and is much smaller than that predicted by the classical theory. The field induced apex-vacuum barrier lowering is confirmed to be the essential mechanism for efficient field electron emission from capped carbon nanotubes.

  14. Electron Field Emission Characteristics of Planar Field Emission Array with Diamondlike Carbon Electron Emitters

    NASA Astrophysics Data System (ADS)

    Lin, Chin-Maw; Chang, Shoou-Jinn; Yokoyama, Meiso; Chuang, Feng-Yu; Tsai, Chun-Hui; Wang, Wen-Chun; Lin, I-Nan

    1999-02-01

    The electron emission characteristics of planar field emission arrays (FEAs), containing undoped and boron-doped diamondlike carbon (DLC) films as emitters, were investigated. The planar DLC FEAs require only 13.3 V/µm to turn on the electron field emission, whereas the boron-doped planar DLC FEAs requires an even lower electric field (9.8 V/µm) to trigger the electron emission. The boron-doped DLC films also possess an electron emission property highly superior to that of the undoped DLC films and exhibit a stable electron emission current of 938 µA under a 20 V/µm bias voltage, which corresponds to a high emission current density of (Je)B-DLC=128 mA/cm2. These superior properties suggest that the boron-doped DLC FEAs are potentially useful as electron emitters in flat panel displays.

  15. Conical beams from open nanotubes

    NASA Astrophysics Data System (ADS)

    Saito, Yahachi; Hamaguchi, Koji; Hata, Koichi; Uchida, Kunio; Tasaka, Yoshiharu; Ikazaki, Fumikazu; Yumura, Motoo; Kasuya, Atsuo; Nishina, Yuichiro

    1997-10-01

    Electron guns are indispensable devices that are widely used in household and industrial appliances. Field electron-emitting sources (which emit electrons by tunnelling effects in electric fields), with their small size, small energy spread, high current density and no requirement for heat, have distinct advantages over thermionic emitters. We have made a field electron emitter from hollow, open-ended carbon nanotubes.

  16. Field Emission Characteristics of Carbon Nanotubes and Their Applications in Sensors and Devices

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2003-03-01

    FIELD EMISSION CHARACTERISTICS OF CARBON NANOTUBES AND THEIR APPLICATIONS IN SENSORS AND DEVICES A. Vaseashta, C. Shaffer, M. Collins, A. Mwuara Dept of Physics, Marshall University, Huntington, WV V. Pokropivny Institute for Materials Sciences of NASU, Kiev, Ukraine. D. Dimova-Malinovska Bulgarian Academy of Sciences, Sofia, Bulgaria. The dimensionality of a system has profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems, such as carbon nanotubes (CNTs). Carbon nanotubes are especially promising candidate for cold cathode field emitter because of their electrical properties, high aspect ratio, and small radius of curvature at the tips. Electron emission from the carbon nanotubes was investigated. Based upon the field emission investigation of carbon nanotubes, several prototype devices have been suggested that operate with low swing voltages with sufficient high current densities. Characteristics that allow improved current stability and long lifetime operation for electrical and opto-electronics devices are presented. The aim of this brief overview is to illustrate the useful characteristics of carbon nanotubes and its possible application.

  17. On the Importance of Symmetrizing RF Coupler Fields for Low Emittance Beams

    SciTech Connect

    Li, Zenghai; Zhou, Feng; Vlieks, Arnold; Adolphsen, Chris; /SLAC

    2011-06-23

    The input power of accelerator structure is normally fed through a coupling slot(s) on the outer wall of the accelerator structure via magnetic coupling. While providing perfect matching, the coupling slots may produce non-axial-symmetric fields in the coupler cell that can induce emittance growth as the beam is accelerated in such a field. This effect is especially important for low emittance beams at low energies such as in the injector accelerators for light sources. In this paper, we present studies of multipole fields of different rf coupler designs and their effect on beam emittance for an X-band photocathode gun being jointly designed with LLNL, and X-band accelerator structures. We will present symmetrized rf coupler designs for these components to preserve the beam emittance.

  18. Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films.

    PubMed

    Lee, Duck Hyun; Lee, Jin Ah; Lee, Won Jong; Kim, Sang Ouk

    2011-01-01

    The outstanding flexible field emission properties of carbon hybrid films made of vertically aligned N-doped carbon nanotubes grown on mechanically compliant reduced graphene films are demonstrated. The bottom-reduced graphene film substrate enables the conformal coating of the hybrid film on flexible device geometry and ensures robust mechanical and electrical contact even in a highly deformed state. The field emission properties are precisely examined in terms of the control of the bending radius, the N-doping level, and the length or wall-number of the carbon nanotubes and analyzed with electric field simulations. This high-performance flexible carbon field emitter is potentially useful for diverse, flexible field emission devices.

  19. Coulomb interactions in sharp tip pulsed photo field emitters

    NASA Astrophysics Data System (ADS)

    Cook, Ben; Kruit, Pieter

    2016-10-01

    Photofield emitters show great potential for many single electron pulsed applications. However, for the brightest pulses > 10 11 A / ( m 2 sr V ) , our simulations show that Poisson statistics and stochastic Coulomb interactions limit the brightness and increase the energy spread even with an average of a single electron per pulse. For the systems, we study we find that the energy spread is probably the limiting factor for most applications.

  20. Possible emittance growth induced by nonlinear space charge fields for arbitrary particle distributions

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takashi; Horioka, Kazuhiko

    2016-06-01

    A procedure to obtain a ratio of beam radii at final and initial states in arbitrary particle distributions is proposed, and is applied to the estimation of possible emittance growth for Gaussian and thermal equilibrium distributions. The ratios are estimated for Gaussian and thermal equilibrium distributions as a function of tune depression. The possible emittance growth as a function of tune depression and nonlinear field energy factor is also estimated with and without a constant radius ratio approximation. It is confirmed that the possible emittance growths are almost the same in comparison to the cases with and without the constant radius ratio approximation at each distribution.

  1. Carbon nanotube based field emission X-ray sources

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan

    This dissertation describes the development of field emission (FE) x-ray sources with a carbon-nanotube (CNT) cathode. Field emission x-rays have advantages over conventional x-rays by replacing the thermionic cathode with a cold cathode so that electrons are emitted at room temperature and emission is voltage controllable. CNTs are found to be excellent electron emitters with low threshold fields and high current density which makes them ideal for generate field emission x-rays. Macroscopic CNT cold cathodes are prepared and the parameters to tune their field emission properties are studied: structure and morphology of CNT cathodes, temperature as well as electronic work function of CNT. Macroscopic CNT cathodes with optimized performance are chosen to build a high-resolution x-ray imaging system. The system can readily generate x-ray radiation with continuous variation of temporal resolution up to nanoseconds and spatial resolution down to 10 micron. Its potential applications for dynamic x-ray imaging and micro-computed tomography are also demonstrated. The performance characteristics of this compact and versatile system are promising for non-destructive testing and for non-invasive small-animal imaging for biomedical research.

  2. High brightness field emission from printed carbon nanotubes in an S-band microwave gun

    NASA Astrophysics Data System (ADS)

    Wang, Qilong; Li, Xiangkun; Di, Yusong; Yu, Cairu; Zhang, Xiaobing; Li, Ming; Lei, Wei

    2016-02-01

    Printed carbon nanotubes (CNTs) were applied as cold cathode and placed into an S-band microwave gun operating at 2856 MHz with the pulse duration of 2.8 μs. High brightness field emission was demonstrated and the current density achieves the value more than 4.2 A/cm2. The emittance of field emission beam is calculated to be nearly 21 μm based on the beam profile of emission electrons monitored via yttrium aluminum garnet screen. The infrared image of printed CNTs confirms that the emitters in the center contributed more electrons and the heat generated during the large current density field emission. The results in the paper imply that randomly distributed printed CNTs have the potential to be applied as the high brightness electron sources for free electron lasers.

  3. High-current-density field emission display fabricated from single-walled carbon nanotube electron sources

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Shang, X. F.; Ma, Y. P.; Zhou, J. J.; Gu, Z. Q.; Li, Z. H.; Xu, Y. B.; Wang, M.

    2008-06-01

    Single-walled carbon nanotubes can be used as electron sources in the process of field emission, and have great potential for practical application of the field emission display (FED) panels with large screen size. We fabricated a FED using the single-walled carbon nanotubes (SWNTs) as the cathode by the screen-printing process. Test showed that the SWNTs emitters exhibit excellent macroscopic emission properties. It has low turn-on voltage (2.7 V/μ m) and high brightness, with a high current density of good uniformity and stability. It was observed that the field emission qualitatively follows the conventional Fowler Nordheim (F N) theory, and aging treatment played an important role in improving the image uniformity and stability. Compared to other complicated processes, the simple fabrication using screen-printing process seems to be advantageous for practical application.

  4. Microelectrode for energy and current control of nanotip field electron emitters

    SciTech Connect

    Lüneburg, S.; Müller, M. Paarmann, A. Ernstorfer, R.

    2013-11-18

    Emerging experiments and applications in electron microscopy, holography, and diffraction benefit from miniaturized electron guns for compact experimental setups. We present a highly compact microelectrode integrated field emitter that consists of a tungsten nanotip coated with a few micrometers thick polyimide film followed by a several nanometers thick gold film, both positioned behind the exposed emitter apex by approximately 10–30 μm. The control of the electric field strength at the nanometer scale tip apex allows suppression, extraction, and energy tuning of field-emitted electrons. The performance of the microelectrode is demonstrated experimentally and supported by numerical simulations.

  5. Electron gun using carbon-nanofiber field emitter.

    PubMed

    Sakai, Y; Haga, A; Sugita, S; Kita, S; Tanaka, S-I; Okuyama, F; Kobayashi, N

    2007-01-01

    An electron gun constructed using carbon-nanofiber (CNF) emitters and an electrostatic Einzel lens system has been characterized for the development of a high-resolution x-ray source. The CNFs used were grown on tungsten and palladium tips by plasma-enhanced chemical-vapor deposition. Electron beams with the energies of 10

  6. Observation of valence band electron emission from n-type silicon field emitter arrays

    NASA Astrophysics Data System (ADS)

    Ding, Meng; Kim, Han; Akinwande, Akintunde I.

    1999-08-01

    Electron emission from the valence band of n-type Si field emitter arrays is reported. High electrostatic field at the surface of Si was achieved by reducing the radius of the emitter tip. Using oxidation sharpening, 1 μm aperture polycrystalline Si gate, n-type Si field emitter arrays with small tip radius (˜10 nm) were fabricated. Three distinct emission regions were observed: conduction band emission at low gate voltages, saturated current emission from the conduction band at intermediate voltages, and valence band plus conduction band emission at high gate voltages. Emission currents at low and high voltages obey the Fowler-Nordheim theory. The ratio of the slopes of the corresponding Fowler-Nordheim fits for these two regions is 1.495 which is in close agreement with the theoretical value of 1.445.

  7. A fine-focusing x-ray source using carbon-nanofiber field emitter

    NASA Astrophysics Data System (ADS)

    Sugimoto, W.; Sugita, S.; Sakai, Y.; Goto, H.; Watanabe, Y.; Ohga, Y.; Kita, S.; Ohara, T.

    2010-08-01

    A fine-focusing x-ray source has been constructed employing a field electron emitter prepared by growing carbon-nanofibers (CNFs) on a metal tip. The x-ray source is composed of a CNF field electron emitter, an electrostatic lens, two magnetic lenses, and a W-target for generating x-rays by electron impact. The CNFs provided field electrons with a current density of J ˜5×109 A/m2, which was evaluated with the aid of Fowler-Nordheim theory. The electron beam extracted from the CNF emitter was accelerated to the energies of E =10-25 keV, and then focused by the lenses. By recording the x-ray images of test charts, the optimum resolution of the x-ray source was estimated to be approximately Dx=0.5 μm.

  8. Planar field emitters and high efficiency photocathodes based on ultrananocrystalline diamond

    DOEpatents

    Sumant, Anirudha V.; Baryshev, Sergey V.; Antipov, Sergey P.

    2016-08-16

    A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.

  9. Planar Field Emitters and High Efficiency Photocathodes Based on Ultrananocrystalline Diamond

    NASA Technical Reports Server (NTRS)

    Sumant, Anirudha V. (Inventor); Baryshev, Sergey V. (Inventor); Antipov, Sergey P. (Inventor)

    2016-01-01

    A method of forming a field emitter comprises disposing a first layer on a substrate. The first layer is seeded with nanodiamond particles. The substrate with the first layer disposed thereon is maintained at a first temperature and a first pressure in a mixture of gases which includes nitrogen. The first layer is exposed to a microwave plasma to form a nitrogen doped ultrananocrystalline diamond film on the first layer, which has a percentage of nitrogen in the range of about 0.05 atom % to about 0.5 atom %. The field emitter has about 10.sup.12 to about 10.sup.14 emitting sites per cm.sup.2. A photocathode can also be formed similarly by forming a nitrogen doped ultrananocrystalline diamond film on a substrate similar to the field emitter, and then hydrogen terminating the film. The photocathode is responsive to near ultraviolet light as well as to visible light.

  10. Multiplexing and scaling-down of nanostructured photon-triggered silicon field emitter arrays for maximum total electron yield

    NASA Astrophysics Data System (ADS)

    Dong, Chen D.; Swanwick, Michael E.; Keathley, Phillip D.; Kärtner, Franz X.; Velásquez-García, Luis F.

    2015-07-01

    Femtosecond ultrabright cathodes with spatially structured emission are a critical technology for applications such as free-electron lasers, tabletop coherent x-ray sources, and ultrafast imaging. In this work, the optimization of the total electron yield of ultrafast photon-triggered field emission cathodes composed of arrays of nanosharp, high-aspect-ratio, single-crystal silicon pillars is explored through the variation of the emitter pitch and height. Arrays of 6 nm tip radius silicon emitters with emitter densities between 1.2 and 73.9 million tips cm-2 (hexagonally packed arrays with emitter pitch between 1.25 and 10 μm) and emitter height between 2.0 and 8.5 μm were characterized using 35 fs 800 nm laser pulses. Three-photon electron emission for low-energy (<0.3 μJ) light pulses and strong-field emission for high-energy (>1 μJ) light pulses was observed, in agreement with the literature. Of the devices tested, the arrays with emitter pitch equal to 2.5 μm produced the highest total electron yield; arrays with larger emitter pitch suffer area sub-utilization, and in devices with smaller emitter pitch the larger emitter density does not compensate the smaller per-emitter current due to the electric field shadowing that results from the proximity of the adjacent tips. Experimental data and simulations suggest that 2 μm tall emitters achieve practical optimal performance as shorter emitters have visibly smaller field factors due to the proximity of the emitter tip to the substrate, and taller emitters show marginal improvement in the electron yield at the expense of greater fabrication difficulty.

  11. Multiplexing and scaling-down of nanostructured photon-triggered silicon field emitter arrays for maximum total electron yield.

    PubMed

    Dong, Chen D; Swanwick, Michael E; Keathley, Phillip D; Kärtner, Franz X; Velásquez-García, Luis F

    2015-07-01

    Femtosecond ultrabright cathodes with spatially structured emission are a critical technology for applications such as free-electron lasers, tabletop coherent x-ray sources, and ultrafast imaging. In this work, the optimization of the total electron yield of ultrafast photon-triggered field emission cathodes composed of arrays of nanosharp, high-aspect-ratio, single-crystal silicon pillars is explored through the variation of the emitter pitch and height. Arrays of 6 nm tip radius silicon emitters with emitter densities between 1.2 and 73.9 million tips cm(-2) (hexagonally packed arrays with emitter pitch between 1.25 and 10 μm) and emitter height between 2.0 and 8.5 μm were characterized using 35 fs 800 nm laser pulses. Three-photon electron emission for low-energy (<0.3 μJ) light pulses and strong-field emission for high-energy (>1 μJ) light pulses was observed, in agreement with the literature. Of the devices tested, the arrays with emitter pitch equal to 2.5 μm produced the highest total electron yield; arrays with larger emitter pitch suffer area sub-utilization, and in devices with smaller emitter pitch the larger emitter density does not compensate the smaller per-emitter current due to the electric field shadowing that results from the proximity of the adjacent tips. Experimental data and simulations suggest that 2 μm tall emitters achieve practical optimal performance as shorter emitters have visibly smaller field factors due to the proximity of the emitter tip to the substrate, and taller emitters show marginal improvement in the electron yield at the expense of greater fabrication difficulty. PMID:26057050

  12. Triode field emitter with a gated planar carbon-nanoparticle cathode

    NASA Astrophysics Data System (ADS)

    Park, Kyung Ho; Seo, Woo Jong; Lee, Soonil; Koh, Ken Ha

    2002-07-01

    We fabricated a triode field emitter with a normal gate structure and a planar cathode of carbon nanoparticles (CNPs), which consisted of good quality graphitic sheets encapsulating metal (carbide) cores. For the quantitative analysis of the emission from the CNP triode emitter, we carried out a two-dimensional numerical calculation of electrostatic potential using the finite element method. As it turned out, a radial variation of electric field was very important to account for the emission from a planar emitting layer. By assuming the work function of 5 eV for CNPs, a set of consistent Fowler-Nordheim parameters, together with the radial position of emitting sites, were determined.

  13. Analysis of electric field screening by the proximity of two knife-edge field emitters

    NASA Astrophysics Data System (ADS)

    Tang, Wilkin; Shiffler, Don; Cartwright, Keith L.

    2011-08-01

    The electric field of two semi-infinitely wide knife-edge cathodes with arbitrary separation is calculated by using a Schwarz-Christoffel transformation. This geometry could also represent a trench (or scratch) on a flat surface. It is found that the magnitude of the electric field on the knife-edge cathodes depends strongly on the ratio h/a, where h is the height of the knife-edge cathodes and 2a is the distance between the cathodes. When h/a increases, the magnitude of the electric field on the cathode's surface decreases. This shows the screening of one cathode by another cathode; for example, keeping the height fixed and decreasing the distance between the cathodes, the field enhancement on the corner decreases. Analytic approximations for the divergent electric field in the immediate vicinity of the sharp edge are derived for the cases where h /a>>1, and h /a≪1. These results lead to insight on the relationship of the density of field emitter in field emitting arrays and field emission from rough surfaces.

  14. Fabrication and field emission properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Peng

    Research on the area of the fabrication of carbon nanotubes is fundamental and critical to the entire subject of carbon nanotubes. This dissertation describes an experiment to fabricate carbon nanotubes by the method of Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) and the electron field emission properties of carbon nanotubes. A MPECVD system was built and used to fabricate the vertical aligned carbon nanotube film. Scanning electron microscope (SEM), Raman spectroscopy and transmission electron microscopy (TEM) were used to characterize the as-grown carbon nanotube samples. By using a metal-containing diblock copolymer catalyst, carbon nanotubes with a diameter of 4 to 7 nm were synthesized. The effect of growth parameters was studied and these parameters were optimized. The growth of high density (˜ 109/cm2) and large coverage area (˜ 1 cm2) carbon nanotube film on glass substrate at low growth temperature was realized. Based on a series of experiments, the effects of oxygen atoms and Ti/N underlayer on the growth were studied. A series of experiments were evaluated to characterize the field emission properties of the various carbon nanotube cathodes. A simple technique of scratching the pattern surface by a cotton swab was found effective to activate more carbon nanotubes to emit. By using the techniques of photolithography and shadow mask, various carbon nanotube patterns were achieved in order to obtain high emission current density and a low threshold electric field. The lowest threshold electric field was found to be 2.3 V/um. The highest current density was found to be 2.2 mA/cm2 when the electric field was 4.7 V/um. Our work shows that it is feasible to provide greater control over the fabrication of carbon nanotubes so that more obstacles in the broad application of carbon nanotubes can be overcome.

  15. Field emission performance of multiwalled carbon nanotubes for a low-power spacecraft neutraliser

    NASA Astrophysics Data System (ADS)

    Aplin, K. L.; Kent, B. J.; Song, W.; Castelli, C.

    2009-05-01

    Field electron emission from aligned multiwalled carbon nanotubes has been assessed to determine if the performance, defined by power consumption, lifetime and emission current, is suitable for use in spacecraft charge neutralisation for field emission electric propulsion (FEEP). Carbon nanotubes grown by chemical vapour deposition (CVD) were mounted on a dual in line chip with a macroscopic (nickel mesh) extractor electrode mounted ˜1 mm above the tubes. The nanotubes' field emission characteristics (emission currents, electron losses and operating voltage) were measured at ˜10 -4 Pa. An endurance test of one sample, running at a software-controlled constant emission current lasted >1400 h, approaching the longest known FEEP thruster lifetime. The emission corresponds to a current density of ˜10 mA/cm 2 at a voltage of 150 V. These results, implementing mature extractor-electrode geometry, indicate that carbon nanotubes have considerable potential for development as robust, low-power, long-lived electron emitters for use in space.

  16. Flexible electron field emitters fabricated using conducting ultrananocrystalline diamond pyramidal microtips on polynorbornene films

    SciTech Connect

    Sankaran, K. J.; Tai, N. H.; Lin, I. N.

    2014-01-20

    High performance flexible field emitters made of aligned pyramidal shaped conducting ultrananocrystalline diamond (C-UNCD) microtips on polynorbornene substrates is demonstrated. Flexible C-UNCD pyramidal microtips show a low turn-on field of 1.80 V/μm with a field enhancement factor of 4580 and a high emission current density of 5.8 mA/cm{sup 2} (at an applied field of 4.20 V/μm) with life-time stability of 210 min. Such an enhancement in the field emission is due to the presence of sp{sup 2}-graphitic sheath with a nanowire-like diamond core. This high performance flexible C-UNCD field emitter is potentially useful for the fabrication of diverse, flexible electronic devices.

  17. Transfer of arbitrary quantum emitter states to near-field photon superpositions in nanocavities.

    PubMed

    Thijssen, Arthur C T; Cryan, Martin J; Rarity, John G; Oulton, Ruth

    2012-09-24

    We present a method to analyze the suitability of particular photonic cavity designs for information exchange between arbitrary superposition states of a quantum emitter and the near-field photonic cavity mode. As an illustrative example, we consider whether quantum dot emitters embedded in "L3" and "H1" photonic crystal cavities are able to transfer a spin superposition state to a confined photonic superposition state for use in quantum information transfer. Using an established dyadic Green's function (DGF) analysis, we describe methods to calculate coupling to arbitrary quantum emitter positions and orientations using the modified local density of states (LDOS) calculated using numerical finite-difference time-domain (FDTD) simulations. We find that while superposition states are not supported in L3 cavities, the double degeneracy of the H1 cavities supports superposition states of the two orthogonal modes that may be described as states on a Poincaré-like sphere. Methods are developed to comprehensively analyze the confined superposition state generated from an arbitrary emitter position and emitter dipole orientation.

  18. Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays

    NASA Technical Reports Server (NTRS)

    Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.

    2004-01-01

    We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.

  19. Cathodoluminescence from a device of carbon nanotube-field emission display with ZnO nanocluster phosphor

    NASA Astrophysics Data System (ADS)

    Antony, Jiji; Qiang, You

    2007-07-01

    Carbon nanotube (CNT) cathodes are electron emitters that operate at room temperature, which are a suitable replacement for thermionic emitters. Cathodoluminescence (CL) is measured for the first time with ZnO nanoclusters as a phosphor for a CNT-FED (carbon nanotube-field emission display) device. The CNT cathode is operated in diode mode with beam currents of 10 and 20 mA and low accelerating voltages of 1.7 and 1.8 kV. CL exhibits two peaks: the first peak in the visible range with a broad full width half-maximum (FWHM) and a much narrower second peak (384 nm) in the ultraviolet (UV) range.

  20. Densification effects of the carbon nanotube pillar array on field-emission properties

    NASA Astrophysics Data System (ADS)

    Wang, Kuang-Yu; Chou, Chia-Hsin; Liao, Chan-Yu; Li, Yu-Ren; Cheng, Huang-Chung

    2016-06-01

    In this study, a simple densification method for carbon nanotube (CNT) pillars is proposed to achieve high-performance field emission characteristics and stable emission. Through capillary force during solution evaporation, the CNT density in each pillar can be increased by about six times without causing damage to the crystallinity of CNTs. The densified CNT pillars exhibit lower series resistance, sharper pillars, better contacts, higher thermal conductivity, and better mechanical stiffness than as-grown ones. Therefore, the threshold field of the field emitter with such CNT pillars of 50 µm height can be reduced to 1.98 V/µm, as compared with 2.2 V/µm for the undensified ones. Moreover, the fluctuation of field-emission current decreases from 15.5 to 9.4% after the stress tests at a field of 2 V/µm for 1800 s. These findings imply that the densified CNT pillars are promising for the field-emission applications.

  1. Fabrication of Carbon Nanotube Field Effect Transistors Using Plasma-Enhanced Chemical Vapor Deposition Grown Nanotubes

    NASA Astrophysics Data System (ADS)

    Ohnaka, Hirofumi; Kojima, Yoshihiro; Kishimoto, Shigeru; Ohno, Yutaka; Mizutani, Takashi

    2006-06-01

    Single-walled carbon nanotubes are grown using grid-inserted plasma-enhanced chemical vapor deposition (PECVD). The field effect transistor operation was confirmed using the PECVD grown carbon nanotubes (CNTs). The preferential growth of the semiconducting nanotubes was confirmed in the grid-inserted PECVD by measuring current-voltage (I-V) characteristics of the devices. Based on the measurement of the electrical breakdown of the metallic CNTs, the probability of growing the semiconducting nanotubes has been estimated to be more than 90%.

  2. Doped carbon nanostructure field emitter arrays for infrared imaging

    DOEpatents

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  3. Universal field-emission model for carbon nanotubes on a metal tip

    NASA Astrophysics Data System (ADS)

    Zhong, D. Y.; Zhang, G. Y.; Liu, S.; Sakurai, T.; Wang, E. G.

    2002-01-01

    Electron-field-emission properties have been investigated systematically for carbon nanotubes (CNTs) fabricated on a metal tip. With a vacuum gap of 0.7 mm, the threshold field is as low as 0.7 V/μm and the current density approaches 10 mA/cm2 at an electronic field of 1.0 V/μm. The emission current is quite stable with very low fluctuation. The emission behavior is in excellent agreement with Fowler-Nordheim theory and no current saturation is found even with an emission current reaching 1 A/cm2. A universal relationship 1/β=d2/d+1/β0 between the field amplification factor β and the vacuum gap d is developed within a two-region field-emission model. This relationship provides the basis for a microscopic understanding of CNT emitters and is applicable to other systems as well.

  4. Field emission properties of hybrid few-layer graphene-carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lei Qi, Jun; Zhang, Fu; Xia Zhang, Li; Cao, Jian; Cai Feng, Ji

    2014-04-01

    Few-layer graphene (FLG) and carbon nanotube (CNT) hybrid is prepared by in situ growth of FLG on the walls of CNTs, using PECVD, without catalyst. The amount and size of FLG can be controlled by total gas pressure and growth time. The field emission (FE) characteristics of CNTs coated with different-density FLG were studied, and an FE phenomenon schematic and electrostatic field equipotential model of these FLG-CNTs were proposed. These results show that the geometrical morphology of FLG plays an important role in the FE property of hybrid FLG-CNTs. The medium-density FLG on the CNTs exhibits excellent FE properties, with a low turn-on electric field and threshold field, as well as large field enhancement factor, which are much better than those of the as-grown CNTs. The excellent FE properties of the FLG-CNT hybrids make them promising candidates for high-performance FE emitters.

  5. X-ray tube with a graphite field emitter inflamed at high temperature

    PubMed Central

    Iwai, Yusuke; Koike, Takayoshi; Hayama, Youhei; Jouzuka, Atsuo; Nakamura, Tomonori; Onizuka, Yoshihiro; Miyoshi, Motosuke; Mimura, Hidenori

    2013-01-01

    The authors developed a class of novel graphite-based field emitters, known as graphite field emitters inflamed at high temperature (GFEIHTs), which includes numerous edges and juts. The GFEIHT field emission characteristics are investigated in a vacuum tube (10−7 Pa), and an anode current exceeding 2 mA is obtained. The authors also fabricated tipped-off x-ray tubes using GFEIHTs. No degradation in the anode current is observed under the operating conditions of 16.6 kV anode voltage and 160 μA anode current. The current dispersion, defined as the standard deviation (σ)/mean over 24 h, is 2.8%. The authors successfully demonstrated radiography and x-ray fluorescence spectrometry using an x-ray tube with GFEIHT. PMID:23847750

  6. Spectrum of classes of point emitters: new tool for nonparaxial optical field modeling.

    PubMed

    Castañeda, Román; Muñoz, Hernán

    2016-08-01

    Numerical modeling of optical fields provides valuable support to both theoretical research and technological development in many optics fields. Fourier methods have been the most widely used tools of numerical modeling. However, important limitations have restricted their application in contemporary research that involve high numerical apertures, short propagation distances, and spatially partially coherent states of light, for instance. The spectrum of classes of point emitters is introduced as a numerical tool that overcomes such limitations for the design, analysis, and synthesis of nonparaxial optical fields in arbitrary states of spatial coherence. In this context, optical processing is realized as the filtering on the spectrum of classes of point emitters performed by the complex degree of spatial coherence that could be implemented dynamically by using programmable devices.

  7. The SUBARU Deep Field Project: Lymanα Emitters at a Redshift of 6.6

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yoshiaki; Ajiki, Masaru; Nagao, Tohru; Shioya, Yasuhiro; Murayama, Takashi; Kashikawa, Nobunari; Kodaira, Keiichi; Kaifu, Norio; Ando, Hiroyasu; Karoji, Hiroshi; Akiyama, Masayuki; Aoki, Kentaro; Doi, Mamoru; Fujita, Shinobu S.; Furusawa, Hisanori; Hayashino, Tomoki; Iwamuro, Fumihide; Iye, Masanori; Kobayashi, Naoto; Kodama, Tadayuki; Komiyama, Yutaka; Matsuda, Yuichi; Miyazaki, Satoshi; Mizumoto, Yoshihiko; Morokuma, Tomoki; Motohara, Kentaro; Nariai, Kyoji; Ohta, Koji; Ohyama, Youichi; Okamura, Sadanori; Ouchi, Masami; Sasaki, Toshiyuki; Sato, Yasunori; Sekiguchi, Kazuhiro; Shimasaku, Kazuhiro; Tamura, Hajime; Umemura, Masayuki; Yamada, Toru; Yasuda, Naoki; Yoshida, Michitoshi

    2005-02-01

    We present new results of a deep optical imaging survey using a narrow band filter (NB921) centered at λ = 9196 Å together with B, V, R, i', and z' broadband filters in the sky area of the Subaru Deep Field, which has been promoted as one of legacy programs of the 8.2m Subaru Telescope. We obtained a photometric sample of 58 Ly α emitter candidates at z ≈ 6.5-6.6 among ˜ 180 strong NB921-excess (z' - NB921 > 1.0) objects together with a color criterion of i' - z' > 1.3. We then obtained optical spectra of 20 objects in our NB921-excess sample, and identified at least nine Ly α emitters at z ˜ 6.5-6.6, including the two emitters reported by Kodaira et al. (2003, PASJ, 55, L17). Since our Ly α-emitter candidates are free from strong amplification of gravitational lensing, we are able to discuss their observational properties from a statistical point of view. Based on these new results, we obtained a lower limit of the star-formation rate density of ρSFR ≃ 5.7 × 10-4 h0.7 M ⊙ yr-1 Mpc-3 at z ≈ 6.6, being consistent with our previous estimate. We discuss the nature of star-formation activity in galaxies beyond z = 6.

  8. Enhanced field emission of vertically aligned core-shelled carbon nanotubes with molybdenum oxide encapsulation

    SciTech Connect

    Yu, J.; Chua, Daniel H. C.; Sow, C. H.; Wee, Andrew T. S.

    2009-06-01

    The field emission characteristics of the core-shelled nanostructures obtained by directly coating molybdenum oxide onto vertically aligned multiwalled carbon nanotubes (MWNTs) was investigated. A metal-organic chemical vapor deposition technique was used with Mo(CO){sub 6} as the precursor and films deposited at process temperatures of 200, 400, and 700 deg. C. X-ray photoelectron spectroscopy, scanning electron microscopy, and x-ray diffraction were used to study and understand the material properties of the deposited coatings. Enhanced field emission performance was observed for molybdenum oxide coated MWNT samples at 400 deg. C with a turn-on field of 1.33 V mum{sup -1} and a field enhancement factor beta estimated to be approx7000. The enhanced performance may be due to both the shape of the coated emitters and a decrease in the effective barrier height.

  9. Behavior of molecules and molecular ions near a field emitter

    NASA Astrophysics Data System (ADS)

    Gault, Baptiste; Saxey, David W.; Ashton, Michael W.; Sinnott, Susan B.; Chiaramonti, Ann N.; Moody, Michael P.; Schreiber, Daniel K.

    2016-03-01

    The cold emission of particles from surfaces under intense electric fields is a process which underpins a variety of applications including atom probe tomography (APT), an analytical microscopy technique with near-atomic spatial resolution. Increasingly relying on fast laser pulsing to trigger the emission, APT experiments often incorporate the detection of molecular ions emitted from the specimen, in particular from covalently or ionically bonded materials. Notably, it has been proposed that neutral molecules can also be emitted during this process. However, this remains a contentious issue. To investigate the validity of this hypothesis, a careful review of the literature is combined with the development of new methods to treat experimental APT data, the modeling of ion trajectories, and the application of density-functional theory simulations to derive molecular ion energetics. It is shown that the direct thermal emission of neutral molecules is extremely unlikely. However, neutrals can still be formed in the course of an APT experiment by dissociation of metastable molecular ions. This work is a partial contribution of the US Government and therefore is not subject to copyright in the United States.

  10. Highly-ordered nitrogen doped carbon nanotube novel structures of aligned carpet for enhanced field emission properties

    NASA Astrophysics Data System (ADS)

    Padya, Balaji; Jain, P. K.; Padmanabham, G.; Ravi, M.; Bhat, K. S.

    2013-06-01

    Substitutional nitrogen doped aligned carbon nanotubes (NACNTs) with uniform height and high packing density of arrays was synthesized by using the liquid injection CVD process. Transmission electron micrographs indicated that the NACNTs are having nano-bell morphology of graphene layers with series of internal compartments. Field emission study of NACNTs showed that they are good emitters with low turn-on and threshold field. The maximum current density was observed to be 18.8 mA/cm2 at electric field of 1.89 V/μm.

  11. Handheld deep ultraviolet emission device based on aluminum nitride quantum wells and graphene nanoneedle field emitters.

    PubMed

    Matsumoto, Takahiro; Iwayama, Sho; Saito, Takao; Kawakami, Yasuyuki; Kubo, Fumio; Amano, Hiroshi

    2012-10-22

    We report the successful fabrication of a compact deep ultraviolet emission device via a marriage of AlGaN quantum wells and graphene nanoneedle field electron emitters. The device demonstrated a 20-mW deep ultraviolet output power and an approximately 4% power efficiency. The performance of this device may lead toward the realization of an environmentally friendly, convenient and practical deep ultraviolet light source.

  12. Field and laboratory evaluation of a diffusive emitter for semipassive release of PCE to an aquifer

    SciTech Connect

    Arildskov, N.P.; Devlin, J.F.

    2000-02-01

    In controlled field experiments or model aquifers, it is sometimes desirable to introduce solutes below the water table without perturbing the flow system. Diffusive emitters offer a means of achieving that goal. In this study, two laboratory experiments were conducted to evaluate nylon tubing as a diffusive emitter for tetrachloroethene (PCE). The initial approach was to pump a saturated aqueous PCE solution through a piece of nylon tubing immersed in a flow-through contractor vessel. Millipore water was pumped through the contractor vessel at a constant rate. Due to PCE diffusion through the nylon, a steady-state concentration in the contractor vessel eventually developed. The process was well described by a computer model that accounted for retarded diffusion through the nylon. In a second experiment, pieces of nylon tubing were exposed to a relatively low concentration of PCE in water for 10 days in gently rotated hypovials. With the aid of a second diffusion model, the bulk diffusion coefficient was obtained from the concentration history of the solution. With the different experimental conditions taken into account, there was reasonably good agreement between the bulk diffusion coefficients in the two experiments. The results were used in the field design of a semipassive release system. Evaluation of this system showed a lower than expected steady-state concentration of PCE inside the releasing wells. The difference is likely due to lower temperature, variable PCE concentrations in the nylon tubing, and nonideal mixing in the wells. The work has shown that laboratory derived diffusion coefficients for polymeric materials are likely to be larger than, but within an order of magnitude of, the effective diffusion coefficients exhibited by emitters in the field. Nevertheless, with temperature corrections taken into account and proper well development, these values could be used to design emitters that would suit most practical applications.

  13. Application of Anisotropic Conductive Film to Fabrication of Molybdenum Field Emitter Arrays Using Transfer Mold Technique

    NASA Astrophysics Data System (ADS)

    Cho, Eou Sik; Ahn, Min Hyung; Kwon, Sang Jik

    2008-08-01

    In the fabrication of molybdenum field emitter arrays (Mo FEA) by the transfer mold technique, anisotropic conductive film (ACF) was applied to the bond between the inverted mold structure and the transferred glass substrate. Without any electrical treatment of electrostatic bonding, the inverted mold was successfully bonded to an indium tin oxide (ITO) glass substrate under optimized thermal and pressure conditions. No additional conductive layers were used in the bonding process, and the bonded ACF was not chemically affected in the wet-etch process of the silicon inverted mold structure. The fabricated Mo FEA was structurally and electrically investigated and an anode current of 10 nA per emitter was obtained at a gate bias of 94 V. The results demonstrate the possibility of selective conduction in the fabrication of transfer mold FEA using ACF bonding.

  14. Field emission behavior of carbon nanotube yarn for micro-resolution X-ray tube cathode.

    PubMed

    Hwang, Jae Won; Mo, Chan Bin; Jung, Hyun Kyu; Ryu, Seongwoo; Hong, Soon Hyung

    2013-11-01

    Carbon nanotube (CNT) has excellent electrical and thermal conductivity and high aspect ratio for X-ray tube cathode. However, CNT field emission cathode has been shown unstable field emission and short life time due to field evaporation by high current density and detachment by electrostatic force. An alternative approach in this direction is the introduction of CNT yarn, which is a one dimensional assembly of individual carbon nanotubes bonded by the Van der Waals force. Because CNT yarn is composed with many CNTs, CNT yarns are expected to increase current density and life time for X-ray tube applications. In this research, CNT yarn was fabricated by spinning of a super-aligned CNT forest and was characterized for application to an X-ray tube cathode. CNT yarn showed a high field emission current density and a long lifetime of over 450 hours. Applying the CNT yarn field emitter to the X-ray tube cathode, it was possible to obtain micro-scale resolution images. The relationship between the field emission properties and the microstructure evolution was investigated and the unraveling effect of the CNT yarn was discussed. PMID:24245260

  15. Field emission behavior of carbon nanotube yarn for micro-resolution X-ray tube cathode.

    PubMed

    Hwang, Jae Won; Mo, Chan Bin; Jung, Hyun Kyu; Ryu, Seongwoo; Hong, Soon Hyung

    2013-11-01

    Carbon nanotube (CNT) has excellent electrical and thermal conductivity and high aspect ratio for X-ray tube cathode. However, CNT field emission cathode has been shown unstable field emission and short life time due to field evaporation by high current density and detachment by electrostatic force. An alternative approach in this direction is the introduction of CNT yarn, which is a one dimensional assembly of individual carbon nanotubes bonded by the Van der Waals force. Because CNT yarn is composed with many CNTs, CNT yarns are expected to increase current density and life time for X-ray tube applications. In this research, CNT yarn was fabricated by spinning of a super-aligned CNT forest and was characterized for application to an X-ray tube cathode. CNT yarn showed a high field emission current density and a long lifetime of over 450 hours. Applying the CNT yarn field emitter to the X-ray tube cathode, it was possible to obtain micro-scale resolution images. The relationship between the field emission properties and the microstructure evolution was investigated and the unraveling effect of the CNT yarn was discussed.

  16. Integrated atom detector based on field ionization near carbon nanotubes

    SciTech Connect

    Gruener, B.; Jag, M.; Stibor, A.; Visanescu, G.; Haeffner, M.; Kern, D.; Guenther, A.; Fortagh, J.

    2009-12-15

    We demonstrate an atom detector based on field ionization and subsequent ion counting. We make use of field enhancement near tips of carbon nanotubes to reach extreme electrostatic field values of up to 9x10{sup 9} V/m, which ionize ground-state rubidium atoms. The detector is based on a carpet of multiwall carbon nanotubes grown on a substrate and used for field ionization, and a channel electron multiplier used for ion counting. We measure the field enhancement at the tips of carbon nanotubes by field emission of electrons. We demonstrate the operation of the field ionization detector by counting atoms from a thermal beam of a rubidium dispenser source. By measuring the ionization rate of rubidium as a function of the applied detector voltage we identify the field ionization distance, which is below a few tens of nanometers in front of nanotube tips. We deduce from the experimental data that field ionization of rubidium near nanotube tips takes place on a time scale faster than 10{sup -10} s. This property is particularly interesting for the development of fast atom detectors suitable for measuring correlations in ultracold quantum gases. We also describe an application of the detector as partial pressure gauge.

  17. Determination of satellite valley position in GaN emitter from photoexcited field emission investigations

    NASA Astrophysics Data System (ADS)

    Semenenko, M.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2011-01-01

    Argon plasma etched GaN field-emitter rods with nanometer-scale diameter were fabricated on GaN grown on an n+-GaN substrate. Their electron field emission properties were investigated both without and under illumination by using light sources with various wavelengths. The Fowler-Nordheim current-voltage characteristics of the cathodes show a change in slope for illuminated cathodes. The electron affinity difference ΔE between the different valleys in the conduction band has been ascertained and is in the range from 1.18 up to 1.21 eV.

  18. Effect of synthesis parameters on morphology of polyaniline (PANI) and field emission investigation of PANI nanotubes

    SciTech Connect

    Bankar, Prashant K.; More, Mahendra A.; Patil, Sandip S.

    2015-06-24

    Polyaniline (PANI) nanostructures have been synthesized by simple chemical oxidation route at different monomer concentration along with variation in synthesis temperature. The effect of variation of synthesis parameters has been revealed using different characterization techniques. The structural and morphological characterization of the synthesized PANI nanostructures was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), whereas Fourier Transform Infrared spectroscopy (FTIR) has been used to reveal the chemical properties. With the variation in the synthesis temperature and monomer concentration, various morphologies characterized by formation of PANI nanoparticles, nanofibres, nanotubes and nanospheres, are revealed from the SEM analysis. The FTIR analysis reveals the formation of conducting state of PANI under prevailing experimental conditions. The field emission investigation of the conducting PANI nanotubes was performed in all metal UHV system at base pressure of 1x10{sup −8} mbar. The turn on field required to draw emission of 1 nA current was observed to be ∼ 2.2 V/μm and threshold field (corresponding to emission current density of 1 µA/cm2) was found to be 3.2 V/μm. The emission current was observed to be stable for more than three hours at a preset value 1 µA. The simple synthesis route and good field emission characteristics indicate potential of PANI nanofibres as a promising emitter for field emission based micro/nano devices.

  19. Electron transfer from a carbon nanotube into vacuum under high electric fields

    NASA Astrophysics Data System (ADS)

    Filip, L. D.; Smith, R. C.; Carey, J. D.; Silva, S. R. P.

    2009-05-01

    The transfer of an electron from a carbon nanotube (CNT) tip into vacuum under a high electric field is considered beyond the usual one-dimensional semi-classical approach. A model of the potential energy outside the CNT cap is proposed in order to show the importance of the intrinsic CNT parameters such as radius, length and vacuum barrier height. This model also takes into account set-up parameters such as the shape of the anode and the anode-to-cathode distance, which are generically portable to any modelling study of electron emission from a tip emitter. Results obtained within our model compare well to experimental data. Moreover, in contrast to the usual one-dimensional Wentzel-Kramers-Brillouin description, our model retains the ability to explain non-standard features of the process of electron field emission from CNTs that arise as a result of the quantum behaviour of electrons on the surface of the CNT.

  20. Applications of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ajayan, Pulickel M.; Zhou, Otto Z.

    Carbon nanotubes have attracted the fancy of many scientists worldwide. The small dimensions, strength and the remarkable physical properties of these structures make them a very unique material with a whole range of promising applications. In this review we describe some of the important materials science applications of carbon nanotubes. Specifically we discuss the electronic and electrochemical applications of nanotubes, nanotubes as mechanical reinforcements in high performance composites, nanotube-based field emitters, and their use as nanoprobes in metrology and biological and chemical investigations, and as templates for the creation of other nanostructures. Electronic properties and device applications of nanotubes are treated elsewhere in the book. The challenges that ensue in realizing some of these applications are also discussed from the point of view of manufacturing, processing, and cost considerations.

  1. Macroscopic electrical field distribution and field-induced surface stresses of needle-shaped field emitters.

    PubMed

    Moy, Charles; Ranzi, Gianluca; Petersen, T C; Ringer, Simon

    2011-05-01

    One major concern since the development of the field ion microscope is the mechanical strength of the specimens. The macroscopic shape of the imaging tip greatly influences field-induced stresses and there is merit in further study of this phenomenon from a classical perspective. Understanding the geometrical, as opposed to localized electronic, factors that affect the stress might improve the quality and success rate of atom probe experiments. This study uses macroscopic electrostatic principles and finite element modelling to investigate field-induced stresses in relation to the shape of the tip. Three two-dimensional idealized models are considered, namely hyperbolic, parabolic and sphere-on-orthogonal-cone; the shapes of which are compared to experimental tips prepared by electro-polishing. Three dimensional morphologies of both a nano-porous and single-crystal aluminium tip are measured using electron tomography to quantitatively test the assumption of cylindrical symmetry for electro-polished tips. The porous tip was prepared and studied to demonstrate a fragile specimen for which such finite element studies could determine potential mechanical failure, prior to any exhaustive atom probe investigation. PMID:21664539

  2. Transfer-matrix simulations of field emission from bundles of open and closed (5,5) carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Miskovsky, N. M.; Cutler, P. H.; Lambin, Ph.

    2003-12-01

    We present simulations of field emission from bundles of metallic (5,5) carbon nanotubes, which are either ideally open or closed. The scattering calculations are achieved using a transfer-matrix methodology for consideration of three-dimensional aspects of both the emitting structure and the surface barrier. Band-structure effects are reproduced by using pseudopotentials and enforcing the incident states to first travel through a periodic repetition of the tubes’ basic cell before entering the region containing the fields. The bundles consist of three and six identical structures, which are placed at the corners of equilateral triangles. In all cases, the closed emitters are found to emit less current than the open ones and to be more sensitive to the electric field in their response to neighboring tubes. Due to the enhanced screening of the electric field, the bundles’ emission rates are reduced compared to those of the isolated tubes. It turns out that the rates characterizing bundle and isolated emitters are related by a simple formula, whose dependence on the electric field suggests deviations from the Fowler-Nordheim equation at high fields. Finally, the position of peaks associated with quasilocalized states on top of the closed emitters appears to be a strong indicator of the tubes’ environment.

  3. The emerging field of nanotube biotechnology.

    PubMed

    Martin, Charles R; Kohli, Punit

    2003-01-01

    Nanoparticles are being developed for a host of biomedical and biotechnological applications, including drug delivery, enzyme immobilization and DNA transfection. Spherical nanoparticles are typically used for such applications, which reflects the fact that spheres are easier to make than other shapes. Micro- and nanotubes--structures that resemble tiny drinking straws--are alternatives that might offer advantages over spherical nanoparticles for some applications. This article discusses four approaches for making micro- and nanotubes, and reviews the current status of efforts to develop biomedical and biotechnological applications of these tubular structures.

  4. Pulsed laser-deposited nanocrystalline GdB6 thin films on W and Re as field emitters

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Sachin R.; Singh, Anil K.; Phase, Deodatta M.; Late, Dattatray J.; Sinha, Sucharita; More, Mahendra A.

    2016-10-01

    Gadolinium hexaboride (GdB6) nanocrystalline thin films were grown on tungsten (W), rhenium (Re) tips and foil substrates using optimized pulsed laser deposition (PLD) technique. The X-ray diffraction analysis reveals formation of pure, crystalline cubic phase of GdB6 on W and Re substrates, under the prevailing PLD conditions. The field emission (FE) studies of GdB6/W and GdB6/Re emitters were performed in a planar diode configuration at the base pressure ~10-8 mbar. The GdB6/W and GdB6/Re tip emitters deliver high emission current densities of ~1.4 and 0.811 mA/cm2 at an applied field of ~6.0 and 7.0 V/µm, respectively. The Fowler-Nordheim ( F- N) plots were found to be nearly linear showing metallic nature of the emitters. The noticeably high values of field enhancement factor ( β) estimated using the slopes of the F- N plots indicate that the PLD GdB6 coating on W and Re substrates comprises of high-aspect-ratio nanostructures. Interestingly, the GdB6/W and GdB6/Re planar emitters exhibit excellent current stability at the preset values over a long-term operation, as compared to the tip emitters. Furthermore, the values of workfunction of the GdB6/W and GdB6/Re emitters, experimentally measured using ultraviolet photoelectron spectroscopy, are found to be same, ~1.6 ± 0.1 eV. Despite possessing same workfunction value, the FE characteristics of the GdB6/W emitter are markedly different from that of GdB6/Re emitter, which can be attributed to the growth of GdB6 films on W and Re substrates.

  5. Ampère-Class Pulsed Field Emission from Carbon-Nanotube Cathodes in a Radiofrequency Resonator

    SciTech Connect

    Mihalcea, D.; Faillace, L.; Hartzell, J.; Panuganti, H.; Boucher, S. M.; Murokh, A.; Piot, P.; Thangaraj, J. C.T.

    2014-12-01

    Pulsed field emission from cold carbon-nanotube cathodes placed in a radiofrequency resonant cavity was observed. The cathodes were located on the backplate of a conventional $1+\\frac{1}{2}$-cell resonant cavity operating at 1.3-GHz and resulted in the production of bunch train with maximum average current close to 0.7 Amp\\`ere. The measured Fowler-Nordheim characteristic, transverse emittance, and pulse duration are presented and, when possible, compared to numerical simulations. The implications of our results to high-average-current electron sources are briefly discussed.

  6. Highly Efficient Field Emission from Carbon Nanotube-Nanohorn Hybrids Prepared by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Yuge, Ryota; Miyawaki, Jin; Ichihashi, Toshinari; Kuroshima, Sadanori; Yoshitake, Tsutomu; Ohkawa, Tetsuya; Aoki, Yasushi; Iijima, Sumio; Yudasaka, Masako

    2011-03-01

    It is reported that the carbon nanotube (CNT) is one of the best cold cathode emitters for field emission display (FED) and field emission lamp (FEL) due to their large aspect ratio, high mechanical strength, and high electrical conductivity. For the manufacture of highly efficient field emission (FE) devices, we synthesized single-wall carbon nanotube (SWNT) on catalyst-supported single-wall carbon nanohorn (SWNH). We incorporated Fe acetate into SWNHs, heat-treated them, and obtained Fe oxide nano-particles attached to the tips of SWNHs (Fe@NHox). Using Fe@NHox as the catalyst, SWNTs were grown by ethanol-CVD technique (NTNH). In the obtained NTNH, the SWNTs diameters were 1--1.7 nm and the bundle diameters became almost uniform, i . e . , less than 10 nm, since the SWNTs were separated by SWNH aggregates. We also confirmed that a large-area FE device with NTNH cathodes made by screen printing was highly and homogeneously bright, suggesting the success of the hybrid strategy.

  7. The development and characterisation of carbon nanotubes grown on conductive substrate for field emission application

    NASA Astrophysics Data System (ADS)

    Venugopalan, Ramani; Prakash, Jyoti; Ghatak, Shreya; Mittal, K. C.; Sathiyamoorthy, D.

    2013-06-01

    The CNT-inconel interface exhibhits good electrical contact as well as strong adhesion to be used directly as electrodes for super capacitors and field emitters without any post growth processing with respect to other metal substrate. Carbon nano tubes were synthesized on inconel substrate over the 10*10 mm2 area by catalytic decomposition of ferrocene - Xylene mixture at 800°C. The growth process involved injecting a solution of particular concentration of ferrocene in xylene at a particular flow rate into a preheating zone of reactor. A mixture of argon and hydrogen was used to carry the xylene containing catalyst vapors upto substrate. Scanning electron microscopy (SEM) and Raman Spectroscopy investigations reveal that the nanotubes are multi-wall CNTs having about 40-70 nm diameter. The possibility of growing CNTs on the metal substrates other than silicon has been confirmed from the above results.

  8. Theory of electron emission in high fields from atomically sharp emitters: Validity of the Fowler-Nordheim equation

    NASA Astrophysics Data System (ADS)

    Cutler, P. H.; He, Jun; Miller, J.; Miskovsky, N. M.; Weiss, B.; Sullivan, T. E.

    1993-04-01

    Field emission from metallic emitters is generally described by the Fowler-Nordheim [F-N] theory, which is based on a planar model of the tip with a classical image correction. Within the free electron model and the WKB approximation, the planar tip model leads to the well-known Fowler-Nordheim equation, which predicts that a plot of log J/F 2 versus 1/F, where J is the current density and F, the field, should be a straight line within the narrow range of field strengths of typical field emission experiments, 3 - 5V/nm. This has been experimentally confirmed for conventional emitters, (i.e., electrolytically etched tips with radii ⪆50 nm). Field emitters fabricated with today's new techniques are much sharper with radii of curvature of the order of nm's or even the size of a single atom. Hence, the local geometry of the tip may become an important factor in the electron emission process. To investigate the effects of the shape and/or size on emission, the authors, in a recent series of papers, studied the dependence of the current-voltage characteristics on the local geometry of pointed emitters. It was found that the calculated results, plotted as log J/V 2 vs. 1/V, do not exhibit the straight line behavior predicted by the Fowler-Nordheim theory. In addition, there is a dramatic increase in the tunneling current for a fixed external bias, V, relative to the Fowler-Nordheim result for a planar model of the tip with the same bias voltage. Using the exact current integral additional results have been obtained exhibiting the effects of emitter curvature on field electron energy distributions and on electron emission in high fields and temperatures. These results continue to differ with the predictions of the Fowler-Nordheim equation for the same emitter models. Therefore, the adequacy of a β-factor in the conventional planar model Fowler-Nordheim equation to account for emitter curvature is examined. It is demonstrated that even a β-modified Fowler

  9. Advances In Vertical Solid-State Current Limiters For Individual Field Emitter Regulation In High-Density Arrays

    NASA Astrophysics Data System (ADS)

    Hill, Frances A.; Velásquez-García, Luis F.

    2015-12-01

    We report the design, fabrication, and characterization of improved solid-state elements intended for individual regulation of field emitters part of high-density arrays. We demonstrate a high-yield, CMOS compatible fabrication process of single-crystal, vertical, ungated, n-type silicon field-effect transistors (FETs); each device behaves as a current source when is biased at a voltage larger than its drain-source saturation voltage. An ungated FET in saturation connected in series to a field emitter can compensate for the wide variation in current-voltage characteristics of the field emitters due to the tip radii spread present in any field emitter array, which should result in emitter burn-out protection, larger array utilization, and smaller array emission non-uniformity. Using 1-2 Ωcm single-crystal n-Si wafers, we fabricated arrays of 25 μm tall vertical ungated FETs with 0.5 μm diameter that span two orders of magnitude of array size. Experimental characterization of the arrays demonstrates that the current is limited with > 3.5 V bias voltage to the same ∼6 μA (6 A.cm-2) per-FET value. Finite element simulations of the device predict a saturation voltage close to the experimental value and a saturation current within a factor of two of the experimental value.

  10. Investigation of Field Emitter Array Vacuum Microtriodes for Space Electronics Applications

    NASA Technical Reports Server (NTRS)

    Smith, Mark A.; Kapoor, Vik J.

    1997-01-01

    Research into processing techniques for fabrication of vacuum microelectronic devices has been carried out, with special emphasis being given to the growth of silicon dioxide thin films. Oxide films ranging from 30 nm to approximately 2 micrometers have been grown on single crystal silicon wafers. Metal-oxide-semiconductor capacitor test structures have been made from some of these oxide films, and current-versus-voltage plots for these structures have been measured. It has been observed that the rate of applied voltage across the oxide films produces marked differences in measured leakage current. Breakdown fields across two of the thinnest oxide films have been measured and are comparable with highest values reported in literature. Several silicon wafers were processed to make field- emitter array diodes, and were delivered to collaborators at NASA-Lewis Research Center for final fabrication steps and testing.

  11. Development of Fowler-Nordheim theory for a spherical field emitter

    NASA Astrophysics Data System (ADS)

    Edgcombe, C. J.

    2005-07-01

    Fowler-Nordheim (F-N) theory has been extended to use a potential distribution approximating that outside a hemisphere supported on a shank, instead of planar field as widely used hitherto. The extended theory includes an effective angle of emission and a supply factor (relative to free-electron supply) that can be calculated when other parameters are known. If single values of the F-N slope and intercept are available, compatible sets of parameters including emitter radius, surface field, solid angle of emission, and supply factor can be deduced. Specific values can be estimated for these parameters when the change of slope over the experimental range is known with sufficient accuracy.

  12. Beam characteristics and a new operation method of a HARP field-emitter image sensor

    NASA Astrophysics Data System (ADS)

    Nanba, Masakazu; Yamagishi, Toshio; Okazaki, Saburo; Tanioka, Kenkichi; Takayama, Katsumi; Tanaka, Mitsuru; Itoh, Shigeo

    1999-04-01

    A new type of image sensor featuring a unique structure is studied with the aim of achieving both super-high sensitivity and ultrahigh-definition. This image sensor combines a field emitter array (FEA) and a high-gain avalanche rushing amorphous photoconductor target. We investigated the conditions for improving resolution in a vacuum chamber by inserting a mesh electrode between the FEA and the target. The results indicate that the resolution can be improved by strengthening the accelerating electric field between the FEA gate and the mesh, and by placing the mesh closer to the FEA. We also propose a new parallel readout system that is suitable for an ultrahigh-definition image sensor. Dividing the target into multiple segments and reading out signals for each segment simultaneously enables us to decrease the drive frequency. In our first attempt, we synthesized a good 60 X 60 pixel image from two 30 X 60 pixel segments.

  13. Mechanism of gas sensing in carbon nanotube field effect transistors

    NASA Astrophysics Data System (ADS)

    Dube, Isha

    Gas sensors based on carbon nanotubes in the field effect transistor configuration have exhibited impressive sensitivities compared to the existing technologies. However, the lack of an understanding of the gas sensing mechanism in these carbon nanotube field effect transistors (CNTFETs) has impeded setting-up a calibration standard and customization of these nano-sensors for specified gas sensing application. Calibration requires identifying fundamental transistor parameters and establishing how they vary in the presence of a gas and influence the overall sensing behavior. This work focuses on modeling the sensing behavior of a CNTFET in the presence of oxidizing (NO 2) and reducing (NH3) gases and determining how each of the transistor parameters, namely: the Schottky barrier height, Schottky barrier width and doping level of the nanotube are affected by the presence of these gases. Earlier experiments have shown that the carbon nanotube-metal interface is responsible for the observed change in the CNTFET response. The interface consists of the metal contact and the depletion region in the carbon nanotube. A change in the metal work function will change the Schottky barrier height, whereas doping of the depletion region will affect the Schottky barrier width and the doping level of the carbon nanotube. A theoretical model containing these parameters was systematically fitted to the experimental transfer characteristics for different concentrations of NO2 and NH3. A direct correlation between the measured changes in the CNTFET saturated conductance and the Schottky barrier height was found. These changes are directly related to the changes in the metal work function of the electrodes that I determined experimentally, independently, with a Kelvin probe system. The overall change in the CNTFET characteristics were explained and quantified by also including changes due to doping from molecules adsorbed at the carbon nanotube-metal interface through the parameters

  14. MoS{sub 2} nanotube field effect transistors

    SciTech Connect

    Strojnik, M. E-mail: dragan.mihailovic@ijs.si; Mrzel, A.; Buh, J.; Strle, J.; Kovic, A.; Mihailovic, D. E-mail: dragan.mihailovic@ijs.si

    2014-09-15

    We report on electric field effects on electron transport in multi-walled MoS{sub 2} nanotubes (NTs), fabricated using a two-step synthesis method from Mo{sub 6}S{sub x}I{sub 9-x} nanowire bundle precursors. Transport properties were measured on 20 single nanotube field effect transistor (FET) devices, and compared with MoS{sub 2} layered crystal devices prepared using identical fabrication techniques. The NTs exhibited mobilities of up to 0.014 cm{sup 2}V{sup −1}s{sup −1} and an on/off ratio of up to 60. As such they are comparable with previously reported WS{sub 2} nanotube FETs, but materials defects and imperfections apparently limit their performance compared with multilayer MoS{sub 2} FETs with similar number of layers.

  15. Effect of nonlinear radiofrequency electromagnetic fields on the emittance of bunched beams

    NASA Astrophysics Data System (ADS)

    Phadte, D. S.; Patidar, C. B.

    2013-07-01

    Gap transformations are frequently used in ion Linac codes, to efficiently describe the particle dynamics. Using similar approach, we analyze the uniformly bunched beam passing through an axis-symmetric radiofrequency (RF) cavity. The method can be used for other distributions as well using a similar six dimensional analysis. The effect of non-linear RF field in radial and axial directions in an RF cavity and the finite phase width of the bunch, on the transverse and longitudinal emittance growth have been studied. The expressions obtained have been verified for the two types of cavity cells namely the zero mode DTL and pi mode CCL type used frequently in ion linacs. The results are seen to be valid for the entire maximum phase acceptance up to 360 degrees. Simulations with the equivalent beams of non-uniform distributions namely Waterbag and Gaussian show that at synchronous phases closer to the wave crest, the results give a good approximation of emittance growth in both planes for non-uniform beams.

  16. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    NASA Astrophysics Data System (ADS)

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng; Li, Ziping; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2015-12-01

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18-20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

  17. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    SciTech Connect

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng; Chen, Jun; Li, Ziping; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

  18. IMPROVEMENTS IN EMITTANCE WAKE FIELD OPTIMIZATION FOR THE SLAC LINEAR COLLIDER

    SciTech Connect

    Decker, Franz-Josef

    2003-05-01

    The transverse emittances in the SLAC Linear Collider can be severely diluted by collective wakefield effects and dispersion. For the 1997/98 SLC/SLD run important changes were implemented in the way the emittance is optimized. Early in the linac, where the energy spread is large due to BNS damping, the emittance growth is dominated by dispersion. In this regime emittance tuning bumps may introduce additional wakefield tails and their use is now avoided. At the end of the linac the energy spread is minimal and the emittance measurement is most sensitive to wakefield emittance dilution. In previous years, the emittances were tuned on wire scanners located near but not at the end of the linac (after about 90% of its length). Simulations show that emittance growth of up to 100% can occur in the remaining 10%. In this run wire scanners at the entrance of the Final Focus, the last place where the emittances can be measured, were used for the optimization. Screens at the end of the linac allow additional real time monitoring of the beam sizes. We show that the different tuning strategy provided significantly improved emittances at the interaction point of the SLC.

  19. Synthesis of carbon nanotubes/Si nanowires core-sheath structure arrays and their field emission properties

    NASA Astrophysics Data System (ADS)

    Lu, M.; Li, M. K.; Zhang, Z. J.; Li, H. L.

    2003-09-01

    A new composite structure of carbon nanotubes (CNTs)/Si nanowires (SiNWs) arrays have been synthesized by chemical vapor deposition (CVD) within the pores of microporous alumina template. The results of scanning electron microscopy (SEM) and transmission electron microcopy (TEM) reveal that the obtained well-aligned composite structure has a core-sheath structure and the deposited material in the carbon sheath is polycrystalline silicon. Field emission from these CNTs-sheathed SiNWs exhibits significant enhancement compared to the pure SiNWs in turn-on field, total emission current and stability. The field emission characteristics of the composite structure are analyzed based on Fowler-Nordheim theory. The electron field emission increased with decreasing diameter of such structure. The well-aligned core-sheath structure provides an important means to fabricate emitter devices with chemically inert surface as well as with superior performance of field emission properties.

  20. Neutralization of Space Charge Effects for Low Energy Ion Beams Using Field Emitters

    SciTech Connect

    Nicolaescu, D.; Sakai, S.; Matsuda, K.; Gotoh, Y.; Ishikawa, J.

    2008-11-03

    The paper presents models and computations for neutralization of space charge effects using electrons provided by field emitter arrays. Different ion species ({sup 11}B{sup +},{sup 31}P{sup +},{sup 75}As{sup +}) with energy in the range E{sub ion} = 200 eV-1 keV have been considered. The ion beam divergence is studied as a function of electron beam geometry and physical parameters (electron and ion energy, electron/ion current ratio I{sub el}/I{sub ion}). The electron beam geometry takes into account electron source positions and initial launching angles. It is shown that optimal ion beam neutralization occurs for low energy electrons emitted parallel to the ion beam.

  1. Electronic transport characteristics in silicon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Shan, Guangcun; Wang, Yu; Huang, Wei

    2011-07-01

    The successful synthesis of silicon nanotubes (SiNTs) has been reported, making these nanostructures a new novel candidate for future nanodevices. By self-consistently solving the Poisson equations using the non-equilibrium Green's function (NEGF) formalism, we investigate the electronic transport and the role of gate bias in affecting the drive current of single-walled silicon nanotube (SW-SiNT) field-effect transistors (FETs). By comparison of a SW-CNT FET, it is found that the SW-SiNT with a high- k HfO gate oxide is a promising candidate for nanotube transistor with better performance. The results discussed here would serve as a versatile and powerful guideline for future experimental studies of SW-SiNT-based transistor with the purpose of exploring device application for nanoelectronics.

  2. An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters.

    PubMed

    Liu, Chun-Yi; Li, Wun-Shan; Chu, Li-Wei; Lu, Ming-Yen; Tsai, Cho-Jen; Chen, Lih-Juann

    2011-02-01

    A method was developed to grow ordered silicon nanowire with NiSi(2) tip arrays by reacting nickel thin films on silica-coated ordered Si nanowire (NW) arrays. The coating of thin silica shell on Si NW arrays has the effect of limiting the diffusion of nickel during the silicidation process to achieve the single crystalline NiSi(2) NWs. In the meantime, it relieves the distortion of the NWs caused by the strain associated with formation of NiSi(2) to maintain the straightness of the nanowire and the ordering of the arrays. Other nickel silicide phases such as Ni(2)Si and NiSi were obtained if the silicidation processes were conducted on the ordered Si NWs without a thin silica shell. Excellent field emission properties were found for NiSi(2)/Si NW arrays with a turn on field of 0.82 V µm(-1) and a threshold field of 1.39 V µm(-1). The field enhancement factor was calculated to be about 2440. The stability test showed a fluctuation of about 7% with an applied field of 2.6 V µm(-1) for a period of 24 h. The excellent field emission characteristics are attributed to the well-aligned and highly ordered arrangement of the single crystalline NiSi(2)/Si heterostructure field emitters. In contrast to other growth methods, the present growth of ordered nickel silicide/Si NWs on silicon is compatible with silicon nanoelectronics device processes, and also provides a facile route to grow other well-aligned metal silicide NW arrays. The advantages will facilitate its applications as field emission devices. PMID:21178255

  3. Simulation of the enhancement factor from an individual 3D hemisphere-on-post field emitter by using finite elements method.

    PubMed

    Roveri, D S; Sant'Anna, G M; Bertan, H H; Mologni, J F; Alves, M A R; Braga, E S

    2016-01-01

    This paper presents a 3D computational framework for evaluating electrostatic properties of a single field emitter characterized by the hemisphere-on-post geometry. Numerical simulations employed the finite elements method by using Ansys-Maxwell software. Extensive parametric simulations were focused on the threshold distance from which the emitter field enhancement factor (γ) becomes independent from the anode-substrate gap (G). This investigation allowed demonstrating that the ratio between G and the emitter height (h) is a reliable reference for a broad range of emitter dimensions; furthermore, results permitted establishing G/h ≥ 2.2 as the threshold condition for setting the anode without affecting γ.

  4. Characterisation of carbon nanotube pastes for field emission using their sheet resistances

    NASA Astrophysics Data System (ADS)

    Floweri, Octia; Kim, Jihan; Seo, Yongho; Park, Jun-Young; Lee, Naesung

    2015-10-01

    Carbon nanotube (CNT) pastes for field emitters were fabricated by varying the milling speed, CNT amount and glass frit (GF) powder size. The CNTs remained agglomerated at lower milling speeds while they were damaged and shortened at higher speeds. Increasing the amount of CNTs improved the field emission properties, but excessive CNTs led to increased removal of the CNT paste with surface activation because of lower cohesion strength. Small GF particles were incorporated to provide a flat surface to the CNT paste, which improved its field emission uniformity and lifespan. The dispersion, density and milling damage characteristics of CNTs in the pastes were assessed by their sheet resistances under the assumption of equal printed thicknesses. Tape activation reduced the thickness of the CNT pastes by different amounts that depended on the cohesion strength of the paste. This reduction caused the sheet resistance to increase. For all cases in this study, the field emission properties of the CNT pastes were closely related to their sheet resistances, suggesting that sheet resistance could be used as a figure-of-merit for the evaluation of CNT pastes for field emission applications.

  5. Enhancement of field emission characteristics of carbon nanotubes on oxidation.

    PubMed

    Mathur, Ashish; Roy, Susanta Sinha; Ray, Sekhar Chandra; Hazra, Kiran Shankar; Hamilton, Jeremy; Dickinson, Calum; McLaughlin, James; Misra, Devi Shankar

    2011-08-01

    Vertically aligned multi-walled carbon nanotubes (CNTs) were grown on p-type silicon wafer using thermal chemical vapor deposition process and subsequently treated with oxygen plasma for oxidation. It was observed that the electron field emission (EFE) characteristics are enhanced. It showed that the turn-on electric field (E(TOE)) of CNTs decreased from 0.67 (untreated) to 0.26 V/microm (oxygen treated). Raman spectra showed that the numbers of defects are increased, which are generated by oxygen-treatment, and absorbed molecules on the CNTs are responsible for the enhancement of EFE. Scanning electron microscopy and Transmission electron microscopy images were used to identify the quality and physical changes of the nanotube morphology and surfaces; revealing the evidence of enhancement in the field emission properties after oxygen-plasma treatment.

  6. Breakdown voltage reliability improvement in gas-discharge tube surge protectors employing graphite field emitters

    NASA Astrophysics Data System (ADS)

    Žumer, Marko; Zajec, Bojan; Rozman, Robert; Nemanič, Vincenc

    2012-04-01

    Gas-discharge tube (GDT) surge protectors are known for many decades as passive units used in low-voltage telecom networks for protection of electrical components from transient over-voltages (discharging) such as lightning. Unreliability of the mean turn-on DC breakdown voltage and the run-to-run variability has been overcome successfully in the past by adding, for example, a radioactive source inside the tube. Radioisotopes provide a constant low level of free electrons, which trigger the breakdown. In the last decades, any concept using environmentally harmful compounds is not acceptable anymore and new solutions were searched. In our application, a cold field electron emitter source is used as the trigger for the gas discharge but with no activating compound on the two main electrodes. The patent literature describes in details the implementation of the so-called trigger wires (auxiliary electrodes) made of graphite, placed in between the two main electrodes, but no physical explanation has been given yet. We present experimental results, which show that stable cold field electron emission current in the high vacuum range originating from the nano-structured edge of the graphite layer is well correlated to the stable breakdown voltage of the GDT surge protector filled with a mixture of clean gases.

  7. Rapid field testing of low-emittance coated glazings for product verification

    SciTech Connect

    Griffith, Brent; Kohler, Christian; Goudey, Howdy; Turler, Daniel; Arasteh, Dariush

    1998-02-01

    This paper analyzes prospects for developing a test device suitable for field verification of the types of low-emittance (low-e) coatings present on high-performance window products. Test devices are currently available that can simply detect the presence of low-e coatings and that can measure other important characteristics of high-performance windows, such as the thickness of glazing layers or the gap in dual glazings. However, no devices have yet been developed that can measure gas concentrations or distinguish among types of coatings. This paper presents two optical methods for verification of low-e coatings. The first method uses a portable, fiber-optic spectrometer to characterize spectral reflectances from 650 to 1,100 nm for selected surfaces within an insulated glazing unit (IGU). The second method uses an infrared-light-emitting diode and a phototransistor to evaluate the aggregate normal reflectance of an IGU at 940 nm. Both methods measure reflectance in the near (solar) infrared spectrum and are useful for distinguishing between regular and spectrally selective low-e coatings. The infrared-diode/phototransistor method appears promising for use in a low-cost, hand-held field test device.

  8. Morphology dependent field emission of acid-spun carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Fairchild, S. B.; Boeckl, J.; Back, T. C.; Ferguson, J. B.; Koerner, H.; Murray, P. T.; Maruyama, B.; Lange, M. A.; Cahay, M. M.; Behabtu, N.; Young, C. C.; Pasquali, M.; Lockwood, N. P.; Averett, K. L.; Gruen, G.; Tsentalovich, D. E.

    2015-03-01

    Acid spun carbon nanotube (CNT) fibers were investigated for their field emission properties and performance was determined to be dependent on fiber morphology. The fibers were fabricated by wet-spinning of pre-made CNTs. Fiber morphology was controlled by a fabrication method and processing conditions, as well as purity, size, and type of the CNT starting material. The internal fiber structure consisted of CNT fibrils held together by van der Waals forces. Alignment and packing density of the CNTs affects the fiber’s electrical and thermal conductivity. Fibers with similar diameters and differing morphology were compared, and those composed of the most densely packed and well aligned CNTs were the best field emitters as exhibited by a lower turn-on voltage and a larger field enhancement factor. Fibers with higher electrical and thermal conductivity demonstrated higher maximum current before failure and longer lifetimes. A stable emission current at 3 mA was obtained for 10 h at a field strength of <1 V μm-1. This stable high current operation makes these CNT fibers excellent candidates for use as low voltage electron sources for vacuum electronic devices.

  9. Morphology dependent field emission of acid-spun carbon nanotube fibers.

    PubMed

    Fairchild, S B; Boeckl, J; Back, T C; Ferguson, J B; Koerner, H; Murray, P T; Maruyama, B; Lange, M A; Cahay, M M; Behabtu, N; Young, C C; Pasquali, M; Lockwood, N P; Averett, K L; Gruen, G; Tsentalovich, D E

    2015-03-13

    Acid spun carbon nanotube (CNT) fibers were investigated for their field emission properties and performance was determined to be dependent on fiber morphology. The fibers were fabricated by wet-spinning of pre-made CNTs. Fiber morphology was controlled by a fabrication method and processing conditions, as well as purity, size, and type of the CNT starting material. The internal fiber structure consisted of CNT fibrils held together by van der Waals forces. Alignment and packing density of the CNTs affects the fiber's electrical and thermal conductivity. Fibers with similar diameters and differing morphology were compared, and those composed of the most densely packed and well aligned CNTs were the best field emitters as exhibited by a lower turn-on voltage and a larger field enhancement factor. Fibers with higher electrical and thermal conductivity demonstrated higher maximum current before failure and longer lifetimes. A stable emission current at 3 mA was obtained for 10 h at a field strength of <1 V μm(-1). This stable high current operation makes these CNT fibers excellent candidates for use as low voltage electron sources for vacuum electronic devices. PMID:25694166

  10. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li

    2015-05-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).

  11. Carbon Nanotube Gated Lateral Resonant Tunneling Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Wang, D. P.

    2005-03-01

    Carbon nanotubes have generated a great deal of interest for use in novel devices due to their small size and high current densities. We have produced a new type of lateral resonant tunneling field-effect transistor using a Y-junction multiwalled carbon nanotube as the dual gate on a narrow wire etched from a modulation-doped GaAs/AlGaAs heterostructure. The two branches of the Y-junction nanotube produced in an alumina nanotemplate array ootnotetextLi, J., Papadopoulos, C. and Xu, J. M., ``Growing Y- Junction Carbon Nanotubes" Nature 402, 253-254, 2000. are used as gates to produce a voltage-tunable double-barrier potential for the carriers traveling from source to drain along the wire. The three terminal I-V characteristics of the device have been measured at 4.2K. Conductance oscillation is observed as a function of dual gate potential, indicating electron resonant tunneling through the energy states between the barriers. Detailed measurement and comparison with self-consistent potential simulations will be presented.

  12. Design, Fabrication, and Characterization of Carbon Nanotube Field Emission Devices for Advanced Applications

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich Justin

    Carbon nanotubes (CNTs) have recently emerged as promising candidates for electron field emission (FE) cathodes in integrated FE devices. These nanostructured carbon materials possess exceptional properties and their synthesis can be thoroughly controlled. Their integration into advanced electronic devices, including not only FE cathodes, but sensors, energy storage devices, and circuit components, has seen rapid growth in recent years. The results of the studies presented here demonstrate that the CNT field emitter is an excellent candidate for next generation vacuum microelectronics and related electron emission devices in several advanced applications. The work presented in this study addresses determining factors that currently confine the performance and application of CNT-FE devices. Characterization studies and improvements to the FE properties of CNTs, along with Micro-Electro-Mechanical Systems (MEMS) design and fabrication, were utilized in achieving these goals. Important performance limiting parameters, including emitter lifetime and failure from poor substrate adhesion, are examined. The compatibility and integration of CNT emitters with the governing MEMS substrate (i.e., polycrystalline silicon), and its impact on these performance limiting parameters, are reported. CNT growth mechanisms and kinetics were investigated and compared to silicon (100) to improve the design of CNT emitter integrated MEMS based electronic devices, specifically in vacuum microelectronic device (VMD) applications. Improved growth allowed for design and development of novel cold-cathode FE devices utilizing CNT field emitters. A chemical ionization (CI) source based on a CNT-FE electron source was developed and evaluated in a commercial desktop mass spectrometer for explosives trace detection. This work demonstrated the first reported use of a CNT-based ion source capable of collecting CI mass spectra. The CNT-FE source demonstrated low power requirements, pulsing

  13. Analysis of Carbon Nanotube Field-Effect-Transistors (FETs)

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    1999-01-01

    This five page presentation is grouped into 11 numbered viewgraphs, most of which contain one or more diagrams. Some of the diagrams are accompanied by captions, including: 2) Nanotube FET by Delft, IBM; 3) Nanotube FET/Standard MOSFET; 5) Saturation with carrier-carrier; 7) Electronic properties of carbon nanotube; 8) Theoretical nanotube FET characteristics; 11) Summary: Delft and IBM nanotube FET analysis.

  14. Application of the general thermal field model to simulate the behaviour of nanoscale Cu field emitters

    SciTech Connect

    Eimre, Kristjan; Aabloo, Alvo; Parviainen, Stefan Djurabekova, Flyura; Zadin, Vahur

    2015-07-21

    Strong field electron emission from a nanoscale tip can cause a temperature rise at the tip apex due to Joule heating. This becomes particularly important when the current value grows rapidly, as in the pre-breakdown (the electrostatic discharge) condition, which may occur near metal surfaces operating under high electric fields. The high temperatures introduce uncertainties in calculations of the current values when using the Fowler–Nordheim equation, since the thermionic component in such conditions cannot be neglected. In this paper, we analyze the field electron emission currents as the function of the applied electric field, given by both the conventional Fowler–Nordheim field emission and the recently developed generalized thermal field emission formalisms. We also compare the results in two limits: discrete (atomistic simulations) and continuum (finite element calculations). The discrepancies of both implementations and their effect on final results are discussed. In both approaches, the electric field, electron emission currents, and Joule heating processes are simulated concurrently and self-consistently. We show that the conventional Fowler–Nordheim equation results in significant underestimation of electron emission currents. We also show that Fowler–Nordheim plots used to estimate the field enhancement factor may lead to significant overestimation of this parameter especially in the range of relatively low electric fields.

  15. Application of the general thermal field model to simulate the behaviour of nanoscale Cu field emitters

    NASA Astrophysics Data System (ADS)

    Eimre, Kristjan; Parviainen, Stefan; Aabloo, Alvo; Djurabekova, Flyura; Zadin, Vahur

    2015-07-01

    Strong field electron emission from a nanoscale tip can cause a temperature rise at the tip apex due to Joule heating. This becomes particularly important when the current value grows rapidly, as in the pre-breakdown (the electrostatic discharge) condition, which may occur near metal surfaces operating under high electric fields. The high temperatures introduce uncertainties in calculations of the current values when using the Fowler-Nordheim equation, since the thermionic component in such conditions cannot be neglected. In this paper, we analyze the field electron emission currents as the function of the applied electric field, given by both the conventional Fowler-Nordheim field emission and the recently developed generalized thermal field emission formalisms. We also compare the results in two limits: discrete (atomistic simulations) and continuum (finite element calculations). The discrepancies of both implementations and their effect on final results are discussed. In both approaches, the electric field, electron emission currents, and Joule heating processes are simulated concurrently and self-consistently. We show that the conventional Fowler-Nordheim equation results in significant underestimation of electron emission currents. We also show that Fowler-Nordheim plots used to estimate the field enhancement factor may lead to significant overestimation of this parameter especially in the range of relatively low electric fields.

  16. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Li, Jingqi; Wang, Qingxiao; Yue, Weisheng; Guo, Zaibing; Li, Liang; Zhao, Chao; Wang, Xianbin; Abutaha, Anas I.; Alshareef, H. N.; Zhang, Yafei; Zhang, X. X.

    2014-07-01

    Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations.Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00978a

  17. Optimal dipole-field profiles for emittance reduction in storage rings.

    SciTech Connect

    Wang, C.-X.; Wang, Y.; Peng, Y. )

    2011-03-21

    In recent years nonuniform dipoles with bending-radius variation have been studied for reducing storage ring emittance. According to a new minimum-emittance theory, the effects of an arbitrary dipole can be characterized with two parameters determined by the dipole. To have a better idea of the potentials of nonuniform dipoles, here we numerically explore the possible values of these two parameters and associated bending profiles for optimal emittance reduction. Such optimization results provide a useful reference for lattice designs involving nonuniform bending. Simple bending-radius profiles (a short segment of constant radius with linear ramps on the sides) were found to be close to the optimal. Basic beam and lattice properties such as emittance, energy spread, and phase advances are presented based on the optimal dipole solutions.

  18. Electric fields can control the transport of water in carbon nanotubes

    PubMed Central

    Ritos, Konstantinos; Borg, Matthew K.; Mottram, Nigel J.

    2016-01-01

    The properties of water confined inside nanotubes are of considerable scientific and technological interest. We use molecular dynamics to investigate the structure and average orientation of water flowing within a carbon nanotube. We find that water exhibits biaxial paranematic liquid crystal ordering both within the nanotube and close to its ends. This preferred molecular ordering is enhanced when an axial electric field is applied, affecting the water flow rate through the nanotube. A spatially patterned electric field can minimize nanotube entrance effects and significantly increase the flow rate. PMID:26712640

  19. Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates

    NASA Astrophysics Data System (ADS)

    Guerrera, S. A.; Akinwande, A. I.

    2016-07-01

    We developed a fabrication process for embedding a dense array (108 cm-2) of high-aspect-ratio silicon nanowires (200 nm diameter and 10 μm tall) in a dielectric matrix and then structured/exposed the tips of the nanowires to form self-aligned gate field emitter arrays using chemical mechanical polishing (CMP). Using this structure, we demonstrated a high current density (100 A cm-2), uniform, and long lifetime (>100 h) silicon field emitter array architecture in which the current emitted by each tip is regulated by the silicon nanowire current limiter connected in series with the tip. Using the current voltage characteristics and with the aid of numerical device models, we estimated the tip radius of our field emission arrays to be ≈4.8 nm, as consistent with the tip radius measured using a scanning electron microscope (SEM).

  20. Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates

    NASA Astrophysics Data System (ADS)

    Guerrera, S. A.; Akinwande, A. I.

    2016-07-01

    We developed a fabrication process for embedding a dense array (108 cm‑2) of high-aspect-ratio silicon nanowires (200 nm diameter and 10 μm tall) in a dielectric matrix and then structured/exposed the tips of the nanowires to form self-aligned gate field emitter arrays using chemical mechanical polishing (CMP). Using this structure, we demonstrated a high current density (100 A cm‑2), uniform, and long lifetime (>100 h) silicon field emitter array architecture in which the current emitted by each tip is regulated by the silicon nanowire current limiter connected in series with the tip. Using the current voltage characteristics and with the aid of numerical device models, we estimated the tip radius of our field emission arrays to be ≈4.8 nm, as consistent with the tip radius measured using a scanning electron microscope (SEM).

  1. Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates.

    PubMed

    Guerrera, S A; Akinwande, A I

    2016-07-22

    We developed a fabrication process for embedding a dense array (10(8) cm(-2)) of high-aspect-ratio silicon nanowires (200 nm diameter and 10 μm tall) in a dielectric matrix and then structured/exposed the tips of the nanowires to form self-aligned gate field emitter arrays using chemical mechanical polishing (CMP). Using this structure, we demonstrated a high current density (100 A cm(-2)), uniform, and long lifetime (>100 h) silicon field emitter array architecture in which the current emitted by each tip is regulated by the silicon nanowire current limiter connected in series with the tip. Using the current voltage characteristics and with the aid of numerical device models, we estimated the tip radius of our field emission arrays to be ≈4.8 nm, as consistent with the tip radius measured using a scanning electron microscope (SEM). PMID:27292120

  2. Remarkably improved field emission of TiO{sub 2} nanotube arrays by annealing atmosphere engineering

    SciTech Connect

    Liao, Ai-Zhen; Wang, Cheng-Wei Chen, Jian-Biao; Zhang, Xu-Qiang; Li, Yan; Wang, Jian

    2015-10-15

    Highlights: • TNAs were prepared by anodization and annealed in different atmospheres. • The crystal structure and electronic properties of the prepared TNAs were investigated. • The field emission of TNAs was highly dependent on annealing atmosphere. • A low turn-on of 2.44 V/μm was obtained for TNAs annealed in H{sub 2} atmosphere. - Abstract: Highly ordered TiO{sub 2} nanotube arrays (TNAs) were prepared by anodization, and followed by annealing in the atmospheres of Air, Vacuum, Ar, and H{sub 2}. The effect of annealing atmosphere on the crystal structure, composition, and electronic properties of TNAs were systematically investigated. Raman and EDS results indicated that the TNAs annealed in anaerobic atmospheres contained more oxygen vacancies, which result in the substantially improved electron transport properties and reduced work function. Moreover, it was found that the FE properties of TNAs were highly dependent on the annealing atmosphere. By engineering the annealing atmosphere, the turn-on field as low as 2.44 V/μm can be obtained from TNAs annealed in H{sub 2}, which was much lower than the value of 18.23 V/μm from the TNAs annealed in the commonly used atmosphere of Air. Our work suggests an instructive and attractive way to fabricate high performance TNAs field emitters.

  3. Flat Panel Light Source with Lateral Gate Structure Based on SiC Nanowire Field Emitters

    NASA Astrophysics Data System (ADS)

    Youh, Meng-Jey; Tseng, Chun-Lung; Jhuang, Meng-Han; Chiu, Sheng-Cheng; Huang, Li-Hu; Gong, Jyun-An; Li, Yuan-Yao

    2015-06-01

    A field-emission light source with high luminance, excellent luminance uniformity, and tunable luminance characteristics with a novel lateral-gate structure is demonstrated. The lateral-gate triode structure comprises SiC nanowire emitters on a Ag cathode electrode and a pair of Ag gate electrodes placed laterally on both sides of the cathode. The simple and cost-effective screen printing technique is employed to pattern the lateral-gates and cathode structure on soda lime glass. The area coverage of the screen-printed cathode and gates on the glass substrate (area: 6 × 8 cm2) is in the range of 2.04% - 4.74% depending on the set of cathode-gate electrodes on the substrate. The lateral-gate structure with its small area coverage exhibits a two-dimensional luminance pattern with high brightness and good luminance uniformity. A maximum luminance of 10952 cd/cm2 and a luminance uniformity of >90% can be achieved with a gate voltage of 500 V and an anode voltage of 4000 V, with an anode current of 1.44 mA and current leakage to the gate from the cathode of about 10%.

  4. Planar ultrananocrystalline diamond field emitter in accelerator radio frequency electron injector: Performance metrics

    SciTech Connect

    Baryshev, Sergey V. Antipov, Sergey; Jing, Chunguang; Qiu, Jiaqi; Shao, Jiahang; Liu, Wanming; Gai, Wei; Pérez Quintero, Kenneth J.; Sumant, Anirudha V.; Kanareykin, Alexei D.

    2014-11-17

    A case performance study of a planar field emission cathode (FEC) based on nitrogen-incorporated ultrananocrystalline diamond, (N)UNCD, was carried out in an RF 1.3 GHz electron gun. The FEC was a 100 nm (N)UNCD film grown on a 20 mm diameter stainless steel disk with a Mo buffer layer. At surface gradients 45–65 MV/m, peak currents of 1–80 mA (equivalent to 0.3–25 mA/cm{sup 2}) were achieved. Imaging with two YAG screens confirmed emission from the (N)UNCD surface with (1) the beam emittance of 1.5 mm × mrad/mm-rms and (2) longitudinal FWHM and rms widths of non-Gaussian energy spread of 0.7% and 11% at an electron energy of 2 MeV. Current stability was tested over the course of 36 × 10{sup 3} RF pulses (equivalent to 288 × 10{sup 6 }GHz oscillations)

  5. Flat Panel Light Source with Lateral Gate Structure Based on SiC Nanowire Field Emitters

    PubMed Central

    Youh, Meng-Jey; Tseng, Chun-Lung; Jhuang, Meng-Han; Chiu, Sheng-Cheng; Huang, Li-Hu; Gong, Jyun-An; Li, Yuan-Yao

    2015-01-01

    A field-emission light source with high luminance, excellent luminance uniformity, and tunable luminance characteristics with a novel lateral-gate structure is demonstrated. The lateral-gate triode structure comprises SiC nanowire emitters on a Ag cathode electrode and a pair of Ag gate electrodes placed laterally on both sides of the cathode. The simple and cost-effective screen printing technique is employed to pattern the lateral-gates and cathode structure on soda lime glass. The area coverage of the screen-printed cathode and gates on the glass substrate (area: 6 × 8 cm2) is in the range of 2.04% – 4.74% depending on the set of cathode-gate electrodes on the substrate. The lateral-gate structure with its small area coverage exhibits a two-dimensional luminance pattern with high brightness and good luminance uniformity. A maximum luminance of 10952 cd/cm2 and a luminance uniformity of >90% can be achieved with a gate voltage of 500 V and an anode voltage of 4000 V, with an anode current of 1.44 mA and current leakage to the gate from the cathode of about 10%. PMID:26042359

  6. Ultrafast electron microscopy and diffraction with laser-driven field emitters

    NASA Astrophysics Data System (ADS)

    Ropers, Claus

    2015-03-01

    Ultrafast structural dynamics in solids and nanostructures can be investigated by an increasing number of sophisticated electron and x-ray diffraction techniques. Electrons are particularly suited for this purpose, exhibiting high scattering cross-sections and allowing for beam control by versatile electrostatic or magnetic lens systems. The capabilities of time-resolved electron imaging techniques critically depend on the employed source of laser-driven ultrashort electron pulses. Nanoscopic sources offer exceptional possibilities for the generation of electron probe pulses with very short durations and high spatial beam coherence. In this talk, I will discuss recent progress in the development of ultrafast electron microscopy and diffraction based on nanoscopic photocathodes. In particular, we implemented ultrafast low-energy electron diffraction (ULEED) and ultrafast transmission electron microscopy (UTEM) driven by nonlinear photoemission from field emission tips. ULEED enables the study of structural changes with high temporal resolution and ultimate surface sensitivity, at sub-keV electron energies. As a first application of this technique, we studied the structural phase transition in a stripe-like polymer superstructure on freestanding monolayer graphene. An advanced UTEM instrument was realized by custom modifications of a standard transmission electron microscope, leading to electron focal spot sizes in the microscope's sample plane of about 10 nm and electron pulse durations of less than 700 fs. Utilizing these features, we investigate the quantum-coherent interaction between the ultrashort electron pulse and the optical near-field of an illuminated nanostructure. Finally, further applications and prospects of ultrafast electron imaging, diffraction and spectroscopy using nanoscale field emitters will be discussed.

  7. Effect of the morphology of CNT arrays on the current density of field-emitter matrices

    SciTech Connect

    Galperin, V. A. Zhukov, A. A.; Pavlov, A. A.; Skorik, S. N.; Shaman, Yu. P.; Shamanaev, A. A.

    2014-12-15

    Structured carbon-nanotube arrays synthesized in topological regions formed by electron-beam lithography are studied. The effect of the morphology and topology of the carbon-nanotube arrays on the emission characteristics of the structures being formed are considered.

  8. Water-methanol separation with carbon nanotubes and electric fields

    NASA Astrophysics Data System (ADS)

    Winarto, Affa; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-07-01

    Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing diameter. In contrast, under an electric field, water molecules strongly prefer to occupy the CNTs over methanol molecules, resulting in a separation effect for water. More interestingly, the separation effect for water does not decrease with increasing CNT diameter. Formation of water structures in CNTs induced by an electric field has an important role in the separation of water from methanol.Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water-methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing

  9. Carbon nanotube gated lateral resonant tunneling field-effect transistors

    NASA Astrophysics Data System (ADS)

    Wang, D. P.; Perkins, B. R.; Yin, A. J.; Zaslavsky, A.; Xu, J. M.; Beresford, R.; Snider, G. L.

    2005-10-01

    We have produced a lateral resonant tunneling field-effect transistor using a Y-junction multiwalled carbon nanotube as the dual gate on a narrow channel etched from a modulation-doped GaAs /AlGaAs heterostructure. When the Y-junction nanotube is negatively biased, electrons traveling from source to drain along the channel face a voltage-tunable electrostatic double-barrier potential. We measured the three-terminal IDS(VDS,VGS) characteristics of the device at 4.2 K and observed gate-induced structure in the transconductance and negative differential resistance in the drain current. We interpret the data in terms of resonant tunneling through one-dimensional subbands confined by a self-consistently calculated electrostatic potential.

  10. A study of junction effect transistors and their roles in carbon nanotube field emission cathodes in compact pulsed power applications

    NASA Astrophysics Data System (ADS)

    Shui, Qiong

    This thesis is focusing on a study of junction effect transistors (JFETs) in compact pulsed power applications. Pulsed power usually requires switches with high hold-off voltage, high current, low forward voltage drop, and fast switching speed. 4H-SiC, with a bandgap of 3.26 eV (The bandgap of Si is 1.12eV) and other physical and electrical superior properties, has gained much attention in high power, high temperature and high frequency applications. One topic of this thesis is to evaluate if 4H-SiC JFETs have a potential to replace gas phase switches to make pulsed power system compact and portable. Some other pulsed power applications require cathodes of providing stable, uniform, high electron-beam current. So the other topic of this research is to evaluate if Si JFET-controlled carbon nanotube field emitter cold cathode will provide the necessary e-beam source. In the topic of "4H-SiC JFETs", it focuses on the design and simulation of a novel 4H-SiC normally-off VJFET with high breakdown voltage using the 2-D simulator ATLAS. To ensure realistic simulations, we utilized reasonable physical models and the established parameters as the input into these models. The influence of key design parameters were investigated which would extend pulsed power limitations. After optimizing the key design parameters, with a 50-mum drift region, the predicted breakdown voltage for the VJFET is above 8kV at a leakage current of 1x10-5A/cm2 . The specific on-state resistance is 35 mO·cm 2 at VGS = 2.7 V, and the switching speed is several ns. The simulation results suggest that the 4H-SiC VJFET is a potential candidate for improving switching performance in repetitive pulsed power applications. To evaluate the 4H-SiC VJFETs in pulsed power circuits, we extracted some circuit model parameters from the simulated I-V curves. Those parameters are necessary for circuit simulation program such as SPICE. This method could be used as a test bench without fabricating the devices to

  11. Field Emission Lamps Prepared with Dip-Coated and Nickel Electroless Plated Carbon Nanotube Cathodes.

    PubMed

    Pu, N W; Youh, M J; Chung, K J; Liu, Y M; Ger, M D

    2015-07-01

    Fabrication and efficiency enhancement of tubal field emission lamps (FELs) using multi-walled carbon nanotubes (MWNTs) as the cathode field emitters were studied. The cathode filaments were prepared by eletrolessly plating a nickel (Ni) film on the cathode made of a 304 stainless steel wire dip-coated with MWNTs. The 304 wire was dip-coated with MWNTs and nano-sized Pd catalyst in a solution, and then eletrolessly plated with Ni to form an MWNT-embedded composite film. The MWNTs embedded in Ni not only had better adhesion but also exhibited a higher FE threshold voltage, which is beneficial to our FEL system and can increase the luminous efficiency of the anode phosphor. Our results show that the FE cathode prepared by dipping three times in a solution containing 400 ppm Pd nano-catalysts and 0.2 wt.% MWNTs and then eletrolessly plating a Ni film at a deposition temperature of 60 °C, pH value of 5, and deposition time of 7 min has the best FE uniformity and efficiency. Its emission current can stay as low as 2.5 mA at a high applied voltage of 7 kV, which conforms to the high-voltage-and-low-current requirement of the P22 phosphor and can therefore maximize the luminous efficiency of our FEL. We found that the MWNT cathodes prepared by this approach are suitable for making high-efficiency FELs. PMID:26373085

  12. Effect of a concave grid mesh in a carbon nanotube-based field emission X-ray source

    SciTech Connect

    Kim, Hyun Suk; Castro, Edward Joseph D.; Lee, Choong Hun

    2014-10-15

    Highlights: • Successful design using a concave grid mesh for the focusing electron. • Much better X-ray image due to the concave grid mesh. • Higher anode current efficiency using the concave grid mesh versus a flat grid mesh. - Abstract: This study introduces a simple approach to improve the X-ray image quality produced by the carbon nanotube (CNT) field emitter X-ray source by altering the geometrical shape of the grid mesh from the conventional flat shape to a concave one in a typical triode structure. The concave shape of the grid electrode increases the effective number of the grid cells in the mesh, which exerted an electric field in the direction of the emitted electrons, thereby increasing the emission current reaching the anode. Furthermore, the curved mesh (concave grid mesh), which was responsible for the extraction of electrons from the field emitter, exhibited a focusing effect on the electron beam trajectory thereby, reducing the focal spot size impinging on the anode and resulted in a better spatial resolution of the X-ray images produced.

  13. Growth of Aligned Multiwall Carbon Nanotubes and the Effect of Adsorbates on the Field Emission Properties

    NASA Astrophysics Data System (ADS)

    Milne, W. I.; Teo, K. B. K.; Lansley, S. B.; Chhowalla, M.; Amaratunga, G. A. J.; Semet, V.; Binh, Vu Thien; Pirio, G.; Legagneux, P.

    2003-10-01

    In attempt to decipher the field emission characteristics of multiwall carbon nanotubes (MWCNTs), we have developed a fabrication method based on plasma enhanced chemical vapour deposition (PECVD) to provide utmost control of the nanotube structure such as their alignment, individual position, diameter, length and morphology. We investigated the field emission properties of these nanotubes to elucidate the effect of adsorbates on the nanotubes. Our results show that although the adsorbates cause an apparent lowering of the required turn on voltage/field of the nanotubes, the adsorbates undesirably cause a saturation of the current, large temporal fluctuations in the current, and also a deviation of the emission characteristics from Fowler-Nordheim like emission. The adsorbates are easily removed by extracting an emission current of 1 uA per nanotube or using a high applied electric field (˜25V/um).

  14. Development and characterization of a MEMS based carbon nanotube field emission electron source technology for high resolution applications

    NASA Astrophysics Data System (ADS)

    Ribaya, Bryan Pecson

    Due to their chemical structure, carbon nanotubes (CNTs) possess unique physical, mechanical, and electrical properties which are valuable for advanced electron beam applications. In particular, the high aspect ratio and small tip radius of the individual carbon nanotube make it an excellent field emission electron source for high resolution applications. At the NASA Ames Research Center, the Microcolumn Scanning Electron Microscope and EDX Spectrometer (MSEMS) is being developed. The MSEMS, a spaceflight instrument, will be capable of high resolution spatial imaging and elemental analysis of planetary and interplanetary rocks and minerals which leave clues to their history in the form of chemical and physical changes. The MSEMS will be a miniaturized version of the laboratory scanning electron microscope (SEM) with an optical column length of less than 1 cm. Field deployment of the MSEMS for in situ sample analysis from a spacecraft such as the Mars Exploration Rover is possible because of its small size. The enabling technology for device miniaturization is an individual carbon nanotube electron source. With the CNT field emitter's characteristically low energy spread and high brightness, a microcolumn SEM can achieve a small probe diameter with a short optical column. The objective of this work, through collaboration between the Electron Devices Laboratory (EDL) and NASA, is to develop and characterize the carbon nanotube ABSTRACT electron source technology for the microcolumn SEM. A novel microelectromechanical systems (MEMS) based technique for fabrication of a single CNT field emission cathode will be presented. This technique produces CNT cathodes which are electrically and mechanically more reliable than previous fabrication methods. Also, design rules for the overall cathode geometry for optimization of the CNT's field emission characteristics will be introduced. Furthermore, a circuit model to represent the CNT electron source will be revealed which will

  15. Field emission from carbon nanotubes produced using microwave plasma assisted CVD

    SciTech Connect

    Zhang, Q.; Yoon, S.F.; Ahn, J.; Gan, B.; Rusli; Yu, M.B.; Cheah, L.K.; Shi, X.

    2000-01-30

    Electron field emission from carbon nanotubes prepared using microwave plasma assisted CVD has been investigated. The nanotubes, ranging from 50 to 120 nm in diameter and a few tens of microns in length, were formed under methane and hydrogen plasma at 720 C with the aid of iron-oxide particles. The morphology and growth direction of the nanotubes are found to be strongly influenced by the flow ratio of methane to hydrogen. However, the electron field emission from these massive nanotubes show similar characteristics, i.e., high emission current at low electric fields.

  16. Lipid nanotube formation using space-regulated electric field above interdigitated electrodes.

    PubMed

    Bi, Hongmei; Fu, Dingguo; Wang, Lei; Han, Xiaojun

    2014-04-22

    Lipid nanotubes have great potential in biology and nanotechnology. Here we demonstrate a method to form lipid nanotubes using space-regulated AC electric fields above coplanar interdigitated electrodes. The AC electric field distribution can be regulated by solution height above the electrodes. The ratio of field component in x axis (Ex) to field component in z axis (Ez) increases dramatically at solution height below 50 μm; therefore, at lower solution height, the force from Ex predominantly drives lipids to form lipid nanotubes along with the electric field direction. The forces exerted on the lipid nanotube during its formation were analyzed in detail, and an equation was obtained to describe the relationship among nanotube length and field frequency, amplitude, and time. We believe that the presented approach opens a way to design and prepare nanoscale materials with unique structural and functional properties using space-regulated electric fields.

  17. Enhanced shot noise in carbon nanotube field-effect transistors

    SciTech Connect

    Betti, A.; Fiori, G.; Iannaccone, G.

    2009-12-21

    We predict shot noise enhancement in defect-free carbon nanotube field-effect transistors through a numerical investigation based on the self-consistent solution of the Poisson and Schroedinger equations within the nonequilibrium Green's functions formalism, and on a Monte Carlo approach to reproduce injection statistics. Noise enhancement is due to the correlation between trapping of holes from the drain into quasibound states in the channel and thermionic injection of electrons from the source, and can lead to an appreciable Fano factor of 1.22 at room temperature.

  18. SEARCHING FOR z {approx} 7.7 Ly{alpha} EMITTERS IN THE COSMOS FIELD WITH NEWFIRM

    SciTech Connect

    Krug, Hannah B.; Veilleux, Sylvain; Tilvi, Vithal; Malhotra, Sangeeta; Rhoads, James; Hibon, Pascale; Swaters, Rob

    2012-02-01

    The study of Ly{alpha} emission in the high-redshift universe is a useful probe of the epoch of reionization, as the Ly{alpha} line should be attenuated by the intergalactic medium (IGM) at low to moderate neutral hydrogen fractions. Here we present the results of a deep and wide imaging search for Ly{alpha} emitters in the Cosmological Evolution Survey field. We have used two ultra-narrowband filters (filter width of {approx}8-9 A) on the NOAO Extremely Wide-Field Infrared Mosaic camera, installed on the Mayall 4 m telescope at Kitt Peak National Observatory, in order to isolate Ly{alpha} emitters at z = 7.7; such ultra-narrowband imaging searches have proved to be excellent at detecting Ly{alpha} emitters. We found 5{sigma} detections of four candidate Ly{alpha} emitters in a survey volume of 2.8 Multiplication-Sign 10{sup 4} Mpc{sup 3} (total survey area {approx}760 arcmin{sup 2}). Each candidate has a line flux greater than 8 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2}. Using these results to construct a luminosity function and comparing to previously established Ly{alpha} luminosity functions at z = 5.7 and z = 6.5, we find no conclusive evidence for evolution of the luminosity function between z = 5.7 and z = 7.7. Statistical Monte Carlo simulations suggest that half of these candidates are real z = 7.7 targets, and spectroscopic follow-up will be required to verify the redshift of these candidates. However, our results are consistent with no strong evolution in the neutral hydrogen fraction of the IGM between z = 5.7 and z = 7.7, even if only one or two of the z = 7.7 candidates are spectroscopically confirmed.

  19. Fabrication of n-type carbon nanotube field-effect transistors by Al doping

    NASA Astrophysics Data System (ADS)

    Oh, Hwangyou; Kim, Ju-Jin; Song, Woon; Moon, Sunkyung; Kim, Nam; Kim, Jinhee; Park, Noejung

    2006-03-01

    We report the effect of an Al layer, covering the central part of the nanotube channel, on the electrical transport properties of carbon nanotube field-effect transistors (CNFETs). The CNFETs, consisting of single-walled carbon nanotube or double-walled carbon nanotube between two Pd electrodes on top of SiO2 layer, which showed p-type or ambipolar transport behaviors, exhibit clear n-type characteristics after the Al deposition. We ascribe such conversions into n-type behaviors to the electron doping in the Al-covered nanotube region, which results in the bending of the nanotube bands nearby the edges of the Al layer. This technique, Al deposition under a high vacuum, may give rise to a practical fabrication method for the n-type CNFET, which may enable us to develop complementary logic nanotube electronic devices.

  20. Structures of water molecules in carbon nanotubes under electric fields

    SciTech Connect

    Winarto,; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-03-28

    Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electric field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate.

  1. Structures of water molecules in carbon nanotubes under electric fields

    NASA Astrophysics Data System (ADS)

    Winarto, Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-03-01

    Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electric field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate.

  2. Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source

    NASA Astrophysics Data System (ADS)

    Christy, Larry

    Field emission (FE) properties of carbon nanotube (CNT) fibers from Rice University and the University of Cambridge have been studied for use within a high current electron source for a directed energy weapon. Upon reviewing the performance of these two prevalent CNT fibers, cathodes were designed with CNT fibers from the University of Cincinnati Nanoworld Laboratory. Cathodes composed of a single CNT fiber, an array of three CNT fibers, and a nonwoven CNT sheet were investigated for FE properties; the goal was to design a cathode with emission current in excess of 10 mA. Once the design phase was complete, the cathode samples were fabricated, characterized, and then analyzed to determine FE properties. Electrical conductivity of the CNT fibers was characterized with a 4-probe technique. FE characteristics were measured in an ultra-high vacuum chamber at Wright-Patterson Air Force Base. The arrayed CNT fiber and the enhanced nonwoven CNT sheet emitter design demonstrated the most promising FE properties. Future work will include further analysis and cathode design using this nonwoven CNT sheet material to increase peak current performance during electron emission.

  3. Nitrogen incorporated ultrananocrystalline diamond based field emitter array for a flat-panel x-ray source

    SciTech Connect

    Posada, Chrystian M.; Grant, Edwin J.; Lee, Hyoung K.; Castaño, Carlos H.; Divan, Ralu; Sumant, Anirudha V.; Rosenmann, Daniel; Stan, Liliana

    2014-04-07

    A field emission based flat-panel transmission x-ray source is being developed as an alternative for medical and industrial imaging. A field emitter array (FEA) prototype based on nitrogen incorporated ultrananocrystalline diamond film has been fabricated to be used as the electron source of this flat panel x-ray source. The FEA prototype was developed using conventional microfabrication techniques. The field emission characteristics of the FEA prototype were evaluated. Results indicated that emission current densities of the order of 6 mA/cm{sup 2} could be obtained at electric fields as low as 10 V/μm to 20 V/μm. During the prototype microfabrication process, issues such as delamination of the extraction gate and poor etching of the SiO{sub 2} insulating layer located between the emitters and the extraction layer were encountered. Consequently, alternative FEA designs were investigated. Experimental and simulation data from the first FEA prototype were compared and the results were used to evaluate the performance of alternative single and double gate designs that would yield better field emission characteristics compared to the first FEA prototype. The best simulation results are obtained for the double gate FEA design, when the diameter of the collimator gate is around 2.6 times the diameter of the extraction gate.

  4. Degeneracy in carbon nanotubes under transverse magnetic δ-fields.

    PubMed

    Kuru, Ş; Negro, J; Tristao, S

    2015-07-22

    The aim of this article was to study the degeneracy of the energy spectrum in a nanotube under a transverse magnetic field. The massless Dirac-Weyl equation has been used to describe the low energy states of this system. The particular case of a singular magnetic field approximated by Dirac delta distributions is considered. It is shown that, under general symmetry conditions, there is a double degeneracy corresponding to periodic solutions with null axial momentum k(z)=0. Also, there may be a kind of sporadic degeneracy for non-vanishing values of k(z), which are explicitly computed in the present example. The proof of these properties is obtained by means of the supersymmetric structure of the Dirac-Weyl Hamiltonian. PMID:26102328

  5. Carbon nanotube field emitters for nanoklystrons and other high frequency tube sources

    NASA Technical Reports Server (NTRS)

    Manohara, H.; Bronikowski, M. J.; Hunt, B. D.; Siegel, P. H.

    2005-01-01

    Traditional submillimeter-wave vacuum tube sources, now available only from the former Soviet Union, have been a mainstay for generating modest amounts (mW) of narrow band (phase lockable) tunable CW RF power at frequencies from 50 to 1200 GHz.

  6. Fast Photoresponse and Long Lifetime UV Photodetectors and Field Emitters Based on ZnO/Ultrananocrystalline Diamond Films.

    PubMed

    Saravanan, Adhimoorthy; Huang, Bohr-Ran; Lin, Jun-Cheng; Keiser, Gerd; Lin, I-Nan

    2015-11-01

    We have designed photodetectors and UV field emitters based on a combination of ZnO nanowires/nanorods (ZNRs) and bilayer diamond films in a metal-semiconductor-metal (MSM) structure. The ZNRs were fabricated on different diamond films and systematic investigations showed an ultra-high photoconductive response from ZNRs prepared on ultrananocrystalline diamond (UNCD) operating at a lower voltage of 2 V. We found that the ZNRs/UNCD photodetector (PD) has improved field emission properties and a reduced turn-on field of 2.9 V μm(-1) with the highest electron field emission (EFE) by simply illuminating the sample with ultraviolet (UV) light. The photoresponse (Iphoto /Idark ) behavior of the ZNRs/UNCD PD exhibits a much higher photoresponse (912) than bare ZNRs (229), ZNRs/nanocrystalline diamond (NCD; 518), and ZNRs/microcrystalline diamond (MCD; 325) under illumination at λ=365 nm. A photodetector with UNCD films offers superior stability and a longer lifetime compared with carbon materials and bare ZNRs. The lifetime stability of the ZNRs/UNCD-based device is about 410 min, which is markedly superior to devices that use bare ZNRs (92 min). The ZNRs/UNCD PD possesses excellent photoresponse properties with improved lifetime and stability; in addition, ZNRs/UNCD-based UV emitters have great potential for applications such as cathodes in flat-panel displays and microplasma display devices. PMID:26382200

  7. Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Peng; Kong, Gao-Pan; Zhang, Xing; He, Guo-Wei

    2013-09-01

    Using molecular dynamics simulations, we demonstrate pumping of water through a carbon nanotube by applying the combination of a rotating electric field and a rotating magnetic field. The driving force is a Lorentz force generated from the motion of charges in the magnetic field, and the motion is caused by the rotation of the electric field. We find that there exits a linear relationship between the average pumping velocity v and magnetic field strength B, which can be used to control the flux of the continuous unidirectional water flow. This approach is expected to be used in liquid circulation without a pressure gradient.

  8. Integrated ZnO Nano-Electron-Emitter with Self-Modulated Parasitic Tunneling Field Effect Transistor at the Surface of the p-Si/ZnO Junction

    NASA Astrophysics Data System (ADS)

    Cao, Tao; Luo, Laitang; Huang, Yifeng; Ye, Bing; She, Juncong; Deng, Shaozhi; Chen, Jun; Xu, Ningsheng

    2016-09-01

    The development of high performance nano-electron-emitter arrays with well reliability still proves challenging. Here, we report a featured integrated nano-electron-emitter. The vertically aligned nano-emitter consists of two segments. The top segment is an intrinsically lightly n-type doped ZnO nano-tip, while the bottom segment is a heavily p-type doped Si nano-pillar (denoted as p-Si/ZnO nano-emitter). The anode voltage not only extracted the electron emission from the emitter apex but also induced the inter-band electron tunneling at the surface of the p-Si/ZnO nano-junction. The designed p-Si/ZnO emitter is equivalent to a ZnO nano-tip individually ballasted by a p-Si/ZnO diode and a parasitic tunneling field effect transistor (TFET) at the surface of the p-Si/ZnO junction. The parasitic TFET provides a channel for the supply of emitting electron, while the p-Si/ZnO diode is benefit for impeding the current overloading and prevent the emitters from a catastrophic breakdown. Well repeatable and stable field emission current were obtained from the p-Si/ZnO nano-emitters. High performance nano-emitters was developed using diamond-like-carbon coated p-Si/ZnO tip array (500 × 500), i.e., 178 μA (4.48 mA/cm2) at 75.7 MV/m.

  9. Integrated ZnO Nano-Electron-Emitter with Self-Modulated Parasitic Tunneling Field Effect Transistor at the Surface of the p-Si/ZnO Junction

    PubMed Central

    Cao, Tao; Luo, Laitang; Huang, Yifeng; Ye, Bing; She, Juncong; Deng, Shaozhi; Chen, Jun; Xu, Ningsheng

    2016-01-01

    The development of high performance nano-electron-emitter arrays with well reliability still proves challenging. Here, we report a featured integrated nano-electron-emitter. The vertically aligned nano-emitter consists of two segments. The top segment is an intrinsically lightly n-type doped ZnO nano-tip, while the bottom segment is a heavily p-type doped Si nano-pillar (denoted as p-Si/ZnO nano-emitter). The anode voltage not only extracted the electron emission from the emitter apex but also induced the inter-band electron tunneling at the surface of the p-Si/ZnO nano-junction. The designed p-Si/ZnO emitter is equivalent to a ZnO nano-tip individually ballasted by a p-Si/ZnO diode and a parasitic tunneling field effect transistor (TFET) at the surface of the p-Si/ZnO junction. The parasitic TFET provides a channel for the supply of emitting electron, while the p-Si/ZnO diode is benefit for impeding the current overloading and prevent the emitters from a catastrophic breakdown. Well repeatable and stable field emission current were obtained from the p-Si/ZnO nano-emitters. High performance nano-emitters was developed using diamond-like-carbon coated p-Si/ZnO tip array (500 × 500), i.e., 178 μA (4.48 mA/cm2) at 75.7 MV/m. PMID:27654068

  10. PHOTOMETRIC PROPERTIES OF Ly{alpha} EMITTERS AT z {approx} 4.86 IN THE COSMOS 2 SQUARE DEGREE FIELD

    SciTech Connect

    Shioya, Y.; Taniguchi, Y.; Nagao, T.; Saito, T.; Trump, J.; Sasaki, S. S.; Ideue, Y.; Nakajima, A.; Matsuoka, K.; Murayama, T.; Scoville, N. Z.; Capak, P.; Ellis, R. S.; Sanders, D. B.; Kartaltepe, J.; Mobasher, B.; Aussel, H.; Koekemoer, A.; Carilli, C.; Garilli, B.

    2009-05-01

    We present results of a survey for Ly{alpha} emitters at z {approx} 4.86 based on optical narrowband ({lambda} {sub c} = 7126 A, {delta}{lambda} = 73 A) and broadband (B, V, r', i', and z') observations of the Cosmic Evolution Survey field using Suprime-Cam on the Subaru Telescope. We find 79 Ly{alpha} emitter (LAE) candidates at z {approx} 4.86 over a contiguous survey area of 1.83 deg{sup 2}, down to the Ly{alpha} line flux of 1.47 x 10{sup -17} erg s{sup -1} cm{sup -2}. We obtain the Ly{alpha} luminosity function with a best-fit Schechter parameters of log L* = 42.9{sup +0.5} {sub -0.3} erg s{sup -1} and {phi}* = 1.2{sup +8.0} {sub -1.1} x 10{sup -4} Mpc{sup -3} for {alpha} = -1.5 (fixed). The two-point correlation function for our LAE sample is {xi}(r) = (r/4.4{sup +5.7} {sub -2.9} Mpc){sup -1.90{+-}}{sup 0.22}. In order to investigate the field-to-field variations of the properties of Ly{alpha} emitters, we divide the survey area into nine tiles of 0.{sup 0}5 x 0.{sup 0}5 each. We find that the number density varies with a factor of {approx_equal}2 from field to field with high statistical significance. However, we find no significant field-to-field variance when we divide the field into four tiles with 0.{sup 0}7 x 0.{sup 0}7 each. We conclude that at least 0.5 deg{sup 2} survey area is required to derive averaged properties of LAEs at z {approx} 5, and our survey field is wide enough to overcome the cosmic variance.

  11. Analysis of long-channel nanotube field-effect-transistors (NT FETs)

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides an analysis of long-channel nanotube (NT) field effect transistors (FET) from NASA's Ames Research Center. The structure of such a transistor including the electrode contact, 1D junction, and the planar junction is outlined. Also mentioned are various characteristics of a nanotube tip-equipped scanning tunnel microscope (STM).

  12. Electrostatic waves in carbon nanotubes with an axial magnetic field

    SciTech Connect

    Abdikian, Alireza; Bagheri, Mehran

    2013-10-15

    Based on a linearized hydrodynamic model and within the quasi-static approximation, the dispersion relation of electrostatic waves propagating through single-walled carbon nanotubes subject to an axial magnetic field is theoretically explored. In the classical limit, we obtain two main possible waves which in turn are divided into two branches, a low-frequency acoustical and a high-frequency optical plasmon branch. In the quantum case, we have found that the dispersion relation is substantially modified when the electron wavelength becomes large enough compared to the propagation wavelength of the electrostatic waves in the quantum plasma. We also show that the axial magnetic field manifest itself on the perturbed electron density through the quantum term and gives rise to the propagation of the electrostatic waves within the quantum plasma. As a result, the effect of the magnetic field is pronounced in the plasma dispersion relations in such a way that their curves approach to zero when the magnetic field is weak; and for the strong magnetic field, they asymptotically meet the constant lines.

  13. Thermionic field emission transport in carbon nanotube transistors.

    PubMed

    Perello, David J; Lim, Seong Chu; Chae, Seung Jin; Lee, Innam; Kim, Moon J; Lee, Young Hee; Yun, Minhee

    2011-03-22

    With experimental and analytical analysis, we demonstrate a relationship between the metal contact work function and the electrical transport properties saturation current (Isat) and differential conductance (σsd=∂Isd/∂Vsd) in ambient exposed carbon nanotubes (CNT). A single chemical vapor deposition (CVD) grown 6 mm long semiconducting single-walled CNT is electrically contacted with a statistically significant number of Hf, Cr, Ti, Pd, and Au electrodes, respectively. The observed exponentially increasing relationship of Isat and σsd with metal contact work function is explained by a theoretical model derived from thermionic field emission. Statistical analysis and spread of the data suggest that the conduction variability in same CNT devices results from differences in local surface potential of the metal contact. Based on the theoretical model and methodology, an improved CNT-based gas sensing device layout is suggested. A method to experimentally determine gas-induced work function changes in metals is also examined.

  14. Role of the resistivity of insulating field emitters on the energy of field-ionised and field-evaporated atoms.

    PubMed

    Arnoldi, L; Silaeva, E P; Vurpillot, F; Deconihout, B; Cadel, E; Blum, I; Vella, A

    2015-12-01

    In order to improve the accuracy of laser atom probe analyses, it is important to understand all the physical processes induced by the combination of the high electrical field and the femtosecond laser beam during field evaporation. New information can be accessed from the energy of evaporated surface atoms or field-ionised atoms of an imaging gas. In order to study the ions energy, we combine La-APT and FIM analyses in a new experimental setup equipped with electrostatic lenses. We report measurements for semiconductors and oxides and we study the influence of the illumination conditions (laser power and wavelength), the evaporation rate, the sample geometry and the tip preparation processes. The results are discussed taking into account the resistive properties of non-metallic samples and the photo-stimulated conductivity. This work clarifies the role of the laser and DC field in the energy deficit of field evaporated ions. PMID:25484362

  15. The wave-field from an array of periodic emitters driven simultaneously by a broadband pulse.

    PubMed

    Dixon, Steve; Hill, Samuel; Fan, Yichao; Rowlands, George

    2013-06-01

    The use of phased array methods are commonplace in ultrasonic applications, where controlling the variation of the phase between the narrowband emitters in an array facilitates beam steering and focusing of ultrasonic waves. An approach is presented here whereby emitters of alternating polarity arranged in a one-dimensional array are pulsed simultaneously, and have sufficiently wide, controlled bandwidth to emit a two-dimensional wave. This pulsed approach provides a rapid means of simultaneously covering a region of space with a wave-front, whereby any wave that scatters or reflects off a body to a detector will have a distinct arrival time and frequency. This is a general wave phenomenon with a potential application in radar, sonar, and ultrasound. The key result is that one can obtain a smooth, continuous wave-front emitted from the array, over a large solid angle, whose frequency varies as a function of angle to the array. Analytic and finite element models created to describe this phenomenon have been validated with experimental results using ultrasonic waves in metal samples.

  16. The wave-field from an array of periodic emitters driven simultaneously by a broadband pulse.

    PubMed

    Dixon, Steve; Hill, Samuel; Fan, Yichao; Rowlands, George

    2013-06-01

    The use of phased array methods are commonplace in ultrasonic applications, where controlling the variation of the phase between the narrowband emitters in an array facilitates beam steering and focusing of ultrasonic waves. An approach is presented here whereby emitters of alternating polarity arranged in a one-dimensional array are pulsed simultaneously, and have sufficiently wide, controlled bandwidth to emit a two-dimensional wave. This pulsed approach provides a rapid means of simultaneously covering a region of space with a wave-front, whereby any wave that scatters or reflects off a body to a detector will have a distinct arrival time and frequency. This is a general wave phenomenon with a potential application in radar, sonar, and ultrasound. The key result is that one can obtain a smooth, continuous wave-front emitted from the array, over a large solid angle, whose frequency varies as a function of angle to the array. Analytic and finite element models created to describe this phenomenon have been validated with experimental results using ultrasonic waves in metal samples. PMID:23742324

  17. Nanotube

    2007-09-13

    This is a source code to calculate the current-voltage characteristics, the charge distribution and the electrostatic potential in carbon nanotube devices. The code utilizes the non-equilibrium Green's function method, implemented in a tight-binding scheme, to calculate the charge distribution and the energy-dependent transmission function, from which the current or the conductance are obtained. The electrostatic potential is obtained by solving Poisson's equation on a grid with boundary conditions on the electrodes, and at other interfaces.more » Self-consistency between the charge and the electrostatic potential is achieved using a linear mixing method. Different versions of the code allow the modeling of different types of nanotube devices: Version 1.0: Modeling of carbon nanotube electronic devices with cylindrical symmetry Version 1.1: Modeling of planar carbon nanotube electronic devices Version 1.2: Modeling of photocurrent in carbon nanotube devices« less

  18. Water–methanol separation with carbon nanotubes and electric fields.

    PubMed

    Winarto; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-08-01

    Methanol is used in various applications, such as fuel for transportation vehicles, fuel cells, and in chemical industrial processes. Conventionally, separation of methanol from aqueous solution is by distillation. However, this method consumes a large amount of energy; hence development of a new method is needed. In this work, molecular dynamics simulations are performed to investigate the effect of an electric field on water–methanol separation by carbon nanotubes (CNTs) with diameters of 0.81 to 4.07 nm. Without an electric field, methanol molecules fill the CNTs in preference to water molecules. The preference of methanol to occupy the CNTs over water results in a separation effect. This separation effect is strong for small CNT diameters and significantly decreases with increasing diameter. In contrast, under an electric field, water molecules strongly prefer to occupy the CNTs over methanol molecules, resulting in a separation effect for water. More interestingly, the separation effect for water does not decrease with increasing CNT diameter. Formation of water structures in CNTs induced by an electric field has an important role in the separation of water from methanol. PMID:26397004

  19. A comparative study of nitrogen plasma effect on field emission characteristics of single wall carbon nanotubes synthesized by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-12-01

    Vertically aligned single wall carbon nanotubes (SWCNTs) with large scale control of diameter, length and alignment have successfully been grown by plasma enhanced chemical vapor deposition (PECVD) system. The nickel (Ni) as catalyst deposited on silicon (Si) substrate was used to grow the SWCNTs. Field emission (FE) characteristics of the as grown SWCNTs were measured using indigenously designed setup in which a diode is configured in such a way that by applying negative voltage on the copper plate (cathode) with respect to stainless steel anode plate, current density can be recorded. To measure the FE characteristics, SWCNTs film pasted on the copper plate with silver epoxy was used as electron emitter source. The effective area of anode was ∼78.5 mm2 for field emission measurements. The emission measurements were carried out under high vacuum pressure of the order of 10-6 Torr to minimize the electron scattering and degradation of the emitters. The distance between anode and cathode was kept 500 μm (constant) during entire field emission studies. The grown SWCNTs are excellent field emitters, having emission current density higher than 25 mA/cm2 at turn-on field 1.3 V/μm. In order to enhance the field emission characteristics, the as grown SWCNTs have been treated under nitrogen (N2) plasma for 5 min and again field emission characteristics have been measured. The N2 plasma treated SWCNTs show a good enhancement in the field emission properties with emission current density 81.5 mA/cm2 at turn on field 1.2 V/μm. The as-grown and N2 plasma treated SWCNTs were also characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), Raman spectrometer, Fourier transform infrared spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS).

  20. Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields.

    PubMed

    Shaver, Jonah; Parra-Vasquez, A Nicholas G; Hansel, Stefan; Portugall, Oliver; Mielke, Charles H; von Ortenberg, Michael; Hauge, Robert H; Pasquali, Matteo; Kono, Junichiro

    2009-01-27

    We have measured the dynamic alignment properties of single-walled carbon nanotube (SWNT) suspensions in pulsed high magnetic fields through linear dichroism spectroscopy. Millisecond-duration pulsed high magnetic fields up to 56 T as well as microsecond-duration pulsed ultrahigh magnetic fields up to 166 T were used. Because of their anisotropic magnetic properties, SWNTs align in an applied magnetic field, and because of their anisotropic optical properties, aligned SWNTs show linear dichroism. The characteristics of their overall alignment depend on several factors, including the viscosity and temperature of the suspending solvent, the degree of anisotropy of nanotube magnetic susceptibilities, the nanotube length distribution, the degree of nanotube bundling, and the strength and duration of the applied magnetic field. To explain our data, we have developed a theoretical model based on the Smoluchowski equation for rigid rods that accurately reproduces the salient features of the experimental data.

  1. Influence of field evaporation treatment on the field emission properties of carbon nanotubes array

    NASA Astrophysics Data System (ADS)

    Bai, Xin; Zhang, Wen-Jing; Zhang, Gengmin

    2010-04-01

    Field evaporation was used in the post-fabrication treatment of a carbon nanotubes (CNTs) array and effectively modified the CNTs morphology in favor of the field emission under a moderate field. After the field evaporation treatment, the uniformity of the emission site distribution improved but the onset voltage rose. Using the Fowler-Nordheim theory, the actual onset field and the evaporation field around the CNT were calculated to be -4.6-5 and 9-12 V/nm, respectively. These values are close to those obtained from the individual CNT samples. The above results have provided an alternative to modify the configuration of an array sample and demonstrated the feasibility of tackling the problem of the disparity in the field emission capability of different CNTs in an array.

  2. Magnetic-field-enhanced synthesis of single-wall carbon nanotubes in arc discharge

    NASA Astrophysics Data System (ADS)

    Keidar, Michael; Levchenko, Igor; Arbel, Tamir; Alexander, Myriam; Waas, Anthony M.; Ostrikov, Kostya Ken

    2008-05-01

    The ability to control the properties of single-wall nanotubes (SWNTs) produced in the arc discharge is important for many practical applications. Our experiments suggest that the length of SWNTs significantly increases (up to 4000 nm), along with the purity of the carbon deposit, when the magnetic field is applied to arc discharge. Scanning electron microscopy and transmission electron microscopy analyses have demonstrated that the carbon deposit produced in the magnetic-field-enhanced arc mainly consists of the isolated and bunched SWNTs. A model of a carbon nanotube interaction and growth in the thermal plasma was developed, which considers several important effects such as anode ablation that supplies the carbon plasma in an anodic arc discharge technique, and the momentum, charge, and energy transfer processes between nanotube and plasma. It is shown that the nanotube charge with respect to the plasma as well as nanotube length depend on plasma density and electric field in the interelectrode gap. For instance, nanotube charge changes from negative to positive value with an electron density decrease. The numerical simulations based on the Monte Carlo technique were performed, which explain an increase in the nanotubes produced in the magnetic-field-enhanced arc discharge.

  3. Field Ionization of Cold Atoms near the Wall of a Single Carbon Nanotube

    SciTech Connect

    Goodsell, Anne; Ristroph, Trygve; Golovchenko, J. A.; Hau, Lene Vestergaard

    2010-04-02

    We observe the capture and field ionization of individual atoms near the side wall of a single suspended nanotube. Extremely large cross sections for ionization from an atomic beam are observed at modest voltages due to the nanotube's small radius and extended length. The effects of the field strength on both the atomic capture and the ionization process are clearly distinguished in the data, as are prompt and delayed ionizations related to the locations at which they occur. Efficient and sensitive neutral atom detectors can be based on the nanotube capture and wall ionization processes.

  4. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    NASA Technical Reports Server (NTRS)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  5. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  6. Self aligned hysteresis free carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Shlafman, M.; Tabachnik, T.; Shtempluk, O.; Razin, A.; Kochetkov, V.; Yaish, Y. E.

    2016-04-01

    Hysteresis phenomenon in the transfer characteristics of carbon nanotube field effect transistor (CNT FET) is being considered as the main obstacle for successful realization of electronic devices based on CNTs. In this study, we prepare four kinds of CNTFETs and explore their hysteretic behavior. Two kinds of devices comprise on-surface CNTs (type I) and suspended CNTs (type II) with thin insulating layer underneath and a single global gate which modulates the CNT conductance. The third and fourth types (types III and IV) consist of suspended CNT over a metallic local gate underneath, where for type IV the local gate was patterned self aligned with the source and drain electrodes. The first two types of devices, i.e., type I and II, exhibit substantial hysteresis which increases with scanning range and sweeping time. Under high vacuum conditions and moderate electric fields ( |E |>4 ×106 V /cm ), the hysteresis for on-surface devices cannot be eliminated, as opposed to suspended devices. Interestingly, type IV devices exhibit no hysteresis at all at ambient conditions, and from the different roles which the global and local gates play for the four types of devices, we could learn about the hysteresis mechanism of this system. We believe that these self aligned hysteresis free FETs will enable the realization of different electronic devices and sensors based on CNTs.

  7. Control of Carbon Nanotube Morphology by Change of Applied Bias Field During Growth

    SciTech Connect

    Chen, L H.; AuBuchon, J F.; Gapin, A; Daraio, C; Bandaru, P; Jin, Sungho; Kim, D. W.; Yoo, I K.; Wang, Chong M.

    2004-10-21

    Carbon nanotube morphology has been engineered via simple control of applied voltage during dc plasma chemical vapor deposition growth. Below a critical applied voltage, a nanotube configuration of vertically aligned tubes with a constant diameter is obtained. Above the critical voltage, a nanocone-type configuration is obtained. The strongly field-dependent transition in morphology is attributed primarily to the plasma etching and decrease in the size of nanotube-nucleating catalyst particles. A two-step control of applied voltage allows a creation of dual-structured nanotube morphology consisting of a broad base nanocone ({approx}200 nm dia.) with a small diameter nanotube ({approx}7 nm) vertically emanating from the apex of the nanocone, which may be useful for atomic force microscopy.

  8. Infrared light field imaging using single carbon nanotube detector

    NASA Astrophysics Data System (ADS)

    Xi, Ning; Chen, Liangliang; Zhou, Zhanxin; Yang, Ruiguo; Song, Bo; Sun, Zhiyong

    2014-06-01

    The conventional photographs only record the sum total of light rays of each point on image plane so that they tell little about the amount of light traveling along individual rays. The focus and lens aberration problems have challenged photographers since the very beginning therefore light field photography was proposed to solve these problems. Lens array and multiple camera systems are used to capture 4D light rays, by reordering the different views of scene from multiple directions. The coded aperture is another method to encode the angular information in frequency domain. However, infrared light field sensing is still widely opening to research. In the paper, we will propose micro plane mirror optics together with compressive sensing algorithm to record light field in infrared spectrum. The micro mirror reflects objects irradiation and forms a virtual image behind the plane in which the mirror lies. The Digital Micromirror (DMD) consists of millions microscale mirrors which work as CCD array in the camera and it is controlled separately so as to project linear combination of object image onto lens. Coded aperture could be utilized to control angular resolution of infrared light rays. The carbon nanotube based infrared detector, which has ultra high signal to noise ratio and ultra fast responsibility, will sum up all image information on it without image distortion. Based on a number of measurements, compressive sensing algorithm was used to recover images from distinct angles, which could compute different views of scene to reconstruct infrared light field scence. Two innovative applications of full image recovery using nano scale photodetector and DMD based synthetic aperture photography will also be discussed in this paper.

  9. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    NASA Astrophysics Data System (ADS)

    Ummethala, Raghunandan; Wenger, Daniela; Tedde, Sandro F.; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd; Eckert, Jürgen

    2016-01-01

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  10. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  11. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons.

    PubMed

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10(-6) Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  12. Development of tomographic imaging systems using carbon-nanotube-based field-emission x-ray sources

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    2005-11-01

    Conventional thermionic x-ray sources use hot filament cathodes to generate electrons for x-ray production. The thermionic technology has several inherent limitations such as high operating temperature, slow response time, and difficulty for miniaturization. On the other hand, field emission provides an alternative to generate electrons without all these limitations. The concept of field emission x-ray source has been proposed and tested in the early 1970s. Unfortunately all of the early field emission x-ray systems failed due primarily to the limitations on the electron field emitters. Carbon nanotubes (CNT) have recently emerged as a promising class of electron emissive materials and field emission x-ray source based on CNTs are expected to have significantly improved properties. We have recently developed a CNT-based field emission micro-focus x-ray source. It shows stable tube current under high operating voltage, extraordinary dynamic imaging capability, and excellent potential for miniaturization. All of these new features make it very attractive for various potential industrial and medical applications. In order to demonstrate its applications, two sets of x-ray imaging systems using this field emission x-ray source were constructed in our lab. One is a micro-computed tomographic (micro-CT) imaging system using a single field emission x-ray source for dynamic radiographic and tomographic imaging applications. It shows great potential for the future development of dynamic micro-CT scanner. The other one is a multi-beam field emission x-ray source with multiple addressable focal spots which can provide scanning x-ray beams without mechanical movement. It can lead to fast data acquisition rates for future tomographic imaging systems with a simplified experimental set-up.

  13. Electric field effect on (6,0) zigzag single-walled aluminum nitride nanotube.

    PubMed

    Baei, Mohammad T; Peyghan, Ali Ahmadi; Moghimi, Masoumeh

    2012-09-01

    Structural, electronic, and electrical responses of the H-capped (6,0) zigzag single-walled aluminum nitride nanotube was studied under the parallel and transverse electric fields with strengths 0-140 × 10(-4) a.u. by using density functional calculations. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using a locally modified version of the GAMESS electronic structure program. The dipole moments, atomic charge variations, and total energy of the (6,0) zigzag AlNNT show increases with increase in the applied external electric field strengths. The length, tip diameters, electronic spatial extent, and molecular volume of the nanotube do not significantly change with increasing electric field strength. The energy gap of the nanotube decreases with increases of the electric field strength and its reactivity is increased. Increase of the ionization potential, electron affinity, chemical potential, electrophilicity, and HOMO and LUMO in the nanotube with increase of the applied parallel electric field strengths shows that the parallel field has a much stronger interaction with the nanotube with respect to the transverse electric field strengths. Analysis of the parameters indicates that the properties of AlNNTs can be controlled by the proper external electric field.

  14. Silicon based light emitters utilizing radiation from dislocations; electric field induced shift of the dislocation-related luminescence

    NASA Astrophysics Data System (ADS)

    Arguirov, T.; Mchedlidze, T.; Kittler, M.; Reiche, M.; Wilhelm, T.; Hoang, T.; Holleman, J.; Schmitz, J.

    2009-05-01

    Dislocation rich regions can be controllably formed at a certain location inside a silicon wafer. We studied the light emission properties of such regions located in an electric field of a p-n junction under different excitation conditions. It was found that the luminescence spectra of the dislocations are significantly influenced by the presence of the junction. The dislocation-related luminescence peak position appears red-shifted due to the built-in electric field. A suppression of that field by photo-generation of carriers or by applying a forward bias voltage at the junction leads to a gradual decrease in the energy position of the peaks. The dependence of the peak position on the electric field was found to be a quadratic function, similar to that observed for semiconductor nanostructures. We show that the shift of the peak position is due to the Stark effect on dislocation-related excitonic states. The characteristic constant of the shift, obtained by fitting the data with the quadratic Stark effect equation, was 0.0186 meV/(kV/cm) 2. The observed effect opens new possibilities for integration of a silicon based light emitter, combining the radiation from dislocations with a Stark effect based modulator.

  15. Fabrication, structure, and electron emission of single carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Gongpu

    Carbon nanotubes possess many excellent field emission properties. An obstacle to these applications is that there is no simple and reproducible method to prepare a single carbon nanotube field emitter. In this dissertation, individual carbon nanotube field emitters have been fabricated in a two-step process involving (a) producing micron-size carbon fibers which contain single carbon nanotubes at their cores and (b) exposing the nanotubes by fracturing the fiber with mechanical forces and mounting the fiber to a copper ribbon with a groove. This fabrication method has the potential to be the production method for single carbon nanotube field emission point electron sources. The cold field emission properties of single carbon nanotubes have been studied. These carbon nanotubes exhibit large field enhancement factors of 1.1x107 m-1 and low turn-on fields of 1.1 V/mum. An empirical model has been developed to calculate the field enhancement factor of an open end nanotube attached on a carbon fiber. The lifetime measurements show that a single carbon nanotube can continuously emit electrons over 100 hours without significant current drops. The emission stability measurements show that the maximum current drift is 3.6%. It is also shown experimentally that a carbon nanotube has a high reduced brightness 2.9x 108 ASr-1m-2 V-1, which is two orders of magnitude higher than those of the thermionic electron sources. The thermal field emission properties of a single carbon nanotube have been systemically studied. It is found that there is a gap between the intermediate region and the field emission region which is not covered by either the Fowler-Nordheim theory or the Murphy-Good theory. We have developed an analytical equation that describes the thermal field emission behavior of a single carbon nanotube within the gap. The experimental results agree well with the theoretical predictions. We also studied the effect of Cs doping on the field emission properties and

  16. Phase transition of nanotube-confined water driven by electric field

    NASA Astrophysics Data System (ADS)

    Fu, Zhaoming; Luo, Yin; Ma, Jianpeng; Wei, Guanghong

    2011-04-01

    The effects of electric field on the phase behaviors of water encapsulated in a thick single-walled carbon nanotube (SWCNT) (diameter = 1.2 nm) have been studied by performing extensive molecular dynamics simulations at atmospheric pressure. We found that liquid water can freeze continuously into either pentagonal or helical solidlike ice nanotube in SWCNT, depending on the strengths of the external electric field applied along the tube axis. Remarkably, the helical one is new ice phase which was not observed previously in the same size of SWCNT in the absence of electric field. Furthermore, a discontinuous solid-solid phase transition is observed between pentagonal and helical ice nanotubes as the strengths of the external electric field changes. The mechanism of electric-field-induced phase transition is discussed. The dependence of ice structures on the chiralities of SWCNTs is also investigated. Finally, we present a phase diagram of confined water in the electric field-temperature plane.

  17. Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction

    NASA Astrophysics Data System (ADS)

    Miyauchi, Masahiro; Tokudome, Hiromasa; Toda, Yoshitake; Kamiya, Toshio; Hosono, Hideo

    2006-07-01

    Conductive TiO2 nanotube arrays were grown on metal Ti substrates by hydrothermal reaction and subsequent postannealing in vacuum. The nanotubes were vertically grown and adhered well to the substrates. The crystal structure of the postannealed TiO2 nanotubes was identified to be oxygen-defective anatase. The nanotube arrays exhibited efficient electron field emission even at room temperature with rather low turn-on fields ˜280V per electrode distance of 100μm. The emission current density exceeded 0.15mA /cm2 at an extraction voltage of 800V. The emission current was reproducible and stable in the lower voltage (<800V) region.

  18. Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Küttel, Olivier M.; Groening, Oliver; Emmenegger, Christoph; Schlapbach, Louis

    1998-10-01

    Phase pure nanotube films were grown on silicon substrates by a microwave plasma under conditions which normally are used for the growth of chemical vapor deposited diamond films. However, instead of using any pretreatment leading to diamond nucleation we deposited metal clusters on the silicon substrate. The resulting films contain only nanotubes and also onion-like structures. However, no other carbon allotropes like graphite or amorphous clustered material could be found. The nanotubes adhere very well to the substrates and do not need any further purification step. Electron field emission was observed at fields above 1.5 V/μm and we observed an emission site density up to 104/cm2 at 3 V/μm. Alternatively, we have grown nanotube films by the hot filament technique, which allows to uniformly cover a two inch wafer.

  19. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    SciTech Connect

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  20. Electrokinetics of scalable, electric-field-assisted fabrication of vertically aligned carbon-nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Castellano, Richard J.; Akin, Cevat; Giraldo, Gabriel; Kim, Sangil; Fornasiero, Francesco; Shan, Jerry W.

    2015-06-01

    Composite thin films incorporating vertically aligned carbon nanotubes (VACNTs) offer promise for a variety of applications where the vertical alignment of the CNTs is critical to meet performance requirements, e.g., highly permeable membranes, thermal interfaces, dry adhesives, and films with anisotropic electrical conductivity. However, current VACNT fabrication techniques are complex and difficult to scale up. Here, we describe a solution-based, electric-field-assisted approach as a cost-effective and scalable method to produce large-area VACNT composites. Multiwall-carbon nanotubes are dispersed in a polymeric matrix, aligned with an alternating-current (AC) electric field, and electrophoretically concentrated to one side of the thin film with a direct-current (DC) component to the electric field. This approach enables the fabrication of highly concentrated, individually aligned nanotube composites from suspensions of very dilute ( ϕ = 4 × 10 - 4 ) volume fraction. We experimentally investigate the basic electrokinetics of nanotube alignment under AC electric fields, and show that simple models can adequately predict the rate and degree of nanotube alignment using classical expressions for the induced dipole moment, hydrodynamic drag, and the effects of Brownian motion. The composite AC + DC field also introduces complex fluid motion associated with AC electro-osmosis and the electrochemistry of the fluid/electrode interface. We experimentally probe the electric-field parameters behind these electrokinetic phenomena, and demonstrate, with suitable choices of processing parameters, the ability to scalably produce large-area composites containing VACNTs at number densities up to 1010 nanotubes/cm2. This VACNT number density exceeds that of previous electric-field-fabricated composites by an order of magnitude, and the surface-area coverage of the 40 nm VACNTs is comparable to that of chemical-vapor-deposition-grown arrays of smaller-diameter nanotubes.

  1. The influence of emitter conditioning on the performance of a tungsten <111> cold field emission gun operating at 300 kV

    NASA Astrophysics Data System (ADS)

    Ross, I. M.; Li, W.; Walther, T.

    2014-06-01

    In this contribution, we examine the influence of emitter conditioning for a <111> tungsten cold field emission gun on the emission and beam characteristics of a double aberration corrected electron microscope. By varying the post flash build-up parameters we can control the effective emitter tip radius. A sharp emitter yields an energy resolution of 0.31eV but relatively low beam current whereas an increased tip radius results in a reduction in energy resolution to 0.4eV but much higher potential beam current. Consequently, careful control of the build-up parameters can be used as a means of tailoring the emission to suit specific instrumental requirements.

  2. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    SciTech Connect

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  3. Reconstruction of exciton wave functions of coupled quantum emitters including spin with ultrafast spectroscopy using localized nanooptical fields

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Richter, Marten

    2016-04-01

    Coulomb-induced resonance energy transfer mechanisms between coupled nanostructures lead to the formation of new, delocalized exciton states. Their hybrid wave functions can be decomposed into the basis of local states of the uncoupled system by the use of coherent, spatially resolved spectroscopy. The suggested quantum state tomography protocol combines nanooptical fields with a four-wave mixing technique: At least one pulse of the pulse sequence is spatially localized at a specific quantum emitter. It was suggested to use nanoplasmonic structures together with pulse-shaped fields for the localization. In this paper, the method is applied to a system of two coupled semiconductor quantum dots. The basic reconstruction concept first proposed in Richter et al. (Phys Rev B 86:085308, 2012) and Schlosser et al. (New J Phys 15:025004, 2013) is extended to the case of including different spin states of the excitons in the quantum dots. For this purpose, the theoretical scheme has to be modified and the localized fields need the ability to change their polarization. We show that the application of the developed reconstruction scheme to two-dimensional spectra gives full access to the internal structure of the interacting quantum states.

  4. Vertically aligned self-assembled gold nanorods as low turn-on, stable field emitters

    NASA Astrophysics Data System (ADS)

    Apte, Amey; Joshi, Padmashree; Bhaskar, Prashant; Joag, Dilip; Kulkarni, Sulabha

    2015-11-01

    In this work we have investigated field emission from self-assembled, vertically aligned, gold nanorod arrays, which were synthesized via a colloidal growth method. A field emission current density of ∼1 mA/cm2 was measured for these gold nanorod arrays using an anode-cathode separation of ∼3.5 mm. The field emission investigation of these gold nanorod arrays was carried out at a base pressure of ∼10-8 mbar. The turn on field, defined as the electric field required to obtain a current density of 1 μA/cm2, is observed to be 1.9 V/μm. Assuming a work function value of 5.3 eV, the field enhancement factor β is estimated to be ∼2931, which is higher than the reported values for other gold nanostructures/arrays.

  5. Nonaligned carbon nanotubes anchored on porous alumina: formation, process modeling, gas-phase analysis, and field-emission properties.

    PubMed

    Lysenkov, Dmitry; Engstler, Jörg; Dangwal, Arti; Popp, Alexander; Müller, Günter; Schneider, Jörg J; Janardhanan, Vinod M; Deutschmann, Olaf; Strauch, Peter; Ebert, Volker; Wolfrum, Jürgen

    2007-06-01

    We have developed a chemical vapor deposition (CVD) process for the catalytic growth of carbon nanotubes (CNTs), anchored in a comose-type structure on top of porous alumina substrates. The mass-flow conditions of precursor and carrier gases and temperature distributions in the CVD reactor were studied by transient computational fluid dynamic simulation. Molecular-beam quadrupole mass spectroscopy (MB-QMS) has been used to analyze the gas phase during ferrocene CVD under reaction conditions (1073 K) in the boundary layer near the substrate. Field-emission (FE) properties of the nonaligned CNTs were measured for various coverages and pore diameters of the alumina. Samples with more dense CNT populations provided emitter-number densities up to 48,000 cm(-2) at an electric field of 6 V microm(-1). Samples with fewer but well-anchored CNTs in 22-nm pores yielded the highest current densities. Up to 83 mA cm(-2) at 7 V microm(-1) in dc mode and more than 200 mA cm(-2) at 11 V microm(-1) in pulsed diode operation have been achieved from a cathode size of 24 mm2.

  6. Characterization and Field Emission Properties of Multi-Walled Carbon Nanotubes Prepared by Irradiating a CO2 Laser onto Boron-Containing Graphite

    NASA Astrophysics Data System (ADS)

    Yuge, Ryota; Toyama, Kiyohiko; Ichihashi, Toshinari; Aoki, Yasushi; Manako, Takashi

    2012-02-01

    It is reported that the carbon nanotube (CNT) is one of the best cold cathode emitters for field emission display (FED) and field emission lamp (FEL) due to their large aspect ratio, high mechanical strength, and high electrical conductivity. For practical development of FEL, the improvement of the lifetime is one of most important subjects, which needs the progress of crystalinity of individual CNT. In this study, we tried to synthesize CNTs with the fine crystalinity and investigate their FEL properties. CNTs were synthesized by irradiating of a CO2 laser with high power in continuous wave mode onto a boron-containing graphite target (10wt/% for boron) at room temperature. The pressure of Ar atmosphere was controlled in 50, 150, 400, or 760 Torr. TEM and SEM observation showed that multi-walled carbon nanotubes (MWNTs) were formed preferentially. The diameter of obtained MWNTs was in the range of 5 to 40 nm. The quantity and degree of graphitization of synthesized MWNTs increased with the Ar gas pressure. We also found that a large area field emission device with MWNT cathodes indicated good β value of 3.6x10^4 cm-1, and sufficient reliability for long term operations over 150h, suggesting promising application to field emission devices.

  7. The growth of graphite phase on an iridium field electron emitter

    NASA Astrophysics Data System (ADS)

    Bernatskii, D. P.; Pavlov, V. G.

    2016-06-01

    The growth of graphite on the surface of an iridium tip in pyrolysis of benzene to give a ribbed crystal has been found by the methods of field electron and desorption microscopy. The formation of a graphite crystal results in the electric field factor increasing. The adsorption of alkali metals on the surface of graphite is accompanied by the intercalation effect.

  8. Developing and using the field emitter as a high intensity electron source

    NASA Astrophysics Data System (ADS)

    Charbonnier, Francis

    1996-03-01

    In the 1940's, Erwin Müller dominated field emission research. The 50's and 60's saw considerable growth in the number of scientists interested in field emission. While many made important contributions, three persons stood out who had different talents and interests. First and foremost: Erwin Müller, a very innovative, creative and skilled inventor and experimentalist. Second: Robert Gomer, equally adept at theory and experiment, with a unique mastery of fundamental physics concepts. Third: Walter Dyke, who was intrigued by the unique properties of field emission and resolved to develop field emission cathodes as high performance electron sources for a variety of electron beam devices. This paper summarizes Dyke's work at Linfield College, Linfield Research Institute and Field Emission Corporation from 1948 to 1972. However, while Dyke established a solid foundation for useful field emission cathodes and investigated several devices, particularly in microwaves, electron optics and flash radiography, he was unable to complete his work and produce commercial devices, except for flash radiography. Many groups have pursued this work in recent years, sometimes with great success. This paper briefly summarizes current work on field emission cathodes and device applications, as this puts Dyke's work in better perspective and adds to its significance.

  9. In situ tuning and probing the ambipolar field effect on multiwall carbon nanotubes

    SciTech Connect

    Chen, Li-Ying; Chang, Chia-Seng

    2014-12-15

    We report a method of fabricating ultra-clean and hysteresis-free multiwall carbon nanotube field-effect transistors (CNFETs) inside the ultra-high vacuum transmission electron microscope equipped with a movable gold tip as a local gate. By tailoring the shell structure of the nanotube and varying the drain-source voltage (V{sub ds}), we can tune the electronic characteristic of a multiwall CNFET in situ. We have also found that the Schottky barriers of a multiwall CNFET are generated within the nanotube, but not at the nanotube/electrode contacts, and the barrier height has been derived. We have subsequently demonstrated the ambipolar characteristics of the CNFET with concurrent high-resolution imaging and local gating.

  10. Dielectric Response and Born Dynamic Charge of BN Nanotubes from Ab Initio Finite Electric Field Calculations

    NASA Astrophysics Data System (ADS)

    Guo, Guang-Yu; Ishibashi, Shoji; Tamura, Tomoyuki; Terakura, Kiyoyuki

    2007-03-01

    Since the discovery of carbon nanotubes (CNTs) in 1991 by Iijima, carbon and other nanotubes have attracted considerable interest worldwide because of their unusual properties and also great potentials for technological applications. Though CNTs continue to attract great interest, other nanotubes such as BN nanotubes (BN-NTs) may offer different opportunities that CNTs cannot provide. In this contribution, we present the results of our recent systematic ab initio calculations of the static dielectric constant, electric polarizability, Born dynamical charge, electrostriction coefficient and piezoelectric constant of BN-NTs using the latest crystalline finite electric field theory [1]. [1] I. Souza, J. Iniguez, and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002); P. Umari and A. Pasquarello, Phys. Rev. Lett. 89, 157602 (2002).

  11. The screening effects of carbon nanotube arrays and its field emission optimum density

    SciTech Connect

    Cai, Dan Liu, Lie

    2013-12-15

    In order to investigate the field emission optimum density of carbon nanotube (CNT) array, the screening effects of CNT array have been studied. It has been shown that the electric field in the vicinity of an individual nanotube of array can be notable distorted due to the screening action of the surrounding neighbors. The optimum normalized spacing s/l(as referred to the length) for the maximum emission current is inversely proportional to aspect ratio l/r and electric field strength for CNT arrays with a fixed dimension.

  12. Secondary nanotube growth on aligned carbon nanofibre arrays for superior field emission.

    PubMed

    Watts, Paul C P; Lyth, Stephen M; Henley, Simon J; Silva, S Ravi P

    2008-04-01

    We report substantial improvement of the field emission properties from aligned carbon nanotubes grown on aligned carbon nanofibres by a two-stage plasma enhanced chemical vapour deposition (PECVD) process. The threshold field decreased from 15.0 to 3.6 V/microm after the secondary growth. The field enhancement factor increased from 240 to 1480. This technique allows for superior emission of electrons for carbon nanotube/nanofibre arrays grown directly on highly doped silicon for direct integration in large area displays. PMID:18572626

  13. Vertically aligned carbon nanotubes from natural precursors by spray pyrolysis method and their field electron emission properties

    NASA Astrophysics Data System (ADS)

    Ghosh, Pradip; Soga, T.; Tanemura, M.; Zamri, M.; Jimbo, T.; Katoh, R.; Sumiyama, K.

    2009-01-01

    Vertically aligned carbon nanotubes have been synthesized from botanical hydrocarbons: Turpentine oil and Eucalyptus oil on Si(100) substrate using Fe catalyst by simple spray pyrolysis method at 700°C and at atmospheric pressure. The as-grown carbon nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and Raman spectroscopy. It was observed that nanotubes grown from turpentine oil have better degree of graphitization and field emission performance than eucalyptus oil grown carbon nanotubes. The turpentine oil and eucalyptus oil grown carbon nanotubes indicated that the turn-on field of about 1.7 and 1.93 V/μm, respectively, at 10 μA/cm2. The threshold field was observed to be about 2.13 and 2.9 V/μm at 1 mA/cm2 of nanotubes grown from turpentine oil and eucalyptus oil respectively. Moreover, turpentine oil grown carbon nanotubes show higher current density in relative to eucalyptus oil grown carbon nanotubes. The maximum current density of 15.3 mA/cm2 was obtained for ˜3 V/μm corresponding to the nanotubes grown from turpentine oil. The improved field emission performance was attributed to the enhanced crystallinity, fewer defects, and greater length of turpentine oil grown carbon nanotubes.

  14. Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures.

    PubMed

    Gautam, Ujjal K; Fang, Xiaosheng; Bando, Yoshio; Zhan, Jinhua; Golberg, Dmitri

    2008-05-01

    We report on the synthesis of a novel core-shell metal-semiconductor heterostructure where In forms the core nanowire and wurtzite ZnS forms the shell nanotube. In addition, controlled reaction conditions result in the growth of secondary quasi-aligned ZnS nanowires as numerous branches on the shell nanotubes. These hierarchical architectures are attractive for two reasons: (i) the sharp and quasi-aligned ZnS tips of the nanostructures are potential field-emitters and (ii) since In in bulk form is superconducting the synthesis of core In nanowires should now pave the way for further investigations on magnetic versus transport behavior in type-1 superconductors at the nanoscale. The synthesis could be achieved by employing a rapidly heating carbothermal chemical vapor deposition technique and a high reaction temperature. Transmission electron microscopy reveals that the core In nanowires are single crystals, whereas, within a hierarchical shell, the stem and the branches are separated with a crystalline interface. Field-emission measurements demonstrate remarkably large field enhancement which is explained on the basis of a sequential stepwise enhancement mechanism involving the consecutive stem and branch contributions. The present new nanoarchitectures are envisaged to be an important candidate for potential nanoelectronic devices.

  15. Magnetoporation and magnetolysis of cancer cells via carbon nanotubes induced by rotating magnetic fields.

    PubMed

    Liu, Dun; Wang, Lijun; Wang, Zhigang; Cuschieri, Alfred

    2012-10-10

    Weak magnetic fields (40 and 75 mT) were used either to enhance cell membrane poration (magnetoporation) or to ablate cultured human tumor cells (magnetolysis) by polymer-coated multiwalled carbon nanotubes, which form rotating bundles on exposure to magnetic fields. Findings of this study have potential clinical applications including enhanced tumor cell poration for targeted cancer chemotherapy and mechanical ablation of tumors.

  16. Growth temperature effect on field emission properties of printable carbon nanotubes cathode

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Sun, Zhuo; Chen, Ting; Que, Wenxiu

    2006-05-01

    The carbon nanotubes (CNTs) were synthesized by low pressure chemical vapor deposition (CVD) in the temperature range of 500-750 °C. The dependence of field emission properties of screen-printed cathode on the CNTs growth temperatures was studied. The scanning electron microscope (SEM) images and Raman spectra showed that with the temperature increasing from 500 °C to 750 °C, the average diameter of most CNTs decreased, and the crystallinity of the nanotubes increases as shown by the narrower and more intense G peak in the Raman spectra. It is found that the higher growth temperature, the better field emission properties of the screen-printed nanotubes cathodes, i.e. lower turn-on emission field, higher emission current and more uniform emission.

  17. Time-resolved far-field analysis of a high power single emitter laser diode

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Unge, Glenn L.

    1992-01-01

    A system was developed which is capable of measuring the time-resolved far-field radiation patterns from a high-power semiconductor laser under intensity modulated conditions. Angular steering of the fundamental spatial mode was observed, with pointing variations as large as 0.5 deg, or 7.5 percent of the beamwidth, during the time of the optical pulse. The variations in pointing angle were directly related to gradients in the transverse index profile of the laser, which may oscillate based on lateral spatial hole burning of the gain and carrier density.

  18. Electromagnetic near-field interactions of a dipolar emitter with metal and metamaterial nanoslabs

    NASA Astrophysics Data System (ADS)

    Hakkarainen, Timo; Setälä, Tero; Friberg, Ari T.

    2011-09-01

    We investigate the emission properties of a polarizable point dipole placed within a subwavelength distance from a silver or a slightly absorbing, negative-index metamaterial nanoslab. Using electromagnetic theory we show that in the immediate vicinity of the slab the dipole-slab interaction prevents the dipole from radiating. For the metamaterial slab close to the perfect-lens arrangement, the interaction is relatively weak and of short range. In particular, a region exists in the near zone of the metamaterial slab where the dipole emission is not disturbed by the interaction, and a bright intensity distribution of subwavelength width is created on the opposite side of the slab. This suggests that a low-loss metamaterial slab can act as a near-field imaging device which does not disturb the object. For the silver slab the interaction is stronger and it reaches over the near-field zone, adversely influencing the imaging capabilities in terms of brightness and resolution. The results are important for the development of metal and metamaterial superlenses.

  19. Electromagnetic near-field interactions of a dipolar emitter with metal and metamaterial nanoslabs

    SciTech Connect

    Hakkarainen, Timo; Setaelae, Tero; Friberg, Ari T.

    2011-09-15

    We investigate the emission properties of a polarizable point dipole placed within a subwavelength distance from a silver or a slightly absorbing, negative-index metamaterial nanoslab. Using electromagnetic theory we show that in the immediate vicinity of the slab the dipole-slab interaction prevents the dipole from radiating. For the metamaterial slab close to the perfect-lens arrangement, the interaction is relatively weak and of short range. In particular, a region exists in the near zone of the metamaterial slab where the dipole emission is not disturbed by the interaction, and a bright intensity distribution of subwavelength width is created on the opposite side of the slab. This suggests that a low-loss metamaterial slab can act as a near-field imaging device which does not disturb the object. For the silver slab the interaction is stronger and it reaches over the near-field zone, adversely influencing the imaging capabilities in terms of brightness and resolution. The results are important for the development of metal and metamaterial superlenses.

  20. Light source with carbon nanotubes field emission cathode and rare-earth doped nanocrystalline phosphors

    NASA Astrophysics Data System (ADS)

    Psuja, P.; Strek, W.

    2007-09-01

    In this work we report a new carbon nanotubes field emission (CNT-FED) light source with nanocrystalline phosphors. The nanocrystalline powders of cerium doped yttrium aluminum garnet were obtained by modified Pechini method. The phosphor has been electrophoretically deposited on ITO-glass substrates. The cathode composed of carbon nanotubes was fabricated in the same manner. A light source was assembled and tested. Low-voltage cathodoluminescent spectra and I-V characteristics of fabricated cathodes were measured. A possibility of application of Ce doped nanocrystalline YAG phosphor in the field emission displays (FEDs) was discussed.

  1. Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil.

    PubMed

    Sun, Bin; Wang, Yan; Ding, Guifu

    2016-12-01

    This paper reports on a flexible Ni micro wire with CNTs embedded into its surface. By using micromachining technology, for the first time, we could implant nanoscale materials into micro-scale metal substrate at room temperature. Thanks to the effective direct contact and the strong interactions between CNTs and the substrate, field emission current of 1.11 mA (current density of 22.2 mA/cm(2)) could be achieved from the micro wire. Moreover, the wire shows excellent mechanical properties for large amplitude bending, which is beneficial for geometric designing. To check the practical application of the wire, a simplified X-ray imaging system was set up by modifying a conventional tube. The gray shade that appears on the sensitive film after being exposed to the radiation confirms the X-ray generation. PMID:27613070

  2. Flexible Field Emitter for X-ray Generation by Implanting CNTs into Nickel Foil

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Wang, Yan; Ding, Guifu

    2016-09-01

    This paper reports on a flexible Ni micro wire with CNTs embedded into its surface. By using micromachining technology, for the first time, we could implant nanoscale materials into micro-scale metal substrate at room temperature. Thanks to the effective direct contact and the strong interactions between CNTs and the substrate, field emission current of 1.11 mA (current density of 22.2 mA/cm2) could be achieved from the micro wire. Moreover, the wire shows excellent mechanical properties for large amplitude bending, which is beneficial for geometric designing. To check the practical application of the wire, a simplified X-ray imaging system was set up by modifying a conventional tube. The gray shade that appears on the sensitive film after being exposed to the radiation confirms the X-ray generation.

  3. Effects of potassium hydroxide post-treatments on the field-emission properties of thermal chemical vapor deposited carbon nanotubes.

    PubMed

    Lee, Li-Ying; Lee, Shih-Fong; Chang, Yung-Ping; Hsiao, Wei-Shao

    2011-12-01

    In this study, a simple potassium hydroxide treatment was applied to functionalize the surface and to modify the structure of multi-walled carbon nanotubes grown on silicon substrates by thermal chemical vapor deposition. Scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive spectrometry were employed to investigate the mechanism causing the modified field-emission properties of carbon nanotubes. From our experimental data, the emitted currents of carbon nanotubes after potassium hydroxide treatment are enhanced by more than one order of magnitude compared with those of untreated carbon nanotubes. The emitted current density of carbon nanotubes increases from 0.44 mA/cm2 to 7.92 mA/cm2 after 30 minutes KOH treatment. This technique provides a simple, economical, and effective way to enhance the field-emission properties of carbon nanotubes. PMID:22409082

  4. Extraction of emission parameters for large-area field emitters, using a technically complete Fowler-Nordheim-type equation

    NASA Astrophysics Data System (ADS)

    Forbes, Richard G.

    2012-03-01

    In papers on cold field electron emission from large-area field emitters (LAFEs), it has become widespread practice to publish a misleading Fowler-Nordheim-type (FN-type) equation. This equation over-predicts the LAFE-average current density by a large highly variable factor thought to usually lie between 103 and 109. This equation, although often referenced to FN’s 1928 paper, is a simplified equation used in undergraduate teaching, does not apply unmodified to LAFEs and does not appear in the 1928 paper. Technological LAFE papers often do not cite any theoretical work more recent than 1928, and often do not comment on the discrepancy between theory and experiment. This usage has occurred widely, in several high-profile American and UK applied-science journals (including Nanotechnology), and in various other places. It does not inhibit practical LAFE development, but can give a misleading impression of potential LAFE performance to non-experts. This paper shows how the misleading equation can be replaced by a conceptually complete FN-type equation that uses three high-level correction factors. One of these, or a combination of two of them, may be useful as an additional measure of LAFE quality; this paper describes a method for estimating factor values using experimental data and discusses when it can be used. Suggestions are made for improved engineering practice in reporting LAFE results. Some of these should help to prevent situations arising whereby an equation appearing in high-profile applied-science journals is used to support statements that an engineering regulatory body might deem to involve professional negligence.

  5. Extraction of emission parameters for large-area field emitters, using a technically complete Fowler-Nordheim-type equation.

    PubMed

    Forbes, Richard G

    2012-03-01

    In papers on cold field electron emission from large-area field emitters (LAFEs), it has become widespread practice to publish a misleading Fowler-Nordheim-type (FN-type) equation. This equation over-predicts the LAFE-average current density by a large highly variable factor thought to usually lie between 10(3) and 10(9). This equation, although often referenced to FN's 1928 paper, is a simplified equation used in undergraduate teaching, does not apply unmodified to LAFEs and does not appear in the 1928 paper. Technological LAFE papers often do not cite any theoretical work more recent than 1928, and often do not comment on the discrepancy between theory and experiment. This usage has occurred widely, in several high-profile American and UK applied-science journals (including Nanotechnology), and in various other places. It does not inhibit practical LAFE development, but can give a misleading impression of potential LAFE performance to non-experts. This paper shows how the misleading equation can be replaced by a conceptually complete FN-type equation that uses three high-level correction factors. One of these, or a combination of two of them, may be useful as an additional measure of LAFE quality; this paper describes a method for estimating factor values using experimental data and discusses when it can be used. Suggestions are made for improved engineering practice in reporting LAFE results. Some of these should help to prevent situations arising whereby an equation appearing in high-profile applied-science journals is used to support statements that an engineering regulatory body might deem to involve professional negligence.

  6. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors.

    PubMed

    Li, Shisheng; Liu, Chang; Hou, Peng-Xiang; Sun, Dong-Ming; Cheng, Hui-Ming

    2012-11-27

    Selective removal of metallic single-walled carbon nanotubes (SWCNTs) and consequent enrichment of semiconducting SWCNTs were achieved through an efficient carbothermic reaction with a NiO thin film at a relatively low temperature of 350 °C. All-SWCNT field effect transistors (FETs) were fabricated with the aid of a patterned NiO mask, in which the as-grown SWCNTs behaving as source/drain electrodes and the remaining semiconducting SWCNTs that survive in the carbothermic reaction as a channel material. The all-SWCNT FETs demonstrate improved current ON/OFF ratios of ∼10(3).

  7. Chemical Vapor Deposited Few-Layer Graphene as an Electron Field Emitter.

    PubMed

    Behural, Sanjay K; Nayak, Sasmita; Yang, Qiaoqin; Hirose, Akira; Janil, Omkar

    2016-01-01

    Chemical vapor deposition (CVD) growth of graphene on polycrystalline copper (Cu) foil in a low pressure conditions has been presented, aiming to achieve the highest quality with large-scale fabrications, which requires comprehensive understanding and effective controlling of the growth process. Herein, few-layer graphene (FLG) films with large-domain sizes were grown on Cu metal catalyst substrates using a vertical mass-flow hot-filament CVD reactor, with the intention of large scale production, by optimizing the CVD system and three of the process parameters: (i) gas flow compositions, (ii) substrate annealing time and (iii) graphene deposition time. The detailed scanning electron microscope and Raman spectroscopy analysis indicate that all the above mentioned process parameters affect growth of FLG film on Cu substrate. The presence of two intense peaks, G and 2D-band at 1583.6 and 2702.6 cm⁻¹ for synthesized sample at optimized conditions (H₂/CH₄ ratio of 50:1 at graphene deposition time of 10 minutes and substrate annealed time for 20 minutes) revealed the formation of FLG films with large domain size. These graphene films on Cu have shown the room temperature field electron emission characteristics, hence appears to be prospective candidate for vacuum nanoelectronics. PMID:27398456

  8. EMITTANCE COMPENSATION FOR MAGNETIZED BEAMS

    SciTech Connect

    KEWISCH,J.; CHANG, X.

    2007-06-25

    Emittance compensation is a well established technique for minimizing the emittance of an electron beam from a RF photo-cathode gun. Longitudinal slices of a bunch have a small emittance, but due to the longitudinal charge distribution of the bunch and time dependent RF fields they are not focused in the same way, so that the direction of their phase ellipses diverges in phase space and the projected emittance is much larger. Emittance compensation reverses the divergence. At the location where the slopes of the phase ellipses coincide the beam is accelerated, so that the space charge forces are reduced. A recipe for emittance compensation is given in. For magnetized beams (where the angular momentum is non-zero) such emittance compensation is not sufficient because variations in the slice radius lead to variations in the angular speed and therefore to an increase of emittance in the rotating game. We describe a method and tools for a compensation that includes the beam magnetization.

  9. Intense nonneutral beam propagation in a periodic solenoidal field using a macroscopic fluid model with zero thermal emittance

    SciTech Connect

    Davidson, R.C.; Stoltz, P.; Chen, C.

    1997-08-01

    A macroscopic fluid model is developed to describe the nonlinear dynamics and collective processes in an intense high-current beam propagating in the z-direction through a periodic focusing solenoidal field B{sub z}(z + S) = B{sub z}(z), where S is the axial periodicity length. The analysis assumes that space-charge effects dominate the effects of thermal beam emittance, Kr{sub b}{sup 2} {much_gt} {epsilon}{sub th}{sup 2}, and is based on the macroscopic moment-Maxwell equations, truncated by neglecting the pressure tensor and higher-order moments. Assuming a thin beam with r{sub b} {much_lt} S, azimuthally symmetric beam equilibria with {partial_derivative}/{partial_derivative}t = 0 = {partial_derivative}/{partial_derivative}{theta} are investigated. To illustrate the considerable flexibility of the macroscopic formalism, assuming (nearly) uniform axial flow velocity V{sub b} over the beam cross section, beam equilibrium properties are calculated for two examples: (a) uniform radial density profile over the interval 0 {le} r < r{sub b}(z), and (b) an infinitesimally thin annular beam centered at r = r{sub b}(z). The analysis generally allows for the azimuthal flow velocity V{sub {theta}b}(r,z) to differ from the Larmor frequency, and the model is used to calculate the (leading-order) correction {delta}V{sub zb}(r,z) to the axial flow velocity for the step-function density profile in case (a) above.

  10. Large and stable emission current from synthesized carbon nanotube/fiber network

    SciTech Connect

    Di, Yunsong; Xiao, Mei; Zhang, Xiaobing Wang, Qilong; Li, Chen; Lei, Wei; Cui, Yunkang

    2014-02-14

    In order to obtain a large and stable electron field emission current, the carbon nanotubes have been synthesized on carbon fibers by cold wall chemical vapor deposition method. In the hierarchical nanostructures, carbon fibers are entangled together to form a conductive network, it could provide excellent electron transmission and adhesion property between electrode and emitters, dispersed clusters of carbon nanotubes with smaller diameters have been synthesized on the top of carbon fibers as field emitters, this kind of emitter distribution could alleviate electrostatic shielding effect and protect emitters from being wholly destroyed. Field emission properties of this kind of carbon nanotube/fiber network have been tested, up to 30 mA emission current at an applied electric field of 6.4 V/μm was emitted from as-prepared hierarchical nanostructures. Small current degradation at large emission current output by DC power operation indicated that carbon nanotube/fiber network could be a promising candidate for field emission electron source.

  11. Short Channel Field-Effect-Transistors with Inkjet-Printed Semiconducting Carbon Nanotubes.

    PubMed

    Jang, Seonpil; Kim, Bongjun; Geier, Michael L; Hersam, Mark C; Dodabalapur, Ananth

    2015-11-01

    Short channel field-effect-transistors with inkjet-printed semiconducting carbon nanotubes are fabricated using a novel strategy to minimize material consumption, confining the inkjet droplet into the active channel area. This fabrication approach is compatible with roll-to-roll processing and enables the formation of high-performance short channel device arrays based on inkjet printing. PMID:26312458

  12. Effect of an AC electric field on the conductance of single-wall semiconductor-type carbon nanotubes

    SciTech Connect

    Belonenko, M. B.; Glazov, S. Yu.; Mescheryakova, N. E.

    2010-09-15

    The effect of an ac electric field on the conductance of a system of single-wall semiconductor-type carbon nanotubes placed in a dc electric field is considered. The strength vectors of dc and ac electric fields are directed along the nanotube axis. The electronic system of carbon nanotubes is considered in the context of the Boltzmann kinetic equation in the relaxation-time approximation. The dependence of the current density in the system on the characteristics of applied fields is studied. The effect of absolute negative conductance is detected.

  13. Anisotropic high-field terahertz response of free-standing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Byounghwak; Mousavian, Ali; Paul, Michael J.; Thompson, Zachary J.; Stickel, Andrew D.; McCuen, Dalton R.; Jang, Eui Yun; Kim, Yong Hyup; Kyoung, Jisoo; Kim, Dai-Sik; Lee, Yun-Shik

    2016-06-01

    We demonstrate that unidirectionally aligned, free-standing multi-walled carbon nanotubes (CNTs) exhibit highly anisotropic linear and nonlinear terahertz (THz) responses. For the polarization parallel to the CNT axis, strong THz pulses induce nonlinear absorption in the quasi-one-dimensional conducting media, while no nonlinear effect is observed in the perpendicular polarization configuration. Time-resolved measurements of transmitted THz pulses and a theoretical analysis of the data reveal that intense THz fields enhance permittivity in carbon nanotubes by generating charge carriers.

  14. Switching behavior of semiconducting carbon nanotubes under an external electric field

    NASA Astrophysics Data System (ADS)

    Rochefort, Alain; Di Ventra, Massimiliano; Avouris, Phaedon

    2001-04-01

    We investigate theoretically the switching characteristics of semiconducting carbon nanotubes connected to gold electrodes under an external (gate) electric field. We find that the external introduction of holes is necessary to account for the experimental observations. We identify metal-induced gap states (MIGS) at the contacts and find that the MIGS of an undoped tube would not significantly affect the switching behavior, even for very short tube lengths. We also explore the miniaturization limits of nanotube transistors, and, on the basis of their switching ratio, we conclude that transistors with channels as short as 50 Å would have adequate switching characteristics.

  15. Transition from direct tunneling to field emission in carbon nanotube intramolecular junctions

    NASA Astrophysics Data System (ADS)

    Chiu, Po-Wen; Roth, Siegmar

    2008-01-01

    Transport measurements through metal-semiconductor carbon nanotube intramolecular junctions were carried out at high gate voltages in which regime the influence of Schottky barrier to charge transport is weak. The I-Vds curves exhibit an inflection point in the form of ln(I /Vds2)-1/Vds, showing a transition of transport mechanism from direct tunneling to field emission. The findings are interpreted in terms of quantum tunneling through a rectanglelike barrier at the junction, with a barrier width of ˜4nm, in good agreement with that observed on pentagon-heptagon defects at nanotube junctions via scanning tunneling spectroscopy.

  16. Triode carbon nanotube field emission display using barrier rib structure and manufacturing method thereof

    DOEpatents

    Han, In-taek; Kim, Jong-min

    2003-01-01

    A triode carbon nanotube field emission display (FED) using a barrier rib structure and a manufacturing method thereof are provided. In a triode carbon nanotube FED employing barrier ribs, barrier ribs are formed on cathode lines by a screen printing method, a mesh structure is mounted on the barrier ribs, and a spacer is inserted between the barrier ribs through slots of the mesh structure, thereby stably fixing the mesh structure and the spacer within a FED panel due to support by the barrier ribs.

  17. Angular distribution of field emitted electrons from vertically aligned carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Iacobucci, S.; Fratini, M.; Rizzo, A.; Scarinci, F.; Zhang, Y.; Mann, M.; Li, C.; Milne, W. I.; El Gomati, M. M.; Lagomarsino, S.; Stefani, G.

    2012-01-01

    Angular field emission (FE) properties of vertically aligned carbon nanotube arrays have been measured on samples grown by plasma enhanced chemical vapor deposition and characterized by scanning electron microscope and I-V measurements. These properties determine the angular divergence of electron beams, a crucial parameter in order to obtain high brilliance FE based cathodes. From angular distributions of the electron beam transmitted through extraction grids of different mesh size and by using ray-tracing simulations, the maximum emission angle from carbon nanotube tips has been determined to be about ± 30° around the tube main axis.

  18. Growth and field emission of carbon nanotubes on electroplated Ni catalyst coated on glass substrates

    NASA Astrophysics Data System (ADS)

    Kim, Jaemyung; No, Kwangsoo; Lee, Cheol Jin

    2001-09-01

    Carbon nanotubes are grown on Ni catalyst coated on soda-lime glass substrates using chemical vapor deposition of C2H2 gas at 550 °C. Ni film is coated on the surface of Ag film using the electroplating method. Ni was etched by ammonia (NH3) gas in order to form nanometer sized catalytic particles before carbon nanotube growth. Pd film is applied as a gas activator to decrease the growth temperature of carbon nanotubes. The carbon nanotubes grown on Ni catalyst particles showed a multiwalled structure with defective graphite sheets at the wall. The turn-on voltage was about 2.8 V/μm with an emission current density of 10 μA/cm2, and the threshold voltage was about 4.0 V/μm with an emission current density of 10 mA/cm2. The Fowler-Nordheim plot showed a good linear fit, indicating that the emission current of carbon nanotubes follows Fowler-Nordheim behavior. The calculated field enhancement factor was 2850.

  19. Si/Ge hetero-structure nanotube tunnel field effect transistor

    SciTech Connect

    Hanna, A. N.; Hussain, M. M.

    2015-01-07

    We discuss the physics of conventional channel material (silicon/germanium hetero-structure) based transistor topology mainly core/shell (inner/outer) gated nanotube vs. gate-all-around nanowire architecture for tunnel field effect transistor application. We show that nanotube topology can result in higher performance through higher normalized current when compared to nanowire architecture at V{sub dd} = 1 V due to the availability of larger tunneling cross section and lower Shockley-Reed-Hall recombination. Both architectures are able to achieve sub 60 mV/dec performance for more than five orders of magnitude of drain current. This enables the nanotube configuration achieving performance same as the nanowire architecture even when V{sub dd} is scaled down to 0.5 V.

  20. High performance of potassium n-doped carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Radosavljević, M.; Appenzeller, J.; Avouris, Ph.; Knoch, J.

    2004-05-01

    We describe a robust technique for the fabrication of high performance vertically scaled n-doped field-effect transistors from large band gap carbon nanotubes. These devices have a tunable threshold voltage in the technologically relevant range (-1.3 V⩽Vth⩽0.5 V) and can carry up to 5-6 μA of current in the on-state. We achieve such performance by exposure to potassium (K) vapor and device annealing in high vacuum. The treatment has a twofold effect to: (i) controllably shift Vth toward negative gate biases via bulk doping of the nanotube (up to about 0.6e-/nm), and (ii) increase the on-current by 1-2 orders of magnitude. This current enhancement is achieved by lowering external device resistance due to more intimate contact between K metal and doped nanotube channel in addition to potential reduction of the Schottky barrier height at the contact.

  1. High Performance n-Type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts

    NASA Astrophysics Data System (ADS)

    Javey, Ali; Tu, Ryan; Farmer, Damon B.; Guo, Jing; Gordon, Roy G.; Dai, Hongjie

    2005-02-01

    Short channel (~80 nm) n-type single-walled carbon nanotube (SWNT) field-effect transistors (FETs) with potassium (K) doped source and drain regions and high-k gate dielectrics (ALD HfO2) are obtained. For nanotubes with diameter ~ 1.6 nm and bandgap ~ 0.55 eV, we obtain n-MOSFET-like devices exhibiting high on-currents due to chemically suppressed Schottky barriers at the contacts, subthreshold swing of 70mV/decade, negligible ambipolar conduction and high on/off ratios up to 10^6 at a bias voltage of 0.5V. The results compare favorably with the state-of-the-art silicon n-MOSFETs and demonstrate the potential of SWNTs for future complementary electronics. The effects of doping level on the electrical characteristics of the nanotube devices are discussed.

  2. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    NASA Astrophysics Data System (ADS)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-02-01

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm2 at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O2) plasma for 5 min and again field emission characteristics were measured. The O2 plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm2 at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O2 plasma treatment and the findings are being reported in this paper.

  3. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    SciTech Connect

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad; Harsh; Husain, Mushahid

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  4. Unique applications of Carbon nanotubes in medical imaging, bio-sensors and vaccine delivery

    NASA Astrophysics Data System (ADS)

    Lemon, Rebekah; Miller, Lauren; Vaseashta, Ashok

    2004-03-01

    The dimensionality of a system has profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems, such as carbon nanotubes (CNTs). Carbon nanotubes are especially promising candidate for cold cathode field emitter because of their electrical properties, high aspect ratio, and small radius of curvature at the tips. Electron emission from the carbon nanotubes is investigated. As a result of this investigation, several prototype devices have been suggested that operate with low swing voltages with sufficient current densities for medical imaging. Physical characteristics that allow improved current stability and long lifetime operation for bio-sensors are presented. Carbon nanotubes offer tremendous applications in on-demand drug delivery. Research describing antigen-antibody interactions and immune responses using peptide-carbon nanotubes is presented. The aim of this brief overview is to illustrate the useful characteristics of carbon nanotubes and its possible biomedical applications.

  5. Influence of geometrical deformation and electric field on transport characteristics through carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mouri, Masaaki; Ogawa, Matsuto; Souma, Satofumi

    2012-12-01

    We study computationally the electronic transport properties through mechanically squashed zigzag carbon nanotubes (CNTs) under the uniform electric field perpendicular to the tube axis, based on the tight-binding molecular dynamics method for the structural analysis and the Landauer-Büttiker's formalism for the transport analysis. Our simulations show that the band gaps of the zigzag carbon nanotubes exhibit nonlinear decrease as increasing the deformation ratio in the presence of the external perpendicular electric field, in contrast to the case of zero electric field, where the band gap decreases linearly as increasing the deformation ratio. Such properties allow us to tune the sensitivity of the electromechanical response in CNT devices by applying the external electric field.

  6. Multiscale model of heat dissipation mechanisms during field emission from carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Cahay, M.; Zhu, W.; Fairchild, S.; Murray, P. T.; Back, T. C.; Gruen, G. J.

    2016-01-01

    A multiscale model of field emission (FE) from carbon nanotube fibers (CNFs) is developed, which takes into account Joule heating within the fiber and radiative cooling and the Nottingham effect at the tip of the individual carbon nanotubes (CNTs) in the array located at the fiber tip. The model predicts the fraction of CNTs being destroyed as a function of the applied external electric field and reproduces many experimental features observed in some recently investigated CNFs, such as order of magnitude of the emission current (mA range), low turn on electric field (fraction of V/μm), deviation from pure Fowler-Nordheim behavior at large applied electric field, hysteresis of the FE characteristics, and a spatial variation of the temperature along the CNF axis with a maximum close to its tip of a few hundred °C.

  7. Efficient fabrication of carbon nanotube micro tip arrays by tailoring cross-stacked carbon nanotube sheets.

    PubMed

    Wei, Yang; Liu, Peng; Zhu, Feng; Jiang, Kaili; Li, Qunqing; Fan, Shoushan

    2012-04-11

    Carbon nanotube (CNT) micro tip arrays with hairpin structures on patterned silicon wafers were efficiently fabricated by tailoring the cross-stacked CNT sheet with laser. A blade-like structure was formed at the laser-cut edges of the CNT sheet. CNT field emitters, pulled out from the end of the hairpin by an adhesive tape, can provide 150 μA intrinsic emission currents with low beam noise. The nice field emission is ascribed to the Joule-heating-induced desorption of the emitter surface by the hairpin structure, the high temperature annealing effect, and the surface morphology. The CNT emitters with hairpin structures will greatly promote the applications of CNTs in vacuum electronic devices and hold the promises to be used as the hot tips for thermochemical nanolithography. More CNT-based structures and devices can be fabricated on a large scale by this versatile method. PMID:22433000

  8. Brownian Emitters

    NASA Astrophysics Data System (ADS)

    Tsekov, Roumen

    2016-06-01

    A Brownian harmonic oscillator, which dissipates energy either by friction or via emission of electromagnetic radiation, is considered. This Brownian emitter is driven by the surrounding thermo-quantum fluctuations, which are theoretically described by the fluctuation-dissipation theorem. It is shown how the Abraham-Lorentz force leads to dependence of the half-width on the peak frequency of the oscillator amplitude spectral density. It is found that for the case of a charged particle moving in vacuum at zero temperature, its root-mean-square velocity fluctuation is a universal constant, equal to roughly 1/18 of the speed of light. The relevant Fokker-Planck and Smoluchowski equations are also derived.

  9. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  10. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  11. Electric field effects in nematic liquid crystals doped with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cîrtoaje, Cristina; Petrescu, Emil; Moţoc, Cornelia

    2013-12-01

    The aim of this paper was to investigate electric field induced effects in mixtures of nematic liquid crystals (NLCs) with positive electric anisotropies (MCL 6601 Merck) with carbon nanotubes (MWCNT from Aldrich). In planar alignment, the current-electric field dependence and the current-temperature dependence were explained by assuming a Poole-Frenkel effect (i.e. a tunnelling mechanism) and good agreement with the experimental data was obtained. Within this high field range it resulted that in planar aligned NLC-CNTs mixture the conductivity decreases when the temperature was increased. In homeotropic aligned mixture, the conduction mechanism is similar to the one occurring in a semiconductor: the conductivity increases when increasing temperature. This happens because in thin liquid crystal cells there is a possibility to realize an inner contact between nanotubes and electrodes so the mixture behaves like a semiconductor.

  12. Field Emission Properties of Multi-walled Carbon Nanotubes Grown on Silicon Nanoporous Pillar Array

    NASA Astrophysics Data System (ADS)

    Jiang, Wei-fen; Li, Long-yu; Xiao, Shun-hua; Yang, Xiao-hui; Jia, Min; Li, Xin-jian

    2007-12-01

    Multi-walled carbon nanotubes (CNTs) were grown on a silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition. Surface morphologies and microstructure of the resultant were studied by a field emission scanning electron microscope, Raman spectrum, transmission electron microscope, and high-resolution transmission electron microscopy. The composition of samples was determined by energy dispersive X-ray spectroscopy (EDS). The results showed that a great deal of CNTs, with diameter in the range of 20-70 nm, incorporated with Si-NPA and a large scale nest array of CNTs/Si-NPA (NACNT/Si-NPA) was formed. EDS analysis showed that the composition of carbon nanotubes was carbon. Field emission measurements showed that a current density of 5 mA/cm2 was obtained at an electric field of 4.26 V/μm, with a turn-on field of 1.3 V/μm. The enhancement factor calculated according to the Fowler-Nordheim theory was ~11,000. This excellent field emission performance is attributed to the unique structure and morphology of NACNT/Si-NPA, especially the formation of a nest-shaped carbon nanotube array. A schematic drawing that illustrates the experimental configuration is given. These results indicate that NACNT/Si-NPA might be an ideal candidate cathode for potential applications in flat panel displays.

  13. Flexible three-dimensional SnO2 nanowire arrays: atomic layer deposition-assisted synthesis, excellent photodetectors, and field emitters.

    PubMed

    Deng, Kaimo; Lu, Hao; Shi, Zhiwei; Liu, Qiong; Li, Liang

    2013-08-28

    Flexible three-dimensional SnO2 nanowire arrays were synthesized on a carbon cloth template in combination with atomic layer deposition and vapor transport. The as-grown nanostructures were assembled by high density quasi-aligned nanowires with a large aspect ratio. Nanoscale photodetectors based on the flexible nanostructure demonstrate excellent ultraviolet light selectivity, a high speed response time less than 0.3 s, and dark current as low as 2.3 pA. Besides, field emission measurements of the hierarchical structure show a rather low turn-on field (3.3 Vμm(-1)) and threshold field (4.5 Vμm(-1)), as well as an excellent field enhancment factor (2375) with a long-term stability up to 20 h. These results indicate that the flexible three-dimensional SnO2 nanowire arrays can be used as functional building blocks for efficient photodetectors and field emitters. PMID:23879602

  14. The Effect of Hydrophobin Protein on Conductive Properties of Carbon Nanotube Field-Effect Transistors: First Study on Sensing Mechanism.

    PubMed

    Yotprayoonsakl, Peerapong; Szilvay, Géza R; Laaksonen, Päivi; Linder, Markus B; Ahlskog, Markus

    2015-03-01

    Hydrophobin is a surface active protein having both hydrophobic and hydrophilic functional domains which has previously been used for functionalization and solubilization of graphene and carbon nanotubes. In this work, field-effect transistors based on single nanotubes have been employed for electronic detection of hydrophobin protein in phosphate buffer solution. Individual nanotubes, single- and multiwalled, are characterized by atomic force microscopy after being immersed in protein solution, showing a relatively dense coverage with hydrophobin. We have studied aspects such as nanotube length (0.3-1.2 µm) and the hysteresis effect in the gate voltage dependent conduction. When measured in ambient condition after the exposure to hydrophobin, the resistance increase has a strong dependence on the nanotube length, which we ascribe to mobility degradation and localization effects. The change could be exceptionally large when measured in-situ in solution and at suitable gate voltage conditions, which is shown to relate to the different mechanism behind the hysteresis effect. PMID:26413623

  15. Electron beam collimation with a 40 000 tip metallic double-gate field emitter array and in-situ control of nanotip sharpness distribution

    SciTech Connect

    Helfenstein, P.; Guzenko, V. A.; Tsujino, S.; Fink, H.-W.

    2013-01-28

    The generation of highly collimated electron beams from a double-gate field emitter array with 40000 metallic tips and large collimation gate apertures is reported. Field emission beam measurements demonstrated the reduction of the beam envelope down to the array size by applying a negative potential to the on-chip gate electrode for the collimation of individual field emission beamlets. Owing to the optimized gate structure, the concomitant decrease of the emission current was minimal, leading to a net enhancement of the current density. Furthermore, a noble gas conditioning process was successfully applied to the double-gate device to improve the beam uniformity in-situ with orders of magnitude increase of the active emission area. The results show that the proposed double-gate field emission cathodes are promising for high current and high brightness electron beam applications such as free-electron lasers and THz power devices.

  16. Dynamic radiography using a carbon-nanotube-based field-emission x-ray source

    SciTech Connect

    Cheng, Y.; Zhang, J.; Lee, Y.Z.; Gao, B.; Dike, S.; Lin, W.; Lu, J.P.; Zhou, O.

    2004-10-01

    We report a dynamic radiography system with a carbon nanotube based field-emission microfocus x-ray source. The system can readily generate x-ray radiation with continuous variation of temporal resolution as short as nanoseconds. Its potential applications for dynamic x-ray imaging are demonstrated. The performance characteristics of this compact and versatile system are promising for noninvasive imaging in biomedical research and industrial inspection.

  17. Nanosystems of Polymerized Fullerenes and Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Scharff, Peter; Cui, Shen

    Nanosystems based on polymerized fullerenes and carbon-nanotubes begin to play an important role in the field of nanotechnology. Nanotubes can be used as molecular wires, and can even figure as building elements for molecular electronics. Furthermore nanotubes can be used as amplifiers in composite materials, as a result of their unique mechanical properties. Many other applications, as for example as electron emitters for flat screens, are currently under development. Fullerens are known to be strong electron acceptors, which enables them to support the electron-hole pair separation in polymer based photovoltaic cells. The use of fulleren chains instead of fullerenes could improve the anisotropic electronic conductivity in the contained polymer layer, and therefore enhance their performance.

  18. Field emission of carbon nanotube array with normal-gate cold cathode

    NASA Astrophysics Data System (ADS)

    Dai, Jian-Feng; Mu, Xiao-Wen; Qiao, Xian-Wu; Chen, Xiao-Xing; Wang, Jun-Hong

    2010-05-01

    A hexagon pitch carbon nanotube (CNT) array vertical to the normal gate of cold cathode field emission displayer (FED) is simulated by solving the Laplace equation. The calculated results show that the normal gate causes the electric field around the CNT tops to be concentrated and the emission electron beam becomes a column. The field enhancement factor and the emission current intensity step up greatly compared with those of the diode structure. Emission current density increases rapidly with the decrease of normal-gate aperture. The gate voltage exerts a critical influence on the emission current.

  19. Helicoidal Fields and Spin Polarized Currents in Carbon Nanotube-DNA Hybrids

    NASA Astrophysics Data System (ADS)

    Diniz, G. S.; Latgé, A.; Ulloa, S. E.

    2012-03-01

    We report on theoretical studies of electronic transport in the archetypical molecular hybrid formed by DNA wrapped around single-walled carbon nanotubes (CNTs). Using a Green’s function formalism in a π-orbital tight-binding representation, we investigate the role that spin-orbit interactions play on the CNT in the case of the helicoidal electric field induced by the polar nature of the adsorbed DNA molecule. We find that spin polarization of the current can take place in the absence of magnetic fields, depending strongly on the direction of the wrapping and length of the helicoidal field. These findings open new routes for using CNTs in spintronic devices.

  20. Effect of an intersection of carbon nanotubes on the carrier accumulation under an external electric field

    NASA Astrophysics Data System (ADS)

    Kochi, Taketo; Okada, Susumu

    2016-08-01

    We studied the electronic structure of semiconducting carbon nanotube (CNT) thin films, in which CNTs intersect each other, under an external electric field, using first-principles total-energy calculations within the framework of the density functional theory. Our calculations show that the distribution of accumulated carriers strongly depends on the CNT species, their mutual arrangement with respect to the electrode, and carrier concentrations. Under particular conditions, an induced electric field between the CNTs is opposite to the applied field. We also showed that the quantum capacitance of the CNT thin films depends on the arrangement of the CNTs relative to the electrode.

  1. Emittance Growth in the NLCTA First Chicane

    SciTech Connect

    Sun, Yipeng; Adolphsen, Chris; /SLAC

    2011-08-19

    In this paper, the emittance growth in the NLCTA (Next Linear Collider Test Accelerator) first chicane region is evaluated by simulation studies. It is demonstrated that the higher order fields of the chicane dipole magnet and the dipole corrector magnet (which is attached on the quadrupoles) are the main contributions for the emittance growth, especially for the case with a large initial emittance ({gamma}{epsilon}{sub 0} = 5 {micro}m for instance). These simulation results agree with the experimental observations.

  2. Aligned Single Wall Carbon Nanotube Polymer Composites Using an Electric Field

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Wiklinson, John; Banda, Sumanth; Ounaies, Zoubeida; Wise, Kristopher E.; Sauti, Godfrey; Lillehei, Peter T.; Harrison, Joycelyn S.

    2005-01-01

    While high shear alignment has been shown to improve the mechanical properties of single wall carbon nanotubes (SWNT)-polymer composites, it is difficult to control and often results in degradation of the electrical and dielectric properties of the composite. Here, we report a novel method to actively align SWNTs in a polymer matrix, which allows for control over the degree of alignment of SWNTs without the side effects of shear alignment. In this process, SWNTs are aligned via field-induced dipolar interactions among the nanotubes under an AC electric field in a liquid matrix followed by immobilization by photopolymerization while maintaining the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy and the morphology of the aligned nanocomposites was investigated by high resolution scanning electron microscopy. The structure of the field induced aligned SWNTs is intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties in addition to improving the mechanical properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field conditions.

  3. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    SciTech Connect

    Xu, Jinzhuo; Ou-Yang, Wei Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo; Xu, Peng; Wang, Miao; Li, Jun

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  4. Field emission from single-walled carbon nanotubes modified by annealing and CuCl doping

    NASA Astrophysics Data System (ADS)

    Kleshch, Victor I.; Tonkikh, Alexander A.; Malykhin, Sergey A.; Redekop, Eugene V.; Orekhov, Andrey S.; Chuvilin, Andrey L.; Obraztsova, Elena D.; Obraztsov, Alexander N.

    2016-10-01

    In this article, we present a comparative study of field emission (FE) properties of the films of pristine, annealed and CuCl-filled single-walled carbon nanotubes (SWCNTs). The current-voltage dependencies and emission site distributions were measured in the diode configuration with a flat phosphor-coated anode. A significant increase of the threshold field was observed after annealing and doping of the films. It was explained by the selective oxidation of the small-diameter nanotubes confirmed by the Raman spectroscopy. The FE properties of annealed and filled SWCNTs were found to coincide with each other. At the same time, their Raman spectra differ significantly indicating the strong p-type doping induced by encapsulated CuCl. The obtained result reveals that the CuCl filling leads to significant changes in macroscopically averaged electronic properties but do not change the local work function at the apexes of emitting nanotubes, which is important for the further development of SWCNTs-based FE cathodes.

  5. Linear optical response of carbon nanotubes under axial magnetic field

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-04-01

    We considered single walled carbon naotubes (SWCNTs) as real three dimensional (3D) systems in a cylindrical coordinate. The optical matrix elements and linear susceptibility, χ(ω), in the tight binding approximation in terms of one-dimensional wave vector, kz and subband index, l are calculated. In an external axial magnetic field optical frequency dependence of linear susceptibility are investigated. We found that axial magnetic field has two effects on the imaginary part of the linear susceptibility spectrum, in agreement with experimental results. The first effect is broadening and the second, splitting. Also we found that for all metallic zigzag and armchair SWCNTs, the axial magnetic field leads to the creation of a peak with energy less than 1.5 eV, contrary to what is observed in the absence of a magnetic field.

  6. Efficient and persistent cold cathode emission from CuPc nanotubes: a joint experimental and simulation investigation.

    PubMed

    Ghorai, Uttam Kumar; Das, Swati; Saha, Subhajit; Mazumder, Nilesh; Sen, Dipayan; Chattopadhyay, Kalyan Kumar

    2014-06-28

    In the current report, chemically synthesized copper phthalocyanine (CuPc) nanotubes are shown to exhibit unprecedentedly well cold cathode emission characteristics with turn-on field (3.2 V μ m(-1)) and stable emission during long intervals (200 min). Simulation of electric field distribution via finite element method around an isolated nanotube emitter in a manner parallel to the experimental setup (inter-electrode distance = 180 μm) exhibits good corroboration of theoretical premises with experimental findings. Obtained results strongly indicate CuPc nanotubes to be potential candidate as cold cathode emitter for electron emission based applications such as field emission displays and vacuum nano-electronic devices. PMID:24816492

  7. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  8. Recent progress in nanostructured next-generation field emission devices

    NASA Astrophysics Data System (ADS)

    Mittal, Gaurav; Lahiri, Indranil

    2014-08-01

    Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.

  9. Seeking optimal performance of multiwall carbon nanotubes in field emission: Tight-binding approach

    NASA Astrophysics Data System (ADS)

    Liang, Shi-Dong; Deng, Shao Zhi; Xu, Ning Sheng

    2006-10-01

    The field emission performance of different components of multiwall carbon nanotubes (MWCNs) is systematically studied by quantum tunneling theory with the tight-binding approach. We find that the current-voltage characteristic in field emission of MWCNs still approximately follows the Fowler-Nordheim theory. The key characteristics of all MWCNs are almost independent of the component and the layer number of MWCNs that have more three layers. The interlayer coupling of MWCNs can induce a semiconductor-metal phase transition, which leads to most MWCNs being actually metallic, and the chiral and quantum size effects disappear.

  10. Fast transport of water molecules across carbon nanotubes induced by static electric fields

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Lin; Yang, Rong-Yao

    2016-01-01

    Water permeation across a single-walled carbon nanotube has been studied in the presence of static electric fields (SEFs) with different directions under hydrostatic pressures. With the angle between the SEF direction and tube axis increasing from 0∘ to 90∘, the water flux decreases gradually until almost vanishes, and the maximum value at 0∘ is approximately four times the case without SEFs. The phenomenon is attributed to the alignment of the polar water molecules along the SEF direction. We also show that water permeation properties are dependent on the field strength due mainly to thermal fluctuations of water molecules.

  11. Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes

    SciTech Connect

    Liu, X. L.; Zhang, R. Z.; Zhang, Z. M.

    2013-11-18

    The near-field radiative heat transfer for two hyperbolic metamaterials, namely, graphite and vertically aligned carbon nanotubes (CNTs), is investigated. Graphite is a naturally existing uniaxial medium, while CNT arrays can be modeled as an effective anisotropic medium. Different hyperbolic modes can be separately supported by these materials in certain infrared regions, resulting in a strong enhancement in near-field heat transfer. It is predicted that the heat flux between two CNT arrays can exceed that between SiC plates at any vacuum gap distance and is about 10 times higher with a 10 nm gap.

  12. Evidence for adsorbate-enhanced field emission from carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Murray, P. T.; Back, T. C.; Cahay, M. M.; Fairchild, S. B.; Maruyama, B.; Lockwood, N. P.; Pasquali, M.

    2013-07-01

    We used residual gas analysis (RGA) to identify the species desorbed during field emission (FE) from a carbon nanotube (CNT) fiber. The RGA data show a sharp threshold for H2 desorption at an external field strength that coincides with a breakpoint in the FE data. A comprehensive model for the gradual transition of FE from adsorbate-enhanced CNTs at low bias to FE from CNTs with reduced H2 adsorbate coverage at high bias is developed which accounts for the gradual desorption of the H2 adsorbates, alignment of the CNTs at the fiber tip, and importance of self-heating effects with applied bias.

  13. Modulation of Field Electron Emission from Carbon Nanotubes by Double layer Charging

    NASA Astrophysics Data System (ADS)

    Zakhidov, Anvar

    2005-03-01

    Field emission from carbon nanotubes is well known phenomenon. In this work we present a novel method of modulating the current densities and threshold voltages. We studied field emission characteristics of HIPCO Single Walled Nanotube (SWNT) paper charged in NaCl electrolyte. The charge injection was by double layer electro chemical doping and it showed significant change in the threshold electric fields and the current densities. This was attributed mostly to a change in the work function and partially due to the change in the field enhancement factor beta. The turn on field (for 1microA of emission current) was seen to change from 1.04 V/micron to 0.82 V/micron for the negatively charged paper (Na ions) and similarly on the positively charged (Cl ions) it increased from 1.01 V/micron to 2.1 V/micron. Calculated values of the work function were compared with values from Kelvin Probe measurements. The work function values showed a significant decrease in the negatively charged samples and a sharp increase in the positively charged samples as compared to the uncharged ones. Experiments were repeated by varying the charging time from 2000 sec to 3 hrs with the current being kept constant.

  14. Neutralization of space charge on high-current low-energy ion beam by low-energy electrons supplied from silicon based field emitter arrays

    SciTech Connect

    Gotoh, Yasuhito; Tsuji, Hiroshi; Taguchi, Shuhei; Ikeda, Keita; Kitagawa, Takayuki; Ishikawa, Junzo; Sakai, Shigeki

    2012-11-06

    Neutralization of space charge on a high-current and low-energy ion beam was attempted to reduce the divergence with an aid of low-energy electrons supplied from silicon based field emitter arrays (Si-FEAs). An argon ion beam with the energy of 500 eV and the current of 0.25 mA was produced by a microwave ion source. The initial beam divergence and the emittance were measured at the entrance of the analysis chamber in order to estimate the intrinsic factors for beam divergence. The current density distribution of the beam after transport of 730 mm was measured by a movable Faraday cup, with and without electron supply from Si-FEAs. A similar experiment was performed with tungsten filaments as an electron source. The results indicated that the electron supply from FEA had almost the same effect as the thermionic filament, and it was confirmed that both electron sources can neutralize the ion beam.

  15. Thermo acoustic study of carbon nanotubes in near and far field: Theory, simulation, and experiment

    NASA Astrophysics Data System (ADS)

    Asadzadeh, S. S.; Moosavi, A.; Huynh, C.; Saleki, O.

    2015-03-01

    Carbon nanotube webs exhibit interesting properties when used as thermo-acoustic projectors. This work studies thermo-acoustic effect of these sound sources both in near and far field regions. Based on two alternative forms of the energy equation, we have developed a straightforward formula for calculation of pressure field, which is consistent with experimental data in far field. Also we have solved full 3-D governing equations using numerical methods. Our three-dimensional simulation and experimental data show pressure waves are highly affected by dimensions of sound sources in near field due to interference effects. However, generation of sound waves in far field is independent of projectors area surface. Energy analysis for free standing Thermo-Acoustic (TA) sound sources show that aerogel TA sound sources like CNT based projectors could act more efficiently compared to the other sources in delivering more than 75% of alternative input energy to the medium gas up to a frequency of 1 MHz.

  16. Aberration corrected emittance exchange

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.

    2015-08-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (rf) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by multiple orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dogleg emittance exchange setup with a five cell rf deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of an EEX line with emittances differing by four orders of magnitude, i.e., an initial transverse emittance of 1 pm-rad is exchanged with a longitudinal emittance of 10 nm-rad.

  17. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long, cylinder. The spectral emittance, e(sub x), is obtained L- by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depth, K(sub R), where alpha(sub lambda), is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance depths, K(sub R) alpha(sub lambda)R, is nearly at its maximum value. There is an optimum cylinder radius, R(sub opt) for maximum emitter efficiency, n(sub E). Values for R(sub opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing, temperature.

  18. Comparative studies on field-induced stretching behavior of single-walled and multiwalled carbon nanotube clusters.

    PubMed

    Tie, Weiwei; Bhattacharyya, Surjya Sarathi; Park, Hye Ryung; Lee, Joong Hee; Lee, Sang Won; Lee, Tae Hoon; Lee, Young Hee; Lee, Seung Hee

    2014-07-01

    We demonstrate distinct entanglement of single-walled carbon nanotube (SWCNT) and multiwalled carbon nanotube (MWCNT) clusters in nematic liquid crystal medium using scanning electron microscopy technique and the entanglement influence on electric field-induced stretching phenomena of the said clusters in the same medium under optical microscopy investigation. The observed stretching threshold field for MWCNT clusters is found to be higher than the SWCNT counterpart caused by the interplay between attractive field-induced dipolar interaction of intercarbon nanotube (CNT) bundles and the distinct degree of entanglement of neighboring CNT bundles. Subsequently observed different tensile elasticity modulus results for different CNT kinds also confirm different CNT bundle entanglement and attractive dipolar interaction between adjacent CNT bundles in CNT clusters are responsible for distinct stretching threshold field behavior.

  19. Interaction of carbon dioxide laser radiation with a nanotube array in the presence of a constant electric field

    SciTech Connect

    Sadykov, N. R.; Scorkin, N. A.

    2012-06-15

    The dependence of the current density on the leading edge width of the alternating (high-frequency) field amplitude is studied at various constant (or unsteady) fields. The dependence of amplified microwaves in the two-millimeter range on a longitudinal coordinate is determined. The problem of submillimeter radiation generation in a system of parallel carbon nanotubes exposed to two-frequency carbon dioxide (CO{sub 2} laser) laser radiation in the presence of a constant (or unsteady) field is studied. The possibility of using freely oriented carbon nanotubes parallel to each other is shown.

  20. Water filling and electric field-induced enhancement in the mechanical property of carbon nanotubes.

    PubMed

    Ye, H F; Zheng, Y G; Zhang, Z Q; Chen, Z; Zhang, H W

    2015-01-01

    The effects of water filling and electric field on the mechanical property of carbon nanotubes (CNTs) are investigated with molecular dynamics simulations. The simulation results indicate that the water filling and electric field could enhance the elastic modulus but reduce the Poisson's ratio of the CNTs. As for the buckling behaviors, a significant enhancement could be observed in the yield stress and average post-buckling stress of the CNTs. In particular, the enhancement in the yield stress induced by the water filling and electric field could be even higher than that resulted from the solid filling. Moreover, a transition mechanism from the rod instability to shell buckling is shown to explain the nonmonotonic variation of yield stress, and the critical diameter can be tuned through filling the water molecules and applying the electric field. The present findings provide a valuable route for the optimized design and application of the nanoscale functional devices based on the water-filled CNTs. PMID:26621767

  1. Solid-state single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  2. Emittance concept and growth mechanisms

    SciTech Connect

    Wangler, T.P.

    1996-05-01

    The authors present an introduction to the subjects of emittance and space-charge effects in charged-particle beams. This is followed by a discussion of three important topics that are at the frontier of this field. The first is a simple model, describing space-charge-induced emittance growth, which yields scaling formulas and some physical explanations for some of the surprising results. The second is a discussion of beam halo, an introduction to the particle-core model, and a brief summary of its results. The third topic is an introduction to the hypothesis of equipartitioning for collisionless particle beams.

  3. Very Stable Electron Field Emission From Strontium Titanate Coated Carbon Nanotube Matrices With Low Emission Thresholds

    SciTech Connect

    Pandey, Archana; Prasad, Abhishek; Moscatello, Jason; Engelhard, Mark H.; Wang, Chong M.; Yap, Yoke K.

    2013-01-22

    PMMA-STO-CNT matrices were created by opened-tip vertically-aligned multiwalled carbon nanotubes (VA-MWCNTs) with conformal coating of strontium titanate and Poly(methyl methacrylate). Emission threshold of 0.8 V/μm was demonstrated, about five-fold lower than that of the as-grown VAMWCNTs. Theoretical simulation and modeling suggest that PMMA-STO-CNT matrices have suppressed screening effects and Coulombs’ repulsion forces between electrons in adjacent CNTs, leading to low emission threshold, high emission density, and prolong emission stability. These findings are important for practical application of VA-MWCNTs in field emission devices.

  4. Fabrication process of carbon nanotube field effect transistors using atomic layer deposition passivation for biosensors.

    PubMed

    Nakashima, Yasuhiro; Ohno, Yutaka; Kishimoto, Shigeru; Okochi, Mina; Honda, Hiroyuki; Mizutani, Takashi

    2010-06-01

    Fabrication process of the carbon nanotube (CNT) field effect transistors (FETs) for biosensors was studied. Atomic layer deposition (ALD) of HfO2 was applied to the deposition of the passivation/gate insulator film. The CNT-FETs did not show the drain current degradation after ALD passivation even though the passivation by Si3N4 deposited by plasma-enhanced chemical vapor deposition (PECVD) resulted in a significant drain current decrease. This indicates the advantage of the present ALD technique in terms of the damage suppression. The biosensing operation was confirmed using thus fabricated CNT-FETs. PMID:20355371

  5. Ultrasensitive Detection of DNA Hybridization Using Carbon Nanotube Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Maehashi, Kenzo; Matsumoto, Kazuhiko; Kerman, Kagan; Takamura, Yuzuru; Tamiya, Eiichi

    2004-12-01

    We have sensitively detected DNA hybridization using carbon nanotube field-effect transistors (CNTFETs) in real time. Amino modified peptide nucleic acid (PNA) oligonucleotides at 5' end were covalently immobilized onto the Au surface of the back gate. For 11-mer PNA oligonucletide probe, full-complementary DNA with concentration as low as 6.8 fM solution could be effectively detected. Our CNTFET-based biochip is a promising candidate for the development of an integrated, high-throughput, multiplexed DNA biosensor for medical, forensic and environmental diagnostics.

  6. Effect of external static magnetic field on the emittance and total charge of electron beams generated by laser-Wakefield acceleration.

    PubMed

    Hosokai, Tomonao; Kinoshita, Kenichi; Zhidkov, Alexei; Maekawa, Akira; Yamazaki, Atsushi; Uesaka, Mitsuru

    2006-08-18

    Significant enhancement of emittance and an increase of the total charge of femtosecond electron beams produced by a 12 TW, 40 fs laser pulse, tightly focused in a He gas jet, are observed after applying a static magnetic field, B> or =0.2 T, directed along the axis of laser pulse propagation. The effect appears when plasma produced by a laser prepulse becomes magnetized in the vicinity of the focus point: the electron Larmor frequency exceeds the collisional frequency, while periphery of the plasma remains unmagnetized. The entailed change in the shape of the plasma suppresses the diffraction of the main laser pulse that results in a much higher charge of electrons self-injected during the longitudinal wave breaking of the laser wake as well as the excellent stability of the beams.

  7. Investigating the effect of some parameters of the channel on the characteristics of tunneling carbon nanotube field-effect transistor

    NASA Astrophysics Data System (ADS)

    Valed Karimi, Najmeh; Pourasad, Yaghoub

    2016-08-01

    This paper studies p-i-n tunneling carbon nanotube field-effect transistor to investigate the effect of various parameters of the channel on the characteristics of tunneling carbon nanotube field-effect transistor. Tunneling carbon nanotube field-effect transistor (T-CNTFET) has been simulated using non-equilibrium Green's function (NEGF), and the transmission was conducted through inelastic scattering. Besides the evaluation of device performance, various parameters of the channel were also compared. One of the parameters is considered as the variable, while other parameters of the channel are constant. Then, improved characteristics were discussed by selection of some channel parameters. T-CNTFET with CNT (10, 0) with oxide thickness = 1 nm shows reduced sub-threshold swing (18 mV/decade).

  8. Floating emitter solar cell

    NASA Technical Reports Server (NTRS)

    Chih, Sah (Inventor); Cheng, Li-Jen (Inventor)

    1987-01-01

    A front surface contact floating emitter solar cell transistor is provided in a semiconductor body (n-type), in which floating emitter sections (p-type) are diffused or implanted in the front surface. Between the emitter sections, a further section is diffused or implanted in the front surface, but isolated from the floating emitter sections, for use either as a base contact to the n-type semiconductor body, in which case the section is doped n+, or as a collector for the adjacent emitter sections.

  9. Enhanced field emission properties of screen-printed doubled-walled carbon nanotubes by polydimethylsiloxane elastomer

    NASA Astrophysics Data System (ADS)

    Ding, Hui; Feng, Tao; Zhang, Zhejuan; Wang, Kai; Qian, Min; Chen, Yiwei; Sun, Zhuo

    2010-09-01

    Field emission (FE) properties of double-walled carbon nanotubes (DWCNTs) treated by polydimethylsiloxane (PDMS) elastomer with different heating temperature have been systematically studied. The current density of treated DWCNT films decreases with the increase of heating temperature. The screen-printed DWCNTs treated by PDMS elastomer with drying temperature 150 °C for 20 min have the best FE performance with a marvelous field enhancement factor ( β = 20194). The optimized FE performance is attributed to the morphological change of DWCNT films after PDMS elastomer treatment and the change of separation energy for the CNT-substrate interface. It is proved that the PDMS treatment is a facile and effective method for field emission display (FED) application, especially for low-temperature FED preparation.

  10. Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission

    NASA Astrophysics Data System (ADS)

    Dan, Cai; Lie, Liu; Jin-Chuan, Ju; Xue-Long, Zhao; Hong-Yu, Zhou; Xiao, Wang

    2016-04-01

    The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263 and 61401484).

  11. A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application

    PubMed Central

    Wang, Sigen; Calderon, Xiomara; Peng, Rui; Schreiber, Eric C.; Zhou, Otto; Chang, Sha

    2011-01-01

    The authors report a carbon nanotube (CNT) field emission multipixel x-ray array source for microradiotherapy for cancer research. The developed multipixel x-ray array source has 50 individually controllable pixels and it has several distinct advantages over other irradiation source including high-temporal resolution (millisecond level), the ability to electronically shape the form, and intensity distribution of the radiation fields. The x-ray array was generated by a CNT cathode array (5×10) chip with electron field emission. A dose rate on the order of >1.2 Gy∕min per x-ray pixel beam is achieved at the center of the irradiated volume. The measured dose rate is in good agreement with the Monte Carlo simulation result. PMID:21691440

  12. Optimization of nanotube thermal interconnects for near-field radiative heat transport

    NASA Astrophysics Data System (ADS)

    Nemilentsau, Andrei; Rotkin, Slava V.

    2012-08-01

    Near-field radiative heat transfer between vertical single-wall nanotube (SWNT) forest and different substrates was computed using experimental parametrization for dielectric response of α-quartz, α-sapphire, GaAs, 6H-BN, h-SiC, Au, Ag, Al, Ni, Ti, Cu materials. Rational choice of material and optical matching at the interface allow one to achieve maximum near-field Kapitza conductance of the SWNT forest exceeding 60 MW/(K m2) on polar dielectrics at 300 K. Such an efficient thermal coupling is due to the near-field overlap of surface polaritons of the substrate and SWNT plasmons, further enhanced by tweaking the forest thickness.

  13. A carbon nanotube field emission multipixel x-ray array source for microradiotherapy application

    SciTech Connect

    Wang Sigen; Calderon, Xiomara; Peng Rui; Schreiber, Eric C.; Zhou, Otto; Chang, Sha

    2011-05-23

    The authors report a carbon nanotube (CNT) field emission multipixel x-ray array source for microradiotherapy for cancer research. The developed multipixel x-ray array source has 50 individually controllable pixels and it has several distinct advantages over other irradiation source including high-temporal resolution (millisecond level), the ability to electronically shape the form, and intensity distribution of the radiation fields. The x-ray array was generated by a CNT cathode array (5x10) chip with electron field emission. A dose rate on the order of >1.2 Gy/min per x-ray pixel beam is achieved at the center of the irradiated volume. The measured dose rate is in good agreement with the Monte Carlo simulation result.

  14. Influence of magnetic field on the compressive behavior of carbon nanotube with magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Reddy, S. K.; Suri, A.; Misra, A.

    2013-06-01

    Carbon nanotubes (CNT) in their cellular like micro-structure have presented an excellent mechanical energy absorption capacity. Although, several efforts have been progressed to modify the CNT structure for further enhancing their energy absorption capacity but yet no report has revealed the effect of magnetic field on the mechanical behavior of as-grown CNT mat that contains magnetic iron nanoparticles in the form of decorated nanoparticles on the surface or filled inside core of the CNT. We report a significant impact of the presence of magnetic content that modifies the mechanical behavior of the entangled CNT mat in the presence of an external magnetic field. The energy absorption capacity doubles when magnetic field was applied in the radial direction of the CNT mat under uniaxial compression.

  15. Two emerging topics regarding long-range physical signaling in neurosystems: Membrane nanotubes and electromagnetic fields.

    PubMed

    Scholkmann, Felix

    2015-06-01

    In this review paper, an overview is given of two emerging research topics that address the importance of long-range physical signaling in living biosystems. The first topic concerns the biophysical principles and the physiological significance of long-range cell-to-cell signaling through electrical signals facilitated by membrane nanotubes (MNTs) (also called "tunneling nanotubes"), namely long membrane extensions that connect cells, discovered about 10 years ago. This review paper looks at experimental results that showed electrical signals being propagated through MNTs, and that MNT-mediated electrical coupling between brain cells involves activation of low-voltage-gated calcium channels. The significance of electrical cell-to-cell coupling through MNT for neuronal communication is discussed. The second topic deals with endogenous electromagnetic fields generated by nerve cells. The review concludes that these fields are not just an "epiphenomenon" but play a fundamental role in neuronal processes. For example, electromagnetic fields from brain cells feed back to their generating cells and to other cells (ephaptic coupling) and, for example, modulate the spiking timing of them. It is also discussed that cell membranes of neurons have specific resonance properties which possibly determine the impact of endogenous electric field fluctuations with respect to field strength and frequency. In addition, it is reviewed how traveling and standing waves of the endogenous electromagnetic field produced by neuronal and non-neuronal cells may play an integral part in global neuronal network dynamics. Finally, an outlook is given on which research questions should be addressed in the future regarding these two topics.

  16. Effect of graphitic order on field emission stability of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kayastha, Vijaya Kumar; Ulmen, Benjamin; Khin Yap, Yoke

    2007-01-01

    We observed current density (J) dependent degradation in field emission current from multiwalled carbon nanotubes (MWCNTs). These degradations are recoverable and can be explained by emission current-induced dislocations along the MWCNTs. MWCNTs grown by thermal chemical vapour deposition (CVD) can emit stable current continuously for at least 1200 min with upper current density limits of ~0.5 mA cm-2. In contrast, this upper limit is<40 µA cm-2 for nanotubes grown by plasma-enhanced CVD (PECVD), although higher J is possible with relatively shorter stability duration. High-resolution transmission electron microscopy and Raman spectroscopy indicate higher graphitic order of the thermal CVD grown MWCNTs as compared to PECVD grown MWCNTs. Our study suggests that graphitic order affects their upper performance limits of long-term emission stability, although the effects from adsorbates cannot be completely ignored. These results indicate that field emission cannot be considered as an ideal quantum tunnelling process. The effect of electron transport along CNTs before electron tunnelling must be considered.

  17. Effect of graphitic order on field emission stability of carbon nanotubes.

    PubMed

    Kayastha, Vijaya Kumar; Ulmen, Benjamin; Yap, Yoke Khin

    2007-01-24

    We observed current density (J) dependent degradation in field emission current from multiwalled carbon nanotubes (MWCNTs). These degradations are recoverable and can be explained by emission current-induced dislocations along the MWCNTs. MWCNTs grown by thermal chemical vapour deposition (CVD) can emit stable current continuously for at least 1200 min with upper current density limits of approximately 0.5 mA cm(-2). In contrast, this upper limit is<40 microA cm(-2) for nanotubes grown by plasma-enhanced CVD (PECVD), although higher J is possible with relatively shorter stability duration. High-resolution transmission electron microscopy and Raman spectroscopy indicate higher graphitic order of the thermal CVD grown MWCNTs as compared to PECVD grown MWCNTs. Our study suggests that graphitic order affects their upper performance limits of long-term emission stability, although the effects from adsorbates cannot be completely ignored. These results indicate that field emission cannot be considered as an ideal quantum tunnelling process. The effect of electron transport along CNTs before electron tunnelling must be considered. PMID:19636115

  18. High current density and longtime stable field electron transfer from large-area densely arrayed graphene nanosheet-carbon nanotube hybrids.

    PubMed

    Deng, Jian-Hua; Cheng, Lin; Wang, Fan-Jie; Li, Guo-Zheng; Li, De-Jun; Cheng, Guo-An

    2014-12-10

    Achieving high current and longtime stable field emission from large area (larger than 1 mm(2)), densely arrayed emitters is of great importance in applications for vacuum electron sources. We report here the preparation of graphene nanosheet-carbon nanotube (GNS-CNT) hybrids by following a process of iron ion prebombardment on Si wafers, catalyst-free growth of GNSs on CNTs, and high-temperature annealing. Structural observations indicate that the iron ion prebombardment influences the growth of CNTs quite limitedly, and the self-assembled GNSs sparsely distributed on the tips of CNTs with their sharp edges unfolded outside. The field emission study indicates that the maximum emission current density (Jmax) is gradually promoted after these treatments, and the composition with GNSs is helpful for decreasing the operation fields of CNTs. An optimal Jmax up to 85.10 mA/cm(2) is achieved from a 4.65 mm(2) GNS-CNT sample, far larger than 7.41 mA/cm(2) for the as-grown CNTs. This great increase of Jmax is ascribed to the reinforced adhesion of GNS-CNT hybrids to substrates. We propose a rough calculation and find that this adhesion is promoted by 7.37 times after the three-step processing. We consider that both the ion prebombardment produced rough surface and the wrapping of CNT foot by catalyst residuals during thermal processing are responsible for this enhanced adhesion. Furthermore, the three-step prepared GNS-CNT hybrids present excellent field emission stability at high emission current densities (larger than 20 mA/cm(2)) after being perfectly aged. PMID:25335851

  19. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET

    PubMed Central

    2012-01-01

    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency. PMID:22901374

  20. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET.

    PubMed

    Tan, Michael Loong Peng; Lentaris, Georgios; Amaratunga Aj, Gehan

    2012-01-01

    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency.

  1. Magnetic field asymmetry and high temperature magnetoresistance in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cobden, David

    2006-03-01

    The length scales and scattering processes in the one-dimensional electron system in single-walled carbon nanotubes remain only partially understood. Measuring the magnetoresistance, in both linear and nonlinear response, is a way to investigate these processes. In disordered nanotubes with ballistic paths much shorter than the length, we observe magnetoresistance in the metallic regime which at low temperatures resembles the universal fluctuations and weak localization seen in higher dimensional metals. A parabolic magnetoresistance persists at room temperature, indicating a significant role for phase coherence and/or interactions at high temperatures. While the linear resistance of a two-terminal sample must be an even function of magnetic field B by Onsager's principle, the nonlinear resistance need not be. Importantly, the B-asymmetric nonlinear terms can in principle be used to infer the strength of electron-electron interactions in the sample [1]. We have therefore also measured in detail the lowest order B-asymmetric current contributions, with a focus on the B-linear term. This has apparently not been done before in any system. Consistent with general theory, at high temperatures the term is small and has a constant sign independent of Fermi energy. At low temperatures it grows and develops mesoscopic fluctuations. Although these result imply that interactions are involved in the transport, calculations specific to nanotubes are needed in order to extract interaction parameters. This work was done by the authors of Ref [2]. References: [1] E.L. Ivchenko and B. Spivak, Phys. Rev. B 66, 155404 (2002); [2] Jiang Wei, Michael Shimogawa, Zenghui Wang, Iuliana Radu, Robert Dormaier, and David H. Cobden, Phys. Rev. Lett. (Dec. 2005) (cond-mat/0506275).

  2. Comparison between experimental and computer simulations of current-voltage (I-V) characteristics of dielectric-coated photon-stimulated field emitters.

    PubMed

    Mayer, A; Mousa, M S; Vigneron, J P

    2001-10-01

    For the purpose of simulating photon-stimulated field emission by taking account of three-dimensional aspects, a transfer-matrix formulation of electronic scattering was combined with a Floquet expansion of the wave function for taking account of quanta exchanges between the electrons and the external radiation. With specific techniques to preserve numerical stability, this transfer-matrix formalism is well suited to compute the transmission of the field-emitted/photon-stimulated electrons between two electrodes. This theory is applied to the computation of Fowler-Nordheim curves describing the photon-stimulated field emission of a tungsten plane emitter (described by z< or =0), which supports a nanometric protrusion and a dielectric coating. The extraction bias ranges from 12 to 24V, for an inter-electrode distance of 4nm. The electromagnetic radiation has a wavelength of 0.67 microm and a power flux density ranging from 5.96 x 10(10) to 5.96 x 10(12) W/m2. The effects due to the protrusion and the dielectric coating are studied. These theoretical results are compared with the experimental data.

  3. Performance analysis of junctionless carbon nanotube field effect transistors using NEGF formalism

    NASA Astrophysics Data System (ADS)

    Barbastegan, Saber; Shahhoseini, Ali

    2016-04-01

    This paper presents the simulation study of a junctionless carbon nanotube field effect transistor (JL-CNTFET) and a comparison is made with the conventional CNTFET using the atomistic scale simulation, within the non-equilibrium Green’s function (NEGF) formalism. In order to have a comprehensive analysis, both analog and digital parameters of the device are studied. Results have shown that JL-CNTFET with respect to C-CNTFET shows slightly higher ION/IOFF ratio about two times larger than that of C-CNTFET, smaller electric field along channel more than three order of magnitude and reduced tunneling current about 100 times. In addition, the investigation of analog properties of both devices has exhibited that junctionless structure has a transconductance about two times and an intrinsic gain of 15 dB larger than C-CNTFET in same bias condition which makes JL-CNTFET a promising candidate for low voltage analog applications.

  4. Carbon nanotube based microfocus field emission x-ray source for microcomputed tomography

    SciTech Connect

    Liu Zejian; Yang Guang; Lee, Yueh Z.; Bordelon, David; Lu Jianping; Zhou, Otto

    2006-09-04

    Microcomputed tomography is now widely used for in vivo small animal imaging for cancer studies. Achieving high imaging quality of live objects requires the x-ray source to have both high spatial and temporal resolutions. Preliminary studies have shown that carbon nanotube (CNT) based field emission x-ray source has significant intrinsic advantages over the conventional thermionic x-ray tube including better temporal resolution and programmability. Here we report the design and characterization of a CNT based field emission x-ray source that also affords a high spatial resolution. The device uses modified asymmetric Einzel lenses for electron focusing and an elliptical shaped CNT cathode patterned by photolithography. Stable and small isotropic x-ray focal spot sizes were obtained.

  5. Performance analysis of junctionless carbon nanotube field effect transistors using NEGF formalism

    NASA Astrophysics Data System (ADS)

    Barbastegan, Saber; Shahhoseini, Ali

    2016-04-01

    This paper presents the simulation study of a junctionless carbon nanotube field effect transistor (JL-CNTFET) and a comparison is made with the conventional CNTFET using the atomistic scale simulation, within the non-equilibrium Green’s function (NEGF) formalism. In order to have a comprehensive analysis, both analog and digital parameters of the device are studied. Results have shown that JL-CNTFET with respect to C-CNTFET shows slightly higher ION/IOFF ratio about two times larger than that of C-CNTFET, smaller electric field along channel more than three order of magnitude and reduced tunneling current about 100 times. In addition, the investigation of analog properties of both devices has exhibited that junctionless structure has a transconductance about two times and an intrinsic gain of 15 dB larger than C-CNTFET in same bias condition which makes JL-CNTFET a promising candidate for low voltage analog applications.

  6. Purification of carbon nanotubes through an electric field near the arranged microelectrodes

    NASA Astrophysics Data System (ADS)

    Shim, Hyung Cheoul; Lee, Hyung Woo; Yeom, Sujin; Kwak, Yoon Keun; Lee, Seung S.; Kim, Soo Hyun

    2007-03-01

    In this work, we attempt to purify multi-walled carbon nanotubes (MWNTs) using electrophoresis induced by the application of an AC electric field to a set of microelectrodes in a microliquid channel. This purifying method is different from conventional methods based on chemical processes. It was observed that most of the MWNTs could pass along the microliquid channel without attaching to the electrode under specific conditions of 1 kHz, at 0.2 Vrms μm-1. On the other hand, the majority of the carbon impurities attached to the electrodes under identical conditions. Field emission scanning electron microscopy (FESEM) images and Raman spectra confirm that this condition is beneficial for removing carbon impurities. The proposed approach has potential applicability in the development of microdevices that can simultaneously perform the purification and fabrication of MWNTs.

  7. Improved field emission from indium decorated multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sreekanth, M.; Ghosh, S.; Biswas, P.; Kumar, S.; Srivastava, P.

    2016-10-01

    Multi-walled carbon nanotube (MWCNT) films were grown using thermal chemical vapor deposition (T-CVD) process and were decorated with indium metal particles by thermal evaporation technique. The In metal particles are found to get oxidized. The In decorated films show 250% enhancement in the FE current density, lower turn-on and threshold fields, and better temporal stability as compared to their undecorated counterpart. This improvement in field emission properties is primarily attributed to increased density of states near the Fermi level. The presence of O 2p states along with a small contribution from In 5s states results in the enhancement of density of states in the vicinity of the Fermi level.

  8. Effect of plasma parameters on growth and field emission properties of spherical carbon nanotube tip

    SciTech Connect

    Sharma, Suresh C.; Tewari, Aarti

    2011-06-15

    The effect of plasma parameters (e.g., electron density and temperature, ion density and temperature, neutral atom density and temperature) on the growth (without a catalyst), structure, and field emission properties of a spherical carbon nanotube (CNT) tip has been theoretically investigated. A theoretical model of charge neutrality, including the kinetics of electrons, positively charged ions, and neutral atoms and the energy balance of the various species in plasma, has been developed. Numerical calculations of the radius of the spherical CNT tip for different CNT number densities and plasma parameters have been carried out for the typical glow discharge plasma parameters. It is found that upon an increase in the CNT number density and plasma parameters, the radius of the spherical CNT tip decreases, and consequently the field emission factor for the spherical CNT tip increases.

  9. Half-metallicity modulation of hybrid BN-C nanotubes by external electric fields: A first-principles study

    SciTech Connect

    Liang, Yunye; Kawazoe, Yoshiyuki

    2014-06-21

    On the basis of density functional theory, we systematically investigate the electronic and magnetic properties of hybrid BN-C nanotubes, C{sub x}(BN){sub y} where x + y = 12, with and without an external electric field. The BN-C nanotubes are totally distinct from pristine boron-nitride and carbon nanotubes. The electronic properties of C{sub x}(BN){sub y} change significantly with composition: from the nonmagnetic semiconductors to the half-metals. The half-metallicity is attributed to the competition among the band gap, which is related to the width of C domain, the width of BN domain, and the intrinsic polarization field. Application of the external fields can enhance or counterbalance the polarization fields and change the band gaps. The half-metallicity can be modulated. In BN-rich tubes, such as C{sub 2}(BN){sub 10}, the energy gap can be engineered from 0.50 eV to 0.95 eV and in C{sub 3}(BN){sub 9}, the ground state is converted from the nonmagnetic state into the anti-ferro-magnetic one. In other tubes, the half-metallicity can be enhanced or destroyed by different external fields. The modulation indicates that hybrid BN-C nanotubes can work as the components of the spin-filter devices.

  10. Half-metallicity modulation of hybrid BN-C nanotubes by external electric fields: a first-principles study.

    PubMed

    Liang, Yunye; Kawazoe, Yoshiyuki

    2014-06-21

    On the basis of density functional theory, we systematically investigate the electronic and magnetic properties of hybrid BN-C nanotubes, Cx(BN)y where x + y = 12, with and without an external electric field. The BN-C nanotubes are totally distinct from pristine boron-nitride and carbon nanotubes. The electronic properties of Cx(BN)y change significantly with composition: from the nonmagnetic semiconductors to the half-metals. The half-metallicity is attributed to the competition among the band gap, which is related to the width of C domain, the width of BN domain, and the intrinsic polarization field. Application of the external fields can enhance or counterbalance the polarization fields and change the band gaps. The half-metallicity can be modulated. In BN-rich tubes, such as C2(BN)10, the energy gap can be engineered from 0.50 eV to 0.95 eV and in C3(BN)9, the ground state is converted from the nonmagnetic state into the anti-ferro-magnetic one. In other tubes, the half-metallicity can be enhanced or destroyed by different external fields. The modulation indicates that hybrid BN-C nanotubes can work as the components of the spin-filter devices.

  11. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    NASA Astrophysics Data System (ADS)

    Song, Meng; Xu, Peng; Song, Yenan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wu, Huizhen; Zhao, Pei; Wang, Miao

    2015-09-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ˜1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  12. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    SciTech Connect

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao E-mail: miaowang@css.zju.edu.cn; Song, Yenan; Li, Zhenhua; Zhao, Pei E-mail: miaowang@css.zju.edu.cn; Shang, Xuefu

    2015-09-15

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm{sup 2}, and field enhancement factor of ∼1.3 × 10{sup 4}. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  13. Emission current formation in plasma electron emitters

    SciTech Connect

    Gruzdev, V. A.; Zalesski, V. G.

    2010-12-15

    A model of the plasma electron emitter is considered, in which the current redistribution over electrodes of the emitter gas-discharge structure and weak electric field formation in plasma are taken into account as functions of the emission current. The calculated and experimental dependences of the switching parameters, extraction efficiency, and strength of the electric field in plasma on the accelerating voltage and geometrical sizes of the emission channel are presented.

  14. Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors.

    PubMed

    Schiessl, Stefan P; Fröhlich, Nils; Held, Martin; Gannott, Florentina; Schweiger, Manuel; Forster, Michael; Scherf, Ullrich; Zaumseil, Jana

    2015-01-14

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm(2)·V(-1)·s(-1), low ohmic contact resistance, steep subthreshold swings (0.12-0.14 V/dec) and high on/off ratios (10(6)) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  15. Polymer-Sorted Semiconducting Carbon Nanotube Networks for High-Performance Ambipolar Field-Effect Transistors

    PubMed Central

    2014-01-01

    Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm2·V–1·s–1, low ohmic contact resistance, steep subthreshold swings (0.12–0.14 V/dec) and high on/off ratios (106) even for short channel lengths (<10 μm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61. PMID:25493421

  16. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  17. Tumour cell membrane poration and ablation by pulsed low-intensity electric field with carbon nanotubes.

    PubMed

    Wang, Lijun; Liu, Dun; Zhou, Ru; Wang, Zhigang; Cuschieri, Alfred

    2015-03-26

    Electroporation is a physical method to increase permeabilization of cell membrane by electrical pulses. Carbon nanotubes (CNTs) can potentially act like "lighting rods" or exhibit direct physical force on cell membrane under alternating electromagnetic fields thus reducing the required field strength. A cell poration/ablation system was built for exploring these effects of CNTs in which two-electrode sets were constructed and two perpendicular electric fields could be generated sequentially. By applying this system to breast cancer cells in the presence of multi-walled CNTs (MWCNTs), the effective pulse amplitude was reduced to 50 V/cm (main field)/15 V/cm (alignment field) at the optimized pulse frequency (5 Hz) of 500 pulses. Under these conditions instant cell membrane permeabilization was increased to 38.62%, 2.77-fold higher than that without CNTs. Moreover, we also observed irreversible electroporation occurred under these conditions, such that only 39.23% of the cells were viable 24 h post treatment, in contrast to 87.01% cell viability without presence of CNTs. These results indicate that CNT-enhanced electroporation has the potential for tumour cell ablation by significantly lower electric fields than that in conventional electroporation therapy thus avoiding potential risks associated with the use of high intensity electric pulses.

  18. Ultrashort Single-Wall Carbon Nanotubes Reveal Field-Emission Coulomb Blockade and Highest Electron-Source Brightness

    NASA Astrophysics Data System (ADS)

    Pascale-Hamri, A.; Perisanu, S.; Derouet, A.; Journet, C.; Vincent, P.; Ayari, A.; Purcell, S. T.

    2014-03-01

    We present here well-defined Coulomb staircases using an original field-emission experiment on several individual in situ—grown single-wall carbon nanotubes. A unique in situ process was applied nine times to progressively shorten one single-wall carbon nanotube down to ≃10 nm, which increased the oscillations periods from 5.5 to 80 V, the temperature for observable Coulomb staircase to 1100 K and the currents to 1.8 μA. This process led to the brightest electron source ever reported [9×1011 A/(str m2 V)].

  19. Carbon nanotube electron sources for electron microscopes

    SciTech Connect

    De Jonge, Niels

    2009-01-01

    Electron sources were made from individual multi-walled carbon nanotubes with closed caps and thoroughly cleaned surfaces. Nanotubes from both chemical vapor deposition growth and arc discharge growth were investigated. These emitters provide a highly stable emission current up to a threshold current of a few microamperes. At too large currents several processes take place such as splitting, breaking and cap closing. The emission process is field emission for a workfunction of 5 eV. The electron optical per-formance is highly beneficial for their use as high-brightness point sources in electron microscopes and advantageous with respect to state-of-the-art electron sources. The life-time is at least two years. We have tested the source successfully in a scanning electron microscope.

  20. Enhanced field emission from lanthanum hexaboride coated multiwalled carbon nanotubes: Correlation with physical properties

    NASA Astrophysics Data System (ADS)

    Patra, Rajkumar; Ghosh, S.; Sheremet, E.; Jha, Menaka; Rodriguez, R. D.; Lehmann, D.; Ganguli, A. K.; Schmidt, H.; Schulze, S.; Hietschold, M.; Zahn, D. R. T.; Schmidt, O. G.

    2014-10-01

    Detailed results from field emission studies of lanthanum hexaboride (LaB6) coated multiwalled carbon nanotube (MWCNT) films, pristine LaB6 films, and pristine MWCNT films are reported. The films have been synthesized by a combination of chemical and physical deposition processes. An impressive increase in field enhancement factor and temporal stability as well as a reduction in turn-on field and threshold field are observed in LaB6-coated MWCNTs compared to pristine MWCNT and pristine LaB6 films. Surface morphology of the films has been examined by scanning electron microscopy. Introduction of LaB6 nanoparticles on the outer walls of CNTs LaB6-coated MWCNTs films is confirmed by transmission electron microscopy. The presence of LaB6 was confirmed by X-ray photoelectron spectroscopy results and further validated by the Raman spectra. Raman spectroscopy also shows 67% increase in defect concentration in MWCNTs upon coating with LaB6 and an upshift in the 2D band that could be attributed to p-type doping. Ultraviolet photoelectron spectroscopy studies reveal a reduction in the work function of LaB6-coated MWCNT with respect to its pristine counterpart. The enhanced field emission properties in LaB6-coated MWCNT films are correlated with a change in microstructure and work function.

  1. Enhanced field emission from lanthanum hexaboride coated multiwalled carbon nanotubes: Correlation with physical properties

    SciTech Connect

    Patra, Rajkumar; Ghosh, S.; Sheremet, E.; Rodriguez, R. D.; Lehmann, D.; Zahn, D. R. T.; Jha, Menaka; Ganguli, A. K.; Schmidt, H.; Schulze, S.; Hietschold, M.; Schmidt, O. G.

    2014-10-28

    Detailed results from field emission studies of lanthanum hexaboride (LaB{sub 6}) coated multiwalled carbon nanotube (MWCNT) films, pristine LaB{sub 6} films, and pristine MWCNT films are reported. The films have been synthesized by a combination of chemical and physical deposition processes. An impressive increase in field enhancement factor and temporal stability as well as a reduction in turn-on field and threshold field are observed in LaB{sub 6}-coated MWCNTs compared to pristine MWCNT and pristine LaB{sub 6} films. Surface morphology of the films has been examined by scanning electron microscopy. Introduction of LaB{sub 6} nanoparticles on the outer walls of CNTs LaB{sub 6}-coated MWCNTs films is confirmed by transmission electron microscopy. The presence of LaB{sub 6} was confirmed by X-ray photoelectron spectroscopy results and further validated by the Raman spectra. Raman spectroscopy also shows 67% increase in defect concentration in MWCNTs upon coating with LaB{sub 6} and an upshift in the 2D band that could be attributed to p-type doping. Ultraviolet photoelectron spectroscopy studies reveal a reduction in the work function of LaB{sub 6}-coated MWCNT with respect to its pristine counterpart. The enhanced field emission properties in LaB{sub 6}-coated MWCNT films are correlated with a change in microstructure and work function.

  2. Radio and Millimeter Properties of z~5.7 Lyα Emitters in the COSMOS Field: Limits on Radio AGNs, Submillimeter Galaxies, and Dust Obscuration

    NASA Astrophysics Data System (ADS)

    Carilli, C. L.; Murayama, T.; Wang, R.; Schinnerer, E.; Taniguchi, Y.; Smolčić, V.; Bertoldi, F.; Ajiki, M.; Nagao, T.; Sasaki, S. S.; Shioya, Y.; Aguirre, J. E.; Blain, A. W.; Scoville, N.; Sanders, D. B.

    2007-09-01

    We present observations at 1.4 and 250 GHz of the z~5.7 Lyα emitters (LAEs) in the COSMOS field found by Murayama et al. At 1.4 GHz there are 99 LAEs in the lower noise regions of the radio field. We do not detect any individual source down to 3 σ limits of ~30 μJy beam-1 at 1.4 GHz, nor do we detect a source in a stacking analysis, to a 2 σ limit of 2.5 μJy beam-1. At 250 GHz we do not detect any of the 10 LAEs that are located within the central regions of the COSMOS field covered by MAMBO (20'×20') to a typical 2 σ limit of S250<2 mJy. The radio data imply that there are no low-luminosity radio AGNs with L1.4>6×1024 W Hz-1 in the LAE sample. The radio and millimeter observations also rule out any highly obscured, extreme starbursts in the sample, i.e., any galaxies with massive star formation rates >1500 Msolar yr-1 in the full sample (based on the radio data), or 500 Msolar yr-1 for the 10% of the LAE sample that falls in the central MAMBO field. The stacking analysis implies an upper limit to the mean massive star formation rate of ~100 Msolar yr-1. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the National Radio Astronomy Observatory, which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.; the IRAM 30 m telescope; and the Caltech Submillimeter Observatory.

  3. A mathematical space mapping model for ballistic carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Emamifar, Farnousha; Yousefi, Reza

    2016-11-01

    In this study, a mathematical model is presented based on mathematical space mapping for ballistic carbon nanotube field-effect transistors. This model is generalized from another model that was based on the concept of neural space mapping to calculate the three parameters of a coarse model. These parameters were the threshold voltage, the Early voltage, and assumed constant k of a modified "level 1" MOSFET model in simulation program with integrated circuit emphasis (SPICE). In this work, three analytical relations are introduced to replace the neural networks of the main model. The comparisons between the proposed model and a well-known reference model, named FETToy, show that the proposed model had reasonable accuracy in terms of different biases and physical parameters.

  4. Modeling and simulation of carbon nanotube field effect transistor and its circuit application

    NASA Astrophysics Data System (ADS)

    Singh, Amandeep; Saini, Dinesh Kumar; Agarwal, Dinesh; Aggarwal, Sajal; Khosla, Mamta; Raj, Balwinder

    2016-07-01

    The carbon nanotube field effect transistor (CNTFET) is modelled for circuit application. The model is based on the transport mechanism and it directly relates the transport mechanism with the chirality. Also, it does not consider self consistent equations and thus is used to develop the HSPICE compatible circuit model. For validation of the model, it is applied to the top gate CNTFET structure and the MATLAB simulation results are compared with the simulations of a similar structure created in NanoTCAD ViDES. For demonstrating the circuit compatibility of the model, two circuits viz. inverter and SRAM are designed and simulated in HSPICE. Finally, SRAM performance metrics are compared with those of device simulations from Nano TCAD ViDES.

  5. Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis

    NASA Astrophysics Data System (ADS)

    Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.

    2015-02-01

    We demonstrate that a nonperturbative framework for the treatment of the excitations of single-walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. We test this theory explicitly on the data reported by Dukovic et al. [Nano Lett. 5, 2314 (2005), 10.1021/nl0518122] and Sfeir et al. [Phys. Rev. B 82, 195424 (2010), 10.1103/PhysRevB.82.195424] and so demonstrate the method works over a wide range of reported excitonic spectra.

  6. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M; Geday, Morten A

    2016-01-01

    Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.

  7. Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis

    SciTech Connect

    Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.

    2015-02-17

    We demonstrate that a non-perturbative framework for the treatment of the excitations of single walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. As a result, we test this theory explicitly on the data reported in [NanoLetters 5, 2314 (2005)] and [Phys. Rev. B 82, 195424 (2010)] and so demonstrate the method works over a wide range of reported excitonic spectra.

  8. Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis

    DOE PAGESBeta

    Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.

    2015-02-17

    We demonstrate that a non-perturbative framework for the treatment of the excitations of single walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. Asmore » a result, we test this theory explicitly on the data reported in [NanoLetters 5, 2314 (2005)] and [Phys. Rev. B 82, 195424 (2010)] and so demonstrate the method works over a wide range of reported excitonic spectra.« less

  9. A measurement technique for circumventing hysteresis and conductance drift in carbon nanotube field-effect transistors.

    PubMed

    Tunnell, Andrew; Ballarotto, Vincent; Cumings, John

    2014-01-31

    We present a measurement protocol that effectively eliminates both the hysteresis and the temporal drift typically observed in the channel conductance of single-walled carbon nanotube field-effect transistors (SWNT FETs) during the application of gate voltages. Before each resistance measurement, the gate is first stepped through a series of alternating positive and negative voltages to produce a neutral charge distribution within the device. This process is highly effective at removing the hysteresis in the channel conductance, and time-dependent measurements further demonstrate that the drain current is stable and single-valued, independent of the prior measurement history. The effectiveness of this method can be understood within the Preisach hysteresis model, which we demonstrate as a useful framework to predict the observed results. PMID:24394672

  10. A measurement technique for circumventing hysteresis and conductance drift in carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Tunnell, Andrew; Ballarotto, Vincent; Cumings, John

    2014-01-01

    We present a measurement protocol that effectively eliminates both the hysteresis and the temporal drift typically observed in the channel conductance of single-walled carbon nanotube field-effect transistors (SWNT FETs) during the application of gate voltages. Before each resistance measurement, the gate is first stepped through a series of alternating positive and negative voltages to produce a neutral charge distribution within the device. This process is highly effective at removing the hysteresis in the channel conductance, and time-dependent measurements further demonstrate that the drain current is stable and single-valued, independent of the prior measurement history. The effectiveness of this method can be understood within the Preisach hysteresis model, which we demonstrate as a useful framework to predict the observed results.

  11. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M; Geday, Morten A

    2016-01-01

    Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  12. Modeling of Gate Bias Modulation in Carbon Nanotube Field-Effect-Transistor

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    The threshold voltages of a carbon-nanotube (CNT) field-effect transistor (FET) are studied. The CNT channel is so thin that there is no voltage drop perpendicular to the gate electrode plane, and this makes the device characteristics quite unique. The relation between the voltage and the electrochemical potentials, and the mass action law for electrons and holes are examined in the context of CNTs, and inversion and accumulation threshold voltages (V(sub Ti), and V(sub Ta)) are derived. V(sub Ti) of the CNTFETs has a much stronger doping dependence than that of the metal-oxide- semiconductor FETs, while V(sub Ta) of both devices depends weakly on doping with the same functional form.

  13. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    PubMed Central

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M

    2016-01-01

    Summary Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  14. Gate dependent photo-responses of carbon nanotube field effect phototransistors.

    PubMed

    Chen, H Z; Xi, N; Lai, K W C; Chen, L L; Yang, R G; Song, B

    2012-09-28

    Gate dependent photoconductivity of carbon nanotube (CNT) field effect phototransistors (FEPs) was systematically investigated in this study. The photo-response comparisons of CNT FEPs with symmetric and asymmetric metal structures connecting to the same CNT revealed that the gate effect contributed to a sensitivity improvement with a lower dark current, a higher photocurrent, and an enhanced photovoltage. A functionalized asymmetric FEP, fabricated by partially doping the CNT utilizing a polyethylene imine (PEI) polymer, verified that FEPs delivered a better performance by using asymmetric structures. A multi-gate FEP, with three pairs of side-gates that can electrostatically dope different sections of a CNT independently, was fabricated to examine the gate structure dependent photo-responses. Experimental measurements showed an unconventional photocurrent improvement that was weakly dependent on the gate location, which was attributed to the unique charge distribution of one-dimensional semiconductors. PMID:22948041

  15. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors

    NASA Astrophysics Data System (ADS)

    Star, Alexander; Tu, Eugene; Niemann, Joseph; Gabriel, Jean-Christophe P.; Joiner, C. Steve; Valcke, Christian

    2006-01-01

    We report carbon nanotube network field-effect transistors (NTNFETs) that function as selective detectors of DNA immobilization and hybridization. NTNFETs with immobilized synthetic oligonucleotides have been shown to specifically recognize target DNA sequences, including H63D single-nucleotide polymorphism (SNP) discrimination in the HFE gene, responsible for hereditary hemochromatosis. The electronic responses of NTNFETs upon single-stranded DNA immobilization and subsequent DNA hybridization events were confirmed by using fluorescence-labeled oligonucleotides and then were further explored for label-free DNA detection at picomolar to micromolar concentrations. We have also observed a strong effect of DNA counterions on the electronic response, thus suggesting a charge-based mechanism of DNA detection using NTNFET devices. Implementation of label-free electronic detection assays using NTNFETs constitutes an important step toward low-cost, low-complexity, highly sensitive and accurate molecular diagnostics. hemochromatosis | SNP | biosensor

  16. Sensing Reversible Protein–Ligand Interactions with Single-Walled Carbon Nanotube Field-Effect Transistors

    PubMed Central

    2015-01-01

    We report on the reversible detection of CaptAvidin, a tyrosine modified avidin, with single-walled carbon nanotube (SWNT) field-effect transistors (FETs) noncovalently functionalized with biotin moieties using 1-pyrenebutyric acid as a linker. Binding affinities at different pH values were quantified, and the sensor’s response at various ionic strengths was analyzed. Furthermore, protein “fingerprints” of NeutrAvidin and streptavidin were obtained by monitoring their adsorption at several pH values. Moreover, gold nanoparticle decorated SWNT FETs were functionalized with biotin using 1-pyrenebutyric acid as a linker for the CNT surface and (±)-α-lipoic acid linkers for the gold surface, and reversible CaptAvidin binding is shown, paving the way for potential dual mode measurements with the addition of surface enhanced Raman spectroscopy (SERS). PMID:25126155

  17. Single-molecule measurements of proteins using carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Sims, Patrick Craig

    Single-walled carbon nanotube (SWCNT) field-effect transistors (FETs) provide a promising platform for investigating proteins at the single-molecule level. Recently, we have demonstrated that SWCNT FETs have sufficient sensitivity and bandwidth to monitor the conformational motions and processivity of an individual T4 lysozyme molecule. This is accomplished by functionalizing a SWCNT FET device with a single protein and measuring the conductance versus time through the device as it is submerged in an electrolyte solution. To generalize this approach for the study of a wide variety of proteins at the single-molecule level, this dissertation investigates the conjugation process to determine and isolate the key parameters involved in functionalizing a SWCNT with a single protein, the physical basis for transducing conformational motion of a protein into an electrical signal, and finally, the general application of the technique to monitor the binary and ternary complex formation of cAMP-dependent protein kinase (PKA).

  18. Carbon nanotube substrates and catalyzed hot stamp for polishing and patterning the substrates

    DOEpatents

    Wang, Yuhuang; Hauge, Robert H.; Schmidt, Howard K.; Kim, Myung Jong; Kittrell, W. Carter

    2009-09-08

    The present invention is generally directed to catalyzed hot stamp methods for polishing and/or patterning carbon nanotube-containing substrates. In some embodiments, the substrate, as a carbon nanotube fiber end, is brought into contact with a hot stamp (typically at 200-800.degree. C.), and is kept in contact with the hot stamp until the morphology/patterns on the hot stamp have been transferred to the substrate. In some embodiments, the hot stamp is made of material comprising one or more transition metals (Fe, Ni, Co, Pt, Ag, Au, etc.), which can catalyze the etching reaction of carbon with H.sub.2, CO.sub.2, H.sub.2O, and/or O.sub.2. Such methods can (1) polish the carbon nanotube-containing substrate with a microscopically smooth finish, and/or (2) transfer pre-defined patterns from the hot stamp to the substrate. Such polished or patterned carbon nanotube substrates can find application as carbon nanotube electrodes, field emitters, and field emitter arrays for displays and electron sources.

  19. Transport of ions through a (6,6) carbon nanotube under electric fields

    NASA Astrophysics Data System (ADS)

    Shen, Li; Xu, Zhen; Zhou, Zhe-Wei; Hu, Guo-Hui

    2014-11-01

    The transport of water and ions through carbon nanotubes (CNTs) is crucial in nanotechnology and biotechnology. Previous investigation indicated that the ions can hardly pass through (6,6) CNTs due to their hydrated shells. In the present study, utilizing molecular dynamics simulation, it is shown that the energy barrier mainly originating from the hydrated water molecules could be overcome by applying an electric field large enough in the CNT axis direction. Potential of mean force is calculated to show the reduction of energy barrier when the electric field is present for (Na+, K+, Cl-) ions. Consequently, ionic flux through (6,6) CNTs can be found once the electric field becomes larger than a threshold value. The variation of the coordination numbers of ions at different locations from the bulk to the center of the CNT is also explored to elaborate this dynamic process. The thresholds of the electric field are different for Na+, K+, and Cl- due to their characteristics. This consequence might be potentially applied in ion selectivity in the future.

  20. Field emission luminescence of nanodiamonds deposited on the aligned carbon nanotube array

    PubMed Central

    Fedoseeva, Yu. V.; Bulusheva, L. G.; Okotrub, A. V.; Kanygin, M. A.; Gorodetskiy, D. V.; Asanov, I. P.; Vyalikh, D. V.; Puzyr, A. P.; Bondar, V. S.

    2015-01-01

    Detonation nanodiamonds (NDs) were deposited on the surface of aligned carbon nanotubes (CNTs) by immersing a CNT array in an aqueous suspension of NDs in dimethylsulfoxide (DMSO). The structure and electronic state of the obtained CNT–ND hybrid material were studied using optical and electron microscopy and Infrared, Raman, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy. A non-covalent interaction between NDs and CNT and preservation of vertical orientation of CNTs in the hybrid were revealed. We showed that current-voltage characteristics of the CNT–ND cathode are changed depending on the applied field; below ~3 V/µm they are similar to those of the initial CNT array and at the higher field they are close to the ND behavior. Involvement of the NDs in field emission process resulted in blue luminescence of the hybrid surface at an electric field higher than 3.5 V/µm. Photoluminescence measurements showed that the NDs emit blue-green light, while blue luminescence prevails in the CNT–ND hybrid. The quenching of green luminescence was attributed to a partial removal of oxygen-containing groups from the ND surface as the result of the hybrid synthesis. PMID:25797710

  1. Field emission effects of nitrogenated carbon nanotubes on chlorination and oxidation

    SciTech Connect

    Ray, S. C.; Palnitkar, U.; Pao, C. W.; Tsai, H. M.; Pong, W. F.; Lin, I-N.; Papakonstantinou, P.; Ganguly, Abhijit; Chen, L. C.; Chen, K. H.

    2008-09-15

    With reference to our recent reports [Appl. Phys. Lett. 90, 192107 (2007); Appl. Phys. Lett. 91, 202102 (2007)] about the electronic structure of chlorine treated and oxygen-plasma treated nitrogenated carbon nanotubes (N-CNTs), here we studied the electron field emission effects on chlorination (N-CNT:Cl) and oxidation (N-CNT:O) of N-CNT. A high current density (J) of 15.0 mA/cm{sup 2} has been achieved on chlorination, whereas low J of 0.0052 mA/cm{sup 2} is observed on oxidation compared to J=1.3 mA/cm{sup 2} for untreated N-CNT at an applied electric field E{sub A} of {approx}1.9 V/{mu}m. The turn-on electric field (E{sub TO}) was {approx}0.875. The 1.25 V/{mu}m was achieved for N-CNT:Cl and N-CNT:O, respectively, with respect to E{sub TO}=1.0 V/{mu}m for untreated one. These findings are due to the formation of different bonds with carbon and nitrogen in the N-CNT during the process of chlorine (oxygen)-plasma treatment by the charge transfer, or else that changes the density of free charge carriers and hence enhances (reduces) the field emission properties of N-CNTs:Cl (N-CNTs:O)

  2. Hot electrons injection in carbon nanotubes under the influence of quasi-static ac-field

    NASA Astrophysics Data System (ADS)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-07-01

    The theory of hot electrons injection in carbon nanotubes (CNTs) where both dc electric field (Ez), and a quasi-static ac field exist simultaneously (i.e. when the frequency ω of ac field is much less than the scattering frequency v (ω ≪ v or ωτ ≪ 1, v =τ-1) where τ is relaxation time) is studied. The investigation is done theoretically by solving semi-classical Boltzmann transport equation with and without the presence of the hot electrons source to derive the current densities. Plots of the normalized current density versus dc field (Ez) applied along the axis of the CNTs in the presence and absence of hot electrons reveal ohmic conductivity initially and finally negative differential conductivity (NDC) provided ωτ ≪ 1 (i.e. quasi- static case). With strong enough axial injection of the hot electrons, there is a switch from NDC to positive differential conductivity (PDC) about Ez ≥ 75 kV / cm and Ez ≥ 140 kV / cm for a zigzag CNT and an armchair CNT respectively. Thus, the most important tough problem for NDC region which is the space charge instabilities can be suppressed due to the switch from the NDC behaviour to the PDC behaviour predicting a potential generation of terahertz radiations whose applications are relevance in current-day technology, industry, and research.

  3. First-principles calculations of structural stability, electronic, and electrical responses of GeC nanotube under electric field effect for use in nanoelectronic devices

    NASA Astrophysics Data System (ADS)

    Baei, Mohammad T.; Peyghan, Ali Ahmadi; Moghimi, Masoumeh; Hashemian, Saeedeh

    2012-12-01

    Density functional theory (DFT) calculations at the B3LYP/6-31G∗ level were performed to investigate the effect of external electric field on the H-capped (6, 0) zigzag single-walled germanium carbide nanotube (GeCNT). With increase in the applied external electric field strengths, the energy gap, dipole moment, and total energy of the (6, 0) zigzag CNT is increased. The length, tip diameters, and electronic spatial extent of the nanotube do not significantly change with increasing electric field strength. Analysis of the structural parameters indicates that the resistance of nanotube against the applied parallel electric field is less than the resistance of nanotube against the applied transverse electric field. The large variations of energy gap, quantum molecular descriptors, dipole moment, molecular orbital energy, and total energy of the (6, 0) zigzag germanium carbide nanotube with increase of the transverse electric field strengths shows that the transverse electric field has a much stronger interaction with the nanotube with respect to the parallel electric field strengths. Analysis of the parameters indicates that the properties of GeCNTs can be controlled by the proper external electric field for use in nano-electronic circuits.

  4. Enhancement mechanism of field electron emission properties in hybrid carbon nanotubes with tree- and wing-like features

    SciTech Connect

    Yang, G.M.; Yang, C.C.; Xu, Q.; Zheng, W.T.; Li, S.

    2009-12-15

    In this work, the tree-like carbon nanotubes (CNTs) with branches of different diameters and the wing-like CNTs with graphitic-sheets of different densities were synthesized by using plasma enhanced chemical vapor deposition. The nanostructures of the as-prepared hybrid carbon materials were characterized by scanning electron microscopy and transmission electron microscopy. The structural dependence of field electron emission (FEE) property was also investigated. It is found that both of the tree- and wing-like CNTs exhibit a lower turn-on field and higher emission current density than the pristine CNTs, which can be ascribed to the effects of branch size, crystal orientation, and graphitic-sheet density. - Graphical abstract: Tree-like carbon nanotubes (CNTs) with branches and the wing-like CNTs with graphitic-sheets were synthesized by using plasma enhanced chemical vapor deposition. The structural dependence of field electron emission property was also investigated.

  5. Fully Automated Field-Deployable Bioaerosol Monitoring System Using Carbon Nanotube-Based Biosensors.

    PubMed

    Kim, Junhyup; Jin, Joon-Hyung; Kim, Hyun Soo; Song, Wonbin; Shin, Su-Kyoung; Yi, Hana; Jang, Dae-Ho; Shin, Sehyun; Lee, Byung Yang

    2016-05-17

    Much progress has been made in the field of automated monitoring systems of airborne pathogens. However, they still lack the robustness and stability necessary for field deployment. Here, we demonstrate a bioaerosol automonitoring instrument (BAMI) specifically designed for the in situ capturing and continuous monitoring of airborne fungal particles. This was possible by developing highly sensitive and selective fungi sensors based on two-channel carbon nanotube field-effect transistors (CNT-FETs), followed by integration with a bioaerosol sampler, a Peltier cooler for receptor lifetime enhancement, and a pumping assembly for fluidic control. These four main components collectively cooperated with each other to enable the real-time monitoring of fungi. The two-channel CNT-FETs can detect two different fungal species simultaneously. The Peltier cooler effectively lowers the working temperature of the sensor device, resulting in extended sensor lifetime and receptor stability. The system performance was verified in both laboratory conditions and real residential areas. The system response was in accordance with reported fungal species distribution in the environment. Our system is versatile enough that it can be easily modified for the monitoring of other airborne pathogens. We expect that our system will expedite the development of hand-held and portable systems for airborne bioaerosol monitoring. PMID:27070239

  6. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    SciTech Connect

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-15

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  7. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    NASA Astrophysics Data System (ADS)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  8. Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors.

    PubMed

    Melzer, K; Bhatt, V Deep; Jaworska, E; Mittermeier, R; Maksymiuk, K; Michalska, A; Lugli, P

    2016-10-15

    In the fields of clinical diagnostics and point-of-care diagnosis as well as food and environmental monitoring there is a high demand for reliable high-throughput, rapid and highly sensitive assays for a simultaneous detection of several analytes in complex and low-volume samples. Sensor platforms based on solution-processable electrolyte-gated carbon nanotube field-effect transistors (CNT-FETs) are a simple and cost-effective alternative for conventional assays. In this work we demonstrate a selective as well as direct detection of the products of an enzyme-substrate interaction, here the for metabolic processes important urea-urease system, with sensors based on spray-coated CNT-FETs. The selective and direct detection is achieved by immobilizing the enzyme urease via certain surface functionalization techniques on the sensor surface and further modifying the active interfaces with polymeric ion-selective membranes as well as pH-sensitive layers. Thereby, we can avoid the generally applied approach for a field-effect based detection of enzyme reactions via detecting changes in the pH value due to an on-going enzymatic reaction and directly detect selectively the products of the enzymatic conversion. Thus, we can realize a buffering-capacity independent monitoring of changes in the substrate concentration. PMID:27140308

  9. Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation

    PubMed Central

    Reis, Wieland G.; Weitz, R. Thomas; Kettner, Michel; Kraus, Alexander; Schwab, Matthias Georg; Tomović, Željko; Krupke, Ralph; Mikhael, Jules

    2016-01-01

    The identification of scalable processes that transfer random mixtures of single-walled carbon nanotubes (SWCNTs) into fractions featuring a high content of semiconducting species is crucial for future application of SWCNTs in high-performance electronics. Herein we demonstrate a highly efficient and simple separation method that relies on selective interactions between tailor-made amphiphilic polymers and semiconducting SWCNTs in the presence of low viscosity separation media. High purity individualized semiconducting SWCNTs or even self-organized semiconducting sheets are separated from an as-produced SWCNT dispersion via a single weak field centrifugation run. Absorption and Raman spectroscopy are applied to verify the high purity of the obtained SWCNTs. Furthermore SWCNT - network field-effect transistors were fabricated, which exhibit high ON/OFF ratios (105) and field-effect mobilities (17 cm2/Vs). In addition to demonstrating the feasibility of high purity separation by a novel low complexity process, our method can be readily transferred to large scale production. PMID:27188435

  10. Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation

    NASA Astrophysics Data System (ADS)

    Reis, Wieland G.; Weitz, R. Thomas; Kettner, Michel; Kraus, Alexander; Schwab, Matthias Georg; Tomović, Željko; Krupke, Ralph; Mikhael, Jules

    2016-05-01

    The identification of scalable processes that transfer random mixtures of single-walled carbon nanotubes (SWCNTs) into fractions featuring a high content of semiconducting species is crucial for future application of SWCNTs in high-performance electronics. Herein we demonstrate a highly efficient and simple separation method that relies on selective interactions between tailor-made amphiphilic polymers and semiconducting SWCNTs in the presence of low viscosity separation media. High purity individualized semiconducting SWCNTs or even self-organized semiconducting sheets are separated from an as-produced SWCNT dispersion via a single weak field centrifugation run. Absorption and Raman spectroscopy are applied to verify the high purity of the obtained SWCNTs. Furthermore SWCNT - network field-effect transistors were fabricated, which exhibit high ON/OFF ratios (105) and field-effect mobilities (17 cm2/Vs). In addition to demonstrating the feasibility of high purity separation by a novel low complexity process, our method can be readily transferred to large scale production.

  11. Near-field radiation between graphene-covered carbon nanotube arrays

    SciTech Connect

    Zhang, Richard Z.; Liu, Xianglei; Zhang, Zhuomin M.

    2015-05-15

    It has been shown that at small separation distances, thermal radiation between hyperbolic metamaterials is enhanced over blackbodies. This theoretical study considers near-field radiation when graphene is covered on the surfaces of two semi-infinite vertically aligned carbon nanotube (VACNT) arrays separated by a sub-micron vacuum gap. Doped graphene is found to improve photon tunneling in a broad hyperbolic frequency range, due to the interaction with graphene-graphene surface plasmon polaritons (SPP). In order to elucidate the SPP resonance between graphene on hyperbolic substrates, vacuum-suspended graphene sheets separated by similar gap distances are compared. Increasing the Fermi energy through doping shifts the spectral heat flux peak toward higher frequencies. Although the presence of graphene on VACNT does not offer huge near-field heat flux enhancement over uncovered VACNT, this study identifies conditions (i.e., gap distance and doping level) that best utilize graphene to augment near-field radiation. Through the investigation of spatial Poynting vectors, heavily doped graphene is found to increase penetration depths in hyperbolic modes and the result is sensitive to the frequency regime. This study may have an impact on designing carbon-based vacuum thermophotovoltaics and thermal switches.

  12. Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation.

    PubMed

    Reis, Wieland G; Weitz, R Thomas; Kettner, Michel; Kraus, Alexander; Schwab, Matthias Georg; Tomović, Željko; Krupke, Ralph; Mikhael, Jules

    2016-01-01

    The identification of scalable processes that transfer random mixtures of single-walled carbon nanotubes (SWCNTs) into fractions featuring a high content of semiconducting species is crucial for future application of SWCNTs in high-performance electronics. Herein we demonstrate a highly efficient and simple separation method that relies on selective interactions between tailor-made amphiphilic polymers and semiconducting SWCNTs in the presence of low viscosity separation media. High purity individualized semiconducting SWCNTs or even self-organized semiconducting sheets are separated from an as-produced SWCNT dispersion via a single weak field centrifugation run. Absorption and Raman spectroscopy are applied to verify the high purity of the obtained SWCNTs. Furthermore SWCNT - network field-effect transistors were fabricated, which exhibit high ON/OFF ratios (10(5)) and field-effect mobilities (17 cm(2)/Vs). In addition to demonstrating the feasibility of high purity separation by a novel low complexity process, our method can be readily transferred to large scale production. PMID:27188435

  13. Enzyme assays using sensor arrays based on ion-selective carbon nanotube field-effect transistors.

    PubMed

    Melzer, K; Bhatt, V Deep; Jaworska, E; Mittermeier, R; Maksymiuk, K; Michalska, A; Lugli, P

    2016-10-15

    In the fields of clinical diagnostics and point-of-care diagnosis as well as food and environmental monitoring there is a high demand for reliable high-throughput, rapid and highly sensitive assays for a simultaneous detection of several analytes in complex and low-volume samples. Sensor platforms based on solution-processable electrolyte-gated carbon nanotube field-effect transistors (CNT-FETs) are a simple and cost-effective alternative for conventional assays. In this work we demonstrate a selective as well as direct detection of the products of an enzyme-substrate interaction, here the for metabolic processes important urea-urease system, with sensors based on spray-coated CNT-FETs. The selective and direct detection is achieved by immobilizing the enzyme urease via certain surface functionalization techniques on the sensor surface and further modifying the active interfaces with polymeric ion-selective membranes as well as pH-sensitive layers. Thereby, we can avoid the generally applied approach for a field-effect based detection of enzyme reactions via detecting changes in the pH value due to an on-going enzymatic reaction and directly detect selectively the products of the enzymatic conversion. Thus, we can realize a buffering-capacity independent monitoring of changes in the substrate concentration.

  14. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources.

    PubMed

    Radauscher, Erich J; Keil, Adam D; Wells, Mitch; Amsden, Jason J; Piascik, Jeffrey R; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities. Graphical Abstract ᅟ. PMID:26133527

  15. Chemical Ionization Mass Spectrometry Using Carbon Nanotube Field Emission Electron Sources

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich J.; Keil, Adam D.; Wells, Mitch; Amsden, Jason J.; Piascik, Jeffrey R.; Parker, Charles B.; Stoner, Brian R.; Glass, Jeffrey T.

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities.

  16. The End of the Reionization Epoch Probed by Lyα Emitters at z = 6.5 in the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Kashikawa, Nobunari; Shimasaku, Kazuhiro; Malkan, Matthew A.; Doi, Mamoru; Matsuda, Yuichi; Ouchi, Masami; Taniguchi, Yoshiaki; Ly, Chun; Nagao, Tohru; Iye, Masanori; Motohara, Kentaro; Murayama, Takashi; Murozono, Kouji; Nariai, Kyoji; Ohta, Kouji; Okamura, Sadanori; Sasaki, Toshiyuki; Shioya, Yasuhiro; Umemura, Masayuki

    2006-09-01

    We report an extensive search for Lyα emitters (LAEs) at z=6.5 in the Subaru Deep Field. Subsequent spectroscopy with Subaru and Keck identified eight more LAEs, giving a total of 17 spectroscopically confirmed LAEs at z=6.5. Based on this spectroscopic sample of 17, complemented by a photometric sample of 58 LAEs, we have derived a more accurate Lyα luminosity function of LAEs at z=6.5, which reveals an apparent deficit at the bright end of ~0.75 mag fainter L*, compared with that observed at z=5.7. The difference in the LAE luminosity functions between z=5.7 and 6.5 is significant at the 3 σ level, which is reduced to 2 σ when cosmic variance is taken into account. This result may imply that the reionization of the universe has not been completed at z=6.5. We found that the spatial distribution of LAEs at z=6.5 was homogeneous over the field. We discuss the implications of these results for the reionization of the universe. The data presented herein were partly obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  17. Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field

    SciTech Connect

    Karličić, Danilo; Cajić, Milan; Murmu, Tony; Kozić, Predrag; Adhikari, Sondipon

    2014-06-21

    Nanocomposites and magnetic field effects on nanostructures have received great attention in recent years. A large amount of research work was focused on developing the proper theoretical framework for describing many physical effects appearing in structures on nanoscale level. Great step in this direction was successful application of nonlocal continuum field theory of Eringen. In the present paper, the free transverse vibration analysis is carried out for the system composed of multiple single walled carbon nanotubes (MSWCNT) embedded in a polymer matrix and under the influence of an axial magnetic field. Equivalent nonlocal model of MSWCNT is adopted as viscoelastically coupled multi-nanobeam system (MNBS) under the influence of longitudinal magnetic field. Governing equations of motion are derived using the Newton second low and nonlocal Rayleigh beam theory, which take into account small-scale effects, the effect of nanobeam angular acceleration, internal damping and Maxwell relation. Explicit expressions for complex natural frequency are derived based on the method of separation of variables and trigonometric method for the “Clamped-Chain” system. In addition, an analytical method is proposed in order to obtain asymptotic damped natural frequency and the critical damping ratio, which are independent of boundary conditions and a number of nanobeams in MNBS. The validity of obtained results is confirmed by comparing the results obtained for complex frequencies via trigonometric method with the results obtained by using numerical methods. The influence of the longitudinal magnetic field on the free vibration response of viscoelastically coupled MNBS is discussed in detail. In addition, numerical results are presented to point out the effects of the nonlocal parameter, internal damping, and parameters of viscoelastic medium on complex natural frequencies of the system. The results demonstrate the efficiency of the suggested methodology to find the closed form

  18. Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

    SciTech Connect

    Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

    2011-06-16

    Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics.

  19. Polarity tuning of single-walled carbon nanotube by dipole field of ferroelectric polymer for thermoelectric conversion

    NASA Astrophysics Data System (ADS)

    Horike, Shohei; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Saito, Takeshi; Ishida, Kenji

    2016-08-01

    The tuning of the Seebeck coefficient of a single-walled carbon nanotube (SWCNT) film was achieved by using the dipole field of a ferroelectric polymer. The Seebeck coefficient was positive under an up-poling dipole field, but negative under a down-poling dipole field, whereas the control remained positive. This tunable behavior can be explained by selective carrier injection and accumulation, which was confirmed by the temperature dependence of electrical conductivity. Connecting p- and n-type SWCNT films tuned by dipole fields to create a π module resulted in a significant improvement in output voltage owing to the temperature difference between the two.

  20. Portable emittance measurement device

    SciTech Connect

    Liakin, D.; Seleznev, D.; Orlov, A.; Kuibeda, R.; Kropachev, G.; Kulevoy, T.; Yakushin, P.

    2010-02-15

    In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.

  1. Analysing one isolated single walled carbon nanotube in the near-field domain with selective nanovolume Raman spectroscopy.

    PubMed

    Atalay, Han; Lefrant, Serge

    2004-09-01

    In this paper, we describe a new method to the selective nanovolume analysing of one isolated single walled carbon nanotube (SWNT). This concept is based on actually available imaging micro-spectrometry systems for working in near-field domain combined with a stigmatic solid immersion lens. This combination of different analytical methods, and modified and configured equipment entitles us to expand the functionality toward a three-dimensional (3D) nanovolume Raman mapping and photoluminescence intensity with a possible discrimination in polarization, as well as photoluminescence decaytime constant mapping with their unique combination. Subsequently, selective spectra can be acquired from the same location on the samples. By spectrally selecting a SWNT, we registered the spatial distribution of the emitted photons in x, y, z vectors to determine the position of a SWNT in the near-field domain. For the SWNTs that are localized with an accuracy better than 18 nm in the x, y and <1 nm in the z directions, we demonstrate an analytical sensitivity close to a single nanotube with unity throughput. This near-field capability is applied to resolve local variations unambiguously in the Raman spectrum along one single SWNT. Finally, in this paper, we report what we believe to be the first evidence of Raman mapping and 3D real optical imaging of carbon nanotubes with near-field resolution.

  2. Purification of Carbon Nanotubes through an Electric Field near a Microelectrode

    NASA Astrophysics Data System (ADS)

    Shim, H. C.; Lee, H. W.; Yeom, S. J.; Kwak, Y. K.; Lee, S. S.; Kim, S. H.

    2007-04-01

    In this work, we attempt to purify multi-walled carbon nanotubes (MWNTs) using electrophoresis induced by application of an ac electric field to a set of microelectrodes in a microliquid channel. This purifying method is different from conventional methods based on chemical processes. We observed that the most of the MWNTs could pass along the microliquid channel without attaching to the electrode under specific conditions of 1 kHz, 0.2 Vrms/μm. On the other hand, the majority of the carbon impurities attached to the electrodes under same condition. Field emission scanning electron microscopy (FESEM) images confirm that this condition is beneficial for removing the carbon impurities. We aligned and attached this purified MWNTs and raw materials to extra electrodes with 5 MHz, 0.8 Vrms/μm. This experimental FESEM images show a clear difference between before and after purification. The proposed approach has potential applicability to the development of microdevices that can simultaneously perform purification and fabrication of MWNTs.

  3. Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Wenshan; Hennrich, Frank; Flavel, Benjamin S.; Kappes, Manfred M.; Krupke, Ralph

    2016-09-01

    The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.

  4. Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy.

    PubMed

    Li, Wenshan; Hennrich, Frank; Flavel, Benjamin S; Kappes, Manfred M; Krupke, Ralph

    2016-09-16

    The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.

  5. DIAMOND SECONDARY EMITTER

    SciTech Connect

    BEN-ZVI, I.; RAO, T.; BURRILL, A.; CHANG, X.; GRIMES, J.; RANK, J.; SEGALOV, Z.; SMEDLEY, J.

    2005-10-09

    We present the design and experimental progress on the diamond secondary emitter as an electron source for high average power injectors. The design criteria for average currents up to 1 A and charge up to 20 nC are established. Secondary Electron Yield (SEY) exceeding 200 in transmission mode and 50 in emission mode have been measured. Preliminary results on the design and fabrication of the self contained capsule with primary electron source and secondary electron emitter will also be presented.

  6. Preparation and properties of alumina composites modified by electric field-induced alignment of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhu, Yue-Feng; Shi, Lei; Zhang, Chan; Yang, Xi-Zhi; Liang, Ji

    2007-11-01

    Catalytic chemical vapor deposition (CVD) grown multi-walled carbon nanotubes (MWNTs) are treated with HF and deionized water and are then placed into alumina ceramics for improvement of both electrical conductivity and mechanical properties. In particular, an alternating current (ac) electric field is applied during the coagulation of the alumina slurries to induce the formation of aligned MWNT networks in the alumina matrix. The coagulated alumina matrix composite bases filled with 2 wt. % ac electric field-induced aligned MWNTs, are then sintered by hot pressing. The electrical conductivities of the prepared composites in directions both parallel and perpendicular to the MWNTs alignment, reach values of 6.2×10-2 S m-1 and 6.8×10-9 S m-1, respectively, compared with that of 4.5×10-15 S m-1 for pristine alumina ceramics. The fracture toughness and flexing strengths of the prepared composites in the two directions are 4.66±0.66 MPa m0.5, 390±70 MPa, and 3.65±0.46 MPa m0.5, 191±5 MPa, respectively, compared with 3.78±0.66 MPa m0.5 and 302±50 MPa for pristine alumina, 4.09±0.15 MPa m0.5 and 334±60 MPa for alumina filled with 2 wt. % MWNTs prepared without the effect of an electric field, respectively. The results indicate that the electric field leads to anisotropic behaviour. The properties of the composites along the direction of the MWNTs alignment are much improved with the addition of a small amount of CVD grown MWNTs.

  7. Rectangular computed tomography using a stationary array of CNT emitters: initial experimental results

    NASA Astrophysics Data System (ADS)

    Gonzales, Brian; Spronk, Derrek; Cheng, Yuan; Zhang, Zheng; Pan, Xiaochuan; Beckmann, Moritz; Zhou, Otto; Lu, Jianping

    2013-03-01

    XinRay Systems Inc has a rectangular x-ray computed tomography (CT) imaging setup using multibeam x-ray tubes. These multibeam x-ray tubes are based on cold cathodes using carbon nanotube (CNT) field emitters. Due to their unique design, a CNT x-ray tube can contain a dense array of independently controlled electron emitters which generate a linear array of x-ray focal spots. XinRay uses a set of linear CNT x-ray tubes to design and construct a stationary CT setup which achieves sufficient CT coverage from a fixed set of views. The CT system has no moving gantry, enabling it to be enclosed in a compact rectangular tunnel. The fixed locations of the x-ray focal spots were optimized through simulations. The rectangular shape creates significant variation in path length from the focal spots to the detector for different x-ray views. The shape also results in unequal x-ray coverage in the imaged space. We discuss the impact of this variation on the reconstruction. XinRay uses an iterative reconstruction algorithm to account for this unique geometry, which is implemented on a graphics processing unit (GPU). The fixed focal spots prohibit the use of an antiscatter grid. Quantitative measure of the scatter and its impact on the reconstruction will be discussed. These results represent the first known implementation of a completely stationary CT setup using CNT x-ray emitter arrays.

  8. Metal halide perovskite light emitters

    PubMed Central

    Kim, Young-Hoon; Cho, Himchan; Lee, Tae-Woo

    2016-01-01

    Twenty years after layer-type metal halide perovskites were successfully developed, 3D metal halide perovskites (shortly, perovskites) were recently rediscovered and are attracting multidisciplinary interest from physicists, chemists, and material engineers. Perovskites have a crystal structure composed of five atoms per unit cell (ABX3) with cation A positioned at a corner, metal cation B at the center, and halide anion X at the center of six planes and unique optoelectronic properties determined by the crystal structure. Because of very narrow spectra (full width at half-maximum ≤20 nm), which are insensitive to the crystallite/grain/particle dimension and wide wavelength range (400 nm ≤ λ ≤ 780 nm), perovskites are expected to be promising high-color purity light emitters that overcome inherent problems of conventional organic and inorganic quantum dot emitters. Within the last 2 y, perovskites have already demonstrated their great potential in light-emitting diodes by showing high electroluminescence efficiency comparable to those of organic and quantum dot light-emitting diodes. This article reviews the progress of perovskite emitters in two directions of bulk perovskite polycrystalline films and perovskite nanoparticles, describes current challenges, and suggests future research directions for researchers to encourage them to collaborate and to make a synergetic effect in this rapidly emerging multidisciplinary field. PMID:27679844

  9. Nanotube cathodes.

    SciTech Connect

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  10. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  11. Advantages of flattened electrode in bottom contact single-walled carbon nanotube field-effect transistor

    SciTech Connect

    Setiadi, Agung; Akai-Kasaya, Megumi Saito, Akira; Kuwahara, Yuji

    2014-09-01

    We fabricated single-walled carbon nanotube (SWNT) field-effect transistor (FET) devices on flattened electrodes, in which there are no height difference between metal electrodes and the substrate. SWNT-FET fabricated using bottom contact technique have some advantages, such that the SWNTs are free from electron irradiation, have direct contact with the desired metal electrodes, and can be functionalized before or after deposition. However, the SWNTs can be bent at the contact point with the metal electrodes leading to a different electrical characteristic of the devices. The number of SWNT direct junctions in short channel length devices is drastically increased by the use of flattened electrodes due to strong attractive interaction between SWNT and the substrate. The flattened electrodes show a better balance between their hole and electron mobility compared to that of the non-flattened electrodes, that is, ambipolar FET characteristic. It is considered that bending of the SWNTs in the non-flattened electrode devices results in a higher Schottky barrier for the electrons.

  12. Modeling of Gate Bias Modulation in Carbon Nanotube Field-Effect-Transistors

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The threshold voltages of a carbon nanotube (CNT) field-effect transistor (FET) are derived and compared with those of the metal oxide-semiconductor (MOS) FETs. The CNT channel is so thin that there is no voltage drop perpendicular to the gate electrode plane, which is the CNT diameter direction, and this makes the CNTFET characteristics quite different from those in MOSFETs. The relation between the voltage and the electrochemical potentials, and the mass action law for electrons and holes are examined in the context of CNTs, and it is shown that the familiar relations are still valid because of the macroscopic number of states available in the CNTs. This is in sharp contrast to the cases of quantum dots. Using these relations, we derive an inversion threshold voltage V(sub Ti) and an accumulation threshold voltage V(sub Ta) as a function of the Fermi level E(sub F) in the channel, where E(sub F) is a measure of channel doping. V(sub Ti) of the CNTFETs has a much stronger dependence than that of MOSFETs, while V(sub Ta)s of both CNTFETs and MOSFETs depend quite weakly on E(sub F) with the same functional form. This means the transition from normally-off mode to normally-on mode is much sharper in CNTFETs as the doping increases, and this property has to be taken into account in circuit design.

  13. Fabrication and characterization of junctionless carbon nanotube field effect transistor for cholesterol detection

    SciTech Connect

    Barik, Md. Abdul Dutta, Jiten Ch.

    2014-08-04

    We have reported fabrication and characterization of polyaniline (PANI)/zinc oxide (ZnO) membrane-based junctionless carbon nanotube field effect transistor deposited on indium tin oxide glass plate for the detection of cholesterol (0.5–22.2 mM). Cholesterol oxidase (ChOx) has been immobilized on the PANI/ZnO membrane by physical adsorption technique. Electrical response has been recorded using digital multimeter (Agilent 3458A) in the presence of phosphate buffer saline of 50 mM, pH 7.0, and 0.9% NaCl contained in a glass pot. The results of response studies for cholesterol reveal linearity as 0.5–16.6 mM and improved sensitivity of 60 mV/decade in good agreement with Nernstian limit ∼59.2 mV/decade. The life time of this sensor has been found up to 5 months and response time of 1 s. The limit of detection with regression coefficient (r) ∼ 0.998 and Michaelis-Menten constant (K{sub m}) were found to be ∼0.25 and 1.4 mM, respectively, indicating high affinity of ChOx to cholesterol. The results obtained in this work show negligible interference with glucose and urea.

  14. Synthesized multiwall MoS{sub 2} nanotube and nanoribbon field-effect transistors

    SciTech Connect

    Fathipour, S. Ajoy, A.; Vishwanath, S.; Rouvimov, S.; Xing, H. G.; Jena, D.; Seabaugh, A.; Remskar, M.; Varlec, A.; Yan, R.; Hwang, W. S.

    2015-01-12

    We report on the fabrication and characterization of synthesized multiwall MoS{sub 2} nanotube (NT) and nanoribbon (NR) field-effect transistors (FETs). The MoS{sub 2} NTs and NRs were grown by chemical transport, using iodine as a transport agent. Raman spectroscopy confirms the material as unambiguously MoS{sub 2} in NT, NR, and flake forms. Transmission electron microscopy was used to observe cross sections of the devices after electrical measurements and these were used in the interpretation of the electrical measurements, allowing the estimation of the current density. The NT and NR FETs demonstrate n-type behavior, with ON/OFF current ratios exceeding 10{sup 3}, and with current densities of 1.02 μA/μm and 0.79 μA/μm at V{sub DS} = 0.3 V and V{sub BG} = 1 V, respectively. Photocurrent measurements conducted on a MoS{sub 2} NT FET revealed short-circuit photocurrent of tens of nanoamps under an excitation optical power of 78 μW and 488 nm wavelength, which corresponds to a responsivity of 460 μA/W. A long channel transistor model was used to model the common-source characteristics of MoS{sub 2} NT and NR FETs and was shown to be consistent with the measured data.

  15. Carbon nanotube field effect transistors for the fast and selective detection of human immunoglobulin G.

    PubMed

    Cid, Cristina C; Riu, Jordi; Maroto, Alicia; Rius, F Xavier

    2008-08-01

    We report a field effect transistor (FET) based on a network of single-walled carbon nanotubes (SWCNTs) which can selectively detect human immunoglobulin G (HIgG). HIgG antibodies, which are strongly adsorbed onto the walls of the SWCNTs, are the basic elements of the recognition layer. The non-specific binding of proteins and the effects of other interferences are avoided by covering the non-adsorbed areas of the SWCNTs with Tween 20. The selectivity of the sensor has been tested against bovine serum albumin (BSA), the most abundant protein in plasma. HIgG in aqueous solution with concentrations from 1.25 mg L(-1) (8 nM) can be readily detected with response times of about 10 min. The SWCNT networks that form the basis of the sensor are easily grown by chemical vapour deposition. Silver screen-printed electrodes make the sensor quick to build. The sensitivity obtained with this sensor is similar to other FET devices based on SWCNTs built using much more complicated lithography processes. Moreover, the sensor is a reagentless device that does not need labels to detect HIgG.

  16. Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds.

    PubMed

    Pandey, Archana; Prasad, Abhishek; Moscatello, Jason P; Engelhard, Mark; Wang, Chongmin; Yap, Yoke Khin

    2013-01-22

    Novel PMMA-STO-CNT matrices were created by opened-tip vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) with conformal coatings of strontium titanate (STO) and poly(methyl methacrylate) (PMMA). Emission threshold of 0.8 V/μm was demonstrated, about 5-fold lower than that of the as-grown VA-MWCNTs. This was obtained after considering the related band structures under the perspective of work functions and tunneling width as a function of the STO thickness. We showed that there is an optimum thickness of STO coatings to effectively reduce the work function of CNTs and yet minimize the tunneling width for electron emissions. Furthermore, simulation and modeling suggest that PMMA-STO-CNT matrices have suppressed screening effects and Coulombs' repulsion forces between electrons in adjacent CNTs, leading to low emission threshold, high emission density, and prolonged emission stability. These findings are important for practical application of VA-MWCNTs in field emission devices, X-ray generation, and wave amplification.

  17. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits.

    PubMed

    Chen, Bingyan; Zhang, Panpan; Ding, Li; Han, Jie; Qiu, Song; Li, Qingwen; Zhang, Zhiyong; Peng, Lian-Mao

    2016-08-10

    Top-gated p-type field-effect transistors (FETs) have been fabricated in batch based on carbon nanotube (CNT) network thin films prepared from CNT solution and present high yield and highly uniform performance with small threshold voltage distribution with standard deviation of 34 mV. According to the property of FETs, various logical and arithmetical gates, shifters, and d-latch circuits were designed and demonstrated with rail-to-rail output. In particular, a 4-bit adder consisting of 140 p-type CNT FETs was demonstrated with higher packing density and lower supply voltage than other published integrated circuits based on CNT films, which indicates that CNT based integrated circuits can reach to medium scale. In addition, a 2-bit multiplier has been realized for the first time. Benefitted from the high uniformity and suitable threshold voltage of CNT FETs, all of the fabricated circuits based on CNT FETs can be driven by a single voltage as small as 2 V.

  18. Compact model for ballistic MOSFET-like carbon nanotube field-effect transistors

    NASA Astrophysics Data System (ADS)

    Abdolkader, Tarek M.; Fikry, Wael

    2016-01-01

    In this work, a compact model for MOSFET-like ballistic carbon nanotube field-effect transistors (CNFETs) is presented. The model is based on calculating the charge and surface potential on the top of the barrier between source and drain using closed-form analytical formulae. The formula for the surface potential is obtained by merging two simplified expressions obtained in two extreme cases (very low and very high gate bias). Two fitting parameters are introduced whose values are extracted by best fitting model results with numerically calculated ones. The model has a continuous derivative and thus it is SPICE-compatible. Accuracy of the model is compared to previous analytical model presented in the literature with numerical results taken as a reference. Proposed model proves to give less relative error over a wide range of gate biases, and for a drain bias up to 0.5 V. In addition, the model enables the calculation of quantum and gate capacitance analytically reproducing the negative capacitance behaviour known in CNFETs.

  19. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits.

    PubMed

    Chen, Bingyan; Zhang, Panpan; Ding, Li; Han, Jie; Qiu, Song; Li, Qingwen; Zhang, Zhiyong; Peng, Lian-Mao

    2016-08-10

    Top-gated p-type field-effect transistors (FETs) have been fabricated in batch based on carbon nanotube (CNT) network thin films prepared from CNT solution and present high yield and highly uniform performance with small threshold voltage distribution with standard deviation of 34 mV. According to the property of FETs, various logical and arithmetical gates, shifters, and d-latch circuits were designed and demonstrated with rail-to-rail output. In particular, a 4-bit adder consisting of 140 p-type CNT FETs was demonstrated with higher packing density and lower supply voltage than other published integrated circuits based on CNT films, which indicates that CNT based integrated circuits can reach to medium scale. In addition, a 2-bit multiplier has been realized for the first time. Benefitted from the high uniformity and suitable threshold voltage of CNT FETs, all of the fabricated circuits based on CNT FETs can be driven by a single voltage as small as 2 V. PMID:27459084

  20. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    NASA Astrophysics Data System (ADS)

    McCarthy, Mitchell

    The display market is presently dominated by the active matrix liquid crystal display (LCD). However, the active matrix organic light emitting diode (AMOLED) display is argued to become the successor to the LCD, and is already beginning its way into the market, mainly in small size displays. But, for AMOLED technology to become comparable in market share to LCD, larger size displays must become available at a competitive price with their LCD counterparts. A major issue preventing low-cost large AMOLED displays is the thin-film transistor (TFT) technology. Unlike the voltage driven LCD, the OLEDs in the AMOLED display are current driven. Because of this, the mature amorphous silicon TFT backplane technology used in the LCD must be upgraded to a material possessing a higher mobility. Polycrystalline silicon and transparent oxide TFT technologies are being considered to fill this need. But these technologies bring with them significant manufacturing complexity and cost concerns. Carbon nanotube enabled vertical organic field effect transistors (CN-VFETs) offer a unique solution to this problem (now known as the AMOLED backplane problem). The CN-VFET allows the use of organic semiconductors to be used for the semiconductor layer. Organics are known for their low-cost large area processing compatibility. Although the mobility of the best organics is only comparable to that of amorphous silicon, the CN-VFET makes up for this by orienting the channel vertically, as opposed to horizontally (like in conventional TFTs). This allows the CN-VFET to achieve sub-micron channel lengths without expensive high resolution patterning. Additionally, because the CN-VFET can be easily converted into a light emitting transistor (called the carbon nanotube enabled vertical organic light emitting transistor---CN-VOLET) by essentially stacking an OLED on top of the CN-VFET, more potential benefits can be realized. These potential benefits include, increased aperture ratio, increased OLED

  1. Detection of the Odor Signature of Ovarian Cancer using DNA-Decorated Carbon Nanotube Field Effect Transistor Arrays

    NASA Astrophysics Data System (ADS)

    Kehayias, Christopher; Kybert, Nicholas; Yodh, Jeremy; Johnson, A. T. Charlie

    Carbon nanotubes are low-dimensional materials that exhibit remarkable chemical and bio-sensing properties and have excellent compatibility with electronic systems. Here, we present a study that uses an electronic olfaction system based on a large array of DNA-carbon nanotube field effect transistors vapor sensors to analyze the VOCs of blood plasma samples collected from patients with malignant ovarian cancer, patients with benign ovarian lesions, and age-matched healthy subjects. Initial investigations involved coating each CNT sensor with single-stranded DNA of a particular base sequence. 10 distinct DNA oligomers were used to functionalize the carbon nanotube field effect transistors, providing a 10-dimensional sensor array output response. Upon performing a statistical analysis of the 10-dimensional sensor array responses, we showed that blood samples from patients with malignant cancer can be reliably differentiated from those of healthy control subjects with a p-value of 3 x 10-5. The results provide preliminary evidence that the blood of ovarian cancer patients contains a discernable volatile chemical signature that can be detected using DNA-CNT nanoelectronic vapor sensors, a first step towards a minimally invasive electronic diagnostic technology for ovarian cancer.

  2. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics

    SciTech Connect

    Jin, Sung Hun E-mail: jhl@snu.ac.kr Shin, Jongmin; Cho, In-Tak; Lee, Jong-Ho E-mail: jhl@snu.ac.kr; Han, Sang Youn; Lee, Dong Joon; Lee, Chi Hwan; Rogers, John A. E-mail: jhl@snu.ac.kr

    2014-07-07

    This paper presents materials, device designs, and physical/electrical characteristics of a form of nanotube electronics that is physically transient, in the sense that all constituent elements dissolve and/or disperse upon immersion into water. Studies of contact effects illustrate the ability to use water soluble metals such as magnesium for source/drain contacts in nanotube based field effect transistors. High mobilities and on/off ratios in transistors that use molybdenum, silicon nitride, and silicon oxide enable full swing characteristics for inverters at low voltages (∼5 V) and with high gains (∼30). Dissolution/disintegration tests of such systems on water soluble sheets of polyvinyl alcohol demonstrate physical transience within 30 min.

  3. A power system design and analysis of carbon nano-tubes field emission displays

    NASA Astrophysics Data System (ADS)

    Wang, Jong C.; Yao, W. C.

    2006-01-01

    In new generation Flat Panel Displays(FPD), a lot of design methods are being deployed, including OLED, PDP, TFT-LCD, Back Projection and Field Emission Display(FED) etc. These new generation FPDs have their respective pluses and minuses. Each has its selling points and market attractions. But among them, FED principles are most close to that of CRT displays. Not only FEDs are advantageous in their good degree of saturation of color, but also they have excellent contrast, luminance and electricity consumption etc. It has been considered as the main products of future generation FPDs. Japan and countries all over the world are successively proposing and launching related FED products in the fields. This will not only drive the FEDs into a wave of new trends, but also it will be able to replace most of the current FPD products within a short time. In this paper, based on these solid trends, we are determined to put into our resources and efforts to perform research on these important FEDs technologies and products, particularly in Carbon Nano-Tubes FEDs(CNT-FED). Our research group has already performed research on CNT-FED subjects for almost three years. During the course of our research, we have run into a lot of issues and problems. We have made every effort to overcome some of them. This paper performs comparative analysis of three power option for small size (4-inch) CNT-FEDs to drive the FED effects such as the direct current power, pulsed power and sinusoidal power respectively. This paper performs comparative analysis of three power options for small sized CNT-FEDs. It was concluded that the pulsed power option will produce the best results overall among the three power options. It is felt that these data presented can then be referenced and used to design a power system circuit to get an optimum design for better luminance and least power consumption for small sized commercial CNT-FED products.

  4. Cancer from internal emitters

    SciTech Connect

    Boecker, B.B.; Griffith, W.C. Jr.

    1995-10-01

    Irradiation from internal emitters, or internally deposited radionuclides, is an important component of radiation exposures encountered in the workplace, home, or general environment. Long-term studies of human populations exposed to various internal emitters by different routes of exposure are producing critical information for the protection of workers and members of the general public. The purpose of this report is to examine recent developments and discuss their potential importance for understanding lifetime cancer risks from internal emitters. The major populations of persons being studied for lifetime health effects from internally deposited radionuclides are well known: Lung cancer in underground miners who inhaled Rn progeny, liver cancer from persons injected with the Th-containing radiographic contrast medium Thorotrast, bone cancer from occupational or medical intakes of {sup 226}Ra or medical injections of {sup 224}Ra, and thyroid cancer from exposures to iodine radionuclides in the environment or for medical purposes.

  5. Morphological Properties of Lyα Emitters at Redshift 4.86 in the Cosmos Field: Clumpy Star Formation or Merger?

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masakazu A. R.; Murata, Katsuhiro L.; Koekemoer, Anton M.; Murayama, Takashi; Taniguchi, Yoshiaki; Kajisawa, Masaru; Shioya, Yasuhiro; Scoville, Nick Z.; Nagao, Tohru; Capak, Peter L.

    2016-03-01

    We investigate morphological properties of 61 Lyα emitters (LAEs) at z = 4.86 identified in the COSMOS field, based on Hubble Space Telescope Advanced Camera for Surveys (ACS) imaging data in the F814W band. Out of the 61 LAEs, we find the ACS counterparts for 54 LAEs. Eight LAEs show double-component structures with a mean projected separation of 0.″63 (˜4.0 kpc at z = 4.86). Considering the faintness of these ACS sources, we carefully evaluate their morphological properties, that is, size and ellipticity. While some of them are compact and indistinguishable from the point-spread function (PSF) half-light radius of 0.″07 (˜0.45 kpc), the others are clearly larger than the PSF size and spatially extended up to 0.″3 (˜1.9 kpc). We find that the ACS sources show a positive correlation between ellipticity and size and that the ACS sources with large size and round shape are absent. Our Monte Carlo simulation suggests that the correlation can be explained by (1) the deformation effects via PSF broadening and shot noise or (2) the source blending in which two or more sources with small separation are blended in our ACS image and detected as a single elongated source. Therefore, the 46 single-component LAEs could contain the sources that consist of double (or multiple) components with small spatial separation (i.e., ≲0.″3 or 1.9 kpc). Further observation with high angular resolution at longer wavelengths (e.g., rest-frame wavelengths of ≳4000 Å) is inevitable to decipher which interpretation is adequate for our LAE sample. Based on observations with NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555, and also based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  6. The Luminosity Function and Star Formation Rate Between Redshifts of 0.07 and 1.47 for Narrow-band Emitters in the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malkan, M.; Kashikawa, N.; Shimasaku, K.; Doi, M.; Nagao, T.; Iye, M.; Kodama, T.; Morokuma, T.; Motohara, K.

    2006-06-01

    Subaru Deep Field line-emitting galaxies in four narrow-band filters at low and intermediate redshifts are presented. Broad-band colors, follow-up optical spectroscopy, and multiple narrow-band filters are used to distinguish Hα, [OII], and [OIII] emitters between redshifts of 0.07 and 1.47 to construct their averaged rest-frame optical-to-UV SED and luminosity functions. These luminosity functions are derived down to faint magnitudes, which allows for a more accurate determination of the faint end slope. With a large (N 200-900) sample for each redshift interval, a Schechter profile is fitted to each luminosity function. Prior to dust extinction corrections, the [OIII] and [OII] luminosity functions reported in this paper agree reasonably well with those of Hippelein et al (2003). The z=0.066-0.092 Hα LF agrees with those of Jones & Bland-Hawthorn (2001), but for z=0.24 and 0.40, their number density is higher by a factor of two or more. The z=0.08 Hα LF, which reaches two orders of magnitude fainter than Gallego et al. (1995), is steeper by 25%. This indicates that there are more low luminosity star-forming galaxies for z<0.1 than predicted. The faint end slope α and φ* show a strong evolution with redshift while L* show little evolution. The evolution in α indicates that low-luminosity galaxies have a stronger evolution compared to brighter ones. Integrated star formation rate densities are derived via Hα for 0.07

  7. Optical performance of carbon-nanotube electron sources.

    PubMed

    de Jonge, Niels; Allioux, Myriam; Oostveen, Jim T; Teo, Kenneth B K; Milne, William I

    2005-05-13

    The figure of merit for the electron optical performance of carbon-nanotube (CNT) electron sources is presented. This figure is given by the relation between the reduced brightness and the energy spread in the region of stable emission. It is shown experimentally that a CNT electron source exhibits a highly stable emission process that follows the Fowler-Nordheim theory for field emission, fixing the relationship among the energy spread, the current, and the radius. The performance of the CNT emitter under realistic operating conditions is compared with state-of-the-art electron point sources. It is demonstrated that the reduced brightness is a function of the tunneling parameter, a measure of the energy spread at low temperatures, only, independent of the geometry of the emitter. PMID:15904397

  8. Optical Performance of Carbon-Nanotube Electron Sources

    NASA Astrophysics Data System (ADS)

    de Jonge, Niels; Allioux, Myriam; Oostveen, Jim T.; Teo, Kenneth B.; Milne, William I.

    2005-05-01

    The figure of merit for the electron optical performance of carbon-nanotube (CNT) electron sources is presented. This figure is given by the relation between the reduced brightness and the energy spread in the region of stable emission. It is shown experimentally that a CNT electron source exhibits a highly stable emission process that follows the Fowler-Nordheim theory for field emission, fixing the relationship among the energy spread, the current, and the radius. The performance of the CNT emitter under realistic operating conditions is compared with state-of-the-art electron point sources. It is demonstrated that the reduced brightness is a function of the tunneling parameter, a measure of the energy spread at low temperatures, only, independent of the geometry of the emitter.

  9. Coupling of semiconductor carbon nanotubes emission with silicon photonic micro ring resonators

    NASA Astrophysics Data System (ADS)

    Sarti, Francesco; Caselli, Niccolò; La China, Federico; Biccari, Francesco; Torrini, Ughetta; Intonti, Francesca; Vinattieri, Anna; Durán-Valdeiglesias, Elena; Zhang, Weiwei; Noury, Adrien; Alonso-Ramos, Carlos; Hoang, ThiHong Cam; Serna, Samuel; Le Roux, Xavier; Cassan, Eric; Izard, Nicolas; Yang, Hongliu; Bezugly, Viktor; Cuniberti, Gianaurelio; Filoramo, Arianna; Vivien, Laurent; Gurioli, Massimo

    2016-05-01

    Hybrid structures are needed to fully exploit the great advantages of Si photonics and several approaches have been addressed where Si devices are bonded to different materials and nanostructures. Here we study the use of semiconductor carbon nanotubes for emission in the 1300 nm wavelength range to functionalize Si photonic structures in view of optoelectronic applications. The Si micro-rings are fully characterized by near field forward resonant scattering with 100 nm resolution. We show that both TE and TM modes can be addressed on the top of the micro-rings in a vectorial imaging of the in-plane polarization components. We coupled the Si micro-resonators with selected carbon nanotubes for high photoluminescence emission. Coupling nanotubes with the evanescent tails in air of the electric field localized in the photonic modes of the micro-resonators is demonstrated by sharp resonances over imposed to the nanotube emission bands. By mapping the Si and the nanotube emission we demonstrate that strong enhancement of the nanotube photoluminescence can be achieved both in the photonic modes of micro-disks and slot micro-rings, whenever the spatial overlap between nano-emitters and photonic modes is fulfilled.

  10. Photoluminescence microscopy on air-suspended carbon nanotubes coupled to photonic crystal nanobeam cavities

    NASA Astrophysics Data System (ADS)

    Miura, R.; Imamura, S.; Shimada, T.; Ohta, R.; Iwamoto, S.; Arakawa, Y.; Kato, Y. K.

    2014-03-01

    Because carbon nanotubes are room-temperature telecom-band emitters and can be grown on silicon substrates, they are ideal for coupling to silicon photonic cavities.[2,3 In particular, as-grown air-suspended carbon nanotubes show excellent optical properties, but cavity modes with large fields in the air are needed in order to achieve efficient coupling. Here we investigate individual air-suspended nanotubes coupled to photonic crystal nanobeam cavities. We utilize cavities that confine air-band modes which have large fields in the air. Dielectric mode cavities are also prepared for comparison. We fabricate the devices from silicon-on-insulator substrates by using electron beam lithography and dry etching to form the nanobeam structure. The buried oxide layer is removed by wet etching, and carbon nanotubes are grown onto the cavities by chemical vapor deposition. We perform photoluminescence imaging and excitation spectroscopy to find the positions of the nanotubes and identify their chiralities. For both types of devices, cavity modes with quality factors of ~3000 are observed within the nanotube emission peak. Work supported by SCOPE, KAKENHI, The Telecommunications Advancement Foundation, The Toyota Physical and Chemical Research Institute, Project for Developing Innovation Systems of MEXT, Japan and the Photon Frontier Network Program of MEXT, Japan.

  11. Thermophotovoltaic emitter development

    NASA Astrophysics Data System (ADS)

    Nelson, Robert E.

    1995-01-01

    Many refractory oxide ceramics in fibrous form are efficient converters of the heat of combustion into radiant energy. Rare earth oxide ceramics, which are refractory and stable in flames, exhibit selective emission in the near IR where semiconductor photoconverters are efficient in converting radiant energy directly into electrical power. Ytterbia emitters and silicon photoconverters, in particular, constitute the basis for a high performance thermophotovoltaic energy conversion system. Ceramic fiber fabrication techniques are described that yield mechanically durable emitters in classical mantle geometries and in a novel planar form. This work has been supported by the Basic Research Group of the Gas Research Institute, Chicago, Illinois.

  12. Head erosion with emittance growth in PWFA

    SciTech Connect

    Li, S. Z.; Adli, E.; England, R. J.; Frederico, J.; Gessner, S. J.; Hogan, M. J.; Litos, M. D.; Walz, D. R.; Muggli, P.; An, W.; Clayton, C. E.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W.; Vafaei, N.

    2012-12-21

    Head erosion is one of the limiting factors in plasma wakefield acceleration (PWFA). We present a study of head erosion with emittance growth in field-ionized plasma from the PWFA experiments performed at the FACET user facility at SLAC. At FACET, a 20.3 GeV bunch with 1.8 Multiplication-Sign 10{sup 10} electrons is optimized in beam transverse size and combined with a high density lithium plasma for beam-driven plasma wakefield acceleration experiments. A target foil is inserted upstream of the plasma source to increase the bunch emittance through multiple scattering. Its effect on beamplasma interaction is observed with an energy spectrometer after a vertical bend magnet. Results from the first experiments show that increasing the emittance has suppressed vapor field-ionization and plasma wakefields excitation. Plans for the future are presented.

  13. Controlling growth and field emission properties of silicon nanotube arrays by multistep template replication and chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Mu, Cheng; Yu, Yuxiang; Liao, Wei; Zhao, Xinsheng; Xu, Dongsheng; Chen, Xihong; Yu, Dapeng

    2005-09-01

    A multistep template replication route was employed to fabricate highly ordered silicon nanotube (SiNT) arrays, in which annular nanochannel membranes were produced first, and then silicon was deposited into the annular nanochannels by pyrolytic decomposition of silane. Electron microscopy revealed that these SiNTs are highly crystalline and the wall thicknesses can be controlled by the spaces of the annular nanochannel. Field emission characterization showed that the turn-on field and threshold field for the SiNT arrays are about 5.1V/μm and 7.3V/μm, respectively. These results represent one of the lowest fields ever reported for Si field emission materials at technologically useful current densities.

  14. High Critical Field Superconductivity in FeSe0.1 Te0.9 Coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Cornell, Nicholas; Huang, Jijie; Salamon, Myron; Zakhidov, Anvar; Anvar Zakhidov; Haiyan Wang Team; Utd; Tamu Afosr Team

    2015-03-01

    Thin films of FeSe0.1Te0.9, grown on SrTi03, have been shown to possess an increased critical temperature, field, and current relative to both bulk samples of FeSe0.1Te0.9 and thin films of the related compound FeSe0.5Te0.5. Empirical measurement of FeSe0.1Te0.9 thin films reveal a zero temperature Hc2(0) ~ 45T. Carbon nanotubes are a promising lightweight flexible material for superconducting applications and have proven a robust substrate when conformally coated by superconducting MgB2. Thin film coatings of FeSe0.1Te0.9 have been deposited via pulsed laser deposition on dry- drawn multiwall carbon nanotube sheets drawn from CVD grown forests. While true zero resistance isn't achieved due to inter-connectivity issues or junction effects in multiwall CNT case, clear superconducting transitions with R reaching zero can be seen on other single wall CNT, and non-oriented carbon nanotube substrates. Properties of these superconducting FeSe0.1Te0.9@SWCNT thin films are discussed.

  15. Electron beam machining of nanometer-sized tips from multiwalled boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Celik-Aktas, Ayten; Stubbins, James F.; Zuo, Jian-Min

    2007-07-01

    We report here that high energy electron irradiation of multiwalled boron nitride nanotubes can be used to form sharp, crystalline, conical tips, or to cut boron nitride nanotubes by controlling the electron beam size. Electron beam cutting is observed when a focused electron beam with a diameter much smaller than the tube diameter is used. The tip formation is observed when a shaped, disklike, electron beam is used to irradiate the tube; the diameter of the beam in this case is similar to the tube diameter. In situ electron microscopy observation shows that the tip formation effect is driven by layer peeling and the collapse of the inner walls of the nanotube. This is very different from the formation of nanoarches observed during cutting. The combination of shaping and cutting can be used to fabricate atomically sharp tips for field emitters, nanoimaging, and manipulations.

  16. FACET Emittance Growth

    SciTech Connect

    Frederico, J; Hogan, M.J.; Nosochkov, Y.; Litos, M.D.; Raubenheimer, T.; /SLAC

    2011-04-05

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration. The FACET beamline consists of a chicane and final focus system to compress the 23 GeV, 3.2 nC electron bunches to {approx}20 {micro}m long and {approx}10 {micro}m wide. Simulations of the FACET beamline indicate the short-duration and large, 1.5% rms energy spread beams may suffer a factor of four emittance growth from a combination of chromaticity, incoherent synchrotron radiation (ISR), and coherent synchrotron radiation (CSR). Emittance growth is directly correlated to head erosion in plasma wakefield acceleration and is a limiting factor in single stage performance. Studies of the geometric, CSR, and ISR components are presented. Numerical calculation of the rms emittance can be overwhelmed by long tails in the simulated phase space distributions; more useful definitions of emittance are given. A complete simulation of the beamline is presented as well, which agrees with design specifications.

  17. Characteristic dynamic modes and domain-wall motion in magnetic nanotubes excited by resonant rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Yang, Jaehak; Kim, Junhoe; Kim, Bosung; Cho, Young-Jun; Lee, Jae-Hyeok; Kim, Sang-Koog

    2016-07-01

    We performed micromagnetic numerical calculations to explore a cylindrical nanotube's magnetization dynamics and domain-wall (DW) motions driven by eigen-circular-rotating magnetic fields of different frequencies. We discovered the presence of two different localized DW oscillations as well as asymmetric ferromagnetic resonance precession and azimuthal spin-wave modes at the corresponding resonant frequencies of the circular-rotating fields. Associated with these intrinsic modes, there exist very contrasting DW motions of different speed and propagation direction for a given DW chirality. The direction and speed of the DW propagation were found to be controllable according to the rotation sense and frequency of noncontact circular-rotating fields. Furthermore, spin-wave emissions from the moving DW were observed at a specific field frequency along with their Doppler effect. This work furthers the fundamental understanding of soft magnetic nanotubes' intrinsic dynamic modes and spin-wave emissions and offers an efficient means of manipulating the speed and direction of their DW propagations.

  18. A Carbon Nanotube Electron Source Based Ionization Vacuum Gauge

    SciTech Connect

    Changkun Dong; Ganapati Myneni

    2003-10-01

    The results of fabrication and performance of an ionization vacuum gauge using a carbon nanotube (CNT) electron source are presented. The electron source was constructed with multi-wall nanotubes (MWNT), which were grown using thermal chemical vapor deposition (CVD) process. The electron emission of the source was stable in vacuum pressure up to 10-7 Torr, which is better than the metal field emitters. The measurement linearity of the gauge was better than {+-}10% from 10-6 to 10-10 Torr. The gauge sensitivity of 4 Torr-1 was achieved under 50 {micro}A electron emission in nitrogen. The gauge is expected to find applications in vacuum measurements from 10-7 Torr to below 10-11 Torr.

  19. Effect of Temperature Gradient on Thick Film Selective Emitter Emittance

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Good, Brian S.; Clark, Eric B.; Chen, Zheng

    1997-01-01

    A temperature gradient across a thick (greater than or equal to .1 mm) film selective emitter will produce a significant reduction in the spectral emittance from the no temperature gradient case. Thick film selective emitters of rare earth doped host materials such as yttrium-aluminum-garnet (YAG) are examples where temperature gradient effects are important. In this paper a model is developed for the spectral emittance assuming a linear temperature gradient across the film. Results of the model indicate that temperature gradients will result in reductions the order of 20% or more in the spectral emittance.

  20. Enhanced field emission from a nest array of multi-walled carbon nanotubes grown on a silicon nanoporous pillar array

    NASA Astrophysics Data System (ADS)

    Li, Xin Jian; Jiang, Wei Fen

    2007-02-01

    A large scale nest array of multi-walled carbon nanotubes (NACNT) was grown on a silicon nanoporous pillar array (Si-NPA) by thermal chemical vapour deposition. Field emission measurements showed that a current density of 6.8 mA cm-2 was obtained at an electric field of 3.1 V µm-1, with a turn-on field of 0.56 V µm-1. The enhancement factor calculated according to the Fowler-Nordheim theory was ~25 000. This excellent field emission performance was attributed to the unique structure and morphology of NACNT/Si-NPA, especially the formation of NACNT, and the presence of numerous iron particles encapsulated in the CNTs. These results indicated that NACNT/Si-NPA might be an ideal candidate cathode for potential applications in flat panel displays.

  1. Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Vales-Pinzón, C.; Alvarado-Gil, J. J.; Medina-Esquivel, R.; Martínez-Torres, P.

    2014-11-01

    Magneto-optic phenomena in ferrofluids have been shown to be related to the formation of chain structures, due to the arrangement of the ferromagnetic particles, induced by an applied magnetic field. In this work, the effects on transmission of polarized light due to anisotropic effects induced by an external magnetic field in ferrofluids with carbon nanotubes are studied. The time response of the system presents two well defined stages, in the first one, which is very short, the fluid behaves as a polarizer. In contrast in the second stage, the effects of light transmission dominate. In this stage the transmitted light intensity grows with time and after a long time reaches a constant stable value. It is shown that these phenomena depend on the carbon nanotubes concentration as well as on the strength of the applied magnetic field. Using a simple model that considers a chain-like structure formation, it is possible to determine the rate of agglomeration of the formed structures and the attenuation coefficient of the transmitted light. The formation of nanostructures leads to variation in the transmitted light, depending on the polarization of the incident light. These magnetic nanostructures can find numerous applications in nanotechnology, optical devices and medicine.

  2. Integration and characterization of aligned carbon nanotubes on metal/silicon substrates and effects of water

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Li, Ruying; Liu, Hao; Sun, Xueliang; Mérel, Philippe; Désilets, Sylvain

    2009-02-01

    We report here a facile way to grow aligned multi-walled carbon nanotubes (MWCNTs) on various metal (e.g. gold, tungsten, vanadium and copper)/silicon electrically conductive substrates by aerosol-assisted chemical vapor deposition (AACVD). Without using any buffer layers, integration of high quality MWCNTs to the conductive substrates has been achieved by introducing appropriate amount of water vapor into the growth system. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) determination indicate tidy morphology and narrow diameter distribution of the nanotubes as well as promising growth rate suitable for industrial applications. Raman spectra analysis illustrates that the structural order and purity of the nanotubes are significantly improved in the presence of water vapor. The growth mechanism of the nanotubes has been discussed. It is believed that water vapor plays a key role in the catalyst-substrate interaction and nucleation of the carbon nanotubes on the conductive substrates. This synthesis approach is expected to be extended to other catalyst-conductive substrate systems and provide some new insight in the direct integration of carbon nanotubes onto conductive substrates, which promises great potential for applications in electrical interconnects, contacts for field emitters, and other electronic nanodevices.

  3. Reappraisal of solid selective emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1990-01-01

    New rare earth oxide emitters show greater efficiency than previous emitters. As a result, based on a simple model the efficiency of these emitters was calculated. Results indicate that the emission band of the selective emitter must be at relatively low energy (less than or equal to .52 eV) to obtain maximum efficiency at moderate emitter temperatures (less than or equal to 1500 K). Thus low bandgap energy PV materials are required to obtain an efficient thermophotovoltaic (TPV) system. Of the 4 specific rare earths (Nd, Ho, Er, Yb) studied Ho has the largest efficiency at moderate temperatures (72 percent at 1500 K). A comparison was made between a selective emitter TPV system and a TPV system that uses a thermal emitter plus a band pass filter to make the thermal emitter behave like a selective emitter. Results of the comparison indicate that only for very optimistic filter and thermal emitter properties will the filter TPV system have a greater efficiency than the selective emitter system.

  4. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  5. Acquisition of X-ray images by using a CNT cold emitter

    NASA Astrophysics Data System (ADS)

    Choi, H. Y.; Chang, W. S.; Kim, H. S.; Park, Y. H.; Kim, J. U.

    2006-08-01

    Carbon nanotubes (i.e., CNTs) are tubular carbon molecules with properties that make them potentially useful in extremely small scale electronic and mechanical applications. Because of this, CNTs are widely used in many fields such as field emission display (FED), nanoscale sensors, vacuum electronic devices, and so on. In this study, CNTs were applied for an X-ray source. CNTs were grown on the Si-wafer substrate by thermal CVD method and the length of the grown CNTs was about 30 50 μm. The electrical properties of the grown CNT emitter were tested in an X-ray tube, which has triode structure (i.e., a cathode as a CNT emitter, a grid, and an anode). Electron beam focusing characteristics as well as correlations between emission currents and grid mesh structures (or grid mesh voltage) were also studied by using OPERA 3D simulation. The detailed descriptions of the manufactured X-ray triode were reported and some preliminary X-ray images were presented.

  6. Length separation of single-walled carbon nanotubes and its impact on structural and electrical properties of wafer-level fabricated carbon nanotube-field-effect transistors

    NASA Astrophysics Data System (ADS)

    Böttger, Simon; Hermann, Sascha; Schulz, Stefan E.; Gessner, Thomas

    2016-10-01

    For an industrial realization of devices based on single-walled carbon nanotube (SWCNTs) such as field-effect transistors (FETs) it becomes increasingly important to consider technological aspects such as intrinsic device structure, integration process controllability as well as yield. From the perspective of a wafer-level integration technology, the influence of SWCNT length on the performance of short-channel CNT-FETs is demonstrated by means of a statistical and comparative study. Therefore, a methodological development of a length separation process based on size-exclusion chromatography was conducted in order to extract well-separated SWCNT dispersions with narrowed length distribution. It could be shown that short SWCNTs adversely affect integrability and reproducibility, underlined by a 25% decline of the integration yield with respect to long SWCNTs. Furthermore, it turns out that the significant changes in electrical performance are directly linked to a SWCNT chain formation in the transistor channel. In particular, CNT-FETs with long SWCNTs outperform reference and short SWCNTs with respect to hole mobility and subthreshold controllability by up to 300% and up to 140%, respectively. As a whole, this study provides a statistical and comparative analysis towards chain-less CNT-FETs fabricated with a wafer-level technology.

  7. Dependence of beam emittance on plasma electrode temperature and rf-power, and filter-field tuning with center-gapped rod-filter magnets in J-PARC rf-driven H{sup −} ion source

    SciTech Connect

    Ueno, A. Koizumi, I.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Yamazaki, S.; Oguri, H.

    2014-02-15

    The prototype rf-driven H{sup −} ion-source with a nickel plated oxygen-free-copper (OFC) plasma chamber, which satisfies the Japan Proton Accelerator Research Complex (J-PARC) 2nd stage requirements of a H{sup −} ion beam current of 60 mA within normalized emittances of 1.5 π mm mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500 μs × 25 Hz) and a life-time of more than 50 days, was reported at the 3rd international symposium on negative ions, beams, and sources (NIBS2012). The experimental results of the J-PARC ion source with a plasma chamber made of stainless-steel, instead of nickel plated OFC used in the prototype source, are presented in this paper. By comparing these two sources, the following two important results were acquired. One was that the about 20% lower emittance was produced by the rather low plasma electrode (PE) temperature (T{sub PE}) of about 120 °C compared with the typically used T{sub PE} of about 200 °C to maximize the beam current for the plasma with the abundant cesium (Cs). The other was that by using the rod-filter magnets with a gap at each center and tuning the gap-lengths, the filter-field was optimized and the rf-power necessary to produce the J-PARC required H{sup −} ion beam current was reduced typically 18%. The lower rf-power also decreases the emittances.

  8. Dependence of beam emittance on plasma electrode temperature and rf-power, and filter-field tuning with center-gapped rod-filter magnets in J-PARC rf-driven H(-) ion source.

    PubMed

    Ueno, A; Koizumi, I; Ohkoshi, K; Ikegami, K; Takagi, A; Yamazaki, S; Oguri, H

    2014-02-01

    The prototype rf-driven H(-) ion-source with a nickel plated oxygen-free-copper (OFC) plasma chamber, which satisfies the Japan Proton Accelerator Research Complex (J-PARC) 2nd stage requirements of a H(-) ion beam current of 60 mA within normalized emittances of 1.5 π mm mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500 μs × 25 Hz) and a life-time of more than 50 days, was reported at the 3rd international symposium on negative ions, beams, and sources (NIBS2012). The experimental results of the J-PARC ion source with a plasma chamber made of stainless-steel, instead of nickel plated OFC used in the prototype source, are presented in this paper. By comparing these two sources, the following two important results were acquired. One was that the about 20% lower emittance was produced by the rather low plasma electrode (PE) temperature (TPE) of about 120 °C compared with the typically used TPE of about 200 °C to maximize the beam current for the plasma with the abundant cesium (Cs). The other was that by using the rod-filter magnets with a gap at each center and tuning the gap-lengths, the filter-field was optimized and the rf-power necessary to produce the J-PARC required H(-) ion beam current was reduced typically 18%. The lower rf-power also decreases the emittances.

  9. Synthesis, characterization and field emission properties of ultra long aligned multiwall carbon nanotubes grown using chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Vinson, Herbert A.

    Carbon allotropes and their potential applications have been studied extensively over the past few decades. The exceptional electrical properties of carbon nanotubes (CNTs) make them practical candidates for a variety of electronic devices. The variability of the physical structure and therefore the properties of CNTs is accomplished through different synthesis methods and catalyst selection. Controlled growth of CNTs with precise architectures is necessary for the development of applications such as cold-cathode flat panel displays, field emission devices, and vertical interconnect assemblies. The implementation of aligned multiwall carbon nanotubes (AMWNTs) for these applications will require large scale synthesis methods. AMWNTs where synthesized by means of chemical vapor deposition (CVD), using a ferrocene/xylene solution [1g-(Fe(C5H5)2) / 100mL-C6H 4(CH3)2] as a catalyst as well as a carbon source. Growth of AMWNTs was achieved on a variety of substrates including: silicon dioxide and inconel. The AMWNTs were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Further characterization was accomplished by investigating the electron transport properties of the AMWNTs. Field emission (FE) devices were fabricated using bulk AMWNTs grown on a silicon substrate. The field emission properties were determined from the Fowler-Nordheim (F-N) plots that were obtained from the I-V curves. Analysis of the data and corresponding F-N plots revealed a field enhancement factor beta of 2490 for the bulk sample grown on silicon. The results confirm that the synthesized ultra-long AMWNTs are exceptional candidates for field emission devices.

  10. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  11. Surface-modified GaAs terahertz plasmon emitter

    NASA Astrophysics Data System (ADS)

    Darmo, J.; Strasser, G.; Muller, T.; Bratschitsch, R.; Unterrainer, K.

    2002-07-01

    We studied the THz emission from n-GaAs plasmon emitters modified by low-temperature-grown (LT) GaAs surface layers. The THz emission is increased since the LT GaAs pins the Fermi level at a midgap position, increasing the surface depletion field. For a THz emitter with a 70-nm-thick LT GaAs layer we observe without external fields a THz emission intensity of 140 nW. In addition, the long-term performance of the modified emitters is improved by the LT GaAs surface layer.

  12. Observation of Picometer Vertical Emittance with a Vertical Undulator

    NASA Astrophysics Data System (ADS)

    Wootton, K. P.; Boland, M. J.; Dowd, R.; Tan, Y.-R. E.; Cowie, B. C. C.; Papaphilippou, Y.; Taylor, G. N.; Rassool, R. P.

    2012-11-01

    Using a vertical undulator, picometer vertical electron beam emittances have been observed at the Australian Synchrotron storage ring. An APPLE-II type undulator was phased to produce a horizontal magnetic field, which creates a synchrotron radiation field that is very sensitive to the vertical electron beam emittance. The measured ratios of undulator spectral peak heights are evaluated by fitting to simulations of the apparatus. With this apparatus immediately available at most existing electron and positron storage rings, we find this to be an appropriate and novel vertical emittance diagnostic.

  13. Spin splitting at the Fermi level in carbon nanotubes in the absence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Cunha, Márcio M.; Brandão, Júlio; Lima, Jonas R. F.; Moraes, Fernando

    2015-11-01

    In this paper, motivated by the possibility of experimental realization, we study the low-energy electronic states of a rotating carbon nanotube within a continuum model. An effective Dirac equation in the rotating reference frame is derived and exact analytical solutions for the eigenfunctions and energy spectrum are obtained. A Zeeman-like splitting results from the coupling of rotation to total angular momentum and the previously known static results are obtained in the no rotation limit.

  14. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  15. Effect of doping on growth and field emission properties of spherical carbon nanotube tip placed over cylindrical surface

    NASA Astrophysics Data System (ADS)

    Santolia, Isha; Tewari, Aarti; Sharma, Suresh C.; Sharma, Rinku

    2014-06-01

    Theoretical investigations to study the effect of doping of hetero-atoms on the growth and field emission properties of Carbon Nanotubes (CNTs) tip placed over a cylindrical surface in complex plasma have been carried out. A theoretical model incorporating kinetics of plasma species such as electron, ions, and neutral atoms including doping elements like nitrogen (N) and boron (B) and energy balance of CNTs in a complex plasma has been developed. The effect of doping elements of N and B on the growth of CNTs, namely, the tip radius has been carried out for typical glow discharge plasma parameters. It is found that N and B as doping elements affect the radius of CNTs extensively. We obtain small radii of CNT doped with N and large radius of CNT doped with B. The field emission characteristics from CNTs have therefore been suggested on the basis of results obtained. Some of theoretical results are in compliance with the existing experimental observations.

  16. Effect of doping on growth and field emission properties of spherical carbon nanotube tip placed over cylindrical surface

    SciTech Connect

    Santolia, Isha; Tewari, Aarti; Sharma, Suresh C.; Sharma, Rinku

    2014-06-15

    Theoretical investigations to study the effect of doping of hetero-atoms on the growth and field emission properties of Carbon Nanotubes (CNTs) tip placed over a cylindrical surface in complex plasma have been carried out. A theoretical model incorporating kinetics of plasma species such as electron, ions, and neutral atoms including doping elements like nitrogen (N) and boron (B) and energy balance of CNTs in a complex plasma has been developed. The effect of doping elements of N and B on the growth of CNTs, namely, the tip radius has been carried out for typical glow discharge plasma parameters. It is found that N and B as doping elements affect the radius of CNTs extensively. We obtain small radii of CNT doped with N and large radius of CNT doped with B. The field emission characteristics from CNTs have therefore been suggested on the basis of results obtained. Some of theoretical results are in compliance with the existing experimental observations.

  17. Electric field induced transformation of carbon nanotube to graphene nanoribbons using Nafion as a solid polymer electrolyte

    SciTech Connect

    Jaison, M. J.; Vikram, K.; Narayanan, Tharangattu N. E-mail: vk.pillai@ncl.res.in; Pillai, Vijayamohanan K. E-mail: vk.pillai@ncl.res.in

    2014-04-14

    We report a remarkable transformation of multiwalled carbon nanotubes (MWCNTs, average diameter 40 nm) to graphene nanoribbons (GNRs) in response to a field gradient of ∼25 V/cm, in a sandwich configuration using a solid state proton conducting polymer electrolyte like a thin perfluorosulphonated membrane, Nafion. In response to the application of a constant voltage for a sustained period of about 24 h at both room temperature and elevated temperatures, an interesting transformation of MWCNTs to GNRs has been observed with reasonable yield. GNRs prepared by this way are believed to be better for energy storage applications due to their enhanced surface area with more active smooth edge planes. Moreover, possible morphological changes in CNTs under electric field can impact on the performance and long term stability of devices that use CNTs in their electronic circuitry.

  18. Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations: effect of electric field.

    PubMed

    Neyts, Erik C; van Duin, Adri C T; Bogaerts, Annemie

    2012-01-18

    Carbon nanotubes (CNTs) are nowadays routinely grown in a thermal CVD setup. State-of-the-art plasma-enhanced CVD (PECVD) growth, however, offers advantages over thermal CVD. A lower growth temperature and the growth of aligned freestanding single-walled CNTs (SWNTs) makes the technique very attractive. The atomic scale growth mechanisms of PECVD CNT growth, however, remain currently entirely unexplored. In this contribution, we employed molecular dynamics simulations to focus on the effect of applying an electric field on the SWNT growth process, as one of the effects coming into play in PECVD. Using sufficiently strong fields results in (a) alignment of the growing SWNTs, (b) a better ordering of the carbon network, and (c) a higher growth rate relative to thermal growth rate. We suggest that these effects are due to the small charge transfer occurring in the Ni/C system. These simulations constitute the first study of PECVD growth of SWNTs on the atomic level. PMID:22126536

  19. Effect of plasma parameters on growth and field emission of electrons from cylindrical metallic carbon nanotube surfaces

    SciTech Connect

    Sharma, Suresh C.; Tewari, Aarti

    2011-08-15

    The effect of plasma parameters (e.g., electron density and temperature, ion density and temperature, neutral atom density, and temperature) on the growth (without a catalyst), structure, and field emission of electrons from a cylindrical metallic carbon nanotube (CNT) surfaces has been theoretically investigated. A theoretical model of charge neutrality, including the kinetics of electrons, positively charged ions, and neutral atoms, and the energy balance of the various species in plasma, has been developed. Numerical calculations of the radius of the cylindrical CNT for different CNT number densities and plasma parameters have been carried out for the typical glow discharge plasma parameters. It is found that, on increasing the CNT number density and plasma parameters, the radius of cylindrical CNT decreases and consequently, the field emission factor for the metallic cylindrical CNT surfaces increase.

  20. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.

    PubMed

    Su, Jiaye; Guo, Hongxia

    2011-01-25

    The transport of water molecules through nanopores is not only crucial to biological activities but also useful for designing novel nanofluidic devices. Despite considerable effort and progress that has been made, a controllable and unidirectional water flow is still difficult to achieve and the underlying mechanism is far from being understood. In this paper, using molecular dynamics simulations, we systematically investigate the effects of an external electric field on the transport of single-file water molecules through a carbon nanotube (CNT). We find that the orientation of water molecules inside the CNT can be well-tuned by the electric field and is strongly coupled to the water flux. This orientation-induced water flux is energetically due to the asymmetrical water-water interaction along the CNT axis. The wavelike water density profiles are disturbed under strong field strengths. The frequency of flipping for the water dipoles will decrease as the field strength is increased, and the flipping events vanish completely for the relatively large field strengths. Most importantly, a critical field strength E(c) related to the water flux is found. The water flux is increased as E is increased for E ≤ E(c), while it is almost unchanged for E > E(c). Thus, the electric field offers a level of governing for unidirectional water flow, which may have some biological applications and provides a route for designing efficient nanopumps.

  1. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell.

    PubMed

    Petterson, Maureen K; Lemaitre, Maxime G; Shen, Yu; Wadhwa, Pooja; Hou, Jie; Vasilyeva, Svetlana V; Kravchenko, Ivan I; Rinzler, Andrew G

    2015-09-30

    Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separated there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm(2) AM1.5G illumination, results in a short-circuit current density of 35 mA/cm(2) and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed to surface passivation as a means of avoiding front surface recombination. A deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.

  2. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell

    SciTech Connect

    Petterson, Maureen K.; Lemaitre, Maxime G.; Shen, Yu; Wadhwa, Pooja; Hou, Jie; Vasilyeva, Svetlana V.; Kravchenko, Ivan I.; Rinzler, Andrew G.

    2015-09-09

    Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separated there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm2 AM1.5G illumination, results in a short-circuit current density of 35 mA/cm2 and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed to surface passivation as a means of avoiding front surface recombination. Finally, a deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.

  3. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell

    DOE PAGESBeta

    Petterson, Maureen K.; Lemaitre, Maxime G.; Shen, Yu; Wadhwa, Pooja; Hou, Jie; Vasilyeva, Svetlana V.; Kravchenko, Ivan I.; Rinzler, Andrew G.

    2015-09-09

    Recent years have seen a resurgence of interest in crystalline silicon Schottky junction solar cells distinguished by the use of low density of electronic states (DOS) nanocarbons (nanotubes, graphene) as the metal contacting the Si. Recently, unprecedented modulation of the power conversion efficiency in a single material system has been demonstrated in such cells by the use of electronic gating. The gate field induced Fermi level shift in the low-DOS carbon serves to enhance the junction built-in potential, while a gate field induced inversion layer at the Si surface, in regions remote from the junction, keeps the photocarriers well separatedmore » there, avoiding recombination at surface traps and defects (a key loss mechanism). Here, we extend these results into the third dimension of a vertical Si nanowire array solar cell. A single wall carbon nanotube layer engineered to contact virtually each n-Si nanowire tip extracts the minority carriers, while an ionic liquid electrolytic gate drives the nanowire body into inversion. The enhanced light absorption of the vertical forest cell, at 100 mW/cm2 AM1.5G illumination, results in a short-circuit current density of 35 mA/cm2 and associated power conversion efficiency of 15%. These results highlight the use of local fields as opposed to surface passivation as a means of avoiding front surface recombination. Finally, a deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue, a nonencapsulation-based approach is also implemented.« less

  4. Tomographic effects of near-field microwave microscopy in the investigation of muscle cells interacting with multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Farina, Marco; Di Donato, Andrea; Monti, Tamara; Pietrangelo, Tiziana; Da Ros, Tatiana; Turco, Antonio; Venanzoni, Giuseppe; Morini, Antonio

    2012-11-01

    In this work, we introduce a hybrid atomic-force/near-field scanning microwave microscope, exploiting the tomographic capabilities of the microwave microscopy to explore structures of relevant interest, namely, samples involving both biological and non-biological materials at the same time. In particular, we show imaging of C2C12 muscle cells grown in the presence of bundles of multi-walled carbon nanotubes: here, the microwave microscopy, by virtue of its tomographic potentiality, highlights how cells incorporate some nanotubes in their fibers.

  5. Design and characterization of a multi-beam micro-CT scanner based on carbon nanotube field emission x-ray technology

    NASA Astrophysics Data System (ADS)

    Peng, Rui

    In this dissertation, I will present the results for my Ph.D. research for the past five years. My project mainly focuses on advanced imaging applications with a multi-beam x-ray source array based on carbon nanotube field emission technology. In the past few years, research in carbon nanotubes gradually changed from the raw material science to its application. Field emission x-ray application is one of the hottest research areas for carbon nanotube. Compared to traditional thermionic x-ray sources, the carbon nanotube field emission x-ray source has some natural advantages over traditional thermionic x-ray sources such as instantaneous x-ray generation, programmability and miniaturization. For the past few years, the research and development of carbon nanotube field emission x-ray has shifted from single x-ray beam applications to spatially distributed multi-beam x-ray sources. Previously in Zhou group, we have already built a gated micro-CT system with single beam micro-focus x-ray tube for higher spatial and temporal resolution as required in live animal imaging and a multi-beam tomosynthesis system targeting for faster and more stable breast imaging. Now my project mainly focused on the design, characterization and optimization of a multi-beam micro-CT imaging system. With the increase of gantry rotation speed approaching the mechanical limit, it is getting more and more difficult to further speed up the CT scanning. My new system promises a potential solution for the problem, and it serves as a great test platform for truly stationary micro-CT geometry. The potential capabilities it showed during the characterization and imaging measurements was promising. The dissertation is composed of five chapters. In Chapter 1, I will generally review the physics principles of x-ray generation and interaction with matter. Then the discovery of carbon nanotube and its great potential to serve as an excellent field emission electron source will be introduced in the second

  6. Nitrogen doping in carbon nanotubes.

    PubMed

    Ewels, C P; Glerup, M

    2005-09-01

    Nitrogen doping of single and multi-walled carbon nanotubes is of great interest both fundamentally, to explore the effect of dopants on quasi-1D electrical conductors, and for applications such as field emission tips, lithium storage, composites and nanoelectronic devices. We present an extensive review of the current state of the art in nitrogen doping of carbon nanotubes, including synthesis techniques, and comparison with nitrogen doped carbon thin films and azofullerenes. Nitrogen doping significantly alters nanotube morphology, leading to compartmentalised 'bamboo' nanotube structures. We review spectroscopic studies of nitrogen dopants using techniques such as X-ray photoemission spectroscopy, electron energy loss spectroscopy and Raman studies, and associated theoretical models. We discuss the role of nanotube curvature and chirality (notably whether the nanotubes are metallic or semiconducting), and the effect of doping on nanotube surface chemistry. Finally we review the effect of nitrogen on the transport properties of carbon nanotubes, notably its ability to induce negative differential resistance in semiconducting tubes.

  7. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    NASA Astrophysics Data System (ADS)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  8. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving.

    PubMed

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units. PMID:27335235

  9. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units.

  10. Low Emittance Electron Beam Studies

    SciTech Connect

    Tikhoplav, Rodion

    2006-01-01

    We have studied the properties of a low emittance electron beam produced by laser pulses incident onto an rf gun photocathode. The experiments were carried out at the A0 photoinjector at Fermilab. Such beam studies are necessary for fixing the design of new Linear Colliders as well as for the development of Free Electron Lasers. An overview of the A0 photoinjector is given in Chapter 1. In Chapter 2 we describe the A0 photoinjector laser system. A stable laser system is imperative for reliable photoinjector operation. After the recent upgrade, we have been able to reach a new level of stability in the pulse-to-pulse fluctuations of the pulse amplitude, and of the temporal and transverse profiles. In Chapter 3 we present a study of transverse emittance versus the shape of the photo-cathode drive-laser pulse. For that purpose a special temporal profile laser shaping device called a pulse-stacker was developed. In Chapter 4 we discuss longitudinal beam dynamics studies using a two macro-particle bunch; this technique is helpful in analyzing pulse compression in the magnetic chicane, as well as velocity bunching effects in the rf-gun and the 9-cell accelerating cavity. In Chapter 5 we introduce a proposal for laser acceleration of electrons. We have developed a laser functioning on the TEM*01 mode, a mode with a longitudinal electric field component which is suitable for such a process. Using this technique at energies above 40 MeV, one would be able to observe laser-based acceleration.

  11. A Molecular Dynamics of Cold Neutral Atoms Captured by Carbon Nanotube Under Electric Field and Thermal Effect as a Selective Atoms Sensor.

    PubMed

    Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C

    2015-05-01

    Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor.

  12. High-performance carbon-nanotube-based complementary field-effect-transistors and integrated circuits with yttrium oxide

    SciTech Connect

    Liang, Shibo; Zhang, Zhiyong Si, Jia; Zhong, Donglai; Peng, Lian-Mao

    2014-08-11

    High-performance p-type carbon nanotube (CNT) transistors utilizing yttrium oxide as gate dielectric are presented by optimizing oxidization and annealing processes. Complementary metal-oxide-semiconductor (CMOS) field-effect-transistors (FETs) are then fabricated on CNTs, and the p- and n-type devices exhibit symmetrical high performances, especially with low threshold voltage near to zero. The corresponding CMOS CNT inverter is demonstrated to operate at an ultra-low supply voltage down to 0.2 V, while displaying sufficient voltage gain, high noise margin, and low power consumption. Yttrium oxide is proven to be a competitive gate dielectric for constructing high-performance CNT CMOS FETs and integrated circuits.

  13. Multi-walled carbon nanotubes increase anxiety levels in rats and reduce exploratory activity in the open field test.

    PubMed

    Sayapina, N V; Batalova, T A; Chaika, V V; Kuznetsov, V L; Sergievich, A A; Kolosov, V P; Perel'man, Yu M; Golokhvast, K S

    2015-01-01

    The results of the first study on the effects of multi-walled carbon nanotubes (MWNTs) on the exploratory activity and the emotional state in laboratory rats assessed by the open field test are reported. During three or ten days, rats received 8-10 nm MWNTs added to their food at a dose of 500 mg/kg. It was demonstrated that, in the group of rats which were fed with MWNTs, the integrated anxiety level index began to increase as early as the third day of the experiment; on the tenth day, it appeared to be twice increased. It was also demonstrated that MWNTs decreased the integrated exploratory activity index nearly twofold on the third day and nearly fourfold on the tenth day.

  14. Magnetic field and electromagnetic wave properties of carbon monoxide with high-pressure disproportionation single-walled carbon nanotubes

    SciTech Connect

    Tooski, S. B.

    2009-10-15

    A double-fluid theory is used to find the electromagnetic wave absorption of carbon monoxide with iron-catalyzed high-pressure disproportionation (HiPco)-grown single-walled carbon nanotubes (SWNTs). The electromagnetic wave absorption of carbon monoxide with HiPco SWNTs is obtained and is studied numerically. The absorption is then deduced and their functional dependence on the number density, collision frequency, cyclotron frequency, and angle of propagation is studied. The double-fluid theory predicts that there is an electromagnetic frequency dependency on the energy absorption properties of the system under investigation. The calculation results show that effects of magnetic field strength and the angle of microwave propagation on the absorption coefficient as well as the frequency band of resonant absorption are very significant.

  15. Probing Biological Processes on Supported Lipid Bilayers with Single-Walled Carbon Nanotube Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose Manuel; Craighead, Harold; McEuen, Paul

    2006-03-01

    We have formed supported lipid bilayers (SLBs) by small unilamellar vesicle fusion on substrates containing single-walled carbon nanotube field-effect transistors (SWNT-FETs). We are able to detect the self-assembly of SLBs electrically with SWNT-FETs since their threshold voltages are shifted by this event. The SLB fully covers the NT surface and lipid molecules can diffuse freely in the bilayer surface across the NT. To study the interactions of important biological entities with receptors imbedded within the membrane, we have also integrated a membrane protein, GT1b ganglioside, in the bilayer. While bare gangliosides can diffuse freely across the NT, interestingly the NT acts as a diffusion barrier for the gangliosides when they are bound with tetanus toxin. This experiment opens the possibility of using SWNT-FETs as biosensors for label-free detection.

  16. Thin-Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.

    1993-01-01

    Direct conversion of thermal energy into electrical energy using a photovoltaic cell is called thermophotovoltaic energy conversion. One way to make this an efficient process is to have the thermal energy source be an efficient selective emitter of radiation. The emission must be near the band-gap energy of the photovoltaic cell. One possible method to achieve an efficient selective emitter is the use of a thin film of rare-earth oxides. The determination of the efficiency of such an emitter requires analysis of the spectral emittance of the thin film including scattering and reflectance at the vacuum-film and film-substrate interfaces. Emitter efficiencies (power emitted in emission band/total emitted power) in the range 0.35-0.7 are predicted. There is an optimum optical depth to obtain maximum efficiency. High emitter efficiencies are attained only for low (less than 0.05) substrate emittance values, both with and without scattering. The low substrate emittance required for high efficiency limits the choice of substrate materials to highly reflective metals or high-transmission materials such as sapphire.

  17. Terahertz waveguide emitter with subwavelength confinement

    NASA Astrophysics Data System (ADS)

    Martl, Michael; Darmo, Juraj; Dietze, Daniel; Unterrainer, Karl; Gornik, Erich

    2010-01-01

    The generation of broadband terahertz pulses on the facet of waveguides is presented as an alternative to widely used coupling techniques. Dielectric loaded subwavelength waveguide structures with lateral confinement are investigated with respect to propagating modes and waveguide losses. The results show the terahertz waveguide emitter to be a promising tool for terahertz spectroscopy in the near field and for the probing of microstructured devices such as quantum cascade lasers.

  18. Emission Characteristics of Ion-Implanted Silicon Emitter Tips

    NASA Astrophysics Data System (ADS)

    Hirano, Takayuki; Kanemaru, Seigo; Tanoue, Hisao; Itoh, Junji

    1995-12-01

    An ion implantation technique has been applied to control the energy band structure of Si field-emitter tip surface. B+ or P+ ions were implanted after fabrication of a gated emitter structure. No changes in emitter structure were observed after ion implantation and successive annealing at 800° C. Current-voltage ( I-V ) characteristics of n, p, p/n and n/p emitter tips were measured: p/n indicates an n-type tip with B+ ions implanted into the tip surface. It was found from the experimental results that n and p/n tips had I-V characteristics in agreement with the Fowler-Nordheim theory. The p and n/p tips, on the other hand, exhibited a current saturation property in high electric field. The present saturation mechanism is explained by considering the energy band structure of the tip surface.

  19. Single-knob beam line for transverse emittance partitioning

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Kester, O. K.; Groening, L.; Leibrock, H.; Maier, M.; Rottländer, P.

    2013-04-01

    Flat beams feature unequal emittances in the horizontal and vertical phase space. Such beams were created successfully in electron machines by applying effective stand-alone solenoid fringe fields in the electron gun. Extension of this method to ion beams was proposed conceptually. The present paper is on the decoupling capabilities of an ion beam emittance transfer line. The proposed beam line provides a single-knob tool to partition the horizontal and vertical rms emittances, while keeping the product of the two emittances constant as well as the transverse rms Twiss parameters (αx,y and βx,y) in both planes. It is shown that this single knob is the solenoid field strength.

  20. Enhanced field emission from cerium hexaboride coated multiwalled carbon nanotube composite films: A potential material for next generation electron sources

    SciTech Connect

    Patra, Rajkumar; Ghosh, S.; Sheremet, E.; Rodriguez, R. D.; Lehmann, D.; Gordan, O. D.; Zahn, D. R. T.; Jha, M.; Ganguli, A. K.; Schmidt, H.; Schulze, S.; Schmidt, O. G.

    2014-03-07

    Intensified field emission (FE) current from temporally stable cerium hexaboride (CeB{sub 6}) coated carbon nanotubes (CNTs) on Si substrate is reported aiming to propose the new composite material as a potential candidate for future generation electron sources. The film was synthesized by a combination of chemical and physical deposition processes. A remarkable increase in maximum current density, field enhancement factor, and a reduction in turn-on field and threshold field with comparable temporal current stability are observed in CeB{sub 6}-coated CNT film when compared to pristine CeB{sub 6} film. The elemental composition and surface morphology of the films, as examined by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray measurements, show decoration of CeB{sub 6} nanoparticles on top and walls of CNTs. Chemical functionalization of CNTs by the incorporation of CeB{sub 6} nanoparticles is evident by a remarkable increase in intensity of the 2D band in Raman spectrum of coated films as compared to pristine CeB{sub 6} films. The enhanced FE properties of the CeB{sub 6} coated CNT films are correlated to the microstructure of the films.